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(Headline)  

So far navigation devices, including navigation apps for smartphones, have been proprietary and closed. A 
new scenario is emerging with the Open Mobile Alliance Dynamic Navigation Enabler, which lets 
developers create novel navigation services characterized by openness and interoperability across different 
information providers. 

1 Introduction 

Navigation Devices (NDs), which are common tools for getting driving assistance, are increasingly 
integrating local information (e.g., maps, user position) with remote data such as real-time traffic 
information. However, the ND of one manufacturer is hardly capable to access data provided by a different 
service provider, as current systems are either proprietary, or even totally closed. 

Google Navigation and Apple Maps are well-known examples of proprietary solutions. They define a set of 
APIs, exploitable by other parties, but they do not guarantee interoperability with other solutions; even 
more importantly, those APIs may have some technical/legal limitations. For instance, Google does not 
allow the use of its data in applications other than Google Navigation [1], [2]. In addition, Google APIs are 
subject to change at any time. Other solutions, such as TomTom or Garmin either rely on the old radio-
based broadcast communication channel, or exploit a closed architecture (services, protocols), hence 
preventing users from switching to another provider. Moreover, previous solutions, having monolithic 
nature, do not allow the use of alternative components (e.g., better real-time traffic information sources), 
and offer only limited chances to customize them.  

In order to overcome many of these limitations, recently the Open Mobile Alliance (OMA) standardized an 
open protocol for dynamic road navigation services. The OMA Dynamic Navigation Enabler [3], in short, 
DynNav, introduces a bidirectional communication channel and a modular approach, while reusing existing 
standards for some specific features. The bidirectional channel allows users to ask for or receive only the 
information they are interested in, by filtering data based on routes, geographic areas and time [4]. The 
standardized modular approach allows multiple services to be created on top of the defined components 
and it enables the same service to be provided by multiple operators (avoiding users lock-in), and to be 
implemented in multiple flavors. In this way, new actors can participate in the provisioning of navigation 
services, with the creation of valuable and/or specialized components, such as route computation 
algorithms optimized for vertical markets (e.g., goods delivery), precise traffic information, and more. 
Modularity and openness allow users not only to exploit multiple providers in their solution (e.g., one for 
route computation, the other one for traffic information), but also to seamlessly change provider.  

Among the possible players, telecom mobile operators may have huge benefits from an open standard for 
navigation services. First, they are constantly looking for the possibility to provide new services to their 
customers, and dynamic navigation is an appealing option for many users. Second, mobile operators can 
obtain traffic information by exploiting their own assets, in particular by (anonymously) tracking the 
position of their mobile users, hence providing real-time traffic information and re-routing capabilities 
based on real-time data.  

In this context, and in particular in the case of smart cities, where multiple sources of real-time data are 
available, such as traffic, parking lots availability, and more, DynNav-enabled solutions can not only provide 
navigation services, but also become aggregators of multiple information sources, helping users to find 
localized information such as restaurants or attractions, possibly matching user’s preferences and interests. 

2 The DynNav solution 
OMA, the leading industry forum for developing market-driven, interoperable mobile service enablers, 
completed the standardization process of DynNav in September 2012. This represents an additional step 
toward the full support of navigation applications by the OMA standardization framework [3].  



 

 

2.1 Architecture 
Figure 1 presents a possible architecture of a navigation service based on DynNav. The server is the middle 
block, while the left block represents a typical ND (e.g., a dedicated device or a smartphone). A DynNav 
client can also be an application residing on a server (right side in figure), such as a web-based journey 
planner. 

 

Figure 1: DynNav Enabler Architectural Diagram 

DynNav specifies the interaction between a DynNav client and a DynNav server (the straight lines in Figure 
1) while the interactions with the other components (the dashed lines) rely on protocols that are outside 
the scope of the DynNav specification. Additional elements, not depicted in Figure 1, can be introduced to 
optimize the bandwidth consumption, which is critical in mobile communications. For example, proxy 
servers can cache frequent responses. 

2.2 Protocol 
The DynNav protocol follows the OMA RESTful Network NetAPIs guidelines [5] and bases on the 
Representational State Transfer (REST) [6] paradigm. 

A server that implements DynNav provides the following main functions: 

1. Analysis of client-defined trip parameters and proposal of a set of routes, based on real-time and 
forecast traffic data; 

2. Provisioning of real-time and forecast traffic information related to a set of routes (or geographical 
areas), previously proposed by the DynNav server itself or by the ND; 

3. Proposal of new routes when the quality indicators associated with the current route become 
unacceptable or the user deviates from the current route; 

4. Provisioning of complementary information such as Points of Interest (POI) related to either a route or 
an area; 

5. Possibility for the client to subscribe to a set of routes, and to be notified of available information about 
these routes only when the user is driving along one of them. 



 

 

It is worth noting that a client could not be allowed to access all the functions listed above: the DynNav 
service provider can allow/deny access to some functions depending on the user contract or other criteria. 

2.3 Data structures 
The DynNav specification reuses, whenever possible, data structures already defined in previous standards, 
with the objective of speeding up the implementation and facilitating the integration of additional 
components/services into the framework. Particularly, it exploits the Transport Protocol Experts Group 
(TPEG) standards for road traffic messages and location, traffic events, road performance (e.g., travelling 
time) and location entity description [7]. Moreover, it exploits IETF RFC 4776 [8] for civic addresses and the 
W3C “Points of Interest Core” draft [9] for POI information. The drawback of this approach is the 
impossibility to obtain a fully optimized protocol, as data formats and protocol messages may be more 
verbose than necessary. As no public standards are currently available for encoding route information, a 
novel encoding schema has been proposed: a route is represented by a sequence of segments (i.e., road 
sections without intersections), each one including segment origin, destination, name, measured or 
forecast performance parameters (travelling time in regular conditions, delays, expected speed) and 
segment shape (sequence of points for its graphical representation on the map). 

Figure 2 depicts a portion of the DynNav resource tree (the complete structure is shown in [4]) and a 
sample of request and response messages. The curly brackets identify parametric parts of the URIs. The 
trips resource contains a collection of trip resources, each one identified by its unique tripId. A trip resource 
includes information about the journey (e.g., source and destination) along with nested resources 
representing alternative routes to the destination. These resources, identified by their unique routeId, 
include routing information and may also include references to sets of events, grouped by categories. Users 
can obtain the details by sending a request to the server, containing the list of events to be retrieved. The 
selection of interesting events can either be done manually or automatically by the client application. This 
choice can reduce the amount of bytes transmitted over the network because only interesting events are 
retrieved, even if it introduces a small delay due to the additional request. If the same event is shared by 
multiple resources, such as different routes or areas, it is transmitted only once. Events can be stored in 
proxy servers, if present, reducing the number of requests to the main server. 



 

 

 

Figure 2: Excerpt of resource tree (left) and of the messages for reading a route resource (right) 

2.4 Use case example 
A typical application of the DynNav service refers to a ND without path computation capabilities, which 
may originate the message flow depicted in Figure 3 (a detailed description is available in [4]). In this 
scenario, the user first specifies the parameters of a trip by sending Message #1, which triggers the creation 
of a new trip resource in the server, including all the details about the trip as provided by the user. Trip 
creation also forces the server to calculate a set of routes that satisfy the constraints. 

Then the client retrieves and selects one of the possible routes proposed by the server by Messages #2 and 
#3. The route includes links to the occurred events (whose descriptions are stored on the server) and a field 
that specifies the category (e.g., traffic, weather) of each event. A client application may decide not to 
retrieve all those events from the server (Message #4), based on user preferences or other criteria (e.g., 
priorities). Message #5 creates a subscription to the notification service in order to receive real-time traffic 
information updates and the proposal of alternative routes. The DynNav server will use user-provided 
location data in order to update the user’s status and send notifications about traffic and other events 
specified in the user’s subscription. If the estimated travelling time becomes too high, e.g., because of road 
congestion, a new route can be suggested. Message #6 represents a notification from the server and it 
contains the references to related events, which can be retrieved as in Message #4.  



 

 

 

Figure 3: A possible DynNav message flow 

2.5 Deployment scenarios 
The flexibility of the DynNav standard enables the creation of rich navigation services without locking users 
with a specific service provider and/or using a fixed set of functions. This is possible because the same 
service (e.g., route computation) can be provided by different entities, and the basic set of DynNav 
messages can be combined in (almost) arbitrary ways to create complex applications. For example, DynNav 
supports both smart NDs, which have the capability to calculate routes and rely on central services only for 
real-time information (e.g., traffic), and lightweight NDs, which delegate everything but the user interaction 
(e.g., route display) to central services. 

The possibility to exploit services provided by multiple entities also enables the creation of applications 
targeting very specific vertical markets. For example, a shipping goods company can opt for a lightweight 
ND for its employees, relying on an in-house service for route computation, with the ability to minimize 
delivery costs, and on a telecom operator to obtain real-time traffic information. Along the same line, a 
company can setup only a specialized service that suggests the best points of interest based on the user’s 
preferences or other parameters, relying on the fact that other providers can offer the other information 
required for building a whole navigation service. 

3 Validation 
We implemented the DynNav standard in a prototype that includes both the client and server portions of 
the specification. We used those components to carry out an extended set of tests aimed to validate the 
characteristics of the standard in a real world environment and to give an insight of the performance 
achievable by this solution. Particularly, we were interested in checking whether DynNav is suitable for 
delivering navigation services to real mobile devices. Although our prototype was not engineered to 
compete with commercially available solutions, we compared DynNav with the widely used Google 
Directions Web Services [1], which offers similar primitives and exploits a similar data structure. 



 

 

3.1 Prototype 
The DynNav server was developed in Java and installed on a GlassFish application server, while the ND 
hosting our application was a low-end Android 2.2 smartphone clocked at 768MHz with 512MB of memory. 

Some specific functions of the server were set up by reusing existing external components: route 
calculation is delegated to an external web service (http://openrouteserver.org), while traffic data are 
simulated using a real data source to feed the simulator.  

The DynNav prototype described here has been shown in an OMA demo session. Details (presentation and 
interview) can be found in [10], [11]. 

3.2 Tests 
We focused on a common worst-case usage pattern in which a lightweight DynNav client asks for the entire 
information related to a trip, delegating route computation to the server. This implies that the client device 
is forced to request even the data necessary to display the chosen path on the map. 

First, we measured the amount of data generated by the protocol, which, if excessive, could have a 
negative impact on performance in low-bandwidth environments. The overall results, computed by 
averaging several trips of different complexities, showed that DynNav messages are in average 40% bigger 
than Google messages. However, this overhead also includes information about real-time driving times and 
events (e.g., traffic jams, accidents) associated with the route, not reported by Google Directions. In order 
to limit this overhead, we enabled the HTTP compression that is supported by most HTTP implementations 
and reduces the total bytes transferred. In our experiments, we observed a compression rate of about 2.8:1 
in route messages, with a 10% processing time increase (due to compression/decompression) in the ND. 
With compression enabled, DynNav messages are in average 35% bigger than (compressed) Google 
messages. 

In the second test we measured the time elapsed between starting a route request and receiving the 
associated response. This time needs to be as short as possible as it represents the waiting time for the ND 
user. Tests showed that the average latency for obtaining the route is approximately 300ms, excluding the 
time required by the server to compute the route, calculated on 25 realistic trips of different complexity. 
While this number is three times the one experienced in Google Directions, this value is still reasonable as 
human beings will hardly notice the difference in terms of responsiveness between the two systems. The 
higher latency is due to the larger size and number of messages (i.e., HTTP GET requests) needed to 
complete the same operation. This is required in order to enable a greater extent of flexibility in the 
protocol and support different deployment scenarios with a limited set of primitives, such as NDs 
with/without route computation capabilities and/or navigation maps. 

A third test evaluated the processing overhead of the protocol in the ND, with the final objective of 
assessing the possibility to execute DynNav services on low-end user terminals. Our measures showed that 
the average processing cost for a message transporting route information in the selected ND is about 2.5ms 
for each Km of the route, which represents an acceptable value even for long routes. This confirms that the 
choice of using rich XML messages, which are known to be more computationally demanding than binary 
encoded messages, does not represent an issue on modern user terminals at least in this use case. 

Table 1 shows how the performance of the system changes when dealing with routes of increasing lengths, 
with HTTP compression. These data confirm that the DynNav performance figures remain acceptable within 
the typical route complexity range. 



 

 

 
Message size [KB] Transmission Time [ms] Processing time 

on client 
[ms] 

Route length 
[kilometers] 

Google Directions DynNav Google Directions DynNav 

53,73 4,29 5,24 72,15 258,85 160,32 

244,84 7,18 9,34 76,30 263,45 719,93 

600,96 20,63 31,48 95,62 295,76 1760,15 

878,95 34,07 45,53 114,88 312,98 2577,24 

1034,00 29,40 39,43 108,19 305,12 3030,57 

Table 1: Tests results 

4 Conclusions 
Based on the new scenarios enabled by DynNav and on our experiments, we can conclude that DynNav has 
the potential to change the way navigation services are conceived, implemented and deployed, by making 
it more open and interoperable. Improvements are also possible and OMA is working on an enhanced 
version. Future work should be directed to optimize the definition of resources and to add new resources 
such as detailed parking information, public transportation, indoor navigation, weather conditions. In fact, 
the warm acceptance of this standard among different players (ND/smartphone manufacturers, telecom 
operators) is pushing for further evolutions, particularly with respect to value-added services (e.g., points of 
interest, support for vertical applications such as logistics). Additional studies, in collaboration with other 
mobile operators, are currently ongoing to define optimized mechanisms for reducing and compressing the 
amount of transferred data. 

The prototype that has been developed to validate the DynNav solution shows excellent results, even on a 
non-optimized implementation. Although in some cases the performance looks inferior than in proprietary 
solutions (e.g., Google Directions) albeit hardly noticeably by final users, our DynNav prototype enables 
interoperability and greater flexibility thanks to its additional features, such as push-based notification 
services and customizable real-time information. 
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