
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

IP packet capture on high throughput networks by using NUMA architectures / Mezzalama, Marco; Oglietti, Gianluca;
Venuto, Enrico. - In: INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING. -
ISSN 2409-4285. - ELETTRONICO. - 4:10(2015), pp. 248-255.

Original

IP packet capture on high throughput networks by using NUMA architectures

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2621026 since: 2015-11-02T10:54:48Z

Dorma Journal Scientific Pubblication

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 10, October 2015

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 248-255

IP Packet Capture on High Throughput Networks by Using NUMA
Architectures

Marco Mezzalama1, Gianluca Oglietti2 and Enrico Venuto3

1, 2, 3 Politecnico di Torino – DAUIN, Corso Duca degli Abruzzi, 24 - 10129 Torino (TO)

1marco.mezzalama@polito.i1, 2gianluca.oglietti@polito.it, 3enrico.venuto@polito.it

ABSTRACT
Capture packets from IP networks is a commonly used
technique in many IT fields for monitoring and analysis the IP
traffic flows exchanged over computer networks. The new
infrastructures for high throughput networks, however, have
made this important technique more and more complex to
carry out (also in small or medium sized local networks) even
if using the newest multi-core systems developed today. This
paper therefore shows some limits of a recent packet capture
system, implemented by using a NUMA architecture, and
suggests a possible solution that could be adopted to obtain a
full functional IP packet capture system on high throughput
networks.

Keywords: Packet Capture, Networks, High Throughput,
Security, NUMA Architecture, Multi-core.

1. INTRODUCTION

Capture packets from IP networks is a commonly used
technique in many IT fields for monitoring and analysis
the IP traffic flows exchanged over computer networks.
It has always been considered of great importance, for
instance, in support of computer networks security, due
to its role in the identification of anomalous behaviors
that could be associated with viruses, hacking, spam or
computer fraud. The new infrastructures for high
throughput networks, however, have made this
important technique more and more complex to carry
out (also in small or medium sized local networks) even
if using the newest multi-core systems developed today.
In the last years, in fact, there has been a substantial
increase in the capacity of communication channels used
in the LAN/WAN networks to provide users with access
to new services made available on Internet: in the local
area networks (LAN) the 100 Mbps copper cables have
been replaced, in a first time, by 1Gbps copper cable and
now by 10 Gpbs optical fibers while in the
metropolitan/wide area network (MAN/WAN) it is
common to find point-to-point optical fiber connections

with throughput of 1 Tbps or, in laboratory, of 255 Tbps
[1]. The implementation of these high capacity network
infrastructures has made the real time IP packets capture
process more and more complex showing some limits of
the currently used acquisition systems.
The following paragraphs show, by making some simple
tests, how the number of lost packets increases
significantly fast even when using multi-core systems
and a modern networks card only in a 1Gbps local area
network. This paper therefore shows some limits of a
recent packet capture system, implemented by using a
NUMA architecture, and a possible solution will then be
proposed.
All tests were performed using a NUMA architecture
based on Intel hardware but the results can also be
extended to other families of CPUs.

2. BACKGROUND OF NEW HARDWARE
TECHNOLOGIES

Modern computers and new network adapters are based
on advanced technologies that need to be known in
order to assemble a new system to capture and to
monitor the IP traffic in high throughput networks.

2.1. Multi-Core Systems: The NUMA Architecture

The latest generation of servers are characterized by a
hardware architecture developed with the purpose to
insert in the same motherboard a high number of
processing units, called cores, also distributed over more
than one processor. One of the multi core architectures
mostly used today is NUMA (Non Uniform Memory
Access).
The most important feature of the NUMA architecture is
that each multi-core processor is directly connected to
only a part of the whole system memory. The group
formed by a multi-core processor and the system
memory directly connected to it is called NUMA node.

249

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 10, October 2015

M. Mezzalama et.al

The opportunity to use, in the same system, two or more
NUMA nodes allows to considerably increase the
computing capacity: each multi-core processor in fact is
able to access, at the same time and independently, the
portion of memory directly connected to it. By using this
kind of architecture it is possible to achieve another
performance gain thanks to the minimization of the
number of the processor cache memory’s access failures
as well as the minimization of the overall number of
system memory accesses. However, in general, it is
possible to achieve these performance gains only by
scheduling the processes on the cores of the NUMA
nodes where the processed data are located. The optimal
process scheduling on a NUMA system, however, is
very complex [2] because it strongly depends on how
the processes use the system memory and how many
processes are executed on the same NUMA node [3].

Fig. 1. Block diagram of a generic NUMA architecture

Fig.1 shows a general block diagram of a NUMA
architecture. It is composed by two nodes interconnected
to the system peripherals by two I/O Controller Hub
(ICH or I/O Hub) or Platform Controller Hub (PCH)
depending on the server type. Each node results directly
connected to the others through a dedicated bus (in the
Intel architecture this bus is called “Quick-Path
Interconnect” or QPI) and to only one of the two I/O
Hub (again with a QPI bus) or PC Hub (with a DMI
connection). Each node, furthermore, is also directly
connected to only one PCIe 3.0 bus (if available).
It is clear that this kind of architecture is not symmetric:
without modifying the interconnections between
peripherals and the Controller Hub or between
peripherals and the PCIe 3.0 bus the system
performance may change according to the node selected
to execute the programs code. Usually we can reach the
best performances by assigning all the processes that
need to use a particular peripheral to the node where that
particular peripheral is connected and, obviously, using
a number of processes smaller or equal to the number of
cores made available by that node.

2.2 The Evolution of the Network Adapters

Innovative technologies have been also introduced in
network cards in the last years in order to maximize the
exploitation of the faster and faster available network
links. One of the first such technologies aimed at
reducing the number of operations executed by the
system CPU (TCP Offload Engine technologies [4][5])
and at reducing of the number of interrupts sent to it
(Interrupt Moderation technology [6]). These
technologies, however, have become insufficient due to
the increase of the network throughput.
Last generation network cards (such as those realized
with the Intel controller 82599), are based on
technological solutions allowing to optimize the
memory read and write operations (Direct Cache Access
technology [7]) and, with the introduction of multiple
receive and transmit queues, to use all the available
cores of the modern system CPU: Extended Messaged
Signaled Interrupt (or MSI-X, that gives the possibility
to assign the interrupts generated by a particular queue
always to the same core using the SMP affinity [8][9])
and Receive Side Scaling (or RSS, that, in hardware,
allows the network controller to share all the captured
packets over all enabled queues). These last two
technologies are particularly important for the purposes
of this paper.

3. THE PACKET CAPTURE SYSTEM:
HARDWARE, SOFTWARE AND FOUR
DIFFERENT CONFIGURATIONS

The following paragraphs show information about the
hardware architecture and the different software
configurations used during the tests of network traffic
capturing.

3.1 Hardware

The server used during the four different packet capture
tests was built around the Supermicro X9DAX-7F
motherboard, whose internal structure is shown in Fig.
2. It is based on a NUMA architecture with two nodes
connected between them by two QPI busses. The
motherboard provides six external PCIe bus version 3.0
(on X16 and X8 slots) and an integrated network card
based on the Intel i350 controller (10/100/1000 Gbit/s).
Each node is equipped with 16GB of RAM and a CPU
Intel Xeon E5-2670 @ 2.60GHz (16 cores in total:
8+8HT)
To perform all the four tests a 10 Gbit/s Intel network
card, based on the 82599ES controller, has been
connected at the motherboard by using an available
PCIe 3.0 slot

250

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 10, October 2015

M. Mezzalama et.al

The motherboard chosen is capable of supporting all the
hardware technologies available on the network card.

Fig. 2. Internal structure of the motherboard used for the tests

3.2 Software

The server we used ran the GNU/Linux Ubuntu 14.04.3
LTS (64 bits) operative system with a kernel updated to
the 3.19 version. The 10 Gbit/s network card was
configured using the ixgbe driver updated to the 3.7.21-
NAPI version (the latest version with the “Node”
parameter that allow to manually choose which memory
will be allocated).

 3.3 Network drivers configuration

The proper configuration of the ixgbe driver require
some specific information about the system that is
possible to retrieve by using some Linux commands or
by checking the content of some particular kernel files.
Using the numactl command it was possible to know
details about the NUMA architecture: the number of
nodes, the size of the installed memory and the
subdivision of the cores among the nodes. After that it
was possible to identify the network interfaces and,
extracting the PCI_ID with the lspci command, to verify
to which node they were interconnected to, checking the
appropriate /sys/bus/pci/devices/PCI_ID/local_cpulist
files. The analysis of the obtained results indicates that
the multi-core system has four 10Gbit/s network
interfaces directly connected to node 0 (core 0, 1, 2, 3, 4,
5, 6, 7, 16, 17, 18, 19, 20, 21, 22, and 23).

3.4 The Packets Capture Tests

All the tests were performed sending blocks of
50.000.000 IP packets to the packets capture system at
different throughput: 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10

Gbit/s. For each of these throughput values seven
packets streams of different size were sent as
recommended by RFC 2544 [10]: 64, 128, 256, 512,
1024, 1280 e 1518 bytes. During the packets capture
tests the used software had only to count the number of
received packets for each different stream. All tests were
performed three times and the table Tab. 1 contains the
average of these repetitions.
In order to identify possible problems in a NUMA
architecture, while capturing IP packets from a high
throughput LAN, we have analyzed the results of four
different tests described in the following paragraphs.

3.4.1 First Test: Best Use of All the Available
Technologies

The aim of this first test was to capture IP traffic using a
specific ixgbe driver configuration to make the best use
of all the available technologies. For this reason 16
queues have been initialized for each network interface
(a queue for each available core in a node), while the
driver has been configured in order to use the memory
provided by node 0, that had the network card directly
connected. Linux identified the network interfaces with
the names eth2, eth3, eth4 and eth5 but in all the tests
has been only used the eth2 interface. The list of all the
performed operations is the following:

1) System preconfiguration: before changing the
interrupts allocation (SMP affinity) the irqbalance
daemon must be disabled (it is used to
dynamically redistribute all the interrupts
generated from the peripherals among all
available cores in order to optimize the
performance). The ixgbe driver must also be
removed from the system memory before it can
be reconfigured.

 ~# killall irqbalance
 ~# rmmod ixgbe

2) Loading of the ixgbe module into memory: the
ixgbe module must be configured to use only the
memory located into node 0 (Node=0,0,0,0) and
to initialize 16 receive queues on each interface
(RSS=16,16,16,16).

~# insmod /PATH/ixgbe.ko
Node=0,0,0,0 RSS=16,16,16,16

3) Network interface configuration: to properly
capture the IP traffic from an interface it is
advisable to disable the autonegotiation of the
transmission parameters, (manually configuring
at least the desired speed, in this case 10 Gbit/s,
must be performed) to disable the flow control of

251

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 10, October 2015

M. Mezzalama et.al

the Ethernet protocol and maximize the size of
the receive (rx) ring buffers.

 ~# ethtool -A eth2 autoneg off rx off tx off
 ~# ethtool -s eth2 speed 10000
 ~# ifconfig eth2 up
 ~# ethtool -G eth2 rx 8192

4) Assignment of the interrupts generated by the
queues to their core on Node 0: in order to assign
the interrupts generated by queues at the cores of
Node 0 it is enough to extract their identifier
(IRQ_ID) from the /proc/interrupt file and to
opportunely modify the
/proc/irq/IRQ_ID/smp_affinity files.

The software used to count the number of the captured
IP packets was tshark:

 ~# tshark -qi eth2

3.4.2 Second Test: Non Optimal Mode

The aim of this second test was to capture IP traffic
configuring the ixgbe driver in a non optimal mode. To
do this, the driver has been configured in order to use
node 1, which had no network card directly connected.
To make a comparison with the data obtained in the
previous test, also in this case, 16 receive queues have
been reinitialized. Here is the list of all the performed
operations:

1) System preconfiguration (as in the first test).
2) Loading of the ixgbe module into memory:

 ~# insmod /PATH/ixgbe.ko Node=1,1,1,1

RSS=16,16,16,16

3) Network interface configuration (as in the first
test).

4) Assignment of the interrupts of the queues to
the cores on Node 1.

The software used to count the number of the captured
IP packets was tshark.

3.4.3 Third Test: Use of a Single Queue with Cache
Optimization

The aim of this third test was to verify the effects of
using a single queue within the network interface
(RSS=1,1,1,1). The only generated interrupt has been
assigned to a core of node 0 (core number 2) and, to

optimize the cache use, the capture program has been
scheduled on the same core. The performed operations
in this case are:

1) System preconfiguration (as in the first test).
2) Loading of the ixgbe module into memory:

 ~# insmod /PATH/ixgbe.ko Node=0,0,0,0
RSS=1,1,1,1

3) Network interface configuration (as in the first
test).

4) Assignment of the interrupt of the only queue
to the core 2 of Node 0.

The software used to count the number of the captured
IP packets was tshark. However, to make sure that the
scheduler runs the tshark command on the core2 of node
0, the following taskset commands must be used:

 ~# taskset -pc 2 PID_TSHARK
 ~# taskset -pc 2 PID_TSHARK_CHILD

Where PID_TSHARK is the PID of the tshark process
while PID_TSHARK_CHILD is the pid of the child
process (dumpcap).

3.4.4 Fourth Test: Use of a Single Queue without Cache
Optimization

The aim of this fourth test was to verify the effects of
the lack of processor cache optimization guarantee. In
this case the IP packets capture software has been
scheduled on a core of node 0 (core 3) different from the
one used to manage the interrupts generated by the only
enabled queue on the interface (RSS=1,1,1,1). The list
of all the performed operations is:

1) System preconfiguration (as in the first
test).

2) Loading of the ixgbe module into memory:

 ~# insmod /PATH/ixgbe.ko Node=0,0,0,0
RSS=1,1,1,1

3) Network interface configuration (as in the
first test).

4) Assignment of the interrupt of the only
queue to the core 2 of Node 0.

The softwares used to count the number of the captured
IP packets were tshark and taskset:

 ~# taskset -pc 3 PID_TSHARK
 ~# taskset -pc 3 PID_TSHARK_CHILD

252

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 10, October 2015

M. Mezzalama et.al

3.5 Results Obtained During the Four Tests

The data obtained in these first 4 tests, shown in Tab. 1,
are quite discouraging: even at a relatively low
throughput (1 Gbit/s), in fact, we have never been able
to capture more than 81.3% of the transmitted packets.
On average, then, during all these tests, the capture
system has never been able to capture more than the
35% of the transmitted packets: 15.0% in the first test,
14.7% in the second, 8.6% in the third and 34.5% in the
fourth.

3.5.1 The Results of the First Test

Setting the network card driver to initialized 8 received
queues has not proved to be an optimal choice because
the network stack of Linux is not able to manage them
properly. As can be seen from the data reported in Tab.
1, this test has obtained the worst results with small
packets (64, 128 e 256 byte), that is when the number of
packets captured by the network card per time unit was
maximum. The operative system, in fact, in these
conditions, was not able to capture the IP traffic because
the network stack had to use almost all the available
resources to bring together the IP packets coming from
the various queues and deliver them to the user-level
program using the only software interface available,
eth2. (See Fig. 3).

Fig. 3. Single output interface of the Linux network stack

3.5.2 The Results of the Second Test

The results obtained during the second test allow to
evaluate whether it is really necessary to configure the
ixgbe driver in order to use the resources of the correct
node (the node on which the network adapter is directly
connected). By observing the collected data we obtain

that, on average, 0.3% of packets less than in the
previous test were captured (15.0%, however, against a
discomforting 14.7% of the first test). So, in a first
approximation, it would seem that using the correct
node is not essential. It is necessary, however, to
emphasize the fact that during these tests the user-level
process (tshark) was limited to count the captured
packets. Then, during these tests, the QPI bus resulted to
be used only marginally because no more resource
consuming processes were running on the system. In
light of these considerations, and given the obtained
results (0.3% of degradation), in a real case the
configuration of the ixgbe driver in order to properly use
the NUMA architecture used is mandatory.

3.5.3 The Results of the Third Test

The results obtained during the third test are absolutely
the worst. These results are due to the fact that the
capture program has been scheduled to be executed on
the same core used to handle the interrupts generated by
the queue. If on the one hand this configuration
optimizes the utilization of the cache inside the core, on
the other hand it completely uses up the resources of the
core. The only core used in the test, in fact, had not
sufficient computing resources to run both the code of
the user-level program and all the necessary operations
required to capture packets from the network card.
Many of the packets, in this case, were removed directly
from the Packet Throttling [11] inside the network card
driver.

3.5.4 The Results of the Fourth Test

The results obtained during the fourth test are clearly the
best because, compared to the third test, it used two
different cores: one for the management of the interrupts
coming from the card and one for the execution of the
user-level program. This configuration, though it does
not guarantee to optimize the use of the cache, allows to
have a greater amount of computing resources and also a
smaller number of context switches on both of the used
cores. The choice to use two cores belonging to the
same node guarantees, if not the optimization of the
first-level cache, to limit the number of errors of cache
miss. Compared to the first test, then, the choice to
disable RSS technology allowed the system to avoid
wasting resources to reassemble, to the single ethN
interface, packets from different queues.
During this test however the system has captured an
average of only 34.5% of the packets sent: a result that
is not enough to monitor (for security purposes) high
throughput networks.

253

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 10, October 2015

M. Mezzalama et.al

4. A POSSIBLE SOLUTION TO REALIZE
A PACKETS CAPTURE SYSTEM FOR
HIGH THROUGHPUT NETWORKS

The poor obtained results previously described are due
to the fact that the standard drivers, the NAPI interface
and the network stack of the Linux kernel have been
implemented in order to be compatible with almost all
of the network adapters on the market and in the most
varied application areas. This choice makes this
software layer not optimized to be used to capture IP
packets in the presence of high throughput. In order to
capture this kind of network traffic some new software
layers optimized for this purpose must be developed.
A solution that has been proposed to overcome this
problem is the definition of a packet processing
framework, called PF_RING ZC (Zero Copy) [12]. This
framework is composed by a socket, called PF_RING
[13][14], used to optimize the management of IP packets
within the operating system and a set of drivers, called
ZC driver, in order to optimize the phase of packets
transfer between the hardware layer and the software.
To make these technologies accessible to the developers
of user level programs specific software API
(Application Programming Interface), have been made
available. These libraries, among other things, allow the
user code to perform many operations on the just
acquired IP packets using the zero-copy technology [15]
which avoids making copies of data in memory wasting
valuable CPU computing resources [16].
In the following paragraphs we show the results of
further tests performed to evaluate the actual
improvements resulting from the use of PF_RING ZC
framework in a packets capture system.

4.1 The Configuration of the New Software
Environment

In order to make a comparison with the results already
obtained in the previous tests, no hardware or software
changes have been made at the capture system
previously described. The only changes concern the
driver used to configure the 10 Gbit/s network adapter,
ixgbe-ZC driver updated to version 3.22.3 (very close to
the NAPI version), and the use of the new PF_RING
socket updated to version 6.1.1.
The system configuration is almost identical to the one
used in previous tests because no significant change is
needed to initialize the socket PF_RING and to load the
ZC driver. The PF_RING socket is loaded on the system
as a standard kernel module (the kernel does not need to
be patched and recompiled) while the ixgbe-ZC driver
behaves apparently as the standard ixgbe driver. The
only difference between the two drivers is the name
assigned to the network interfaces: all operations are

performed by using the zero-copy technology by
changing the suffix "eth" in "zc:eth".
In order to use the new features provided by this new
layer it is necessary, however, to recompile the user
level software by replacing the standard libpcap libraries
with libpcap-PF_RING provided by the framework
developers.
The execution of the tests is identical to that used
previously.

4.2 Fifth Test: Use of a New Packet Capture
Framework

The aim of this test was to capture the IP traffic
configuring the new software layer in an optimal way
using the least possible amount of hardware resources.
For this reason each interface has been initialized with
the largest possible number of slots available in the
receive circular queue (through ethtool command) while
the driver has been configured to use the cache memory
made available on core 2 of node 0, directly connected
to the card, and a single receive queue. The PF_RING
socket, instead, does not need any kind of configuration.
Linux identified the network interfaces with the names
zc:eth2, zc:eth3, zc:eth4 and zc:eth5 but, in this test,
only the zc:eth2 interface has been used. Here is the list
of all the performed operations:

1) System preconfiguration (as in the first test).
2) Loading of the PF_RING module into memory

(no particular configuration is required):

 ~# insmod /PATH/pf_ring.ko

3) Loading of the ixgbe-ZC module into memory:
the ixgbe-ZC module must be configured in
order to use, only for the zc:eth2 interface, the
memory located on core 2 of node 0
(numa_cpu_affinity=2,0,0,0) and to initialize
one receive queue on each interface
(RSS=1,1,1,1).

~# insmod /PATH/ixgbe.ko
numa_cpu_affinity=2,0,0,0 RSS=1,1,1,1

4) Network interface configuration: the
configuration is almost identical to that used in
the first test.

 ~# ethtool -A eth2 autoneg off rx off tx off
 ~# ethtool -s eth2 speed 10000
 ~# ifconfig eth2 up
 ~# ethtool -G eth2 rx 32768

5) Assignment of the interrupt of the only queue
to core 2 of Node 0.

The software used to count the number of the captured
packets was pfcount, a program provided with the

254

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 10, October 2015

M. Mezzalama et.al

PF_RING socket source code. This software has been
configured to run by the scheduler on core 2 (-g2
parameter) and to use the “active packet wait” function
(-a parameter). By activating this function, instead of
using polling to check if there are IP packets into the
receive buffer, pfcount will check the contents of the
buffer as soon as it has finished processing the
previously captured packet.

 ~# pfcount -i zc:eth2 -g2 -a

4.3 The Results of the Fifth Test

The data obtained from this test, as can be seen in Tab.
1, are the best of all: the capture system, in fact, has
been able to acquire and count all packets sent to all
throughput, from 1 Gbit/s to 10 Gbit/s.
It should be also noted that the optimizations made with
the introduction of PF_RING ZC framework have
permitted to use a single core both to manage the

interrupts from the card and to execute the simple user-
level software. This configuration, as seen during the
third and the fourth tests, is not optimal because the use
of more complex packets processing software could lead
to a sudden decrease of the efficiency of the capture
system. If we compare, however, the data obtained
during this test with those obtained during the third test
(identical configuration but standard driver) it is
possible to see how the framework is effectively
optimized and represent a possible solution for the
realization of an IP packet capture systems in high
throughput networks.

5. THE RESULTS OBTAINED DURING
THE FIVE TESTS

The results obtained during these five tests are included
in the following (Tab. 1) table:

Sent packets
(byte @ Gbit/s)

Captured packets (%) Sent packets
(byte @ Gbit/s)

Captured packets (%)

1° test 2° test 3° test 4° test 5° test 1° test 2° test 3° test 4° test 5° test

64 @ 1 17,3 17,2 1,2 65,7 100 64 @ 6 2,1 2,1 0 21,1 100

128 @ 1 14,1 13,7 12,7 81,3 100 128 @ 6 2,7 2,3 0 22,4 100

256 @ 1 15,8 15,7 12,8 74,1 100 256 @ 6 12,5 11,7 0 26,8 100

512 @ 1 24,1 24,1 13,1 68,8 100 512 @ 6 17,3 17,4 2,4 25,9 100

1024 @ 1 31,8 31,3 21,3 65,6 100 1024 @ 6 17,4 17,2 14,1 24,3 100

1280 @ 1 35,0 34,8 25,0 69,1 100 1280 @ 6 17,5 17,4 14,6 23,0 100

1518 @ 1 42,4 41,1 26,4 70,2 100 1518 @ 6 17,4 17,5 15,2 23,6 100

64 @ 2 14,3 14,1 0 48,4 100 64 @ 7 2,2 2,0 0 16,9 100

128 @ 2 26,6 26,7 0,5 62,9 100 128 @ 7 2,3 1,9 0 19,5 100

256 @ 2 15,3 14,7 11,9 58,7 100 256 @ 7 9,8 9,5 0 22,1 100

512 @ 2 24,1 23,2 12,3 52,9 100 512 @ 7 15,2 14,7 4,3 23,7 100

1024 @ 2 31,2 30,5 17,3 55,6 100 1024 @ 7 16,5 16,5 14,5 23,5 100

1280 @ 2 33,4 33,1 22,2 55,8 100 1280 @ 7 16,2 15,8 16,4 22,9 100

1518 @ 2 36,1 35,8 30,2 56,3 100 1518 @ 7 16,6 16,4 16,0 22,2 100

64 @ 3 4,1 3,7 0 37,2 100 64 @ 8 1,9 2,1 0 13,8 100

128 @ 3 15,1 14,6 0 57,2 100 128 @ 8 2,1 2,0 0 17,4 100

256 @ 3 27,7 27,5 1,4 57,5 100 256 @ 8 7,9 8,1 0 19,9 100

512 @ 3 25,2 25,3 11,8 51,3 100 512 @ 8 13,7 13,3 0,8 19,7 100

1024 @ 3 24,3 23,9 16,1 52,9 100 1024 @ 8 13,1 12,7 9,5 21,0 100

1280 @ 3 24,1 23,7 24,7 51,7 100 1280 @ 8 13,6 12,9 13,3 20,3 100

1518 @ 3 25,9 25,2 25,3 52,6 100 1518 @ 8 13,6 13,1 13,5 20,6 100

64 @ 4 2,6 2,1 0 31,8 100 64 @ 9 1,5 1,3 0 11,8 100

128 @ 4 10,5 9,8 0 38,3 100 128 @ 9 1,6 1,6 0 14,2 100

256 @ 4 22,8 22,1 0,7 41,6 100 256 @ 9 4,4 3,9 0 17,1 100

512 @ 4 21,7 21,5 12,9 42,4 100 512 @ 9 11,9 11,2 0 19,3 100

1024 @ 4 19,4 19,3 18,5 44,2 100 1024 @ 9 11,5 12,1 8,8 19,1 100

1280 @ 4 18,8 18,4 18,0 43,0 100 1280 @ 9 11,2 10,7 11,2 18,8 100

1518 @ 4 18,4 18,2 18,7 42,7 100 1518 @ 9 11,7 10,9 10,8 18,2 100

64 @ 5 2,3 2,1 0 26,2 100 64 @ 10 1,1 0,9 0 9,7 100

128 @ 5 8,6 7,7 0 27,5 100 128 @ 10 1,2 0,9 0 11,6 100

256 @ 5 16,0 15,5 1,3 32,7 100 256 @ 10 1,1 0,7 0 14,2 100

512 @ 5 18,3 17,8 4,6 31,0 100 512 @ 10 9,9 9,7 0 15,0 100

1024 @ 5 17,4 17,1 17,5 33,2 100 1024 @ 10 10,3 9,9 4,1 16,5 100

1280 @ 5 17,3 17,3 17,0 33,9 100 1280 @ 10 9,7 10,1 9,8 15,3 100

1518 @ 5 16,9 17,1 17,4 31,6 100 1518 @ 10 10,1 9,8 10,0 15,8 100

Tab. 1 – Obtained results

255

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 10, October 2015

M. Mezzalama et.al

7. CONCLUSION

The IP packets capture technique, in the last few years,
has become fundamental in many IT fields such as the

Information Security where it is routinely used for
monitoring computer networks. Being able to capture all
IP packets crossing a network, having a fully functional
packets capture system, may allow IT Security operators
to identify any anomalous behavior possibly related to
security issues such as, for example, viral infections,
hacking attempts, spam or fraud attempts.
The IP traffic monitoring, with the passing of time, has
become more and more complex due to the increase of
the throughput. Until today in fact, with a throughput of
the order of several hundred Mbit/s, normal mono-core
computers were enough to capture all the traffic
transmitted over a LAN without need to know in depth
any information about the hardware architecture used.
With throughput that are now close to 10 Gbit/s, instead,
not only it is fundamental to know the hardware used,
but also a knowledge of the technologies implemented
by producers both on the new motherboard and on the
new network adapters is required. One of the purposes
of this contribution was in fact to show how the
performance (in terms of the number of IP packets
acquired) of a capture system realized with a modern
NUMA multi-processor server could vary in a consistent
way by tuning some simple software parameters (the
number of queues used on the network card, the affinity
card - processor, the affinity queue - core and the
affinity process - core) never taken into consideration by
capture systems used until now.
In light of the discouraging results obtained during the
first four tests (where it was captured less than 35% of
the traffic sent to the network card) it is also possible to
assert that, in order to monitor transit traffic over high
throughput LANs, the use of powerful computers and
network cards of last generation is not sufficient, but it
is absolutely necessary to make deep changes to the
software used. The poor performance obtained in the
first four tests are in fact caused by the use of the
standard drivers (NAPI) of network cards and to the
network stack of the Linux kernel that was designed to
guarantee the normal operation of a network interface
and does not appear to be optimized for the packets
capture.
In order to realize a high performance packet capture
system it is therefore necessary to introduce a new
software layer [17]. As seen in the latest test carried out,
thanks to the PF_RING ZC framework it was possible to
capture all packets transiting over a high-throughput

network using only a small portion of the computing
resources provided by last generation multi-core servers.

REFERENCES

[1] “Ultra-high-density spatial division multiplexing
with a few-mode multicore fibre”, R.G.H. van Uden,
R. Amezcua Correa, E. Antonio Lopez, F.M.
Huijskens, C. Xia, G. Li, A. Schülzgen, H. de
Waardt, A. M. J. Koonen & C. M. Okonkwo, 2014.

[2] “Memory Management in NUMA Multicore
Systems: Trapped between Cache Contention and
Interconnect Overhead”, Zoltan Majo et al, 2011.

[3] “Memory system performance in a NUMA
multicore multiprocessor”, Zoltan Majo, Thomas R.
Gross, 2011.

[4] “TCP offload engine”, http://goo.gl/7Qpl3.
[5] “TCP offload performance for front-end Servers”, K.

Kant, 2003.
[6] “Interrupt Moderation Using Intel GbE Controllers”,

Intel, http://goo.gl/G8FJ6, 2007.
[7] “Direct cache access for high bandwidth network

I/O”, Huggahalli R., Iyer R., Tetrick S., Computer
Architecture, 2005.

[8] “SMP IRQ affinity”, Ingo Molnar, Max
Krasnyansky, http://goo.gl/fmoHb.

[9] “An in depth analysis of the impact of processor
affinity on network performance”, A. Foong, J.
Fung, D. Newell, 2004.

[10] “Benchmarking Methodology for Network
Interconnect Devices”, S. Bradner, J. McQuaid,
http://www6.ietf.org/rfc/rfc2544, 1999.

[11] "napi", Linux Foundation, http://goo.gl/H38Fu,
2009.

[12] "PF_RING ZC (Zero Copy)", http://goo.gl/NUchB6.
[13] "PF_RING: High-sped packet capture, filtering and

analysis", http://goo.gl/VWBNh.
[14] "The high performance packet capture based on the

PF_RING socket in Linux”, R. Gu, Y. Tan, Y. Jia, J.
Wang, 2007.

[15] "Zero-copy", http://goo.gl/re4FM.
[16] "LyraNET: A zero-copy TCP/IP protocol stack for

embedded operating systems", Y. C. Li, M. L.
Chiang, 2005.

[17] “Improving Passive Packet Capture: Beyond Device
Polling”; Luca Deri; 2004.

