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Abstract—Data storage is one of today’s fundamental services
with companies, universities and research centers having the need
of storing large amounts of data every day. Cloud storage services
are emerging as strong alternative to local storage, allowing
customers to save costs of buying and maintaining expensive
hardware. Several solutions are available on the market, the
most famous being Amazon S3. However it is rather difficult to
access information about each service architecture, performance,
and pricing. To shed light on storage services from the customer
perspective, we propose a benchmarking methodology, apply it
to four popular offers (Amazon S3, Amazon Glacier, Windows
Azure Blob and Rackspace Cloud Files), and compare their
performance. Each service is analysed as a black box and
benchmarked through crafted workloads. We take the perspective
of a customer located in Europe, looking for possible service
providers and the optimal data center where to deploy its
applications. At last, we complement the analysis by comparing
the actual and forecast costs faced when using each service.

According to collected results, all services show eventual
weaknesses related to some workload, with no all-round eligible
winner, e.g., some offers providing excellent or poor performance
when exchanging large or small files. For all services, it is of
paramount importance to accurately select the data center to
where deploy the applications, with throughput that varies by
factors from 2x to 10x. The methodology (and tools implementing
it) here presented is instrumental for potential customers to
identify the most suitable offer for their needs.

Keywords—Cloud storage, Web services, Amazon S3, Windows
Azure, Performance measurement, Benchmarking, Comparison

I. INTRODUCTION

Nowadays, personal cloud storage services like Dropbox
are customary among end-users [1]. Similarly, cloud storage
services are gaining great popularity and evolving rapidly to
address customers’ requirements. An increasing number of
potential users are being attracted by cloud storage solutions,
which provide easy access to virtually unlimited storage and
do not involve any set up cost. In this context, service
providers own storage resources that are made available with a
simple ’pay-as-you-go’ billing model. Following the definition
introduced in [2], storage providers offer the so-called Infras-
tructure as a Service as they partition and dynamically assign
storage resources to customers according to their demand.
The latter are mainly companies and mid-market businesses

This work is carried out in the context of the EU-IP projects mPlane: an In-
telligent Measurement Plane for Future Network and Application Management
(n-318627), and CloudSpaces: Open Service Platform for the Next Generation
of Personal Clouds (n-317555), funded by the European Commission under
its Seventh Framework Programme.

whose intention is to create and sell their own services without
building and maintaining a dedicated hardware infrastructure.

Despite the increasing interest in storage and computing
outsourcing, very little information is available as far as service
architecture and design choices are concerned. To unveil such
details, this paper presents methodologies and techniques that
help storage services understanding. Firstly, service architec-
tures are dissected in order to identify data centers locations
and protocols involved. A simple geolocation methodology is
used for the purpose, aimed at detecting actual deployment
sites. Secondly, a benchmarking methodology is defined, which
consists of a series of measurements that allow the assessment
of each service performance under ad-hoc crafted workloads.
A fair comparison is possible since all tests are executed taking
the perspective of a customer located in Europe, who would
like to identify i) the best provider; and ii) the best data center
where to deploy his applications. An additional investigation
on connection management policies is performed so as to
emphasize the relevance of design choices for both end-users
and the network load. Lastly, a comparison of pricing models
is presented to highlight differences in service costs: predicted
expenses for the considered workload are compared to actual
charges invoiced with the aim of understanding whether it is
possible to accurately forecast storage costs.

The strength of this work is the comprehensive compar-
ison performed among four storage offers with benchmarks
based on generic workloads, namely Amazon Simple Storage
Service (S3)1, Amazon Glacier2, Windows Azure Blob3, and
Rackspace Cloud Files4. This is in contrast with previous
works [3], [4] that include a single service and make use
of specific project-driven workloads. The authors of [5] focus
on measured bandwidth and bottlenecks related to the access
network, but do not consider service architecture and pricing
details. Finally, benchmarking tests here presented are based on
active measurements, in contrast to [6], which relies on passive
traffic analysis for Amazon cloud services characterization.

This paper provides a methodology to assess performance
of cloud storage solutions, and to take an informed choice
about which service and which data center better fulfils the
application workload. We design and implement a set of
tests to specifically evaluate performance of cloud storage
solutions. We make available the benchmarking software to

1http://aws.amazon.com/s3/
2http://aws.amazon.com/glacier/
3http://azure.microsoft.com/en-us/services/storage/
4http://www.rackspace.com/cloud/files/



TABLE I. PROVIDED AND ACTUAL DATA CENTER LOCATIONS AND NUMBER OF FRONT-END IP ADDRESSES

Amazon S3 Windows Azure
Region Name (as provided) Actual Location IP addresses Region Name (as provided) Actual Location IP addresses

US Standard Washington D.C. 97 North US Chicago 8
US West (N. California) San José 18 South US San Antonio 12
US West (Oregon) Boardman 24 West US Seattle 14
EU (Ireland) Dublin 28 US East Richmond 12
Asia Pacific Singapore 6 Western Europe Amsterdam 22
Asia Pacific Sydney 2 North Europe Dublin 20
Asia Pacific Tokyo 5 East Asia Hong Kong 4
South America Sao Paulo 2 South Asia Singapore 15

Amazon Glacier Rackspace
Region Name (as provided) Actual Location IP addresses Region Name (as provided) Actual Location IP addresses

US East (N. Virginia) Washington D.C. 3 Chicago Chicago 1
US West (N. California) San José 3 Dallas Dallas 1
US West (Oregon) Boardman 3 Northern Virginia Washington D.C. 1
EU (Ireland) Dublin 3 London London 1
Asia Pacific Sydney 3 Hong Kong Hong Kong 1
Asia Pacific Tokyo 3 Sydney Sydney 1

the community upon request, so that everyone can run the
tests with the desired workload using local connectivity.

We run the benchmarks from our Universities to provide
useful insights on offers available on the market today, helping
developers and customers in understanding their potential and
eventual limits. Some of the collected results underline features
and weaknesses of different solutions: no clear winner is
eligible, as it changes depending on the used workload. For
instance, Amazon S3 and Windows Azure Blob outperform
Rackspace when coping with a lot of small files, but consider-
ing the download of few large files, Rackspace throughput tops
to almost 300 Mb/s, versus 48 Mb/s and 40 Mb/s reached by
Azure and S3, using the data center located in Dublin, Ireland.

II. METHODOLOGY

Cloud storage resources are accessible through interfaces
directly exposed to the customer: a crude web-based man-
agement console, and an Application Programming Interface
(API) based on REpresentational State Transfer (REST). Cus-
tomers have thus to develop their storage management software
according to the API. To design and implement the benchmark-
ing methodology, we adopt the same approach, defining ad-hoc
tools that generate synthetic workloads and obtain performance
figures. API management is simplified taking advantage of a
variety of Software Development Kits (SDKs) made officially
available by storage providers. For our purposes, we used the
Python SDKs shown in Tab. II. We focus on four available
offers, even though the presented methodology is generic and
can be applied to any other service. Storage solutions are
selected according to their popularity on Google Trends5 and
are among those included in the Gartner “Magic Quadrant for
Cloud Infrastructure as a Service”6, August 2013.

5http://www.google.com/trends/
6https://www.gartner.com/doc/2575715

TABLE II. SERVICE SDK REVISION

Service SDK version
Amazon S3 Boto, 2.19.0
Amazon Glacier Boto, 2.19.0
Windows Azure Blob Azure, 0.7.1
Rackspace Files Pyrax, 1.6.2

A preliminary study has been performed to check which
protocols are used, and if advanced features like compression,
de-duplication or delta-updating [1] are eventually imple-
mented to achieve storage and network optimization. Results
show that all offers rely on proprietary protocols, carried over
HTTPS/SSL, and no advanced capabilities are available. Some
differences are present considering connection management
and signalling traffic, as we briefly discuss in Sect. III.

A. Infrastructure discovery and geolocation

Each storage provider owns multiple facilities spread
worldwide in order to guarantee reliability and data durability.
Data center locations have also strong implications on perfor-
mance and regulatory requirements. For instance, all storage
providers suggest to select the closest end-point to the user to
reduce network latency, and avoid TCP bottlenecks. For this
reason, they make available a list of supported sites, but in
most cases a coarse localization information is provided, e.g.,
using macro-regions granularity like West US, East Asia.

To both geolocate deployment sites accurately, and to
disclose how these are reached from different locations world-
wide, we identify a set of active experiments: first, hostnames
of storage servers in each region are collected. Secondly, each
server hostname is resolved querying more than 1,800 open
DNS servers scattered around the globe (located in more than
100 countries, and involving 500 ISPs). This allows us to
i) discover all front-end IP addresses; and ii) check if load-
balancing techniques are implemented to route customers from
different places to different IP addresses [7]. At last, geograph-
ical localization of server IPs is performed. As geolocation
databases are known to be unreliable [8], we use a simple
methodology based on multiple contributions:

• Officially available information: as provided by the service
owner – see first column of Tab. I.

• Airport codes: by performing a reverse DNS lookup, Fully
Qualified Domain Names (FQDNs) are retrieved and parsed to
seek potential pieces of information revealing their location. As
found in [9], server FQDN often embeds airport codes that are
uniquely identified worldwide by using the International Air
Transport Association (IATA) code.



Fig. 1. Testing application diagram for content upload

• Closest server Round Trip Time: Round Trip Time (RTT)
measurements are performed from multiple PlanetLab nodes,
whose deployment location is known. The position of the
server returning the minimum RTT is then used as closest
location to the storage server.

• Traceroute to target hostname: it allows the collection of do-
main names of intermediate routers. As before, router FQDNs
can potentially contain information about their location (e.g.,
city names or IATA codes) that can be used to geolocate them
and identify the closest to the targeted server.

As shown in [6], [9], these methodologies can provide an
estimation of actual geographical location with a precision of
about a hundred kilometres, which is suitable for our needs.

B. Testing application and workload

To benchmark selected services, a series of active mea-
surements are performed. A testing application is designed for
this purpose and plays the role of master controller during
tests execution. Referring to Fig. 1, it receives multiple input
parameters (step 1) for a proper: i) configuration of the
environment (e.g., network interface to be used and remote
credentials to access the service); and ii) definition of the
workload. When testing content upload to the cloud, the
following steps are performed: files are crafted according to
workload specifications (step 2) and temporary stored on the
local drive. Network traffic capture is started (step 3) to get
a packet level trace that covers from session establishment
up to the completion of all the uploads. This allows us to
record login and pre-upload negotiation steps as well as actual
content transfer. Authentication with the storage service is
accomplished (step 4) and, finally, content is uploaded to the
cloud (step 5). For each transferred content, the application
generates and logs some metadata, which are inspected at a
later stage (step 6) together with traffic captures to compute
desired performance metrics. After a file has been uploaded,
the application waits for two minutes, and then downloads the
same file following similar steps.

The desired workload is crafted varying i) file sizes; and
ii) the number of files to be transferred to the cloud. A great
variety of prospected usages is thus considered, leading to
seven different benchmarking sets composed as follows:

• Single files: four files are defined with sizes equal to 1 MB,
10 MB, 100 MB and 1 GB. Each of them is transferred as
free-standing workload.

Fig. 2. RTT to Amazon S3 data centers

• Bundles of files: each bundle is composed of multiple small
files that are transferred in a single transaction. Three bundles
are defined: i) 10 files of 100 kB each; ii) 100 files of 10 kB
each; and iii) 1,000 files of 4 kB each.

In all cases, files used as payload are filled by randomly
generated bytes. Each experiment is repeated twenty times per
service, with a three minutes’ idle time between consecutive
tests. A full cycle takes approximately ten hours to complete,
with a total amount of exchanged data equal to 45 GB.

III. RESULTS

In this section we present results collected by running tests
during December 2013 and January 2014. They thus reflect a
snapshot of what the systems were at that time. Experiments
were executed from EPFL in Lausanne and Politecnico di
Torino (Polito). The servers used for testing are connected to a
1 Gb/s Ethernet LAN, and to the public Internet with 10 Gb/s
campus access links. Local connectivity cannot be considered
a bottleneck in any of performed tests, as confirmed by results.
In general, outcomes from EPFL and Polito are very similar.
As such, we mainly report measurements collected from EPFL.

A. Data center locations

Tab. I shows service region names together with actual
deployment sites and the amount of front-end server IP ad-
dresses in each region. According to results, Amazon S3 and
Windows Azure rely on eight different data centers each,
while Amazon Glacier and Rackspace have six data centers
available. Despite using thousands of DNS servers scattered
worldwide, we did not notice differences in resolving server IP
addresses, i.e., each server name is always resolved to the same
IP addresses independently on the client location. Looking at
the number of IP addresses matching each data center, we
observe that for Amazon S3 and Windows Azure different
regions present a different amount of IPs, with Washington
D.C. and Amsterdam being the highest respectively. Glacier
always uses only three front-end IPs in all locations, while
Rackspace exposes resources from a single IP address, which
may pose reliability issues in case of, e.g., routing problems.

Data center locations have severe implications on network
latency. Considering Amazon S3 regions for example, Fig. 2
details the observed RTT7 from four different access scenarios:

7RTT has been measured both using ICMP (ping) and TCP (nmap)
handshake messages.



Fig. 3. RTT of data centers selected for benchmarks

two are Universities campuses, and two are home ADSL
subscriptions in Italy and Switzerland. Latencies are clearly
dominated by the propagation delay, with home connectiv-
ity suffering of a slightly higher delay due to slow access
networks. Minimum and maximum RTT observed over a
hundred experiments are reported using error bars. As it can
be seen, measurements are consistent suggesting stable and
uncongested paths. The closer the data center, the smaller the
variation. Results from other services are similar (see also
Fig. 3) and not reported for the sake of brevity.

Storage providers strongly encourage users to select the
closest end-point to their location in order to reduce data
latency and to offload the public Internet. Therefore, we
selected the geographically closest data centers with respect
to our Universities, picking Dublin for Amazon services and
Windows Azure, and the London site for Rackspace. For
comparison purposes, we also benchmarked other data centers:
Washington D.C. for Amazon, and Amsterdam for Windows
Azure. Fig. 3 summarizes and compares measured RTTs for
selected facilities. As before, measurements are very stable
and mostly driven by propagation delay. Some differences are
visible, with EPFL having shorter RTTs than Polito, owing to
different network paths.

B. Transfer throughput

We now focus on the performance offered by services
and data centers. Let us start by considering the throughput
observed when downloading a single file. Fig. 4(a) reports
results considering file sizes of 1 MB, 10 MB, 100 MB and
1 GB. Notice the log scale on y axis. Several considerations
hold. First, download rate improves for big files. This is a well-
known effect caused by TCP slow-start and congestion control
algorithms that require several RTTs to allow the growth of
the congestion window. Second, Amazon Glacier is by far
the slowest service: Dublin data center seems to limit the
download rate to about 40 Mb/s, while the Washington site
can barely reach 10 Mb/s. Comparing Amazon S3 and Glacier
it is evident that, despite being both hosted in the same data
center, the download rate of Glacier is artificially enforced.
Indeed, S3 tops to about 175 Mb/s in the Washington site,
approximately 18 times faster than Glacier. Third, there is
no clear winner: for small files Windows Azure guarantees
the highest throughput, but for large ones Rackspace reaches
almost 300 Mb/s. Comparing the two Amazon data centers,
Dublin outperforms Washington with short files, as the much
higher RTT of the latter severely impairs the TCP slow-start

(a) Single-file workload

(b) Multi-file workload

Fig. 4. Download throughput for selected data centers and services

algorithm. On the other hand, Washington shows to be much
faster for large files (suggesting a better connectivity and path).
Moving to Windows Azure, the Amsterdam data center is
preferable to the Dublin one, possibly due to the lower RTT
(see Fig. 3). The same effect is visible when considering the
upload direction (not reported here due to lack of space).

Let us now consider a different workload according to
which a number of files has to be downloaded from the cloud.
Fig. 4(b) reports outcomes considering different combinations
of number of files and sizes. First, notice that Amazon Glacier
in Washington did not allow to run this experiment.8 Second,
observe how the number of objects has a huge impact on
performance. The bottleneck here results to be the signalling
for cloud management rather than the actual capacity of the
path. Indeed, the introduced overhead grows with the number
of objects, and can affect the throughput, lowering it to less
than 700 Kb/s when downloading thousands of small objects.

C. Persistent monitoring

We present now a measurement campaign collected by
repeating experiments over time in order to understand if cloud
services present typical periodicity due to, e.g., traffic peaks
during some hours of the day, which can potentially cause a
performance drop. To this purpose, we consider a workload in
which a 10 MB file is uploaded and downloaded repeatedly.
A total of 3,500 single transactions are performed in the week

8Glacier is a service mainly targeting the archival of large files. It is however
unclear why it does not support the “restore” of a batch of files.



(a) Upload direction

(b) Download direction

Fig. 5. Time dependency assessment of throughput for different services and
target data centers

from Monday 20th to Sunday 26th of January 2014. Fig. 5(a)
and Fig. 5(b) show measurements for upload and download
directions respectively. Dots report single measurements while
curves are the smoothed averages.

Considering the upload, all services exhibit an almost stable
performance with no evident correlation with the time of the
day. The download is typically faster than upload except for
Glacier where it is evident the artificial limitation of the avail-
able bandwidth, already observed before. Performance changes
widely over time with still no correlation with the period of
the day. Windows Azure in Amsterdam performs the best,
peaking at 140 Mb/s. Amazon S3 in Dublin presents a huge
variation, jumping between 20 Mb/s and 100 Mb/s almost with
a random fashion. Investigating further, we identify two groups
of servers belonging respectively to the subnet 178.236.0.0/21
and 54.239.34.0/22. Both are reached using the same path, but
the first group offers throughput higher than 80 Mb/s while
the second is clearly limited to 20 Mb/s. The application has
no control on which server will be returned.

In summary, results show that there is a great variability in
performance, considering different i) services; ii) sites; and iii)
workloads. In some cases, variations are not controllable by the
application, but due to cloud provider policies. This underlines
the need to run proper benchmarks before choosing an offer.

D. Connection management and overhead

We now report some additional insights about different
implementation choices made by cloud providers. All selected

(a) TCP-SYN for 1,000 files (b) Overhead

Fig. 6. Connection management and overhead for multiple files upload

services make use of a single remote server per transaction
that is in charge of both user’s authentication, and content
transfers. Similarly, all services implement multiple transfers
in sequence, i.e., the next transfer operation is started only after
the previous one has been completed. However, a variety of
connection management policies can be identified by analysing
network traffic. We consider a scenario where multiple files
are being transferred and we monitor the number of HTTPS
connections established and the total cost for the network,
including overheads added by SSL and application layers.

Considering the upload direction, Amazon Glacier is the
most cleverly implemented service: it makes use of a single
connection for both user login and content transfer. Amazon
S3 shows a similar behaviour opening two connections, one for
control and one for actual data exchange, this independently
on the number of files to be transferred. Windows Azure
opens instead a single control connection, but it uses one TCP
(and SSL) connection for each transferred content. Finally,
Rackspace opens two separate connections per file in addition
to three control connections established at the beginning of
the transaction. Fig. 6(a) clearly highlights this by reporting
the amount of TCP-SYN segments observed when 1,000 files
have to be uploaded. It also shows that both Windows Azure
and Rackspace open connections sequentially.

While it may not result critical for the application, this
has noticeable implications on the generated overhead that the
network has to carry. To quantify it, Fig.6(b) reports the ratio
between the amount of payload carried by TCP connections
and the workload size. It clearly shows that Rackspace policy
generates almost 50 % additional overhead when uploading
lots of small files. Windows Azure pays the SSL overhead
cost as well, while Amazon S3 and Glacier are far less affected
by bandwidth wastage, with overhead down to 11.08 % and
18.72 % respectively, thanks to using only one TCP/SSL
connection. This extra-cost can be not negligible especially
considering applications developed for mobile devices.

IV. PRICING MODEL

All selected storage offers are based on ’pay-as-you-go’
subscriptions with no fixed costs. Three main types of variable
expenses are charged:

• Raw storage: Amazon S3 and Windows Azure start charging
0.085 $ per GB per month. Rackspace is slightly more expen-
sive (0.10 $/GB/month), while Amazon Glacier is by far the
cheapest (0.01 $/GB/month). Prices decrease along with the
amount of storage needed for all services but Glacier, which
has a constant price independent from the volume used.



Fig. 7. Actual vs. Predicted charges

• Requests: all services but Rackspace charge proportionally
to the number of operations. Amazon S3 charges 0.005 $ per
1,000 PUT, COPY, LIST requests and 0.004 $ every 10,000
GET requests. Windows Azure is cheaper, charging 0.005 $
per 100,000 requests. Amazon Glacier is the most expensive
given its long-term archival nature (0.05 $ per 1,000 requests).

• Outgoing bandwidth: upload to the cloud is free, but down-
load is charged by volume. All services adopt similar prices,
starting at 0.12 $ per GB and decreasing with the amount of
capacity consumed.

Amazon Glacier involves additional fees in case contents
are deleted prior than ninety days or accessed frequently. Users
are allowed to retrieve up to 5 % of stored data for free. If
this threshold is exceeded, the so-called peak retrieval rate is
computed as difference between the amount of data requested
and the free allowance in a four hours’ time. An extra cost of
0.01 $ per GB is then charged for the whole month duration
(i.e., peak retrieval rate × 0.01 $ × 24 × 30, assuming a 30-
day month). Amazon Glacier is indeed a service prospected to
long-time archival, where downloads are unusual.

Usage costs depend on the workload the application pro-
duces and predicting them is hard. We instead compare costs
charged by service providers with respect to expected costs,
computed knowing the exact workload we generated. This
allows us to understand whether it is possible to forecast
storage charges accurately, and eventually identify unexpected
peaks. Fig. 7 shows the results splitting costs among the three
categories previously detailed and adding extra fees invoiced
by Glacier.

In general, predicted and actual charges are similar with
differences below 5 % for Amazon services. Windows Azure
and Rackspace tend to charge less then expected in both
storage and bandwidth (about 25 % less). For our workload,
bandwidth costs dominate, being more than twenty times
the actual storage cost. In our benchmarks, indeed, files are
removed from the cloud once the test has been completed in
order not to waste remote storage and reduce benchmarking
expenses. Considering request costs, Windows Azure cheaper
policy is evident with respect to Amazon. Glacier results to be
very costly due to the expensiveness of download operations
that, in our case, implied a huge extra fee. Indeed, we generated
a workload that is highly discouraged by the storage model
Glacier offers, i.e., retrieval operations are very expensive.

V. CONCLUSIONS

In this paper we presented specific methodologies to shed
light on cloud service architectures, assess end-user perfor-
mance and verify storage charges. Such methodologies are then
applied to benchmark four offers from the point of view of an
European customer. No clear winner is evident.

All services have multiple data centers available in the US,
in the Far East and in Europe. The latter location presents
advantages when transferring lots of small files, since net-
work latency plays a relevant role. For large files, however,
throughput on US data centers can be higher than the European
ones. Surprisingly, we noticed artificial throughput limitations
imposed by S3. These are not predictable, being neither
correlated with the selected data center, nor with time of the
day. Considering protocols overhead, a relevant factor when
designing mobile applications, Amazon services implement
a smart connection management that limits network load.
Windows Azure and Rackspace can have up to 50 % of
additional overhead instead. As far as storage expenses are
concerned, all services show to have similar pricing models. It
is possible to forecast expenses with good accuracy, provided
to know the exact workload faced by the storage solution.

In summary, our methodologies and tools prove to be
useful to benchmark cloud storage offers, and make informed
choices when looking for the most suitable storage provider
for customers’ needs.
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