POLITECNICO DI TORINO
Repository ISTITUZIONALE

Shot-based object retrieval from video with compressed Fisher vectors

Original
Shot-based object retrieval from video with compressed Fisher vectors / L., Bertinetto; Fiandrotti, Attilio; Magli, Enrico. -
(2014). (Intervento presentato al convegno European Signal Processing Conference).

Availability:
This version is available at: 11583/2592668 since:

Publisher:
European Association for Signal Processing (EURASIP)

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 April 2024



SHOT-BASED OBJECT RETRIEVAL FROM VIDEO WITH COMPRESSED FISHER
VECTORS

Luca Bertinetto, Attilio Fiandrotti, Enrico Magli

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino
luca.bertinetto @polito.it, attilio.fiandrotti @polito.it, enrico.magli @polito.it

ABSTRACT

This paper addresses the problem of retrieving those shots
from a database of video sequences that match a query im-
age. Existing architectures are mainly based on Bag of Words
model, which consists in matching the query image with a
high-level representation of local features extracted from the
video database. Such architectures lack however the capabil-
ity to scale up to very large databases. Recently, Fisher Vec-
tors showed promising results in large scale image retrieval
problems, but it is still not clear how they can be best ex-
ploited in video-related applications. In our work, we use
compressed Fisher Vectors to represent the video-shots and
we show that inherent correlation between video-frames can
be proficiently exploited. Experiments show that our pro-
posal enables better performance for lower computational re-
quirements than similar architectures.

Index Terms— object retrieval, object search, video
search

1. INTRODUCTION

The widespread popularity of multimedia-enabled devices
has fostered the blooming of large collections of digital
items. As such collections grow larger, techniques for me-
dia searching, indexing and retrieval capable to scale up to
very big databases are sought. For example, internet video
providers such as YouTube are facing the challenge of how
to efficiently answer users requests with appropriate video
contents. To a smaller scale, domestic users may want to eas-
ily dig into libraries of videos that they collected over time.
In the following, we refer to the application of retrieving
those sequences from a database of videos that match a query
image as object retrieval from video.

In their seminal Video Google paper [1], Sivic et al. pro-
posed an object retrieval architecture based on the Bag of
Words (BoW) model. Local features are extracted from a
subset of the video-frames and represented as SIFT descrip-
tors [2]. Then, using K-means, clusters of descriptors are cre-
ated, forming a vocabulary of visual words. As we will detail
in Section 2, images are represented as visual word frequency
histograms over the vocabulary. Nevertheless, the vocabulary

grows linearly with the number of frames in the database,
thus making such architecture unsuited to handle large scale
scenarios.

Conversely, Fisher Vectors (FVs) showed promising re-
sults in large scale image classification and retrieval prob-
lems [3,4]. Images’ local descriptors are represented with a
Gaussian Mixture Model (GMM), where the Gaussians can
be seen as the conceptual equivalent of the visual words in
BoW. On the same performance basis, the number of Gaus-
sians employed is orders of magnitude lower than the number
of visual words required by the BoW model to achieve a rea-
sonable performance.

In this paper, we introduce a novel architecture for ob-
ject retrieval from video that improves over [1, 5] in the fol-
lowing aspects. i) The video is considered as a sequence of
semantically coherent segments, the shots, rather than as a
simple sequence of pictures. Within each shot, persistent de-
scriptors are tracked so to represent the video through a few,
yet highly distinctive, descriptors. ii) Shots are modeled via
a FV-based representation, where each FV is further com-
pressed by means of Principal Component Analysis (PCA).
We compare with a reference architecture similar to [1, 6]
and we show that the per-shot representation reduces offline
learning time, while compressing the vectors reduces online
memory requirements and query time without performance
penalties.

The remainder of this document is structured as follows.
Section 2 describes the BoW approach to video as first pro-
posed in [1] and then refined in [5]. Section 3 describes our
proposed architecture for object retrieval from video based on
feature tracking and compressed FVs. Finally, in Section 4
we compare our architecture both with BoW and several pos-
sible FV configurations.

2. BACKGROUND

In this section, we overview the Video Google architecture
described in [1,5]. It can be summarized into an initial offline
stage for the creation of a visual vocabulary, followed by an
online stage for the processing of the queries.



2.1. Offline Stage

First, local features are located in a subset of the frames
of the video database (the keyframes) and represented with
SIFT descriptors [2]. Descriptors are clustered into K cen-
troids using the K-means algorithm, whose output is the set
V ={v1,...,vk} of 128-dimensional elements, which we
refer to as a vocabulary of visual words.

Second, each keyframe is represented with a K -bins his-
togram by mapping each descriptor extracted to its nearest
neighbour in V. TF-IDF weighting is then applied to the his-
tograms to down-weight words that appear often in the vocab-
ulary and to promote words that are highly characteristic of a
specific keyframe. Eventually, each keyframe ¢f, f € [1, F],
is represented as a K'-bins histogram and the resulting col-
lection of F histograms is represented as the K x F' matrix

T =[tr,....tr).

2.2. Online Stage

The online stage is performed every time the user submits
a query image. Descriptors are extracted and a histogram-
based representation of the image is generated, mapping each
descriptor to its nearest neighbour in V. The histogram of the
query image is then TF-IDF weighted. Let ¢, be the K x 1
vector representing the query image histogram: we compute
the F' x 1 score vector ST = [s1,...,5F]

S="TT"t, 1)

where each value is the result of the inner product of ¢, and
ty. The higher the value, the more likely it is that the f-th
keyframe is similar to the query image, so sorting the score
vector is equivalent to sorting the keyframes in order of rele-
vance with the user query.

Finally, we would like to comment on the computational
complexity of the BoW model. In [1, 5], the authors show
that the number of visual words used is a fraction of the num-
ber of local descriptors. Therefore, the memory required to
store V increases with the database size, together with the
time spent during the online stage to map the new local de-
scriptors to the visual words. Therefore, since BoW model is
inherently limited in scalability, more compact and efficient
retrieval architectures are sought.

3. PROPOSED ARCHITECTURE

In this section, we describe the proposed object retrieval ar-
chitecture illustrated in Figure 1.

3.1. Shots representation

3.1.1. Shot Segmentation

We choose to represent each video as a collection of shots,
where a shot is a sequence of frames that are coherent by con-
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Fig. 1. Complete pipeline of our proposed architecture. Dot-
ted line encloses the query stage described in Section 3.2.

tent. The motivation behind this choice is twofold. First, it is
highly likely that the user wishes to detect in which shot the
query object appears, rather than in which particular frame.
Second, grouping local descriptors at a shot-level allows to
focus the representation on the non-redundant information,
as it will be detailed in Section 3.1.3.

To detect the boundaries between consecutive shots, we
simply compare the difference between the sum of the ab-
solute difference in the color histograms of two consecutive
frames with a threshold value. This first segmentation returns
a subdivision of the video sequence in shots. Next, we apply
the same segmentation process to each shot, but with a lower
threshold. The result is a further subdivision of each shot:
we consider as keyframe the median frame in each group of
frames found by this second segmentation step.

3.1.2. Local Features Extraction and Representation

For each keyframe we compute Hessian-Affine regions [7]
and we represent them via SIFT descriptors. Then, we con-
vert them in RootSIFT [8] first by Li-normalizing them and
then computing the element-wise square root. Calculating the
Euclidean distance between RootSIFT is in fact equivalent to
calculating the Bhattacharyya distance with a Hellinger ker-
nel on standard SIFT, which was shown to yield better results
in several applications [8].

3.1.3. Feature Tracking

Due to the temporal correlation between consecutive keyframes,
local descriptors tend to repeat across every shot, unneces-
sarily increasing the computational complexity of the FVs
generation process. Aiming to represent each shot with the
minimum amount of redundancy, we perform a per-shot
tracking of local descriptors throughout the video. The ob-
jective is to obtain a representation of the development of



local descriptors across a shot, called thread in the following.

For each couple of consecutive keyframes k;_; and k;
within a video-shot of length L, i € [2, L], for all the N, local
descriptors d; J € [1, N;], we compute the first and second
nearest neighbours and the respective euclidean distances in
the local descriptors’ space, respectively: dj;, di,, A%, and
Al Ifrj = ij; <0, d}, and d’, are considered as a match.

The motivation behind this operation is explained in [9],
where the authors have studied the probability density func-
tion (PDF) of the ratio r; on several thousands of images.
They discovered that the PDF for correct matches signifi-
cantly differs from the one for incorrect ones, and that, in
general, incorrect matches tend to have a ratio near to 1.

Whenever a new match is obtained, dél is added to the
same thread of d;, otherwise d;l is considered as a part of a
new thread. Finally, each thread composed by more than one
descriptor is represented as a RootSIFT that is the mean of
all the local descriptors belonging to it. Doing so, the total
number of local descriptors used to represent a shot is sig-
nificantly reduced. This, as it will be illustrated in Section 4,
permits an important reduction of the time needed to compute
the FVs. As a very last step, the dimensionality of the threads
is reduced from d = 128 to d’ = 64 through PCA, as in [6]
the authors show how such a reduction is not detrimental for
the performance of an image retrieval system.

3.1.4. The Fisher Vector Representation of a Shot

Borrowing the notation from [3], let X = {x1,...2x} be
the set of N descriptors representing all the threads in the
video database. The problem is to find the GMM of Kg
multivariate Gaussians that best fits X. Solving this prob-
lem is equivalent to finding the set of d’-dimensional param-
eters A = {w1, 41,01, ..., WKy, hKe, 0K  that maximizes
the log-likelihood function

N Ka
LIX|A} =D log > wipk(alX), ©)
n=1 k=1

that is we want to find parameter vector \ that maximizes the
likelihood that X was generated from a linear combinations
of K¢ multivariate Gaussian functions. This problem is it-
eratively solved by means of the Expectation Maximization
algorithm.

Then, let S = {s1,...,sr} be the set of RootSIFT de-
scriptors representing the threads of a shot: it can be de-
scribed according to the GMM model with the gradient vector

GS = Vi log p(X|N). 3)

Intuitively, it describes the direction in which the statistic
model parameters should be modified to match the descrip-
tors of the shot considered. The FV representation is obtained
by concatenating all the gradient vectors relative to the K¢

Gaussians. For the details of how this gradient can be effi-
ciently computed, we refer the reader to [3] and [4].

In our experiments, we verified that considering only the gra-
dients with respect to the Gaussians mean values p yields a
more compact description for a negligible performance loss.
Therefore, in the following a FV representation of a shot is a
vector composed of D = K¢ d’ elements.

Since regular patterns (e.g. the bricks of a wall) tend
to generate bursts of descriptors that can polarize the GMM
against those areas of the image that are of interest to the
user, we power-normalize each FV to reduce the impact of
such descriptors as f(z) = sgn(z)|z|%°. Thereafter, each
FV is also Ly-normalized, to guarantee that if one of the FV
of the database is used as a query, the best retrieved shot is
exactly the FV of the shot used as a query.

As a last step, we reduce the FVs dimensionality by
means of a further stage of PCA, as [6] shows that PCA-
reduced FVs exhibit smaller footprint with little performance
penalty. Let D = K¢ d’ be the length of a FV, the PCA
compacts the corresponding vector to D’ < D, where typi-
cal D’ lengths generally lie between 128 and 1024. In some
cases, PCA compression even improves the performance, as
we show in Section 4.2.

3.2. Query Stage

During the query stage, a set Q of d’-dimensional RootSIFT
descriptors is computed and a FV representation ¢, of the
query image is obtained with the same procedure described
above. Gradient vectors G% computed with respect to the
mean values p of the GMM previously computed are calcu-
lated and concatenated to create the FV representation. As
a last step, the FV is power-normalized, Lo-normalized and
PCA-reduced to the same size D’ of the FVs of the database.

Recalling the same notation used in Section 2.2, the
database of video sequences is represented by the matrix
T = [t1,...,tr], where F indicates this time the number of
shots in the database. In this context, 7 is a D’ x F' matrix,
where each column is the FV representation of one of the F’
shots in the database. Let ¢, i.e. the FV representation of the
query image, be a vector of length D’: we obtain a scored list
of matching shots by means of the inner product S = 7 " tq.
Figure 2 shows an example query and a portion of the ranked
list of retrieved shots.

The use of the inner product to compare two FVs is mo-
tivated by Perronnin et al. in [4], where they analytically il-
lustrate the analogies between FVs and the TF-IDF weighted
histograms of BoW model, proving the efficacy of the inner-
product as a measure of similarity.

4. RETRIEVAL EXPERIMENTS

In this section, we compare a FV-based architecture with a
reference based on a classic BoW model, described in Sec-



tion 2. Furthermore, we also consider several possible setups,
showing that our proposal, which adopts feature tracking and
compressed FV representation of the shots, achieves the best
results.

4.1. Experimental Setup

The database of video sequences has been generated from the
full-length movie “Inside Job”, which is 109 minutes long.
We detected approximately 150k frames, 1200 shots, 5000
keyframes and 6 millions of descriptors. By comparison,
the authors of [1] experimented with a subset of 48 shots ac-
counting for about 10k frames and 200k descriptors extracted
from the movies “Run Lola run” and “Groundhog Day”.

We experiment with 15 query images depicting objects,
buildings and logos found in the movie, but taken from
different points of view and under different levels of illumi-
nation and background cluttering. Most importantly, queries
are completely unrelated with the database, as they have been
picked from the Internet. To our knowledge, such a database
has never been presented in a retrieval from video scenario,
so we will make it available soon.

Conversely, in [1] the query images are taken from the very
same movies used to build the video database. While our
preliminary experiments showed that this latter approach
enables better retrieval performance, we believe that our pro-
cedure is not only more challenging, but it also better reflects
a possible real case scenario.

The considered architecture setups are evaluated using
mean average precision (mAP) as retrieval performance met-
ric. In addition to this, also three cost metrics are adopted.
Learning time is the time required to track the features and to
represent the shots as compressed FVs. For the BoW model,
instead, it is represented by the time required to create the
vocabulary and to generate the histograms of visual words.
Query time is the time required to represent the query image
in the appropriate form (histograms of words or FVs) and to
return a ranked list of shots to the user. We do not account for
the time required to compute SIFT, as it is a constant bias.
In-memory set represents the memory required to answer to
a query. For FV-based setups, it accounts for the GMM sta-
tistical parameters vectors and the FV representation of the
video shots. For BoW, it amounts to the visual vocabulary
plus the histograms.

4.2. Experimental Results

Figure 3 compares the mAP achieved by a FV-based archi-
tecture against BoW as a function of the length of the rep-
resentation of a single shot. Such length corresponds to the
number of rows of matrix 7 described in the previous sec-
tions. For BoW, this value is equal to the number of visual
words K, while for the proposed architecture it corresponds
to K¢ d’, as no PCA-reduction of the FV dimensionality is
considered in this preliminary experiment. The figure clearly

Query image

| FAGRELE R

Fig. 2. An example of the first 5 shots retrieved for one of the
query images. True positive matches are found in positions 1,
2 and 5. Notice how the false positive matches present very
similar visual patterns to the query image.

shows that the FV-based architecture achieves the same mAP
for a tenth of the database representation size required by the
reference.
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Fig. 3. Retrieval performance as a function of the length of
each shot representation.

Then, in Figure 4 we compare different setups of a FV-
based architecture. We report the mAP as a function of the
number K¢ of Gaussians for different degrees of FV com-
pression. Clearly, the performance increases with the num-
ber of Gaussians. Less intuitively, the figure shows that PCA
compression even increases the mAP at same values of K.
E.g., for Kg > 512, PCA-512 compression boosts the mAP
by about 3%. This finding is coherent with the results of [6],
and our understanding is that FVs bear a lot of internal corre-
lation that is detrimental and that PCA removes.

Table 1 compares the computational requirements of the
architectures described so far to achieve a mAP of about 0.6.
BoW is affected by very large memory requirements and long
learning and query times, which grow with the number of vi-
sual words K. Moreover, since the Nearest Neighbour search
is responsible for most of the time spent during the retrieval
stage, K also drives the query time.

FV-based architectures exhibit much lower computational



[ [ Kor Kg [ Shot representation length [ mAP “ Learning Time [ Query Time [ In-memory set ]

BoW 131072 131072 0.582 1600 min 46 1.2 GB

FV NO-PCA 1024 65536 0.625 || 51 min 0.079 s 319 MB
FV NO-PCA 512 32768 0.616 || 23.5 min 0.034 s 159 MB
FV PCA-512 512 512 0.634 || 24 min 0.029 s 2.8 MB
FV E.Tracking PCA-512 | 512 512 0.635 12 min 0.029 s 2.8 MB

Table 1. Computational and memory requirements of the evaluated architectures for comparable values of mAP. Our proposed
architecture (last row) boasts lowest memory requirements thanks to FV compression and lowest learning time thanks to feature
tracking. Tests were performed on 16-cores Intel Xeon @2.90GHz.
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Fig. 4. Retrieval performance of different setups as a function
of the number of Gaussians K.

time and smaller memory footprint at similar retrieval perfor-
mance. For K;=1024 and without PCA compression (FV
NO-PCA), all the costs considered are significantly reduced.
Further reducing K from 1024 to 512 compacts the shot
representation length, which is equal to K¢d', thus obtain-
ing a GMM that is less complex to fit and a smaller matrix
T that is faster to query. The second to last row shows the
beneficial effects of PCA compression. When FV length is
reduced from D = Kgd' = 32768 to D’'=512, i.e. by a fac-
tor of 64, the in-memory set decreases by the same amount
and the learning time increases of just about 30 seconds due
to the PCA compression. Finally, the last row presents the
costs of our proposed architecture. Together with Figure 4, it
shows that feature tracking is beneficial for the learning time
and not detrimental for performance.

5. CONCLUSIONS

In this paper we proposed a novel architecture for object re-
trieval from video based on a compressed Fisher Vector rep-
resentation of video-shots. We analysed the problem as ini-
tially introduced by [1], introducing and adapting the state
of the art in image retrieval to a video scenario. On top of
that, we demonstrate that exploiting the natural correlation
between consecutive video-keyframes, it is possible to signif-
icantly reduce the computational time with no loss in terms

of performance.
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