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Preface

In 1931, Wiener and Hopf (1931) invented a powerful technique for solving an integral
equation of a special type. By introducing the Laplace transform of the unknown, the integral
equation was rephrased in terms of a functional equation in a suitably defined complex
space. The solution method of the latter is very ingenious indeed. It is based on a sophisti-
cated procedure exploiting some properties of the analytic functions and it stands as one of
the most important mathematical inventions for obtaining analytical solutions of very diffi-
cult problems.

In electromagnetic geometries, a fundamental approach due to Jones (1952a) applies the
Laplace transforms directly to the partial differential equations, and the complex variable
functional equations are obtained directly without having to formulate an integral equation.
Jones’s approach has been adopted systematically by Noble (1988) in his book on the
Wiener-Hopf technique. Noble’s work presents many applications of the Wiener-Hopf
technique in a systematic way and is fundamental for readers interested in this powerful
method. Unfortunately, this book was written many years ago (the first edition was in 1958);
in the meantime, many scientists have devoted efforts to studying the Wiener-Hopf techni-
que and have achieved important developments.

The main purpose of this book is to provide students and scientists of diffraction phe-
nomena with a comprehensive treatment of the Wiener-Hopf technique, including its latest
developments. In particular, these developments illustrate the wide range of possible appli-
cations of this method. In practice, it is now possible to solve all canonical diffraction pro-
blems involving geometrical discontinuities using the Wiener-Hopf technique, which has
definitively established it as the most general and powerful analytical method for this purpose.

A great number of problems can be effectively approached using the W-H technique
(Fig. 1). Shown in the figure are geometrical structures that can be considered equivalent to a
(uniform or nonuniform) waveguide in which semi-infinite geometrical discontinuities have
been introduced. These discontinuities may be also modified in the transversal or long-
itudinal direction of the waveguide, thus augmenting considerably the number of possible
problems that can be effectively studied by this technique. It must be observed that most of
these problems are very important and that often there are no alternative approaches avail-
able for solving them efficiently, even numerically. Some general remarks about the W-H
techniques are necessary before delving into specific problems in detail.

First of all, no W-H problem is simple to study. For instance, for a given electro-
magnetic problem that perhaps may be formulated in terms of W-H equations, it could be
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quite difficult to obtain these equations. In the literature, many problems are formulated in
terms of functional equations that, even though equivalent to Wiener-Hopf equations, do not
present the so-called standard forms considered in this book. We emphasize that it is
important to formulate the problems in terms of standard W-H equations because it provides
a uniform methodology to obtain exact or approximate solutions in a systematic way. The
key function containing all the information in the standard Wiener-Hopf equations is the
W-H kernel. It is generally a matrix G function of a complex variable a. It follows that
the first step of the W-H technique is to find GðaÞ for a specific geometry. Sometimes this is
a difficult task requiring a profound knowledge both of the formulation of electromagnetic
problems and of the underlying physical concepts.

The central problem in solving the standard W-H equations is conceptually very simple:
the factorization of the matrix GðaÞ. This problem constitutes a very beautiful mathematical
problem that in the past has become a cult activity for many students. However, even though
this problem has been extensively studied in the past, up to now a method to factorize a general
n� n matrix (chapter 4) was not known. Fortunately, several approximate factorization tech-
niques have recently been developed. In particular, the reduction of the factorization problem
to the solution of Fredholm integral equations of the second kind constitutes a powerful tool
that provides efficiently the approximate factorized matrices of GðaÞ.

Once the factorization of GðaÞ is achieved, new efforts are necessary to extract solu-
tions. In fact, even if formal solutions may be obtained, a long and difficult elaboration is
always required to make them effective from the physics and engineering points of view.

The W-H technique involves complex and cumbersome algebraic manipulations.
Nowadays these manipulations do not constitute a serious impediment because powerful
algebraic manipulator codes are readily available. In particular, all the results in this book
were obtained by intensive use of the computing software MATHEMATICA.

Half-plane

Grating

Two half-planes Slit coupled
waveguides

Multifurcated
waveguides Quarter of plane Dielectric wedge

Thick half-plane
or truncated rod

Flanged
waveguide

Truncated come

Dielectric
loaded truncated

waveguide

Truncated
waveguide Array of staggered

parallel planes

Spherical or
cylindrical cups

Disk or strip

Fig. 1: A few examples of W-H geometries
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Concerning the overall philosophy of the subject presentation, this book has been written
for readers primarily interested in the fundamental concepts and possible applications of the
presented method. For this reason, the considered arguments are often only delineated and not
discussed in great mathematical depth. The W-H technique requires the knowledge and use of
many advanced topics of complex analysis, whose exposition might discourage readers who are
interested primarily in application aspects. Of course, the best way to render the mathematical
tools appealing is to present them only in as much detail as is required for the specific appli-
cations. We tried to follow this principle, but it was sometimes impossible. Therefore, we
divided the book into two parts. The first part (chapters 1–6) is devoted to the mathematical
aspects of the W-H technique, whereas the second part (chapters 7–10) presents applications that
we hope illustrate the beauty, aims, and power of the theory. In particular, in the applications we
often emphasized only the first and more difficult step of the W-H technique: the deduction of
the matrix kernel GðaÞ of the problem. In fact, this is the step that in some sense lacks of a
general methodology. It is the intensive presentation of the deduction of GðaÞ in different
problems that provides the useful tools and the practice needed for solving new problems.

The Wiener-Hopf equations studied in this book are substantially one dimensional. It is
possible to introduce multidimensional W-H equations (Meister & Speck, 1979) and gen-
eralize the concept of factorization that constitutes the fundamental tool that distinguishes the
W-H equations from other integral equations. In particular, two works by Radlow (1961, 1964)
attempted to solve two fundamental diffraction problems1 by factorizing kernels defined in
two-dimensional space. In these cases, the factorization method needs function-theoretic tools
employing analytical functions with two complex variables. The involved analytical difficul-
ties may easily lead to errors, and as a consequence unfortunately Radlow’s solutions are
incorrect. To date, the only way to solve multidimensional W-H equations appears to be the
use of the moment method. Even though approximate, this kind of solution is very powerful;
some examples will be considered in chapter 8.

In this book we consider only time harmonic fields with a time dependence specified by
the factor e jwt (electrical engineering notations), which is omitted throughout, and where the
imaginary unit is indicated with j. Conversely, in applied mathematics the factor e jwt is usually
replaced by e�iwt. This means that in the natural domain the change j ) �i transforms
the engineering notation into applied mathematics notation (and vice versa). However, in the
spectral domain, usually the same notations are used in both engineering and applied mathe-
matics. In fact, regarding for example the Fourier transforms, the following definitions are the
most frequently used in the literature:

FeðaÞ ¼
ð1

�1
feðxÞe jaxdx; FaðaÞ ¼

ð1

�1
faðxÞeiaxdx

where the subscript e means engineering and the subscript a means applied mathematics.
Consequently, in the spectral domain on the real axis we have

FaðaÞ ¼ Feð�aÞ
and j is replaced by –i (and vice versa).

1 The diffraction problems studied by Radlow are the diffraction by a quarter-plane and the diffraction by a right-
angle dielectric wedge.
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For example, let us consider in the natural domain the propagation factor that is defined
in electrical engineering notation by

feðxÞ ¼ e�jkx

with the propagation constant k defined by

k ¼ b� ja; a � 0

The same propagation factor in applied mathematics notation is written

faðxÞ ¼ eikax

with ka ¼ bþ ia.
In the Laplace domain, on the real axis, we have

FeðaÞ ¼
ð1

0

feðxÞe�jkxejaxdx ¼ j

a� k

which in applied mathematics notations is written

FeðaÞ ¼ j

a� k
) FaðaÞ ¼ �i

�a� ka
¼ i

aþ ka

Analytic continuations define the previous functions in the whole complex plane a. This
means that the Laplace Transforms are defined for every value of a by

FeðaÞ ¼ j

a� k
; FaðaÞ ¼ i

aþ ka

In the following we will define plus FþðaÞ and minus F�ðaÞ (section 1.1). Notice that a plus
(or minus) function in the electrical engineering notation is also a plus (or minus) function in
the applied mathematics notation. The only difference between the two is given by the
location of the singularities. For example, FeðaÞ and FaðaÞ are plus functions both with
engineering and applied mathematics notation. However, FeðaÞ ¼ j

a�k has a singularity at
a ¼ k ¼ b� ja, whereas FaðaÞ ¼ i

aþka
has it at a ¼ �ka ¼ �b� ia. The notation and

definitions presented in this preface will be used throughout the book.
In the 80 years since the seminal 1931 paper by Wiener and Hopf, an enormous amount

of work has been performed using their powerful function-theoretic method and its further
extensions. It would not be possible to reproduce all that work in detail within a single
volume. Therefore, we simply report many results without proof, referring the interested
reader to the bibliographical sources for additional details. Similarly, we list many applica-
tions of the method to electromagnetic boundary-value problems, often just providing the
results without the detailed derivations that readers may find in the original publications.
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Foreword

The Mario Boella series offers textbooks and monographs in all areas of radio science, with a
special emphasis on the applications of electromagnetism to information and communication
technologies. The series is scientifically and financially sponsored by the Istituto Superiore
Mario Boella affiliated with the Politecnico di Torino, Italy, and is scientifically cosponsored
by the International Union of Radio Science (URSI). It is named to honor the memory of
Professor Mario Boella of the Politecnico di Torino, who was a pioneer in the development
of electronics and telecommunications in Italy for half a century and was vice president of
URSI from 1966 to 1969.

This advanced research monograph is devoted to the Wiener-Hopf technique, a
function-theoretic method that has found applications in a variety of fields, most notably in
analytical studies of diffraction and scattering of waves. It contains a compendium of the
research work of Professor Vito G. Daniele of the Politecnico di Torino, who is a foremost
international authority on the Wiener-Hopf method. Professor Daniele has teamed with his
colleague and coauthor, Professor Rodolfo S. Zich, past rector of the Politecnico di Torino
and current president of the Istituto Superiore Mario Boella, in writing this monograph.

It is hoped that this work will be well received by scientists, engineers, and applied
mathematicians and will serve as a benchmark reference in the field of theoretical electro-
magnetism for the foreseeable future.

Piergiorgio L. E. Uslenghi
Series Editor

Chicago, January 2014
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