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Summary

In this thesis, we have explored visual search techniques for images taken from diferent view
points and have tried to enhance the matching capability under view point changes. We have pro-
posed the Homography based back-projection as post-processing stage of Compact Descriptors for
Visual Search (CDVS), the new MPEG standard; moreover, we have deined the aine adapted
scale space based aine detection, which steers the Gaussian scale space to capture the features
from aine transformed images; we have also developed the corresponding gradient based aine
descriptor. Using these proposed techniques, the image retrieval robustness to aine transforma-
tions has been signiicantly improved.

The irst chapter of this thesis introduces the background on visual search.
In the second chapter, we propose a homography based back-projection used as the post-

processing stage of CDVS to improve the resilience to view point changes. The theory behind
this proposal is that each perspective projection of the image of 2D object can be simulated as an
aine transformation. Each pair of aine transformations are mathematically related by homogra-
phy matrix. Given that matrix, the image can be back-projected to simulate the image of another
view point. In this way, the real matched images can then be declared as matching because the per-
spective distortion has been reduced by the back-projection. An accurate homography estimation
from the images of diferent view point requires at least 4 correspondences, which could be ofered
by the CDVS pipeline. In this way, the homography based back-projection can be used to scruti-
nize the images with not enough matched keypoints. If they contain some homography relations,
the perspective distortion can then be reduced exploiting the few provided correspondences. In the
experiment, this technique has been proved to be quite efective especially to the 2D object images.

The third chapter introduces the scale space, which is also the kernel to the feature detection
for the scale invariant visual search techniques. Scale space, which is made by a series of Gaussian
blurred images, represents the image structures at diferent level of details. The Gaussian smoothed
images in the scale space result in feature detection being not invariant to aine transformations.
That is the reason why scale invariant visual search techniques are sensitive to aine transforma-
tions. Thus, in this chapter, we propose an aine adapted scale space, which employs the aine
steered Gaussian ilters to smooth the images. This scale space is lexible to diferent aine trans-
formations and it well represents the image structures from diferent view points. With the help of
this structure, the features from diferent view points can be well captured.

In practice, the scale invariant visual search techniques have employed a pyramid structure
to speed up the construction. By employing the aine Gaussian scale space principles, we also
propose two structures to build the aine Gaussian scale space. The structure of aine Gaussian
scale space is similar to the pyramid structure because of the similiar sampling and cascading
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properties. Conversely, the aine Laplacian of Gaussian (LoG) structure is completely diferent.
The Laplacian operator, under aine transformation, is hard to be aine deformed. Diferently from
a simple Laplacian operation on the scale space to build the general LoG construction, the aine
LoG can only be obtained by aine LoG convolution and the cascade implementations on the aine
scale space. Using our proposed structures, both the aine Gaussian scale space and aine LoG can
be constructed.

We have also explored the aine scale space implementation in frequency domain. In the second
chapter, we will also explore the spectrum of Gaussian image smoothing under the aine transfor-
mation, and propose two structures. General speaking, the implementation in frequency domain is
more robust to aine transformations at the expense of a higher computational complexity.

It makes sense to adopt an aine descriptor for the aine invariant visual search. In the fourth
chapter, we will propose an aine invariant feature descriptor based on aine gradient. Currently,
the state of the art feature descriptors, including SIFT and Gradient location and orientation his-
togram (GLOH), are based on the histogram of image gradient around the detected features. If
the image gradient is calculated as the diference of the adjacent pixels, it will not be aine in-
variant. Thus in that chapter, we irst propose an aine gradient which will contribute the aine
invariance to the descriptor. This aine gradient will be calculated directly by the derivative of the
aine Gaussian blurred images. To simplify the processing, we will also create the corresponding
aine Gaussian derivative ilters for diferent detected scales to quickly generate the aine gradi-
ent. With this aine gradient, we can apply the same scheme of SIFT descriptor to generate the
gradient histogram. By normalizing the histogram, the aine descriptor can then be formed. This
aine descriptor is not only aine invariant but also rotation invariant, because the direction of the
area to form the histogram is determined by the main direction of the gradient around the features.
In practice, this aine descriptor is fully aine invariant and its performance for image matching is
extremely good.

In the conclusions chapter, we draw some conclusions and describe some future work.
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Chapter 1

Introduction

The proliferation of digital cameras equipped in the smartphone and consumer-level cameras is
producing an explosion of media data. Computer or computing device based intelligent technolo-
gies can be used to facilitate the acquisition, analysis, understanding and retrieving of multimedia
documents, including digital images, videos, and text in an integrated way through programming.
Typical sub-topics in this area include content analysis, management, rendering and retrieval. Our
research focus is on the content-based visual search techniques.

A visual search system is generally based on a computer system for browsing, searching and
retrieving visual data, including images and videos, from a large database. Most traditional and
common methods of visual search utilize some method of adding metadata such as captioning,
keywords, or descriptions to the media so that retrieval can be performed over the annotation words.
Manual annotation is time-consuming, laborious and expensive; to relieve the conlict between
low eicient media annotation and rapid increasing of media data, a large efort has been made to
automatically annotate the visual data by analyzing its content, leading to the content-based visual
search techniques or content-based retrieval [1]. Since the video is a collection of images following
the elapsing of time, a video retrieval system is also based on techniques of image retrieval. A good
image retrieval system have great facilitate for the development of a video retrieval system.

Queries
Feature 

extraction
Query

Features 

Feature 
extraction

Image 
database

Features

Index and 
matching

Retrieval 
result

Figure 1.1. A typical content-based image retrieval system.

Content-based image retrieval (CBIR), also known as query by image content (QBIC) is the
issue of media retrieval on digital images, that is, the problem of searching for digital images in large
databases. CBIR is opposed to traditional concept-based approaches, which annotate the image by
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1 – Introduction

manually manipulated tag of words [2].
Content-based means that retrieval of the image is based on the contents of the image rather than

the metadata such as keywords, or tags associated with the image. Content of the image can refer to
colors, shapes, textures, edges, or any other inherent character of the image. CBIR is more desirable
than the metadata based retrieval system whose accuracy depends on the annotation quality and
completeness. A manual annotation of images by tagging keywords or metadata in a large database
can be time consuming and more apt to confuse with the desired keywords. In CBIR, the images
in the database will be automatically tagged according to the content of the image, such as the
colors, the shapes, the textures or some other associated informations contended in the image.
Such information will be extracted as features stored in the database, and usually organized by
multi-dimensional feature vectors. When the multimodal queries are input to the retrieval system,
the same type of features must be extracted as the image features in database. Finally, the similarity
or distance between queries features and features in the database will be compared with each other,
and the most likely one will be selected as the retrieved image [3].

Figure 1.1 presents a typical pipeline of CBIR system. It works by comparing the similarity
between the features of query image and the features of database stored image. Both these features
of the images are automatically tagged by extracting the features according the content of the im-
ages, including the colors, the shapes or some other speciic image qualities. The features of the
database stored images are also indexed and organized to speed up the retrieval.

Theoretically, any inherent characteristic of the image content, including colors, shapes, tex-
tures and edges can be used as feature for image retrieval. But a valid and robust image retrieval
system should be based on the features that are constant and robust enough to the luctuation of the
scene. Ideally, the retrieval result should not be afected by the illumination, which may cause the
change of colors and textures, the focus of scene, which may render the shapes not complete, and
also the scale and the view-point. For the object recognition, the background of the images of the
same object may also be diferent, making the texture and the statistics of the complete image not
reliable for an image retrieval system. Thus, local feature characterizing the local image content
are a better option to distinguish the matched part and non-matched part of a pair of images and to
determine whether two images really match or not.

Image feature can be any repeatable and detectable quantity characterized by certain types of
local information, like colors, textures or edges to identify the location and neighboring pixels
around. Considering the complexity of the detection and description processes, image features are
generally deined around corners and associated neighboring pixels, including edge, corner and
blob.

Edges are points where the image brightness changes sharply or, more formally, has disconti-
nuities. The points at which image brightness changes sharply are typically organized into a set of
curved line segments termed edges. In general, an edge can be of almost arbitrary shape, and may
include junctions. In practice, edges are usually deined as sets of points in the image which have
a strong gradient magnitude [4].

A corner can be deined as the intersection of two edges or a point for which there are two
dominant and diferent edge directions in a local points. A corner based feature should have a well-
deined position and can be robustly detected. Equivalently, the determination for a corner to be a
feature relies on its ability to be detected in multiple similar images, under conditions of diferent
lighting, translation, rotation and other transforms [5].
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A blob is a region of a digital image which difers in properties, such as brightness or color,
compared to the surrounding areas; all the points in a blob can be considered to be similar to each
other. Given some property of interest expressed as a function of position on the digital image, there
are two main classes of blob detectors: (i) diferential methods, which are based on derivatives of
the function with respect to position, and (ii) methods based on local extrema, which are based on
inding the local maxima and minima of the function. With the more recent terminology used in
the ield, these detectors can also be referred to as interest point operators, or alternatively interest
region operators [6].

The blob can be used to signal the presence of informative image features based on local image
statistics. One main reason to base the interest points on blob is to provide complementary infor-
mation, which can not be obtained from edges or corners. These features could signal the presence
of objects or parts of objects in the image domain.

There are several diferent feature detectors respectively based on these image characteristics,
such as edge-based region (EBR) [7] and scale-invariant shape features (SISF) [8] based on edge
detection; Harris [9], smallest univalue segment assimilating nucleus (SUSAN) [10] and features
from accelerated segment test (FAST) [10] based on corner detection; and Laplacian of Gaussian
(LoG) [11], Diference of Gaussian (DoG) [12], Determinant of Hessian (DoH) [13], and Maxi-
mally stable extremal region (MSER) [14] based on blob detection.

As has been discussed above, one advantage of the blob based detector is that any region with
properties, such as brightness, focus or colors, that difers from the surrounding area, can be de-
tected as a blob. Diferently from the edges and corners, this simple requirement of the blob can
easily be satisied, implying that, more blobs can potentially be extracted than edges and corners.
What is more, the internal part of the blob can be deemed as a homogeneous region. Initially, the
blob is accounted as a region, which has the advantage to signal the object region and presence
robustly to diferent scales. The state of the art feature detectors are all based on the blob detec-
tions. Stable, robust, applicable, and also amenable to multiple scale detection, all these properties
render the blob based detection the most widespread and accepted detector for image retrieval.

The most commonly applied blob detection to extract features is LoG, which detects the lo-
cal extrema on Laplacian of Gaussian blurred images. Usually, LoG results in strong positive
responses for dark blobs and strong negative responses for bright blobs. Thus, given a discrete
two-dimensional input image, a three-dimensional discrete scale-space volume can be computed
and a point is regarded as a bright (dark) blob if it is the local maximum or minimum around its
neighborhood. A specialty of this operator at a single scale is that the operator response is strongly
related with the size of the blob structures in the image domain and the size of the Gaussian kernel
used for pre-smoothing [15]. In order to automatically capture blobs of diferent size in the image
domain, where the size is not known in advance, a multi-scale approach is therefore necessary,
which inspires the creation of scale space.

A collection of these pre-smoothed images by Gaussian kernels of diferent size form a scale
space. In general, scale space theory is a framework for multi-scale signal representation for han-
dling image structures at diferent scales, by employing a one-parameter family of smoothed im-
ages. This framework provides a scale-invariant representation, which is necessary for dealing with
the size variations that may occur in image data, because real-world objects may be of diferent sizes
and the distance between the object and the camera may vary depending on the circumstances. The
motivation for generating a scale-space representation of a given data set originates from the basic
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observation that real-world objects are composed of diferent structures at diferent scales. This im-
plies that real-world objects, in contrast to idealized mathematical entities, may appear in diferent
ways depending on the scale of observation [6].

A highly useful property of scale space is that the blob detection can be made invariant to scales,
by performing automatic scale selection based on normalized derivatives. A simple approach to this
scale invariant blob detection is based on the Laplacian of the scale space, which can be created by
LoG operator. Alternatively, scale space provide the structure for the image multiple scale repre-
sentation, and Laplacian is used for automatic blob detection. This automatic scale invariant blob
detection can also be established based on DoG and DoH. A well designed image retrieval algo-
rithm based on DoG has been proposed by Lowe, named Scale Invariant Feature Transform (SIFT).
Our research is also based on this algorithm.

1.1 Scale Invariant Feature Transform
Scale Invariant Feature Transform (SIFT) is a content-based feature extracting and matching

algorithm for image matching and recognition developed by Lowe [12]. This algorithm has been
used for a large number of applications in computer vision. The SIFT algorithm is invariant to trans-
lations, rotations, scaling transformations, illumination and partially robust to perspective transfor-
mations. Additionally, SIFT can identify objects even among clutter and under partial occlusion,
because the image matching identiication is based on local feature matching and not the whole
image. In the real word, it has been proven to be very eicient and accurate in practice for image
retrieval and object recognition. Generally, SIFT algorithm can be divided into two parts, including
the SIFT feature extraction and the SIFT feature descriptor, which is used to identify the similarity
of the features from diferent but related images [16].

The SIFT features are local interest points detected using the theory of scale space, and are
invariant to image scale and rotation. They are also robust to changes in illumination, noise, and
minor changes in viewpoint. In addition to these properties, they are highly distinctive, relatively
easy to extract and allow for correct object identiication with low probability of mismatch. They are
relatively easy to match against a large database of local features but however the high complexity
can be an issue in some applications.

DoG 
construction

Extrema 
detection

Interpolation for 
accurate position 

Eliminate edge 
responses 

Orientation 
assignment

Feature 
descriptor

Scale-space extrema detection Feature selection and localization 

Figure 1.2. The pipeline of SIFT algorithm.

The SIFT descriptors comprise a method for detecting interest points from a grey-level image
where statistics of local gradient of image intensities are accumulated to give a summarized de-
scription of the local image structures in a local neighborhood around each interest point, with the
intention that this descriptor should be used for matching corresponding interest points between
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1.1 – Scale Invariant Feature Transform

diferent images.

Figure 1.3. The structure of DoG pyramid.

Generally, SIFT algorithm can be divided into the following steps:

1. Scale-space extrema detection.

2. Features accurate localization.

3. Orientation assignment based on image gradient.

4. Descriptor based on gradient histogram.

Each steps also contain few small procedures. The whole pipeline of SIFT is demonstrate in the
Figure 1.2.

Figure 1.4. The extrema selection from DoG.

The irst step of SIFT is to construct the DoG, where the feature are located and extracted. SIFT
is also based on the blob detection in the framework of scale space. Diferently from the LoG as
the derivative form of the scale space, features in SIFT are detected by DoG, the approximation to
the scale space derivative. The deinition of DoG is given by

�(৘, ৙, �) =(ম(৘, ৙, ো�) − ম(৘, ৙, �)) ∗ র(৘, ৙)=঳(৘, ৙, ো�) − ঳(৘, ৙, �), (1.1)
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1 – Introduction

where ম(৘, ৙, �) is the Gaussian ilter with the kernel �, and ঳(৘, ৙, �) is the corresponding Gaus-
sian blurred image.

Since ম(৘, ৙, ো�) − ম(৘, ৙, �) ≈ (ো − 1)�2Δ2ম (1.2)

Then the diference of Gaussian can be used to approximate the Laplacian of Gaussian. In
practice the construction of the DoG is accomplished by a Gaussian pyramid. A Gaussian pyramid
is constructed from the input image by repeated smoothing and subsampling, and the DoG pyramid
is computed from the diferences between the adjacent levels in the Gaussian pyramid. Adjacent
Gaussian blurred images are created by repeatedly convolving with Gaussian ilters. These images
form an octave. After each octave, the Gaussian image is down-sampled by a factor of 2, and the
process is repeated. Then, interest points are obtained from the points at which the DoG values
assume extrema with respect to both the spatial coordinates in the image domain and the scale
level in the pyramid [17]. The construction of the DoG pyramid and the detection of the extrema
are demonstrated in the Figures 1.3 and 1.4.

Figure 1.5. Orientation assignment in SIFT.

The next step in the algorithm is to perform a detailed it to the nearby data for accurate lo-
cation, scale, and ratio of principal curvatures. For each candidate feature, interpolation of nearby
data is used to accurately determine its position. The initial approach was to just locate each fea-
ture at the location and scale of the candidate feature. A more eicient approach calculates the
interpolated location of the extremum, which substantially improves matching and stability by the
quadratic Taylor expansion of the DoG scale space function [12]. Features with low contrast and
strong responses to edges will also be discarded.

In the next step, each feature will be assigned with one or more orientations based on local
image gradient. This is the key step in achieving invariance to rotation gradient magnitude and
orientation are deined as.

্(৘, ৙) =√(঳(৘ + 1, ৙) − ঳(৘ − 1, ৙))2 + (঳(৘, ৙ + 1) − ঳(৘, ৙ − 1))2
,

� = arctan (঳(৘, ৙ + 1) − ঳(৘, ৙ − 1)঳(৘ + 1, ৙) − ঳(৘ − 1, ৙)) . (1.3)

The magnitude and direction calculations for the gradient are done for every pixel in a neigh-
boring region around the feature in the Gaussian-blurred image. To ind the dominant orientation,
peaks are detected in this orientation histogram divided into 36 bins, with each bin covering 10
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degrees. Each sample in the neighboring window added to a histogram bin is weighted by its gra-
dient magnitude and by a Gaussian-weighted circular window. The peak in this histogram is the
dominant orientation [12].

Figure 1.6. Calculating of SIFT descriptor.

Given these scale and orientation, a rectangular grid is laid out in the image domain, centered
at the detected feature, with its orientation determined by the main peak(s) in the histogram and
with the spacing proportional to the detection scale of the interest point. This grid will be further
divided into 4 � 4 grid to form another gradient histogram. To give stronger weights to gradient
orientations near the features, the entries in the histogram are also weighted by a Gaussian window
function centered at the interest point and with its size proportional to the detection scale. Taken
together, the local histograms computed at all the 4 � 4 grid points and with 8 quantized directions
lead to an image descriptor with 4�4�8 = 128 dimensions for each detected feature. This resulting
image descriptor is referred to as the SIFT descriptor.

1.2 Compact Descriptors for Visual Search
Compact Descriptors for Visual Search (CDVS) is the standard, proposed by MPEG, in order

to enable an interoperable, eicient and cross-platform solution for Internet-scale visual search ap-
plications and services. The forthcoming CDVS standard is particularly important because it will
ensure interoperability of visual search applications and databases, enabling high level of perfor-
mance of implementations conforming to the standard, simplifying design of descriptor extraction
and matching for visual search applications. It will also enable low complexity, low memory hard-
ware support for descriptor extraction and matching in mobile devices and signiicantly reduce load
on wireless networks carrying visual search-related information. All this will stimulate the creation
of an ecosystem beneiting consumers, manufacturers, content and service providers alike [18].

Although SIFT is a very successful algorithm for image matching and retrieval, it is far from
an Internet based real application, which is confronted with the task of handling of millions of
images or videos within a very short time. This large scale application of visual search requires
the standard to provide fast retrieval. From this point of view, SIFT is not good enough for the
widespread Internet application.

In particular, two procedures for descriptor comparison are implemented in CDVS, deining
two fundamental tasks for real visual search systems: pairwise matching and retrieval. The former
regards automated veriication of whether two images depict the same objects or scene; in this case,
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descriptors extracted from a query image are matched against the descriptors of a reference image,
in order to determine whether they match or not. The latter regards the search and discovery of
images contained within a large collection that depict the same objects or scenes as those depicted
by a query image; this requires the database images to be processed for the creation of a database
which may be searched using the descriptors extracted from the query [19]. The architecture of the
pairwise matching is similar to the pipeline of a typical image retrieval system. Figure 1.7 depicts
the architecture of a retrieval procedure.
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Figure 1.7. CDVS retrieval.

Generally speaking, the CDVS standard applies a lot of up-to-date techniques to improve the
eiciency and accuracy of visual search, including [19]:

1. Interest point detection: Identiication of interest points based on the LoG scale space and
the subsequent identiication of extrema by means of polynomial approximations. This fea-
ture detection is called A Low-degree Polynomial (ALP). It replies on LoG and polynomials
to approximate the continue scale space function.

2. Feature selection: Selection of a limited number of interest points on the basis of their char-
acteristics, in order to maximize a measure of expected quality for subsequent matching.

3. Local descriptor computation: It is the same as SIFT descriptor computation.

4. Local descriptor compression: Transform and scalar quantisation-based compression of
the selected local descriptors.

5. Coordinate coding: Compression of the coordinates of the selected interest points.
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1.3 – The motivation of this research

6. Global descriptor aggregation: Aggregation of local descriptors, to form a single global
descriptor employed for a irst gross but quick retrieval from millions of images in the dataset
and to be further reined from these selected candidates for the inal image matching.

Our research is based on the framework of ALP. Similar to SIFT, ALP is also a scale space
based feature detector, which approximates the continue function of LoG scale space by means
of polynomials from few known LoG iltered images, which are used to ind extrema in the scale
space and to reine the spatial position of the detected points [20].

The construction of the ALP begins with four Gaussian blurred images with their parameter �
forthcoming an exponentially increasing sequence. The image shall be processed in a scale space
representation obtained by Gaussian blur with diferent scale factors �. These few Gaussian blurred
image form the irst octave.

For each pixel (৘, ৙) in the image, a polynomial approximation to the scale-space function shall
be formed as

৐(৘, ৙, �) = ূ3(৘, ৙)�3 + ূ2(৘, ৙)�2 + ূ1(৘, ৙)� + ূ0(৘, ৙) (1.4)

The coeicients ূ3 ∼ ূ0 shall be obtained by computing weighted sums of the images in the
octave. By some complex coeicient transformation, the extrema can be obtained by the same
theory as SIFT.

After the key-point detection, the points will be further computed by the same gradient based
technique as the SIFT descriptor, to form the local descriptor. With the combination of local de-
scriptor, it will further form the global descriptor for fast retrieval of the target image from the
dataset with millions of candidates. What is more, the local descriptors will also be compressed
and transformed to lighten the computation and bandwidth memory consumption. The standard
also includes some other relevant procedures to speed up the whole process and to provide accu-
rate retrieval results.

1.3 The motivation of this research
Robustness to diferent view-point is also a important criterion to evaluate the performance of a

visual search technique. Compared to some other visual search techniques, SIFT is partially robust
to aine transformation, but not enough for matching images taken from very diferent view-points.

The performance evaluation by Mikolajczyk and Schmid [21] also presents a performance com-
parison of diferent visual search techniques in terms of their robustness to view point changes. Fig-
ure 1.8 shows that 50 degrees view-point change can be considered as a small view-point change
compared to the typical perspective diference. What is more, even the best performance of SIFT
has just a little above 50% correct matching ratio, which is rather low referring to typical image
matching precision. The correct matching precision refers to the ratio of how many matching im-
ages correctly matched. Even if SIFT has the best performance under view point change, 50% is
far below the application requirement.

The evaluation above reveals a very important issue, which has not been properly addressed,
namely the robustness of visual search algorithm to view-point change. In practice, all the current
content based visual search techniques are unable to provide invariance to view point changes. In

9



1 – Introduction

reality, a scene may be acquired from several diferent view points, resulting in a large number of
images of the same content but quite diferent perspectives. Without invariance or robustness to
aine transformations, the application on the content-based visual search will be seriously limited.
In advance, some real application, such as 3D object reconstruction, object recognition and archi-
tecture retrieval rely on accurate visual search of multiplexed planar object. Without a valid and
accurate fully aine invariant image retrieval system, such application can not be carried out.
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Figure 1.8. Some visual search techniques performance on aine robustness with the viewpoint
change around 50 degrees. (a) Threshold based matching. (b) Nearest neighbor matching. (c) Nearest
neighbor distance ratio matching [21].

Essentially, SIFT and most recent image retrieval systems are not designed to provide a full
aine invariance, and in practice they are quite sensitive to aine transformations. This sensitivity
to the aine transformation is not just due to the detector but also to the descriptor, since these
two procedures are mainly based on the framework of scale space, which is constructed using
isotropic Gaussian blurred images. To the isotropic ilters, the image is considered to be transformed
without directional preference, which is not the case for the image aine transformation. Directional
preference is a natural characteristic for the image aine transformation; the direction is indicated
by its eigenvectors and its level is indicated by its eigenvalues. However, the Gaussian ilter cannot
be steered to detect this directional preference. This makes the SIFT and some other scale space
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1.3 – The motivation of this research

based feature detection and description techniques unable to fully adapt to aine transformations
unless they adopt an aine transformed scale space.

In addition to SIFT, there are also some other image retrieval algorithms, specially designed
for aine invariance or comparably robust to aine transformations, such as Maximally Stable Ex-
tremal Regions (MSER) [14], Harris-Aine [22], Hessian-Aine and also Aine-SIFT (ASIFT) [23].

Figure 1.9. Feature matching comparision [23]. In the igure, SIFT (shown), Harris-Aine, Hes-
sian-Aine and MSER(shown) ind 2, 3, 1 and 42 correct matches.

Figure 1.10. Another feature matching comparision [23]. Correspondences between the painting
images taken from short distance with 75∘. SIFT (shown), Harris-Aine, Hessian-Aine, and MSER
(shown) ind respectively 15, 3, 1, and 5 correct matches.

Harris-Aine and Hessian-Aine irst detect key points in the scale-space using the approach
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proposed by Lindeberg [15]. Then aine normalization is realized by an iterative procedure that
estimates the parameters of elliptical regions and normalizes them to circular ones: at each itera-
tion the parameters of the elliptical regions are estimated by minimizing the diference between the
eigenvalues of the second order moment matrix of the selected region; the elliptical region is nor-
malized to a circular one. The advance of Harris-Aine and Hessian-Aine techniques is that they
are also based on the framework of scale space, which allows them to be scale invariant. But the
feature detection is still performed on the isotropic scale space, and the descriptor has not be fully
optimized for the aine transformation. Both these shortages make the result not so encouraging.
But the theory behind inspires us that the feature detection and description based on a modiied
scale space is possible.

MSER tries to be aine invariant by an aine normalization of the most robust image level sets
and level lines. It normalizes all of the parameters in the aine transform. It iteratively compares
the stability of each region. Once maximum stable regions are obtained, an aine normalization
is performed before they can be compared. Aine normalization up to a rotation is achieved by
diagonalizing each MSER’s second order moment matrix. MSER is not based on the framework
of scale space, thus it is not fully scale invariant [14].

ASIFT is an extension of SIFT to enhance its aine invariance. It simulates three parameters:
the scale, the camera longitude angle and the latitude angle (which is equivalent to the tilt) and nor-
malizes the other three (translation and rotation) [23]. In other words, ASIFT exhaustively matches
the image with all the possible simulated aine transformed versions. It inherits all the advantages
of SIFT but also compensates its aine transform sensitivity by simulating all the possible image
perspectives. It has a very good result for the aine invariance at the expense of a high computa-
tional complexity to match with the extra simulated images. In addition, the algorithm itself has
not solved the aine invariance property in the framework of scale space, but by some extra simu-
lations.

� SIFT HarAf HesAf MSER ASIFT50∘ 267 131 144 150 169260∘ 20 29 39 117 101270∘ 1 2 2 69 75480∘ 0 0 0 17 349

Table 1.1. Number of correct matches of ASIFT, SIFT, Harris-Aine (HarAf), Hessian-Aine
(HesAf), and MSER for viewpoint angles between 50∘ and 80∘ on a Magazine cover [23].

Overall speaking, MSER has a better aine robustness performance than SIFT in most cases.
But the lack of scale invariance for MSER is a shortcoming. Accordingly, MSER is not a good op-
tion for the visual search of diferent view points because accompanied with the view point changes,
the distances between the cameras will also vary. Figures 1.9 and 1.10 present the performance of
image matching respectively by SIFT and MSER. The view point change in the igure 1.9 is com-
parably large, resulting in a better performance for MSER. In the igure 1.10, there is a scale change
accompanied with the change of view points. SIFT has a better performance than MSER. Gener-
ally speaking, both SIFT and MSER are not qualiied for the image matching of diferent view
point. One is quite sensitive to the view point changes and the other is not scale invariant. Compa-
rably, Harris-Aine, Hessian-Aine are even less competitive than these two algorithms. Table 1.1
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presents the matching performance of these algorithms under diferent view point changes. ASIFT
has the best performance among all these algorithms under all the view point changes. The perfor-
mance of SIFT under a small view point changes is quite remarkable. Whereas, it drops quickly
following the increasing of the angles. To MSER, it is comparably robust to the view point changes,
but its fundamental matching capability is less competitive than SIFT.

Except for ASIFT, the performance of all the other visual search algorithms cannot satisfy the
requirements for the view point robustness. ASIFT is based on the image simulations of diferent
view point, resulting in a high redundancy of computation when dealing with the images of diferent
perspectives. An ideal visual search algorithm shall be based on SIFT to inherit its scale, rotation
and illumination invariance, but will also be able to adapt to aine transformations. To design a
visual search algorithm extended from SIFT, it is better to clarify the reason of SIFT sensitivity
to aine transformation. A complete SIFT algorithm can be divided into detection procedure and
description procedure, and a reasonable way to track the sensitivity to aine transformation shall
be to distinguish on which part the problem lies.

(a) (b)

Figure 1.11. Aine robustness evaluation on detection and description

� Total extraction Matching features Correct detection Missing detection50∘ 3572 0 1090 060∘ 4318 0 615 070∘ 4065 0 237 080∘ 2991 0 74 0

Table 1.2. Aine robustness evaluation of SIFT on detection and description with
viewpoint angles between 50∘ and 80∘.

To clarify the source of aine transform sensitivity, we have design an aine evaluation on both
detection and description, depicted in the Figure 1.3. In the Figure, the green crosses depict the to-
tal extracted features in the aine transformed image. The magenta crosses stand for the detected
features from the original image while projected to the aine transformed image. If the green cross
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matches with the magenta cross, it means the feature has not been afected by the aine transfor-
mation. If we can declare a match with the corresponding feature from the original image, it can
also be matched with the feature calculated from the image with a similar perspective diference.
These matched features will be colored with red triangle. The projected features, which have not
been matched with any aine transformed image feature but happen to be at the same geometric
coordinates and same scale value, will also be declared as a correct detection and depicted by a
magenta square icon. An image in the framework of scale space can be fully represented by both
its geometric coordinates and scaling value. If two features of the same content appear at the same
coordinates and same scaling value, they are the same feature to be matched. If these two expected
to be matched features do not match in reality, it is the descriptor that fails for a correct identiica-
tion, and not the detection. In this way, we can track from which part the aine sensitivity of SIFT
is coming. Table 1.2 displays the result of this evaluation under diferent levels of aine transfor-
mations. From the table, we can notice that none of the extracted features matched, revealing SIFT
is rather sensitive to aine transformations. At 50∘, there are 3572 total extractions and among them1090 are correct detection, which is about one third of them. But at 80∘, there are only 74 left cor-
rect detections. This number drops quickly with an increase level of aine transformation. Overall
speaking, the mismatch of SIFT due to aine transformations occurred on both the detection and
description procedures.

To design a view point robust visual search technique based on SIFT, the detection and descrip-
tion are both to be adapted to the aine transformation. In chapter 2, we describe a post-processing
stage integrated in CDVS to improve its retrieval accuracy under aine transformations. Chapter
3 introduces an aine adapted SIFT based feature detection and the theory behind. In chapter 4
introduce an aine adapted SIFT based descriptor. Combining both these chapters, a new aine
robust visual search technique will be presented.

1.4 Contribution of this work

To handle the sensitivity to view point changes of the up-to-date visual search techniques, we
mainly focus on two diferent scenarios of view point invariance.

1. CDVS-compatible scheme, which aims to improve its robustness of image retrieval under
diferent view points.

2. A more general scheme based on an aine invariant scale space, including the scale space
based feature detector and feature descriptor.

The CDVS-compatible scheme is based on the theory that each pair of aine transformations
are mathematically related by homography matrix. Given that matrix, the image can be modiied
according to the matrix to simulate its appearance from another view point. In this way, the image
under diferent perspective projection can be declared as matching because the distortion by dif-
ferent projection can then be reduced by the coordinates modiication. An accurate homography
estimation from the images of diferent view point requires at least 4 correspondences, which can
be obtained by the CDVS pipeline as will be described in chap. 2.
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As we have discussed above, scale space is the foundation of the up-to-date scale invariant
visual search techniques. It is a structure to represent an image of diferent level of details by blur-
ring with a parameterized family of Gaussian ilters. The scale space provides a scale-invariant
representation, which is necessary for dealing with the size variations that may occur in image
data. However, the scale space representation makes the image unsuited be linear transformed to
compensate for a diferent viewpoint without a modiication on the Gaussian ilters. A linear trans-
formed image convolved with a non-linear transformed ilter will undermine the linear relationship,
which existed between two perspective projections and can be captured by our brain. Thus, we pro-
pose an aine scale space to retain the linear relations of the scale invariant representation on the
aine transformed images. In the framework of aine scale space, both the scale and aine invari-
ant feature detection and descriptor has been re-designed to adapt to the modiications necessary
to perform re-alignment of images taken from diferent viewpoints.

1.4.1 CDVS-compatible scheme

The idea for CDVS-compatible scheme is to detect and simulate the image under a diferent
perspective projection by aine transforming the image coordinates. By this simulation, no perspec-
tive distortions between the query image and the reference image will exist to afect the matching
process of CDVS, thus this scheme can be applied to the images of any view points by reducing
the view points diference with the stored image. The applicability of this scheme is based on an
accurate detection of the perspective diference between the query image and stored image, which
can be mathematically described by homography matrix. A homography relation between the im-
ages of diferent view points is based on the mathematical model, that an image from a certain view
point is obtained by a perspective projection of the target image. Thus, the images from diferent
view points can be originated from the same image by diferent perspective projections. The rela-
tionship of diferent perspective projections can then be described by a homography matrix, which
relates the coordinates of the same object points on diferent images. Given that matrix, one of
the images can be re-projected to simulate the image from another view point. In this way, images
can be matched by reducing the perspective distortion between them. Thus, an improvement to the
robustness to view point changes is now obtained via an accurate estimation of the homography
matrix between the images.

Since the homography relation of two perspective projections is homogenous to all the pixels
on the images, the homography matrix can be estimated by a few correspondences. These few cor-
respondences which depict the same points on the object, provide the coordinates relationship. By
analysis these relationships, a homography matrix can then be estimated. These correspondences
can be provided by CDVS matching scheme without a perspective re-projection.

In practice, we designed a homography based post-processing stage integrated in the general
CDVS pipeline to improve its resilience to view point changes. This post-processing stage will not
trigger unless the number of matched features are not enough to declare image matching. This
post-processing stage will act as a double check to ind whether the fail of match is due to the view
point diference or not. We have also prepared the algorithm to the images of multiple planes by
recursively applying RANSAC to rule out the features not belong to a certain homography relations.

By testing the images of diferent categories, we have show this post-processing stage can be
used to improve the matching precision.
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1.4.2 Aine scale space

The purpose of the aine scale space is to create a more general approach to the aine invariant
image scale representation by steering the Gaussian ilters to the speciic aine transformations. It
has the objective to retain a linear relationship of the scale space by steering the ilters following
the transformation of the image. With this linear relationship, this representation can be kept as a
homogeneous transformations to all the scales. Thus a homogeneously transformed scale space can
easily be modiied by the same adaptation to cope with the view point changes especially when the
transformation is given.

Query 
Image

Affine scale 
space 123

Reference 
Image

Conventional 
scale space

Affine 
transformation  12

Compare

Σ

Σ

Σ

Figure 1.12. The aine robustness of the aine scale space implementation will be evaluated in this
way. Σ is the supposed aine transformation.

This aine scale space aims to establish a more general approach to the scale and aine invari-
ant image retrieval, including aine feature detection and aine feature descriptor. We should irst
understand how the detection and descriptor change in an image taken from another view point. As
we have discussed above, an image from another view point can be described by an aine transfor-
mation, whose coordinates are linearly related with the original image. This linear relationship can
easily be captured and calculated by our brain but cannot be automatically captured by the conven-
tional scale space, which the scale invariant feature detection and feature descriptor are based on.
Even the image itself has an approximately linear relationship with the original image, the convo-
lution with a parametrized family of Gaussian ilters will spoils this relationship. Thus, the scale
space of the image from another view point cannot be related with the original one by a simple
linear relationship and the feature detection and feature descriptor can be quite diferent. To ad-
dress this issue, we can either steer the image to simulate a similiar view point, or steer the ilters
to establish a scale space that is still linear related with the original one. Our post-processing stage
in chap. 2 and ASIFT choose the irst method to cope with this. It is not economical especially in
the image retrieval system, dealing with millions of images. We will also introduce the aine scale
scale as a more general approach to capture and describe the features in an aine invariant way.
Since the idea of scale space has been applied for both the feature detection and feature descriptor,
the aine scale space can also be applied to both these areas.

In practice, scale invariant visual search techniques have employed a pyramid structure to speed
up the scale space construction. This structure is based on the scale space principles, including
sampling and cascading. By iteratively sampling and convolving with the smoothed image, the
complete scale space can be constructed using Gaussian ilters and the LoG can be created by a
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Laplacian operation on the scale space. For the aine scale space, we will also propose two struc-
tures to build the aine Gaussian scale space and aine LoG. The structure of aine Gaussian
scale space can also be created by the pyramid structure because sampling and cascading are also
properties of aine Gaussian operators. However, to cope with the aine LoG, we needed to de-
velop speciic structures. The Laplacian operator, under aine transformation, is hard to be aine
deformed because of the constraint on its size. Diferently from the Laplacian operation to obtain
the general LoG, the aine LoG can only be calculated by aine LoG ilter integrating the con-
volution and cascade implementations in the construction of aine scale space. By our proposed
structures, the aine Gaussian scale space and aine LoG can be simultaneously constructed. We
have also proposed two scale space implementations in frequency domain by some special proper-
ties of aine alignment to obtain a more accurate aine robust scale space. The aine scale space
is a forward model, allowing to predict what will happen to an image under a diferent view point.

The performance of aine scale space will be evaluated according to the igure 1.12. Supposing
a known aine transformation Σ, we can construct both the aine scale space and the conventional
scale space and by comparing the forward transformed general scale space, we can obtain the eval-
uation of the aine robustness for the implementation. Generally speaking, the precision of aine
scale space implementation in spatial domain ranges from 36dB to 42 dB for SNR and in frequency
domain ranges from 39dB to 18dB for SNR. The change of precision is mainly due to the change
of scale. In spatial domain, the larger the scale the more accurate the scale space implementation
is, whereas in frequency domain, the tread is the opposite.

We have also applied the aine scale scale to the feature detection. It has been proved to have
a better performance than the general scale space especially when the diference of view point is
large. General speaking, it can guarantee that at least 30% of features will be retained the same
without being afected by the aine transformation, whereas for the conventional scale space, only1% of the features will be detected when the view point change is larger than 70∘.

By adopting the same idea, we will also propose an aine invariant descriptor, which borrows
the idea of steerable ilters to create the aine gradient as the histogram element. Unlike the con-
ventional image gradient method, our proposed descriptor employs the Gaussian derivative ilters
to create the gradient of each scale space. Combined with the Gaussian ilter, this gradient operator
can easily be aine adapted, similar to the method we have applied to the aine scale space. With
this aine gradient, we can apply the same scheme of SIFT to generate the histogram. By normaliz-
ing the histogram and selecting the area over which to bin the gradient, an aine invariant but also
standard compatible aine descriptor can be formed. We have tested this descriptor by comparing
one feature with 200 randomly selected points from the image to test whether the target feature
will be matched or not following the tilting of the image. The result shows that, the performance of
matching precision for the general feature descriptor drops quickly, whereas the aine descriptor
is quite robust to the aine transformation. Over 85∘ view point diference, the aine descriptor is35% more precise than the conventional descriptor. In practice, this aine descriptor is fully aine
invariant and its performance for image matching is extremely good.
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Chapter 2

Homography model and
Back-projection

As introduced in the irst chapter, CDVS is an MPEG proposed standard that will enable ef-
icient and interoperable design of visual search applications by applying feature detection and
description. Such techniques are invariant to rotation and scaling, but are not very robust towards
viewpoint changes. In this chapter, we address this problem and propose a post-processing of the
CDVS pipeline that employs image back-projection to compensate for perspective distortion via a
re-ranking stage. The proposed technique is based on the Homography derived from the correspon-
dence extracted from pairs of matching keypoints.

To our best knowledge, this is the irst time that the homography transform is employed to
improve robustness of local descriptors to viewpoint changes. Extensive tests on the CDVS database
show that the proposed technique can improve the matching precision up to 3%.

2.1 Homography model

In a content based image retrieval system, two images of the same scene are to be matched.
If the viewpoints between these images are diferent, i.e., there is perspective distortion between
them, then a correct matching might not be possible. To reduce the perspective distortion, we pro-
pose to estimate the Homography between the two images [28]. With projective cameras, any two
images of the same planar surface in space are related by a Homography [29]. Homography can
be used to estimate the projective position and projective plane. Once the Homography is known,
back-projection can be used to reduce the perspective distortion and improve the image matching
accuracy, as we show in Sec. 3.

Figure 2.1 depicts a Homography model. Image 1 and Image 2 are images of a 2D planar object.
One point on Image 1 correspond to another point on Image 2 when they both relect the same point
on the object. Images of 2D planar objects are obtained via projective relection. Thus images with
diferent viewpoints are from a diferent relection. These relections are projectively related in
geometry. This relationship can be estimated after knowing corresponding pairs of points because
it is a homogenous relationship among all the points on the planes.

19



2 – Homography model and Back-projection

The mathematical deinition of a Homography is given below:

ষূ = ֠֡֡
֢
৘ূ৙1ূ

֣֤֤
֥ ,ষৃ = ֠֡֡

֢
ৗ′৘ৃৗ′৙ৃৗ′

֣֤֤
֥ (2.1)

Then: ষৃ = �ূৃষূ where �ৃূ = �−1ূৃ . ষূ and ষৃ are the corresponding points on diferent
2D planes. Notice that points laying on �2 are normally represented as a pair (৘, ৙)঻ . However
in projective geometry intersection points of lines or planes are more relevant. For a homogenous
representation, a third coordinate is added as a scale variable [29]. Therefore, an arbitrary homo-
geneous vector representative of a point is of the form ষ = (৘1, ৘2, ৘3)঻ , representing the point(৘1/৘3, ৘2/৘3)঻ in �2. The points at ininity can be represented with ৘3 = 0. �ূৃ is the Homography
matrix, representing the projection of point ষূ to ষৃ. �ৃূ is the corresponding inverse transforma-
tion.

Figure 2.1. Homography model.

To model the perspective distortion, we need to estimate the Homography matrix. Direct Lin-
ear Transformation (DLT) is one of algorithms to determine �ূৃ, given a set of 2D to 2D point
correspondences ষূ ↔ ষৃ [29]. ষূ and ষৃ are the corresponding points on diferent planes.

Letting pairs of correspondences be related by ষৃ = �ষূ then,

�ষূ = ֛֛֚
֜
�1঻ ষূ�2঻ ষূ�3঻ ষূ

֝֞֞
֟ ,w৉৔ℎ � = ֛֛֚

֜
�1঻�2঻�3঻

֝֞֞
֟ , (2.2)

Writing ষৃ = (৘ৃ, ৙ৃ, ৚ৃ)঻ , the cross product may then be given as

ষৃ � �ষূ = ֛֛֚
֜
৙ৃ�3঻ ষূ − ৚ৃ�2঻ ষূ৚ৃ�1঻ ষূ − ৘ৃ�3঻ ষূ৘ৃ�2঻ ষূ − ৙ৃ�1঻ ষূ

֝֞֞
֟ (2.3)
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Since �৊঻ ষ = ষ ঻ �৊ for ৊ = 1,… ,3, it can be written in the form as,

֠֡֡
֢

�঻ −৚ৃষ ঻ূ ৙ৃষ ঻ূ৚ৃষ ঻ূ �঻ −৘ৃষ ঻ূ−৙ৃষ ঻ূ ৘ৃষ ঻ূ �঻
֣֤֤
֥

֛֛֚
֜
�1�2�3

֝֞֞
֟ = �. (2.4)

These equations have the form �৉� = 0, where �৉ is a 3 � 9 matrix, and � is a 9-vector made
up by the entries of matrix �,

� = ֛֛֚
֜
�1�2�3

֝֞֞
֟ ,� = ֛֛֚

֜
�1঻�2঻�3঻

֝֞֞
֟ , (2.5)

If � is written in this way,

� = ֠֡֡
֢
ℎ1 ℎ2 ℎ3ℎ4 ℎ5 ℎ6ℎ7 ℎ8 ℎ9

֣֤֤
֥ . (2.6)

Then, � = (ℎ1,ℎ2,ℎ3,ℎ4,ℎ5,ℎ6,ℎ7,ℎ8,ℎ9)঻ . Thus, the solution of the equation �৉� = 0 contains
the entries for the Homography matrix �.

The equations �৉� = 0 is an equation linear in the unknown �. The element of �৉ are from
the coordinates of known correspondences. Although, three vectors are, contained in the equations
(2.4), only two of them are linearly independent. Thus each point correspondence provides two
equations in the entries of �. The third equation can easily be replaced by the other two and the
solution to the combination of these three equations can be used to set up the Homography matrix�. Thus the set of equations becomes,

[ �঻ −৚ৃষ ঻ূ ৙ৃষ ঻ূ৚ৃষ ঻ূ �঻ −৘ৃষ ঻ূ ] ֛֛֚
֜
�1�2�3

֝֞֞
֟ = �. (2.7)

The expression can also be simpliied as, �৉� = �, where �৉ is now a 2 � 9 matrix.
Since � is a 9 element vectors deined by to the entries of �, the rank of � is the minim number

of equations that are necessary to determine a unique solution of the linear equations �৉� = �.
All the elements are mutually independent except ℎ9 presenting the scale of the transformation,
which is determined by the rest of the elements. Thus, the rank of � is 8. If �৉ is a collection
of 8 independent equations as the constraints to �, a unique solution can be directly obtained. In
practice, each pair of correspondences give rise to two independent equations to the entries of �.
To satisfy the minimum number of equations, it is necessary to specify four point correspondences
in order to constrain � fully. By detecting a set of four such matched correspondences, we obtain a
set of equations �� = �, where � is the matrix of equation coeicients built from the matrix rows�৉ contributed from each correspondence, and � is the vector of unknown entries of H. After all,
the solution we seek should be non-zero, since the obvious � = � is meaningless to us. Give 4 pairs
of correspondence, a full rank � can be used to seek the uniquely determined entries of �.

If exactly four pairs are given, then a unique solution for the matrix � can be obtained. However,
since matching pairs are not known exactly, because of the non ideality of the keypoint detector, if
more than four correspondences are given then these correspondences may not be fully compatible
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with any projective transformation, and one will be faced with the task of determining the best
transformation given the data.

If more than four point correspondences are given, then the set of equations �� = 0 is over-
determined. If the position of the keypoints are exact, we can seek an optimized approximation to
the over-determined system �� = 0 apart from the all-zero solution. However, we cannot be sure
that all the available correspondence pairs are reliable, so we must identify and remove outliers
before estimate the Homography.

To this end, we employ RANSAC [29], which is an iterative method to estimate parameters of
a mathematical model from a set of observed data which contains outliers [30]. The idea is very
simple: two of the points are selected randomly; these points deine a line. The conidence score
for this line is calculated as the number of points that lie within a maximum distance. This random
selection is repeated a number of times and the line with highest conidence score is deemed the
robust it. The points within the threshold distance are the inliers. The aim of this stage is two-fold:
irst, to obtain an improved estimate of the Homography by using all the inliers available in the given
correspondence pairs (rather than only the four points of the sample); second, during the following
back-projection stage, to obtain more matches from the correspondence set because a more accurate
Homography is available. An improved estimate of the Homography is then computed from the
inliers.

After ruling out the outliers, the rest of the correspondence can be used as the constraint to
the Homography matrix �. If more than four of these correspondences are given, then the set of
equations derived from (2.7) is over-determined. If the positions of all the given points are exact
and the matrix � will still have rank 8, we have a one dimensional null-space, and there is still an
exact solution for �. Additionally, the equations related to the set of correspondences are cross-
related with each other, until 8 unrelated equations are identiied. In that case, the 8 independent
equations shall irstly be selected among all available equations by the given correspondence and
an exact solution can be seek by expectation sought.This will not be the case if the measurement
of image coordinates is inexact (generally efected by noise) – there will not be an exact solution to
the overdetermined system �� = 0 except the zero solution. In that case, instead of demanding an
exact solution, one attempts to ind an approximate solution, namely a vector � that minimizes a
standardized cost function. Generally, the norm of the target function will be used as the constraint
to �. Given that there is no exact solution to �� = 0, it seems natural to attempt to minimize the
norm ‖��‖ instead, subject to ‖�‖ = 1. The solution to minimize the norm is by the eigenvector
of �঻ � with least eigenvalue. Equivalently, the solution is the unit singular vector corresponding
to the smallest singular value of �. Speciically, if � = ়�ঽ ঻ with � diagonal with positive
diagonal entries, put into descending order down the diagonal, then � is the last column of ঽ .

Another more sophisticated use of the Homography based back-projection is the Homography
detection of multiple 2D planar objects. As discussed above, Homography is the matrix to calibrate
the 2D plane projective diference. Theoretically, a Homography relation only exists between the
same planes of diferent perspectives. Equivalently, if multiple planar objects are contained in the
images with diferent view-point, Homography relations should be associated to each pair of planes
rather than a universal Homography for the whole image, and the correspondence from diferent
geometrical parts of image may be used to derive diferent Homography relations. In real applica-
tions, the number of planes and the complexity of the contents are not previously given, and must
be estimated by the algorithm itself, which enormously increase the implementation complexity. In
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practice, we collect all matched pairs indiferently and categorize the pairs by recursively applying
RANSAC to remove the pairs diferent from the majority in the same plane. From the removed
pairs, we identify another potential plane by using RANSAC again until all the planes have been
identiied or the number of pairs from that speciic plane is not enough for a Homography estima-
tion. In this way, the Homography based back-projection can also be extended to the images with
multiple planes.

2.2 Proposed homography-based retrieval stage

CDVS is the standard under development in MPEG that will provide a highly eicient and in-
teroperable pipeline for visual search; Figure 2.2 displays the descriptor extraction of CDVS [24]. It
includes keypoint detection, feature selection, local descriptor computation, local descriptor com-
pression and coordinate coding. Keypoint detection and descriptor computation are the fundamen-
tal operations of visual search. The purpose of feature selection is to preserve the most signiicant
keypoints for a low memory consumption. Local descriptor compression and coordinate coding
both aim to decrease the memory consumption and transmission bandwidth. The global descrip-
tor is set aimed to quickly retrieve the target image from millions of candidates by applying some
statistics and machine learning techniques [24].

Image
Keypoint 
detection

Feature 
selection

Local descriptor 
computation

Local descriptor 
compression

Coordinate 
coding Local descriptors

Global 
descriptor 

aggregation

Global descriptors

Figure 2.2. CDVS descriptor extraction.

In the CDVS standard, whether two images will be declared as matched or not depends on
their matching score. Each pair of matched features will be assigned a score and the total image
matching score is obtained by summing up all the scores of the matched features on that image.
However, since CDVS is not viewpoint robust by construction, it may wrongly declare matching
or non-matching images because of perspective distortion. In this paper we argue that perspective
distortion can be reduced by homography estimation and back-projection. Back-projection consists
in inverting the perspective transformation. The irst step towards back-projection is to estimate the
homography that deines the inverse transformation.

As has been said, a homography can be derived from at least 4 pairs of corresponding points.
However, the image matching process will typically provide more than 4 matching pairs. In our
proposed system, we used the DLT algorithm and RANSAC, as detailed in Sec. 2, to estimate the
homography. Then, the perspective distortion can be reduced applying back-projection.
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2.2.1 Perspective distortion reduction by back-projection

In particular, the proposed estimation and back-projection process operates as follows. Suppose
two images রূ and রৃ have an approximate homography relationship. The standard CDVS pipeline
might declare a non-match between রূ and রৃ because of the perspective distortion. Once the ho-
mography �ূৃ is estimated by DLT, the image র ′ূ is obtained as the set of points from the images
satisies র ′ূ = �ূৃরূ. In other words, we now have a new pair of images, র ′ূ and রৃ, where the per-
spective distortion has been removed or at least strongly attenuated from image রূ. It is therefore
reasonable to assume that, while CDVS might wrongly declare রূ and রৃ as a non-match, it can be
likely to correctly declare র ′ূ and রৃ as a match without the perspective distortion. Thus র ′ূ and রৃ
are set as the new pair to be checked as matching or non-matching by CDVS [31].

Figure 2.3. Integrated back-projection CDVS.

More in detail, the pipeline of our proposed method is displayed in Figure 2.3. From the
pipeline, we can see that our proposed stage is integrated into the standardized CDVS visual search
system. This guarantees to exploit CDVS’s high eiciency and accuracy. The area inside the dot-
ted rectangle is our proposed stage. It includes homography estimation, back-projection and re-
matching of an image pair after compensating for perspective distortion.

In particular, the re-matching process is triggered only if the matching score does not exceed
the threshold. That is, if CDVS believes the images are matched, we trust this as it is likely that
the images had small perspective distortion. Instead, if CDVS decided that the image pair does not
match, we perform back-projection and re-matching to see if a transformation can be found, which
will estimate and correct the perspective distortion leading to a positive match. In particular, the
re-matching stage checks whether more than 4 matched corresponding pairs are available. If this is
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2.2 – Proposed homography-based retrieval stage

the case, a homography matrix is estimated and back-projection is used to remove the perspective
distortion between the images. Thus, the image pair without perspective distortion will have more
matched features. However, it is not guaranteed that matched features are truly matched or the
positions of the matched features are exact. The back-projection based on non accurately estimated
homography cannot help to decrease the perspective distortion. In the pipeline, to make sure that
the perspective distortion of back-projected image is not worse than the initial one, the score after
the re-matching stage is compared with the initial score. If the score has not been improved, the
initial matching score and the related matching decision will be preserved [31].

Figure 2.4. Improvement on the numbers of features.

To understand the re-matching process, note that, as Figure 2.4 displays, after reducing the per-
spective distortion, there will normally be an increase of the number of matched features. If the
increased score exceeds the threshold after the back-projection, then the previous non-match will
be turned into a correct match. In Figure 2.4, a and b are the initial images. Due to the perspec-
tive distortion, the number of the matched features is around 15. c is the image after reducing the
perspective distortion from b. The matched features between a and c are around 125. It is a great
increase of the numbers of matched features, which can lead to a correct match, while the two initial
images would not have been matched.
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2.2.2 Implementation on images of multiple planar objects
A more sophisticated integrated CDVS pipeline based on Homography and back-projection can

be set up to handle the view-point changes to multiple 2D planar objects. Up to the descriptions
above, a Homography relation exists between any 2 diferent perspectives of the planes. An im-
age containing more than one 2D plane (either multiple 2D objects or a very complicated multiple
planar object or both) may rise ambiguities for the Homography estimation since the Homography
estimation is based on all the correspondences whose perspective constraints are homogeneous.
But the correspondences from diferent plans will correspond to diferent Homography relations,
thus a unique Homography relation cannot be ixed by indiferently collecting the correspondences
from the images with diferent perspectives. A reasonable approach to identify each correspond-
ing Homography relation is to categorize in advance the correspondences of each plane and then
identify the related Homography matrix. That is not easy to implement because the perspective
changes can be vary a lot. However, a Homography matrix can be fully constrained by 4 corre-
spondences. Equivalently, every set of more than 4 correspondences responding to the same plane
can be grouped and added to as the identiication of the source of the correspondence. In practice,
the correspondences which do not refer to the estimated Homography matrix by the main group of
points will be rejected as outliers by RANSAC. In this way, the Homography referring to the main
set of points can be ixed. Iteratively, from the rejected points, we can then rule out the outliers
and ix the sub-main plane composed by the remaining points until all Homographies have been
estimated or the correspondences from the planes are not enough for an Homography estimation.

(a) (b)

Figure 2.5. Image with multiple planes

Figure 2.5 presents a typical image matching containing multiple planes at diferent perspec-
tives. For this kind of image matching, a homography based back-projection cannot completely
reduce the perspective distortion between them. The perspective distortion exists between any two
of the planes in the images, but a back-projection can only be used to reduce one of them.

Figure 2.6 demonstrates the process of each step to identify the correspondence from diferent
planes by an iterative RANSAC-Homography method.

Figure 2.7 presents the pipeline of the Homography estimation for the images with multiple 2D
planes. Generally, after an appropriate Homography estimation of each 2D plane, the image will
be back-projected respectively to each Homography. Then, the matching pairs from that speciic
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(a) (b) (c)

Figure 2.6. The correspondence on each plane by iterative RANSAC

All matched 
correspondences

RANSAC

Outlier 
correspondence 

Correspondence 
from one plane

Homography for 
one plane

Figure 2.7. Improved pipeline for Homography estimation for multiple planes.

plane will be expected to increase by reducing the perspective distortion between them.

2.3 Experiments and results
Our proposed method has been integrated into the CDVS test model. Experiments are con-

ducted by employing the MPEG dataset used for the evaluation of CDVS. In the dataset, there are
5 image categories. Additionally, Category 1 has 3 sub-categories. These dataset are deined as
follows.

• Mixed text and graphics

• Mixed text and graphics at VGA resolution

• Mixed text and graphics at VGA resolution with heavy JPEG compression

• Paintings

• Video frames

• Buildings and landmarks

• Common objects
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Totally, there are 33590 images in the dataset.
The experiment for evaluating the performance of the proposed scheme is designed as follows.

In each category, original CDVS and our integrated back-projection CDVS are tested calculating
both matching precision and non-matching precision. Our experiment has been run on all cate-
gories. As expected, the proposed back-projection method is more eicient in the categories of
objects where the planar assumption is reasonable, although no performance decrease is observed
in the other categories, leading to an overall improvement.
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Figure 2.8. Proposed method precision evaluation, (a) prints; (b) dvds.

0.88 0.9 0.92 0.94 0.96 0.98 1

0.94

0.95

0.96

0.97

0.98

0.99

1

Non−matching pairs precision

M
at

ch
in

g 
pa

irs
 p

re
ci

si
on

cards

 

 

1) Proposed
2) CDVS

(a)

0.965 0.97 0.975 0.98 0.985 0.99
0.594

0.596

0.598

0.6

0.602

0.604

0.606

0.608

Non−matching pairs precision

M
at

ch
in

g 
pa

irs
 p

re
ci

si
on

paris

 

 

1) Proposed
2) CDVS

(b)

Figure 2.9. Proposed method precision evaluation, (a) card; (b) paris.
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2.3 – Experiments and results

Books MP NMP CDs MP NMP Dvds MP NMP
CDVS 0.980 1.000 CDVS 0.900 1.000 CDVS 0.970 1.000
Proposed 0.990 1.000 Proposed 0.920 1.000 Proposed 0.975 1.000
Improvement 0.010 0.000 Improvement 0.020 0.000 Improvement 0.005 0.000
Books-vga CDs-vga Dvds-vga
CDVS 0.980 1.000 CDVS 0.921 1.000 CDVS 0.921 1.000
Proposed 0.985 1.000 Proposed 0.938 1.000 Proposed 0.938 1.000
Improvement 0.005 0.000 Improvement 0.017 0.000 Improvement 0.017 0.000
Books-vga-jpeg CDs-vga-jpeg Dvds-vga-jpeg
CDVS 0.983 1.000 CDVS 0.901 1.000 CDVS 0.976 1.000
Proposed 0.987 1.000 Proposed 0.918 1.000 Proposed 0.985 1.000
Improvement 0.004 0.000 Improvement 0.017 0.000 Improvement 0.009 0.000
Cards Print Video
CDVS 0.960 0.997 CDVS 0.872 1.000 CDVS 0.858 0.999
Proposed 0.965 0.997 Proposed 0.880 1.000 Proposed 0.838 0.999
Improvement 0.005 0.000 Improvement 0.008 0.000 Improvement 0.020 0.000
Cards-vga Print-vga Stanford
CDVS 0.935 0.997 CDVS 0.848 1.000 CDVS 0.555 1.000
Proposed 0.952 0.997 Proposed 0.882 1.000 Proposed 0.561 1.000
Improvement 0.017 0.000 Improvement 0.034 0.000 Improvement 0.001 0.000

Table 2.1. Performance of the proposed pipeline on the categories of partial CDVS dataset.

Figure 2.8 shows some result on the matching precision, in particular (a) displays the result
in print and (b) displays the result in dvds. The red line represents the precision of the proposed
back-projection method and the green one represents the precision of original CDVS, and it can be
seen that the proposed algorithm consistently outperforms CDVS. Figure 2.9 presents the matching
precision on the images of cards and paris architectures. Apparently, the improvement on diferent
categories of images is diferent.

The result are further analyzed in Table 1, including planar objects at original resolution, at
VGA resolution and at VGA resolution with heavy JPEG compression, buildings, landmarks and
video frames. In the table, MP is short for matching pairs precision and NMP is short for non-
matching pairs precision. Generally speaking, our proposed back-projection method can improve
the matching precision more than the non-mathing precision. However, the improvement varies
among categories and resolutions. As expected, the improvement on the 2D planar objects is more
obvious compared with buildings and landmarks. But even on buildings and landmarks, our method
can still somewhat improve the matching precision. The average improvement on the buildings and
landmarks is about 0.3% and the average improvement on the 2D planar objects is 2.9%. JPEG com-
pression will not afect the improvement but resolution indeed has an efect. Typically, a image of
higher resolution will generate more matched pairs of keypoints, but these matches are not gen-
erally more correct than in a lower resolution image. More incorrect matched keypoints do not
contribute to a correct homography estimation, hence a higher image resolution generally did not
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2 – Homography model and Back-projection

provide better results.

Cards-vga-jpeg Print-vga-jpeg Turin
CDVS 0.962 0.999 CDVS 0.852 1.000 CDVS 0.662 1.000
Proposed 0.967 0.999 Proposed 0.872 1.000 Proposed 0.663 1.000
Improvement 0.005 0.000 Improvement 0.020 0.000 Improvement 0.001 0.000
Paintings Objects Zubud
CDVS 0.972 1.000 CDVS 0.938 1.000 CDVS 0.879 1.000
Proposed 0.979 1.000 Proposed 0.940 1.000 Proposed 0.879 1.000
Improvement 0.005 0.000 Improvement 0.002 0.000 Improvement 0.000 0.000
Etri Huawei Paris
CDVS 0.984 1.000 CDVS 0.688 1.000 CDVS 0.604 1.000
Proposed 0.985 1.000 Proposed 0.688 1.000 Proposed 0.605 1.000
Improvement 0.001 0.000 Improvement 0.000 0.000 Improvement 0.001 0.000

Table 2.2. Performance of the proposed pipeline on the categories of partial CDVS dataset.

2.4 Conclusion
In this chapter, we proposed a new method based on the CDVS pipeline, attempting to improve

the matching precision of images pairs taken at diferent viewpoints, which is known to be a diicult
case for SIFT descriptors. The method employs Homography, and is fully integrated into the CDVS
standard, its complexity is low and it can improve the matching precision, especially on images of
2D planar objects. In particular, performance improvement is up to 3% on those image categories
that satisfy the planar model, such as print and CDs.
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Chapter 3

Aine scale space

Scale space is the fundamental theory of multi-scale signal representations, handling image
structures at diferent scales by representing an image as a one-parameter family of smoothed im-
ages. The scale-space representation, parametrized by the size of the smoothing kernel, is used for
suppressing ine scale structures [32].

The scales space representation is also the basis of scale invariant image retrieval. In the real
world, objects may be of diferent sizes and the distance between the object and the camera is
variable [15]. For a feature detections algorithm, it becomes quite necessary to be invariant to
scales.

A side efect of the feature detection algorithm based on the scale space is that it is not robust
to many geometric transformations. In practice, visual search appears quite sensitive to a change
of view-point, which is analogous to a geometric linear transformation. Therefore, we will intro-
duce an aine scale space representation which is speciically adapted for linear transformation.
In that structure, not only the image, but also the smoothing kernel will be converted according to
the transformation. Moreover, we will also introduce a practical technique for its implementation.
Based on that implementation, the classical scale space will be interpreted as a special case of aine
scale space.

3.1 Introduction to scale space

The scale space framework provides a basic representation tool for feature detection, allowing
to extract features from multiple scales. The local derivative operator detects local edges and blobs
at all the scales. Those selected blobs, with maximum response over all scales, will be selected as
feature candidates [15].

Isotropic scale space is the fundamental representation tool for recent feature detection algo-
rithms. It is easily applicable since many attractive properties derive from scale-space axioms.
Based on these properties, some special construction methods have been designed to speed up the
processing.

For a given image র(৘, ৙), its scale-space representation is given by a family of images ঳(৘, ৙, �)
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3 – Aine scale space

smoothed by a two dimensional Gaussian kernel, whose parameter is deined according to the ker-
nel size:

ৈ(৘, ৙; �) = 12��2 ৆− ৘2+৙2
2�2

, (3.1)

such that ঳(৘, ৙; �) = ৈ(৘, ৙; �) ∗ র(৘, ৙) (3.2)

where the semicolon in the argument of ঳ implies that the convolution is performed only over the
variables ৘, ৙, while the scale parameter � after the semicolon just indicates which scale level is
being deined [33].

(a) � = 0, original image. (b) � = 1.6.

(c) � = 1.6 � 2. (d) � = 1.6 � 2√2.

Figure 3.1. A typical scale space, including the images smoothed with diferent size of Gaussian ilter.

The scale parameter � is the standard deviation of the Gaussian ilter. When � = 0 the ilter ৈ
becomes an impulse function such that ঳(৘, ৙; 0) = র(৘, ৙), that is, the scale-space representation
at level 0 is the image itself. Figure 3.1 represents a typical scale space. We could notice that as the
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3.1 – Introduction to scale space

increasing of �, the corresponding image is smoothed with a larger Gaussian kernel and hence it
contains fewer details.

The motivation for generating a scale-space representation of a image originates from the basic
observation that real-world objects are composed of diferent structures at diferent scales. This
implies that real-world objects, in contrast to idealized mathematical entities such as points or lines,
may appear in diferent ways depending on the scale of observation. For example, the concept of
a “tree” is appropriate at the scale of meters, while concepts such as leaves and molecules are
more appropriate at iner scales. For a computer vision system analysing an unknown scene, there
is no way to know a priori what scales are appropriate for describing the interesting structures in
the image data. Hence, the only reasonable approach is to consider descriptions at multiple scales
in order to be able to capture the unknown scale variations that may occur. Taken to the limit, a
scale-space representation considers representations at all scales [15].

Gaussian ilter is the most common choice for the scale space. Essentially, the smoothing ilter
should not introduce new spurious structures at coarse scales and not correspond to simpliications
of structures at iner scales. This special requirement can only be satisied by the ilters with a
smooth response from low pass band to high pass band and introducing no spurious structures at
any scales. Based on that theory, Gaussian ilter becomes a very good choice among all the low
pass ilters [34].

3.1.1 Feature detector
The scale space representation contains interesting image structures at all the scales. In order

to capture the structure at the corresponding scale, an appropriate metric should be found. The
local extrema in the scale space are a good choice for this metric. Indeed, derivative operations
in the scale space could be applied for automatic scale selection to obtain the local maxima and
minima citelindeberg1998feature.

At any scale in scale space, we can apply local derivative operators to the scale-space repre-
sentation as ঳৘্৙ৎ(৘, ৙, �) = (�৘্৙ৎ঳)(৘, ৙, �). (3.3)

Where �৘্৙ৎ stands for the ’m’-th and ’n’-th derivative of the function respectively on the variable
’x’ and ’y’.

Due to the commutative property between the derivative operator and the Gaussian smoothing
operator, such scale-space derivatives can equivalently be computed by convolving the original
image with Gaussian derivative operators.

঳৘্৙ৎ(৘, ৙, �) = �৘্৙ৎৈ(৘, ৙, �) ∗ র(৘, ৙). (3.4)

In this way, the derivative of the scale space can be simpliied as a convolution of the image with
the corresponding derivative of Gaussian ilter [13].

Following the idea of expressing visual operation in terms of diferential invariants, we can
obtain the local maximum and minimum applying the Laplacian operator on each smoothed image
in the scale space structure.

The Laplacian operator is deined as,

▿2঳ = ঳৘৘ + ঳৙৙ (3.5)
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3 – Aine scale space

The approach of the Laplacian of Gaussian operator can also be expressed by means of difer-
ential between two Gaussian scale images.

▿2ৎ৏৒্঳(৘, ৙, ৔) ≈ ৔Δ৔(ম(৘, ৙, ৔ + Δ৔) − ম(৘, ৙, ৔ − Δ৔)), ৔ = �2 (3.6)

This approach has been used in SIFT for feature detection [17].

3.1.2 Implementation of isotropic scale space
The implementation of a scale space is inspired by exploring the scale-space axioms and using

the properties which can be used to speed up the processing.
The linear scale space representation ঳(৘, ৙, �) = ৈ(৘, ৙, �) ∗ র(৘, ৙) of signal র(৘, ৙) obtained

by smoothing with the Gaussian kernel ৈ(৘, ৙, �) has a number of useful properties [11].

• Linearityৈ(৘, ৙; �) ∗ (ূর1 + ৃর2) = ূৈ(৘, ৙; �) ∗ র1 + ৃৈ(৘, ৙; �) ∗ র2
where র1 and র2 are signals while ূ and ৃ are constants

• Shift invarianceৈ(৘, ৙, �) ∗ র(৘ − Δ৘, ৙ − Δ৙) = ৈ(৘ − Δ৘, ৙ − Δ৙, �) ∗ র(৘ − Δ৘, ৙ − Δ৙)
• Semi-group structureৈ(৘, ৙, �21) ∗ ৈ(৘, ৙, �22) = ৈ(৘, ৙, �21 + �22)

with the associated cascade smoothing property঳(৘, ৙, �21 + �22) = ৈ(৘, ৙, �21) ∗ ঳(৘, ৙, �22)
Since ঳(৘, ৙, �21 + �22) = ৈ(৘, ৙, �21 + �22) ∗ র(৘, ৙)঳(৘, ৙, �21 + �22) = ৈ(৘, ৙, �21) ∗ ৈ(৘, ৙, �22) ∗ র(৘, ৙)঳(৘, ৙, �21 + �22) = ৈ(৘, ৙, �21) ∗ ঳(৘, ৙, �22)

• Normalization∫∞৘=−∞ ∫∞৙=−∞ ৈ(৘, ৙, �)৅৘৅৙ = 1
A practical structure for the scale space implementation is a pyramid, which allows to obtain

a computationally eicient approximation to scale space. There are mainly two types of structure:
Gaussian pyramid, an approach to the Gaussian scale space and Laplacian pyramid, an approach
to the derivative of Gaussian scale space. For the pyramids, both the cascaded implementation of
scaled Gaussian smooth but also sub-sampling would be applied to be eiciently construct the scale
space.

Figure 3.2 illustrates a typical pyramid structure. Diferent from the normal scale space, the
pyramid is constructed by sub-sampling the smoothed image to reduce the exponentially increased
Gaussian kernel. In this way, the processing can be accelerated by reducing convolution size.

A common procedure to construct the Gaussian pyramid is as follows: the original image is
convolved with a low-pass ilter and sub-sampled by a factor of two; the ilter-sub sample procedure
is repeatedly operated to generate the smoothed image of each scale space. The traditional pyramid
keeps the construction by recursively sub-sampling and smoothing with the same Gaussian ilter.
The new pyramid applies several Gaussian ilters to separately generate the irst few smoothed
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scales

Samples

Figure 3.2. Pyramid structure.

images, than one of the image will be sub-sampled as the initial image for the next operation,
next few images will be smoothed by the same ilters. This smooth-sub sampling method will be
recursively operated to until the whole scale space has been created.

• Semi-group structureৈ(৘, ৙, �21) ∗ ৈ(৘, ৙, �22) = ৈ(৘, ৙, �21 + �22)
with the associated cascade smoothing property঳(৘, ৙, �22) = ৈ(৘, ৙, �22 − �21) ∗ ঳(৘, ৙, �21)

• Sub-sampling঳(2৘,2৙, �2) = র(2৘,2৙) ∗ ৈ(2৘,2৙, �2) = র(2৘,2৙) ∗ ৈ(৘, ৙, �22 )
A sub-sampled blurred image is equal to a sub-sampled image blurred with a half-scale
Gaussian ilter

Figure 3.3 presents the structure of Gaussian pyramid. A smoothed image can be sub-sampled
without losing information because Gaussian ilter is a low pass ilter, and sub-sampling only re-
moves the high frequency spectrum. An image with its whole frequency spectrum cannot be sub-
sampled without creating any aliasing. So the sub-sampling and iltering are well cooperated in the
procedure of constructing the scale space.

Another type of pyramid, which is more practical and accurate, introduces a new structure
called octave for the scale space construction. The octave is a structure containing several neigh-
boring smoothed images of the same size. Within each octave, every smoothed image is obtained
by convolving the previous smoothed image with an increasing sized Gaussian kernel. The initial
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Figure 3.3. Pyramid images

smoothed image of each octave is the sub-sampling of the third image of the previous octave. Given
the sub-sampled image, the other smoothed images of the octave can be generated by a series of
longer Gaussian kernels. Based on this recursive operation, an eicient and accurate implementa-
tion can be obtained.

Figure 3.4. ALP pyramid structure.

Figure 3.4 presents the pyramid structure that has been used in ALP [24], an integral part of
CDVS standard, we can notice that only three Gaussian ilters have been used to construct the whole
Gaussian pyramid. The third image of each octave will be sub-sampled as the initial image for the
next octave. The next octave will also be generated by the same given ilters. Finally, the whole
pyramid will be constructed via this smoothing-sub sampling recursive operation.
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3.2 Aine scale space
Scale-space theory provides a well-founded framework for modeling image structures at mul-

tiple scales, and the output from the scale-space representation can be used as input to a large
variety of visual modules. On the other hand, most works on multi-scale representations focus on
the deinition of isotropic scale space, characterized by equal accessibility in all the directions [32].
But that kind of scale space is not compatible with non-isotropic image structures generated by a
perspective aine transformation. A simple solution to this issue is an adaptation of isotropic scale
space to account for geometry linear transformation. This new adaptation will be termed as “aine
scale space”.

Figure 3.5. The equivalent relations of aine scale space

3.2.1 Aine Gaussian scale space
Let us irst analyses the mathematical theory behind this new scale space. Assume that two

images র1 and র2 are related by an aine transformation

র1(�) = র2(�) ,where � = ��. (3.7)

Both � and � are two dimensional vectors. The isotropic Gaussian scale space is deined by

঳1(৘, ৙, �) = ৈ(৘, ৙, �) ∗ র1(৘, ৙), ঳2(৘, ৙, �) = ৈ(৘, ৙, �) ∗ র2(৘, ৙) (3.8)

It is clear that

ৈ(�; �) ∗ র1(�) ≠ৈ(�; �) ∗ র2(�),ৈ(�; �) ≠ৈ(�; �). (3.9)

Deinitely, a linear Gaussian scale space cannot be described into the equation using an aine
deformation. This inequality also implies that an isotropic scale space cannot capture the structure
of an aine deformed image. A reasonable approach to handle this deformed structure is to generate
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the corresponding scale space also by a deformed Gaussian kernel. Let us that suppose the new
Gaussian kernel is denoted as ৈূে . So we have

ৈ(�; �) ∗ র1(�) =ৈূে (�; �) ∗ র2(�)ৈ(�; �) =ৈূে (�; �) (3.10)

Figure 3.6. Examples of aine Gaussian kernel.

The Gaussian ilter can be expressed as

ৈ(�; �) = 12��2 ৆− �঻ ∗�2�2 . (3.11)
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Since � = ��, then we have

� =�−1�
ৈ(�; �) = 12��2 ৆− (�−1�)঻ ∗(�−1�)2�2

ৈ(�; �)ূে = 12��2 ৆− �঻ (��঻ )−1�2�2
(3.12)

With the deinition of covariance matrices Σ৓ = ��2�঻ we obtain

ৈ(�; Σ৓)ূে = 12�√৅৆৔Σ৓ ৆− �঻ Σ−1৓ �2 . (3.13)

If � = [1 00 1], the linear scale space becomes a special case of aine scale space.

This is the aine Gaussian kernel extended from the linear Gaussian expression. Employing
this kind of ilters, we can obtain the corresponding aine Gaussian scale space. Regarding the
application in image processing and computer vision, this means that image structure subject to
aine transformations can be perfectly captured by the new aine scale space.

In practice, there are two diferent ways of computing scale space representations under aine
alignment, namely by deforming the ilter shapes or by deforming the image before Gaussian ilter-
ing. Figure 3.5 demonstrates the equivalent relations of the smoothed images of diferent perspec-
tives, either by aine deforming the smoothed images or by convolving the aine deformed images
with aine adapted Gaussian kernels.

Theoretically, these two approaches are mathematically equivalent. But in a practice, however,
former based approach can be expected to be more accurate because it can be performed in the
continuous-space domain.

Figure 3.6 presents some aine Gaussian kernel with diferent covariance matrix. The corre-

sponding matrix is [144 00 144] for (ূ); [180 7272 144] for (ৃ); [288 144144 144] for (ৄ) and [144 7272 180]
for (৅).

This representation satisies all the scale space properties except those related to rotational
symmetry.

3.2.2 Aine Laplacian of Gaussian
As we have discussed before, the local feature representation can be automatically extracted by

the operation of Laplacian operator by means of diferential derivation on a set of points at multiple
scales. Following this idea, the derivative of the aine Gaussian scale space can also be obtained
by adapting the corresponding Laplacian operator for the aine alignment.

In practical applications, Laplacian operator is usually simpliied as a 3 � 3 Laplacian ilter in
spatial domain.

঳ূ৐ = ֠֡֡
֢

0 −1 0−1 4 −10 −1 0
֣֤֤
֥ . (3.14)
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Figure 3.7. The performance of aine deformation on the Laplacian operator.

Figure 3.8. Examples of aine Laplacian of Gaussian kernel.

In ALP [24], the LoG scale space is obtained by the Laplacian operator convolved with the
corresponding Gaussian scale space. As we have discussed before, the Gaussian kernel has been
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adapted for the aine deformation.
A simple and straightforward idea about the aine adaptation on the LOG scale space is to

transform the Laplacian operator for the corresponding aine alignment. Diferent from the Gaus-
sian kernel which is originally a continuous function, the simpliied Laplacian approach is based on
a 3 � 3 matrix, which is too small to be manipulated for an aine deformation. Figure 3.7 presents
the accuracy of the aine deformation, by Signal to Noise Ratio (SNR), comparing aine adapta-
tion implementation either on Laplacian operator or on the Laplacian images. X axis reports a level
of deformation and Y axis reports the SNR, which is used as the accuracy metric. In this thesis,
all the following tests will employ SNR, which is calculated according to the scheme presented
in the Figure 1.12. In practice, except some special cases, a lot of noise will be brought in for the
interpolation on a 3 � 3 matrix.
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Figure 3.9. 3D igure of aine Laplacian of Gaussian kernel

Another way to approach the derivative of the Gaussian scale space is the Diference of Gaus-
sian (DoG) which is based on the subtraction of the neighboring smoothed images. It has been
applied in SIFT as the approach to the derivative of Gaussian scale space. The expression of DoG
is: �(৘, ৙, �) = ঳(৘, ৙, ো�) − ঳(৘, ৙, �). (3.15)

DoG can be linearly deformed to approach the derivative of aine scale space by the subtraction of
the neighbouring aine-Gaussian smoothed images. But the selection of features on the DoG scale
space also relies on their spatial neighbours, not only their scale neighbours. It is hard to gather
the spatial neighbours since all pixel relations have been deformed by the aine transformation. In
addition, the aine deformed DoG needs to be re-normalized. For this reason, we will mainly focus
on the LoG scale space and its aine deformation.
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The Laplacian operator in two dimensions is given by

Δে = �2ে�৘2 + �2ে�৙2 . (3.16)

The expression of LoG can be derived:

঳Δ(৘, ৙, �) =∇2ৈ(৘, ৙, �)
=�2ৈ(৘, ৙, �)�৘2 + �2ৈ(৘, ৙, �)�৙2
= − 1��4 (1 − ৘2 + ৙2

2�2 ) ৆− ৘2+৙2
2�2

(3.17)

Another equivalent expression is given in the vector form,

঳Δ(�; �) = − 1��4 (1 − �঻ �2�2 ) ৆− �঻ �2�2
, (3.18)

� = (৘৙) .
The aine LoG ilter can also be derived like aine Gaussian ilter. Suppose an image defor-

mation র1(�) = র2(�), where � = ��. (3.19)

Since � = ��, then � = �−1� (3.20)

঳Δ(�; �) = − 1��4 (1 − (�−1�)঻ (�−1�)2�2 ) ৆− (�−1�)঻ (�−1�)2�2

= − 1��4 (1 − �঻ (��঻ )−1�2�2 ) ৆− �঻ (��঻ )−1�2�2
(3.21)

with the deinition of covariance matrices Σ৓ = ��2�঻ we have

঳Δ(�; �) = − 1��4 (1 − �঻ Σ−1৓ �2 ) ৆− �঻ Σ−1৓ �2 . (3.22)

This is the aine Laplacian of Gaussian kernel. It has a similar expression as the aine Gaussian
kernel. So the implementation is also similar. Comparing Figure 3.6 with Figure 3.8, we can ind
the shape of these two aine alignments are quite similar. Figure 3.8 displays some LoG kernels

with diferent covariance matrix. The corresponding matrix is [144 00 144] for (ূ); [180 7272 144] for

(ৃ); [288 144144 144] for (ৄ) and [144 7272 180] for (৅).
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3.2.3 Accuracy of aine scale space
The assessment of aine Gaussian and aine Laplacian of Gaussian scale space is essential and

necessary for practical application. Only an accurate implementation of the aine adapted scale
space can guarantee the precision of the feature detection for images with diferent perspectives.

For this assessment, two small patches describing the same scene but with diferent perspective
projection will be used to measure the accuracy of the scale spaces, one generated by the aine
deformed kernel and one by isotropic kernel. The result is very important for the applicability
assessment of aine scale space. The result will also help to evaluate for which deformations and
scales, the aine scale space will perform better than the isotropic one for the image matching.

In this assessment, rotation will also be used to evaluate the noise level in the aine scale
spaces, since the amount of noise brought in by rotation in isotropic scale space is acceptable.
Here, the noise refers to the small errors due to the imprecise pixel value estimation because of
the transformed non-integer coordinates. If the noise quantity brought in by rotation and aine
deformation are of the same level, the aine scale space can be considered equally robust to both.

In the aine scale space assessment, the noise level will be separately evaluated for diferent
deformation and scales level. In our test, the noise level will be deined by SNR, deined as the ratio
of signal power to the noise power, normally expressed in decibels. It can be expressed as:

঺঵হ৅� = 10 log10 [(�৓৉ৈৎূৌ�ৎ৏৉৓৆ )
2
] (3.23)

�৓৉ৈৎূৌ and �ৎ৏৉৓৆ respectively denote the magnitude of signal and noise.
In the igure 3.10, (a) illustrates the performance on aine Gaussian scale space: the curve

reports SNR versus scales and deformation. The SNR of the Gaussian scale space ranges from
30dB to 42dB, which is normally acceptable for the image quality. There is a coherent growth
trend of SNR over the scales but little luctuation over diferent deformation. We will show later
that these SNR levels are suitable for image matching. In the igure 3.10, (b) displays the curves

at diferent scales with the aine deformation � = [ 1 00.25 0]. There is a uniform growth of SNR

as scale level increase. Initially, SNR is signiicantly increased at small scales. Then, the precision
gradually stays constant when the scale is larger than 5. In the igure, (c) illustrates two curves of
SNR for diferent aine deformations. The aine Gaussian kernel results in a better performance at
the scale 6.4 than 1.6. Overall speaking, SNR is not correlated with a speciic aine deformation,
as it is mainly due to interpolation.

To explain the SNR versus scale, we note that interpolation is inevitable for an aine image
transformation, and this will introduce noise. A large scale of the Gaussian ilter translates to a
narrow band low pass ilter and will reduce interpolation noise. This can explain why the larger the
scale is, the less noise will appear on the corresponding smoothed images. Conversely, interpolation
noise will be less if the deformation can be largely constructed from known points. One special case

of interpolation is represented by the integer levels deformation,e.g. � = [1 10 1]. In this case, since

the deformation can be fully constructed within the range of given points and no interpolation is
required, less or no noise will be expected after the transformation. In igure 3.10, (d) provides the

SNR versus scale curve with the aine deformation � = [1 10 1]. As expected, the deformation
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3 – Aine scale space

can be completely constructed by the given set of points and no interpolation is applied. The SNR
appears quite large compared with the image deformation of the same level. It ranges from 100dB
to 125dB, while the SNR of a similar deformation can only range from 30dB to 40dB. This very
special case helps to explain the main source of the noise.
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Figure 3.10. Performance of aine scale space. (a) SNR versus Tilting and Scales. (b) SNR versus
Scales. (c) SNR versus deformation. (d) A special case with an integer deformation.

Aine LoG has a similiar performance to the aine transformation. In the igure 3.11, (a) illus-
trates the performance on aine LoG: the curve reports SNR versus scales and deformation. The
SNR of the aine LoG ranges from 25dB to 40dB, which is a bit smaller than the SNR of aine

scale space. (b) displays the curves at diferent scales with the aine deformation � = [ 1 00.25 0].

There is a uniform growth of SNR as scale level increase. Initially, SNR is signiicantly increased
at small scales. Then, the precision gradually stays constant when the scale is larger than 5. In the
igure, (c) illustrates two curves of SNR for diferent aine deformations. The aine Gaussian ker-
nel results in a better performance at the scale 6.4 than 1.6. The afection of SNR is mainly due to
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3.2 – Aine scale space

image interpolation. (d) also illustrates a special case, which provides the SNR versus scale curve

with the aine deformation � = [1 10 1]. The deformation can be completely constructed by the

given set of points and no interpolation is needed. It ranges from 62dB to 73dB. This special case
helps to ind the origin of the noise for the aine LoG.
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Figure 3.11. Performance on Laplacian of Gaussian. (a) SNR versus scales and deformation. (b)
SNR versus scales. (c) SNR versus deformations. (d) SNR versus scales with a integer deformation.

Given the noise level of an aine Gaussian scale space and aine LoG, a further analysis is
needed to conirm the amount of noise acceptable for image retrieval. A reasonable approach for
this analysis is to compare the noise level of an aine deformation with that of a pure rotation. As we
known, image retrieval on isotropic scale space is rotation invariant. Noise will also be introduced
by interpolation applied in the rotation. For this reason, if the noise level in rotation is acceptable,
so is the noise level in aine deformation.

As in the case of the experiments in aine deformation, a special case involving no interpolation
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Figure 3.12. Performance on rotation invariance. (a) SNR versus scales and rotation. (b) SNR
versus rotation. (c) SNR versus scales with 85∘ of rotation. (d) SNR versus scales with 90∘ of roation

.

will also be shown afterwards. In this way, we can also identify the main noise source for the image
rotation.

Figure 3.12 shows the performance of the scale space for rotation. The SNR of the aine Gaus-
sian deformation and isotropic rotation is quite similar and in most cases it also ranges from 30dB to40dB. A uniform increase of SNR with the scale can also be found in Figure (c). Figure (d) reveals
that the main noise source for rotation in isotropic scale spaces is also interpolation. Since the noise
level from rotation on the isotropic scale space does not afect feature extraction, the noise level on
the aine deformation is also acceptable for feature extraction from an aine projected image.
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3.3 – Structure to construct the aine scale space

3.3 Structure to construct the aine scale space
As we have discussed before, a pyramid structure can be used to eiciently implement the scale

space. It is necessary to create such a computationally eicient structure to build the scale space
especially for large images, since the construction of the scale space is computationally complex and
time consuming. If a similar structure can be designed for handling both aine Gaussian and LoG
scale space, it will be very appealing in practice. Therefore we irst investigate whether required
properties for the pyramid construction are satisied by aine Gaussian and LoG.

Basically, two properties are important for the pyramid structure: semi-group and sub-sampling.
We need to recall these two properties.

ৈ(৘, ৙, �21) ∗ ৈ(৘, ৙, �22) =ৈ(৘, ৙, �21 + �22)
with � = (৘৙)ৈ(�, �21) ∗ ৈ(�, �22) =ৈ(�, �21 + �22)� = �� so � = �−1�ৈ(�−1�, �21) ∗ ৈ(�−1�, �22) =ৈ(�−1�, �21 + �22)

(3.24)

So, an aine Gaussian scale space also satisies the semi-group property.
It can also be seen that,

঳Δ(৘, ৙, �21) = �2ৈ(৘, ৙, �21)�৘2 + �2ৈ(৘, ৙, �21)�৙2 (3.25)

঳Δ(৘, ৙, �21) ∗ ৈ(৘, ৙, �22) =�2ৈ(৘, ৙, �21)�৘2 ∗ ৈ(৘, ৙, �22) + �2ৈ(৘, ৙, �21)�৙2 ∗ ৈ(৘, ৙, �22)
঳Δ(৘, ৙, �21) ∗ ৈ(৘, ৙, �22) =�2ৈ(৘, ৙, �21 + �22)�৘2 + �2ৈ(৘, ৙, �21 + �22)�৙2

(3.26)

঳Δ(৘, ৙, �21) ∗ ৈ(৘, ৙, �22) = ঳Δ(৘, ৙, �21 + �22) (3.27)

This cascade implementation of LoG is a bit diferent as large scale LoG operation cannot
be replaced as a convolution of two small scale LoG operations, but instead as a convolution of
one Gaussian operation and one LoG operation. The corresponding scale is the summation of the
Gaussian and LoG results. This property enables the construction of LoG generated by cascaded
Gaussian smoothing and LoG operation.

In the same way

঳Δ(�−1�, �21) ∗ ৈ(�−1�, �22) = ঳Δ(�−1�, �21 + �22) (3.28)

and hence aine LoG has the same property.
This cascade implementation of LoG has not drawn much attention before. In a practical ap-

plication, the LoG scale space can be easily approximated by DoG or a Laplacian operation on the
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3 – Aine scale space

corresponding Gaussian scale space. Generally, it is more eicient to implement the LoG by Lapla-
cian operation than by cascade implementation, but the Laplacian operation is unable to guarantee
the precision of the aine adaptation. In comparison, the aine adapted LoG is easier to be achieved
by a cascade of aine adaptable LoG ilters. Based on the LoG ilters, the cascade implementation
can be more eicient and robust to construct the LoG.

Another important property for the Gaussian pyramid is sub-sampling.
Suppose the image can be sub-sampled given a scale space:

঳(৘, ৙, �2) = র(৘, ৙) ∗ ৈ(৘, ৙, �2) = র(৘, ৙) ∗ 12��2 ৆− ৘2+৙2
2�2 (3.29)

by sub-sampling, one obtains

঳(2৘,2৙, �2) =4র(2৘,2৙) ∗ ৈ(2৘,2৙, �2)
=4র(2৘,2৙) ∗ 12��2 ৆− 4৘2+4৙2

2�2

=4র(2৘,2৙) ∗ 142� �24
৆− ৘2+৙2

2 �24

=র(2৘,2৙) ∗ ৈ(৘, ৙,(�2 )2)
(3.30)

or

঳(2৘,2৙, (2�)2) =র(2৘,2৙) ∗ ৈ(৘, ৙, �2)঳(4৘,4৙, (4�)2) =র(4৘,4৙) ∗ ৈ(৘, ৙, �2) (3.31)

⋮
In this way, the whole scale space can be generated by one ilter through sub-sampling. If sub-
sampling and cascade implementation are combined, we have:

র(2৘,2৙) ∗ ৈ(৘, ৙, �21) ∗ ৈ(৘, ৙, �22)=র(2৘,2৙) ∗ ৈ(৘, ৙, �21 + �22)=঳(2৘,2৙,2(�21 + �22)) (3.32)

If the smoothed image of the scale space is sub-sampled we have

঳(2৘,2৙, �21) ∗ ৈ(৘, ৙, �22)
=র(2৘,2৙) ∗ ৈ(৘, ৙,(�12 )2) ∗ ৈ(৘, ৙, �22)
=঳(2৘,2৙, �21 + 2�22)

(3.33)

The sub-sampling can also be applied during the cascade implementation. Letting � = (৘৙)
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3.3 – Structure to construct the aine scale space

we have,

঳(�, �2) =র(�) ∗ ৈ(�, �2)঳(2�, (2�)2) =র(2�) ∗ ৈ(�, �2)� = �� so � = �−1�঳1(�−12�, (2�)2) =র1(�−12�) ∗ ৈ(�−1�, �2)঳2(2�, (2�)2) =র2(2�) ∗ ৈূে (�, �2)
(3.34)

This shows that sub-sampling is also a property of the aine Gaussian scale space.
All the calculations above helps to prepare the mathematical foundation to design an aine

Gaussian pyramid that is computational eicient. Due to the large number of candidate images for
feature detections, a fast implementation is very desirable. On the other hand, the ilter size in-
creases exponentially with the scale, and hence the computations for convolution also grow expo-
nentially, which is not practical in a real time application. That is why a pyramid structure becomes
practical and applicable to approximate the scale space.

Even though the mathematical theory behind this implementation has been described above,
a further analysis about its performance is necessary, in order to assess the efect of interpolation
noise and computational eiciency.
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Figure 3.13. The efect of the ilter size. (a) The size of Gaussian ilters of diferent scale. (b) The
size of aine Gaussian ilters of diferent scale.

According to Figure 3.13, the size of the Gaussian ilter keeps growing with the scale. The
convolution complexity is related to both image size and ilter size. Suppose the image size is঴ � ঴ and the ilter size is ঵ � ঵ . The complexity for the convolution is শ(঴2঵2), which is
very large.

On the contrary, if the scale space is built completely based on sub-sampling, at the next scale,
the ilter will keep the same size but the image size will be halved. Therefore, the computation
complexity will not increase but drop.
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3.3.1 Cascade implementation on aine scale space
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Figure 3.14. The performance of cascade ilters. (a) SNR of cascade ilters compared to ordinary
ilters. (b) Cascade ilters compared to images by ordinary ilters.
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Figure 3.15. A special case of aine Gaussian scale space without interpolation.

Figure 3.14 presents the performance of aine cascade implementation by SNR, which com-
pares the general and cascade implementation based aine scale space, ranging from 70dB to160dB for the ilter and 65dB to 120dB for the smoothed images. Overall speaking, the result
implies that SNR is large enough to make the cascade implementation practical. Additionally, the
diference among aine alignment is not obvious and the corresponding precision is also compara-
ble with the non-deformed scale space. In the experiment, the scale space contains 8 scales, based
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3.3 – Structure to construct the aine scale space

on 8 steps of cascade implementation.
In Figure 3.15, the SNR ranges from 98dB to 78dB, decreasing after each stage of cascade

implementation.
Even though the decrease of SNR after each stages not constant, on average each stage only

causes a drop around 2 ∼ 3dB. Considering the very good accuracy of aine Gaussian scale space
at high scales, the result is good enough for the aine deformed cascade implementation.

As we have proved, a LoG operation can be separated as a convolution of a smaller scaled LoG
operation and Gaussian operation. The Gaussian operation can also be approximated by several
cascade Gaussian operations. A LoG operation can also be approximated as the convolution of one
LoG operation and several cascade Gaussian operations, which is depicted in the igure 3.16.

Figure 3.16. Cascade structure of Laplacian of Gaussian ilter.

This combined cascade implementation of Gaussian and LoG provide us a simple way to ap-
proximate the LoG operation. The performance of this cascade combination is similar to the cascade
Gaussian implementation (shown in Figure 3.17 ).
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Figure 3.17. Cascade ilters of aine Laplacian of Gaussian. (a) A cascade ilters approximation to
Laplacian of Gaussian of multiple deformations. (b) Cascade ilters of aine Laplacian of Gaussian.

Apart from a LoG ilter, the rest of this structure is exactly the same as a cascade Gaussian
implementation. So a reasonable method to further simplify the process of constructing the scale
space is to make the kernel of LoG ilter as small as possible. We have another test to estimate the
minimum parameter we need to leave to the Laplacian part. As the Figures 3.18 shows, a reasonable
scale parameter to the Laplacian part should be larger than 1. When the parameter of scale on
Laplacian part is large enough, it can guarantee the interpolation noise is small enough to not
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afect the cascade performance.
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Figure 3.18. The performance of the aine cascade LoG. (a) Multiple deformation with difer-
ent scales left to the Laplacian of Gaussian ilter. (b) The performance with diferent Laplacian
of Gaussian scales to the irst ilter.

Just as we have discussed, the performance of the cascade implementation, operated on LoG
scale space, is good enough for the real application. An aine LoG structure is based on the corre-
sponding Gaussian cascade implementation. A good method is to take the LoG as the irst operation
and the rest of the structure will be generated by the corresponding Gaussian operations.

The construction of the LoG scale space based on semi-group property will be performed as it
presented in the igure 3.19.

Figure 3.19. Structure to build the Laplacian of Gaussian scale space on cascade ilters.

In this way, the structure to implement LoG is the same as the structure to implement Gaussian
scale space. Instead of having all the spaces generated by Gaussian or aine Gaussian ilters, the
irst LoG space will be generated by LoG ilter and the rest of space will be obtained via Gaussian
iltering from the irst one.

Up to now, we have developed a simple but eicient structure to construct both the aine Gaus-
sian and aine LoG scale space based on cascade implementation. The structures of the aine
Gaussian and aine LoG are quite similar, only difering in the irst ilter. This structure will be
quite simple but eicient for the implementation, especially when the total scale space is not large.
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3.3 – Structure to construct the aine scale space

As we have discussed, following the growth of the scale, the size of the corresponding Gaussian
ilters increase exponentially and the computational complexity is proportional to the square of the
size. The cascade method efectively squeezes the size of aine Gaussian and aine LoG ilters
which are used to generate the corresponding scale spaces. Based on this method, the computa-
tional complexity is acceptable for a real time application.

3.3.2 Sub-sampling on aine scale space

Another important property for eicient construction of the scale space, especially for the im-
plementation in the pyramid structure, is sub-sampling. It successfully reduces the image size with-
out much information losts due to the low pass Gaussian ilter. But LoG ilter is a band-pass not low
pass ilters. The image generated by LoG ilter cannot be sub-sampled and cannot be approximated
directly by a pyramid. For an isotropic scale space, LoG is simply generated by Laplacian operating
on the same parametrized Gaussian scale space. There is no need to explore the LoG pyramid. But
the aine LoG cannot be generated directly from an aine Gaussian scale space. Aine Gaussian
scale space and aine LoG must be created separately with diferent structures. At the same time
the images in LoG cannot be directly sub-sampled. On the other hand, the cascade implementation
for the aine LoG provides us a possible solution. The images of Gaussian part are still amenable
to sub-sampling. Based on the sub-sampled smoothed images, the computation of both Gaussian
part and LoG part can be simpliied.

The performance of the sub-sampling on the aine Gaussian scale space is evaluated in Figures
3.20 ∼ 3.21.
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Figure 3.21. Comparison of sub-sampling
performance on isotropic scale space and
aine Gaussian scale space.

According to the sub-sampling property of a Gaussian kernel, sub-sampling a Gaussian blurred
image is equivalent to blurring a sub-sampled image by a Gaussian kernel, with the scale divided by
the sampling rate. Figure 3.20 contains the SNR obtained comparing this equivalence at diferent
scales and aine alignment. It performs similarly for sub-sampling at diferent aine deformed scale
spaces. At some scales, the performance of aine Gaussian is even better than an isotropic scale
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spaces. Figure 3.21 compares the sub-sampling on isotropic scale space and on a typical aine
scale space. The diference between these two curves is rather small.

Sub-sampling on aine scale space is quite reliable comparing its performance on both isotropic
and aine scale space. But an automatic extraction of features relies on the derivative of the scale
space rather than the scale space itself. In practice, it would be more eicient and reliable if sub-
sampling could be used to generate LoG. While the images on LoG are band-pass, the fundamental
requirement of sub-sampling has been undermined. Considering the relations between Gaussian
and LoG operations, it is possible to obtain the LoG by employing sub-sampling only on the Gaus-
sian part.

According to the structure we have designed in Figure 3.19, there will be no low-pass images
to be sub-sampled during the generation of LoG. Since the Gaussian scale space and LoG are
generated separately for the aine alignment, the low-pass image cannot be directly obtained in the
LoG. To apply the ilters recursively, we need to design the structure containing the corresponding
Gaussian images. There are two possible ways to generate such images. We will display both these
structures and assess the feasibility and accuracy.

Image

LoG Scale space

LoG filter

Gaussian 
Scale space

Sub-sample

Figure 3.22. A designed aine Laplacian of Gaussian pyramid.

As is presented in Figure 3.22, this is an LoG pyramid we propose for aine alignment. This
pyramid is completely based on the Gaussian pyramid, adjusted by a inal LoG operation. It applies
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3.3 – Structure to construct the aine scale space

just two Gaussian ilters and three LoG ilters for recursive construction. A signiicant advantage
of this structure is that it can construct both the Gaussian and LoG scale space at the same time.

In this pyramid, four LoG scale spaces lay in the irst octave, and three in each of the others. This
special structure in the irst octave makes it a bit complex for a parallel computation. But the rest of
the structure is exactly the same, easy to be concurrently processed. Meanwhile, Gaussian pyramid
contains three images in each octave. The size of the LoG images becomes smaller and smaller
following the sub-sampling. Like the isotropic Gaussian pyramid, there is also a constraint of the
minimum size of image to be sub-sampled. The scale space should be large enough to represent all
the structures in the image.

In the pyramid, �0 is the initial scale and the rest of scales are √2 times the initial one. So
normally, the initial scales should be small enough to precisely cover the whole space, even if a
high precision also means a high computational complexity. In practice, we will set �0 = 1.6,
keeping the balance between the precision and eiciency. This pyramid is especially designed for
the aine LoG construction, but it is also suitable for an isotropic scale space. Actually, isotropic
scale space is a special case in the framework of Gaussian aine alignment.

Image

Gaussian image

Gaussian filter

Sub-sample

LoG filter

LoG image

Figure 3.23. Another structure for aine Laplacian of Gaussian pyramid.

Another pyramid structure we designed for the aine LoG scale space is shown in Figure 3.23. It
is also based on the scale space construction of aine Gaussian and aine LoG. This structure can be
simply separated into two parts, Gaussian part and LoG part. The separation is illustrated by a blue
dotted line in Figure 3.23. In this structure, the initial image of each octave is generated by Gaussian
smoothing and image sub-sampling. There is just one Gaussian ilter recursively applied in this
part and its scale is √3�0. Three other ilters are used to generate the other images in each octave,
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including two aine Gaussian ilters and one LoG iler. The LoG ilter will be irstly convolved
with the initial image, guaranteeing the rest of the images are all LoG iltered. Overall speaking,
this structure of aine LoG is simpler and easier to be constructed, comparing with the pyramid
presented in Figure 3.22. It contains the structure we proposed in Figure 3.19, making the structure
in each octave simple.

It should also be noted that we cannot obtain a Gaussian scale space in this pyramid. So if the
application also requires a Gaussian scale space, like Gaussian gradient descriptor, the pyramid in
Figure 3.23 may be more appropriate. For a normal application, 7 steps are needed to construct
each octave, including image smoothing and sub-sampling in the pyramid presented in Figure 3.22
and only 5 steps are required for the same task in Figure 3.22. So if the application requires only an
automatic extraction of features from the derivative of scale space, we recommended the pyramid
in Figure 3.22 for space construction.

Up to now, we have explored the implementation of aine Gaussian scale space and LoG scale
space in spatial domain. The structure to implement the aine Gaussian scale space is exactly the
same as the structure of isotropic Gaussian scale space since the properties of semi-group and sub-
sampling are both satisied by aine Gaussian. With these two properties, we can build a pyramid
structure approximating isotropic Gaussian scale space. But the structure of aine LoG pyramid
is quite diferent. In SIFT and ALP, LoG or DoG can be easily obtained by a simple subtraction
between the neighbouring images in each octave or a convolution with the Laplacian operator. The
aine LoG cannot be simply split as a Laplacian operator and Gaussian scale space, which can
be easily constructed by the Gaussian pyramid. To make the whole scale space robust to the aine
alignment, the aine LoG can only be achieved through the convolution with LoG ilters, which has
also been adjusted for aine deformation. Meanwhile, we have designed two pyramids for eicient
and accurate construction of aine LoG. These two special structures can be used to extract features
from images under variable aine deformations.

On the other hand, all the structures are implemented in spatial domain. Since most of the
work of scale space construction is due to image convolution, there are several advantages in do-
ing this in frequency domain, hence we will also explore the possibility of the aine scale space
implementation in frequency domain.

3.4 Implementation of aine scale space in frequency domain

A particular feature of Gaussian ilter is that its expression in spatial domain and frequency
domain is quite similar. Comparing with the implementation in spatial domain, there are several
advantages to process the image in frequency domain. Firstly, multiplication is quite fast and ac-
curate compared to convolution, especially when dealing with a large number of diferent sized
ilters. Secondly, multiple scaled Gaussian ilters are easily created in frequency domain.

Before the actual implementation, we will recall the corresponding relations of the Gaussian
ilters in spatial domain and frequency domain.

The expression of a Gaussian ilter in spatial domain is,

ৈ(৘, ৙) = 12��2 ৆− ৘2+৙2
2�2 (3.35)
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The corresponding expression in frequency domain is,

ম(�,�) = ৆− �2+�2
2�2

, � = ভ৓2�� , (3.36)

where ভ৓ is the sampling rate for the digital implementation of Gaussian ilter in frequency domain
and here it equal to the size of ilter. The expressions in both spatial domain and frequency domain
are quite similar. Thus we can apply the same structure to build the scale space in frequency domain.

Denote the Fourier transform of Gaussian kernel as:

ৈ(৘, ৙) ↔ ম(�,�) (3.37)

The aine deformation is:

[৘′৙′] = ঴ [৘৙] = [ূ ৃ৅ ৆] [৘৙] (3.38)

Then,

�৘ + �৙ = [� �] [৘৙]
= [� �] [ূ ৃ৅ ৆]−1 [৘′৙′]
= 1৅৆৔(঴) [৆� − ৅� −ৃ� + ূ�] [৘′৙′]

(3.39)

Hence, ম(�,�) = ∫∞
−∞ ∫∞

−∞ ে(ূ৘ + ৃ৙, ৅৘ + ৆৙) ⋅ ৆2৊�(�৘+�৙)৅৘৅৙ (3.40)

Denote,

[�′�′] = 1৅৆৔(঴) [ ৆� − ৅�−ৃ� + ূ�] = (঴঻ )−1 [��] (3.41)

ম(�,�) = 1|৅৆৔(঴)| ∫∞
−∞ ∫∞

−∞ ে(৘′
, ৙′) ⋅ ৆৊(2�/৅৆৔(঴))(�′৘′+�′৙′)৅৘′৅৙′

= 1|৅৆৔(঴)|ম(�′
,�′) (3.42)

In this way, we can obtain the Fourier pairs:

ৈ(৘′
, ৙′) ↔ 1৅৆৔(঴)ম(�′

,�′) (3.43)

It can also be written that

ৈ(�) ↔ 1৅৆৔(঴)৆− Ψ঻ ঴঴঻ Ψ2�2

Ψ = [��] , � = ভ৓2��
(3.44)
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3 – Aine scale space

The Fourier transformation of a Gaussian kernel can be aine adapted according to the equa-
tions above. Accordingly, aine scale space can also be constructed in frequency domain by the
Gaussian ilter in frequency domain. The procedures for the implementation in frequency domain
are not complex. The main procedures are listed below.

• Calculate the minimum zero pad to be added to the image and deine the minimum size of
the ilter.

• Create the corresponding frequency ilters.

• Multiply the spectrum of image with the corresponding ilter and obtain the spectrum of the
blurred image.

• Inversely transform the images to spatial domain.

• Remove the blank part of image.

According to the scaling property of Fourier transformation, a smaller scale of Gaussian kernel
in spatial domain relects to a larger Gaussian kernel when implemented in frequency domain. The
size of Gaussian kernel is related to the capability to reduce the interpolation noise. So the scale
space processed in frequency domain will result in a high accuracy at small scale and comparable
less accuracy at large scale. Considering that most features will be extracted at small scales, the
implementation in frequency domain can be used to improve the overall extraction accuracy.

On the other hand, the scale of the Gaussian kernel spectrum is related to the ilter size accord-
ing to equation 3.4 and the spectrum of image size can be adjusted by adding diferent amount of
zero pad. In this way, the accuracy of each scale space is under control. In addition, the compu-
tational complexity will be reduced since multiplication is easier to be implemented compared to
convolution, especially when there is just one image but a lot of ilters.

Figure 3.24 presents the accuracy of aine Gaussian kernel implemented in frequency domain.
We can compare these igures with Figure 3.10. One signiicant diference is that the implementa-
tion in frequency domain provides a better performance at small scales rather than at large scales,
which is in contrast to the result in spatial domain.

The Laplacian of Gaussian kernel spectrum can easily be derived thanks to the diferentiation
property of Fourier transform i.e. If ে(৘) is a diferentiable function with Fourier transform ভ (�),
then the Fourier transform of its derivative is given by ৊�ভ (�) . This can be used to transform
diferential equations into algebraic equations. LoG is the partial derivative of a Gaussian. It can
also be derived by translating into algebraic equations thanks to the diferential property of Fourier
transformation:

঳(�) ↔ −4�2(Ψ঻ ঴঴঻ Ψ)৅৆৔(঴)(ভ 2৓ ) ৆− Ψ঻ ঴঴঻ Ψ2�2 (3.45)

With the spectrum expression of LoG ilter, the LoG scale space can also be created in the
frequency domain.

Diferently from construction of aine LoG scale space, which speciies aine LoG ilter as its
kernel, the aine LoG spectrum can be completely separated into a Gaussian kernel and Laplacian
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Figure 3.24. The performance of aine Gaussian scale space implemented in frequency domain.
(a) SNR versus deformation and scales. (b) SNR versus scales.

operator. This makes it possible to construct the aine LoG scale space based on an aine Gaussian
scale space by a simple operation. Here is the mathematical derivation.

Supposing the Fourier transform pair as:

঳঳ূ৐(৘, ৙) ↔ ঳঳ূ৐(�,�) (3.46)
then,

঳঳ূ৐(�,�, �) =঳Δ(�,�, �)র(�,�)
=র(�,�) ⋅ (−4�2(Ψ঻ ঴঴঻ Ψ)৅৆৔(঴)(ভ 2৓ ) ৆− Ψ঻ ঴঴঻ Ψ2�2 )
=র(�,�) ⋅ 1৅৆৔(঴)৆− Ψ঻ ঴঴঻ Ψ2�2 ⋅ (−4�2(Ψ঻ ঴঴঻ Ψ)(ভ 2৓ ) )
=র(�,�) ⋅ ম(�,�, �) ⋅ (−4�2(Ψ঻ ঴঴঻ Ψ)(ভ 2৓ ) )
=঳(�,�, �) ⋅ (−4�2(Ψ঻ ঴঴঻ Ψ)(ভ 2৓ ) )

(3.47)

So the aine LoG scale space can be obtained from the corresponding Gaussian scale space by
processing with an aine Laplacian operator. To make the procedure simpler, − 4�2(Ψ঻ ঴঴঻ Ψ)(ভ 2৓ ) can
be used as a Laplacian operator by multiplying with the corresponding Gaussian scale space.

In the Figure 3.4, (a) and (b) present the spectrum of Gaussian kernel; (c) and (d) present the
spectrum of LoG ilter; (e) and (f) present the frequency Laplacian operator.

With the help of this Laplacian operator, we do not need to specify a structure to construct
the LoG scale space. We just need to focus on the construction of aine Gaussian scale space.
The corresponding LoG scale space can easily be obtained by a simple Laplacian operation on the
corresponding Gaussian scale space.
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3 – Aine scale space

(a) Isotropic Gaussian spectrum (b) Aine Gaussian spectrum

(c) Isotropic LoG spectrum (d) Aine LoG spectrum

(e) Isotropic Laplacian operator (f) Aine Laplacian operator

Figure 3.25. Operation spectrum.

Another important property which can be used to speed up the processing in frequency domain
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Figure 3.26. Precision of Laplacian operator. (a) SNR versus deformation and scales.
(b) SNR versus scales.

is semi-group property. Given the property in spatial domain, which is:

ৈ(�, �21) ∗ ৈ(�, �22) = ৈ(�, �21 + �22) (3.48)

The corresponing spectrum is given by,

ৈ(�, �) ↔ ম(Ψ, �) (3.49)

We can Fourier transform both sides of equation 3.48. According to convolution theorem, we have

ম(Ψ, �21)ম(Ψ, �22) = ম(Ψ, �21 + �22) (3.50)

The equation above illustrates not only the semi-group property but also the simplicity of the
frequency cascade implementation. This property can be applied for a new structure to speed up
the frequency scale space construction.

Figure 3.27 presents the SNR of the aine Gaussian kernel cascade implemented in frequency
domain. In that Figure, (c) and (d) illustrate the performance on aine deformed images. Compared
with the graph (b), there is no obvious precision decrease after each step of cascade implementation.
On the contrary, the cascade implementation is more eicient in frequency domain and it can even
be used to reduce the interpolation noise in each step.

The cascade implementation in spatial domain is linked with convolution. In frequency domain
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Figure 3.27. The performance of aine Gaussian scale space cascade implemented in frequency
domain. (a) SNR versus deformation and scales. (b) SNR versus scales. (c) SNR versus deformation
and scales for real image (d) SNR versus scales for real image

it is linked with multiplication, which can contribute to another new structure of scale space.

ম(Ψ, �20)ম(Ψ, �20) =ম(Ψ, �20 + �20)
ম(Ψ, �20)2 =ম(Ψ,

√2�20)⋮
(ম(Ψ, �20) ⋯⏟ৎ )2 =ম(Ψ, (√2)ৎ�20)

(3.51)
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3.4 – Implementation of aine scale space in frequency domain

The properties above inspire us to design a new structure to build the scale space in frequency
domain.

Image

Initial filter

Scale spaces

Square 
operator

Figure 3.28. A new aine Gaussian structure in frequency domain.

Image

Initial filter Scale spaces

Square 
operator

Figure 3.29. Implementation of Gaussian structure in frequency domain.

According to the equation 3.51, the cascade implementation in frequency domain is accom-
plished based on multiplication not convolution. Hence, cascade multiplication can be simpliied
as a square operation especially to the √2 scale based scale space. In Figure 3.28 the square op-
eration will be used to generate the Gaussian ilters in frequency domain by squaring the values
of the previous ilter. The property of Gaussian ilter that its Fourier transform has zero imaginary
part makes the square operation simpler to be applied. Based on the ilters of the previous scale
and square operation, the ilter for the next cascade implementation can easily be generated by a
square operator.

In this structure, the scale space is cascade implemented by a recursively squared aine Gaus-
sian ilter. Each successive scaled image is the multiplication of the current smoothed image with
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3 – Aine scale space

the square of current ilter. So each time, the next smoothed image is generated by the square of cur-
rent ilter multiplied by the current smoothed image. In this way, the scale space can be constructed
simply by a multiplication operation, a square operation and an initial ilter.

This is another structure not based on the cascade implementation. The parameter of current
ilter is also the square of the ilter of the previous scale. By applying this structure, the scale space
can also be constructed eiciently without a cascade implementation.

3.5 Result analysis
The performance of the aine scale space implementation will be evaluated by applying the

feature detection to the images under diferent view points. A typical feature detection on the images
of diferent view point is illustrated in igure 3.30. In the igure, (a) shows the feature detection on
the original image and (b) shows the feature detection on an aine transformed image. Since an
image under diferent viewpoint can be simulated by an aine transformation, we will employ the
aine transformation on the image to evaluate its detection performance under diferent view point,
as depicted in (b). In the igure (a), a general scale space will be established for the feature detection
and in the igure (b), an aine scale space will be employed to detect the features from the aine
transformed image.
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Figure 3.30. Detection performance on the aine transformed images (a) Feature detection on
original image. (b) Feature detection on the aine transformed image.

As we have discussed, the new detected features shall be retained almost the same by employing
the speciied aine scale space. To compare the detected features from the diferent perspectives
of the image, the features detected in the aine transformed image will be back-projected to the
original one. In the igures 3.31, 3.32 and 3.33, the blue circles depict the features detected from
the original image, red ones are the back-projected features detected from the aine transformed
image. The radius of a circle represent the corresponding scale and the yellow box depicts the
features that have been detected by both the aine scale space and general scale space. For these

igures in 3.31, 3.32 and 3.33, the aine transformation is [1.0000 0.00500.6000 1.0000]. In the igure 3.31,
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3.5 – Result analysis

the correct detection by aine scale space is 0.6416 but for the general scale space, it is 0.2425.
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Figure 3.31. Comparison of detection performance by employing aine scale space (a) Feature
detection by employing aine scale space. (b) Feature detection by general scale space. The blue
circles depict the features detected from the original image, red ones are the back-projected features
detected from the aine transformed image. The radius of the circle represents its scale and the yellow
box depict the correctly detected features. The correct detection by aine scale space is 0.6416 but
for the conventional scale space, it is 0.2425.
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Figure 3.32. Comparison of detection performance by employing aine scale space (a) Feature
detection by employing aine scale space. (b) Feature detection by general scale space. The correct
detection by aine scale space is 0.6541 but for the conventional scale space, it is 0.2707.

The implementation of aine scale space in igures 3.31, 3.32 and 3.33 employs the structure
depicted in igure 3.22. Figure 3.34 shows another detection comparison between aine scale space
and general scale space implemented in frequency domain.

65



3 – Aine scale space

Affine method

50 100 150 200 250 300 350

50

100

150

200

250

300

350

400

450

500

(a)

Normal method

50 100 150 200 250 300 350

50

100

150

200

250

300

350

400

450

500

(b)

Figure 3.33. Comparison of detection performance by employing aine scale space (a) Feature
detection by employing aine scale space. (b) Feature detection by general scale space. The correct
detection by aine scale space is 0.6522 but for the conventional scale space it is 0.2503.
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Figure 3.34. Comparison of detection performance by employing aine scale space implemented in
frequency domain. (a) Feature detection by employing aine scale space implemented in frequency
domain. (b) Feature detection by general scale space implemented in frequency domain. The correct
detection by aine scale space implemented in frequency domain is 0.6945 but for the conventional
scale space in frequency domain, it is 0.2958.
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The scale space of these two igures are constructed from the structure depicted in igure 3.28
and the rate of the accuracy is 0.6945 by aine scale space and 0.2958 by general scale space. Fig-
ures 3.31, 3.32 and 3.33 demonstrate the comparison of detection of aine scale space on diferent
images, including two architectures images and one cartons. General speaking, there is no much
diference for the detection accuracy due to the image content.

Figure 3.34 shows the detection comparison by the aine scale space implemented in frequency
domain. Apparently, it extracted less features but still maintains a high level of accuracy.

Tilting Citywall Castle Carton
aine general aine general aine general

0.6 0.6416 0.2425 0.6541 0.2707 0.6133 0.2178
0.7 0.6202 0.2060 0.6015 0.1855 0.5711 0.1667
0.8 0.5923 0.1159 0.5840 0.1654 0.5244 0.1400
0.9 0.5494 0.1009 0.5689 0.1203 0.4659 0.1133
1.0 0.5773 0.0944 0.5689 0.1103 0.4756 0.1044
1.1 0.5515 0.0579 0.5213 0.0526 0.4867 0.0667
1.2 0.5343 0.0429 0.5414 0.0526 0.4578 0.0489

Table 3.1. The ratio of correct detection from the aine transformed image respectively by
aine scale space and general scale space. The aine scale space in this table is constructed by
the structure depicted in the igure 3.22.

Tilting Citywall Castle Carton
aine general aine general aine general

0.6 0.6416 0.2425 0.6541 0.2707 0.6133 0.2178
0.7 0.6202 0.2060 0.6016 0.1855 0.5711 0.1666
0.8 0.5923 0.1159 0.5841 0.1654 0.5224 0.1400
0.9 0.5494 0.1009 0.5689 0.1203 0.4659 0.1133
1.0 0.5773 0.0944 0.5689 0.1103 0.4756 0.1044
1.1 0.5516 0.0575 0.5213 0.0526 0.4867 0.0667
1.2 0.5343 0.0429 0.5414 0.0526 0.4579 0.0489

Table 3.2. The ratio of correct detection from the aine transformed image respectively by
aine scale space and general scale space. The aine scale space in this table is constructed by
the structure depicted in the igure 3.23.

By comparing table 3.1 and 3.2, we can notice that the performance on the aine transformed
image by the structure of igure 3.22 and of igure 3.23 is quite similar. The performance upon
diferent images is also quite similar. The main diference for the detection performance is between
the implementation in spatial domain and frequency domain. As depicted in the igure 3.35, the
implementation in frequency domain generally has a more accurate feature detection on the aine
transformed images, at the expense of a high computational complexity. In our experiment, it takes
2.63 seconds to extract the features by employing the implementation in spatial domain, whereas it
takes 77.62 seconds by employing the implementation in frequency domain. The experiments are
implemented on the computer with the CPU Inter Xeon(R) 5130 @ 2.00 GHz, RAM 4 GB and
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operating system 64 bit windows 7.

Tilting Citywall Castle Carton
aine general aine general aine general

0.6 0.6945 0.2958 0.7128 0.3191 0.7375 0.2406
0.7 0.7235 0.2122 0.6915 0.2092 0.6875 0.1906
0.8 0.7042 0.1125 0.6277 0.1206 0.6937 0.1437
0.9 0.6302 0.0836 0.6277 0.0887 0.6406 0.0969
1.0 0.5852 0.0675 0.5709 0.0603 0.5687 0.0750
1.1 0.5370 0.0514 0.5390 0.0567 0.5281 0.0594
1.2 0.5595 0.0514 0.5213 0.0319 0.5062 0.0437

Table 3.3. The ratio of correct detection from the aine transformed image respectively by aine
scale space implemented in frequency domain and general scale space implemented in frequency
domain. The aine scale space in this table is constructed by the structure depicted in the igure 3.29.

By these experiments, we have shown that the aine scale space can be successfully employed
to improve the feature detection for the images under diferent view point, especially when the
tilting angle is large. The aine scale space implementation in frequency domain has even better
performance regarding the invariance to aine transformation. But its computational complexity
is also large. In practice, we can choose the appropriate aine scale space implementation for the
speciic requirement.
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Figure 3.35. Comparison of feature detection by employing aine scale space respectively imple-
mented in spatial domain and frequency domain.
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Chapter 4

Aine descriptor

As we have discussed in the last chapter, the aine invariant scale space has been proved suc-
cessful for aine image alignment. In this chapter we will propose an aine adapted feature de-
scriptor, which is extended from an existing descriptor, and is based on the framework of Gaussian
aine adaptation and thus compatible with the scale space that we have proposed in the last chapter.

Currently, many diferent techniques for describing local image features have been developed.
The simplest descriptor is a vector of image pixels. Cross-correlation can then be used to compute a
similarity score between two descriptors. Zabih and Woodill have developed an approach robust to
illumination changes [35]. It relies on histograms of ordering and reciprocal relations between pixel
intensities which are more robust than raw pixel intensities. The binary relations between intensi-
ties of several neighbouring pixels are encoded by binary strings and a distribution of all possible
combinations is represented by histograms. This descriptor is suitable for texture representation
but a large number of dimensions are required to build a reliable descriptor.

As we have discussed at the very beginning, Lowe has proposed a scale invariant feature named
SIFT [12], which combines a scale invariant region detector and a descriptor based on the gradient
distribution in the detected regions. This descriptor is represented by a 3D histogram of gradient
locations and orientations, and the contribution to the location and orientation bins is weighted by
the gradient magnitude. The quantization of gradient locations and orientations makes the descrip-
tor robust to small geometric distortions and small errors in the key point location. The descriptor
has been successfully used, for example, in the CDVS standard.

Gradient location and orientation histogram (GLOH) is a new descriptor, which extends SIFT
by changing the location grid and employing principal component analysis (PCA) to reduce the
dimensionality. It is designed to increase its robustness and distinctiveness. The SIFT descriptor
is computed in a log-polar location grid with 3 bins in radial direction (the radius set to 6, 11 and15) and 8 in angular direction, which results into 17 location bins, because the central bin is not
divided in angular directions. The gradient orientations are then quantized into 16 bins. This gives
a 272 bin histogram. The size of this descriptor is reduced by PCA and the 128 largest eigenvectors
are used as the descriptor [21].

Shape context is similar to the SIFT descriptor [36] specialized by a 3D histogram of edge point
locations and orientations. Edges are extracted by Canny detector. Location is quantized into 9 bins
of a log-polar coordinate system with the radius set to 6, 11 and 15 and orientation quantized into 4
bins (horizontal, vertical and two diagonals), yielding a 36-dimensional descriptor. The histogram
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is weighted by the corresponding gradient magnitude. This has shown to give better results than
using the same weight for all edge points. Note that the original shape context was computed only
for edge point locations but not for orientations.

PCA-SIFT [37] is the size-reduced SIFT descriptor by PCA. The descriptor is a vector of image
gradients in the detected scale space and direction computed within the support region. The gradient
region is sampled at 39 � 39 locations. Hence the vector dimension is 3042 reduced to 36 by PCA.

We can observe from the introduction that the state-of-the-art descriptors are all based on im-
age gradient. They are also similar to each other regarding the matching strategies, mostly based
on cross-correlation on histograms. Therefore, it is essential to explore the possibility to analyti-
cally characterize the image gradient deformation due to an aine alignment for an aine invariant
feature descriptor. In this chapter, we proposed an aine invariant feature descriptor based on an
aine gradient operation, which directly generates the image gradient by iltering the image with an
aine transformed Gaussian derivative. By interpolation and re-alignment of the aine gradient,
we can approach the image gradient compensating for the view point diference. The descriptor
based on this gradient can largely compensate the distortion brought by aine transformation and
thus be invariant to diferent view point. One purpose of the aine adaptation on the image gradient
is because the state of the art feature descriptors including SIFT and GLOH which are also com-
patible with the scale invariant feature detection, are all based on the histogram of local gradient.
The gradient for the feature descriptor is generated from the detected scale. The smoothed images
from diferent scales are not robust to the aine transformation, neither does the gradient. Thus an
aine adaptation on the image gradient of diferent view point is quite useful to compensate the
perspective distortion.

4.1 Image gradient

An image gradient is an operator sensitive to directional change in the intensity or color in an
image. The gradient of a two-variable function (here the image intensity function) at each image
point is a 2D vector with components given by the derivatives in the horizontal and vertical direc-
tions. At each image point, the gradient vector points in the direction of largest possible intensity
increase, and the magnitude of the gradient vector corresponds to the rate of change in that direction
[38].

Since the intensity function of a digital image is only known at discrete points, derivatives of
this function cannot be deined unless we assume that there is an underlying continuous inten-
sity function which has been sampled at the image points. With some additional assumptions, the
derivative of the continuous intensity function can be computed as a function on the sampled in-
tensity function. Approximations of these derivative functions can be deined at varying degrees
of accuracy.

The deinition of gradient for an image ে is given by [38] :

∇ে = (�ে�৘ ,

�ে�৙ ) , (4.1)

where �ে�৘ and �ে�৙ are the respectively calculated gradients in ৘ direction ৙ direction.
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The gradient direction can be calculated by the formula,

� = arctan 2 (�ে�৙ ,

�ে�৘ ) . (4.2)

Since the digital image can not be deined as a continuous function, the image gradient is
normally approximated by the diference of two adjacent pixels. To prevent a half pixel shift, the
image gradient is generally obtained by employing the gradient ilter: [−1 0 1]. Accordingly,
the gradient formula in SIFT [12] is given by

্(৘, ৙) =√(঳(৘ + 1, ৙) − ঳(৘ − 1, ৙))2 + (঳(৘, ৙ + 1) − ঳(৘, ৙ − 1))2
,

� = arctan (঳(৘, ৙ + 1) − ঳(৘, ৙ − 1)঳(৘ + 1, ৙) − ঳(৘ − 1, ৙)) . (4.3)

Notice that in the formula, gradient is not generated from the original image but from the scale
where the feature was extracted.

A more precise gradient approximation can be generated by Sobel operator [39] . It is another
discrete diferentiation operation, computing the gradient of the image intensity function. The ex-
pression of Sobel operator is given by,

∇ে = ֠֡֡
֢
−1 0 +1−2 0 +2−1 0 +1

֣֤֤
֥ ∗ ে ৘̂ + ֠֡֡

֢
−1 −2 −10 0 0+1 +2 +1

֣֤֤
֥ ∗ ে ̂৙ (4.4)

The Sobel operator is still not “large” enough for an aine adaptation, but it conveys the idea that
image gradient can be approximated by kernels of diferent length. A “long” operator enables more
precise adaptation for an aine alignment.

Following this idea, we will seek a large gradient operator, which can be more precisely aine
adapted.

4.2 Gaussian gradient operator
In the following, we will introduce a Gaussian gradient operator as an alternative for computing

the descriptor in an aine invariant way. It should be noticed that the gradient used to build the
descriptor is generated from the detected scale space. The approximation of the image gradient
will be generated by computing weighted diferences of adjacent pixels. The Gaussian ilter is a
continuous diferentiable function, which can be used to build the derivative of the corresponding
blurred image.

Denote ম৘ and ম৙ as the gradient ilters along the ৘ and ৙ directions.

∇঳ ≊঳ ∗ ম৘৘̂ + ঳ ∗ ম৙ ̂৙=(র ∗ ৈ) ∗ ম৘৘̂ + (র ∗ ৈ) ∗ ম৙ ̂৙=র ∗ (ৈ ∗ ম৘)৘̂ + র ∗ (ৈ ∗ ম৙) ̂৙ (4.5)
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The gradient ilters ম৘ and ম৙ approximate the derivative operator along the respective direc-
tions. Then, ম৘ ≊ �ে�৘ ,ম৙ ≊ �ে�৙ (4.6)

Thus,

∇঳ ≊র ∗ (ৈ ∗ ম৘)৘̂ + র ∗ (ৈ ∗ ম৙) ̂৙
≊র ∗ (�ৈ�৘)৘̂ + র ∗ (ৈ ∗ �ৈ�৙ ) ̂৙, (4.7)

where র is the input image and the Gaussian smoothing gradient operator in ৘ direction is given
by:

�ৈ�৘ =� [ 12��2 ৆− ৘2+৙2
2�2 ] /�৘

= ৘2��4 ৆− ৘2+৙2
2�2

(4.8)

In the same way, the operator in ৙ direction is:

�ৈ�৙ = ৙2��4 ৆− ৘2+৙2
2�2 (4.9)

A combination operator can be expressed as:

[�ৈ/�৘�ৈ/�৙] = 12��4 ৆− ৘2+৙2
2�2 [৘৙] (4.10)

From the equations above, the Gaussian gradient operator is simple and easily achievable. The
gradient used for the descriptor is calculated from the blurred image, at the scale where the feature
was detected. The Gaussian gradient operation performs both image blurring and gradient gener-
ation at the same time simplifying the procedures for gradient generation and thereby decreasing
the computational complexity.

As is shown in Figures 4.2 and 4.3, there is not so much diference between the gradient calcu-
lated by Gaussian gradient operator and the diference between adjacent pixels, showing that the
gradient by Gaussian operator can also be employed for calculating a histogram of gradients.

However, the diference operator can hardly be adapted to an aine transformation. An aine
transformation means a complex geometric shift that requires a long ilter. Since the Gaussian
gradient operation is accomplished by a long ilter, it is more easily to be aine adapted in the
same way we have done in the last chapter. In this way, the Gaussian gradient operator is suitable
to provide a geometric aine adaptation on the ilter itself.

4.3 Aine Gaussian gradient operator
A linear aine adapted Gaussian gradient operator can be derived based on the linear transfor-

mation on Gaussian gradient operator. The Gaussian gradient operator can be expressed in vector
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(a) vertical direction (b) horizontal direction

Figure 4.1. Gaussian gradient operator.

(a) (b)

Figure 4.2. Gradient of vertical direction. (a) is generated by Gaussian gradient operation. (b) is
generated by Gaussian blurring and adjacent pixels diference.

form. In mathematics, a linear transformation can be simpliied as a product of the homography
matrix and the coordinates vector as

[৘′৙′] = � [৘৙] . (4.11)

Denote

�′ = [৘′৙′] � = [৘৙]�′ =�� (4.12)
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(a) (b)

Figure 4.3. Gradient of horizontal direction. (a) is generated by Gaussian gradient operation. (b) is
generated by Gaussian blurring and adjacent pixels diference.

৘′ and ৙′ are the new coordinate system. Accordingly, the Gaussian gradient operator can be
expressed in the new coordinate system as,

[�ে/�৘�ে /�৙] = 12��4 ৆− ৘2+৙2
2�2 [৘৙]

= 12��4 ৆− �঻ �2�2 � (4.13)

and hence, � = �−1�′.

[�ে/�৘′�ে /�৙′] = 12��4 ৆ (�−1�′)঻ (�−1�′)2�2 �−1�′

=�−1�′ 12��4 ৆− �′঻ (��঻ )−1�′
2�2

(4.14)

The aine Gaussian gradient operator has been derived according to the formulas above, based
on the same method used for the aine Gaussian and aine Laplacian of Gaussian kernel. These
aine adaptation works in the same way, which is to retain a linear relation after blurring or gradient
operations. The linear relation is essentially important for the image analysis especially when only
geometric transformation occurred between a pair of images.

Figure 4.4 presents the aine Gaussian gradient operator with the aine transformation [1 10 1] .
Figure 4.5 is the gradient images generated by aine Gaussian gradient operator with the same
aine transformation. An obvious directional preference can be found in the gradient images. A
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(a) (b)

Figure 4.4. Aine Gaussian gradient operator.

(a) (b)

Figure 4.5. gradient by aine Gaussian gradient operator.

more intuitive illustration can be found from the gradient orientation and magnitude (OM) graphs.
The orientation and magnitude of the Gaussian gradient is deined as,

্(৘, ৙) =√(�ে�৘ )2 + (�ে�৙ )2
�(৘, ৙) = arctan 2(�ে�৙ ,

�ে�৘ ) (4.15)

where �ে�৘ and �ে�৘ are the gradients generated by aine Gaussian gradient operator.
It should be noticed that gradient graphs presented in Figure 4.6 are under diferent situations.

75



4 – Aine descriptor

2 4 6 8 10 12

2

4

6

8

10

12

(a)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

(b)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

(c)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

(d)

Figure 4.6. OM graph of image gradient under diferent transformation. (a) is the original image.
(b) is OM graph of the gradient. (c) OM graph of the aine gradient under a skewing transformation.
(d) OM graph of the aine gradient under a rotation transformation.

The gradient presented in (c) is obtained by a skewing transformation and (d) presents the gradient
from a pure image rotation. Essentially, the aine Gaussian gradient operator is designed to cope
with the aine alignment of the coordinates. Originally, the gradient is generated respectively from
the horizontal and vertical directions. The original coordinates will be linear projected into the
new coordinates. The gradients based on the original coordinates can be generated either by co-
ordinates re-alignment or perspective back projection. The coordinates realignment is easier to be
manipulated with no overall image transformation. Our proposed Gaussian gradient operator can
be used as a coordinates re-alignment tool which speciies the derivative functions for the gradient
generation from the detected scales.
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Figure 4.7. Aine gradient and normal gradient. (a) is the original image. (b) shows the gra-
dient on the aine transformed image. (c) shows the aine gradient on the aine transformed
image. (d) gradient on the original image.

Figure 4.7 presents the gradient from an aine deformed image respectively generated by a nor-
mal Gaussian gradient operator and an aine Gaussian gradient operator. The gradient by these two
operators are diferent between each other once they are presented in diferent coordinates systems.
However, the value of the gradient from the deformed image is the same as the gradient from the
original image by a normal operator. They only difer in the corresponding gradient locations. This
shows that, if the aine transformation is known, gradient can be compensated using the proposed
operator. What is still missing is how to compensate the location distortion brought by the aine
alignment. The objective is to collect the same set of gradient from the aine transformed image
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to approach to the gradient around the original image.

4.4 Gradient re-location and interpolation
Even if the gradients generation have been aine adapted to retain the same value, it every pixel

will also be moved to a new position according to the linear relation of diferent image views. The
purpose of this step is to compensate the location distortion brought in by the aine adaptation and
to re-locate each gradient for its original position to approach the descriptor compensating the view
point diference.

Gradients from linear transformed images are related though the homography matrix between
diferent views. The relations can be simpliied by the expression (4.11). Since every gradient in the
image from another view point is constrained by this relation, we can compensate the corresponding
gradients according to this deformation. In this way, the gradient generated by aine Gaussian
gradient operator can be transformed in so as to approximate the gradient of the original image.
Since the gradient patch to generate the descriptor is not large, we can igure out the speciic area to
generate the gradient from the transformed image and further identify the relations for each gradient
pair.

The procedures of the gradient interpolation after an aine Gaussian gradient operation are
given by:

1. Specify the patch to generate the aine gradient on the skewed image according to the pre-
deined patch on the original image. Denote য as the homography matrix of the aine trans-
formation and ঵৘ � ঵৙ as the area to generate the gradient on the original image. Than the
corresponding path on the aine transformed image is max(য঵৘)� max(য঵৙) as demon-
strated in the Figure 4.8.

2. Fix the coordinate system for the aine patch and its relation with the pre-deined patch. For
instance, we all take the right upper vertex as the zero point for both patch. Then they will
be related with the Homography matrix য .

3. List all the positions on the pre-deined patch by its coordinates. In the Figure 4.8, we have
listed them with the number 1,2,3,… . These points will also be given their coordinates.

4. Specify each of them with the corresponding positions on the aine patch by forward trans-
formed the coordinates. If the coordinates of point � is (৘, ৙)঻ than the point with the co-
ordinate য(৘, ৙)঻ is the corresponding point. In the Figure 4.8, the corresponded points on
the aine transformed patch have also been labelled with 1,2,3,… .

5. Collect the gradient from the corresponded positions on the patch. Ideally, we could collect
a set of points that approximate the gradients on the original image. We will also estimate
the gradient values according to its neighborhoods if that position does not correspond to
any given points.

We now provide more details about this procedure, assuming that a given image can be deemed
as an aine deformed version of an original version stored in the dataset.
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Figure 4.8. Gradient collection.

Our target aine descriptor is an extension of SIFT [12]. Instead of the gradient generation
by diference of adjacent pixels, the gradient used in the aine descriptor will be created by aine
Gaussian gradient operator, which adopts the aine coordinate system according to the aine defor-
mation between the query and reference images. The area to calculate the gradient for the descriptor
from the original image is determined by the detected location and scale of the feature. It covers a
circular plan around the feature with a radius equal to 4.5 times the scale for assigning the feature
orientation, and 15√2 times the scale for calculating the descriptor. To simplify the computation,
both areas can be enlarged to a tangential square containing the circular part.

Once the patch area from the original image in the dataset has been ixed, the patch area on
the aine deformed image can also be calculated accordingly. The four vertexes of the area from
the original image will be forward transformed according to the homography matrix to deine the
corresponding area in the query image. The new area on the query image is deined by the minimum
rectangular tangent to quadrilateral formed by the projected vertexes. This area is used to calculate
the gradients by the aine Gaussian gradient operator. Figure 4.8 presents a typical gradient patch,
where only the numerated gradient will be collected to calculate the aine invariant descriptor.

Then the coordinate systems of these two areas are to be linked either by the area centre or one
of the vertexes. These two system are equivalent, if the vertex transformation can be satisied by
both. In this way, each point in its own area can be uniquely determined by its coordinate system.
If we forward transform all the locations from the original image domain to the aine deformed
image domain, we can obtain the locations in the aine deformed image. In this way, each pair
from the two images has been linked together. Thus, the gradients on the original image can be
approximated by picking the corresponding gradient from the deformed version. However, it is not
guaranteed that every point from the aine deformed patch will relect to an available one from the
original image.

On the other hand, forward transformation from the original patch to the aine one cannot
guarantee to link points with integer coordinates since a digital image is not a continuous function
and thus the non integer coordinate points cannot be found. But in a small scale, especially in the
blurred image, the gradients are still correlated and given a set of known values, the target values
can be estimated with interpolation. This gradient interpolation may introduce some noise, but it is
better than the gradient based on the image perspective back-transformation which may introduce
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more noise on both the pixel values and gradient values.

Figure 4.9. Comparison between the gradient patch from images of diferent perspective.

Figure 4.9 demonstrates the gradient calculated from images of diferent perspectives. In the
igure, there are two types of gradient, the red one and blue one, respectively standing for a collec-
tion from the original image and aine deformed image. From the illustration above, there is not
so much diference among these two types of gradient by a gradient collection and interpolation.

The aine deformation upon the image is [1 0.80 1 ].

To make the gradient collection more accurate, we illustrate more outcomes of the gradient
collection on images of diferent perspectives.

Figure 4.10 presents the accuracy of aine gradient operation. It is a typical result under the
efect of interpolation noise. The curves are quite similar to those representing the performance of
aine Gaussian scale space, implying some connections between each other. Similarly, the main
limitation to accuracy is also from the interpolation noise which can be reduced to some extent by
the Gaussian ilter during gradient generation. The level of the noise reduction depends on the size
of the Gaussian kernel, which also relects the feature scale. This can be used to explain why with
the growth of the scale, the signal to noise ratio becomes better, whereas the increase of skewing
has no obvious inluence.

It has been proved that a low pass ilter is efective to reduce the interpolation noise in the
previous chapters. To compensate the noise efect on the aine gradient, we would like to employ
some low pass ilters during the aine gradient generation. One typical ilter is low pass Gaussian
ilter, which is also fundamental to create the scale space. What is more, the main target of aine
gradient operation is to approximate the gradient from the referred images. Thus this additional
Gaussian ilter will also be aine transformed to compensate for the view point diference. This
additional Gaussian ilter is equivalent adding an extra value to the detected scales from which the
gradient was created.With this added scale the gradient is still identiiable because this additional
scale will be added to all the scale space. What is more, the gradient of diferent scale is still
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Figure 4.10. Aine gradient accuracy. (a) shows the accuracy under diferent scales and deforma-
tion. (b) shows accuracy under diferent scales. (c) shows accuracy under diferent deformation.

distinctive between each other. In this way, the interpolation noise can be further reduced.
Figure 4.11 presents the performance of the aine Gaussian gradient parametrized by an addi-

tional scale. The SNR becomes higher compared with the corresponding performance without the
additional scale. The Figure shows that the precision of gradient can be efectively improved by the
additional scale. This improved gradient can be used to build the aine descriptor.

4.5 Orientation assignment
The aine Gaussian gradient re-aligned by gradient collection and interpolation can now be

used to build the aine descriptor. Generally, before the descriptor, each feature should be as-
signed with an orientation, relecting the main direction of the gradient around it. This orientation
is the angle which compensates the direction diference upon the gradient area from images having
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Figure 4.11. Aine gradient performance with an additional scale.

diferent rotations. This procedure helps to enhance the invariance to image rotations.

To calculate a SIFT descriptor, an orientation histogram with 36 bins will be formed, with
each bin covering 10 degrees. Each sample in the neighboring window added to a histogram bin
is weighted by its gradient magnitude and by a Gaussian-weighted circular window with a � that
is 1.5 times that of the scale of the key-point. The peaks in this histogram correspond to dominant
orientations. Once the histogram is illed, the orientations corresponding to the highest peak and
local peaks that are within 80% of the highest peaks are assigned to the key-point. In the case of
multiple orientations being assigned, an additional key-point is created having the same location
and scale as the original key-point for each additional orientation [12].

In our proposal, the orientation assignment is also based on the SIFT scheme. Since the neigh-
bourhood to collect the gradient for the orientation assignment has been pre-deined, we just need
to further specify the corresponding area on the aine deformed image. That area can be speciied
though an aine alignment on the plan. Once the area is ixed, that image area can be processed
with the aine Gaussian gradient operation and the successive gradient collection and interpola-
tion. The gradient obtained after these procedures can then be used as the approximation of the
gradient from the original image. With this approximation of the gradient from the original image,
the orientation assignment operation can be further processed based on the SIFT. At the very be-
ginning, a histogram with 36 bins will be created with each bin covering 10 degrees. Each entry of
the histogram will be weighted by its magnitude in order to stabilize the main orientation estima-
tion. The highest peak of the histogram will be referred as the main orientation of the feature and
the local peaks within 80% of the highest peak will be referred as the multiple orientations of that
feature. By statistics, 15% of the features will be assigned with more than one orientations [12].
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Figure 4.12. Orientation assignment by SIFT

Figure 4.13. Orientation assignment by our proposal

Figure 4.12 illustrates the main procedures of orientation assignment operated by SIFT, includ-
ing the creation of the orientation histogram with each bin weighted by the gradient magnitude.
Figure 4.13 illustrates our proposed orientation assignment operation. The main diference between
the typical SIFT assignment and our proposed assignment lies in the gradient re-alignment. Once
the gradients are collected from the re-ordered positions, a histogram of gradient orientation can
be established with the peak referred as the dominant orientation.

In the Figure 4.14, igure (a) presents the histogram created based on the conventional gradi-
ent. The peak of the histogram points to 185∘. Figure (b) presents the collected gradient by aine
Gaussian gradient operator from the aine deformed image. The peak also point to 185∘. Figure (c)
also presents the collected gradient by aine Gaussian gradient operator from an aine deformed
image with a 30∘ rotation. The peak of this histogram corresponds to 155∘, perfectly relecting the30∘ counter-clockwise rotation.

4.6 Aine descriptor
The area to compute the descriptor invariant to scale, rotation and partially to illumination can

be ixed once the orientation has been assigned. For example, SIFT descriptor is computed by a
rectangular grid laid out in the image domain, centered at the interest point, with its orientation
determined by the orientation assignment and with the spacing proportional to the detection scale
of the interest point. From experiments, Lowe [12] found that a 4 � 4 grid is often a good choice.

For each point on this grid, a histogram of local gradient directions at the scale of the feature
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Figure 4.14. Aine gradient histogram. (a) shows gradient histogram from original image. (b)
shows Aine gradient histogram from aine deformed image. (c) shows the aine gradient histogram
from aine deformed image with 30∘ of rotation.

is computed over a pre-deined local neighborhood, with the gradient directions quantized into 8
discrete directions. During the accumulation of the histograms, the increments in the histogram
bins are weighted by the gradient magnitude at each feature to give stronger weights to image
points where the gradient estimates can be expected to be more reliable. To give stronger weights
to gradient orientations near the interest point, the entries in the histogram are also weighed by a
Gaussian window function centered at the feature and with its size proportional to the detection
scale. Taken together, the local histograms computed at all the 4�4 grid points and with 8 quantized
directions lead to an image descriptor with 4 � 4 � 8 = 128 dimensions for each feature. This 128
dimensional vectors is referred to as the SIFT descriptor[12].
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Figure 4.15. Square neighborhood for descriptor rotating to the orientation of the detected feature.

Figure 4.16. Descriptor created on the gradient from the rotated square neighbourhood.

Figures 4.15 and 4.16 illustrate how the SIFT descriptor is computed from few sampled gradi-
ents over a local adapted grid at the detected scale, with the orientation determined by the dominant
peak in a gradient orientation histogram. Similar to the procedures of the orientation assignment
based on the aine Gaussian gradient, the irst step to build the aine invariant descriptor is to
deine the area to collect the gradient. Diferently from the area pre-determined to estimate the
main direction, the rectangular grid to compute the descriptor is not pre-deined but rotated by the
assigned orientation. In the pipeline, the rectangular grid will be rotated to the feature’s assigned
orientation to remain the same direction after any rotation. This makes it more complicated to de-
ine the corresponding area on the aine deformed images, since rotation and aine transformation
both get involved.

To simplify the deinition of the area to collect the gradient from the non-deformed images, we
will deine a maximum area which covers all the image rotation cases. In this way, this maximum
area represents the corresponding area to collect the aine Gaussian gradient for our proposed
feature descriptor.

Figure 4.17 presents the area to computer the descriptor. In the igure, � stands for the detected
scale, ৅ is the number of the sub-regions on each size and ্� stands for the size of each sub-region
(৅ = 4,্ = 3 in SIFT).

The coordinate system within the maximum area will also be rotated to deine the precise area
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Figure 4.17. The area to compute the descriptor.

for the gradient collection. The relation of the coordinate system is given by

[৘′৙′] = [cos � − sin �sin � cos � ] [৘৙] . (4.16)

The transformation of the coordinate system can also be seen as an aine transformation upon
the image, because a linear transformation of the coordinates will be processed on each point in that
coordinate system. Coordinates rotation is equal to image rotation and coordinates skewing is also
equal to image skewing. Therefore, aine Gaussian gradient operation is suitable for the gradient
adaptation with compensation of image linear transformation. Since the coordinates transformation
for rotation is equal to an image rotation, and image rotation is a special case of aine transforma-
tion, then aine Gaussian gradient operation can also be used for the area rotation. In other words,
the aine gradient generation and rotation transformation can be combined in the aine Gaussian
gradient operation.

The new aine Gaussian gradient operation combined with the coordinate transformation can
be speciied by the new aine kernel,

�′ = � [cos � − sin �sin � cos � ] . (4.17)

Figure 4.18 presents the combination of aine gradient collection and rotation transformation.
After this operation, the descriptor can be formed following the pipeline of SIFT descriptor. In
this way, a feature descriptor based on the aine adapted gradient can be created given the aine
deformation. The design of this feature descriptor aims to construct a descriptor compatible with
aine scale space based feature detection.

Only when the aine feature detection works well, and is matched with an appropriate descrip-
tor, the feature detection algorithms can become very resilient to viewpoint changes. On the other
hand, the aine descriptor is designed in the framework of SIFT descriptor, thus it can be deemed
as an extension of SIFT for view-point robustness, thus fully compatible with SIFT which has been
widely used in many applications.
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Figure 4.18. The combination of aine gradient and coordinates transformation.

(a) (b)

Figure 4.19. The accuracy of aine descriptor. Figure (a) presents the accuracy for diferent skew-
ing. Figure (b) presents the accuracy for diferent rotations.

Figure 4.19 presents the aine descriptor accuracy to skewing and rotation respectively. It
should be noticed that, when we refer to rotation, it is not pure rotation but an additional rota-
tion contained in an aine transformation. Normally, an aine transformation can be divided as
the product of pure rotation and pure skewing. The invariance to pure rotation depends on the ori-
entation assignment which determines the direction of the rectangular area where the gradient is
calculated. But the invariance to skewing can only be accomplished by aine gradient operation.
The experiments set on rotation and skewing aim to evaluate the accuracy on the robustness of ori-
entation assignment and aine gradient operation. In Figure (a), there are three curves, respectively
representing the additional rotation of 30∘, 60∘ and 45∘. In Figure (b) there are also three curves,
representing performance of skewing equal to 0.1, 0.2 and 0.5 in the vertical direction. Overall
speaking, there is no distinction between each other and the signal to noise ratio ranges from 20
to 40 dB, which is an acceptable level to feature matching. A further evaluation of the matching
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precision will be tested in the following.

Figure 4.20. The matching precision of SIFT descriptor.
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Figure 4.21. The matching precision of aine descriptor.

Figures 4.20 and 4.21 respectively present the matching precision of SIFT descriptor and the
proposed aine descriptor. In the experiment, we have randomly selected 200 pairs of key points
from the reference image and aine image to evaluate the descriptor’s matching precision. Among
all of these selected pairs, only 1 pair is a correct match. We have repeated the experiment at difer-
ent scales and deformations to have an overall assessment of the aine descriptor. From the graphs
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illustrated above, the SIFT descriptor only achieves a good performance at large scale and low aine
deformations. The larger the scale and smaller the deformation undergone by the aine image, the
higher the matching precision. On the contrary, the result of the aine descriptor is excellent since
the only matching pair has always been successfully matched among the other 200 non-matching
pairs at all scales and deformations. Compared with the SIFT descriptor, the matching precision
of the aine descriptor is very encouraging. It points out that an aine adaptation on the gradient
generation is a sound approach to cope with the efects of view-point variation.

Combining the aine detection and aine descriptor, this aine SIFT extension can be used to
handle image search with images of diference perspectives. It can be used in a lot of real applica-
tions especially when the deformation is given.
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Chapter 5

Conclusion

In this thesis, we have tried to explore the principles behind the sensitivity to view-point change
of the current content based image retrieval algorithms and tried to enhance their robustness to
view-point changes by a post processing stage using Homography based back-projection, and aine
scale space based feature detection and description algorithms. The main purpose of this thesis is
to truly reveal the reason behind the sensitivity of content-based visual search techniques and to
improve their performance of retrieval precision under diferent aine transformations.

By the introduction of Homography based back projection, we have also introduced the math-
ematical model of aine transformation in the form of a 2 dimensional matrix, which is also the
foundation of aine scale space. This mathematical description simpliied the change of view point
as an aine transformation, which makes it possible to simulate the images of diferent perspec-
tives and assess the corresponding performance of detection and description. What is more, this
mathematical model helps to explore the inner principle to the feature detection and description of
the content based visual search techniques. The proposed Homography based back projection algo-
rithm can be used to detect the aine transformation a posteriori. When integrated into the standard
pipeline of CDVS it can relieve the computational complexity compared with the simulation of all
the possible perspectives by ASIFT [23].

At the same time, this Homography based post processing stage can be used to improve the
retrieval performance on the visual content of diferent perspectives, but it does not resolve the
problem in a general way. Therefore, we have also explored the theory of aine scale space and de-
signed the practical structure for the feature detection and description. The aine skewed Gaussian
ilter was irst proposed by Tony Lindeberg [15] and applied by Krystian Mikolajczyk [22]. This
skewed Gaussian was used as an adaptation to the aine transformations in aine Harris. But the
result does not meet the requirement for the detection. Considering that a simple aine adaptation
on the normal scale space does not provide enough improvement on the robustness to diferent
perspectives, we have tried to established an aine scale space, completely based on skewed aine
Gaussian blurred images which directly relect the corresponding aine transformations. In a way,
the aine skewing in the ilter compensate the aine distortion from the image, thus the aine
skewed scale space can well capture the normal features from the aine transformed images. In the
thesis, we have proposed four implementation structures to construct the aine scale space, two
structures in spatial domain and two in frequency domain. Since the Laplacian operator is not easy
to be aine skewed in spatial domain, we have also proposed the corresponding aine LoG. The
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computation complexity for the aine scale space is of the same level of the pyramid structure for
normal scale space.

Once a feature has been detected, it requires a suitable descriptor for its identiication in the
visual content based retrieval system. For the same reason, the current image gradient based de-
scriptor is also not robust to an aine transformation, since the descriptor is not calculated by the
gradient from an aine skewed scale space. The calculated gradient can not well represent the im-
age structures from a speciic perspectives, which cannot be present by a normal scale space. In the
third chapter, we have also proposed an aine gradient based aine descriptor. The aine gradient
is obtained by the derivation of the detected aine scale space representing the structure of the
aine transformed image. Combing this with some gradient skewing collection and interpolation,
we form our aine descriptor, which inherits the main characteristics of the common SIFT descrip-
tor. It owns the same form of SIFT descriptor, thus it is compatible with the CDVS [18] retrieval
standard which has introduced a lot of other techniques for quick and accurate retrieval.

By combining the pipeline of both the aine detection and aine description, a fully aine
robust visual search technique can be formed based on the theory of aine transformation and
aine scale space. Overall speaking, scale space structure is the kernel for the scale invariant visual
search. Combining this with aine adaption of the scale space can then be used to well represent
the multi-scale image and also well capture the structures from diferent perspectives.

5.1 Future work
In this thesis, we have designed several diferent structures to build the aine scale space for

a certain aine transformation and re-designed the aine scale space based feature detection and
descriptor. The eforts we have made are successful to improve the robustness to view point changes
for visual search techniques. But there are still several unsolved problems we need to confront with.

1. The aine scale space can represents the details of the image steering to a certain view point,
but the view point diference should be previously known for the feature detection and de-
scriptor. Except the simulated images, the view point diference in practice is hard to cali-
brate.

2. The homography matrix we are using to specify the view point diference not only contains
the information of view point diference but also introduces the change of camera distance.
By using the homography matrix to steering the scale space, it will also bring the change of
camera distance, which will inluence the scale ranges for the feature detection. Meanwhile,
the camera distance will also afect the pre-deined area for the image gradient collection to
form the feature descriptor.

3. The state of the art visual search techniques have a certain level of view point robustness.
Within the range of their robustness, the implementation of aine scale space will not im-
prove the image matching precision. On the other hand, the aine scale space is more complex
and time consuming to implement. It should be igured out when the aine scale space will
be used to detect and describe the features and when it will not be.

To the irst issue, we will establish an integrated structure combining all the scale space from
diferent perspectives in order to capture the image details not only from diferent scales but also
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from diferent perspectives. In this way, the view point diference does not need to be previous
known because the features from any potential view point will be detected. This integrated structure
is demonstrated in the igure 5.1. In theory, a complete perspective projections of an image will
cover the view point for a half sphere from a certain distance. Thus we also need to explore how
sparsely to set up the aine scale space of diferent view points in order to economically capture
the features of the whole visual sphere.

To the second issue, we will try to deine a certain distance for the view point changes by spec-
ifying a freedom of homography matrix in order to prevent the scale changes due to the aine
adaptation. By normalizing the homography matrix to deine the camera distance, the scale range
will not be afected by the aine adaptation on the scale space. Thus the feature detection and de-
scriptor will be within the same range of scales and this will guaranteer the accuracy of detection
and descriptor for diferent view point. In advance we will also try to establish some special struc-
tures to simplify the implementation, just like the structure to implement the aine scale space.
The aine scale spaces from diferent perspectives are also mathematically related, we will explore
their inner relations to simplify the construction process.

To the third issue, we need to do more experiments to evaluate the speciic performance of
the visual search techniques on diferent level of image skewing and tilting. With this performance
evaluation, it can be speciied when to implement the aine scale space and when to implement the
conventional scale space to speed up the whole image retrieval system.

Figure 5.1. Scale spaces from diferent perspectives.

There are also a lot of real applications based on the view-point robust visual search techniques,
including 3D objects reconstruction, navigation, auto driving etc. We will also keeps our mind on
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the research of that areas.
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