
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Rate-based vs Delay-based Control for DVFS in NoC / Casu, MARIO ROBERTO; Giaccone, Paolo. - ELETTRONICO. -
(2015), pp. 1096-1101. (Intervento presentato al convegno 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE) tenutosi a Grenoble (F) nel 9-12 March 2015).

Original

Rate-based vs Delay-based Control for DVFS in NoC

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2593955 since:

EDAA

Rate-based vs Delay-based Control
for DVFS in NoC

Mario R. Casu and Paolo Giaccone
Department of Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract—Minimization of power via DVFS in an NoC is
possible, but may result in an intolerable increase of network
delay. We examined two DVFS policies, a rate-based policy that
scales down frequency and voltage to the minimum value that
allows to sustain the injection rate without reaching saturation,
and a delay-based policy in which a closed-loop control tunes
frequency and voltage such that the NoC average delay tracks a
target value. We evaluated the power-delay trade-off by means
of network simulations and accurate power estimations after
synthesis on a 28-nm FDSOI CMOS technology. Our results
over synthetic and multimedia traffic patterns show that the
first policy largely pays the better saving in power (20%-50%
less than the second policy) with a large network delay increase
(up to 3×). We then conclude that the delay-based policy offers
a better power-delay trade-off.

I. INTRODUCTION

Dynamic Voltage and Frequency Scaling (DVFS) is a very
effective method for reducing power consumption in CMOS
chips. DVFS has been typically used chip-wise to control global
voltage and frequency. Recently, its application to individual
cores and separately to the NoC has been proposed, among
others, by Intel [1][2].

Researchers have proposed to extend such local use of DVFS
to individual NoC routers [3][4][5] and links [6]. We focus
instead on a global application of DVFS to the entire NoC
to reduce the overhead of locally replicated DVFS controllers
and dc-dc converters, and to remove the resynchronization at
the crossing between multiple frequency domains. We assume,
however, that NoC and processing elements connected to it
have separate DVFS controllers.

We focus only on an NoC with global DVFS and our goal
is to understand the achievable power-performance trade-off.
This research has been motivated by our observation that a
very aggressive DVFS policy leads to a large increase of
delay in delivering packets. In relative terms, such increase is
significantly more than the power reduction. To illustrate this
trade-off we compare two possible DVFS policies. The first
policy is more aggressive because it scales the NoC frequency—
and so also the voltage—down to the minimum value that
allows to sustain the injection rate without reaching saturation.
We refer to this policy as Rate-based Max Slow Down (RMSD).
The second one sets instead a target delay and throttles the
NoC frequency and the voltage to the minimum value that
still allows to respect the delay constraint. We call this second
policy Delay-based Max Slow Down (DMSD).

To explore the power-delay trade-off under these two policies,
we ran NoC simulations with both synthetic and multimedia

traffic. To estimate the NoC performance under DVFS, we built
a modified version of the Booksim cycle-accurate simulator [7].
We performed logic synthesis and transistor-level simulations
of the virtual-channel router used in network simulations to
accurately evaluate power consumption as a function of the
scaled voltage and frequency, of the injection rate, and of the
activity inside the routers and in the links. We targeted for this
evaluation a 28-nm FDSOI CMOS technology.

In summary, we provide the following novel contributions:
• We show that a rate-based DVFS strategy like RMSD,

which aims at minimizing power consumption with the
only objective of sustaining the NoC throughput, pays a
very high cost in terms of NoC delay. Moreover, with
this DVFS strategy the delay expressed in actual time
units—not the latency in clock cycles—as a function of
the injection rate exhibits an anomalous non-monotonic
behavior, which we report for the first time in NoCs.

• A better trade-off between power and delay is obtained
with a delay-based DVFS policy. The newly introduced
DMSD policy saves less power than the RMSD policy
(20%-50%), but it reduces delay substantially (up to 3×).
It does so with a proportional-integral feedback loop that
determines the clock frequency to apply such that the
average NoC delay tracks a target delay.

• We show that the DMSD policy produces a better power-
delay trade-off no matter the type of traffic (either
synthetic or multimedia). The results are also insensitive to
router micro-architectural variations, as well as variations
of NoC parameters such as packet size and mesh size.

The paper is organized as follows. The related work is
presented in Sec. II. The RMSD and DMSD policies are
introduced and discussed in Sec. III and Sec. IV, respectively.
The experimental results with synthetic traffic are reported in
Sec. V, whereas results with multimedia traffic are in Sec. VI.
Finally, we draw our conclusions in Sec. VII.

II. RELATED WORK

Previous work in DVFS for NoC focused mostly on DVFS
in individual routers or in links [3][4][6]. This method requires
costly individual dc-dc conversion (per-link or per-router) and
resynchronization at the crossing between frequency domains,
which has a detrimental impact on latency. We focus instead
on a more realistic scenario in which the NoC is a single
voltage-frequency domain, as for instance in [1] and [2].

In processor cores, DVFS controllers minimize power by
setting the minimum clock frequency (and so the voltage)

that makes the core deliver a given throughput. The controller
monitors the status of a workload queue and throttles the speed
so that the queue never fills up (core is too slow) or gets empty
(too fast) [8]. In NoCs this method can be used by monitoring
the buffers located in the routers [5], or the queues located at
the crossing of different voltage-frequency islands [9].

An alternative explored by Liang and Jantsch consists in
monitoring injection rate and network load and in keeping the
frequency low enough so that the NoC is forced to operate
around its saturation point [10]. We see this technique as one
possible implementation of a more general RMSD policy, in
which the DVFS controller slows down the network as much as
possible while guaranteeing that it can still sustain the injection
rate. RMSD minimizes power at the cost of a highly increased
network delay, as we will show in Sec. III.

In the context of a Chip Multi-Processor (CMP), Chen et
al. explored DVFS techniques that aim at reducing the NoC
power while targeting a given latency of the NoC and the last-
level cache [11]. These techniques differ from RMSD as they
target delay rather than rate. Our work has features in common
with Chen et al.’s work, in that we also report a delay-based
technique that we call Delay-based Max Slow Down (DMSD).
However, we do not restrict our study to the CMP case, and
justify through a detailed analysis and experimental results
why a delay-based DVFS policy offers a better power-delay
trade-off than a rate-based one.

III. RATE-BASED MAX SLOW DOWN (RMSD)

We assume that a network clock of frequency Fnoc and a
node clock of frequency Fnode are available at the NoC and at
each injection node, respectively. For simplicity, let Fnode be
fixed and equal for all the nodes1. Aim of the DVFS policy
is to slow down the network clock with respect to the node
clock (i.e., Fnoc < Fnode) to reduce the power consumption,
without affecting the saturation throughput.

The tuning range of Fnoc is [Fmin, Fmax] and is set by
the voltage-controlled oscillator of a PLL inside the DVFS
controller. Without loss of generality, let the fixed value of
Fnode be equal to the maximum value Fmax.

Suppose that nodes inject flits at rate λnode, expressed in
flits per node clock cycle. Equivalently, the injection rate in
flits per second seen by each node is Rnode = λnodeFnode, and
seen by the NoC can be defined similarly as Rnoc = λnocFnoc.
To evaluate the corresponding λnoc, i.e. the injection rate seen
by the NoC and measured in flits per network clock cycle, we
can set Rnode = Rnoc and obtain:

λnoc = λnode
Fnode

Fnoc
. (1)

Thus, when DVFS is applied and the network clock is slower
than the node clock, the network sees more flits injected per
network clock cycle and operates closer to its saturation point.

The main idea of RMSD is to minimize the network power
consumption by slowing down Fnoc as much as possible while

1We prefer to keep the exposition simpler and more intuitive, but a more
general treatment with different and variable node frequencies is possible.

measurement

Controller node average
injection rate computation

Node injection rate

NoC

DVFS−Ctrl

Average
Injection

Rate

NoC Clock

& Voltage

F (λ)

λ

λnode F

Fnoc
λmin λmax

Fmax

Fmin

Fig. 1. Global controller in RMSD receives injection rate from NoC nodes
and computes the NoC clock frequency.

preserving the maximum throughput. This is obtained by having
the network work at an injection rate near but still below its
saturation point. We define this target rate as λmax. By setting
λnoc = λmax in (1), we obtain:

Fnoc = Fnode
λnode
λmax

. (2)

For a given value of λnode, by choosing Fnoc as in (2) the
network injection rate will be constant and equal to λmax. As
a result, the average network latency will also be constant.

The frequency-scaling law in (2) is valid whenever Fnoc

is in range [Fmin, Fmax]. This frequency range corresponds,
through (2), to a range of node injection rates. The network
injection rate is equal to λmax, and the latency is constant, as
long as the node injection rate stays within this range.

Under the assumption that Fnode = Fmax, we can easily
determine this range of node injection rates. In particular,
from (2) we obtain Fnoc = Fmax when λnode = λmax, and
Fnoc = Fmin when λnode = λmaxFmin/Fmax. We define this
lower node injection rate as λmin. When λnode is outside the
range [λmin, λmax], the network clock frequency is clipped to
either Fmin or Fmax, as graphically shown in Fig. 1. The figure
also depicts a possible RMSD architecture. The transmitting
nodes periodically measure the injection rate as number of
injected flits divided by the number of elapsed network clock
cycles. This information is sent to one specific controller
node (e.g. a central node in a mesh). The average injection is
computed and used by the DVFS controller to set the network
clock frequency and the corresponding voltage.

We implemented the RMSD policy in a micro-architectural
cycle-accurate NoC simulator based on Stanford’s Booksim [7].
We modified Booksim in various ways, but primarily by
decoupling the network frequency from the nodes frequency.

Fig. 2 reports simulation results obtained in case of uniform
traffic in a 5× 5 mesh with dimension-ordered routing, routers
with 8 virtual channels, 4 buffers per channel, 20 flits per
packet. We set λmax 10% lower than the saturation rate, which
is 0.42 in this case. Fnode is set equal to 1 GHz and Fnoc

varies between Fmin = 333 MHz and Fmax = 1 GHz.
Fig. 2(a) shows how the latency curve is modified by the

RMSD strategy. As expected, the average latency expressed in
network clock cycles is constant as long as the node injection
rate is within the range [λmin, λmax]. Let us define the latency
as Lnoc. Since the network clock has been slowed down with

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4

P
a

c
k

e
t

L
a

te
n

c
y

 (
n

e
tw

o
rk

 c
lo

c
k

 c
y

c
le

s
)

Injection Rate (flits/cycle)

NoC Latency

λmin λmax

No-DVFS latency

RMSD latency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

Injection Rate (flits/cycle)

NoC Delay

λmin λmax

No-DVFS delay

RMSD delay

(a) (b)

Fig. 2. RMSD vs No-DVFS. Network latency (a) and delay (b) for a 5×5
mesh with dimension-ordered routing, routers with 8 virtual channels, 4 buffers
per channel, Fnode=1 GHz, Fmin=333 MHz, Fmax=1 GHz.

respect to the node clock, it is interesting to see the actual delay
in seconds, which is the ratio Lnoc/Fnoc. Fig. 2(b) reports
the delay curve. In the range [λmin, λmax] the delay decreases
because Lnoc is constant and Fnoc increases. In [0, λmin),
the delay increases because Fnoc is fixed to Fmin and Lnoc

increases due to the increasing load. As a result, the delay
curve is non-monotonic with very long delays around the peak,
about 9× greater than the original delay.

This non-monotonic behavior was observed for the first time
in a context of DVFS policies for controlling the power of
queue-based systems with a single server model [12], but was
never observed before in the context of an NoC with DVFS.

In summary, the RMSD policy minimizes power consump-
tion at the price of a large delay penalty. Notice that throughput
is not affected, as long as the network does not saturate. RMSD
is therefore useful only for applications that are not sensitive to
delay. When delay matters, for instance in request-reply traffic,
RMSD would be an inefficient choice.

IV. DELAY-BASED MAX SLOW DOWN

In a DMSD architecture a specific node is dedicated to
receiving measurements and implementing the DVFS policy,
like in an RMSD architecture. DMSD needs, however, periodic
measurements of end-to-end packet delays rather than of
injection rate. Therefore, the receiving nodes, and not the
transmitting ones, measure the delay. Measuring packet delay
requires adding a timestamp on each packet, whose overhead
is almost negligible if the delay is encoded in unused bits
of the header flit [2]. The time counter and the circuitry for
measuring the delay in each node consume only few gates.

The controller node computes an average delay and subtracts
from it a target delay. This difference is the error signal of
a closed-loop controller that tunes the network frequency in
such a way to minimize the error. Fig. 3 shows a possible
architecture with a proportional-integral (PI) controller. It is

NoC
PI−Ctrl

DVFS−Ctrl

(Error)

+
Average

Delay

Target
Delay

Node packet delay
measurement

delay computation
Controller node average

NoC Clock

& Voltage

UE

Fnoc
F (U)

U

F

Fmin

Fmax

Umin UmaxUn = Un−1 + KIEn + KP (En − En−1)

Fig. 3. PI loop controller in DMSD receives packet delay from NoC nodes
and automatically sets the NoC clock frequency.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4

N
e

tw
o

rk
 C

lo
c

k
 F

re
q

u
e

n
c

y
 (

re
la

ti
v

e
 u

n
it

s
)

Injection Rate (flits/cycle)

λmin λmax

Fmin

Fmax

No-DVFS frequency

RMSD frequency

DMSD frequency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 0.1 0.2 0.3 0.4

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

Injection Rate (flits/cycle)

λmin λmax

1.9x

No-DVFS delay

RMSD delay

DMSD delay

(a) (b)

Fig. 4. DMSD, RMSD, and No-DVFS. Clock frequency (a) and delay (b),
magenta under the same scenario settings as Fig. 2.

well known that by properly setting the PI controller gains,
KI and KP , stability is guaranteed.

To simulate an NoC with the DMSD policy, and to compare
it with the RMSD one, we used the same modified Book-
sim simulator. We experimented with different values of PI
parameters and found a good compromise between stability
and reactivity with KI=0.025 and KP =0.0125. These values
have been used to obtain all the results reported in this paper.
The control update period, which is also the interval period
for delay transmission, does not need to be short [2]. We
verified through simulations that 10,000 clock cycles (at the
highest frequency) are sufficient. Therefore, not only the traffic
overhead for sending the measurement information to the
controller is negligible, but also the time for receiving and
processing the measurements, and for control actuation, is a
negligible fraction of the control update period. This makes
the controller scalable to large networks (e.g. 8× 8).

Fig. 4(a) compares the network clock frequency set by
DMSD and RMSD controls, under the same conditions of
Fig. 2. As expected, RMSD is more aggressive in tuning

 0.4

 0.6

 0.8

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

F
re

q
u

e
n

c
y

 (
G

H
z
)

Vdd (V)

Fig. 5. Network clock frequency vs Vdd voltage in 28 nm FDSOI technology.

frequency, which is always less than or equal to the DMSD case.
We expect then less power consumption in RMSD. Fig. 4(b)
reports the delay in the DMSD case, with target set to 150 ns,
which is the value of RMSD at injection rate λmax. The figure
shows that the PI controller manages to keep the RMSD delay
constant in the entire range up to λmax.

Fig. 4(b) shows that the RMSD delay is significantly greater
than the DMSD delay. It is then interesting to evaluate if the
power advantage of RMSD over DMSD is more or less than
the delay advantage of DMSD over RMSD.

A. Power consumption evaluation

To evaluate the power consumption we synthesized with
Synopsys Design Compiler an RTL version of the router used
in simulations, targeting a low-power standard-cell library in a
28-nm FDSOI CMOS technology. To obtain the relationship
between scaled voltage and frequency, we first extracted the
Spice netlist of the router after synthesis. Then we simulated
it with Mentor Graphics’ Eldo transistor-level simulator with
an input pattern that activates the critical path. The result of
this analysis is shown in Fig. 5, which reports the maximum
clock frequency of the router at a given Vdd voltage. We set
the range of frequency for the following power evaluations
from Fmin = 333 MHz to Fmax = 1 GHz, which results to
voltage range from 0.56 V to 0.9 V.

To estimate power accurately, we took advantage of the
fact that Booksim is a cycle accurate simulator and permits
to save information of activity in the links, buffers, crossbar,
etc. Therefore we imported the simulated activity information
in Synopsys power estimation tool and obtained an accurate
power estimation for any input rate, any router in the NoC, and
any frequency-voltage pair chosen by the DVFS controller2.

Fig. 6 compares the total NoC power, obtained summing the
power of all routers and links, as a function of the injection
rate. The conditions are the same of delay curves in Figs. 2 and
4. As expected, both RMSD and DMSD consume significantly
less power than the No-DVFS baseline, with RMSD being more
power efficient than DMSD. When we analyze the power-delay
trade-off, however, we realize that DMSD is more efficient:
at 0.2 injection rate, for instance, Fig. 6 shows that indeed

2Even though we let the controller choose any frequency in its range (and
so also any voltage), the results remain valid in case of discrete values.

 0

 50

 100

 150

 200

 250

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
o

w
e

r
(m

W
)

Injection Rate (flits/cycle)

No-DVFS RMSD DMSD

2.2x

1.3x

Fig. 6. DMSD vs RMSD and No-DVFS: Network power.

DMSD consumes 30% more power than RMSD, but it also
has a 90% lower delay, as clear from Fig. 4(b).

V. EXPERIMENTS WITH SYNTHETIC TRAFFIC

We evaluated delay and power under various synthetic
traffic conditions. Figs. 7(a)-(d) report the delay curves for
four traffic patterns: tornado, bit-complement, transpose, and
neighbor. Figs. 7(e)-(h) report the curves of power vs injection
rate. The results are consistent with our previous observations.
Independently from the traffic pattern, both RMSD and DMSD
can save a significant amount of power compared to the No-
DVFS case (2.2× and more at, for instance, 0.2 injection rate).
DMSD consumes more power than DMSD (20%-40%), but
this is more than compensated by the delay reduction of RMSD
over DMSD (more than 2× at 0.2 injection).

For the case of uniform traffic pattern, we performed a
sensitivity analysis of our results when some of the router
and NoC parameters are varied. In particular we changed the
number of virtual channels (2, 4, and 8), the number of flit
buffers per virtual channel (4, 8, and 16), the size in flits of
the NoC packet (10, 15, and 20), and the size of the mesh
(4 × 4, 5 × 5, and 8 × 8). The results in Fig. 8 confirm that
the delay-power trade-off tips in favor of DMSD over RMSD
under any of the considered variations.

VI. EXPERIMENTS WITH MULTIMEDIA TRAFFIC

To evaluate the power-delay trade-off in a realistic scenario,
we selected two relevant applications from the multimedia
domain, an MPEG4 Encoder (H.264) and a Video Conference
Encoder (VCE) [13].

The two directed graphs in Fig. 9 are hybrid representations
of the two applications, with both communication and mapping
information. The mapping is represented by the position of
the computation blocks (graph vertices) in a 4× 4 mesh for
H.264 and in a 5 × 5 mesh for VCE. The communication
is represented by the graph edges and their weights, which
correspond to the amount of packets exchanged for encoding
a single frame of a multimedia stream.

To evaluate the performance of the two benchmarks we
further modified Booksim in order to support custom traffic
matrices, with and without DVFS. We simulated different frame
rates and collected the activities inside the routers and in the
links necessary for an accurate power estimation.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 0.1 0.2 0.3 0.4 0.5

P
a
c
k
e
t

D
e
la

y
 (

n
s
)

Injection Rate (flits/cycle)

Transpose

No-DVFS

RMSD

DMSD

2x

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 0.1 0.2 0.3 0.4 0.5

P
a
c
k
e
t

D
e
la

y
 (

n
s
)

Injection Rate (flits/cycle)

Bitcomp

No-DVFS

RMSD

DMSD

2.1x

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 0.1 0.2 0.3 0.4 0.5

P
a
c
k
e
t

D
e
la

y
 (

n
s
)

Injection Rate (flits/cycle)

Tornado

No-DVFS

RMSD

DMSD

2.5x

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 0.1 0.2 0.3 0.4 0.5

P
a
c
k
e
t

D
e
la

y
 (

n
s
)

Injection Rate (flits/cycle)

Neighbor

No-DVFS

RMSD

DMSD

2.5x

(a) (b) (c) (d)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e
r

(m
W

)

Injection Rate (flits/cycle)

Tornado

No-DVFS

RMSD

DMSD

1.4x

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.1 0.2 0.3 0.4 0.5
P

o
w

e
r

(m
W

)
Injection Rate (flits/cycle)

Transpose

No-DVFS

RMSD

DMSD

1.2x

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e
r

(m
W

)

Injection Rate (flits/cycle)

Bitcomp

No-DVFS

RMSD

DMSD

1.3x

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e
r

(m
W

)

Injection Rate (flits/cycle)

Neighbor

No-DVFS

RMSD

DMSD

1.4x

(e) (f) (g) (h)

Fig. 7. RMSD vs DMSD delays and power under synthetic traffic scenarios: Tornado (a)(e), Bit-complement (b)(f), Transpose (c)(g) and Neighbor (d)(h).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0.2 0.3 0.4

P
a
c
k
e
t

D
e
la

y
 (

n
s
)

Injection Rate (flits/cycle)

Number of Virtual Channels

No-DVFS

RMSD

DMSD

2 4 8

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0.2 0.3 0.4 0.5 0.6

P
a
c
k
e
t

D
e
la

y
 (

n
s
)

Injection Rate (flits/cycle)

Virtual Channel Buffers

No-DVFS

RMSD

DMSD

4 8 16

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0.2 0.3 0.4 0.5

P
a
c
k
e
t

D
e
la

y
 (

n
s
)

Injection Rate (flits/cycle)

Packet Size

No-DVFS

RMSD

DMSD

20 15 10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0.1 0.2 0.3 0.4

P
a
c
k
e
t

D
e
la

y
 (

n
s
)

Injection Rate (flits/cycle)

Mesh Size

No-DVFS

RMSD

DMSD

5x5

4x4

8x8

(a) (b) (c) (d)

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4

P
o

w
e
r

(m
W

)

Injection Rate (flits/cycle)

Number of Virtual Channels

No-DVFS

RMSD

DMSD

8
4

2

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e
r

(m
W

)

Injection Rate (flits/cycle)

Virtual Channel Buffers

No-DVFS

RMSD

DMSD

16
8

4

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e
r

(m
W

)

Injection Rate (flits/cycle)

Packet Size

No-DVFS

RMSD

DMSD

10
15

20

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.1 0.2 0.3 0.4

P
o

w
e
r

(m
W

)

Injection Rate (flits/cycle)

Mesh Size

No-DVFS

RMSD

DMSD

8x8

5x5

4x4

(e) (f) (g) (h)

Fig. 8. RMSD vs DMSD delays and power, sensitivity analysis under uniform traffic, when varying: virtual channels (a)(e), buffer size (b)(f), packet size
(c)(g), mesh size (d)(h).

The results of our analysis are reported in Fig. 10. The
injection rate in x-axis is proportional to the application speed,

which is normalized to the case of 75 frames/second. Once
again, experimental results confirm that even in the realistic

420

motion
estimation

video
in

YUV
generator

padding for MV
computation

motion
compensation

transform
(DCT)

quantization
(Q)

IQ
entropy
encoder

de−blocking
filter

sample
hold

stream
outIDCT

chroma
resampler

predictor

840 280

280

280560

140 420 210

66

3

3

228 66

24 60

24

221

228

(a)

4200motion
compensation

entropy
encoder

stream mux
memory

de−blocking
filter

predictor IDCT

padding for MV
computation

IQ
quantization

(Q)

sample
hold

transform
(DCT)SRAM IFFT

YUV
generator

motion
estimation

modulator
(OFDM)

video in
memory

memory
audio in PS/TS

mux

filter
bank FFT

chroma
resampler

MDCT Quantizer
Huffman
encoding

8400

2800

2800

5600 28001400

30

2280 4200

42002280

2210 240 240 660

6602100

640

30

2000 600 640

90

620

90 90

90

30 20

20

(b)

Fig. 9. H.264 (a) and VCE (b) communication graphs and NoC mapping.

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

App Speed (relative units)

H.264

No-DVFS

RMSD

DMSD

2x

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.2 0.4 0.6 0.8 1

P
a

c
k

e
t

D
e

la
y

 (
n

s
)

App Speed (relative units)

VCE

No-DVFS

RMSD

DMSD

2.1x

(a) (b)

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

P
o

w
e

r
(m

W
)

App Speed (relative units)

H.264

No-DVFS

RMSD

DMSD

1.4x

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

P
o

w
e

r
(m

W
)

App Speed (relative units)

VCE

No-DVFS

RMSD

DMSD

1.4x

(c) (d)

Fig. 10. RMSD vs DMSD delays and power under multimedia traffic. Delay:
H264 (a), VCE (b). Power: H264 (c), VCE (d).

multimedia scenario, the additional power saving of an RMSD
policy corresponds to a significant increase of the average
NoC delay. The performance of encoders like those considered
here, is often expressed in terms of application latency (in
milliseconds). It is clear that the additional delay caused by the
DVFS policy can significantly compromise the performance.
For this reason we believe that minimizing the NoC power
consumption at the cost of a largely increased application delay,

as it happens with an RMSD policy, is not the best solution.
A better trade-off will be obtained, instead, if the target delay
is kept constant, and the power is minimized under the delay
constraint, as it happens with a DMSD policy.

VII. CONCLUSION

In this paper we analyzed the power-delay trade-off in
NoCs with DVFS. We showed that an aggressive strategy
that minimizes power consumption disregarding NoC delay
pays an excessive penalty in delay performance. We propose
instead to set a target delay and to minimize power under that
constraint. We implemented a proportional-integral control-
loop that measures the average delay and makes sure that the
target is not exceeded. We found that this strategy provides
a better power-delay trade-off under various traffic scenarios.
A sensitivity analysis shows that this conclusion is true under
variations in the number of virtual channels, buffers, packet
size, and mesh size.

REFERENCES

[1] P. Salihundam et al., “A 2 Tb/s 6x4 mesh network for a single-chip cloud
computer with DVFS in 45 nm CMOS,” IEEE J. Solid-State Circuits,
vol. 46, no. 4, pp. 757–766, Apr. 2011.

[2] X. Chen et al., “In-network monitoring and control policy for DVFS of
CMP networks-on-chip and last level caches,” ACM Trans. on Design
Automation of Electronic Systems, vol. 18, no. 4, pp. 1–21, Oct. 2013.

[3] A. K. Mishra et al., “A case for dynamic frequency tuning in on-chip
networks,” in Proc. 42nd Int. Symp. Microarchitecture (MICRO-42), Dec.
2009, pp. 292–303.

[4] L. Guang, E. Nigussie, L. Koskinen, and H. Tenhunen, “Autonomous
DVFS on supply islands for energy-constrained NoC communication,”
in Arch. Comput. Sys. ARCS 2009, ser. Lect. Notes Comput. Sc., 2009,
vol. 5455, pp. 183–194.

[5] M. K. Yadav, M. R. Casu, and M. Zamboni, “LAURA-NoC: Local
automatic rate adjustment in network-on-chips with a simple DVFS,”
IEEE Trans. Circuits Syst. II, vol. 60, no. 10, pp. 647–651, Oct. 2013.

[6] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with
links for power optimization of interconnection networks,” in Proc. 9th
Int. Symp. High-Performance Computer Architecture (HPCA), 2003, pp.
123–124.

[7] N. Jiang et al., “A detailed and flexible cycle-accurate network-on-
chip simulator,” in Proc. Int. Symp. Performance Analysis Systems and
Software (ISPASS), 2013, pp. 86–96.

[8] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark, “Formal
control techniques for power-performance management,” IEEE Micro,
vol. 25, no. 5, pp. 52–62, Sep.-Oct. 2005.

[9] U. Y. Ogras, R. Marculescu, and D. Marculescu, “Variation-adaptive
feedback control for networks-on-chip with multiple clock domains,” in
Proc. 45th Design Automation Conference (DAC). ACM Press, 2008,
pp. 614–619.

[10] A. Jantsch and L. Guang, “Adaptive power management for the on-chip
communication network,” in Proc. 9th EUROMICRO Conf. on Digital
System Design (DSD’06). IEEE, 2006, pp. 649–656.

[11] X. Chen et al., “Dynamic voltage and frequency scaling for shared re-
sources in multicore processor designs,” in Proc. 50th Design Automation
Conference (DAC). ACM Press, 2013, pp. 114:1–114:7.

[12] A. Bianco, M. R. Casu, P. Giaccone, and M. Ricca, “Joint delay and
power control in single-server queueing systems,” in Proc. IEEE Online
Conf. on Green Communications (GreenCom), Oct. 2013, pp. 50–55.

[13] K. Latif, “Design space exploration for MPSoC architectures,”
Ph.D. dissertation, Univ. of Turku, Turku Center for Computer
Science (TUCS), Finland, Dec. 2013. [Online]. Available:
http://www.doria.fi/handle/10024/93883

