
POLITECNICO DI TORINO

SCUOLA INTERPOLITECNICA DI DOTTORATO

Doctoral Program in Computer and Control Engineering

Final Dissertation

Service Oriented Non Volatile Memories

Marco Indaco

Tutor Co-ordinator of the Research Doctorate Course

prof. Paolo Prinetto prof. Pietro Laface

27/02/2014

Herewith declare that I have produced this thesis without the prohibited assistance of third par-

ties and without making use of aids other than those specified; notions taken over directly or

indirectly from other sources have been identified as s uch. This thesis has not previously been

presented in identical or similar form to any other Italian or foreign examination board. The the-

sis work was conducted from 01/2011 to 12/2013 under the supervision of Prof. Paolo Prinetto at

Politecnico di Torino.

ACKNOWLEDGEMENTS

This thesis represents the culmination of three years of research. During this period

many persons gave me suggestions and encouraged me. From all these persons I re-

ceived a kind support, and for this reason I would like to thank all of them.

First and foremost, I wish to thank my advisor Prof. Paolo Prinetto, from Politecnico di Torino.

This work would not be possible without his precious suggestions. His scientific driving guide

helped me to find the right direction for my research activity. I wish to thank him also for gave

me a real helpful hand in reviewing all the material I covered in this thesis. I also wish to thank

Dr. Stefano Di Carlo, from Politecnico di Torino. He helped and inspired me with his valuable

experience during the whole period of my PhD.

This thesis is also the result of the work I did with other research groups in Europe. In this

sense I would like to thank people from the Universitat Polytecnica de Catalunya, and in partic-

ular Prof. Joan Figueras and Dr. Rosa Rodriguez-Montañés to share their time not only working

together: thanks, I passed beautiful moments in Barcellona.

During these three years of research activity I spent the majority of the time with my col-

leagues in the laboratory of the Control and Computer Department, Politecnico di Torino. I

shared with them good and the bad thinks of this life experience. Thanks all of you guys.

And last, but not least, I would like to really thank my family and my girlfriend for they uncon-

ditional love and patience. Even if they can not understand all the parts of my work, they always

share all my problems, giving an unlimited and invaluable support. They always encouraged me

during this adventure.

i

CONTENTS

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Architectural level adaptivity . 7

1.2 Physical level adaptivity . 9

1.3 Cross-layer optimization framework . 10

1.4 Thesis organization . 11

2 Overview on NAND flash memories: from technology to system level 15

2.1 A Big Picture . 16

2.2 Array Structure . 18

2.3 Basic NAND functionalities . 20

2.3.1 Program . 20

2.3.2 Read . 22

2.3.3 Erase . 22

2.4 MLC principle and characteristics . 23

2.5 Logic structures . 25

2.6 NAND-based systems . 26

2.6.1 Memory interface . 28

2.6.2 Flash translation layer . 31

2.6.3 Wear leveling . 33

2.6.4 Garbage collection . 33

2.6.5 Bad block management . 34

2.6.6 Error correcting codes . 34

2.6.7 How to embed NAND flash memories . 35

2.6.8 NAND flash controller . 37

2.6.9 Solid state drive . 40

3 NAND Flash Memory Reliability Issues 43

3.1 Cycling induced degradation . 45

3.2 Charge Losses and Fluctuations: Transient Faults . 46

iii

3.2.1 Erratic erase . 46

3.2.2 Charge trapping and detrapping . 47

3.2.3 Anomalous Stress Induced Leakage Current (SILC) 48

3.2.4 Random telegraph noise . 48

3.2.5 Few-electrons issue . 49

3.3 Permanent faults . 50

3.3.1 Memory disturbances . 50

3.3.1.1 Program disturbances . 50

3.3.1.2 Read disturbances . 53

3.3.1.3 Over-Erase Disturbance (OED) . 55

3.3.1.4 Over-Program Disturbance (OPD) 55

3.3.2 Circuit level faults . 55

3.3.2.1 Intra-cell faults . 56

3.3.2.2 Inter-cells faults . 56

3.3.2.3 Cell to cell interferences . 57

3.3.3 A comprehensive view about persistent faults 59

4 Adaptable flash physical management sub-system (physical-level adaptivity) 61

4.1 The incremental step pulse programming algorithm 62

4.2 Programming MLC NAND Memories . 63

4.2.1 Two rounds programming . 64

4.2.2 Full-sequence programming . 66

4.3 Proposed ISPP variants . 66

4.4 Compact and accurate NAND flash Model . 67

4.5 Characterization of the programming algorithms . 69

4.6 How implementing the physical-level adaptability in memory controllers 72

5 Adaptable ECC encoding/decoding structure (architectural-level adaptivity) 75

5.1 Background and related works . 76

5.2 Optimized Architectures of Programmable Parallel LFSRs 80

5.3 BCH Code Design Optimization . 83

5.3.1 The choice of the set of polynomials . 83

5.3.2 Shared Optimized Programmable Parallel LFSRs 87

5.4 Adaptable BCH Encoder . 88

5.5 Adaptable BCH Decoder . 90

5.5.1 Adaptable Syndrome Machine . 91

5.5.2 Adaptable Berlekamp Massey Machine . 93

5.5.3 Adaptable Chien Machine . 95

iv

5.6 Experimental Results . 97

5.6.1 Automatic generation framework . 97

5.6.2 Architectural-layer characterization . 99

6 Cross-layer optimization framework 105

6.1 EF3S Framework . 106

6.1.1 System Configurator . 107

6.1.2 EF3S daemon . 110

6.1.3 Simulation Aging . 110

6.2 Cross-layer Optimized NAND flash access modes . 111

6.3 Storage services at work . 116

A NAND flash model 127

B Principles of Error Correcting Codes 131

B.1 ECC Principles . 131

B.1.1 Error Detection . 133

B.1.2 Error Correction . 134

B.1.3 Hamming bound . 134

B.2 Bose-Chaudhuri-Hocquenhem Codes Design Flow 135

B.2.1 Design Requirements . 135

B.2.2 Parameters Evaluation . 136

B.2.3 Code Characterization . 137

B.2.4 Shortened Codes . 138

B.3 Error Detecting and Correcting Codes: The actual trend 138

B.3.1 Examples . 139

B.4 Error correcting techniques for future NAND flash memory 141

C List of symbols and acronyms 143

Bibliography 147

v

LIST OF FIGURES

2.1 NAND flash memory revenue forecast . 16

2.2 Bit Size Trend [98] . 17

2.3 Comparison of SLC and MLC flash memories [58] . 18

2.4 Floating gate memory cell . 19

2.5 NAND string (left), NAND array (right) . 19

2.6 NAND Flash Memory Layout . 21

2.7 Program disturb . 22

2.8 Threshold voltage distributions . 23

2.9 Erase state . 23

2.10 MLC-threshold distribution . 24

2.11 NAND logic organization . 27

2.12 NAND memory interface: asynchronous VS synchronous [98] 29

2.13 Read throughput vs page size [98] . 30

2.14 NAND Flash supporting synchronous interface . 31

2.15 Flash File System vs Flash Tranlsation Layer . 32

2.16 Raw NAND vs Managed NAND . 37

2.17 State of the art memory controller architecture for a NAND flash device 38

2.18 Future memory controller architecture with enhanced reconfiguration capabilities . . 40

2.19 SSD architecture [100] . 42

3.1 Drain current fluctuations [69] . 49

3.2 NAND Flash memories Program Disturbances . 51

3.3 Program Disturbances in NAND Flash . 52

3.4 Read Disturbance in NAND Flash . 54

3.5 NAND Flash memory Intra-cell Faults . 56

3.6 NAND Flash memory Inter-cells Faults . 57

4.1 Program and verify algorithm . 63

4.2 Threshold voltage distributions in a MLC NAND flash. Read levels (R1, R2, and R3),

Verify levels (VFY1, VFY2, VFY3), and over-programming level (OP) are pointed out . . 64

4.3 Two round program operations [98] . 65

4.4 Full-sequence program operations [98] . 66

vi

4.5 Fitting results of the NAND flash compact model with experimental data during an

ISPP-SV operation featuring 7µs pulses, 1V ∆ISPP . 69

4.6 RBER characterization . 70

4.7 Power consumption characterization . 71

4.8 Average page write time characterization . 71

5.1 Architecture of a r -bit PPLFSR with s-bit parallelism [60]. 79

5.2 Example of the resulting PPLFSR (a) and OPPLFSR (b) with 8-bit parallelism for x15,

x14 and x13 of p1 (x) and p2 (x) [60] . 82

5.3 High-level architecture of the OPPLFSR [60] . 83

5.4 MCI examples of two hypothetical partitions Si ,1 and Si ,2 85

5.5 The MCI Trend of Table 5.2 [60] . 87

5.6 The shOPPLFSR architecture is composed by multiple OPPLFSRs 88

5.7 High-level architecture of the adaptable encoder highlighting the three main building

blocks and their main connections. 89

5.8 High-level architecture of the adaptable decoder, highlighting the four main building

blocks: the adaptable syndrome machine, the adaptable iBM machine, the adaptable

Chien machine, and the controller in charge of managing the overall decoding process 91

5.9 Architecture of the adaptable Syndrome Machine . 92

5.10 Example of the schema of a byte aligner for t = 2 and s = 8 93

5.11 Architecture of the proposed parallel adaptable Chien Machine with parallelism equal

to h . 95

5.12 BCH codec automatic generation framework. 98

5.13 Percentage of spare area dedicated for storing parity bits as a function of the selected

correction capability. 101

5.14 Worst case ECC encoding and decoding latency. Simulations have been performed at

a clock frequency of 100MHz. 101

5.15 Worst case ECC power consumption. 102

5.16 RBER vs. UBER relationship for the selected code and selected correction modes. . . . 103

6.1 EF3S Architecture . 107

6.2 Set of access modes provided when tuning the programming algorithm and the ECC

correction capability in a cross-layer adaptation framework. 112

6.3 Adaptation of the ECC correction capability to the flash aging for different program-

ming algorithms and target UBER . 113

6.4 WT and RT comparison among different configurations of the controller for a target

UBER=10−11 . 114

vii

6.5 Trade-off on the storage reliability by selecting different programming algorithms and

different ECC correction capability. UBER is computed at 10,000 PE cycles of the flash. 115

6.6 Varmail throughput for a fixed UBER=10−11 . 118

6.7 Webserver throughput fixed UBER=10−11 . 119

6.8 Videoserver throughput fixed UBER=10−11 . 120

6.9 Videoserver throughput with ISPP-RV program. t at different target UBER 121

6.10 Videoserver throughput with ISPP-SV program. t at different target UBER 122

6.11 Videoserver throughput with ISPP-DV program. t at different target UBER 123

6.12 Average power per operation during the execution of the videoserver benchmark . . . 123

B.1 General Encoding/Decoding structure of Error Correcting Code 132

B.2 A "0000" codeword after a single-bit error . 133

B.3 Generic case Codeword . 133

B.4 The wrong "0001" read codeword . 134

B.5 BCH Code Design Flow . 135

B.6 Examples of Raw BER and Uncorrected BER . 136

B.7 ECC Example for point "Large Block..." . 139

B.8 Uncorrected BER for different Error Correcting Codes (ECCs) 139

B.9 512B-ECC16 protecting a 2KB page . 140

B.10 1KB-ECC16 protecting a 2KB page . 140

viii

LIST OF TABLES

1.1 NAND Vs NOR flash-memory . 2

1.2 Comparison among memory technologies [95] . 3

2.1 NAND SLC Vs MLC . 26

3.1 NAND Flash Memory Disturbances . 59

3.2 NAND Flash Memories Circuit Level Faults . 60

4.1 NAND Flash simulation parameters (Programming timings are provided at cycle 1) . . 71

5.1 An example of the representation of p1 (x) and p2 (x) . 81

5.2 An example ofΩi . 86

5.3 Correction capability required by the ECC to achieve a target UBER=1E-11 (Every el-

ement of the table reports the memory RBERs for the different programming algo-

rithms (pattern independent) as characterized in Chapter 4, and the needed correc-

tion capability). 99

5.4 ECC encoder and decoder area footprint. Synthesis has been performed using the

STM-45nm technology library. 100

5.5 Generator polynomial expressed with the corresponding hexadecimal string of coef-

ficients . 104

6.1 #R/#W ratios of different Filebench personalities . 118

B.1 The Hamming distance between pairs of codewords of 4-bit code 132

B.2 BCH code properties . 138

ix

Stay hungry. Stay foolish

C
H

A
P

T
E

R

1
INTRODUCTION

Contents of this chapter

1.1 Architectural level adaptivity

1.2 Physical level adaptivity

1.3 Cross-layer optimized NAND flash access modes

1.4 Thesis organization

According to Moore’s law, advanced multifunctional computing systems real-

ized in forthcoming manufacturing technologies hold the promise of a signif-

icant increase in device integration density, complemented by an increase in

system performance and functionality.

In this scenario, a meaningful portion of the produced devices is represented by mem-

ories, one of the key components of any electronic systems to store both data and istruc-

tions.

Semiconductor memories can be split in terms of data persistance into two major

categories: volatile and non-volatile memories. Random Access Memorys (RAMs), like

Static RAM or Dynamic RAM are considered volatile memories. Although very fast in

writing and reading (SRAM) or very dense (DRAM), they lose their content when power

supply is switched off. Non Volatile Memorys (NVMs) such as Flash memories or Read-

Only Memory (ROM) are able to balance the less-aggressive (with respect to SRAM and

1

1. INTRODUCTION

DRAM) programming and reading performances with data persistance. Their content

can be electrically altered but it is preserved when power supply is switched off.

The history of non-volatile memories began in the 1970s, with the introduction of the

first EPROM memory (Erasable Programmable Read Only Memory). Since then, non-

volatile memories have always been considered one of the most important families of

semiconductors and, up to the 1990s, their interest was tied up more to their role as a

product of development for new technologies than to their economic value.

Flash memories [21] are EEPROMs where the entire chip or subarray within may be

erased at one time. There are many variants of Flash, but nowadays production is dom-

inated by two types: NAND flash, which is oriented toward data-block storage applica-

tions, and common ground NOR flash, which is suited for code and word addressable

data storage.

They both exploit the Floating Gate (FG) transistor, but differ in the way of perform-

ing operations and in the interconnections among cells. The NOR flashes support byte-

addressable access, while the NAND flashes do not. The NOR flashes are usually used

in systems that needs to boot out of flash, execute code from it, and store only small

amounts of data because it supports byte-addressable operations and a fast read speed.

Furthermore, since NAND flashes provide a higher capacity and a faster write speed than

NOR flashes, the former ones are widely used for data storage applications. Table 1.1

briefly sums up the main characteristic of these types of flash-memory. This thesis work

targets NAND flash memories, only.

Standby/
Active
Power

Cost
per
bit

R/W/E Speed Capacity Endurance
Code

Execu-
tion

Interface

NAND Med/Low Low Med/High/Med High Med Hard I/O-like

NOR Low/Med High High/Low/Low Low Med Easy SRAM-like

Table 1.1: NAND Vs NOR flash-memory

The widespread usage of NAND flash memory technology [16] has faced a surprising

increment, far beyond what it was originally expected, mainly thanks to the advances in

the manufacturing processes (20nm NAND flash devices are currently available [105]).

These advances are producing enormous gains in high data transfer rate, low power con-

sumption, and shock-resistance when compared with traditional electro-mechanical

2

Hard Disks (HDs). The cell size of NAND memory is rapidly scaling down, approaching 4

F 2 where F is the minimum lithographic feature currently available in the manufacturer

process. NAND flash technology results also to be cheaper than DRAM even if RAMs

feature better read/write operation latencies. A flash-based memory experiences a pro-

longed endurance with respect to electro-mechanical technology which, due to mechan-

ical parts, is more prone to failures [99] (Table 1.2).

Present
Density

Cell
Size

(SLC)

MLC
Capacity

Program
Ener./Bit

Access
Time
(W/R)

Endurance

HDD 750Gb/i n2 (2/3)F 2 No 0.3J 9.5/8.5ms Low

DRAM 80Gb/i n2 6F 2 No 2pJ 10/10ns High

NAND 550Gb/i n2 4F 2 4bits/cell 10nJ 200/25us Med

Table 1.2: Comparison among memory technologies [95]

These motivations push NAND flash memories to be well suited for data storage in

several domains that range from smartphones to mission-critical datacenter machines,

and from desktops to automotive industry. At the same time, the increasing demand for

high capacity and low cost led researchers to explore alternative solutions in the archi-

tecture of NAND flash memory. In order to both reduce the cost per bit and to increase

the memory density, Multi Level Cell (MLC) technology has been applied to NAND flash

devices. While the Single Level Cell (SLC) can store just a single bit per cell, an MLC

device is able to store more than 1 bit per cell, resorting to different voltage levels.

A popular example that features the advent of MLC NAND flash memories are Solid

State Drive (SSD) which are nowadays widely adopted in the market of mass memory

devices. Flash-based SSDs typically consist of multiple NAND flash chips and a con-

troller charged of data management and communication with the host machine. When

compared to HDs, SSDs have several superior properties such as small form factor, light

weight, low power consumption, and shock resistance. In terms of area density, HDs are

still superior, even if NAND flash capacity can be further increased by exploiting the MLC

technology (i.e., the capability to store more bits per cell).

NAND flash memories are also a mandatory component to provide high-density and

low-cost data storage in the huge world of embedded systems. It is worth noticing here

that NAND flash technology is mainly adopted as a storage device rather than boot or

3

1. INTRODUCTION

main memory. This choice is due to its internal architecture and logical organization. In

fact, NAND flash memories do not allow to access randomly any locations in the mem-

ory, but only groups of bytes, called pages. The page is, thus, the smallest portion of

data that can be read/written. It is worth to point out here the asymmetric nature of

the read and write operation. NAND flash technology implements the erase-before-

programming approach, which requires to erase block (i.e., a group of pages) before

programming the selected page. A block is the smallest area that can be erased. This

impacts actual programming time of NAND memories, that results to be greater than

reading one.

Since the flash memory storage capacity roughly doubles every 18 months [50], de-

signers have to face additional challenging performance and reliability problems. MLC

technology has further exacerbated these problems. MLC flash memories require higher

programming time and provide reduced endurance when compared to old SLC devices.

Reliability issues are critical as well because the more logical levels are stored in the cell,

the more margins among voltage levels are reduced. This results in several sources of

error such as overprogramming, program disturb, charge loss, charge leakage between

neighboring cells or charge trap in floating gate oxide, that can more frequently affect

memory functionalities and, as a consequence, cut down the number of program/erase

cycles (P/E cycles) per block [98]. The write endurance is usually defined as the number

of P/E cycles that can be applied to a block of flash memory before the storage media

becomes unreliable.

The Raw Bit Error Rate (BER) i.e., the fraction of bits that contain incorrect data before

applying fault tolerant mechanisms, is commonly used to estimate the inherent reliabil-

ity of flash memories. The RBER of a MLC flash memory is around 10−6 [47], at least two

orders of magnitude worse than those of a SLC device [51]. These problems can be fur-

ther exacerbated by the file systems behavior, mainly due to the need of frequent writes

of small amount of data, that can overbalance the memory wear-out upon specific areas

of the memory [55].

All the aforementioned reliability issues must be tackled to increase endurance by

typically resorting to different approaches at software, architecture, and device level.

At architectural level, fault tolerant mechanisms such as ECC are systematically ap-

plied. The choice of the most suitable error correcting schema is tightly application de-

pendent. For this reason, practical ECC solutions are typically market segment-specific

4

and range from derivatives of the Hamming code [98] to the BCH [103] or the Reed-

Solomon code [35]. Of course, by resorting to ECC, an acceptable reliability level is

achieved while degrading read/write operation latency.

At device level, the choice of the proper high-voltage sub-system of the Flash memory

device highly impacts in terms of reliability and performances. It is in charge of gener-

ating the voltage waveforms for flash cell read, program and erase operations, and for

address decoding. Its operation is regulated by a microcontroller embedded in the flash

device itself. In order to accurately fulfill the aforementioned operation, a standard al-

gorithm is usually exploited in NAND Flash memories: the Incremental Step Pulse Pro-

gramming (ISPP) [26]. Different ISPP versions exist and each one has a different impact

on the reliability of the memory.

At the same time, wear leveling techniques [32, 34, 41, 49, 125] are used to distribute

data evenly across each block of the entire flash memory, trying to level and to minimize

the number of erasure cycles of each block.

It is straightforward that this is a huge design space in which each adopted solution

and their combined usage differently moves the trade-off among performances, reliabil-

ity, and power consumption.

State-of-the-art NAND Flash devices are tightly cost-optimized structures and the in-

ternal operations of the memory are mostly defined at design-time to cope with the in-

dustry standards (i.e., ONFI [9]). In this scenario, designers can just statically trade-off

reliability and performance according to target application requirements.

However, the run-time reconfigurability, the adaptivity, and the resources optimiza-

tion features requested by nowadays computing systems collide with this paradigm, which

is therefore rapidly running out of steam[29]. New mobile usage models in today’s com-

plex embedded systems require the execution of multiple applications on the same de-

vice with seamless integration of safety- and time-critical functionalities with non-critical

functionalities. This demands for increased run-time re-configurability of hardware blocks.

Automotive embedded systems represent a typical example. Sophisticated features

such as autonomous driving and advanced driver assistance systems demand for high-

level dependability and safety, while applications such as the anti-pinch control (i.e., a

technique to prevent an electrically operated window or door from trapping a finger as

it closes) [84] require mid-level reliability. Finally, several software applications enrich

the so-called infotainment automotive systems that demand for relaxed requirements.

5

1. INTRODUCTION

For instance, the feature-rich global positioning system providing traffic control infor-

mation, or video streaming services featured by high-end cars require low-reliability, but

are in general more demanding in terms of performance. Even for SSD devices, the need

to compensate for performance and reliability degradation of MLC memories will nec-

essarily call for optimized access modes. This can be exploited either by single applica-

tions, or by just specif threads running on the system.

We clearly see a trend toward augmenting memory controllers of MLC NAND flash

devices to support differentiated access modes, each one setting a differentiated trade-

off point in the performance-reliability optimization space. To this extent, NAND Flash

vendors are introducing, in parallel with their legacy products, new devices which envi-

sion different levels of flexibility selectable by the user, through the memory controller,

at boot-time. Most of these "tuning knobs" are based on speed/power consumption

optimization (i.e., by changing the memory bus interface speed as in [1]), and storage

paradigm adoption (i.e., choosing SLC or MLC writing schemes [10]).

Current research is unfortunately lagging far behind when it comes to systematic ap-

proaches for integrating different tuning knobs in the memory controller to materialize

a fully on-the-fly adaptive non-volatile memory sub-system.

Introducing for the first time in the literature the concept of the Service-Oriented Non

Volatile Memories (SONVMs), the goal of this PhD thesis is to enhance the degree of run-

time reconfigurability of an MLC NAND Flash controller, through the provision of user-

selectable differentiated memory access modes (i.e., services). Each mode implements

a specific trade-off between read throughput, write throughput, reliability, and power.

So far, just few studies try to extend run-time adaptation to the NVM sub-system.

[120] presents a first attempt of analyzing joined limited adaptation of the physical layer

of the flash based on a programmable programming step voltage coupled with programma-

bility of the ECC. Nevertheless, to the best of our knowledge, this is the first time that

run-time adaptation is extended to the full NVM sub-system and a comprehensive study

to analyze the effect of this adaptability considering a wide set of benchmarks is carried

out. It pushes flash controllers beyond the poor flexibility of the current synthesis-time

or boot-time tuning options made available by device manufacturers. Rather than fo-

cusing on implementing differentiated memory access modes with minor controller cir-

cuitry, this research work focuses on the characterization of the tuning range achievable

with such modes.

6

1.1. Architectural level adaptivity

In particular, the proposed solution envisions adaptivity at two different layers: ar-

chitectural level and device level.

1.1 Architectural level adaptivity

The architecture layer adaptivity is based on adaptive ECC decoding structure. It im-

plements a Bose-Chaudhuri-Hocquenhem (BCH) ECC with programmable correction

capability [53]. BCH codes are a family of ECCs largely applied to NAND flash memo-

ries [38]. BCH codes are less complex than other ECCs and provide high code efficiency.

Moreover, errors in flash memories are in general non-correlated and BCH codes are

particularly efficient in this situation.

The construction of a BCH code is based on Galois field GF(2m). Given a finite Ga-

lois field GF (2m) (with m ≥ 3), a t-error-correcting BCH code, denoted as BC H [n,k, t],

encodes a k-bit message to a n-bit codeword by adding r parity bits to the original mes-

sage. The number r of parity bits required to correct t errors in the n-bit codeword is

computed by finding the minimum m that solves the inequality k + r ≤ 2m − 1, where

r = m · t .

The adaptable ECC block employed in this thesis is composed of both encoder and

decoder modules and makes it possible to dynamically change its correction capability

in a range between 1 and a maximum value.

The BCH encoder computes the r parity bits for a k−bit block of data. Parity bits

correspond to the reminder of the division between the message and the code gener-

ator polynomial. This computation simply requires a r−bit linear feedback shift regis-

ter (LFSR) with characteristic polynomial equal to the code generator polynomial. Pro-

grammability of the correction capability is achieved resorting to a parallel LFSR able to

support different characteristic polynomials.

The BCH decoder identifies the position of erroneous bits of the codeword. This op-

eration is more complex than the encoding. It requires three computational steps: (1)

syndrome computation, (2) error-locator polynomial computation, and (3) error loca-

tions search. Each step is performed by a dedicated hardware block.

The syndrome computation block computes the 2xt syndromes of the codeword to

decode. The computation of each syndrome requires a m−bit LFSR followed by a com-

binational network performing GF evaluations [101]. If all syndromes are null the code-

word is error-free and the decoding stops. If not, the errors must be identified. To obtain

7

1. INTRODUCTION

programmability, the syndrome block is designed to compute the maximum amount of

syndromes. Depending on the programmed correction capability, only a proper subset

of these computation blocks is then enabled.

The error-locator polynomial computation block computes the error-location poly-

nomial whose roots represent the inverse of the error positions in the codeword. We

implemented the inversion-less Berlekamp-Massey (iBM) algorithm proposed in [141]

which is able to compute the error-locator polynomial in 2t iterations. The iBM algo-

rithm is intrinsically programmable as long as one guarantees that internal buffers and

hardware structures are sized to deal with the worst case design, and the number of iter-

ations of the algorithm is set to 2t .

Finally, the error location search block computes the roots of the error-locator polyno-

mial that identify erroneous bits. This is the most complex and time intensive process of

the decoder, since it basically requires evaluating the error-locator polynomial into each

element of GF(2m). We implemented a parallel Chien machine with fast skipping, able to

perform more than one evaluation per clock cycle [44]. A Chien machine is mainly a grid

of GF multipliers where the number of columns equals the correction capability t and

the number of rows equals the parallelism. To obtain programmability, we designed this

block for the worst case scenario, then enabling only a subset of the columns depending

on the programmed value of t .

Given the enormous complexity to design an adaptable BCH-based ECC Intellectual

Property Core (IP-Core), mainly due to the plethora of potential implementations, rang-

ing from fully parallel to fully sequential ones, an architectural exploration task is re-

quired. The target is to design and implement an IP-Core able to efficiently scale in terms

of power and latency when the required correction capability changes. Of course, design

constraints such as area occupation and the total amount of generated parity bits have

been taken into account to fit with available resources. To cope with this complexity, an

advanced ESL tool called ADAGE [54] has been developed. ADAGE allows the automatic

generation of BCH-based ECC IP-Cores with adaptable correction capability, supporting

a systematic analysis and exploration of different architecture alternatives. This envi-

ronment is strongly intended to be user-driven, automatic, and parametric. A complete

framework for validating the correctness of the generated BCH hardware architecture is

automatically generated, as well.

8

1.2. Physical level adaptivity

1.2 Physical level adaptivity

The physical layer adaptivity is based on an adaptive high-voltage sub-system of the

Flash memory device. To better clarify the contribution of this thesis, it is worth briefly

introducing here how the programming mechanism works. Commonly, to force the

memory cell into different logical state, a predefined voltage level Vth is applied to the

memory cell itself. In order to control the programmed Vth of the flash memory cell, a

bit-by-bit program verify algorithm called ISPP is used. A voltage step (whose amplitude

and duration are predefined) is applied to the gate of the cells. Afterwards, a Verify op-

eration (i.e., threshold voltage Read) takes place in order to check if the cells Vth have

exceeded a predefined voltage value Vv f y (in MLC architectures more than one Verify

level is present) [98], [25]. If the Verify is successful, the cells have reached the desired

distribution level and they are excluded from the following pulses. Otherwise, another

cycle of ISPP is applied to the cells, where the programming voltage is incremented by a

specified offset commonly called ∆ISPP.

Due to technological variations, Vth is not perfectly related to the amplitude of the

ISPP pulse. There are "fast" cells that reach the verify level with few program pulses and

"slow" cells that require more pulses. Both behaviors represent a threat for the relia-

bility of the program operation. A solution for increasing ISPP programming accuracy

has been presented in [97], [98]. This algorithm exploits a Double Verify (DV) approach

improving the RBER on scaled devices while reducing the write performance.

Another concern of MLC architectures is to decrease the write throughput perfor-

mance mismatch against SLC memories. Both the ISPP-Standard Verify (ISPP-SV) and

the ISPP-DV feature a large number of verify operations per single ISPP step, even if the

memory cell is far from the Vv f y level. An interesting solution to avoid unnecessary verify

operations is to use the Reduced Verify (RV) approach [98]. The reliability is now traded

for increased programming speed, as this write methodology may be less robust against

page-errors.

In current flash devices controllers, the programming algorithm is set at fabrication

time, thus preventing run-time adaption. Our device layer is designed to be able to

switch on-demand among the three ISPP versions. For this purpose, an extensive mod-

eling, simulation and implementation framework has been set up for the analog part to

capture how different program algorithms impact the RBER, the power consumption,

and the write throughput of the memory.

9

1. INTRODUCTION

The simulation environment is composed of two distinct modules: (a) the high-voltage

subsystem of the memory, including the charge pumps, and the voltage regulators ex-

ploited for the generation of the voltages required for the programming algorithm (in-

cluding the verify stage), and (b) a compact model for NAND Flash memories with array

simulation capability.

Aforementioned parameters have been characterized by means of the developed sim-

ulation framework. Such parameters are derived as a function of the Program/Erase cy-

cles of the memory, thus enabling lifetime-wide assessment of memory features.

1.3 Cross-layer optimization framework

After having considered the flexibility and the trade-offs in the physical layer and in the

ECC sub-system in isolation, this thesis aims at acting upon their parameters at the same

time to show unprecedented degrees of adaptivity to application requirements in the re-

liability/performance/power optimization space, thus identifying a set of differentiated

access modes that can be configured in the memory controller [144], [20].

For this purpose, an extensive modeling, simulation and implementation framework

has been set up: EF3S, an easy-to-use, highly configurable, and modular tool [56]. EF3S

is an advanced EDA tool which aims at supporting the design of flash-based systems.

It offers the possibility of modeling: the physical NAND device, the memory controller,

the NAND flash driver, the Flash File System (including wear leveling and garbage collec-

tion), and the application workloads. This framework enables an accurate quantification

of the trade-offs between the quality metrics of NVMs accesses on a set of real-life work-

loads and benchmark applications.

To appreciate the benefits of differentiated flash access modes on the execution of a

set of real applications, the Filebench benchmark [7] has been selected for our analysis.

It is an open source File System benchmark originally developed by Sun Microsystem

and now by FSL (File systems and Storage Lab) group of the Computer Sciences Depart-

ment of the Stony Brook University (USA). It provides a large variety of behaviors, also

named personalities, specified using the Workload Model Language (WML) [134]. They

either perform simple file I/O operations, or emulate complex I/O activities. Among the

available personalities we selected three benchmark applications featuring different ra-

tio between the number of read operations and the number of write operations.

Our analysis confirms that a wide range of access modes, each meeting highly differ-

10

1.4. Thesis organization

entiated requirements across the embedded and the high-performance computing do-

mains, can be achieved through a cross-layer approach. In particular we demonstrated

that combining settings at physical and architectural levels in an MLC NAND flash sub-

system holds promise of exposing unprecedented trade-offs between performance, reli-

ability and power for memory access.

This opens up new perspectives for a NAND flash device in real-life systems.

Summarizing, the following key contributions can be identified as milestones of this

thesis:

• an adaptive flash physical layer capable of different run-time selectable program-

ming algorithms;

• the design of an adaptive ECC sub-system with run-time tunable correction capa-

bility;

• a definition of cross-layer memory access modes spanning the reliability-performance-

power trade-off;

• a quantification of such trade-offs via physical-architectural co-simulation;

• an extended set of options to physically realize the proposed architecture in actual

memory controllers.

1.4 Thesis organization

This thesis presents an innovative and never explored access modes for NAND flash

memories and defines a new design paradigm called Service-Oriented Non Volatile Mem-

ories. It results in a valuable characterization of an unprecedented degree of flexibility

through the combined approach of the architectural-level adaptivity and the physical-

level adaptivity. The thesis is organized as follows.

Chapter 2

Overview on NAND flash memories: from technology to system level

Chapter 2 introduces the main technological features of NAND flash memories. From

a technological standpoint, all NAND flashes are not created equal and may differ in

cell types, architecture, performances, timing parameters, command set, etc. However,

11

1. INTRODUCTION

they all share the following general organization. A NAND flash-memory is usually par-

titioned into blocks. Each block has a fixed number of pages of a fixed size. A block is the

smallest unit for erase operations, while read and write operations are done in terms of

pages. Therefore, a page can be erased only if the whole block it belongs to is erased.

Chapter 3

NAND flash memory reliability

Since NAND Flash memories are experiencing an even more faster technological scal-

ing down, reliability requirements are becoming more and more difficult to guarantee.

In order to meet these demanding requirements, designers adopt different strategies at

design time to improve the overall reliability level whereas degrading memory perfor-

mances. Basically, improving reliability results in prolong endurance (i.e., the allowed

number of repeated program/erase cycles) and retention (i.e., the ability to maintain

and retrieve the stored information). In this chapter we outline the NAND technology

reliability issues. It mainly focuses on its intrinsic physical limits and it gives an overview

of the most important reliability issues affecting the floating gate memory technology.

At the end of this chapter it will be clear how many challenges designers have to face

with and how each employed strategy definitely impacts on the reliability, power and

performance.

Chapter 4

Adaptable flash physical management sub-system (physical-level adaptability)

The physical management sub-system of the memory controller interacts with the high-

voltage analog circuitry of the NAND flash memory that generates the voltage waveforms

for cells read/program/erase and for address decoding. A standard algorithm named

ISPP is usually exploited to accomplish this operation [98]. In current flash device con-

trollers, the programming algorithm is set at fabrication time, thus preventing run-time

adaptation.

The programming algorithm and voltage waveforms affect both reliability and per-

formance. Compared to the typical ISPP algorithm [106], the double verify algorithm

can improve the RBER on the same device or sustain the RBER on scaled devices while

reducing the write performance [98]. Differently, the reduced verify algorithm [98] is able

to improve writing performance while increasing the RBER.

12

1.4. Thesis organization

Chapter 4 first describes the programming algorithms that are commonly used in

practice and then introduces an adaptive flash physical optimization approach capable

of different run-time selectable programming algorithms.

Chapter 5

Adaptable BCH codecs for NAND flash memories (Architectural-Level Adaptivity)

The architectural adaptivity is got via an adaptive ECC sub-system. Chapter 5, thus,

presents an adaptable BCH based design for NAND flash memory. It can dynamically

adapt its correcting capability to the specific operational conditions of the memory. The

number of parity bits and the decoding complexity can in fact be adapted depending on

how many errors have to be corrected. The ECC sub-system is characterized to show the

different trade-offs offered by its programmability.

A custom design environment, called ADAGE, has been developed to support the

generation of such an architecture.

Chapter 6

Cross-layer optimized NAND flash access modes

While in the Chapter 5 and in Chapter 4 we have considered the gain achieved by resort-

ing to an adaptable ECC and the flexibility in the physical layer, respectively, Chapter 6

presents a systematic approach able to provide an unprecedented degrees of adaptivity

to application requirements in the reliability/performance/power optimization space,

thus identifying a set of differentiated access modes that can be configured in the mem-

ory controller. To appreciate the benefits of differentiated flash access modes on the

execution of a set of real applications, a sophisticated EDA tool called EF3S (Evaluation

Framework For Flash-based System) has been developed.

Appendixes A and B

Appendix A provides a generic overview of the NAND flash model employed in this thesis.

Appendix B overviews the ECCs design dimensions and issues.

Conclusions

Our research work, summarized in this PhD thesis, demonstrated that combining set-

tings at the physical and architectural level in an MLC NAND flash sub-system holds

13

1. INTRODUCTION

promise of exposing unprecedented trade-offs between performance, reliability, and power

for memory access. Our cross-layer optimization of NAND flash controllers includes the

correction strength of an adaptive ECC framework and the programming algorithm of

memory cells, thus yielding access modes for ultra-high performance, ultra-high relia-

bility or intermediate trade-off requirements.

14

C
H

A
P

T
E

R

2
OVERVIEW ON NAND FLASH MEMORIES: FROM

TECHNOLOGY TO SYSTEM LEVEL

Contents of this chapter

2.1 A big picture

2.2 Array structure

2.3 Basic NAND functionalities

2.4 MLC principle and characteristics

2.5 Logic structures

2.6 NAND-based systems

This chapter aims at introducing the main concepts related to NAND flash mem-

ories, ranging from basic technological aspects to description of flash-based

systems in a bottom-up fashion to provide readers the fundamental elements

to understand the following chapters. Of course, the presentation will be based not on

specific implementations but on general structure types, focusing on the main mecha-

nisms and the main issues.

In the Section 2.1, first, a wide overview about NAND flash technology and expected

trends in terms of capacity, cost, and performance are presented. Then the focus is

placed on basic components making up NAND flash memories i.e., the memory cell.

So, from a circuit level perspective, the whole NAND memory layout is provided, show-

15

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

ing how actual cells are grouped and connected (Section 2.2). The detailed description of

the NAND flash memory architecture is followed by an analysis of basic NAND function-

alities (Section 2.2). Considering the actual trend, MLC principles and characteristics

are dealt with, as well (Section 2.4). Moving towards higher levels, Section 2.5 presents

a logical organization, in a more organic view, of logic components composed of NAND

flash memories. After having covered main topics related to NAND flash memory tech-

nology, the last Section 2.6 aims at summarizing challenges and issues when NAND flash

memories are integrated into a complex system.

2.1 A Big Picture

The NAND Flash architecture was introduced by Toshiba in 1989. The increasing de-

mand for high-speed storage capability both in consumer electronics (e.g., USB flash

drives, digital cameras, MP3 players, solid state hard-disks, etc.) and mission critical

applications, makes NAND flash memories a rugged, compact alternative to traditional

mass-storage devices such as magnetic hard-disks. The NAND flash technology guar-

antees a non-volatile high-density storage support that is fast, shock-resistant and very

power-economic. At higher capacities, however, flash storage can be much more costly

than magnetic disks, and some flash products are still in short supply. Nevertheless, an-

alysts predict that in the next years Flash memory revenues will rise to $22.4bn (see Fig.

2.1).

Figure 2.1: NAND flash memory revenue forecast

16

2.1. A Big Picture

The efficient architecture of the NAND Flash allows denser layout with larger capac-

ity on a given die size, in combination with a simpler production process. This enable

the more cost effective NAND flash to replace other storage solutions, mainly based on

legacy HDs. NAND Flash is organized into blocks and pages and erased on a block basis.

A block consists of 64 or more pages [98]. However, caused by its internal organization,

a NAND flash memory is not suitable for random access. This is the main reason to em-

ploy it as a data storage medium and not as main memory, where RAMs still play a key

role.

Despite of other semiconductor memories that feature new process technology each

2 year, NAND flash technology is on 1 year cadence. The faster scaling down w.r.t. other

memory technologies has thus resulted in the capability of integrating more bits per cell,

replacing the older SLC technology with the more cost-effective MLC NAND memories

(see Fig. 2.2). Currently, these motivations make MLC NAND technology the lowest cost

semiconductor memory with none of the other memory technologies even close to being

cost competitive.

Figure 2.2: Bit Size Trend [98]

However, lower costs do not come for free. They come at the expense of reduced

performance and endurance. The comparison between SLC and MLC, shown in the Fig.

2.3) exhibits that the more bits per cells, the more significant degradation in endurance

and performances is experienced. The interested reader may refer to [36, 48] for more

17

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

detailed comparisons between SLC and MLC technology.

Figure 2.3: Comparison of SLC and MLC flash memories [58]

For these reasons, in actual memory controllers, several mechanisms at different ab-

straction layers are currently employed to ensure a desired level of reliability for a given

application. At firmware-layer, sophisticated wear-leveling algorithms are in charge to

evenly spread data into memory, while, at the same time, powerful ECCs IP-Cores pro-

tect data adding redundancy, making them more robust. Of course, even if the aforemen-

tioned mechanisms improve the overall reliability, they heavily impact on performances

and power consumption. This is a multi-dimensional space that a NAND flash-based

system designer have to face with, trading-off performances, reliability, and power ac-

cording to application requirements.

2.2 Array Structure

In this section the key element to persistently store data in NAND flash memories is an-

alyzed: the memory cell. Then a systematic view about the NAND flash memory array is

given, focusing on circuit layout and interconnections of memory cells.

The most popular Flash memory cell is based on FG technology [98], whose cross sec-

tion is shown in the Fig. 2.4. A MOS transistor is built with two overlapping gates rather

than a single one: the former one is completely surrounded by oxide, while the latter one

is contacted to form the gate terminal. The isolated gate constitutes an excellent trap for

electrons, which guarantees charge retention for years.

The operations performed to inject and remove electrons from the isolated gate are

called program and erase, respectively. These operations modify the threshold voltage

VT H of the memory cell, which is a special type of MOS transistor. Applying a fixed volt-

18

2.2. Array Structure

Substrate

Drain Source

Control Gate

Floating Gate

Electrons

Figure 2.4: Floating gate memory cell

age to cell’s terminals, it is then possible to discriminate two storage levels (e.g., when-

ever gate voltage is higher than the cell’s VT H , the cell is on ("1"), otherwise it is off ("0")).

The memory cells are grouped to form a matrix in order to reduce silicon area occu-

pation. A fixed numbers of memory cells are connected in series to form a NAND string,

as shown in the Fig 2.5. In the NAND string two selection transistors ensure the connec-

tions to the source line (by MSL) and to the bitline (by MDL). More NAND strings share

the bitline contact. Control gates are linked by means of wordlines (WLs).

S

D

S

D

SL0

B
L

e
ve

n

S

D

S

D

B
L

o
d

d

NAND
string

WL0<n:0>

B
lo

ck
 0

Source Line

NAND
string

SL0 …

I/O

String

NAND
string

WL1<n:0>

B
lo

ck
 1

 NAND
string

SL1

SL1
Memory

Cell

W
o

rd
lin

es

Figure 2.5: NAND string (left), NAND array (right)

19

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

Logical pages are composed of cells belonging to the same wordline. The page is the

smallest storage unit when performing read and programming operations. The storage

capabilities are strictly related to both the number of pages per wordline and the number

of bits that can be stored into a single cell. Considering for example a SLC device with

4kB page, it has a wordline of 32,768 cells.

A flash block is made up by wordlines shared by a group of NAND strings. A block

is the smallest unit on which performing the erase operation. In Fig. 2.5 two blocks are

shown, composed of W L0 < n : 0 > and W L1 < n : 0 > respectively, where n is the total

number of wordlines per block.

Even if the memory array is the main component of a NAND flash memory, other

components are needed to perform read, program, and erase operations. The memory

array is commonly split into two planes to better organize the entire layout. The addi-

tional circuits (see Fig 2.6) are:

• Row Decoder, located between the planes. This circuit aims at properly biasing all

the wordlines belonging to the selected NAND string;

• Sense Amplifier has the task of converting the current sunk by the memory cell to

a digital value. All the bitlines are linked to sense amplifiers;

• Peripheral circuits are composed of charge pumps, voltage regulators, logic cir-

cuits, and redundancy structures. They are in charge to generate the voltage wave-

forms for cells read/program/erase and for address decoding;

• PADs are employed to communicate with the external word.

2.3 Basic NAND functionalities

This section shortly introduces the basic NAND operations, which are program, erase

and read. Pages are the smallest storage unit when performing read and programming

operations. Pages already written with data must be erased prior to write new values.

The erase operation is performed on a block basis.

2.3.1 Program

The programming operation logically corresponds to the 1 -> 0 transition and physically

implies to move some charges (electrons) into the floating gate. For such reasons, the

20

2.3. Basic NAND functionalities

Memory
Array

(Plane 0)

Peripheral Circuits

Sense Amp Sense Amp

Memory
Array

(Plane 1)

R
o

w
 D

e
co

d
e

r
Sense Amp Sense Amp

Peripheral Circuits

PAD

Figure 2.6: NAND Flash Memory Layout

programming operation of a NAND flash memory exploits the quantum-effect of elec-

tron tunneling (referred to as Fowler-Nordheim tunneling [61]) whenever a electric field

is applied. The higher the intensity of the electric field, the higher the probability to

inject a sufficient number of electrons. This implies that higher electric field and conse-

quently higher voltages enable a more efficient program operation. This strong require-

ment strongly impacts the memory endurance, as the oxide degradation is impacted by

these voltages.

The main benefit is the low current required (i.e., nA per cell). This is the main reason

that make the Fowler-Nordheim effect mainly suitable for programming many cells in

one shot, as required by NAND page sizes.

Commonly, the algorithm used to program the cells of a NAND memory page is a

Program & Verify algorithm, which checks whether the cell has reached the target voltage

threshold or not.

Due to the organization of the memory array whose cells are grouped in a matrix, all

the cells along the wordline are biased at the same voltage even if they are not intended

to be programmed. As shown in the Fig. 2.7, this fact introduces an additional reliability

concern known as Program Disturb, discussed in chapter 3.

21

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

…

…

…

…

I/O I/O I/O I/O

…

…

Disturbed
Cell

Programmed
Cell

Disturbed
Cell

Figure 2.7: Program disturb

2.3.2 Read

The reading operation is designed to address a memory cell and extrapolate the informa-

tion stored therein. The stored information is associated with the cell’s threshold voltage

VT H . In Fig. 2.8 the logic levels of a SLC associated with threshold voltage distributions

of cells are shown. If the cell has a VT H belonging to the erased distribution, it contains

a logic "1", otherwise, it contains a logic "0". Generally, cells containing n bit of informa-

tion have 2n different levels of VT H .

Considering a fixed gate voltage, the cell current is a function of its threshold voltage.

So, by resorting to a current measure, it is possible to understand to which VT H distri-

bution the memory cell belongs. Nevertheless, even this operation suffers from disturbs,

since a memory cell belongs to a string including other cells. In order to avoid that dur-

ing the read operation the cell’s logical value be influenced by the neighbored cells, the

unselected memory cells must be operated so that their threshold voltages do not af-

fect the current of the addressed cell. As a result, their gate must be driven to a voltage

(commonly known as VPASS) higher than the maximum possible VT H .

2.3.3 Erase

The erase operation logically corresponds to the 0 -> 1 transition and physically implies

to remove the charges from the floating gate. The erase operation resets the informa-

tion of all the cells in one block simultaneously. Applying a high electric field across the

22

2.4. MLC principle and characteristics

1 0

VREAD VTH_MAX VPASS

VTH

Erased distribution
VTH < VREAD

Programmed distribution
VTH > VREAD

Figure 2.8: Threshold voltage distributions

tunneling dielectric of the cells in the selected block, the stored electrons are tunneled

out of the floating gate to the substrate, lowering the cells’ VT H (see Fig. 2.9). Since flash

memories wear out after a certain number of erasure cycles (endurance), if the erasure

cycles of a block exceed this number, the block cannot be considered anymore reliable

for storing data. A typical value for the endurance of an SLC flash memory is about 106

erasure cycles.

1

VTH

Electrical Erase

Cells

Figure 2.9: Erase state

2.4 MLC principle and characteristics

So far, both the general principle of operations and the array structure of a NAND flash

memory have been presented avoiding a fully description of physical details, considered

out of the scope of this thesis. For the sake of simplicity, the aforementioned concepts

have been presented resorting to the SLC approach, but it is worth mentioning the MLC

technology as well, as it is widely applied in most of today NAND flash memories. More-

23

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

over, the conceived adaptable NAND flash memory sub-system, presented in this thesis,

exploits the MLC technology.

In principle, the MLC technology does not imply any modification of the cell itself

but it uses its storing capability in a more powerful way. Storing charges in the floating

gate changes the threshold voltage level of the flash cell. Up to now we have assumed

that only two situations were possible with two well defined meanings:

• Presence of charges in the floating gate: corresponding to "0".

• Absence of charges in the floating gate: corresponding to "1".

This kind of usage of the flash memory cell is commonly called SLC. This means

that every single cell can store one and only one bit of information, experiencing only

two values ’high’ and ’low’ corresponding to the presence and absence of charges in the

floating gate.

The threshold of the cell is function of the number of electrons stored in the floating

gate and it increases with the number of stored electrons. This principle is exploited in

the so called MLC flash memory technology. The idea is to have more that two levels

of valid thresholds, thus allowing to store more than one bit in the cell. Each threshold

level corresponds to a specific state of the cell and each state is assigned a specific binary

code. Having a certain number of possible states for a cell S, the number of bits that can

be stored N is equals to dl og2(S)e. For example, with four possible states we can store

two bits of information assigning two bits at each of the four threshold levels of the cell.

1.5V

VTH

Reference Points

Cells

3.5V 4.0V 5.5V 6.5V

11 10 01 00

Figure 2.10: MLC-threshold distribution

This technique increases the equivalent density of bits in the memory, thus reducing

the overall cost per bit. Unfortunately, this improvement in the capacity of the device

24

2.5. Logic structures

has a set of penalties in terms of complexity of the needed circuitry, reliability and per-

formance.

The main consequence of using MLC programming technique is the reduction of the

delta between each level of threshold (Fig. 2.10). As a consequence of this, a more ac-

curate and controlled programming mechanism is needed. Typically, the correct level

of threshold is achieved by a controlled series of pulses on the control gate of the se-

lected cell employing the ISPP technique. This also leads to performance degradation in

terms of program speed compared to SLC [82]. For the same reasons, the read operation

in MLC is different from the normal read operation in SLC. It typically requires a more

complex circuitry, while the read speeds between SLC and MLC are comparable.

This growth in complexity of the read and program operations has direct effect on the

needed control logic and circuitry of the device, that become bigger than in SLC .

The reliability degradation is a direct consequence of reduction of the delta between

the threshold levels. Having a general disturb on the threshold of a MLC easily can move

the threshold level out of its range and therefore change the logic content of the cell.

Moreover, the MLC device are more sensitive to high temperatures that cause more leak-

age in the cells. Combined with the increased sensitivity required to differentiate be-

tween the levels, this leakage may lead the sensors to read the wrong level. As a result,

the operating temperature of MLC spans only the commercial range [2].

The endurance of SLC Flash is 10x more than MLC Flash. The endurance of MLC

Flash decreases due to enhanced degradation of Si . This is the main reason why an SLC

Flash is considered industrial grade Flash and while MLC Flash is a consumer grade Flash

[2].

Table 2.1 provides some additional figures about these two technologies. Although

some entries of the table may not be familiar to the reader, they will be addressed shortly

in the sequel of this chapter.

The correct choice of the Flash memory type SLC vs MLC depends on the target sys-

tem needs. If performance and durability are essential, SLC Flash are the most suitable

choice. If low cost and high density are essential, MLC Flash is the right choice [2].

2.5 Logic structures

This section aims at summarizing the logic structure of a NAND flash device. Even if in

the previous sections many details have already been given, hereinafter the logic organi-

25

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

Features Architecture Reliability Array Operations

Bits
/cell

Volt-
age

Bus
width

Pla-
nes

Page
size

Pages
/block

NOP
ECC-
512B

Endu-
rance

tREAD

(max)
tPROG

(avg)
tERASE

(avg)

SLC 1
3.3V,
1.8V

x8,
x16

1 or
2

2,112B 64+ 1 1 <105 25us
200 -
300us

1.5 –
2ms

MLC 2+ 3.3V x8 2+ 4,314B+ 128+ 4+ 4+ <104 50us
600 -
900us

2ms

Table 2.1: NAND SLC Vs MLC

zation is introduced by resorting to a systematic approach.

As outlined in Fig. 2.11, a memory is divided in pages and blocks. A block is the small-

est erasable unit. Generally, there are 2k blocks within any device. Each block contains

several pages. The number of pages within a block is typically a multiple of 16 (e.g., 128).

A page is the smallest addressable unit for reading and writing. Each page is composed

of main area and spare area. Main area can range from 4 to 8 kB or even 16 kB while

spare area is typically used for system level management (i.e., file system, ECC) and it

is in the order of a couple of hundreds bytes every 4 kB of main area. Pages are usu-

ally grouped in different planes, since a flash memory with N planes can read/write and

erase N pages/blocks at the same time [48].

2.6 NAND-based systems

Currently there are a plethora of flash-based devices. SSDs and flash cards are definitely

the most known examples of electronic systems based on NAND Flash [65], [3], [4]. Sev-

eral types are available, featuring different user interfaces, and form factors, depending

on the needs of target application.

It is worth introducing here that, whenever a flash memory is integrated in a complex

device, a set of activities related to the management of the flash memory itself are re-

quired. As discussed in the previous sections, memories wear out after a certain number

of erasure cycles and therefore specific functions are required to prolong device lifetime.

The main functions are: Wear leveling Management 2.6.3, Garbage Collection 2.6.4, Bad

Block Management 2.6.5 which are usually implemented in form of firmware inside the

memory controller or in a dedicated software layer called Flash File System, whereas ECC

approaches are usually integrated as IP-Core inside the memory sub-system.

26

2.6. NAND-based systems

1 NAND = 8,192 blocks

1 block = 64 pages

1 page = (4K + 128) Bytes

Main Area
4K

Spare Area
128

Figure 2.11: NAND logic organization

An other relevant issue is that Operating Systems (OSs) usually write data in sectors

(e.g., 512 bytes in size) when HD is employed. Whereas NAND flash memories are writ-

ten on page basis whose size is actually different from HD’s sector (e.g., nowadays page

size is 4 or 8KB). In addition, flash memories do not support the so-called update-in-

place feature as each page requires to be erased before written, and the erase operation

is performed on a block basis. For these reasons, a driver that works in conjunction with

the Operating System is required in order to hide technological differences between flash

memory and HD. to the system. The Flash Translation Layer (FTL) is in charge to accom-

plish this task.

This section provides first a short overview about memory interfaces currently avail-

able for NAND flash memories and their impact on the overall system performances.

Then, the description of the aforementioned relevant management functions is provided

27

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

focusing on their essential role. Then an overview about the ways through which NAND

flash memory can be embedded in complex system and the role of the sophisticated

memory controller in the modern SSDs are pointed out.

2.6.1 Memory interface

Nowadays NAND Flash memories are pervading every type of electronic application.

The availability of cheap storage memory, in combination with high densities, makes

up the choice in favor of NAND Flash on board of applications traditionally linked to

other types of memories (such as EEPROM and NOR) or technologies (such as Hard Disk

Drives). But this is not enough when high performance applications are targeted. For

these reasons NAND flash memories are expected to be further improved in terms of

I/O bandwidth, as well. The I/O throughput is strictly dependent on the kind of storage

interface flash memories is integrated with.

Currently there are two types of NAND Flash interfaces. The asynchronous one is

similar to the regular SRAM interface, the other one is the synchronous DDR interface,

which offers much higher performances than the asynchronous interface but it requires

dedicated controller.

Generally, memory I/O bandwidth is determined by the memory access time, which

is split into the array access time and the transfer time. The former is the time necessary

to transfer the data from the NAND cells into the page buffers, while the latter is the

time required to move all the data in the page buffers out of the chip through the legacy

interface.

In Fig. 2.12, the flash memories access time is plotted, considering synchronous and

asynchronous interfaces and different page sizes. It is possible to notice that in 1KB page

devices the transfer time is in balance versus the array read time. This give the possi-

bility of interleaving read operations from two planes, hiding, de facto, the read array

time, since, during the transfer time, data are moved from the array to the page buffer. If

asynchronous interface is considered, in 4KB page device this balance is completely lost.

Therefore, the memory interface is an important design choice to improve performances

and make NAND flash memories a key component as storage in high-end applications.

To restore the balance between read array time and transfer time it is necessary to

increase the I/O throughput. On the right hand side of Fig. 2.12, it is shown the situation

of 4KB devices with a DDR interface operating at 66 MHz (DDR133): the desired balance

28

2.6. NAND-based systems

Figure 2.12: NAND memory interface: asynchronous VS synchronous [98]

is restored.

The DDR200 (200 MB/s) speed grade keeps the balance between the array and data

transfer times even with 8KB page size. The picture becomes evident in Fig. 2.13 where

the internal throughput capability (i.e., page size/internal access time) is plotted versus

the page size. It can be shown that the legacy interface throughput was in line with the

internal throughput of 1KB page NAND Flash devices.

SLC NAND with 4KB pages have an internal throughput aligned with DDR133 inter-

face. Moving to MLC 2 bit/cell with 8KB page, the throughput still remains aligned with

DDR133 because of the larger MLC internal access time. DDR400 interface roadmap is

aligned with the next generation having, page size greater than 8KB and greater access

time. This is in line with system interfaces roadmap evolving towards 300 MB/s rates.

For these reasons, it becomes evident that a bottleneck in the system performance

is hidden in the NAND interface because data transfer was limited to 40 MB/s by the

asynchronous interface. In the last years, thus, major vendors are pushing Double Data

Rate (DDR) interfaces to outperform actual data transfer limits. For these reasons, our

research work is focused just on synchronous NAND flash memories.

High speed NAND have seen the introduction of DDR interface in year 2008. The

challenge in the following years has been the standardization of the interface among the

vendors. Two solutions have been proposed as first generation of DDR NAND:

1. ONFI [119] organization has proposed the Source Synchronous Interface (SSI) which

29

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

Figure 2.13: Read throughput vs page size [98]

introduces a clock and data strobe w.r.t. the asynchronous interface;

2. Samsung has proposed the Toggle mode NAND where only data strobe has been

introduced compared to the asynchronous interface.

For the sake of simplicity, Fig. 2.14 shows the NAND pinout for SSI, only. The pins

description is listed below:

• CE#: it is the Chip Enable signal. This input signal is "1" when the device is in

stand-by mode, otherwise it is always "0";

• R/B#: it is the Ready/Busy signal. This output signal is used to indicate the target

status. When low, the target has an operation in progress;

• W/R#: it is the Write/Read direction pin;

• CLE: it is the Command Latch Enable. This input is used by the host to indicate

that the bus cycle is used to input the command;

• ALE: it is the Address Latch Enable. This input is used by the host to indicate that

the bus cycle is used to input the addresses;

• CLK: it is the Clock signal;

• WP#: it is the Write Protect. This input signal is used to disable Flash array program

and erase operations;

30

2.6. NAND-based systems

• DQ<7:0>: these input/output signals represent the data bus (i.e., 8-bit wide);

• DQS: it is an additional pin acting as the datastrobe, i.e. it indicates the data valid

window.

NAND
Device

CE#

R/B#

W/R#

CLE

ALE

CLK

WP#

DQ<7:0>

DQS

Figure 2.14: NAND Flash supporting synchronous interface

2.6.2 Flash translation layer

The flash translation layer (FTL) refers to the development of a hardware/software layer

able to emulate the behavior of a traditional block device such as a hard-disk, allowing

the OS to communicate with the flash using the same primitives exploited to communi-

cate with magnetic-disks. The FTL is in charge of "translating" the typical System Calls

(e.g., open, read, write) of the OS into the proper sequence of commands for the specific

flash-memory chip. The OS can then write the NAND memory on a page basis, without

worrying about the details of its physical implementation.

Each page of a flash is identified by both a logical and a physical address. Logical

addresses are provided to the user to identify a given data with a single address, regard-

less if the actual information is moved to different physical locations to optimize the use

of the device. The address translation mechanism, that maps logical addresses to the

corresponding physical addresses, must be efficient to generate a minor impact on the

performance of the memory. The address translation information must be stored in the

non-volatile memory to guarantee the integrity of the system. However, since frequent

updates are performed, a translation lookup table is usually stored in a (battery-backed)

RAM, while the flash memory stores the metadata to build this table. The size of the ta-

ble is a trade-off between the high cost of the RAM and the performance of the storage

31

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

system. Memories with a large page size require less RAM, but they inefficiently handle

small writes. In fact, since an entire page must be written into the flash with every flush,

larger pages cause more unmodified data to be written for every (small) change. Small

page sizes efficiently handles small writes, but the resulting RAM requirements can be

unaffordable. At the FTL, the translation table can be implemented at the level of either

pages or blocks thus allowing to trade-off between the size and the granularity of the

table [55].

However, traditional file systems do not take into account the specific peculiarities of

flash memories, and the emulation layer alone may be not enough to guarantee maxi-

mum performance. The alternative to the block-device emulation is to exploit the hard-

ware features of the flash device in the development of a native Flash File System (FFS)

(Fig. 2.15). For efficiency reasons, this approach is becoming the preferred solution

whenever embedded NAND flash memories are massively exploited [15, 135]. The lit-

erature is rich of strategies involving block-device emulation [33, 34, 73, 77, 90]. [55]

offers a comprehensive comparison of available native FFS.

APPS

Operating System

Flash File System

Driver

APPS

FTL

Driver

Operating System

Software Layer

NAND memory

Software Layer

NAND memory

Figure 2.15: Flash File System vs Flash Tranlsation Layer

32

2.6. NAND-based systems

2.6.3 Wear leveling

As previously introduced, flash memories wear out after a certain number of erasure

cycles (usually between 104 and 105 cycles). If the number of erasures of a block exceeds

this number, the block is marked as a bad block since it cannot be anymore considered

reliable for storing data. The overall life time of a flash memory depends on the number

of performed erasure cycles. Wear leveling techniques [32, 34, 41, 49, 125] are used to

distribute data evenly across the blocks of the entire flash memory, trying to level and

to minimize the number of erasure cycles of each block. The alternative is to consider

higher capacity flash-memory devices, taking care of the resulting drawbacks in terms of

weight and volume [30].

There are two main wear leveling strategies: dynamic and static wear leveling. The

dynamic wear leveling only involves those data blocks that are going to be written, while

the static wear leveling works on all data blocks, including those that are not involved

in a write operation. Active data blocks are, in general, wear-leveled dynamically, while

static blocks (i.e., blocks where data are written and remain unchanged for long periods

of time) are wear-leveled statically. Dynamic and static blocks are usually referred as hot

and cold data, respectively. In Multi Level Cell memories it is important to move cold

data to optimize the wear leveling. If cold data are not moved then the related pages are

seldom written and the wear is heavily skewed to other pages. Moreover, every read to a

page has the potential to disturb data on other pages in the same block. Thus continuous

read-only access to an area can cause corruption, and cold data should be periodically

rewritten [91].

Wear leveling techniques must be strongly coupled with garbage collection algorithms

at the FTL and at the FFS level. In fact, the two tasks have in general conflicting objec-

tives and a good trade-off must be found to guarantee both performance and endurance.

Interested readers may refer to [32] for a comparative analysis of the most widely used

wear leveling algorithms.

2.6.4 Garbage collection

Data stored in a page of a flash memory cannot be overwritten unless an erasure of the

full block is performed. To overcome this problem, when the content of a page must be

updated, the new data are usually saved in a new free page. The new page is marked

as valid while the old page is marked as invalid. The address translation table is then

33

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

updated to allow the user to access the new data with the same logical address. This

process introduces several challenges both at the FTL and at the FFS level.

At a certain point, the free space is going to run out. When the amount of free blocks

is less than a given threshold, invalidated pages must be erased in order to free some

space. The only way to erase a page is to erase the whole block it belongs to. However, a

block selected for erasure may contain both valid and invalid pages. As a consequence,

the valid pages of the block must be copied into other free pages. The old pages can

be then marked as invalid and the selected block can be erased and made available for

storage.

This cleaning activity is referred to as garbage collection. Garbage collection decreases

the flash memory performance and therefore represents a critical aspect of the design of

a native FFS. Moreover, as previously described, it may impact on the endurance of the

device. The key objective of an efficient garbage collection strategy is to reduce garbage

collection costs and evenly erase all the blocks.

Flexible cleaning algorithms [136], greedy policies, aging functions [41] or periodical

collection approaches [131] can be adopted to minimize the cleaning cost.

2.6.5 Bad block management

As discussed in the previous sections, when a block exceeds the maximum number of

erasure cycles, it is marked as a bad block. Bad blocks can be detected also in new devices

as a result of blocks identified as faulty during the end-of-production test.

Bad blocks must be detected and excluded from the active memory space. In general,

simple techniques to handle bad blocks are commonly implemented. An example is

provided by the Samsung’s XSR (Flash Driver) and its Bad Block Management scheme

[124]. The flash memory is initially split into a reserved and a user area. The reserved

blocks in the reserved area represent a Reserve Block Pool that can be used to replace bad

blocks. Samsung’s XSR basically remaps a bad block to one of the reserved blocks so that

the data contained in a bad block is not lost and the bad block is not longer used.

2.6.6 Error correcting codes

Fault tolerance mechanisms and in particular Error Correcting Code (ECC) are system-

atically applied to NAND flash devices to improve their level of reliability. ECCs are cost-

efficient and allow detecting or even correcting a certain number of errors.

34

2.6. NAND-based systems

ECCs have to be fast and efficient at the same time. Several ECC schema have been

proposed, based on linear codes (like Hamming codes [104]) or Reed-Solomon (RS) co-

des [126, 127]. Among the possible solutions, Bose-Chaudhuri-Hocquenhem (BCH) co-

des are linear codes widely adopted with flash memories [45, 53, 79, 102]. They are less

complex than other ECCs, providing also a higher code efficiency. Moreover, manufac-

turers’ and independent studies [52, 57, 137] have shown that flash memories tend to

manifest non-correlated bit errors. BCH are particularly efficient when errors are ran-

domly distributed, thus representing a suitable solution for flash memories.

The choice of the characteristics of the ECC is a trade-off between reliability require-

ments and code complexity, and strongly depends on the target application (i.e., con-

sumer electronics vs mission-critical applications) [27].

ECC can be implemented both at the software-level or resorting to hardware facilities.

Software implemented ECC allow to decouple the error correction mechanisms from the

specific hardware device. However, the price to pay for a software-based ECC solution is

a drastic performance reduction. For this reason, available file systems tend to delegate

the code computation tasks to a dedicate hardware limiting the amount of operations

performed in software, at the cost of additional resources (e.g., hardware, power con-

sumption, etc.) and reduced flexibility.

The interested reader may refer to Appendix B for more details about ECCs and BCH.

Furthermore, Chapter 5 addresses the design and the practical implementation of an

adaptable BCHs for NAND flash-memory.

2.6.7 How to embed NAND flash memories

In the previous sections, several technological aspects of NAND flash memories have

been presented, analyzing the strategies and main solutions currently applied by ven-

dors, from the circuit to the architectural level. The purpose of this section is to shortly

summarize, from a system-level perspective, how NAND flash memories can be inte-

grated in embedded systems.

NAND Flash is employed for code/data storage or data storage in a variety of portable

and mobile applications such as cellular phones, MP3 players, digital video camcorders

and personal navigation devices. NAND Flash, thus, may be embedded in applications in

several ways, ranging from fully managed to raw solutions. The former are all-in-one so-

lutions, in the sense that the flash memory is soldered together with a memory controller

35

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

in charge to manage the device wear-out hiding the system from all technological details

related to the memory (e.g., internal architecture, page size). The latter, on the contrary,

requires that un updated firmware into the system be able to opportunely manage the

embedded raw flash. The most common strategies are as follows:

• Raw NAND: NAND flash chips are soldered into the Printed Circuit Board (PCB) of

the device, letting the host managing wear leveling, garbage collection, FTL and so

on. For instance, MP3 players employ a dedicated Flash controller to manage the

raw NAND;

• NAND with on-chip controller: NAND flash devices are employed for both code

and data storage. Contrary to raw NAND, the host is in charge to just operate the

FTL. These devices (such as ONENAND from Samsung, Toshiba and Numonyx) are

quite sophisticated to be exploited as main memories;

• Multi-chip Package (MCP): NAND memory can be combined with faster volatile

memories such as DRAM or NOR flash in order to be used both for code and data

storage. MCPs are mainly used in mobile devices;

• Managed NAND solutions: a huge number of NAND flash memories are available,

each one with different physical characteristics even considering new process tech-

nology (e.g., number of pages, block size, reliability). Therefore, the host software

need to be continually updated to efficiently exploit the memory. It is evident that

in many cases this approach is not feasible. On the contrary, a more efficient ap-

proach requires to combine, in a single chip, a NAND flash memory and a power-

ful memory controller. Memory controller is in charge to handle all wear leveling

routines, ECC and FTL, allowing the host to perform only read/write operations to

the device. In Fig. 2.16 a comparison between the raw and managed solutions is

shown.

Since the memory controller is becoming nowadays ever more powerful, the man-

aged NAND solutions are basically preferred in many contexts. Therefore, it is worth here

an insightful description of the legacy memory controller architecture actually used by

the main companies and then introducing some novel features the memory controllers

will experience in the next future to meet the demanding requirements in terms of re-

configurability that applications will require.

36

2.6. NAND-based systems

APPS

Block
Management

Host

Memory Controller

Operating System

FTL

Driver

Raw NAND

Memory Sub-system

Block
Management

FTL

APPS

Host

Operating System

Driver

Managed NAND

Figure 2.16: Raw NAND vs Managed NAND

2.6.8 NAND flash controller

The flash memory controller is a key component for determining the characteristic and

the performance of a whole NVM sub-system.

The typical architecture of a state-of-the-art NAND flash controller in Fig. 2.17 . It is

taken from the embedded computing domain [6]. The controller features an interface

to the MultiProcessor System-on-Chip (MPSoC) via a state-of-the-art communication

protocol, like for instance the AMBA AHB. As the NAND flash memory device is typically

slower than the data bus, all data transfers are processed through an internal or external

buffer. Typically, the size of the buffer is equal to the size of one or few NAND flash pages

(e.g., 1, 2, 4 or 8 KB). Another typical feature consists of booting on code located in the

NAND flash by automatically fetching the code. The boot configuration is, in this case,

defined by static input pins.

The capability for error detection and correction is nowadays a must for NVM con-

trollers. BCH, Reed-Solomon or Hamming codes are usually adopted. Controller providers

typically deliver a specific error correcting code as a synthesis time parameter. The cus-

tomer can then configure the code depending on the application requirements to better

37

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

trade-off between performance and area.

Controllers usually provide a limited set of boot-time parameters (e.g., enable/dis-

able ECC) that can be configured through a lower-performance configuration bus driven

by the MPSoC. An AMBA APB port is a typical example thereof. Through the same port,

the MPSoC can also inquiry the internal state of the controller.

Finally, the NAND flash interface is Open NAND Flash Interface (ONFI) [9] compliant.

It features a degree of synthesis-time parametrization in terms of address bytes, data

width, chip select signals and page transfer size.

ONFI%
Interface%

to#
NAND#
Flash#

Bus%
Interface%

Boot%Control%
Interface%

Configura5on%
Interface%

DMA%
Interface% SRAM%Buffer%

Controller%
Core%

ECC%
MPSoC#
Bus#

Config.#
Bus#

Boot#
Config.#

Figure 2.17: State of the art memory controller architecture for a NAND flash device

Future NAND flash controllers will feature both incremental as well as revolutionary

characteristics. For instance, the MPSoC interface will change as an effect of the evolu-

tion of state-of-the-art shared and multi-layer busses into on-chip interconnection net-

works (NoC). In this case, the controller will be connected to the network via standard

socket interfaces like the Advanced eXtensible Interface (AXI) or the Open Core Proto-

col (OCP) (Fig. 2.18). Specific packets heading to memory mapped configuration reg-

isters will take care of programming controller features. To the limit, packets carrying

addresses, data and commands for the flash memory device will be able to set also con-

figuration parameters on a memory transaction basis. At the same time, NVM controllers

38

2.6. NAND-based systems

are undergoing more radical modifications in an attempt to provide an enhanced degree

of adaptation to the workload under execution or of self-adaptation to current operating

conditions:

• Fixing critical design decisions at design time may lead to embedded processors

that can hardly react to an often non-predictive behavior of today’s complex appli-

cations. This does not only result in reduced efficiency. It also leads to unsatisfac-

tory behavior when it comes to design criteria like performance and power. Mem-

ory transactions are pivotal for the performance of the whole embedded system,

and NVM ones also for its reliability. Therefore, run-time adaptive computing (like

in [66]) will have to be complemented by the availability of differentiated mem-

ory access modes with a similar degree of run-time adaptivity. As a consequence,

users should be able to configure the memory access mode at run-time to meet the

specific requirements of the data set they are going to process.

• Partial reconfiguration of the controller could also be achieved in a self-adaptive

way. It is in fact possible to envision an integrated reliability manager collecting

and elaborating results of a test unit and feedback from the ECC sub-system, to set

the proper correction capability to pages. In-situ adaptation to actual operating

conditions is another clear trend for future MPSoC design [93].

The resulting memory controller architecture is conceptually shown in Fig. 2.18.

In this work thesis, we prove the unprecedented trade-offs and operating points stem-

ming from the concurrent configuration of an ECC sub-system able to provide programmable

correction capability and a flash physical management sub-system providing different

programming algorithms for the target NAND flash device. Overall, the tuning knobs of

the controller will enable to affect directly parameters such as UBER, Read Throughput

(RT) and Write Throughput (WT), and indirectly power. This results either into differen-

tiated access modes exposed to the user or into a set of self-adaptive operating points.

The flexibility to tune operating characteristics of the controller in a multidimensional

optimization space is out-of-reach of current NVM controllers, where a limited set of

parameters can be fixed at synthesis time or, in the best case, at boot-time[5].

39

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

ONFI%
Interface%

to#
NAND#
Flash#

Bus%
Interface%

Boot%Control%
Interface%

Configura5on%
Interface%

DMA%
Interface% SRAM%Buffer%

Controller%
Core%

ECC%
MPSoC#
Bus#

Config.#
Bus#

Boot#
Config.#

Figure 2.18: Future memory controller architecture with enhanced reconfiguration capabilities

2.6.9 Solid state drive

In the last decade, the outstanding results in terms of performance and power consump-

tion have significantly legitimate SSD as the best storage solution. Moreover, SSDs price

trend is decreasing, enabling even the market sector related to notebooks to move toward

SDD-based drivers.

SSDs are able to outperform older HD in terms of reliability and latency, as they no

contains mechanical parts and are basically composed of few major components: NAND

flash memories, memory controller, host interface, DRAM, PCB and passives. A SSD

block diagram is shown in the Fig. 2.19.

In order to maximize the I/O bandwidth, SSD architecture is designed to access more

flash memories concurrently. The concurrency is achieved by resorting to different chan-

nels, each one addressing a different set of flash memories. Of course, the number of

channels employed and how many flash memories have to be linked to the channel itself

are strategic design decisions that can drastically impact the overall SSD performances.

Interested readers may refer to [100] for a comprehensive discussion about all the main

topics related to SSD.

40

2.6. NAND-based systems

SUMMARY

This chapter introduced in a bottom-up approach the main concepts re-

lated to the NAND flash memories and the common applications in which

they are employed. First of all, the NAND memory cell has been presented.

Then the NAND memory architecture has been introduced focusing on both

physical and logical layers. NAND flash technology experiences good per-

formances in terms of access time and power consumption making it the

primary solution to embedded systems. However, flash memories rapidly

wear-out, so sophisticated strategies need to be employed to prolong de-

vice life time. These strategies can be implemented either at software or at

hardware level, depending on the target application. In this scenario a key

component to fully exploit the potentiality of NAND flash memory is the

memory controller. It is in charge to handle the wear-out of the memory,

hiding, at the same time, to the upper layers of the system (e.g., OS, ap-

plications) details related to NAND flash memory access. Such an approach

allows to simplify the interaction between the system and the flash memory,

as applications have just to write and read data. The memory controller is

commonly used in modern NAND-based SSDs, which are persistent storage

solutions replacing older HDs.

41

2. OVERVIEW ON NAND FLASH MEMORIES: FROM TECHNOLOGY TO SYSTEM LEVEL

Figure 2.19: SSD architecture [100]

42

C
H

A
P

T
E

R

3
NAND FLASH MEMORY RELIABILITY ISSUES

Contents of this chapter

3.1 Cycling induced degradation

3.2 Charge losses and fluctuations: transient faults

3.3 Permanent faults

NAND flash memories are currently expected to be more and more power-

ful in terms of performances, providing at the same time improved storage

capabilities. These motivations push designers to look for new solutions in

both architectural and device level. Nevertheless, the main concern along the innovation

steep path is the reliability, since the delivered product must ensure to work properly not

only in its early stage but even its overall life cycle.

In other words, NAND flash memories are expected to experience an improved en-

durance, together with the capability to retain unaltered stored data for years.

In other words, the capability to keep unaltered stored information for years together

with the capability of supporting a minimum number of programming operations must

be assured.

The reliability problem in Flash memory ICs poses more difficult and interesting chal-

lenges than do most of other IC devices.

In Flash memory IC the storage functionality is achieved employing the floating gate

43

3. NAND FLASH MEMORY RELIABILITY ISSUES

technology (see chapter 2) this makes the system very different from common analog or

digital ICs.

The main characteristic that distinguishes common ICs and Flash memory is the

need of high electric fields used to program and erase the cells.

High electric fields are needed to charge and discharge the floating gate and are di-

rectly applied to the thin oxide that surrounds the FG. Therefore, charge losses and fluc-

tuations problems are unavoidable in the flash memory technology. For the sake of clar-

ity, the effects related to the the cycling induced degradation are shortly discussed in

section 3.1.

As a consequence of the floating gate technology, we have:

• Strict relation between the reliability of a cell and the number of program/erase

cycles that have been performed on it (referred to as "aging" of the cell);

• Charge losses and pseudorandom fluctuation effects due to oxide degradation and

holes/electrons trapping/detrapping phenomena;

• Specific Disturbances that can be activated mainly during program operation in

the cell matrix, even if erase and read operations have to be considered, as well;

• Cell to cell Interferences.

In the following, we will distinguish between transient faults 3.2 and permanent faults

3.3. Transient faults results in not well defined excitation mechanism and bring to ran-

dom errors. Many of them are mainly related to charge losses and fluctuations phenom-

ena. In Permanent faults the excitation mechanism is well defined and the errors, named

hard errors, are generated whenever proper excitation occur. These faults are typically re-

lated to physical defects of the structure and are usually modeled as disturbances, circuit

level faults, and interferences.

It will also pointed out as these effects increase dramatically their impact when Multi

Level Cells (MLC) are considered.

Section 3.1 proposes a detailed description of the mechanism influencing the aging

of the cell. Section3.2 is a complete analysis of the possible transient faults of NAND

flash-memory. Finally, Section 3.3 addresses the modeling of permanent faults.

44

3.1. Cycling induced degradation

3.1 Cycling induced degradation

As it will be widely discussed in this chapter, the "aging" strongly impacts several reli-

ability issues affecting NAND Flash memory technology. Of course, the aging is strictly

related to the number of performed program and erase operations during the device life

cycle.

Programming a cell consists in injecting some electrons in the floating gate. The pro-

gram and erase operations in NAND Flash memories are usually performed through the

Fowler-Nordheim (FN) tunneling mechanism.

In general, when using the FN tunneling effect, the charges are moved inward and

outward the FG applying an extremely high voltage between the floating gate and the

substrate (positive or negative).

Both the generated relatively high tunneling current and the related high electric field

are causes of oxide degradation. Trapping of electrons is the main factor that causes

degradation of the oxide, but other specific and particular phenomenons can take place

as well. For instance, hot carrier generation can occur both in the oxide and in the anode

from the impact ionization that occurs when energetic electrons enter the anode.

This results in a limited number of cycles per cell, beyond which the reliability of the

cell is not guaranteed by manufacturers.

The main effect of the cycling induced degradation is to reduce the gap between the

program and erase states thresholds window, making the low and high threshold states

indistinguishable. A general way to improve the reliability of both program and erase

operations is to apply program-verify and erase-verify algorithms (i.e., ISPP), respectively

[23] [98]. This basically means that the operation is repeated until it succeeds. If, after

a program or erase pulse, correct margins are not achieved, additional program or erase

pulses are applied until a sufficient margin is obtained.

As a consequence, the degradation of the cell is also reflected in the increased number

of pulses needed to perform the operations (erase/program) [23].

These defects can contribute to the degradation of the trans-conductance of the cell

and to some other defects related to data retention [23].

45

3. NAND FLASH MEMORY RELIABILITY ISSUES

3.2 Charge Losses and Fluctuations: Transient Faults

In this section we briefly present the major causes of non-deterministic errors in Flash

memories. These are due to Charge Losses and fluctuations, and can be all modeled as

Transient Faults.

The discussed transient faults are:

• erratic erase 3.2.1;

• charge trapping and detrapping 3.2.2;

• anomalous Stress Induced Leakage Current 3.2.3;

• random telegraph noise 3.2.4;

• few-electrons issue 3.2.5.

All these transient faults are typically tackled by error correcting techniques. In the

following each phenomenon is briefly explained.

3.2.1 Erratic erase

With the aging of the cells (cycling) and in particular with tunneling, some holes can be

trapped in the oxide and, in some unlucky cases, a small number of holes can be trapped

in optimal position to enhance tunneling current.

This unwanted and rare situation brings the flash cell in a particular condition in

which a phenomenon named Erratic erase can occur. The erase procedure is compli-

cated by several concerns. First, erasing (removal of electrons) shifts the threshold volt-

age negatively from a positive value toward a value nearer to zero. If continued too far,

the threshold voltage can become negative. This is referred to as over-erase. An erratic

cell, thus, oscillates between the state of over-erased and the normal erased state, in an

unstable way. Therefore, the threshold of the cell fluctuates randomly. The position of

the trapped holes in the oxide is fundamental to activate this particular and non de-

terministic phenomenon and this makes it very rare. The cells that are affected by this

problem are typically very few, about one per page.

A fundamental aspect of this problem is that an erratic cell typically keeps on being

erratic also with cycling, thus even if you program and erase it successfully many times.

46

3.2. Charge Losses and Fluctuations: Transient Faults

Unfortunately, the holes that are involved in this mechanisms are not those generated

by band to band tunneling and thus they cannot be avoided using uniform channel erase

techniques. These holes are likely those generated either by the high electric field in the

oxide or by the impact ionization of the tunneling electrons in the oxide [23].

3.2.2 Charge trapping and detrapping

The charge trapping related phenomenons is quite critical [88] [121] [96]. The motiva-

tions are based on the continuous memory scaling down and on the need to apply high

voltages on a very thin oxide to perform program and erase operations. The application

of high fields inevitably causes defect generation and charge trapping, with significant

reliability impact.

The trapped charge accumulates cycle after cycle, and eventually results in a shift

of the Vth levels for the programmed and erased states. In general, both program and

erase processes become slower with cycling, as a result of negative trapped charges in

the tunnel oxide that decrease the effective field for tunneling across the floating gate.

NAND cells most typically display an increased Vth for both programmed and erased

states due to interface traps and bulk negative charge.

This degradation is generally compensated by careful program/verify algorithms, where

the Vth is increased step by step, each step being verified by a read pulse and compared

with the target value.

The obtained Vth can, in reality, depend also on the trapped charges in the oxide and

not only by the charges that are present in the floating gate.

In the programmed state (high Vth), the negative charge trapped in the dielectric tend

to tunnel out, causing a Vth decrease with time.

The detrapped charge depends logarithmically on time, as a result of the discharging

current having a 1/t dependence due to the dispersion of trapping depths in the dielec-

tric. Detrapping depends on temperature according to the Arrhenius law:

tdet = t0e(E A/kT) (3.1)

where tdet is the time needed for detrapping the same fraction of charge, t0 a constant,

E A the activation energy, k the Boltzmann constant and T the bake temperature[69].

Since detrapping is the result of many individual trapped carriers, detrapping gen-

erally occurs for all cells in the array. Due to the generalized impact of detrapping on

47

3. NAND FLASH MEMORY RELIABILITY ISSUES

the array, ECCs are not effective in its correction. Rather, detrapping effects can be min-

imized by a careful wear leveling, taking advantage of the large available size of NAND

arrays to distribute cycling-induced damage over a large number of cells [69].

3.2.3 Anomalous SILC

The Leakage of charges from the floating gate to either the bulk or the gate is an anoma-

lous phenomenon that can take place in particular conditions, only [133]. The extensive

program/erase cycling generally causes generation of oxide defects and traps, which can

then act as stepping stones for carrier tunneling: for instance, electrons can tunnel from

the inverted substrate to the floating gate in the case of positive gate stress [70]. This is

generally referred to as Trap-assisted tunneling and can occur only when two or more

defects sitting very close one to the other in the tunnel dielectric cooperate in the trap-

assisted tunneling mechanism where two cooperating traps assist electrons tunneling

from the cathode to the anode [69] [72] [83].

Typically only few cells in the array are in this particular and rare situation and the

activation mechanism can induce a gate stress or even nothing, depending on the ox-

ide defects. Anyway, since anomalous SILC generally affects a small minority of cells in

the array, it can be corrected by an ECC. Thus, a careful evaluation of SILC effects vs

program/erase cycles is mandatory for an accurate selection of the most suitable type of

ECC [69] [71].

The anomalous SILC problem can both charge (gate stress) and discharge (steady

condition) the FG, depending on the positions and the number of the oxide defects. The

oxide traps and defects that generate this anomalous SILC get worsen during the life time

of the device.

3.2.4 Random telegraph noise

Traps in the tunnel oxide not only impact reliability by the charging and discharging

phenomenons, but can also cause drain current fluctuations which affect the readout

operation. Fig. 3.1 shows the measured drain current in a Flash memory under read

conditions.

The on-state current is affected by Random telegraph noise (RTN) [17] [78] [117], with

statistically-distributed times τc and τe for the high and low current states. These times

can be explained as the time for capturing a channel electron in an oxide trap and for re-

48

3.2. Charge Losses and Fluctuations: Transient Faults

Figure 3.1: Drain current fluctuations [69]

leasing it back to the channel, respectively, as shown in Fig. 3.1. The local modification of

the vertical field modulates the channel charge, thus causing a change in both the mea-

sured current and Vth . The unstable Vth is detrimental for the program-verify algorithm,

thus for accurate placing of the programmed Vth . In fact, one cell Vth can unpredictably

jump from the high level, during the verification, to a lower level, or viceversa. This can

cause the cell to exit the target Vth window just after the verification, resulting in a fake

success of the verify operation. Vth fluctuation is particularly severe for Flash memo-

ries, as compared to MOSFETs for logic applications, because of the relatively thick oxide

stack[69].

3.2.5 Few-electrons issue

Few electron phenomenon [114] [115] are becoming an increasing reliability concern.

Charge discretization emphasizes the effects related to the random nature of carrier tun-

neling. For instance, data retention time cannot be purposely engineered in a Flash

memory with as few as 10 electrons in the programmed state, because of the extreme

49

3. NAND FLASH MEMORY RELIABILITY ISSUES

broadening of the Poisson distribution of tunneling times, resulting in a significant prob-

ability for fast data loss in a high-density array. Even in the most optimistic perspective,

these trap-unrelated reliability features will provide hard obstacles against Flash scaling

beyond the 20 nm node [69].

3.3 Permanent faults

In this section we shortly present the deterministic error causes in Flash memories that

are modeled as permanent faults. They are typically due to disturbances or physical de-

fects.

The discussed permanent faults are:

• memory disturbances 3.3.1;

• circuit level faults 3.3.2.

3.3.1 Memory disturbances

Disturbances are faulty behaviors resulting from the FG technology [68]. As a conse-

quence, they do belong to flash memories, but not to the other memories. The most

significant ones include [68]:

• program disturbance faults;

• Read Disturbance (RD) faults;

• Over-Erase Disturbance (OED);

• Over-Program Disturbance (OPD) faults.

All these disturbances are able to modify the original value stored inside a cell.

3.3.1.1 Program disturbances

The state of an erased cell is logically "1". Programming a single NAND flash-memory

cell consists in logically writing a "0". Erasing a cell means logically writing a "1" again.

Unlike RAMs, which are random access memories, NAND flash memories are referred

as sequential access memory. This means that, in order to access (to read and write) a

cell, are need to "pass" through the others, stressing them.

50

3.3. Permanent faults

Figure 3.2: NAND Flash memories Program Disturbances

Fig. 3.2 shows how programming a single cell C11.

When a single NAND flash memory cell is being programmed (i.e., 1 → 0 transition),

all the cells in the row (i.e., Word-Line or WL) are subject to a high control gate voltage

and all the cells in the same column (i.e., Bit-Line or BL) are biased to be in the pass-

transistor state. This situation can produce unintentional transitions in any of the cells

in the Word-Line (WL) and/or in the Bit-Line (BL) of the one being programmed.

WL1 is subject to high-voltage (e.g., 20 V). All the cells of BL1 become pass-transistors.

In this case, program disturbance faults can occur in: (i) a cell sharing the common WL1;

(ii) a cell sharing the common BL1. Fig. 3.2 refers to them as Selected Page and Selected

String, respectively. Program disturbances can occur only within the block the page un-

der program belongs to [48].

According to its initial content, the faulty cell can be programmed or erased. Litera-

ture commonly refers to the transition 1 → 0 (i.e., unintentional programming) as:

• Word-line Program Disturbance (WPD) [43, 76, 109, 110, 140] or DC-Programming

(DC-P) [111]: the selected cell under program causes an unselected unprogram-

med cell on the same WL to be programmed; in Fig. 3.2, each unprogrammed cell

of the Selected Page can be unintentionally programmed;

• Bit-line Program Disturbance (BPD) [43, 76, 109, 110, 140]: the selected cell under

51

3. NAND FLASH MEMORY RELIABILITY ISSUES

program causes an unselected unprogrammed cell on the same BL to be program-

med; in Fig. 3.2, each unprogrammed cell of the Selected String can be uninten-

tionally programmed;

Literature commonly refers to the transition 0 → 1 (i.e., unintentional erasure) as:

• Word-line Erase Disturbance (WED) [43, 76, 109, 110, 140] or DC-Erase (DC-E) [111]:

the selected cell under program causes an unselected programmed cell on the same

WL to be erased; in Fig. 3.2, each unprogrammed cell of the Selected Page can be

unintentionally erased;

• Bit-line Erase Disturbance (BED) [43, 76, 109, 110, 140] or Drain Disturbance (DD)

[111]: the selected cell under program causes an unselected unprogrammed cell on

the same BL to be erased; in Fig. 3.2, each unprogrammed cell of the Selected String

can be unintentionally erased;

Fig. 3.3 provides a more generic example of program disturbances for NAND flash.

Figure 3.3: Program Disturbances in NAND Flash

Fig. 3.3 shows the programming of two cells (i.e., Programmed Cells) which may dis-

turb the other cells on the same WL or BL of the programmed ones (i.e., Stressed Cells).

However, as the name suggests, this phenomenon is only a disturbance. As such, it

does not damage cells but simply interferes with their content [48].

52

3.3. Permanent faults

Finally, some NAND devices are allowing the so called Partial Page Programming

(PPP), i.e., the ability of programming part of a page, only. This ability enables higher

flexibility, but increases the chance of program disturbances.

Several mechanisms are typically employed to mitigate effects caused by program

disturbances. These mechanisms are shortly described in the next paragraph.

Reducing program disturbance In order to leverage the program disturbance phenome-

non, it is advisable to:

• program in a sequential way the pages belonging to a same block (e.g., from 0 to 63

for SLC, from 0 to 127 of MLC);

• limit PPP as much as possible;

• program in "one-shot" MLC-based pages;

• adopt ECC strategies to recover from disturbances; e.g., 512B-ECC11 per SLC page

or at least 512B-ECC16 per MLC page;

3.3.1.2 Read disturbances

Being a sequential access memory, NAND flash are stressing (many) unselected pages

for reading just one page. Fig. 3.4 shows the read operation of a NAND flash page.

The selected page is biased with a defined control gate voltage (e.g., 0 V), whereas

all the other unselected pages are turned into pass-transistors with a higher control gate

voltage (e.g., 5 V). A sufficient number of read operations2 performed on the same page

is able to produce unintentional transitions in the page being read. Furthermore, the

other unselected pages may be disturbed as well.

If after consecutive reads the selected page may changes its state, then a Read Dis-

turbance (RD) occurred. Read disturbances can occur: (i) only within the block to which

the page being read belongs to; (ii) only in the unselected pages [48].

The RDs for NAND flash memories are well known in literature [76, 112, 140] as:

• RDA(E): the selected programmed cell is read and its content is erased;

• RDA(P): the selected erased cell is read and is programmed;

1it means 1-bit correctable (i.e., 1 error tolerated) each 512Bytes
2this figure is strictly linked with technology

53

3. NAND FLASH MEMORY RELIABILITY ISSUES

Figure 3.4: Read Disturbance in NAND Flash

• RDU(E): the selected cell is read and another unselected programmed cell is era-

sed;

• RDU(P): the selected cell is read and another unselected erased cell is program-

med;

However, as the name suggests, this phenomenon is only a disturbance. As such, it

does not damage cells but simply interferes with their content [48].

Reducing read disturbance To leverage the read disturbance phenomenon, it is advisable

to [48]:

• adopt a RDs counter for each block;

• as a "rule of thumb", limit to 106 (SLC) and 105(MLC) the maximum #reads of each

block;

• erasing a block "reset" its RD count; when either the ECC threshold or the "rule of

thumb" is exceeded, move valid data to a free block and erase the old one;

• adopt ECC strategies to recover from disturbances; e.g., 512B-ECC13 per SLC page

or at least 512B-ECC16 per MLC page;

3it means 1-bit correctable (i.e., 1 error tolerated) each 512Bytes

54

3.3. Permanent faults

3.3.1.3 Over-Erase Disturbance (OED)

When a flash memory block is erased, all the electrons trapped in the FGs of the cells of

a block are simultaneously removed. However, it is important to remark that:

"...not all the cells have equal yield or identical physical conditions..."[48]

Therefore, there may be some cells that are already erased before (i.e., "faster" than)

the others. These cells will have a net positive charge in the FG, resulting in a very low

threshold [68]. This phenomenon is referred as Over-Erase Disturbance (OED). It is dif-

ficult to program cells affected by OED, because they need more program cycles than

usual. The result is that automatic Program&Verify operations are slowed-down.

3.3.1.4 Over-Program Disturbance (OPD)

At the opposite, when a page is programmed, there may be some cells that are program-

med before (i.e., "faster" than) the others. These cells will have excessive negative charge

in the FG, resulting in a very high threshold [68]. This phenomenon is referred as Over-

Program Disturbance (OPD). Erasing cells affected by OPD, requires more erase cycles

than usual.

Let us point out another important aspect. A cell affected by OPD can prevent the

correct reading of other cells. As an example, let us consider Fig. 3.4 and assume that

there is an over-programmed cell (red ones in Fig. 3.4) on a particular BL. Note that

all the cells on the same BL are connected in series and that the over-programmed cell

causes an open defect on the bit-line (i.e., absence of current detected). Therefore, the

result of each read operation on a cell on the same BL will produce always a logic zero

even if the expected value is a logical one.

3.3.2 Circuit level faults

In this subsection Flash memory faults (physical defects) that can be modeled at the

circuit level as resistors and capacitors are presented. There are three main contributions

to all the possible defects of NAND flash memory [67, 74, 108]:

• intra-cell faults;

• inter-cells faults;

55

3. NAND FLASH MEMORY RELIABILITY ISSUES

• cell to cell interferences.

3.3.2.1 Intra-cell faults

Fig. 3.5 shows the shorts within a Floating Gate transistor cell, i.e., Control Gate (CG),

Floating Gate (FG) , Drain (D), Source (S) and Bulk (B). In particular, the possible shorts

are between CG-FG, FG-D, FG-S, FG-B, CG-D, CG-S and D-S.

Figure 3.5: NAND Flash memory Intra-cell Faults

It can be shown that all the bridging faults of Fig. 3.5 are equivalent to a Stuck-At Fault

behavior. Therefore, they are reported in Table 3.2 as SAF.

3.3.2.2 Inter-cells faults

Fig. 3.6 shows the possible faults between different cells of a NAND flash memory.

Resistive shorts between adjacent cells in the same column/row Fig. 3.6.(a) shows the sho-

rts between adjacent cells in the same column. Also the Select Gate (SG) is considered.

In particular, the following shorts can occur FG-FG, FG-SG1, FG-SG2, CG-CG, CG-SG1,

CG-SG2.

Fig. 3.6.(b) shows the shorts between adjacent cells in a same row. In particular, there

can be shorts between FG-FG, D-D, S-S and BL-BL [67].

We will refer the aforementioned shorts faults of Fig. 3.6 (a) and Fig. 3.6 (b) as Cou-

pling Fault between Adjacent Cells (CFAC). In Table 3.2 the CFAC are split in CFACr ow

and CFACcol .

Resistive shorts in the selected transistors Fig. 3.6 (c) shows the resistive short faults in a

single cell. The following shorts can occur CG-FG, D-FG, S-FG, CG-FG, D-CG, D-S. It can

56

3.3. Permanent faults

Figure 3.6: NAND Flash memory Inter-cells Faults

be shown that the faults of Fig. 3.6.(c) are equivalent to a Stuck-At Fault (SAF) behavior.

Therefore, they are reported in Table 3.2 as SAF.

Open faults Fig. 3.6.(d) shows the open faults. They are shorts between SG1-D, SG1-S,

SG2-D, SG2-CG. It can be shown that the faults of Fig. 3.6.(d) are equivalent to a Stuck-At

Fault (SAF) behavior. Therefore, they are reported in Table 3.2 as SAF.

Bit-Line coupling faults The parasitic capacitances connecting the BLs can produce er-

rors; Fig. 3.6.(e) shows how two hypothetical parasitic capacitors connecting BL1 with

BL2 and BL2 with BL3 could lead to possible errors when reading cells belonging to the

centering column BL2. Table 3.2 refers to this phenomenon as BL Coupling (BC) among

three adjacent BLs.

3.3.2.3 Cell to cell interferences

In this section we present a particular type of cell to cell interference that occurs mainly

in high density memory devices, that result in permanent faults. This kind of coupling

effects are strictly related to the physical distance between adjacent cells.

Coupling effects are considered critical in MLC flash devices because they directly act

on cell’s thresholds, and since the threshold margins in MLC flash memory are reduced,

57

3. NAND FLASH MEMORY RELIABILITY ISSUES

this can easily lead to a cell’s state modification.

As cell transistor sizes are scaled down below 50 nm, a selected cell transistor gets

nearer to neighboring cell transistors, so that they influence each other directly and indi-

rectly. The indirect effect is due to parasitic capacitance-coupling effect, while the direct

effect indicates the intrinsic Vth shift caused by a neighboring cell transistor.

In the following, we briefly describe the two main types of cell to cell interferences in

flash memories.

Capacitive coupling The Capacitive Coupling (CC) considers the parasitic capacitors con-

nected to the floating gate of cell. These capacitors connect the floating gate of a cell

with:

1. the floating gates of the adjacent cells in both X and Y directions;

2. the control gates of the adjacent cells in both X and Y directions. Parasitic capaci-

tors on the diagonal are neglected. This brings to a total of eight parasitic capacitors

connected to the floating gate of cell.

Therefore, the floating-gate voltage is determined not only by the corresponding control-

gate voltage, but also by the voltages of the surrounding floating gates and control gates.

Programming a cell affects the floating gate voltages, and thus the thresholds, of all

the adjacent cells. The entity of the threshold shift is typically not sufficient to affect

SLC technology, but it becomes a serious issue in MLC, where the different threshold

distribution widens and the reliability of the memory is compromised [75].

The CC faults of [74] are functionally identical to CFACrow.

Direct field effects As the cell size reduces to below 50 nm, the electric field of the adja-

cent cell transistor directly influences the shallow-trench isolation corner of a selected

cell transistor, provoking a significant cell Vth shift. While conventional parasitic

capacitance-coupling effect alters only the floating gate voltage, the Direct Coupling or

Direct field effects (DC) intrinsically changes the cell Vth and provokes an intense Vth

shift, particularly in word-line direction.

It is important to notice that this voltage shift is not still enough to produce an error

in a SLC flash device.

In the sub-50 nm regime, the distance between the channel edge of a cell transistor

and the floating gate of a neighboring cell transistor is so close that the floating gate

58

3.3. Permanent faults

voltage of the neighboring cell transistor directly influences the channel edge, changing

the electric field distribution on the channel edge.

Then, Vth shift is produced by the direct field effect of the neighboring cell transistor.

Since about 70% of the cell current flows on the channel edge, the Vth of the cell tran-

sistor is determined mostly by the condition of electric field crowding and by the doping

concentration of the channel edge. Therefore, the cell transistor suffers an intense Vth

shift, particularly in the word line direction, where the floating gate faces the whole sur-

face of the channel edge.

The DC faults of [108] are functionally identical to CFACcol.

3.3.3 A comprehensive view about persistent faults

Table 3.1 and 3.2 sum up a comprehensive set of fault models for NAND flash memory

disturbances and for NAND flash circuit level faults, respectively. In particular, activa-

tion mechanisms (Faults excitations) and the resulting errors for both memory distur-

bances and circuit level faults are shown. For sake of generalization, we here not perform

any simplification or reduction based on specific technology information. Therefore, the

presented fault models are technology independent.

Disturbance
Initial state of

faulty cell
Fault Excitation

Resulting
Error

WPD Cix=’1’ Program any Cij with j 6= x Cix=’0’

WED Cix=’0’ Program any Cij with j 6= x Cix=’1’

BPD Cxj=’0’ Program any Cij with i 6= x Cxj=’1’

BED Cxj=’1’ Program any Cij with i 6= x Cxj=’0’

RDA(P) Cij=’1’ Read Cij N times Cij=’0’

RDA(E) Cij=’0’ Read Cij N times Cij=’1’

RDU(P) Cxj=’1’ Read Cij with i 6= x Cxj=’0’

RDU(E) Cxj=’1’ Read Cij with i 6= x Cxj=’1’

OED Cij=’1’ Program Cij Cij=’1’

OEP Cxj=’0’ Erase any Cij with i 6= x Cij=’0’

Table 3.1: NAND Flash Memory Disturbances

Table 3.2 sums up the NAND flash circuit level faults.

59

3. NAND FLASH MEMORY RELIABILITY ISSUES

Fault
Initial state of faulty

cell
Fault Excitation Resulting Error

SAF0 Cij=’0’ Erase Cij Cij=’0’

SAF1 Cij=’1’ Program Cij Cij=’1’

CFACrow Cij=’1’, Ci+1,j=’1’ Program Cij
Cij=’1’, Ci+1,j=’1’ or

Cij=’0’, Ci+1,j=’0’

CFACcol Cij=’1’, Ci,j+1=’1’ Program Cij
Cij=’1’, Ci,j+1=’1’ or

Cij=’0’, Ci,j+1=’0’

BC
Cij=’1’, Ci,j+1=’1’

Ci,j+2=’1’
Program Ci,j+1 Ci,j+1=’1’

Table 3.2: NAND Flash Memories Circuit Level Faults

SUMMARY

This chapter introduced the main concepts related to reliability issues of the

NAND flash memory.

Flash-memory relies on the Floating Gate (FG) technology. However, FG is

intrinsically not highly reliable and, combined with the rapid technology

scaling down, it may lead to problems in terms of data retention and en-

durance.

Firstly, we targeted transient faults. The analyzed faulty behaviors are pe-

culiar of flash-memories. They do not damage the cells but simply inter-

fere with their content. Each operation (i.e., read, program/write and erase)

implies a related possible disturbances (i.e., Read Disturbance, Program

Disturbance, Over-Program Disturbance and Over-Erase Disturbance). To

complete this approach, we modeled the NAND flash in terms of resistor

and capacitors. After this step, we were able to set up a comprehensive fault

model which is technology independent.

60

C
H

A
P

T
E

R

4
ADAPTABLE FLASH PHYSICAL MANAGEMENT

SUB-SYSTEM (PHYSICAL-LEVEL ADAPTIVITY)

Contents of this chapter

4.1 The incremental step pulse programming algorithm

4.2 Programming MLC NAND Memories

4.3 Proposed ISPP variants

4.4 Compact and accurate NAND flash Model

4.5 Characterization of the programming algorithms

4.6 How implementing the physical-level adaptability in memory controllers

The goal of this thesis is to enhance the degree of run-time reconfigurability

of an MLC NAND Flash controller through the provision of user-selectable

differentiated memory access modes based on an adaptive framework, com-

posed of physical layer adaptivity combined with architectural layer adaptivity.

This Chapter presents the adaptable flash physical management sub-system (physi-

cal layer adaptivity) that is in charge to manage the high-voltage sub-system of the flash

memory device. The choice of the proper high-voltage sub-system highly impacts relia-

bility and performances. It is responsible of generating the voltage waveforms for flash

cell read, program and erase operations, and for address decoding. Its operation is reg-

61

4. ADAPTABLE FLASH PHYSICAL MANAGEMENT SUB-SYSTEM (PHYSICAL-LEVEL ADAPTIVITY)

ulated by a microcontroller embedded in the flash device itself. The physical layer con-

sidered in this work refers to state of the art 2-MLC memories [107], which store two bits

per cell.

In order to accurately fulfill the aforementioned operation, a standard algorithm is

usually exploited in MLC NAND Flash memories: the ISPP [98]. In fact, the program

algorithm and voltage waveforms that are applied for memory writing are typically de-

fined at fabrication time by the memory vendor and hardwired in memory operation.

However, a number of variants does exist to counter the dispersion of programmed cell

threshold distributions in nano-scaled flash devices, such as the double verify (DV) and

reduced verify (RV) algorithms [97], [98] which differently impact reliability and perfor-

mances of the flash memory.

The proposed device layer is designed to be able to switch, on-demand, among the

three ISPP versions. For this purpose, an extensive modeling, simulation and implemen-

tation framework has been set up for the analog part to capture how different program

algorithms impact the RBER, the power consumption, and the write throughput of the

memory. It is composed of two distinct modules: (a) the high-voltage subsystem of the

memory, including the charge pumps, and the voltage regulators exploited for the gener-

ation of the voltages required for the programming algorithm (including the verify stage),

and (b) a compact model for NAND Flash memories with array simulation capability.

Section 4.1 presents an overview of the standard ISPP algorithm and the related phys-

ical mechanism that allows writing desired logic levels. Section 4.2 focuses on MLC’s

programming mechanism. Then in Section 4.3 the two variants ISPP-DV and ISPP-RV

are described. Section 4.4 and Section 4.5 propose an accurate description of the sim-

ulation environment and the result of the characterization of the flash physical man-

agement sub-system, respectively. Last but not the least, Section 4.6 proposes different

alternatives to physically realize the proposed approach in actual memory controllers.

4.1 The incremental step pulse programming algorithm

The logical value of stored information is associated with the cell’s threshold voltage.

Therefore, a memory cell is considered programmed when it reaches the desired Vth

level. In order to control the programmed Vth of a NAND flash memory cell, a bit-by-

bit program verify algorithm is used [116]. The program operation is split into several

program pulse steps, with a Vth verification (sensing) operation in between. If the Vth of

62

4.2. Programming MLC NAND Memories

a cell is detected above a certain program verify level, further programming of this single

cell will be stopped by setting it in a program inhibit state (see Fig 4.1).

Start
program

Program
operation

Verify operation

Satisfied
Vth ?

Voltage step
increased of

ΔVth

Program
operation

Verify
operation

No

Yes

End
program

hjhkjhkjh

Figure 4.1: Program and verify algorithm

Commonly, the programming pulse is increased by a constant value ∆Vth after each

program step [129]. Therefore, this programming scheme is called Incremental Step Pulse

Programming with standard verify (ISPP-SV).

4.2 Programming MLC NAND Memories

In this thesis, MLC technology is targeted as nowadays is the preferred choice when de-

signing embedded systems thanks to its lower cost per chip then the SLC one. Since the

adaptable flash physical management sub-system considered in this thesis refers to state

of the art 2-MLC memories (i.e., store two bits per cell), it is worth explaining here how

the MLC’s programming mechanism works and how the ISPP algorithm is commonly

applied.

63

4. ADAPTABLE FLASH PHYSICAL MANAGEMENT SUB-SYSTEM (PHYSICAL-LEVEL ADAPTIVITY)

In 2-MLC memories each cell stores one Least Significant Bit (LSB) and one Most Sig-

nificant Bit (MSB). 2-MLC memories store two bits per cell by placing four Vth levels

identified by the statistical distributions L0-L3 of Fig. 4.2. An erase operation places all

cells of a block on the L0 level. L0 is the starting point for each program operation that

will place then threshold voltages of the selected cells on levels L1-L3.

L3

VFY1 OPVFY3R3VFY2R2R1

L0 L1 L2

Figure 4.2: Threshold voltage distributions in a MLC NAND flash. Read levels (R1, R2, and R3),
Verify levels (VFY1, VFY2, VFY3), and over-programming level (OP) are pointed out

A 2-MLC page can be programmed by applying the ISPP algorithm in two rounds or

in a full-sequence approach. In the following sections both are presented.

4.2.1 Two rounds programming

Figure 4.3 shows an example of how 2 bits are associated with the four read threshold dis-

tributions stored in the cell, and how the set of programmed distributions is built starting

from the erased state "E" when the ISPP algorithm with two rounds programming is em-

ployed [86], [24].

In the first round, the so-called lower-page (associated to LSBs) is programmed. If

the bit is "1", the voltage threshold of the cell Vth does not change and, therefore, the

cell remains in the erased state, E. If the bit is "0", Vth is increased until it reaches the D1

value.

Vth is modified by means of the ISPP algorithm: a voltage step is applied to the gate

of the cell. Afterwards, a verify operation is performed in order to check whether Vth

has exceeded a predefined voltage value (in this case VV F Y 1). If the verify operation is

64

4.2. Programming MLC NAND Memories

Figure 4.3: Two round program operations [98]

successful, the cell has reached the desired state and it is excluded from the following

program pulses. Otherwise another cycle of ISPP is applied to the cell, where the pro-

gram voltage is incremented by ∆ISPP.

In the second round, the upper-page (associated to the MSBs) is programmed. If the

bit is "1", Vth does not change and, therefore, the cell remains either in the erased state,

E, or in the D1 state, depending on the value of the lower-page. When MSB is "0", Vth is

programmed as follows:

• If, during the first round, the cell remained in E state, then Vth is incremented to

D3.

• If, during the first round, the cell was programmed to D1, then, in the second

round, Vth reaches D2.

Even in this case, the program operation uses ISPP, and the verify voltages are VV F Y 2

and VV F Y 3. Lower-page programming only needs the information related to LSB, while

for the upper-page it is necessary to know both the starting distribution (LSB) and the

MSB.

65

4. ADAPTABLE FLASH PHYSICAL MANAGEMENT SUB-SYSTEM (PHYSICAL-LEVEL ADAPTIVITY)

4.2.2 Full-sequence programming

ISPP full-sequence programming [31], [98] is shown in Fig. 4.4; in this case, LSB and MSB

of the same cell are programmed at the same time, and there is no need to apply the

same program voltage twice. After each program pulse, three different verify operations

are needed (at VV F Y 1, VV F Y 2 and VV F Y 3).

Figure 4.4: Full-sequence program operations [98]

Without loss of generality, we chose to investigate and explore the ISPP full sequence

strategy instead of the two-rounds one since it reduces the simulation time and provides

faster post-processing of the experimental results.

4.3 Proposed ISPP variants

The main concern related to the ISPP-SV programming algorithm is that cells to be pro-

grammed may require a variable number of ISPP steps to reach the desired Vth .

Due to the technological variations, Vth is not perfectly related to the amplitude of the

ISPP pulse. There are "fast" cells that reach the verify level with few program pulses and

"slow" cells that require more pulses. Both behaviors represent a threat for the reliability

of the program operation. In fact, the threshold voltage distributions of the L1-L3 levels

66

4.4. Compact and accurate NAND flash Model

significantly deviate from an ideal Gaussian shape. They often cross the distribution read

levels and cause bit errors.

Different technological approaches for achieving distribution compactness are com-

monly pursued, although they share the same underlying principle: acting directly on

the ISPP pulse characteristics by decreasing the ∆ISPP per step or by increasing the to-

tal number of pulses per Program operation. However, although these methodologies

could effectively increase the accuracy of the ISPP algorithm in terms of threshold volt-

age placement, a substantial penalty both in power consumption and write throughput

is paid.

An alternative solution for increasing ISPP Programming accuracy with minimal bur-

den on the programming time and complexity has been presented in [98] and [97]. This

algorithm exploits a Double Verify (DV) approach, where the bitline voltage of the se-

lected cells is modulated in order to partially decrease the ISPP step using a prior Verify

level with slightly lower voltage than the original Verify level, hence compacting the final

desired threshold voltage distribution.

Another concern of MLC architectures is to decrease the write throughput perfor-

mance mismatch against SLC memories. Both the ISPP-SV and, to a larger extent, the

ISPP-DV feature a large number of verify operations per single ISPP step even if the mem-

ory cell is far from the VF Y level. An interesting solution to avoid unnecessary verify op-

erations is to use the Reduced Verify (RV) approach [98]. The number of verify operations

is automatically increased as soon as the memory cells to be programmed cross a pre-

determined verification level. The reliability is now traded for increased programming

speed as this write methodology may be less robust against page-errors.

Next sections illustrate the modeling effort of the high-voltage memory sub-system

required to capture how different programming algorithms impact the raw bit error rate

(RBER) and the power consumption of the memory.

4.4 Compact and accurate NAND flash Model

The case study, presented in this thesis, targets a 2-bit per cell NAND flash memory fea-

turing a 45 nm manufacturing process designed for low-power applications. The simula-

tion environment includes two modules: (1) the high-voltage (HV) sub-system exploited

to generate the voltages required for the programming algorithms (including the verify

67

4. ADAPTABLE FLASH PHYSICAL MANAGEMENT SUB-SYSTEM (PHYSICAL-LEVEL ADAPTIVITY)

stage), and (2) a compact model of the NAND flash memory with array simulation capa-

bility.

The HV module is the analog core of a NAND flash memory. Modifying or reading

the number of electrons stored into the floating gate requires the generation of a set of

bias voltages with a desired precision, timing, and granularity. Moreover, since many

voltages have a value larger than the NAND power supply, several charge pumps are re-

quired. To obtain highly accurate estimations of the energy consumption of each ISPP

algorithm considered in this work, we simulated the program charge pump, the inhibit

charge pump, the verify charge pump and the regulators/limiting systems according to

the guidelines proposed in [80]. All the blocks have been implemented in HSPICE using

the STM-45nm technology library [46]. The power consumption of each pump extracted

from the SPICE simulation during the various stages of the ISPP algorithms has been

then fed into a NAND flash power modeling framework based on the equation set pro-

vided by [113]. As input parameters of the model, we assumed a low-power NAND flash

supplied with VDD = 1.8V using an ISPP algorithm starting from 14V to 19V and ∆ISPP

steps of 250mV. The same settings hold for all considered programming algorithms.

The simulated HV sub-system has been designed to work with all algorithms. In fact,

in a NAND flash device, the timing and sequence of the analog circuitry operations are

driven by the embedded microcontroller/FSM by means of a set of interface registers

required to generate the enable signals for the charge pumps. Switching from one ISPP

algorithm to another does not require a modification of the HV subsystem. It rather im-

plies a different sequence of enable signals notified through the same register interface.

An additional modeling effort was devoted to model the NAND flash cells. A compact

model partially based on [128] has been developed, which includes variability effects

typical of nanoscaled memories. This allowed to simulate array functionalities during a

page-wide programming operation. The considered variability effects include:

• width and length geometrical variations of FG-MOS transistors;

• non-homogeneity of tunnel oxide and substrate doping;

• tunneling caused by the electron injection granularity process into the cells floating

gate;

• cell-to-cell interference caused by cross-talk between adjacent floating gates;

68

4.5. Characterization of the programming algorithms

• aging effects due to repeated program/erase cycling which typically degrades the

RBER.

All these effects contribute to significantly broaden the gaussian distributions related

to the programmed threshold voltage levels within the array, negatively impacting the

RBER. A comprehensive description of the adopted model is provided in Appendix A.

For the sake of model validation, we were able to fit experimental data collected from

[128] as showed in Fig. 4.5, where cell voltage threshold is plotted during an ISPP opera-

tion for a 41nm NAND flash technology.

V
T

H
 [

V
]

VCG [V]

Figure 4.5: Fitting results of the NAND flash compact model with experimental data during an
ISPP-SV operation featuring 7µs pulses, 1V ∆ISPP

4.5 Characterization of the programming algorithms

Power consumption, RBER and the average page write time of the flash when using the

ISPP-SV, the ISPP-DV, and the ISPP-RV algorithms have been characterized by means of

the developed simulation framework. For each measured parameter, both the pattern

dependent (L1, L2 and L3) and the pattern independent (average over the three pat-

terns) characterization is reported. Such parameters are derived as a function of the

program/erase cycles of the memory, thus enabling lifetime-wide assessment of mem-

ory features.

69

4. ADAPTABLE FLASH PHYSICAL MANAGEMENT SUB-SYSTEM (PHYSICAL-LEVEL ADAPTIVITY)

102 103 104 105 106

Program/Erase Cycles
10-5

10-4

10-3

10-2

10-1
R

BE
R

RBER ISPP-SV
RBER ISPP-DV
RBER ISPP-RV

(a) pattern independent (b) pattern dependent

Figure 4.6: RBER characterization

Fig. 4.6 (a) and 4.6 (b) show RBER results for a simulated 4 KB page program of a

NAND flash. The choice of a particular programming algorithm turns into a significant

modification of the RBER figures up to one order of magnitude.

The power consumption of the memory device during a program operation with dif-

ferent programming algorithms has been measured and reported in Fig. 4.7 (a) and 4.7

(b). Power measures do not include I/O pins and digital portions of the flash, which

are irrelevant in the comparative analysis. The most power demanding write strategy is

the ISPP-DV, showing a 5% power consumption increment with respect to the baseline

ISPP-SV algorithm.This is due to the increased usage of the read charge pump circuitry

in the HV sub-system. Nevertheless, it does not represent a major source of power drain

in the overall system consumption context. The less power demanding write strategy is

straightforwardly the ISPP-RV, as the HV circuitry is enabled for a shorter lapse of time

due to the increased speed features of the algorithm.

The average page write time has been calculated by simulating a random write pat-

tern on a memory page and taking into account a fixed cell verify time (i.e., page read

operation) of 30µs. Results reported in Fig. 4.8 (a) and Fig. 4.8 (b) show that the fastest

algorithm is the ISPP-RV due to the reduced number of verify operations that generally

cause a slow down of the writing process. What is worth to point out is that the average

page write time decreases as the aging increases, due to the fastest programming behav-

ior of the memory cells [98]. This effect is tightly coupled with a reduction of the overall

memory reliability since bit errors tend to be more frequent [106].

Table 4.1 summarizes the main results obtained from the characterization of the se-

70

4.5. Characterization of the programming algorithms

100 101 102 103 104 105

Program/Erase Cycles
0.13

0.14

0.15

0.16

0.17

0.18
Po

w
er

 C
on

su
m

pt
io

n
[W

]

ISPP-SV
ISPP-DV
ISPP-RV

(a) pattern independent (b) pattern dependent

Figure 4.7: Power consumption characterization

100 101 102 103 104 105

Program/Erase Cycles
200

400

600

800

1000

1200

1400

1600

Pa
ge

 W
ri

te
 T

im
e

[µ
s]

ISPP-SV
ISPP-DV
ISPP-RV

(a) pattern independent

100 101 102 103 104 105

Program/Erase Cycles
0

400

800

1200

1600

2000

Pa
ge

 W
ri

te
 T

im
e

[µ
s] ISPP-SV L1

ISPP-SV L2
ISPP-SV L3
ISPP-DV L1
ISPP-DV L2
ISPP-DV L3
ISPP-RV L1
ISPP-RV L2
ISPP-RV L3

(b) pattern dependent

Figure 4.8: Average page write time characterization

lected device.

Page write time (AVG) @ cycle 1
600µs (RV)
800µs (SV)

1400µs (DV)

Page read time 75µs

Maximum considered P/E cycles 100000

Page Size 4 KB + Parity

Table 4.1: NAND Flash simulation parameters (Programming timings are provided at cycle 1)

From the presented plots, the potentials of an adaptive memory physical layer for fu-

ture reconfigurable memory sub-systems become evident. By selecting a programming

71

4. ADAPTABLE FLASH PHYSICAL MANAGEMENT SUB-SYSTEM (PHYSICAL-LEVEL ADAPTIVITY)

algorithm among ISPP-SV, ISPP-DV, and ISPP-RV one can set the desired trade-off point

between RBER, power, and write throughput, with only incremental complexity of the

memory controller architecture.

After having characterized the proposed flash physical management sub-system, in

the next Section different alternatives are proposed to physically implement it in actual

memory controllers.

4.6 How implementing the physical-level adaptability in memory

controllers

In current flash device controllers, the programming algorithm is set at fabrication time,

thus preventing run-time adaptation. It is usually stored in a code-ROM integrated in the

same memory die, and executed by an embedded microcontroller. Our physical layer

optimization approach moves from the assumption that more than one algorithm can

be stored in the code-ROM by slightly increasing its capacity. In addition, a mechanism

is needed to select the desire algorithm for a transaction or a set of transactions.

The ONFI 3.0 standard for NAND Flash memories [9] envisions the possibility of im-

plementing both new vendor-specific commands and special commands in case of de-

velopment of innovative writing methodologies. It could therefore be exploited to imple-

ment the write algorithm selection through three dedicated commands such as: 0x80 =

Program with ISPP-SV, 0x81 = Program with ISPP-DV, and 0x82 = Program with ISPP-RV.

The choice of the programming algorithm can be also implement through dedicated

configuration registers. This approach is consistent with the methodologies exploited in

today’s NAND flash and memory controllers to expose a reconfigurability of the product

(e.g., changing the DDR protocol timings [6], or the storage paradigm [10]).

Another possible solution, which would increase the reconfigurability of the entire

NAND memory, is to replace the code-ROM with a SRAM. The SRAM is written by the

memory controller with the most suitable algorithm for the memory transaction(s) at

hand. Integrating more than one RAM core in the embedded microcontroller is not un-

usual [98], especially for debug and test purposes. In this case the ONFI command set

should be enhanced only to enable writing the SRAM content: 0xFA = Write embedded

microcontroller SRAM, 0x80 = Standard program ONFI command.

An alternative to the use of different programming algorithms is represented by the

application of different techniques (e.g., virtual step amplitude reduction through bit-

72

4.6. How implementing the physical-level adaptability in memory controllers

line biasing [98], or look-up-table approaches) that may allow to vary the step character-

istics during the ISPP in order to provide a multi-level cells threshold voltage tuning with

a finer granularity. In terms of implementation complexity, this approach is comparable

with the one selected in this thesis (i.e., multiple programming algorithms), since both

require to communicate with the firmware of the NAND Flash internal controller (i.e.,

the Finite State Machine) which dictates the voltages and the timings requested by the

ISPP.

SUMMARY

This chapter introduced the proposed adaptable flash physical manage-

ment sub-system. It is in charge to manage the high-voltage sub-system of

the flash memory device generating the voltage waveforms to operate write,

read, and erase operations. Usually the ISPP with single verify algorithm is

employed for writing the desired logical level in MLC memories. However,

its inherent drawbacks show that more accurate variants called ISSP with

reduced verify and ISPP with double verify can maximize write throughput

performances and increasing programming accuracy, respectively. The pro-

posed physical layer optimization approach allows, thus, to switch among

these three variants at run-time. The designed simulation environment in-

cludes two modules: (1) the high-voltage (HV) sub-system, (2) a compact

model of the NAND flash memory with array simulation capability. By re-

sorting to this simulation framework, power consumption, RBER and the

average page write time of the flash when using the ISPP-SV, the ISPP-DV,

and the ISPP-RV algorithms have been accurately characterized.

73

C
H

A
P

T
E

R

5
ADAPTABLE ECC ENCODING/DECODING STRUCTURE

(ARCHITECTURAL-LEVEL ADAPTIVITY)

Contents of this chapter

5.1 Background and related works

5.2 Optimized Architectures of Programmable Parallel LFSRs

5.3 BCH Code Design Optimization

5.4 Adaptable BCH Encoder

5.5 Adaptable BCH Decoder

5.6 Experimental Results

This Chapter proposes the adaptable ECC sub-system which introduces addi-

tional adaptation acting at the architectural level.

The ECC sub-system proposed in this chapter implements the adaptable Bose-Chaudhuri-

Hocquenghem (BCH) ECC architecture presented in [60]. BCH codes belong to the larger

class of cyclic codes which have efficient decoding algorithms due to their strict algebraic

architecture [22]. BCH codes perform correction over single-bit symbols and better per-

form when bit errors are not correlated, or randomly distributed. Several studies have

reported that NAND flash memories manifest non-correlated or randomly distributed

bit errors over a page [138]. BCH codes are therefore a perfect choice for their protec-

75

5. ADAPTABLE ECC ENCODING/DECODING STRUCTURE (ARCHITECTURAL-LEVEL ADAPTIVITY)

tion.

The architecture of the programmable BCH encoder and decoder, introduced in this

chapter, provides a fine tuning of the ECC correction capability whose benefits are

pointed-out by accurately characterizing the ECC sub-system, showing the different trade-

offs offered by its programmability.

The implementation is supported by the novel ADaptive ECC Automatic GEnerator

(ADAGE) design environment . This tool is able to automatically generate, in a paramet-

ric way, the whole code for each possible architecture. ADAGE concepts will be shortly

introduced, when required, in the next sections.

The chapter is organized as follows: Section 5.1 shortly introduces basic notions and

related works. Sections 5.2 and 5.3 present a solution to reduce resources overhead, while

Section 5.4 and 5.5 overview the proposed adaptable architecture. Section 5.6 provides

experimental results and concludes the chapter.

5.1 Background and related works

Several hard- and soft-decision error correction codes have been proposed in the litera-

ture, including Hamming-based block codes [64, 104], Reed-Solomon codes [123], Bose-

Chaudhuri-Hocquenghem (BCH) codes [22], Goppa codes [18], and Golay codes [62].

Even though selected classes of codes such as Goppa codes have been demonstrated

to provide high correction efficiency [18], when considering the specific application do-

main of flash memories, the need to trade-off code efficiency, hardware complexity and

performances have moved both the scientific and the industrial community toward a set

of codes that enable very efficient and optimized hardware implementations [45, 85].

Old SLC flash designs used very simple Hamming-based block codes. Hamming co-

des are relatively straightforward and simple to implement in both software and hard-

ware, but they offer very limited correction capability [64, 104]. As the error rate in-

creased with successive generations of both SLC and MLC NAND flash memories, de-

signers moved to more complex and powerful codes including Reed-Solomon (RS) codes

[123].

An exhaustive analysis of the mathematics governing BCH code is out of the scope

of this chapter. Only those concepts required to understand the proposed hardware im-

plementation will be shortly discussed. It is worth to mention here that, since several

publications proposed very efficient hardware implementations of Galois fields polyno-

76

5.1. Background and related works

mial manipulations, such manipulations will be used in both encoding and decoding

operations [87, 102, 123].

Given a finite Galois field GF (2m) (with m ≥ 3), a t-error-correcting BCH code, de-

noted as BC H [n,k, t], encodes a k-bit message bk−1bk−2 . . .b0 (bi ∈ GF (2)) to a n-bit

codeword bk−1bk−2 . . .b0 pr−1pr−2 . . . p0 (bi , pi ∈ GF (2)) by adding r parity bits to the

original message. The number r of parity bits required to correct t errors in the n-bit

codeword is computed by finding the minimum m that solves the inequality k + r ≤
2m −1, where r = m · t . Whenever n = k + r < 2m −1, the BCH code is called shortened

or polynomial. In a shortened BCH code the codeword includes less binary symbols

than the ones the selected Galois field would allow. The missing information symbols

are imagined to be at the beginning of the codeword and are considered to be 0. Let

α be a primitive element of GF (2m) and ψ1 (x) a primitive polynomial with α as a root.

Starting from ψ1 (x), a set of minimal polynomials ψi (x) having αi as root can be al-

ways constructed [118]. For the same GF (2m), different valid ψ1 (x) may exist [132]. The

generator polynomial g (x) of a t-error-correcting BCH code is computed as the Least

Common Multiple (LCM) among 2t minimal polynomials ψi (x) (1 ≤ i ≤ 2t). Given that

ψi (x) =ψ2i (x) (∀i ∈ [1, t]) [14], only t minimal polynomials must be considered and g (x)

can therefore be computed as:

g (x) = LC M
[
ψ1 (x) ,ψ3 (x) ...,ψ2t−1 (x)

]
(5.1)

When working with BCH codes, the message and the codeword can be represented

as two polynomials: (1) b(x) of degree k −1 and (2) c (x) of degree n −1. Given this rep-

resentation, both the encoding and the decoding process can be defined by algebraic

operations among polynomials in GF (2m). The encoding process can be expressed as:

c (x) = m (x) · xr +Rem
(
m (x) · xr)

g (x) (5.2)

where Rem(m (x)·xr)g (x) denotes the remainder of the division between the message left

shifted of r positions and the generator polynomial g (x). This remainder represents the

r parity bits to append to the original message.

The BCH decoding process searches for the position of erroneous bits in the code-

word. This operation requires three main computational steps: 1) syndrome computa-

tion, 2) error locator polynomial computation, and 3) error position computation.

77

5. ADAPTABLE ECC ENCODING/DECODING STRUCTURE (ARCHITECTURAL-LEVEL ADAPTIVITY)

Given the selected correction capability t , the decoding process requires first the

computation of 2t syndromes of the codeword c (x), each associated with one of the 2t

minimal polynomials ψi (x) generating the code. Syndromes are calculated by first com-

puting the remainders Ri (x) of the division between c (x) and each minimal polynomial

ψi (x). If all remainders are null, c(x) does not contain any error and the decoding stops.

Otherwise, the 2t syndromes are computed by evaluating each remainder Ri (x) in αi :

Si = Ri
(
αi

)
. Practically, according to (5.1), given that ψi (x) =ψ2i (x), only t remainders

must be computed and evaluated in 2t elements of GF (2m).

The most used algebraic method to compute the coefficients of the error locator poly-

nomial from the syndromes is the Berlekamp-Massey algorithm [19]. Since the complex-

ity of this algorithm grows linearly with the correction capability of the code, it enables

efficient hardware implementations. The equations that link syndromes and error loca-

tor polynomial can be expressed as:


St+1

St+2
...

S2t

=


S1 S2 ... St

S2 S3 ... St+1
...

...
...

St St+1 ... S2t−1

 ·


λt

λt−2
...

λ0

 (5.3)

The Berlekamp-Massey algorithm iteratively solves the system of equations defined

in (5.3) using consecutive approximations.

Finally, the Chien Machine searches for the roots of the error locator polynomial λ (x)

computed by the Berlekamp-Massey algorithm [42]. It basically evaluates the polyno-

mial λ (x) in each elementαi of GF (2m). Ifαi satisfies the equation 1+λ1α
i +λ2α

2i +...+
λt

(
αi

)t = 0, αi is a root of the error locator polynomial λ (x), and its reciprocal 2m −1− i

reveals the error position. In practice, this computation is performed exploiting the iter-

ative relation:

λ
(
α j+1

)
=λ0 +

t−1∑
k=1

[
λk

(
α j

)k
]
αk (5.4)

Several publications proposed optimized hardware implementations of BCH codecs

with fixed correction capability [45, 63, 85, 103, 122, 127]. However, to the best of our

knowledge, only Chen et al. proposed a solution allowing limited adaptation by extend-

ing a standard BCH codec implementation [37]. One of the main contributions of Chen

et al. is a Programmable Parallel Linear Feedback Shift Register (PPLFSR), whose generic

78

	frontespizio

