
24 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Distributed Architecture for the Monitoring of Clouds and CDNs: Applications to Amazon AWS / Ignacio, Bermudez;
Traverso, Stefano; Munafo', MAURIZIO MATTEO; Mellia, Marco. - In: IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - 11:4(2014), pp. 516-529. [10.1109/TNSM.2014.2362357]

Original

A Distributed Architecture for the Monitoring of Clouds and CDNs: Applications to Amazon AWS

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2014.2362357

Terms of use:

Publisher copyright

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2603561 since:

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

1

A Distributed Architecture for the Monitoring of
Clouds and CDNs: Applications to Amazon AWS

Ignacio Bermudez, Stefano Traverso, Maurizio Munafò, Marco Mellia
DET, Politecnico di Torino, Italy – {lastname}@tlc.polito.it

Abstract—Clouds and CDNs are systems that tend to separate
the content being requested by users from the physical servers
capable of serving it. From the network point of view, monitoring
and optimizing performance for the traffic they generate is a
challenging task, given the same resource can be located in
multiple places, which can in turn change at any time. The
first step in understanding Cloud and CDN systems is thus the
engineering of a monitoring platform. In this paper, we propose a
novel solution which combines passive and active measurements,
and whose workflow has been tailored to specifically characterize
the traffic generated by Cloud and CDN infrastructures.

We validate our platform by performing a longitudinal charac-
terization of the very well known Cloud and CDN infrastructure
provider Amazon Web Services (AWS). By observing the traffic
generated by more than 50,000 Internet users of an Italian ISP,
we explore the EC2, S3 and CloudFront AWS services, unveiling
their infrastructure, the pervasiveness of web-services they host,
and their traffic allocation policies as seen from our vantage
points. Most importantly, we observe their evolution over a two-
year long period.

The solution provided in this paper can be of interest for
i) developers aiming at building measurement tools for Cloud
Infrastructure Providers, ii) developers interested in failure and
anomaly detection systems, and iii) third-party SLA certificators
who can design systems to independently monitor performance.
At last, we believe the results about AWS presented in this paper
are interesting as they are among the first to unveil properties
of AWS as seen from the operator point of view.

I. INTRODUCTION

Last years witnessed the growth of Cloud infrastructures
that provide computing, storage and offloading capabilities on
remote datacenters, offering the opportunity to companies to
run their web-services at very competitive costs. Following
the definitions provided in [1], the Infrastructure Providers
(IP) offer the ”iron”, i.e., the hardware infrastructure, and
Infrastructure as a Service (IaaS) products represent the
virtualization technology needed to exploit such hardware. In
other words, through virtualization, a large set of computing
resources, such as storing and processing capacities can be
split, assigned, and dynamically sized to satisfy customers’
demand. Customers, or tenants, are companies that offer
their web-services without carrying on costs and risks of
building and managing their own physical infrastructure. Many
popular companies like Dropbox and Netflix to name a few,
successfully rely on IaaSes to provide their web-services.

Content Delivery Networks (CDNs) represent another crit-
ical service of the contemporary Internet and are responsible

The research leading to these results has received funding from the
European Union under the FP7 Grant Agreement n. 318627 (Integrated Project
”mPlane”) and from the BigData@Polito project.

for moving around large shares of traffic served by thousands
of datacenters to the end-users scattered worldwide [2]. A
particular feature Clouds and CDNs have in common is that,
from the network point of view, they both separate the web-
service or content from the actual server serving it. This
dramatically complicates the task of monitoring the web-
services and the provided quality. Indeed, for instance, in
the case of the CDN, the originating server offering a given
content can delegate its distribution to surrogate servers, or
caches. Similarly for Clouds, the separation between content
and the server generating it is brought by the virtualization
layer. In addition, virtual servers are often hidden by front-
end servers, e.g., load balancers. This leads to a tangle that is
very hard to understand.

Given the penetration of Cloud- and CDN-based web-
services, it is crucial to continuously monitor these systems. In
this paper we address the problem of shedding light on Cloud
and CDN infrastructures. We provide guidelines to build a
distributed measurement platform that leverages passive and
active measurements, continuously or on-demand, at a wide
variety of scales, and is specifically tailored to i) appraise the
distributed infrastructure of Clouds and CDNs, and ii) assess
and characterize the web-services relying on them.

Despite the prominent relevance of Clouds and CDNs in
nowadays Internet scenario, practically no study has focused
on the aspect of building a comprehensive measurement frame-
work to monitor them from the perspective of an Internet
Service Provider (ISP). The measurement platforms that have
been proposed in the last years, such as PerfSONAR [3]
and RIPE Atlas [4], are broad and not flexible enough to
be adapted to monitor exclusively Clouds and CDNs. Other
solutions such as CloudCmp [5] and C-Mart [6], focus on
comparing the performance of different Cloud providers by
running benchmarks. Cloud providers often offer APIs (e.g.,
Amazon CloudWatch1) to provide a detailed view on the
Cloud’s internal state (e.g., per-instance CPU utilization, disk
read/write rates, etc.). The measurement platform we design
in this paper complements existing monitoring approaches,
adding a detailed user-side perspective on the network traffic
generated by the web-services running on the Cloud or CDN.
Moreover, differently from in-IaaS performance evaluation
frameworks, our platform can answer other kinds of questions:
how much traffic does a Cloud/CDN generate? which kind
of web-services does it run? how well do the web-services
perform in terms of QoS? how geo-diverse is their deploy-

1http://aws.amazon.com/cloudwatch/

http://aws.amazon.com/cloudwatch/

2

ment? are there problems due to the network, to the datacenter,
or to a particular virtual instance? how do Cloud and CDN
infrastructures evolve over time? To answer those questions,
one has to properly identify i) which web-services run on the
targeted IaaS, ii) where the datacenters are, and iii) define
proper measurement indexes.

Answering such kind of questions constitutes a big chal-
lenge, and measurements are the first step to shed light on
the obscure functioning of Clouds and CDNs, and to open the
possibility for a better design and management.

We instantiate the general measurement framework envi-
sioned by the mPlane project [7], [8] to specifically monitor
Cloud/CDN-based web-services. Thus, we first present how
we adapt the mPlane components and workflow for this
specific monitoring task. Second, we detail the metrics and
the methodologies we adopted to evaluate the performance,
the QoS and the network cost of web-services relying on
Cloud and CDN systems. Third, we describe how the whole
measurement process can be made automatic at every step,
from the collection of passive measurement of traffic to the
presentation of results.

We validate our measurement platform to characterize Ama-
zon Web Services (AWS), the leading Cloud Infrastructure
Provider. AWS includes a complete range of IaaS products.
The most well-know are Elastic Compute Cloud (EC2)2 which
provides resizeable compute capacity in the Cloud by means
of virtualized servers, and Simple Storage Service (S3)3 which
offers a service to store/retrieve files into/from the Cloud.
Less known, AWS integrates a CDN, named CloudFront4, to
distribute content to end-users with low latency and high data
transfer speeds. Our analysis relies on network traffic that has
been collected from our University campus and from three
large Points of Presence (PoPs) of an Italian country-wide
ISP. In total we observed the traffic of more than 50,000 users
for a two-year long period. We dig into various time portions
of our dataset to analyze the evolution over time of AWS,
to reveal, e.g., the number of datacenters5, their locations,
and performance as perceived by the ISP customers. Second,
we investigate several popular Cloud/CDN-based web-services
that run on AWS to show their dynamics and how they perform
with respect to the overall performance of the datacenters they
rely on.

A. Our Contributions
In a nutshell, the contribution of this paper can be resumed

in the following:
• We provide the guidelines to design and engineer a platform
to passively and actively monitor Cloud and CDN infrastruc-
tures in a continuous manner.
• We present and exploit some novel active measurement
technique (e.g., HTTP-knocking) to overcome the separation
between web-services and servers that is caused by virtualiza-
tion (surrogate caches) in Cloud (CDN) systems. Identifying

2http://aws.amazon.com/ec2/
3http://aws.amazon.com/s3/
4http://aws.amazon.com/cloudfront/
5Datacenters are named Availability Zones in AWS terminology. We use

both terms interchangeably in the remainder of the paper.

the physical servers which are hosting given web-services is
indeed a crucial task to investigate the traffic generated by
Clouds and CDNs.
•We validate such platform by running a comprehensive anal-
ysis of Amazon Web Services. Some of the main observations
we obtain from the results of such analysis are i) some of AWS
datacenters have notably improved their performance between
2012 and 2013, ii) most of the tenants tend to concentrate
their web-services on a single datacenter, thus increasing the
latency experienced by farther end-users, and possibly the cost
for the network.

B. Possible Use-cases

The measurement platform for Cloud and CDN traffic which
we propose in this paper may be useful for a plethora of IT
figures: i) Researchers are interested in understanding how
Clouds and CDNs work, how they perform, and how their
design can be improved. ii) Tenants need a (preferentially
third-party) assessment of performance to make informed
decisions when choosing the best IaaS on the market to roll
out their web-service; Once deployed, they need to verify the
Service Level Agreement (SLA) they subscribed to, possibly
from the user-side perspective. E.g., they aim at evaluating
the reactiveness and reliability of virtual instances hosting
their web-services, or the goodput of the CDN caches serving
their contents. Moreover, they need tools to accelerate the
QoS troubleshooting process, and to capture the root cause
behind a QoS degradation (which may also reside out of the
Cloud/CDN, i.e., in the network or in the client). iii) ISPs can
exploit measurements to optimize their networks for specific
web-services their customer are interested in, and even offer a
third-party cross-Cloud-provider monitoring service to tenants
interested at understanding how their web-services perform
from the point of view of the end-users. iv) Finally, end-
users can be offered automatic failure and anomaly detection
systems which so far rely on communities’ reports [9] or active
measurements [10].

The rest of this paper is organized as follows: Sec. II
presents the measurement architecture and its components. In
Secs. III, IV-A and IV-B we describe the methodology, the
techniques and the metrics, respectively, we design specifically
for the analysis of Cloud and CDN traffic. Sec. IV-C overviews
the data collection procedure and the datasets we employ for
this study. In Sec. V we present the measurement results about
the AWS infrastructure, and the web-services running on it.
Sec. VI presents the performance results. Finally, Sec. VII
summaries the related work, and Sec. VIII concludes the
paper.

II. MEASUREMENT ARCHITECTURE

In this section we first provide a high level overview of the
distributed measurement architecture proposed by the mPlane
project (more details on the generic infrastructure are available
in [7], [8]). Then, we describe how we implement and deploy
mPlane components for this study.

3

Figure 1: The mPlane measurement architecture and its components (left-hand side of the figure): probes continuously collect
traffic measurements, which are periodically exported to the repository (red arrows). The repository consolidate, filter and
aggregate the measurements for further analysis. The Supervisor orchestrates other components, instruments the probes to
launch active measurements and the repository to launch further data processing (dotted blue arrows). The right-hand side
of the figure reports the monitoring workflow (black arrows refer to interactions among different components): 1) Passive
probes collect traffic measurements and export them to the repository, 2) the Supervisor instruments the repository to filter
the Cloud/CDN traffic we are interested into, 3) active measurements are run to augment the information collected by passive
probes, 4) aggregate measures, performance indexes, location of the servers, etc. are executed, and 5) the Supervisor launches
sophisticated algorithms with different high level aims.

A. mPlane Measurement architecture

As depicted in the left part of Fig. 1, the architecture consists
of three kinds of components, namely probes, repositories and
supervisors. They interoperate thanks to a standard protocol,
and are logically organized into three main layers:

1) The Measurement Layer: it consists of a set of probes
located at several vantage points within the monitored
network. In general, they generate large amounts of data.
The measurement may be active, e.g., the output of a
simple traceroute, or may be passive, e.g., the packet
level trace of traffic flowing on a link. Each probe per-
forms measurements either on demand or continuously,
and then periodically exports data to curb local storage
space requirements.

2) The Analysis Layer: it consists of repositories which
collect and aggregate data generated by probes. Apart
from the storage capacity, the Analysis layer includes
analysis routines which iteratively process the measure-
ment data. Such processing may involve filtering, clas-
sification and computation of performance indices. The
result is a higher level of aggregated measurements that
can form another source of data as well.

3) The Management Layer: it is governed by the
Supervisor which, beside orchestrating other components,
it further processes the aggregated data made available
by the Analysis Layer. Here, high level algorithms are
executed, for instance, for anomaly detection or trend
estimation tasks.

B. mPlane Deployment
1) Probes: For this study, we rely on a measurement layer

composed by three probes installed in the operational
network of an Italian nation-wide ISP. In total our probes
monitor the traffic of more than 50,000 residential users
regularly accessing the Internet through ADSL and FTTH
technologies. A fourth probe is installed in Politecnico’s
campus network to monitor the traffic of 12,000 users,
including students and personnel accessing the Internet
through wired and WiFi networks. In our deployment, the
passive probes are based on Tstat6, an advanced passive
monitoring tool developed at Politecnico di Torino. It
analyses packets sent and received by terminals inside
the monitored network [11]. Tstat rebuilds TCP and UDP
flows carried on the monitored link. For each, it logs more
that 100 statistics, e.g., IP addresses and port numbers,
number of bytes, protocol used, etc. Tstat generates one-
hour long logs, temporarily stored on the probe. Tstat
does not log any personal information about end-users
to preserve their privacy. We equip the same machines
running Tstat to act as active probes on demand, for
instance, to run traceroute and HTTP-knocking tests (see
Sec. III for a detailed description).

2) Repository: Our repository consists of a NAS device
with a 32TB storage capacity. It periodically downloads
data from the four probes at night, i.e., during low
network usage period, in order to not interfere with Tstat
activity. Once on the repository, we consolidate passive
and active measurements in tables, and a set of automatic
scripts processes them to filter out useless information,

6http://www.tstat.polito.it

http://www.tstat.polito.it

4

compute index distributions and produce aggregated time-
series.

3) Supervisor: since we do not employ any advanced anal-
ysis for this study, the Supervisor’s main task consists of
instrumenting the probes to run passive and active mea-
surements, and the repository to periodically download
the measurement data.

III. ANALYSIS METHODOLOGY FOR CLOUD AND CDN
TRAFFIC

In our design, we follow the principle of preferentially
exploiting passive measurements, and limiting active measure-
ments as much as possible. The major benefit of exploiting
passive measurements is that they not alter the working
point of the system which faces only the actual workload
generated by users. As such, they allow us to characterize the
actual performance of web-services being accessed by regular
customers.

A. Background
We have to face several challenges when passively monitor-

ing Clouds and CDNs: the separation between web-service (or
content) and server, and the wide variety of applications make
it hard to identify which web-service end-users access, and in
which datacenter the server hosting the web-service resides.
In Clouds and CDNs indeed, virtualization, load-balancing
and migration techniques do not allow to simply rely on
information collected from the Network Layer to identify the
web-service, i.e., the server IP address and the name of the
Organization that officially registered it often give very limited
information on what is being served. For instance, different
web-services can share the same IP address, e.g., as done
by CDNs. In addition, the increasing adoption of TLS/SSL
encryption by content providers [2] makes the classic Deep
Packet Inspection (DPI) approach ineffective.

Consider the same server hosting www.acmegame.com and
www.acmeshop.com; both are delivered only via HTTPS, and
run on the AcmeCloud infrastructure. Via passive monitoring,
the only useful information that can be obtained is related
to the IP addresses of instances hosting them; supposing IP
addresses are officially registered to AcmeCloud, we can dis-
cover that both are handled by AcmeCloud. However, we can
not infer any indication about the web-service just by looking
at information from the Network and Transport Layers.

Similarly, identifying which datacenter is being used, and
its location is not trivial. This information is important to
understand eventual performance issues, e.g., related to high
latency due to the distance between the user and the datacenter.
Indeed, it is well-known that most of publicly available geolo-
cation databases are not reliable when querying information of
Cloud or CDN providers [12]. Furthermore, this information
becomes often outdated given the constant evolution of Cloud
infrastructures.

All these observations make the monitoring of traffic gen-
erated by Cloud and CDN systems a complicated task. In
the following we describe the techniques we engineer to
overcome such hurdles, and how we embed them to work in
the measurement platform described in Sec. II-B.

B. The Measurement Workflow

In Fig. 1 we depict the steps which compose our monitoring
workflow. Each operation is mapped to the proper measure-
ment component.
Step 1 - Passive monitoring (Tstat + DN-Hunter): Passive
Tstat probes provide the continuous collection of traffic logs.
This data constitutes the basic brick for our analysis. To iden-
tify the content retrieved by end-users from a server belonging
to a certain organization, we exploit a Tstat extension, named
DN-Hunter [13]. It snoops DNS responses obtained by clients
when resolving hostnames into IP addresses, and then uses this
information to annotate TCP/UDP flows with the the original
server hostname. Following the example described above, end-
user’s client accessing www.acmegame.com has first to resolve
the server hostname into a list of IP addresses by contacting
the DNS resolver. Then, the client contacts one of the returned
IP addresses to fetch the actual content. DN-Hunter records
all DNS responses, and then it associates the server hostname
to the TCP flows originated by the same client and directed to
one IP address of servers returned in a given response, i.e.,
associating www.acmegame.com to the observed TCP flow.
This key feature allows us to gather information about the
original web-service name contacted by clients. Details on
DN-Hunter are out of the scope of this paper, and can be
found in [13].
Step 2 - Target service filtering: The definition of the set
of Clouds or CDNs to consider for the analysis is given by
the analyst through the Supervisor. This set is used to filter
the raw data. In our validation, we preserve only those flows
whose server IP addresses are registered to Amazon according
to the MaxMind database7. The output is a subset of Tstat
logs, where only traffic related to the targeted organizations is
present.
Step 3 - Augmenting information by active probes: We
next augment the information about servers and infrastructure
by means of active measurements. This operation is executed
by active probes, marked with “A” in Fig.1, installed within
the monitored network to guarantee that no bias is introduced
into the results. In parallel, and for each discovered server
IP address, active probes i) execute the HTTP-knocking8,
ii) perform a DNS reverse lookup to retrieve the “Type-A”
record [14], i.e., the original name of IP address as registered
by the targeted organization, and iii) run traceroute to retrieve
network path information, such as number of traversed hops
or autonomous systems. We can also plug extra modules to
retrieve additional information.
Step 4 - Geolocation and performance collection: The
repository runs a geolocation routine to identify the server’s
physical location. The geolocation of IP addresses is a well-
known problem. Common public databases, such as RIPE [4],
ARIN [15] or MaxMind, are not reliable when seeking for in-
formation about the physical location of CDN edge servers and

7http://www.maxmind.com//en/organization
8Probes perform a HTTP HEAD requests to server. The Server field

of the HTTP response is inspected to classify the hosted IaaS product.
For instance, AmazonS3 or CloudFront is returned for AWS S3 and
CloudFront servers, respectively.

http://www.maxmind.com//en/organization

5

Cloud datacenters [12], and we must adopt other methodolo-
gies. In our validation, we rely on the information provided at
DNS level again. Indeed, the record returned when performing
the reverse lookup of IP addresses unveils information about
server placement by exposing the International Air Transport
Association (IATA) airport location identifiers. This is com-
mon with other CDN infrastructures [16]. Alternatively, we
can instrument active probes to measure “network” distances,
which combined with multilateration techniques can lead to
fairly precise geolocation [17].

Once we collect all above information, we compute per-
formance measurements on different dataset portions and at
several time scales. Details are provided in Sec.IV.
Step 5 - Visualization and time analysis: At last, the repos-
itory exports the results of its processing to the supervisor,
which processes the time series, and presents them in a
dashboard for an easy visualization. The same results can be
employed as input for high-level algorithms such as change
detection, or trend comparison and forecasting.

In a nutshell, passive probes continuously provide new data
(step 1), which we filter at the repositories (step 2) as soon as it
arrives. We run active measurements (step 3) and geolocation
(steps 4) asynchronously, e.g., once per day. The extraction of
performance indexes is executed typically following a batch
approach, i.e., every ∆T = 5min a new batch is formed and
analyzed. The final output is thus a time series of aggregated
measurements, which we store in the repository again, and
sophisticated algorithms can further process for high level
purposes.

IV. MEASUREMENT AND DATASET DEFINITION

In the following section we describe the metrics and datasets
we consider to characterize Clouds and CDNs.

A. Per-flow Metrics

Among the measurements provided by Tstat, for each flow,
we consider i) the server IP address, ii) the hostname as
retrieved by DN-Hunter, iii) the flow RTT, iv) the amount
of bytes (sent and received), v) the application layer protocol,
e.g., HTTP and HTTPS, and vi) timestamps of packets that
are instrumental to obtain further indices – see Fig. 2. These
metrics are straightforward to monitor, and details can be
found on [11]. In particular, we define:

1) Response Time: it is the time the server employs to
send the reply after receiving the first request from a client.
Let TAck be the timestamp of the first TCP ACK message
server sends with the relative ACK number greater than 1, i.e.,
acknowledging the reception of some data sent by the client.
Let TResponse be the timestamp of the first TCP segment the
server sends carrying application data. The define the response
time9 as

∆̂R = TResponse − TAck. (1)

9Notice that the probe measures the timestamps at vantage points close to
the users. Therefore, for some metric X (as RTTCS) we can only gauge its
estimated measure X̂ .

Figure 2: Example of time line of a TCP-based client-server
transaction.

As depicted in Fig. 2, for HTTP flows, it represents a measure
of the time the server takes to elaborate and transmit the
response for the first HTTP request10 (e.g. an HTTP response).

2) Flow Goodput: we define it as the rate at which the
server delivers information generated at Application Layer to
the client. Let TResponse and TLast be the timestamps of the
first and the last data packet the server sends, and let D be
the size of the application payload the server sends. We thus
define the server goodput as

G =
D

TLast − TResponse
. (2)

To avoid the bias of short-lived flows, we evaluate the server
goodput only on flows for which D > 500kB.

B. Network Cost

We aim at evaluating the cost sustained by the network
to transport data generated by AWS servers to the end-users.
To this extent, we define the Network Cost as the weighted
average of the distance traveled by information units. Formally,
given a TCP flow from client c to server s, let B(c, s) be the
amount of exchanged bytes, and let D(c, s) be the distance
between client c and server s. We compute the resulting
network cost β(s) for a given server s as

β(s) =

∑
cD(c, s)B(c, s)∑

cB(c, s)
. (3)

The average network cost of servers in datacenter S results

β(S) = E[β(s)|s ∈ S]. (4)

We can thus consider different definitions of distance, D(c, s):
the TCP connection average RTT11, the number of traversed

10We consider the response time for HTTP flows whose request is contained
in one TCP segment to avoid the bias introduced by multiple segment requests.

11Observe that installing the probes in PoPs on the path between user’s
access networks and the servers allows us to gauge estimations of the round
trip time R̂TTCS and number of hops ÂSCS that exclude the eventual noise
introduced by the access network (see Fig 2). For instance, we filter out extra
delays introduced by lossy WiFi or ADSL channels.

6

AS or hops on the path12, the geodetic physical distance.
These are leading respectively to DRTT (c, s), DAS(c, s),
Dhops(c, s), Dkm(c, s). Thus, we obtain different network
cost metrics βRTT , βAS , βkm, respectively. Observe, that
βRTT and βkm represent good indices to understand how large
is the distance packets have to travel before reaching their
destination. As the RTT linearly increases with the physical
distance between clients and servers [18], we expect them to be
tightly related. Instead, βAS allows us to roughly understand
how large is (in terms of hops) the distance traveled before
reaching the Cloud provider’s network (AWS in our case), or
conversely, how many Autonomous Systems the content has
to pass through before it is delivered.

For the sake of simplicity, we employed βRTT and βAS in
our characterization of Amazon AWS.

C. Datasets

For this study, we rely on a measurement layer composed
by three passive probes installed in the operational network of
an Italian nation-wide ISP. One further probe was installed in
Politecnico’s campus network. In the following we present a
study of a snapshot of the measurements that form a “static”
dataset.

Our dataset consists of traffic measurements which we
collected since March 2012 to September 2013, observing
end-users normally accessing the Internet. In the following,
we restrict our analysis on traffic collected during two entire
weeks: 1st to 7th April 2012 (1Week-2012), and 10th to 16th
June 2013 (1Week-2013). We complement these one week long
traces with a longer one, namely 3Months-2013, which spans
a period of three months, from April to June 2013 during
which we consider one day for each week. Table I resumes
the details about considered traces.

Trace Period Observed Days Connections
1Week-2012 01/04/12-07/04/12 7 days 7.02 M
1Week-2013 10/06/13-16/06/13 7 days 12.2 M

3Months-2013 01/04/13-26/06/13 12 days 21.6 M

Table I: Measurement traces considered in this study.

In order to minimize the bias due to changes in the
measurement scenario, we present results collected from the
same vantage point, i.e., by one of our three ISP probes where
more than 16,000 users are present. Results from other vantage
points show identical characteristics so that the findings we
present are general and not biased by the observation point.

We acknowledge that some of the results in this paper are
the point of view of a single ISP. Naturally, we expect that
some observations can change if we analyze traffic in another
ISP or geographical region.

V. CHARACTERIZATION OF AWS

As explained in Sec. III, we parse the server hostname
and the HTTP response to a HTTP-knocking test to extract
information about the IaaS product and geolocation of servers.

12The number of traversed AS is obtained running a traceroute from the
probes and checking the AS of returned routers. For the number of hops we
simply count the number of traversed routers.

 1e+10

 1e+11

04/06
2013

04/20
2013

05/04
2013

05/18
2013

06/01
2013

06/15
2013

B
y

te
s

Time

EC2
CloudFront

S3

(a) Exchanged data volume.

 0

 0.2

 0.4

 0.6

 0.8

 1

04/06

2013

04/20

2013

05/04

2013

05/18

2013

06/01

2013

06/15

2013

P
e
n

e
tr

a
ti

o
n

 I
n

d
e
x

Time

EC2

CloudFront

S3

(b) Penetration index.

Figure 3: Evolution over time of different diffusion indexes
for EC2, S3 and CloudFront services in 3Months-2013 trace.

Our measurements show that EC2, CloudFront and S3 servers
use different ranges of IP addresses, thus easing their identi-
fication. Furthermore IP addresses are statically assigned for
S3 and CloudFront servers. As such, we can easily split traffic
among EC2, S3 and CloudFront.

Considering server geolocation, the standard International
Air Transport Association (IATA) airport location identifiers
are used in the Type-A records of AWS servers, e.g., for
CloudFront the Type-A name is in the form server-a-b-c-
d.AIR.r.cloudfront.net, where AIR is the IATA airport code
of the nearest large airport. We verify their accuracy with
the multilateration technique described in [17]. This notably
simplifies the geolocation operation in our processing. In
the remainder of this paper, we use IATA codes to identify
datacenters instead of conventional names of AWS Availability
Zones.

Next, we present a high level characterization of the traffic
and workload AWS generate. For each day in the 3Months-
2013 trace, we compute the volumes of data (in bytes)
exchanged with AWS servers and the fraction of customers
that contacted at least one AWS service, i.e., the penetration
index of AWS.

Plots of Fig. 3 report our results. Interestingly, both plots of
Fig. 3 show that the footprint of AWS is rather stable in time,
indicating that the growth rate of EC2, S3 and CloudFront
is quite marginal for the considered period: On a daily basis,
about 60% of end-users access some EC2 hosted web-service,
exchanging about 50GB of traffic. S3 comes second, with
approximatively 25% of end-users accessing directly to S3
services, and exchanging a volume of about 35GB per day.
Scaling this to the total number of ISP customers, EC2 and
S3 generate about 10TB of daily traffic, corresponding to about

7

 10000

 100000

06/11

2013

06/12

2013

06/13

2013

06/14

2013

06/15

2013

06/16

2013

F
lo

w
s

Time

EC2 CloudFront S3

(a) Evolution over time of the number of flows.

 0

 0.25

 0.5

 0.75

 1

 0 50000 100000 150000 200000

C
D

F

Flow Size [B]

EC2
CloudFront

S3

(b) Distribution of the flow size.

Figure 4: Flow information for for EC2, S3 and CloudFront
services. 1Week-2013 trace.

3% of total web traffic.
Even if we expect CloudFront and S3 to handle large files,

EC2 is the service with the largest footprint. To better show
this, top plot in Fig. 4a presents the evolution over time of
the number of flows for EC2, S3 and CloudFront. Fig. 4b
details instead the Cumulative Distribution Function (CDF) of
the flow size. As shown, the number of flows handled by S3
and CloudFront are one and two orders of magnitude lower
that EC2, but they carry larger payload than EC2 (the average
amount of data are 39kB, 257kB and 383kB for EC2, S3 and
CloudFront, respectively).

Further, around 50% of CloudFront flows present a size
smaller than 10kB, mostly probably being CSS or JavaScript
files employed for the rendering of web-pages. 20% of flows,
which present a size larger than 100kB, carry binary data, e.g.,
Flash objects or images. Differences between size of contents
served by different caches are negligible. S3 flows show in
general the same size distribution as CloudFront flows. The
average size of contents distributed by CloudFront and S3 is
78kB for both. EC2 flows are smaller in general, being the
60% of them less than 1kB. These could carry small XML
files or JSON messages directed to APIs. For these files,
the TCP three-way-handshake and tear-down procedures last
longer than the data transfer.
Summary 1: CloudFront and S3 host contents which present a
larger size with respect to EC2. However, given the popularity
of web-services relying on EC2, the overall amount of traffic
EC2 generates is larger than S3 and CloudFront.

We now focus on the spatial allocation of traffic and
resources among different AWS datacenters. We detail the
traffic they generate, the number of web-services they host,

 0

 0.25

 0.5

 0.75

 1

 0 100 200 300 400 500

C
D

F

MinRTT [ms]

DUB
IAD
NRT
SIN

SEA
SJC

(a) 2012

 0

 0.25

 0.5

 0.75

 1

 0 100 200 300 400 500

C
D

F

MinRTT [ms]

DUB
IAD
NRT
SIN

SEA
SJC

(b) 2013

Figure 5: Distributions of the minimum RTT measured in our
EC2 datasets for different datacenters.

and the costs for the network. We consider both 1Week-2012
and 1Week-2013 traces.

A. EC2 and S3

Tables II and III report information about EC2 and S3, in
2012 and 2013, respectively. Each row in the table represents
traffic exchanged with a different datacenter, that we identify
with its IATA code. For each of them, we detail the number
of observed server IP addresses, the shares of traffic, the share
of hosted web-services13, the network costs βRTT and βAS .
To ease the visualization we highlight the most significant
information using bold fonts.

Several observations hold. First, the number of server IP
addresses for EC2 is much larger than S3 and CloudFront. This
is due to the nature of EC2 itself, that, allocates indipentend
EC2 instances, each one, in general, equipped with a different
public IP address. For S3 the same server can deliver different
contents by using different URIs. Allocating multiple IP
addresses is thus useless in this case.

Second, the datacenters located in Virginia (IAD) and
Ireland (DUB) are the most used from the perspective of an
ISP located in Italy. We highlight in bold font the most notable
statistics about these two datacenters. California (SJC) comes
third, handling about 8% and 7% of EC2 web-services in 2012
and 2013, but only less than 2% of traffic.

The number of server IP addresses we observe in 2012 (for
both EC2 and S3) and 2013 highlights that AWS resources
have doubled in one year. Clearly, this has performance
implications, as we will show later.

13We identify a web-service with the domain name of the hosting server
returned by DN-Hunter.

8

ID #IPs Exchanged Data Web-services βRTT [ms] βAS

EC2 S3 EC2 S3 EC2 EC2 S3
IAD 6603 100 86.03% 65.57% 68.95% 113.97 116.18 3
DUB 1218 11 12.29% 32.86% 20.21% 48.73 43.77 3
SJC 620 7 1.60% – 7.94% 182.14 174.81 4
NAR 20 0 – – 0.47% – – 4
SIN 75 0 0.03% – 1.62% 228.10 – 3
SEA 0 0 – – 0.81% – – 4

Table II: Amazon’s datacenters hosting EC2 and S3 we located
in 1Week-2012.

ID #IPs Exchanged Data Web-services βRTT [ms] βAS

EC2 S3 EC2 S3 EC2 EC2 S3
IAD 12697 199 87.71% 15.28% 59.61% 106.52 118.19 3
DUB 4042 39 10.20% 81.89% 26.79% 38.14 44.83 3
SJC 984 24 0.78% 1.60% 5.96% 172.29 184.81 3
NAR 361 0 – – 1.44% 318.16 – 3
SIN 188 18 – – 1.26% 297.18 303.11 3
SEA 768 0 1.0% – 4.95% 184.81 – 3

Table III: Amazon’s datacenters hosting EC2 and S3 we located
in 1Week-2013.

Interestingly, both the large unbalance in the number of
instances (number of IP addresses in EC2 column) and the
share of web-services shows that the IAD datacenter is by far
the most popular among tenants running EC2 instances: IAD
generates more than 85% of the total amount of EC2 traffic,
i.e., roughly 7 times more than the volume handled by the
DUB datacenter. This confirms that IAD datacenter is much
larger than all the others.14

Consider now the CDF of the minimum RTT among
each flow depicted in Figs. 5a and 5b for 2012 and 2013,
respectively. The minimum RTT CDF is very sharp, reflecting
the network distance from the vantage point to the datacenter.

As expected, DUB is the closest for European users (Dublin,
IR, RTT < 30ms), followed by IAD (Dulles, VA, RTT >
100ms), US West-Coast datacenters in SJC (San Jose, CA,
RTT > 160ms) and SEA (Seattle, WA, RTT > 170ms).
Asian datacenters have very high RTT , with NRT (Narita,
JP) being close to 300ms. Curiously, the minimum RTT
towards SIN (Singapore, SG) datacenter is affected by some
very heterogeneous multipath routing policy which we do not
observe in 2012, but is clearly evident in 2013. We double-
check this against traceroute data and find it to be still present
at the time of the writing of this paper.

Clearly, the RTT plays important role when considering
application performance and Quality of Experience (QoE).
From a network point of view, the cost of transferring data
is also important. βRTT cost, indeed, looks sizeable for IAD,
being from 230% to 490% more expensive than the DUB
datacenter. One may expect DUB to be the best candidate
to host EC2 instances for serving Italian (and European)
end-users. Our intuition is that, for the sake of a simpler
management, tenants are oriented to deploy their web-services
on one datacenter only. IAD represents their first choice
because of its lower price.15

This bias is also explained by the lack of location-aware
load-balancing policy for EC2. Indeed, AWS offer load-
balancing-based forwarders for incoming traffic, but none of
these are based on the geolocation of end-users. Thus load-
balancing is effective among servers inside a give zone. This
comes at the expenses of network cost, and, possibly, user
experience.

Comparing 2012 with 2013, we observe no substantial
change in shares for EC2. However, a huge shift has happened
for S3 services: DUB generates more than 81% of traffic in
2013, while it was below 33% in 2012. Indeed, tenants can
now exploit S3 load-balancers to route end-users’ requests

14http://aws.amazon.com/about-aws/globalinfrastructure/
15http://aws.amazon.com/ec2/pricing/

towards the closest datacenter, thus improving the latencies
and saving bandwidth.16

Focusing now on βAS , we see that no major differences
are present when routing traffic to different datacenters. This
reflects the fact that Amazon (and the monitored ISP) had
very good peering agreements with many providers in 2012,
and possibly improved them further in 2013.

At last, left plots in Figs. 6 and 7 report the evolution over
time of the share of volumes of data traffic seen from the
top three datacenters for EC2, for 2012 and 2013 datasets
respectively. Each point refers to a 4h long time interval,
covering an entire week. Other datasets and periods of time
show very similar trends.

Starting from the leftmost plot, we show that EC2 IAD
zone consistently provides much larger amount of traffic with
respect to DUB and SJC. The gap between IAD and DUB has
even widened in 2013 with respect to 2012, confirming that
IAD datacenter is the most employed by tenants.

Center plot refers to S3. The today preference for the DUB
datacenter is confirmed.
Summary 2: We first observe that Amazon has notably
increased the resources for the datacenters hosting EC2 and
S3 between 2012 and 2013. Second, from a European ISP
perspective, IAD and DUB datacenters are the two most em-
ployed by Amazon to offer EC2 and S3; however, we observe
that there is a large unbalance between IAD and DUB, as
the majority of EC2 and S3 web-services were hosted by IAD
in 2012. Interestingly, in 2013 DUB has become the leading
datacenter for S3 traffic in 2013. At last, in 2013, Amazon
has improved its peering agreements with many providers,
thus reducing the number of ASes traversed by its traffic.
Interestingly, the authors of [19] lead to similar observations,
but from a different country (US).

B. EC2 Web-service Analysis

Table IVa and Table IVb report the most popular web-
services EC2 hosts, considering the number of flows and
exchanged volume, respectively. In general, the type of web-
service is quite heterogeneous. We observe that social games
(Zynga, Farmville, Wooga and PlayFish), and by advertising
companies (InviteMedia, 360yield) generated the largest por-
tion of flows in 2012. In 2013, most of social gaming web-
services such as PlayFish and Zynga severely downscaled their
activity. This reflects the popularity of web-services among
(Italian) end-users. The only online social gaming web-service

16Tenants can upload S3 files to multiple Availability Zones, and Amazon
provides load balancing automatically among them.

9

 0
 0

.1
 0

.2
 0

.3
 0

.4
 0

.5
 0

.6
 0

.7
 0

.8
 0

.9

 1

00:00

04/01

00:00

04/02

00:00

04/03

00:00

04/04

00:00

04/05

00:00

04/06

00:00

04/07

00:00

04/08

F
ra

c
ti

o
n

Time

IAD

DUB

SJC

(a) EC2.

 0

 0.2

 0.4

 0.6

 0.8

 1

00:00

04/01

00:00

04/02

00:00

04/03

00:00

04/04

00:00

04/05

00:00

04/06

00:00

04/07

00:00

04/08

F
ra

c
ti

o
n

Time

IAD

DUB

SJC

(b) S3.

 0

 0.2

 0.4

 0.6

 0.8

 1

00:00

04/01

00:00

04/02

00:00

04/03

00:00

04/04

00:00

04/05

00:00

04/06

00:00

04/07

00:00

04/08

F
ra

c
ti

o
n

Time

MXP

FRA1

CDG

Others

(c) CloudFront.

Figure 6: Evolution over time of data traffic volume for the three considered AWS services. 2012 dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

00:00

06/10

00:00

06/11

00:00

06/12

00:00

06/13

00:00

06/14

00:00

06/15

00:00

06/16

00:00

06/17

F
ra

c
ti

o
n

Time

IAD

DUB

SJC

(a) EC2.

 0

 0.2

 0.4

 0.6

 0.8

 1

00:00

06/10

00:00

06/11

00:00

06/12

00:00

06/13

00:00

06/14

00:00

06/15

00:00

06/16

00:00

06/17

F
ra

c
ti

o
n

Time

IAD

DUB

SJC

(b) S3.

 0

 0.2

 0.4

 0.6

 0.8

 1

00:00

06/10

00:00

06/11

00:00

06/12

00:00

06/13

00:00

06/14

00:00

06/15

00:00

06/16

00:00

06/17

F
ra

c
ti

o
n

Time

FRA1

FRA2

CDG

Others

(c) CloudFront.

Figure 7: Evolution over time of data traffic volume for the three considered AWS services. 2013 dataset.

20
12

da
ta

se
t

IAD DUB
Web-service Flows% DCs IPs Web-service Flows% DCs IPs

zynga 13.98 1 119 wooga 24.17 1 7
farmville 13.16 1 86 invitemedia 17.53 3 73
playfish 9.43 1 53 tp-cdn 6.21 2 5

widdit 5.87 1 16 360yield 5.51 2 17
amazonaws 4.05 6 8577 mydlink 2.24 1 6

textsrv 3.25 1 10 scee 2.14 1 7
chartbeat 3.23 1 33 cedexis-radar 2.11 4 5
bidsystem 2.08 1 19 amazonaws 2.10 6 8577

20
13

da
ta

se
t

IAD DUB
Web-service Flows% DCs IPs Web-service Flows% DCs IPs

trusted-serving 6.62 1 36 wind 5.40 1 2
trkjmp 4.34 1 30 360yield 5.19 2 34

chartbeat 3.83 1 57 wooga 3.37 2 50
betrad 3.14 1 22 tp-cdn 3.26 1 14

minecraft 2.53 1 60 samsungosp 3.14 4 304
amazonaws 2.43 8 19074 tidaltv 2.51 2 27

origin 2.41 1 249 pubnub 2.24 2 26
instagram 2.19 1 71 up2potential 1.87 1 2

(a) By number of flows.

20
12

da
ta

se
t

IAD DUB
Web-service Volume% DCs IPs Web-service Volume% DCs IPs

dropbox 51.66 1 625 wetransfer 22.78 1 16
fruitninjafrenzygame 16.83 1 26 lastampa 12.79 1 1

zynga 4.98 2 124 socialtrivia 7.11 2 3
farmville 3.86 1 86 pagestreamer 4.66 1 1
playfish 3.50 1 53 twww 3.31 1 12
tapjoyads 0.97 1 96 wooga 2.52 1 7
realtimetv 0.58 1 1 inter 2.47 2 3

widdit 0.53 1 16 mo 2.45 2 7

20
13

da
ta

se
t

IAD DUB
Web-service Volume% DCs IPs Web-service Volume% DCs IPs

dropbox 63.76 2 1308 wetransfer 33.22 2 30
dropboxusercontent 19.71 1 91 lastampa 4.88 1 4

haydaygame 1.28 1 20 samsungosp 3.85 4 304
instagram 0.96 1 122 euronics 3.36 1 1

clashofclans 0.37 1 20 wind 3.15 1 2
tapjoyads 0.32 1 96 leroymerlin 2.57 1 4
eamobile 0.27 1 82 jw 1.53 1 3

trusted-serving 0.27 1 36 qpic 1.37 1 4

(b) By volume.

Table IV: The top contents hosted by EC2.

which is present in a leading position in both 2012 and 2013
datasets is Wooga.

Most of web-services generate traffic exclusively from a sin-
gle datacenter, suggesting that the tenants do not replicate them
among different Availability Zones, as also shown in [19]. The
only notable web-services which rely on multiple datacenters
are InviteMedia and 360yield.

Considering the top web-services by volume, we notice the
important presence of storage web-services like Dropbox and
WeTransfer. The former generates almost 80% of the EC2
traffic alone in 2013 dataset. Both Dropbox and WeTransfer
doubled the number of IP addresses in 2013. We provide
further considerations about the performance of some of the
popular web-services in Sec. VI-C.

S3 web-services present similar properties as EC2. S3 web-
services are in general for storage, advertisement and social

games, but none of them appears to be accessed over different
Availability Zones.
Summary 3: We observe that i) in general tenants tend
to rely on a single datacenter for the deployment of their
web-services, and ii) storage web-services as Dropbox and
WeTransfer are responsible for generating the largest share
of traffic among EC2 web-services. These results confirm the
observations in [19].

C. CloudFront

Let us focus on CloudFront results reported in Tables V and
VI. They detail statistics about the top 14 CloudFront caches
observed in our datasets. To ease the visualization we highlight
the most significant detected caches using bold fonts. Observe
how biased was the preference towards the MXP (Milan) cache

10

C
ac

he
s

ID #IPs Exchanged Data (%) βRTT [ms] βAS

MXP 232 98.03% 21.26 3
SFO 253 0.83% 175.21 4
ANR 151 0.56% 41.48 3
LHR 182 0.17% 31.60 3
FRA 245 0.17% 21.87 2
DUB 222 0.05% 49.76 3
CDG 246 0.13% 38.43 3
AMS 205 0.04% 29.88 3
EWR 208 < 0.01% 109.53 3
NRT 115 < 0.01% – 4
SEA 64 < 0.01% – 4
SIN 51 < 0.01% – 3
IAD 2 < 0.01% 102.75 3
SJC – < 0.01% – 4

Table V: Summary of Amazon’s top 14 CloudFront
caches we located in 1Week-2012.

C
ac

he
s

ID #IPs Exchanged Data (%) βRTT [ms] βAS

FRA 797 87.76% 17.40 3
CDG 597 11.04% 24.50 3
AMS 755 0.84% 23.03 3
LHR 653 0.42% 36.22 3
NRT 453 < 0.01% 309.56 3
JFK 371 < 0.01% 109.54 4

DFW 315 < 0.01% 153.81 3
LAX 293 < 0.01% 193.93 3
SIN 291 < 0.01% 333.34 3
SFO 255 < 0.01% 170.82 3
HKG 240 < 0.01% 330.36 3
IAD 216 < 0.01% 107.86 3
JAX 164 < 0.01% 147.02 3

MXP 43 < 0.01% 41.48 3

Table VI: Summary of Amazon’s top 14 CloudFront
caches we located in 1Week-2013.

in 2012, which results the best cache considering any definition
of network costs. Surprisingly, 2013 witnesses a significant
change: the most employed caches are in Frankfurt (FRA)
and in Paris (CDG). However, even if the geographic distance
between ISP’s end-users and the cache is larger for FRA than
MXP, the βRTT has decreased. Finally, focusing on the βAS

column, the number of AS to traverse to reach a CloudFront
cache has on average decreased in 2013. This hints to some
optimization on the CloudFront CDN policy.

To complement these observations, we instrument active
probes to run experiments in which we resolve 100 different
web-service names hosted by CloudFront using more than
2,000 open DNS resolvers scattered worldwide. This process
allows us to identify possibly different CloudFront caches.
We find a total of 33 caches, each hosting a /24 subnet. We
observe the CloudFront is effective in directing ISP end-users
to the closest cache (at least in terms of RTT), as expected
for a CDN. Indeed, only less than 2% of traffic is delivered
from caches far away from end-users’ position. This may be
because of some end-users employing alternative DNS servers,
different from those provided by their ISP. For instance, both
OpenDNS and Google DNS servers direct requests from the
ISP end-users to farther caches. This is consistent with findings
in [20].

Fig. 7c depicts a further difference between 1Week-2013
and 1Week-2012. The plot shows that the load distribution is
not strongly polarized towards one cache as in Fig. 6c where
the preference for the MXP cache is very strong. Fig. 7c
shows that cache FRA1 handles a large fraction of CloudFront
traffic until the midnight of June 14, but a drastic shift appears
since June 15, when FRA1 apparently disappears leaving space
to FRA2 and CDG. While it is impossible to know why
this happened, we can conclude that CloudFront policies are
dynamic, in contrast with the static allocation of the EC2/S3
services. Furthermore, this highlights the need for persistent
monitoring of traffic to highlight sudden changes.
Summary 4: CloudFront cache in MXP has been replaced
by FRA in 2013. Interestingly, however, despite the physical
distance between end-users and the caches serving them has
increased, the RTT and the number of ASes measured in the
flows has decreased. Furthermore, we observe that the load
distribution among CloudFront caches is dynamic, and can
drastically change from a day to another.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

C
D

F

Time [ms]

DUB
SJC
IAD

(a) 2012

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

C
D

F

Response Time [ms]

DUB
SJC
IAD

(b) 2013

Figure 8: Distribution of response time ∆R for EC2 service
in different periods.

 0

 50

 100

 150

 200

 0 50 100 150 200

Q
-R

es
p
o
n
se

 T
im

e
[m

s]
 2

0
1
3

Q-Response Time [ms] 2012

IAD
DUB
SJC

Figure 9: Q-Q plot of response time ∆R (2012 vs 2013) for
EC2.

VI. PERFORMANCE MONITORING

In this section we characterize the performance of AWS
separately for each Availability Zone and, then, we focus on

11

 0

 100

 200

 300

 400

 500

20:00 00:00 04:00 08:00 12:00 16:00 20:00

R
es

p
o

n
se

 T
im

e
[m

s]

Time

IAD
DUB

(a) 2012

 0

 100

 200

 300

 400

 500

00:00 04:00 08:00 12:00 16:00 20:00

R
es

p
o

n
se

 T
im

e
[m

s]

Time

IAD
DUB

(b) 2013

Figure 10: Evolution over time of average ∆R for EC2
datacenters in different periods.

some specific web-services.

A. Availability Zone and Cache Response Time

Figs. 8a and 8b depict the distribution of the response time
∆R for EC2, in 2012 and 2013, respectively. We show the
top popular datacenters. Focusing on 2012 dataset, IAD shows
response time larger than 100ms in 30% of the cases, resulting
the worst performing datacenter. In some cases, we observe
badly engineered web-services that run on congested instances.
For instance, web-service proxy.eu.mydlink.com served from
DUB shows ∆R > 100s during some periods. However, we
observe such poor performance for many web-services running
in IAD, suggesting a problem in the datacenter. In the same
period, DUB and SJC represent a much better choice among
Availability Zones.

2013 dataset presents a general improvement of perfor-
mance in terms of response time: IAD shows a ∆R com-
parable to DUB. Instead, SJC has fallen behind. Fig. 9 which
compares ∆R in 2012 and 2013 through the mean of a Q-Q
plot, confirms such observation. If the curve falls in the area
below the main diagonal, it reflects a better response time,
worse otherwise. In this case, markers in the plot represent the
75th percentile of both distributions. The IAD 75th percentile
in 2012 corresponded to 183ms, while it falls to 20ms in 2013.
We conjecture that this improvement is due to the empowering
of the datacenters as seen in Table II and Table III. The Q-Q
plot shows also that web-services hosted on SJC datacenter
have a slower reactiveness in 2013 than in 2012 only in the
tail of the distribution.

We complement above results with Figs. 10a and 10b, which
report the evolution over time of E[∆R] for a period of one
day for EC2 in IAD and DUB, for 2012 and 2013, respectively.
Notice that the average response time is i) a highly variable
measure (and possibly biased by the different web-services

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
D

F

Response Time [ms]

ARN
MXP
SFO
FRA

(a) 2012

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
D

F

Response Time [ms]

FRA2
FRA1
CDG

(b) 2013

Figure 11: Distribution of response time ∆R for CloudFront
service in different periods.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000

Q
-G

o
o

d
p

u
t

[k
b

p
s]

 2
0

1
3

Q-Goodput [kbps] 2012

S3-DUB
S3-IAD

CloudFront

Figure 12: Q-Q plot of goodput G for the two most used S3
datacenters, IAD and DUB, and for CloudFront.

retrieved at different times), and ii) practically independent on
the time of day.

Moving to CloudFront, Figs. 11a and 11b show ∆R. In
general performance is very good, being 83% of requests in
2012 satisfied in less than 20ms in FRA, the worst performing
cache. MXP and ARN (Sweden) caches serve 80% of requests
in less than 3ms; SFO and FRA serve only 65% of requests
in less than 3ms, respectively. In 2013 we see a slight change
in performance: cache FRA2, the most contacted by ISP end-
users and the closest in terms of RTT, is the worst performing
among the popular caches, with FRA1 and CDG offering the
best reactiveness (90% of requests satisfied in less than 3ms).
Summary 5: We observe a general reactiveness improvement
in 2013 for Amazon datacenter hosting EC2. In particular,
IAD has decreased its aggregated response time by a factor
2. CloudFront caches show in general a very good reactive-
ness, even if the most contacted cache in 2013 is the worst
performing among the most popular ones.

12

 0

 50

 100

 150

 200

 0 50 100 150 200

Q
-R

es
p

o
n

se
 T

im
e

[m
s]

 2
0

1
3

Q-Response Time [ms] 2012

wooga-DUB
wooga-IAD

lastampa-DUB
samsungosp-DUB

(a) Q-Q plot of response time ∆R for three
main EC2 services.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000 8000

Q
-G

o
o

d
p

u
t

[k
b

p
s]

 2
0

1
3

Q-Goodput [kbps] 2012

dropbox-IAD
wetransfer-DUB

(b) Q-Q plot of goodput G for the two most
important EC2 services in terms of volume.

Figure 13: Performance evaluation for several services. 2012
vs 2013 comparison.

B. Availability Zone and Cache Goodput

We now focus on the evaluation of the goodput G for S3
and CloudFront services. Fig. 12 compares the distributions of
goodput between 2012 and 2013, for S3 at IAD and DUB, and
for CloudFront. Again we rely on the Q-Q plot with markers
representing the 75th percentile. In this case a line above the
main diagonal reflects an improvement. Some observations
hold: first, the 75th percentile of goodput at DUB in 2013 is
higher than 4Mb/s, while it is less 1.2Mb/s for S3 at IAD. This
difference is very likely due to the large RTT that clients face
to reach IAD (RTT >100ms); this affects the TCP congestion
control, resulting in a limited goodput. Second, there is a
improvement for S3 in DUB in 2013 with respect to 2012,
while S3 in IAD exhibits stable performance. Third, despite
the change of the cache location, i.e., from MXP to FRA, there
is a considerable performance increase for CloudFront.
Summary 6: The goodput for S3 in DUB has notably im-
proved in 2013, as well as the goodput of downloads from
CloudFront.

C. Web-service Performance Monitoring

We now focus on the performance of specific web-services
hosted by AWS.

Q-Q plot in Fig. 13a compares the distributions of response
time ∆R of three popular web-services hosted by EC2 and

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
D

F

Response Time [ms]

static
aggregate

js
instagram

img

(a) CDF (2012).

 0

 20

 40

 60

 0 20 40 60

Q
-R

es
p

o
n

se
 T

im
e

[m
s]

 2
0

1
3

Q-Response Time [ms] 2012

instagram
static

img
js

aggregate

(b) Q-Q plot (2012 vs 2013).

Figure 14: Performance in terms of response time ∆R for
different kinds of web-services which rely on CloudFront.

deployed on IAD or DUB. The markers in the plot represent
the 50th percentiles. Despite the general improvement of
performance for EC2 between 2012 and 2013, especially in
terms of reactiveness, surprisingly, users of popular web-
services such as Wooga, Instagram and LaStampa experienced
a significant decrease of performance, as their ∆R has almost
doubled in one year. This demonstrates that a careful design
and dimensioning of a web-service is a must for tenants, and
poor performance is not always due to a lack of computational
resources at the datacenter. SamsungOsp, instead, has notably
improved its reactiveness.

Consider now the two web-services which generate the
largest share of traffic volumes, i.e., Dropbox and WeTransfer.
The Q-Q plot in Fig. 13b reports the comparison of their
goodput. The markers in the plot represent the 75th percentiles.
For both of them the goodput has decreased in 2013 with
respect to 2012. This is in contrast with the observations of
Sec. VI-B, where the goodput of traffic exchanged with DUB
and IAD datacenters for S3 looks higher in 2013 than in 2012.
The WeTransfer goodput decreases in 2013 might be related to
the introduction of download rate limitations for free accounts.

At last, we analyze the performance of specific web-services
that rely on CloudFront. Fig. 14a reports the distribution of
∆R for several kinds of web-service categories contacted
by the end-users in 2012. Static refers to static content for
web-pages (e.g., HTML files), js represents JavaScript files,
img refers to binary data such as images, and Instagram is
referred to contents related to the well-known photo-sharing
web-service. For comparison, Aggregate reports the behavior
of all web-services. As previously observed, CloudFront offers
in general very good performance, being able to process 50%
of requests in less than 2ms, independently on the kind of web-

13

service and web-object. However, ∆R is consistently smaller
on average for static and JavaScript files, whereas images
and Instagram contents show large response time. This may
be due to the nature of the user-generated contents that are
the most critical to manage for CDNs, because of the size
of the catalogue, and of the small popularity of each single
content [21].

We complement above results by analyzing the difference
of performance between 2012 and 2013. The Q-Q plot in
Fig. 14b (the markers report the 80th percentiles here) shows
that the response time ∆R has improved in general, with
specific contents such as images (img) and JavaScript (js) that
are served faster in 2013 than in 2012. However, Instagram
shows much worse performance (the 80th percentile is above
150ms). This may be caused by the increased popularity it
acquired in Italy since its integration with Facebook which
has started in mid 2012.

While it is hard to find the root cause of an evidence, the
ability to monitor the performance of web-services running
on Cloud and CDN infrastructures is a first step to understand
implications and eventually trigger further investigations.
Summary 7: Despite the aggregated reactiveness of EC2 has
improved in 2013, the most popular services show a consider-
able performance decrease. A similar observation holds for the
goodput of the two EC2 web-services which are responsible
for generating the largest share of traffic. Finally, CloudFront
suffers from lower reactiveness when serving user-generated
contents. In particular, the performance of Instagram has
dramatically worsened in 2013.

VII. RELATED WORK

Many measurement tools and platforms have been proposed
in the last years, such as PerfSONAR [3] and RIPE Atlas [4].
RIPE Atlas only considers the case of active measurements,
thus highly limiting its monitoring capabilities. While the
measurement architecture we rely on, i.e., mPlane, might
look similar to the one of PerfSONAR, the complete mPlane
platform goes beyond, since it includes analysis of the gathered
data to diagnose service and network problems. Furthermore,
mPlane differs from those tools since it is specifically designed
to adapt to the measurement task, making it extremely flex-
ible. Moreover, the reasoner is a key component that allows
structured, iterative, and automated analysis.

To the best of our knowledge, this is the first work which
proposes a measurement platform based on passive obser-
vation of traffic for the monitoring of Clouds and CDNs.
However, some frameworks which aim at monitoring and
comparing the performance of different Cloud providers have
been proposed in the past. Notable examples are [5], [22], [6].
All of them reside in the IaaS, and rely on active benchmarking
to evaluate different performance metrics and rank Cloud
providers accordingly to their results. Often IaaSes offer APIs
themselves to provide a server-side monitoring interface on
the internal state on the Cloud. E.g., Amazon CloudWatch
or Azure Diagnostics let tenants monitor the virtual resource
utilization and the performance of their deployments. Another
approach is to collect reports made available directly from the

tenants, as in SMICloud [23], or from users’ [9]. Our platform
is different, yet complementary to these systems, as, first, it
operates from a perspective close to users’, i.e., the monitoring
platform is outside the monitored system. Second, it provides
information that above solutions can not gauge: For instance,
a tenant may be interested in understanding the impact of the
datacenter choice on users’ QoS.

To provide an idea about the benefits of our monitoring ar-
chitecture, we focus the study in this paper on AWS, the most
popular distributed Cloud infrastructure which incorporates
many services in its eco-system, from Cloud computing to
content delivery, in other words, the best candidate to provide
an example of what our measurement architecture is capable
of doing.

Since AWS is playing a key role in contemporary Internet,
it has gained a large interest within the research commu-
nity. In particular, many works investigated the possibility
of exploiting AWS EC2 for research purposes [24], [25],
[26]. Others instead focus on evaluating the performance
of AWS computing and networking virtual resources [27],
[28]. However, most of the previous works focus on the
benchmarking of AWS IaaSes and infrastructure, and they all
rely on “active” probing. To the best of our knowledge, the
only work which aims at characterizing Amazon Web Services
is [19], in which the authors base their study on DNS records
and one passive trace. However, even if they consider other
Cloud infrastructure providers in their study, they do not go
beyond the characterization of Amazon EC2 and Windows
Azure, and they provide no actual performance study.However,
our results confirm many of their observations about Amazon
EC2.

To the best of our knowledge, we are the first to provide
an evaluation of actual AWS workload and performance by
means of pure “passive” observation of traffic coming for a
real operational network. Plus, our measurement architecture
let us gauge the performance of web-services Cloud tenants
run, and their impact on end-users. Finally, we are the first to
analyze the evolution of a Cloud/CDN provider over a two-
year long period.

VIII. CONCLUSIONS

Monitoring the traffic generated by Clouds and CDNs is
hard as virtualization and content delegation deeply separates
web-services from server, making it hard to understand what
is actually delivered by whom.

To help untangle this web, in this paper we proposed a
flexible measurement platform, whose design was specifically
tailored to monitor traffic data generated by Clouds and CDNs.

We validated the effectiveness of our architecture by pre-
senting a characterization of Amazon Web Services (AWS)
traffic from passive measurements. By digging into the traffic
generated by EC2, S3 and CloudFront over a period of two
years, we show some interesting findings. For instance, there is
a big workload unbalance among different datacenters hosting
both EC2 and S3 products; in particular, the datacenter in
Virginia is responsible for 85% of the total traffic sent to Italian
end-users, despite the availability of a datacenter in Ireland.

14

We observed that in 98% of the cases tenants concentrate
their content mostly on one datacenter, thus increasing the cost
sustained by the network to carry data to faraway end-users.
Considering AWS performance, we show that the datacenter
in Ireland serves web-services more reactively and at higher
transfer speeds than the datacenter in Virginia. However this
latter was greatly upgraded between 2012 and 2013. We also
found that CloudFront shows excellent performance, but i)
Italian users are mainly served in 2013 by caches outside of
Italy, and ii) it still presents issues that are typical of other
CDN systems, especially when serving user-generated content.

We believe our proposal, the methodologies it implements,
and the results we obtained from its validation can be useful
for tenants, service-level agreement certificators, ISPs, as well
as for the research community.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
Break in the Clouds: Towards a Cloud Definition,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, pp. 50–55, Dec. 2008.

[2] A. Finamore, V. Gehlen, M. Mellia, M. Munafò, and S. Nicolini, “The
Need for an Intelligent Measurement Plane: the Example of Time-
Variant CDN Policies,” in IEEE Networks, October 2012, pp. –.

[3] A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti, R. apacz,
D. Swany, S. Trocha, and J. Zurawski, “Perfsonar: A service oriented
architecture for multi-domain network monitoring,” in Service-Oriented
Computing - ICSOC 2005, ser. Lecture Notes in Computer Science,
B. Benatallah, F. Casati, and P. Traverso, Eds. Springer Berlin
Heidelberg, 2005, vol. 3826, pp. 241–254. [Online]. Available:
http://dx.doi.org/10.1007/11596141 19

[4] RIPE, “Ripe Atlas-Projects-RIS.” [Online]. Available: http://www.ripe.
net/db/index.html

[5] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: Comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’10. New York,
NY, USA: ACM, 2010, pp. 1–14. [Online]. Available: http:
//doi.acm.org/10.1145/1879141.1879143

[6] A. Turner, A. Fox, J. Payne, and H. Kim, “C-mart: Benchmarking the
cloud,” Parallel and Distributed Systems, IEEE Transactions on, vol. 24,
no. 6, pp. 1256–1266, June 2013.

[7] B. Trammell, P. Casas, D. Rossi, A. Bär, Z. Ben-Houidi,
I. Leontiadis, T. Szemethy, and M. Mellia, “mPlane: an Intelligent
Measurement Plane for the Internet,” IEEE Communications Magazine,
Special Issue on Monitoring and Troubleshooting Multi-domain
Networks using Measurement Federations, Accepted for publication.
[Online]. Available: https://www.ict-mplane.eu/sites/default/files//public/
publications//756mplanerevised.pdf

[8] B. Trammell, M. Mellia, A. Finamore, S. Traverso, T. Szemethy,
B. Szabo, D. Rossi, B. Donnet, F. Invernizzi, and D. Papadimitriou,
“mPlane Architecture Specification,” no. D1.3, Nov 2013.

[9] [Online]. Available: http://www.downrightnow.com
[10] [Online]. Available: http://www.downdetector.com
[11] A. Finamore, M. Mellia, M. Meo, M. M. Munafò, and D. Rossi,

“Experiences of Internet Traffic Monitoring with Tstat,” IEEE Network,
vol. 25, no. 3, pp. 8–14, 2011.

[12] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye, “IP
Geolocation Databases: Unreliable?” SIGCOMM Comput. Commun.
Rev., vol. 41, no. 2, pp. 53–56, Apr. 2011.

[13] I. Bermudez, M. Mellia, M. Munafò, R. Keralapura, and A. Nucci, “DNS
to the Rescue: Discerning Content and Services in a Tangled Web,” in
ACM IMC, Boston, MA, November 2012.

[14] P. Mockapetris, RFC 1035 Domain Names - Implementation and
Specification, Internet Engineering Task Force, November 1987.
[Online]. Available: http://tools.ietf.org/html/rfc1035

[15] ARIN, “American registry for internet numbers.” [Online]. Available:
https://www.arin.net/

[16] L. Plissonneau, E. Biersack, and P. Juluri, “Analyzing the impact of
youtube delivery policies on user experience,” in Proceedings of the
24th International Teletraffic Congress, ser. ITC ’12. International
Teletraffic Congress, 2012, pp. 28:1–28:8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2414276.2414310

[17] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida, “Constraint-based
geolocation of internet hosts,” Networking, IEEE/ACM Transactions on,
vol. 14, no. 6, pp. 1219–1232, Dec 2006.

[18] Usenix, “Correlation between delay and distance.” [Online].
Available: https://www.usenix.org/legacy/events/usenix02/full papers/
subramanian/subramanian html/node21.html

[19] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and T. Ristenpart,
“Next Stop, the Cloud: Understanding Modern Web Service Deployment
in EC2 and Azure,” in ACM IMC, Barcelona, ES, November 2013.

[20] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig, “Comparing
DNS Resolvers in the Wild,” in ACM IMC, Melbourne, AU, November
2010, pp. 15–21.

[21] B. Ager, F. Schneider, J. Kim, and A. Feldmann, “Revisiting cacheability
in times of user generated content,” in IEEE INFOCOM, San Diego, CA,
March 2010, pp. 1–6.

[22] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offermann, “What are you
paying for? performance benchmarking for infrastructure-as-a-service
offerings,” in Cloud Computing (CLOUD), 2011 IEEE International
Conference on, July 2011, pp. 484–491.

[23] S. Garg, S. Versteeg, and R. Buyya, “Smicloud: A framework for
comparing and ranking cloud services,” in Utility and Cloud Computing
(UCC), 2011 Fourth IEEE International Conference on, Dec 2011, pp.
210–218.

[24] E. Walker, “Benchmarking Amazon EC2 for High-Performance Scientic
Computing,” USENIX ;login: Magazine, October 2008.

[25] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The Cost
of Doing Science on the Cloud: The Montage Example,” in SC, Austin,
TX, November 2008, pp. 1 –12.

[26] S. Hazelhurst, “Scientific computing using virtual high-performance
computing: a case study using the amazon elastic computing cloud,”
in SAICSIT, Wilderness, SA, 2008, pp. 94–103.

[27] S. L. Garfinkel, “An Evaluation of Amazons Grid Computing Services:
EC2, S3, and SQS,” Center for Research on Computation and Soci-
ety, School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA, Tech. Rep., 2007.

[28] G. Wang and T. Ng, “The Impact of Virtualization on Network Perfor-
mance of Amazon EC2 Data Center,” in IEEE INFOCOM, San Diego,
CA, March 2010, pp. 1–9.

http://dx.doi.org/10.1007/11596141_19
http://www.ripe.net/db/index.html
http://www.ripe.net/db/index.html
http://doi.acm.org/10.1145/1879141.1879143
http://doi.acm.org/10.1145/1879141.1879143
https://www.ict-mplane.eu/sites/default/files//public/publications//756mplanerevised.pdf
https://www.ict-mplane.eu/sites/default/files//public/publications//756mplanerevised.pdf
http://www.downrightnow.com
http://www.downdetector.com
http://tools.ietf.org/html/rfc1035
https://www.arin.net/
http://dl.acm.org/citation.cfm?id=2414276.2414310
https://www.usenix.org/legacy/events/usenix02/full_papers/subramanian/subramanian_html/node21.html
https://www.usenix.org/legacy/events/usenix02/full_papers/subramanian/subramanian_html/node21.html

	Introduction
	Our Contributions
	Possible Use-cases

	Measurement architecture
	mPlane Measurement architecture
	mPlane Deployment

	Analysis Methodology for Cloud and CDN traffic
	Background
	The Measurement Workflow

	Measurement and Dataset definition
	Per-flow Metrics
	Response Time
	Flow Goodput

	Network Cost
	Datasets

	Characterization of AWS
	EC2 and S3
	EC2 Web-service Analysis
	CloudFront

	Performance Monitoring
	Availability Zone and Cache Response Time
	Availability Zone and Cache Goodput
	Web-service Performance Monitoring

	Related Work
	Conclusions
	References

