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Abstract 

Early fault diagnosis of roller bearings is extremely important for rotating machines, especially 

for high speed, automatic and precise machines. Many research efforts have been focused on fault 

diagnosis and detection of roller bearings, since they constitute one the most important elements 

of rotating machinery. In this study a combination method is proposed for early damage detection 

of roller bearing.  Wavelet packet transform (WPT) is applied to the collected data for denoising 

and the resulting clean data are break-down into some elementary components called Intrinsic 

mode functions (IMFs) using Ensemble empirical mode decomposition (EEMD) method. The 

normalized energy of three first IMFs are used as input for Support vector machine (SVM) to 

recognize whether signals are sorting out from healthy or faulty bearings. Then, since there is no 

robust guide to determine amplitude of added noise in EEMD technique, a new Performance 

improved EEMD (PIEEMD) is proposed to determine the appropriate value of added noise. A 

novel feature extraction method is also proposed for detecting small size defect using Teager-

Kaiser energy operator (TKEO). TKEO is applied to IMFs obtained to create new feature vectors 

as input data for one-class SVM. The results of applying the method to acceleration signals 

collected from an experimental bearing test rig demonstrated that the method can be successfully 

used for early damage detection of roller bearings. 

Most of the diagnostic methods that have been developed up to now can be applied for the case 

stationary working conditions only (constant speed and load). However, bearings often work at 

time-varying conditions such as wind turbine supporting bearings, mining excavator bearings, 

vehicles, robots and all processes with run-up and run-down transients. Damage identification for 

bearings working under non-stationary operating conditions, especially for early/small defects, 

requires the use of appropriate techniques, which are generally different from those used for the 

case of stationary conditions, in order to extract fault-sensitive features which are at the same time 

insensitive to operational condition variations. Some methods have been proposed for damage 

detection of bearings working under time-varying speed conditions. However, their application 

might increase the instrumentation cost because of providing a phase reference signal. 

Furthermore, some methods such as order tracking methods still can be applied when the speed 

variation is limited. In this study, a novel combined method based on cointegration is proposed for 

the development of fault features which are sensitive to the presence of defects while in the same 

time they are insensitive to changes in the operational conditions. It does not require any additional 

measurements and can identify defects even for considerable speed variations. The signals 

acquired during run-up condition are decomposed into IMFs using the performance improved 

EEMD method. Then, the cointegration method is applied to the intrinsic mode functions to extract 

stationary residuals. The feature vectors are created by applying the Teager-Kaiser energy operator 

to the obtained stationary residuals. Finally, the feature vectors of the healthy bearing signals are 

utilized to construct a separating hyperplane using one-class support vector machine. Eventually 

the proposed method was applied to vibration signals measured on an experimental bearing test 

rig. The results verified that the method can successfully distinguish between healthy and faulty 

bearings even if the shaft speed changes dramatically.  
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1.1 Rotating machines 

Rotating machineries are the most common mechanical equipment in industrial application; 

their main components are gearboxes, roller bearings and rotary shafts. Since high-quality, low-

cost products and safe production are highly requested in modern rotating machines, high precision 

and high automation levels are simultaneously demanded for their characteristic. However, they 

generally works under severe operating conditions, which may cause machinery to break down 

and decrease their performance which in turns means lower products quality, less operation safety 

and so on. Therefore, in addition to their reliability, the capability of detecting possible faults at a 

very early stage represents a fundamental task. 

Roller bearings, illustrated in Fig. 1.1, are widely used in rotating machinery and one of the 

major reasons for machine breakdown is their failure. They are often working under harsh 

industrial conditions and where basic dynamic loads of machines are applied. As a finite number 

of rolling elements have to carry the load, rolling element bearings generate vibrations even if they 

are geometrically perfect. Vibration based condition monitoring is the most common method for 

extracting some important information to identify the state of machines and probable defects. The 

concept behind vibration analysis is that the vibration signature of the component examined 

changes in the case of damage occurrence. When machines are in healthy conditions, the vibrations 

generated are linked to their shaft rotation, the gear meshing of the gear stages of their gearbox, 

and other periodic or non-periodic events occurring while in operation. 

In this chapter the typical damages of bearings are introduced. Then, in Section 1.3 and 1.4 two 

different approaches to diagnostics of machines, model based or data based, are described, 

respectively. Section 1.3 focuses on the main steps of the data based methods, which include data 

acquisition, pre-processing, feature extraction, post-processing and pattern recognition. 

1.2 Localized and distributed damage 

Damage is interpreted as changes introduced into a system that affect the current performance 

of the system [1]. The most common types of faults happening in rotating machinery are shaft 

faults, gear faults and bearing. Shaft faults include unbalance, misalignment, shaft bending, whirl 

and cracking. Some typical gear faults are broken tooth, cracks, spalls, wearing and pitting. 

Bearing defects that some of them are shown in Fig. 1.2 can be considered as belonging to two 

different classes; distributed and local damages. The distributed damages are characterised by 

regularly spaced indentations on the entire raceway circumference and can be noted as surface 

roughness, waviness, abrasive wear and brinelling. They are usually due to manufacturing error, 

overloading, misalignment, foreign particle contamination, etc. Brinelling shown in Fig. 1.2b is 

depression created on the contact surface. It is also small depression on the rolling surface caused 

by solid foreign matters. The localised defects include cracks, corrosion, identation, flaking, pitting 

and spalling. Indentation shown in Fig. 1.2d is a defect caused by foreign particles. In flaking (Fig. 

1.2e), the bearing surface turns scaly and peels off due to contact load repeatedly applied to the 

raceway and rolling surface. Pittings are small holes (0.1 mm in depth) generated on the raceway 

surface by rolling fatigue. However, electric pittings seen in Fig. 1.2f are created by sparks 

generated when electric current passes through a thin oil film at the rolling contact point. Spalling 

seen in Fig. 1.2g appears when a fatigue crack begins towards the surface and a piece of metal 

breaks away and creates a small pit or spall. 
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Figure 1.1- Rolling element bearings and description of each part (from [2]). 

 

An exhaustive description of all possible bearing failures, with respective causes and 

countermeasures, is presented in [5]. 

The vibration signals generated by faults are often used for damage detection, since they often 

carry some significant dynamic information. In order to implement the vibration based analysis, 

two methods have been adopted for creating the localized defects on bearings. Running the bearing 

until failure [6-11] or creating defects in the bearings by techniques such as acid etching, spark 

erosion, scratching or mechanical indentation [12-20]. In the first approach, harsh conditions are 

applied to bearings like overloading, over speeding or lack of enough lubricants. 

1.3 Data based diagnostic 

There exist two approaches for diagnostic: Data based diagnostic and Model based. In the data 

based approach, informative data is collected from the system to implement appropriate analysis, 

whereas the model based builds a explicit mathematical model based on the dynamics of the of the  
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(a) (from [3]) 

 
(b) (from [4]) 

 

 
(c) (from [4]) 

 

 
(e) (from [2]) 

 

  
(d) (from [4]) 

 

 
(f) [from  [2]) 

 

 
(g) (from [4]) 

 

Figure 1.2- Some of bearing damages: (a) wear (b) brinelling (c) corrosion (d) identation (e) 

flaking (f) electric pitting (g) spalling 
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Figure 1.3- The procedure of the data based diagnostic method. 

 

monitored machine. The procedure of the data based method is shown in Fig. 1.3, which consists 

of data acquisition, pre-processing, feature extraction, post-processing and pattern recognition. 

1.3.1 Data acquisition  

The first demand of an intelligent fault detection system is that it should measure the appropriate 

data. It deals with the type of data, the sensor type, number and location and the data acquisition 

system, as well as all the acquisition parameter, such as sampling frequency, filtering, etc. The 

measured data used for identifying the condition of the system can be vibration data, acoustic data, 

oil analysis data, temperature, pressure, humidity, weather or environment data, etc. Various 

sensors, such as accelerometers, velocity transducers, dual vibration probes, laser vibrometers, 

ultrasonic sensors, acoustic emission sensors, encoders, tachometers, etc., have been provided to 

measure different types of signals [21]. Different techniques for multiple sensor data fusion are 

also discussed in [22]. 

Data acquisition transducers and recording equipment used to monitor are discussed in detail 

in [23-28]. The appropriate type and location of transducers depends upon the type of machinery 

and its construction. The suitable placement of transducers is discussed in [26]. 

1.3.2 Pre-processing 

As the measurement instruments are not perfect, the collected physical information will be 

polluted by different type of noise (e.g. the quantisation noise unavoidable in adopting a digital 

representation, the sensor response, the measurement noise, the unrelated noise from other 

sources). In order to prepare the data for feature extraction, cleansing the data is definitely required 

such as in [1]: filtering to remove noise, spike removal by median filtering, removal of outliers, 

and treatment of missing data values. To avoid the risk of removing some information, cleansing 

must be carefully performed. The dimension reduction of the data might be another purpose of the 

pre-processing as well as its transformation. An example could be to transfer the data from time 

domain to a spectrum, for a gearbox. The windowing and averaging process for this step would 

result in far fewer spectral lines than the original time-series points. However, this is not an 

automatic step and often is carried out based on experience and engineering judgment. 

There exist some different approaches for noise cancelling such as classical approach (e.g. 

Kalman filtering), adaptive filtering and Wavelet transform (WT) approaches. The Kalman filter 

is an optimal estimator used for linear systems. Adaptive filtering try to separate two uncorrelated 

components (e.g. deterministic and random components) using a reference signal. The WT 

approach decomposes the signal through highpass and lowpass filters. Then, the predetrmined 

threshold is applied so that the impulses can be effectively retained. 

Filters utilized to remove noise can be linear or non-linear. The linear filters can be classified 

into a number of different band-forms describing which frequency bands the filter passes (the pass-

band) and which it rejects (the stop-band): 

Data 

acquisition 

 

Pre-

processing 

 

Feature 

extraction 

 

Post-

processing 

 

Pattern 

recognition 

http://en.wikipedia.org/wiki/Linear_filter
http://en.wikipedia.org/wiki/Non-linear_filter
http://en.wikipedia.org/wiki/Band_(radio)
http://en.wikipedia.org/wiki/Passband
http://en.wikipedia.org/wiki/Passband
http://en.wikipedia.org/wiki/Stopband
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 Low-pass filter: low frequencies are passed, high frequencies are rejected. 

 High-pass filter: high frequencies are passed, low frequencies are rejected. 

 Band-pass filter : only frequencies in a frequency band are passed. 

 Band-reject (Notch) filter: often used to remove harmonics given by gearmesh. 

A non-linear filter is a filter whose output is not a linear function of its input. The linear filters 

are often used to remove noise and distortion that was created by nonlinear processes, simply 

because the proper non-linear filter would be too hard to design and construct. 

1.3.3 Feature extraction (signal processing) 

This section contains an overview of the most important signal processing methods for 

condition monitoring over the years, summarised in Fig. 1.4 [29]. The main discrimination is 

whether the methods are appropriate for stationary or non-stationary signals. Non-stationarity can 

be the consequence of time-varying operation or environment of the structure or time-varying 

dynamics (due to the evolution of damage or varying boundary conditions). 

A short history of bearing diagnostics was published in [30]. Balderston [31] proposed one of 

the earliest papers on bearing diagnostics in 1969. He found that the signals generated by bearing 

faults were located in the high frequency region of resonances excited by the internal impacts. In 

the following years, the synchronous averaging was used to expose local faults in both bearings 

and gears [32]. A fundamental analysis of synchronous averaging was presented by Braun [33] in 

1975. He applied the basic technique to bearing signals and notice that bearing signals are not 

completely periodic [34]. At around that time, in order to shift the frequency analysis from the 

very high range of resonant carrier frequencies to the much lower range of the fault frequencies, 

the High frequency resonance technique (HFRT) was developed, so that they could be analysed 

with good resolution [35]. The first studies on vibration monitoring techniques were proposed in 

the 1980s. Mathew and Alfredson presented a brief review of time and frequency domains methods 

[36]. McFadden and Smith investigated the monitoring by the high-frequency resonance technique 

[37]. A detailed review of the different vibration and acoustic methods, such as vibration 

measurements in time and frequency domains, sound measurements, the shock pulse method and 

the acoustic emission technique were proposed by Tandon and Nakra [38, 39]. 

Many reviews on bearing diagnostics techniques have been proposed, such as [22, 30, 40-42].  

1.3.3.1 Time domain 

Since the time domain techniques are directly based on the time waveform, they are considered 

among the first diagnostic. There exist some simple statistical measures to compare and identify 

the state of the machine such as the peak-to-peak, overall root mean square (RMS) level and the 

crest factor, which often are not so sensitive to small defects. They are expressed as following: 

 

 

𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 

            (1.1) 

http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/High-pass_filter
http://en.wikipedia.org/wiki/Band-pass_filter
http://en.wikipedia.org/wiki/Filter_(signal_processing)
http://en.wikipedia.org/wiki/Linear_function
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𝐶𝑟𝑒𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑚𝑎𝑥(𝑎𝑏𝑠(𝑥))

𝑅𝑀𝑆
 

(1.2) 

where x is the collected signal and N is the number of its elements. 
 

The centred moments of a signal is defined as: 

 

𝐶𝑛 =
1

𝑁
∑(𝑥𝑖 − 𝑥̅)

𝑛

𝑁

𝑖=1

 

            (1.3) 

 

 

 

 

 

 
 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4- Methods of feature extraction (signal processing). 
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The normalized third and fourth moments called skewness and kurtosis, respectively, are quite 

useful in defect detection and calculated as: 

 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑁
∑ (𝑥𝑖 − 𝑥̅)

3𝑁
𝑖=1

(
1
𝑁
∑ (𝑥𝑖 − 𝑥̅)2
𝑁
𝑖=1 )

3
2

 

            (1.4) 

 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑁
∑ (𝑥𝑖 − 𝑥̅)

4𝑁
𝑖=1

(
1
𝑁
∑ (𝑥𝑖 − 𝑥̅)2
𝑁
𝑖=1 )

2 

            (1.5) 

 

The kurtosis has been common for condition monitoring applications [43, 44]. The spectral 

kurtosis is a recent interesting development in condition monitoring [30]. 

Another approach related to the time domain analysis is the application of time series models 

to waveform data [22]. The main idea is to fit the waveform data to a parametric time series model 

and to extract features based on this parametric model. Two examples are the simplest so called 

autoregressive (AR) model and the autoregressive moving average with eXogenous inputs 

(ARMAX) model expressed as Eqs. 1.6 and 1.7, respectively: 

 

𝑦𝑖 =∑𝑎𝑗

𝑝

𝑗=1

𝑦𝑖−𝑗 + 𝜀𝑖 

            (1.6) 

where p denotes the model order and 𝜀𝑖 is unmeasured Gaussian white noise. 

 

𝑦𝑖 =∑𝑎𝑗

𝑝

𝑗=1

𝑦𝑖−𝑗 +∑𝑏𝑗

𝑞

𝑗=1

𝑥𝑖−𝑗 +∑𝑐𝑗

𝑟

𝑗=1

𝜀𝑖−𝑗  

            (1.7) 

 

The parameter estimation procedures for these models can be found, in details, in [45]. The 

residuals (prediction error) is another feature created by the time-series models. When a good time-

series model is created in healthy condition, it will make good predictions, i.e. the sequence of 

prediction errors (residuals) between model outputs and measured data have low variance. If the 

system changes to a damaged condition, the model will not make good predictions and the variance 

of the residual will be high; a good recent application is given in [46]. 

1.3.3.2 Frequency domain 

A common way of implementing the feature extraction is to make a linear or nonlinear 

transform. This is often carried out by using Fourier analysis. The idea is that the function of 

interest is represented as a sum over a set of fixed basis functions. The Fourier representation 
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provides the most popular means of visualisation of the signal characteristics, through the 

spectrum. This is usually defined via the Fourier transform for a continuous time signal. 

 

𝑋(𝜔) = ∫ 𝑥(𝑡) 𝑒−𝑖𝜔𝑡 𝑑𝑡
+∞

−∞

 

            (1.8) 

 

𝑋𝑖 =∑𝑥𝑖  𝑒
−𝑖𝑗𝜔∆𝑡  

𝑁

𝑗=1

 

            (1.9) 

 

The application of Fourier analysis has been widely used because of the efficiency of the Fast 

Fourier Transform algorithm (FFT) [47].  

The frequency-domain approaches rely on the detection of the characteristic rotational 

frequencies related to specific bearing element faults. These frequencies could be noticed by 

observing the envelope of the vibration signal acquired for a damaged bearing. They are as 

following: 

 

Ballpass frequency, outer race: 

 

𝐵𝑃𝐹𝑂 =
𝑛𝑓𝑟
2
{1 −

𝑑

𝐷
 cos 𝜙} 

            (1.10) 

 

Ballpass frequency, inner race: 

 

𝐵𝑃𝐹𝐼 =
𝑛𝑓𝑟
2
{1 +

𝑑

𝐷
 cos 𝜙} 

            (1.11) 

 

Fundamental train frequency (cage speed): 

 

𝐹𝑇𝐹 =
𝑓𝑟
2
{1 −

𝑑

𝐷
 cos𝜙} 

            (1.12) 

 

Ball (roller) spin frequency: 

 

 

𝐵𝑆𝐹(𝑅𝑆𝐹) =
𝐷

2𝑑
{1 − (

𝑑

𝐷
 cos𝜙)

2

} 

            (1.13) 

where n is the number of rolling elements, 𝑓𝑟 the shaft speed, d the diameter of the rolling element, 

D the pitch diameter and 𝜙 the contact angle (Fig. 1.5). 
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Figure 1.5- Rolling element bearing components and the load distribution 

(from [48]). 

 

 
Figure 1.6- Typical signal and envelope signals from local faults in rolling element bearing 

(from [30]) 
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An example is in Fig. 1.6, where typical acceleration signals produced by localised faults in the 

various components of a rolling element bearing, and the corresponding envelope signals produced 

by amplitude demodulation, are presented. It illustrates typical modulation patterns for 

unidirectional (vertical) load on the bearing, at shaft speed for inner race faults, and cage speed for 

rolling element faults. 

Another ancient technique, which is able to detect harmonics and sideband patterns in power 

spectrum is the cepstrum first presented in [49]. It was defined as the power spectrum of the 

logarithmic power spectrum. Later, it has been redefined as the inverse Fourier transform of the 

logarithmic spectrum: 

 

𝐶(𝜏) = 𝐹−1[𝑙𝑜𝑔(𝑋(𝑓))] 
            (1.14) 

where 𝜏 has the dimensions of time but is named quefrency and: 

 

𝑋(𝑓) = 𝐹[𝑥(𝑡)] = 𝐴(𝑓) 𝑒𝑗𝜙(𝑓) 
            (1.15) 

 

𝑙𝑜𝑔(𝑋(𝑓)) = 𝑙𝑛(𝐴(𝑓)) + 𝑗𝜙(𝑓) 
            (1.16) 

 
The power cepstrum of a signal, which is the most common among several version of cepstrum 

is defined as the squared magnitude of the inverse Fourier transform of the logarithm of the squared 

magnitude of the Fourier transform of a signal (Eq. 1.17). 

 

𝑝𝑜𝑤𝑒𝑟 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 [𝑋(𝑓)] = |𝐹[𝑙𝑜𝑔(|𝐹[𝑥(𝑡)]|2)]|2 
            (1.17) 

 

Some applications of the vibration spectrum and cepstrum are given in references [50-52]. 

The frequency domain methods are certainly among the most common feature extraction 

techniques for bearing fault detection due to its ability in identifying and isolating certain 

frequency components of interest. However, the fundamental assumption is that the analysed data 

are stationary or can be reduced to stationarity by a simple transformation. If the frequency content 

of a signal does vary with time, Fourier analysis will provide a time-averaged summary. Thus, it 

is not an appropriate method for non-linear, non-stationary signals such as the case of 

nonstationary running conditions, rolling elements sliding, rotating fluctuations and so on.  

1.3.3.3 Time–Frequency/Scale/Order Domain 

Most of the traditional signal processing methods can only be applied to stationary signals and 

cannot reveal the local features in both time and frequency domains simultaneously. The time-

frequency techniques are powerful methods to identify the health information and extract the time 

variant features and the frequency components from acquired nonstationary signals. There exist 

various time-frequency/scale/order methods applied to identify faults of rotating machines such as 

Short time Fourier transform, wavelet transform (WT), Wigner-Ville distribution (WVD), Hilbert-

Huang transform (HHT) and Teager-Huang transform (THT). A comprehensive information can 

be found in the review presented by Feng et al. [53]. 
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Short time Fourier transform 

In order to reveal the time-varying nature of a signal, a short time window slides along time to 

break down the signal into a number of small segments, which can be considered stationary in a 

short duration. Then, the local Fourier spectrum of each segment around the time location of the 

short time window is obtained [54]. 

For the signal 𝑥(𝜏), the short time Fourier transform is defined as follows: 

 

𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓) = ∫ 𝑥(𝜏) 𝑤(𝜏 − 𝑡) 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝜏)𝑑𝜏
+∞

−∞

 

            (1.18) 

where 𝑤(𝜏 − 𝑡) is the window function centered at time t and the segmented signal (or observed 

segment through this window) is 𝑥(𝜏) 𝑤(𝜏 − 𝑡). 
The resolution trade-off between time and frequency (Due to the uncertainty principle), which 

is determined by the width of the window is the major disadvantage of the STFT. Although a large 

width of the window creates good resolution in the frequency domain, it provides poor resolution 

in the time one. Thus, it is can analyse the signals are stationary at the scale of the short time 

window. However, it is possible to choose the window in such a way as to minimise the negative 

consequences of the trade-off; the optimum performance is obtained for the Gaussian window and 

this leads to the Gabor transform [55]. 

The energy density spectrum (|𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑓)|
2) explains how the energy of a signal has been 

distributed with frequency. The ensemble of the spectra obtained for different time creates the 

time-frequency distribution called spectrogram. Since the spectrogram has resolution limitations 

as well, it can only be applied to quasi-stationary signals. 

Spectral kurtosis 

Based on the STFT, Spectral Kurtosis (SK) provides a means of determining which frequency 

bands contain a signal of maximum impulsivity and gives a measure of the impulsiveness of a 

signal as a function of frequency. The SK was first applied to bearing faults in [56,57]. This may 

be simply detected by computing the kurtosis of the complex envelope 𝑋(𝑡, 𝑓) as: 

 

𝐾(𝑓) =
〈|𝑋(𝑡, 𝑓)|4〉

〈|𝑋(𝑡, 𝑓)|2〉4
− 2 

            (1.19) 

 

with 〈∙〉 the time-averaging operator and where the subtraction of 2 is used to enforce 𝐾(𝑓) = 0 

in the case 𝑋(𝑡, 𝑓) is complex Gaussian (instead of 3 for real signals) [56]. 

 

The spectral kurtosis is illustrated in Fig. 1.7 for a rolling element bearing signal 𝑥(𝑡) modelled 

as a series of impulse responses. 
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Figure 1.7- Calculation of SK from STFT for a simulated bearing fault signal: (a) simulated 

time signal, (b) STFT and (c) SK as a function of frequency (from [30]). 

 

Wavelet transform (WT) 

The wavelet transform applies wavelets (as the basis functions), instead of sinusoidal functions, 

as the basis. It adds a scale variable in addition to the time variable in the inner product transform. 

The continuous wavelet transform (CWT) is usually defined as follows: 

 

𝑊𝜓(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡) 𝜓∗ (

𝑡 − 𝑏

𝑎
)

+∞

−∞

 𝑑𝑡 

             

(1.20) 

where 𝑏 is a translation parameter (is the time shift), 𝑎 is a dilation or scale parameter and 𝜓 is the 

wavelet basis (called mother wavelet) dilated and translated. 

The signal is decomposed into the base functions created by translation and dilation from the 

mother wavelets 𝜓(𝑡). There are a number of different functions utilized as mother wavelets given 

in [58-60]. For higher frequency components, wavelet transform has a better time localization but 

a lower frequency resolution. On the other hand, for lower frequency components, the frequency 

resolution is higher whereas the time localization is worse. The Wavelet transform has been widely 

used in machinery fault diagnosis and signal denoising, which can be found in the reviews [61,62]. 

However, the question of how to choose a suitable one among them to match the specific signal 

structure remains an open issue. 

Various types of the Wavelet transform such as Continuous wavelet, Discrete wavelet, Wavelet 

packet are comprehensively studied in chapter 2. 

Order tracking method 

In order to diagnose faults in non-stationary working conditions such as time-varying speed, 

the order tracking method is applied to transform a measured signal from time domain, which is 

http://en.wikipedia.org/wiki/Time_domain
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non-stationary) to angular (or order) domain, which will be stationary. Thus, the smearing problem 

of discrete frequency components due to speed fluctuations can be avoided. Three main families 

of order tracking techniques are the following: resampling methods (computed order tracking 

method), the Kalman filter based methods and the transformed based methods. The Vold-Kalman 

filter which could estimate amplitude of a series of harmonics of the shaft speed and instantaneous 

speed is a specific form of Kalman filter. The transform based method performs order tracking and 

the FT so that the amplitude and phase of each order of the spectrum are estimated. 

In the computed order tracking method (COT) technique both the vibration signal and the 

tachometer pulse are acquired at constant time intervals using conventional hardware. The signal 

sampled at constant time intervals (𝑥[𝑛∆𝑡]) is resampled to obtain new data that are sampled at 

constant angular increments of the shaft’s rotation (∆𝜃). These new data are then processed using 

traditional FFT analysis. In this way, the frequency domain is changed to the order domain [54]. 

The Fourier transform of the signal from the angular domain is obtained as follows: 

 

𝑋(Ω) = ∫ 𝑥(𝜃) 𝑒−𝑗Ω𝜃 𝑑𝜃
+∞

−∞

 

            (1.21) 

𝑋[𝑘] =
1

𝑁
∑ 𝑥[𝑛∆𝜃]𝑒−𝑗Ω[𝑘]𝑛∆𝜃
𝑁−1

𝑛=0

 

            (1.22) 

where ∆𝜃 angular domain resolution, N is the number of samples of the interpolated signal 𝑥(𝜃) 
and Ω[𝑘] indicates the vector of orders for the representation of the order spectrum. 

The order tracking method has been widely used for fault detection when there exist speed 

variations. However, there still exist two drawbacks: limitation of speed variation and 

measurement cost. Many studies have been carried out to improve it [64-69]. 

Wigner-Ville distribution (WVD) 

The approach of the Wigner distribution [70,71] is based on the use of the autocorrelation 

function for calculating the power spectrum and is defined as: 

 

𝑊𝑉𝐷𝑥(𝑡, 𝑓) = ∫ 𝑥 (𝑡 +
𝜏

2
) 𝑥∗ (𝑡 −

𝜏

2
)

+∞

−∞

 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝜏) 𝑑𝜏 

            (1.23) 

As the signal exists twice in Eq. 1.23, the distribution is called bilinear distribution.  Although 

the WVD has the highest time-frequency resolution, it is a non-linear distribution, which has 

undesirable impact on the frequency representation of real multi-component signals. Fault 

diagnosis applications of the Wigner–Ville distribution can be found in [72-75]. 

Hilbert-Huang transform (HHT) 

As the instantaneous frequency of nonstationary multi-components signals usually is a time-

variant feature, the accurate estimation of instantaneous frequency is extremely important. 

Whereas, for mono-tonic signals, the instantaneous frequency can be obtained utilizing the 

derivative of phase relative to time, the same does not hold for multi component. Therefore, first, 

the signal is decomposed into several intrinsic mode functions (IMFs) using empirical mode 

http://en.wikipedia.org/wiki/Kalman_filter
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decomposition (EMD) [76]. Then, by applying the Hilbert transform, the instantaneous frequency 

and amplitude of each IMFs are estimated.  

The decomposed multi component signal 𝑥(𝑡) can be represented as: 

 

𝑥(𝑡) =∑𝑐𝑖

𝑛

𝑖=1

+ 𝑟𝑛 

(1.24) 

where the residue 𝑟𝑛 represents the mean trend of the signal. In the whole IMFs (𝑐𝑗), which are 

zero-mean oscillatory function, the number of extrema and the number of zero crossings must 

either equal or differ at most by one. 

Having obtained the IMFs using EMD method, the Hilbert transform is applied to each IMFs: 

 

𝐻[𝑐𝑖(𝑡)] =
1

𝜋
∫

𝑐𝑖(𝑡)

𝑡 − 𝜏

+∞

−∞

𝑑𝜏 

(1.25) 

 

Then, analytical signal is constructed as: 

 

𝑧𝑖(𝑡) = 𝑐𝑖(𝑡) + 𝑗𝐻[𝑐𝑖(𝑡)]   
(1.26) 

or 

 

𝑧𝑖(𝑡) = 𝑎𝑖(𝑡) 𝑒𝑥𝑝(−𝑗2𝜋𝑓𝑖(𝑡)) 
(1.27) 

 

Finally, the Hilbert-Huang transform and the Hilbert energy spectrum are represented, respectively 

as follows: 

 

𝑇𝐹𝑅𝑥(𝑡, 𝑓) = 𝑅𝑒 {∑𝑎𝑖(𝑡) 𝑒𝑥𝑝 (𝑗 ∫2𝜋𝑓𝑖(𝑡)𝑑𝑡)

𝑛

𝑖=1

} 

(1.28) 

𝑇𝐹𝑅𝑥(𝑡, 𝑓) =∑𝑎𝑖
2(𝑡)𝛿[𝑓 − 𝑓𝑖(𝑡)]

𝑛

𝑖=1

 

(1.29) 

where 𝛿(∙) is the Dirac delta function. 
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Figure 1.8- Hilbert energy spectrum (from [53]) 

 

The HHT of the draft tube hydraulic fluctuation signal of a hydro-turbine during a start-up process 

is illustrated in Fig. 1.8. 

Although the HHT has some advantages, a higher sampling frequency is required (because of 

using interpolation in the EMD). Furthermore, as the mode mixing problem is a deficiency of the 

EMD, the ensemble empirical mode decomposition (EEMD), which will be discussed in chapter 

2, needs to apply to resolve the problem. 

The Huang transform has been widely applied to fault diagnosis of machinery [77-93]. 

Teager-Huang transform (THT) 

The Teager-Kaiser energy operator (TKEO), which is a nonlinear differential operator can 

estimate the energy required to generate a signal [94-97].   

The TKEO is defined for a continuous time signal 𝑥(𝑡) as: 

 

Ψ[𝑥(𝑡)] = [𝑥̇(𝑡)]2 − 𝑥(𝑡) 𝑥̈(𝑡)         
            (1.30) 

where 𝑥̇(𝑡) and 𝑥̈(𝑡) are the first and the second time derivatives of 𝑥(𝑡), respectively. 

For a discrete time signal 𝑥(𝑛) (where n is the discrete time index), using difference to approximate 

differential, the TKEO can be proposed as: 

   

Ψ[𝑥(𝑛)] = 𝑥2(𝑛) − 𝑥(𝑛 + 1) 𝑥(𝑛 − 1)        
(1.31) 
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As at any instant, only three consecutive samples are needed to estimate the instantaneous 

TKEO, it is adaptive to the instantaneous changes in signals and is quite adapt to resolve transient 

events. It is an adaptive method and effective in estimating the instantaneous frequency and 

envelope amplitude of non-stationary signals. It has some merits such as low computational cost, 

high resolution of time and frequency and adaptability to instantaneous feature [53]. 

The instantaneous frequency and instantaneous amplitude at any time instant of the signal 𝑥(𝑛) 
can be given as: 

 

𝑓(𝑛) =
1

2
 𝑎𝑟𝑐𝑐𝑜𝑠 (1 −

Ψ[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]

2Ψ[𝑥(𝑛)]
) 

            (1.32) 

         

|𝑎(𝑛)| =
2Ψ[𝑥(𝑛)]

√Ψ[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]
 

(1.33) 

In this method, the signal is decomposed into some IMFs by the EMD algorithm. Then, the 

envelope amplitude and instantaneous frequency of the IMFs are obtained utilizing the TKEO 

method. The time-frequency distribution of the rotor vibration signal of a real industrial hydro-

turbine during a shut-down transient process is shown in Fig. 1.9. 

 

Figure 1.9- Time-frequency Teager energy distribution (from [53]). 

 

The Teager-Kaiser energy operator have been applied in various machinery fault diagnosis 

[98-106]. 
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Feature selection procedures 

The resulting low-dimensional data set from feature extraction is the feature vector or pattern 

vector used by  the pattern recognition algorithm to assign a class. Feature vectors should also be 

of the lowest dimension possible, as the learning problem becomes much more difficult for high-

dimensional input spaces; in particular, much more training data is needed. The feature extraction 

does not necessarily lead to reduced dimensionality. There exist many feature selection procedures 

either employ feature reduction techniques and combining existing features into new features or 

select subset of features [29]. This is the process of selecting those components of a feature vector 

which carry all (or most of) the discriminatory power of the feature. The remainder are discarded 

and the dimension of the vector is thereby sometimes reduced- considerably. 

Then, data compression methods can be applied to selected features in order to reduce the 

dimension of data. It can be implemented through transformation such as the Fourier transform or 

the wavelets or methods like principal component analysis (PCA) [29]. Furthermore, the principal 

component analysis (PCA) can be used as a decomposition method that decomposes a signal from 

low frequency bands to high frequency bands. It transforms the data to a new coordinate 

system such that the greatest variance by some projection of the data comes to lie on the first 

coordinate (called the first principal component), the second greatest variance on the second 

coordinate, and so on. It provides a linear transform (Eq. 1.34) of a certain number n of m-

dimensional input vectors 𝒙𝑖 into new vectors 𝒔𝑖. 
 

𝒔𝑖 = 𝐕𝑇𝒙𝑖 𝑖 = 1, … , 𝑛       𝑚 < 𝑛 
(1.34) 

where 𝐕 is a m × m orthogonal matrix where on each column 𝐯j is present the eigenvector of the 

sample covariance matrix. 

 

C =
1

𝑛
∑𝒙𝑖

𝑛

𝑖=1

𝒙𝑖
𝑇 

(1.35) 

 

Thus the PCA solves the eigenvalue problem: 

 

𝜆𝑗𝐯𝑗 = C 𝐯j 𝑗 = 1,… ,𝑚 

(1.36) 

where 𝜆𝑗 denoting the eigenvalues of C and 𝐯j the corresponding eigenvector (the eigenvector of 

the sample covariance matrix. 

 

When the orthogonal transformation of the input vector 𝒙𝑖 is computed, the various components 

of 𝒔𝑖 (principal components) are obtained: 

 

𝒔𝑖(𝑗) = 𝐯𝑗
𝑇𝒙𝒊 𝑗 = 1,… ,𝑚 

(1.37) 

 

If the eigenvalues are sorted in descending order, it is possible to select only the first among them 

in order to reduce the number of principal components in 𝒔𝑖. 

http://en.wikipedia.org/wiki/Coordinate_system
http://en.wikipedia.org/wiki/Coordinate_system
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1.3.4 Post-processing 

 In this step the feature vectors are prepared for the pattern recognition stage. It may be only 

selection of a normalisation for the features or implementing more advanced processing; for 

example the feature data may be nonlinearly transformed in order to produce data with a Gaussian 

probability density function [29]. 

1.3.5 Pattern recognition 

The next stage is pattern recognition which is the stage that a method is applied to decide the 

damage state based on the feature vectors extracted by signal processing techniques. If reliable 

intelligent monitoring systems could be constructed, then the system monitored can operate at the 

margin of safety without extended periods of inspection. 

The intelligent damage identification system consists of four hierarchical levels [1]: 

1. Detection: the method gives a qualitative indication that damage might be present in the 

structure. 

2. Localisation: the method gives information about the probable position of the damage. 

3. Classification: the method gives information about the type of damage. 

4. Assessment: the method gives an estimate of the extent of the damage. 

5. Prediction: the method offers information about the safety of the structure for example, 

estimates a residual life. 

The level 5 (Prediction) requires a priori knowledge of the physics of the damage, i.e. 

characterisation. The detection level (Level 1) can be carried out with no prior knowledge of the 

behaviour of the system when it is damaged.  

Many modern approaches to damage identification are based on the idea of pattern recognition. 

There exist two types of learning algorithm, supervised learning, in which the model is trained by 

introducing the desired label for each data set. In some cases, due to lack of data corresponding to 

damage condition, it is not easy to apply supervised learning techniques. Thus, unsupervised 

algorithm that training data only from the healthy condition of the system is used. 

Depending on the desired diagnosis, there exists two types of algorithms: 

 

1. Novelty detection. In this case, the algorithm recognizes whether the data comes from 

normal operating condition or not. The advantage is that unsupervised learning can be used. It 

refers to lots of practical situation in which class labels are not available. Methods for novelty 

detection include: outlier analysis [107], kernel density methods [108], autoassociative neural 

networks [109], Kohonen networks [110], growing radial basis function networks [111], methods 

based on SPC control charts [112] and one-class support vector machine [113]. 

2. Classification. In this case, the classifier is trained using a supervised learning method to 

construct a predictive model for normal and faulty classes. There exist some classification methods 

such as Bayesian classification methods, nearest-neighbour search, artificial neural network 

classifiers [114, 115] and recently support vector machines [116]. 

There is a trade-off between the resolution of the diagnosis and the noise rejection capabilities 

of the algorithm. As the clean data has little fluctuation in the measurement from normal operating 

condition, small damages will cause detectable deviations. Eliminating fluctuations on the healthy 

condition data, as far as possible, is necessary for intelligent fault detection. 
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1.4 Model-based approaches  

Another damage identification approach is the model-based approaches [117-119]. These 

approaches create explicit mathematical model of the system, which can be effective if a correct 

and accurate model is built. However, it would be very difficult or even impossible to build 

mathematical models for complex systems.  

The two most common model based approaches are the residual view and the parameter 

estimation. 

 

 
 

 

Figure 1.10- A diagnosis system based on the residual view (from [119]). 

 

The Residual view 

In this approach illustrated in Fig. 1.10, 𝑓(𝑡) is the model of the faults and the residual 𝑟(𝑡), 
which is a scalar or vector is zero or small value in the healthy condition(𝑓(𝑡) = 0), and is not 

zero when a fault occurs 𝑓(𝑡) ≠ 0. The diagnosis system is then separated into two parts: residual 

generation and residual evaluation. 

Parameter estimation 

In the Parameter estimation approach faults are modelled as deviations in constant parameters. 

In this approach, an estimated parameter, obtained using parameter estimation techniques, is 

compared with the nominal value.  If the estimated parameter deviates too much from the nominal 

value, then the conclusion is that a fault has occurred.  

The disadvantage of model based diagnosis is quite naturally the need for a reliable model and 

possibly a more complex design procedure. Various model-based diagnostic approaches have been 
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applied to fault diagnosis of mechanical systems such as gearboxes [120-122], bearings [123–126], 

rotors [127,128]. 
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In this chapter pre-processing and processing techniques applied to the signals for damage 

detection are presented. As mentioned in section 1.3.2, the collected data would be polluted by 

different sources of noise. In order to prepare the data for feature extraction, denoising  can be 

applied to remove noise. There exist different approaches for denoising, which are discussed in 

section 2.1. After cleaning the data, features are extracted using different processing methods. 

Decomposition a complicated signal into some elementary components is a common method to 

extract  features. Empirical mode decomposition (EMD), Ensemble empirical decomposition 

(EEMD), Teager-Kaiser energy operator (TKEO) and cointegration are the methods introduced in 

section 2.2.  

2.1 Denoising 

The collected data could be polluted by the sources such as the measurement system and other 

sources unrelated to the investigated system. Data cleansing is required to treat the data for feature 

extraction. There exist some approaches for noise cancelling such as classical approach (e.g. 

Kalman filtering), adaptive filtering and Wavelet transform approaches. The Kalman filter is an 

optimal estimator used for linear systems. Adaptive filtering try to separate two uncorrelated 

components (e.g. deterministic and random components) using a reference signal. In the wavelet 

transform approach, the signal is decomposed through highpass and lowpass filters (in the case of 

wavelet packet decomposition). Then, the predetermined threshold is applied so that the impulses 

can be retained effectively. 

2.1.1 Kalman filter 

This filter is named from Kalman, one of the primary developers of this theory [129]. The 

Kalman filter performs a predict-correct estimator so that minimizes the estimated error 

covariance. In the predict step, the state estimate from the previous time step (at time 𝑘 − 1) is 

used to the estimate the state at the current time step (at time 𝑘). 

The discrete state equation of a time-variant system, which allows to predict the future, is 

formulated as: 

 

𝑥𝑘 = 𝐴𝑘−1 𝑥𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 + 𝑣𝑘−1          𝑘 = 0,1, … 
(2.1) 

 

With the output measurement 𝑧𝑘 as follows: 

 

𝑧𝑘 = 𝐶𝑘−1𝑥𝑘−1 + 𝑤𝑘−1 
(2.2) 

 

where 𝑥𝜖R𝑛 is the state vector, 𝑢𝜖R𝑚 is the known input vector, 𝐴 is the 𝑛 × 𝑛 state transition 

matrix, 𝑣𝜖R𝑛 is unknown process noise (𝑣 ∼ 𝑁(0, 𝑄)). 𝑧𝜖R𝑚 is the measurement, 𝐶 indicates the 

𝑚 × 𝑛 measurement matrix and 𝑤𝜖R𝑚 is the measurement noise (𝑣 ∼ 𝑁(0, 𝑅)). 
 

The filtering equations can be represented in two categories: time update equations and 

measurement update equations, which can be remarked as predict and correct equations as well. 

In the time update equations, the current state and error covariance estimates (at time k-1) are 

utilized to obtain the a priori estimates (at time k).  

http://en.wikipedia.org/wiki/Rudolf_E._K%C3%A1lm%C3%A1n
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The time update equations are as follows [130]: 

 

𝑥̂𝑘|𝑘−1 = 𝐴𝑘  𝑥̂𝑘−1|𝑘−1 + 𝐵𝑘 𝑢𝑘 

(2.3) 

 

𝑃𝑘|𝑘−1 = 𝐴𝑘  𝑃𝑘−1|𝑘−1 𝐴𝑘
𝑇 + 𝐷𝑘  

(2.4) 

 

where  𝑥̂𝑘|𝑘−1 represents the state estimate at time 𝑘 based on the measurements up to and including 

at time 𝑘, 𝑃𝑘|𝑘−1 is the  error covariance matrix (a measure of the estimated accuracy of the state 

estimate) and  𝐷 indicates the covariance of the process noise. 

 

In the measurement update the a priori state estimate and the new measurement (at time k) is 

combined to obtain an improved a posteriori estimate. The equations are as follows: 

 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘  ( 𝑧𝑘 − 𝐶𝑘 𝑥̂𝑘|𝑘−1) 
(2.5) 

 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘 𝐶𝑘) 𝑃𝑘|𝑘−1 

(2.6) 

 

where  𝑥̂𝑘|𝑘 indicates the state estimate at time 𝑘 based on the measurements up to and including 

at time 𝑘, 𝑃𝑘|𝑘 denoting the  error covariance matrix (a measure of the estimated accuracy of the 

state estimate) and  𝐾 is the optimal gain of the standard Kalman filter defined as follows: 

 

𝐾𝑘 = 𝑃𝑘|𝑘−1 𝐶𝑘
𝑇 (𝐶𝑘 𝑃𝑘|𝑘−1 𝐶𝑘

𝑇 + 𝑅𝑘)
−1 

(2.7) 

 

where 𝑅 is the covariance of the observation noise. 

 

In the measurement update, first the Kalman gain is calculated (Eq. 2.7), then an a posteriori 

state estimate and an a posteriori error covariance estimate are computed. After each time and 

measurement update pair, the recursive procedure is repeated with the previous a posteriori 

estimates used to predict the new a priori estimates. 

Wu et al. [131] applied the order tracking fault diagnosis technique based on the Kalman 

filtering algorithm to gear-set defect diagnosis. Li et al. [132] performed the Kalman filter for 

denoising the vibration signals of rolling bearings. Khanam et al. [133] mixed some simulated 

noise and external vibrations with a clean experimental signal to investigate efficiency of the 

Kalman filter under various noisy environments. 

2.1.2 Adaptive noise cancellation 

In rotating machines, especially in gearbox (even in healthy gears), there exist strong discrete 

frequency noise to contaminate frequency bands where the bearing signal could dominant [30]. In 

order to remove such discrete frequency noise, some methods such as adaptive noise cancellation 

http://en.wikipedia.org/wiki/Accuracy_and_precision
http://en.wikipedia.org/wiki/Accuracy_and_precision
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(ANC) and self- adaptive noise cancellation (SANC) can be utilized. An adaptive filter is a time-

variant filter, which modifies the transfer function (filter coefficients) to optimize a predefined 

criterion (cost function) [134]. Two uncorrelated components can be separated using a reference 

signal as shown in Fig. 2.1. The modified reference signal is subtracted from the original signal to 

remove the uncorrelated component [30]. 

The cost function may defined as the mean squared estimation error: 

 

𝐶𝐹𝑘 = 𝐸 [|𝑑𝑘 − 𝑑̂𝑘|
2
] = 𝐸[|𝜀𝑘|

2] 

(2.8) 

where 𝐸[∙] is the expectation, 𝑑𝑘 denotes the signal includes the desired component and the 

uncorrelated component, 𝑑̂𝑘 is the estimated or output signal and 𝜀𝑘 is the estimation error. 

 

The coefficients are updated at every time instant k: 

 

𝑊𝑘+1 = 𝑊𝑘 + ∆𝑊𝑘 
(2.9) 

where 𝑊𝑘 is the coefficient of the filter and is represented as 𝑊𝑘 = [𝑤0𝑘, 𝑤1𝑘, … , 𝑤𝐿𝑘]
𝑇, where 𝐿 

is the order of the filter.  

 

It can be represented as follows:  

 

𝑊𝑘+1 = 𝑊𝑘 + 2𝜇𝜀𝑘𝑊𝑘 
(2.10) 

where 𝜇 is the convergence factor. 

 

The output of the filter, the estimated signal, is expressed as: 

 

𝑑̂𝑘 =∑𝑊𝑙𝑘 𝑥𝑘

𝐿

𝑙=0

 

(2.11) 

where 𝑥𝑘 is the reference signal correlated with the desired signal. 

       
Figure 2.1- Adaptive noise cancellation used for removing the deterministic uncorrelated 

component (from gear) from desired signal (from bearing) 
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The ANC was applied to extract a faulty bearing signal measured on a gearbox [135,136]. The 

reference signal was measured over another remote bearing to be uncontaminated. However, in 

some cases there is no possibility to acquire an uncontaminated reference signal such as on a 

planetary gearbox, in which all signals are transmitted through the ring gear [30]. 

Self-adaptive noise cancellation 

When the signal contains a deterministic (discrete frequency) and a random components, self-

adaptive noise cancelation (SANC) method can be applied [136]. As illustrated in Fig. 2.2, the 

separation can be performed using only one signal. The reference signal is built by making a delay 

on the original signal, longer than the correlation length of the random signal. The relationship 

between the original signal and the delay is not identified by the filter and a transfer function is 

found between the delay and the deterministic component of the signal (gear signal).   

The least mean squares (LMS) algorithm is expressed as follows [136]: 

 

𝑊𝑘+1 = 𝑊𝑘 − 𝜇 ∇𝑘 
(2.12) 

where 𝜇 is a convergence factor, which is trade-off between  avoiding divergence and  adaptation 

time and gradient vector can be formulated as:  

 

∇𝑘=
𝜕𝐸[𝜀𝑘

2]

𝜕𝑊𝑘
 

(2.13) 

A conservative approximation for Eq. 2.12 is [137]: 

 

 

𝑊𝑘+1 = 𝑊𝑘 +
2𝜇𝑛𝜀𝑘𝑥𝑘

(𝐿 + 1)𝜎̂𝑘
2 

(2.14) 

where 𝜇𝑛 is the normalized convergence factor: 0 < 𝜇𝑛 < 1 , 𝜇 is the convergence factor: 𝜇 =
(𝜇𝑛 ((𝐿 + 1)𝜎̂𝑘

2))⁄  and 𝜎̂𝑘
2  denotes the exponential-averaged estimate of the input signal power at 

the 𝑘-th iteration. 

 

 

 

Figure 2.2- Self-adaptive noise cancellation used for removing the deterministic uncorrelated 

component (from gear) from the desired signal (from bearing) (from [30]) 
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The estimated signal is a linear combination of present and past input samples, which is given 

by the convolution sum as follows: 

 

𝑑̂𝑘 =∑𝑊𝑙𝑘 𝑥𝑘−𝑙

𝐿

𝑙=0

 

(2.15) 

 

There exist a few important parameters required to be set up such as filter length L, delay , 

and convergence factor discussed comprehensively in Ref. [30,138,139]. The most important may 

be  𝐿 (the order of the adaptive filter) which, in the case of gear and bearing signals separation, is 

quite large, typically of a few hundreds and even thousands [30]. The delay should be determined 

longer than the correlation length of the random component and, on the other hand, should be 

shorter than that of the deterministic part [30]. 

Randall and Li applied SANC to extract faulty bearing signal collected on a planetary gearbox 

[140]. Lee and White [141] utilized the technique to diagnose the faults within an internal 

combustion engine and also for an industrial gearbox. Barszcz applied it to a real vibration signal 

from a wind turbine with an outer race fault [142]. Antoni and Randall proposed and optimization 

of SNAC for separating bearing and gear signals [143]. 

2.1.3 Wavelet transform (WT) 

In this approach the signal is considered as a superposition of components with respect to a set 

of base functions. These basis functions can then be used to represent different frequency content 

simply by scaling them with respect to time. Signal decomposition using such scaled functions 

results in the so called time-scale. In general, this analysis results in a series of wavelet coefficients 

indicating how close the signal is to the particular wavelet itself.  

The WT could be categorized as: the Continuous wavelet transform (CWT), the Discrete 

wavelet transform (DWT) and the Wavelet packet transform (WPT).  

Continuous wavelet transform (CWT) 

The continuous wavelet transform (CWT), mentioned in chapter 1, is usually defined as: 

 

𝑊𝜓(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡) 𝜓∗ (

𝑡 − 𝑏

𝑎
)

+∞

−∞

 𝑑𝑡 

            (2.16) 

where 𝑏 is a translation parameter (is the time shift), 𝑎 is a dilation or scale parameter and 𝜓 is the 

wavelet basis (called mother wavelet) dilated and translated. 

 

The signal is decomposed into the base functions created by translation and dilation from the 

mother wavelets 𝜓(𝑡). There exist a number of different functions utilized as mother wavelets 

such as Haar, Daubechies (db), Symlets, Coiflets, Gaussian, Morlet, complex Morlet, Mexican hat, 

bi-orthogonal wavelets, reverse biorthogonal, Meyer, harmonic wavelets, discrete approximation 

of Meyer, complex Gaussian, Shannon, and frequency B-spline [58-60]; some of them are shown 

in Fig. 2.3. For higher frequency components, wavelet transform has a better time localization but 
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a lower frequency resolution. On the other hand, for lower frequency components, the frequency 

resolution is higher whereas the time localization is worse. The wavelet transform 𝑊𝜓(𝑎, 𝑏) is 

normalised by 1 √𝑎⁄  to ensure that the integrated energy is independent of the dilation. 

Discrete wavelet transform (DWT) 

Applying the CWT to a signal will generate redundant information since the scale and 

translation parameter are changed continuously. Supposing that the number of time points is 𝑁 =
2𝐽, it can be shown that the signal can be completely reconstructed from discrete samples on the 

dyadic time-scale given by the scale 𝑎 and the time 𝑏 are discretized as following [29]: 

 

𝑎 = 2−𝑗, 𝑏 = 𝑘 2−𝑗 
(2.17) 

where 𝑗 is integer from 1 to 𝐽 − 1 and 𝑘 is integer in the range1 to 2𝑗. The higher values of 𝑗 
correspond to shorter time scales and thus to higher frequencies. 

   

The discrete wavelet transform (DWT) can be defined as: 

 

𝑤𝑘
𝑗
= ∫ 𝑥(𝑡)𝜓𝑗,𝑘

∗ (𝑡) 𝑑𝑡
+∞

−∞

 

(2.18) 

 

 
(a) (b)

  
(c) (d)

Figure 2.3- Some mother wavelets: a) Mexican hat, b) Morlet, c) Meyer and d) Daubuchi 10 
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where 𝜓𝑗,𝑘(𝑡) are translated and dilated mother wavelet 𝜓 defined in terms of the dyadic grid as 

follows: 

 

𝜓𝑗,𝑘(𝑡) = 2𝑗 2⁄  𝜓(2𝑗𝑡 − 𝑘) 

(2.19) 

 

The original signal can be reconstructed as follows:  

 

𝑥(𝑡) =∑∑𝑤𝑘
𝑗
 𝜓𝑗,𝑘(𝑡)

2𝑗

𝑘=1

𝐽−1

𝑗=0

 

(2.20) 

 

The DWT process can be considered as applying a low-pass and high-pass filter (known as 

Quadrature mirror filters (QMF)), denoted as ℎ(𝑘) and 𝑔(𝑘) = (−1)𝑘ℎ(1 − 𝑘), respectively. The 

detail is considered as the result of the high-pass and the approximation as the result of the low-

pass filter. 

These filters are expressed as follows [144]: 

 

{
 
 

 
 𝜙(𝑡) = √2∑ℎ(𝑘)𝜙(2𝑡 − 𝑘)

𝑘

𝜓(𝑡) = √2∑𝑔(𝑘)𝜙(2𝑡 − 𝑘)

𝑘

 

(2.21) 

with ∑ ℎ(𝑘) = √2𝑘  and ∑ 𝑔(𝑘) = 0𝑘 .  

 

Applying the DWT, the signal is decomposed into a set of low and high- frequency components 

as [144]: 

 

 

{
 
 

 
 𝑎𝑗,𝑘 =∑ℎ(2𝑘 −𝑚) 𝑎𝑗−1,𝑚

𝑚

𝑑𝑗,𝑘 =∑𝑔(2𝑘 −𝑚) 𝑎𝑗−1,𝑚
𝑚

 

(2.22) 

 

 

The decomposition procedure is illustrated in Fig. 2.4. 
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(a)  (b)

Figure 2.4-. Filtering process: (a) the signal (S) is decomposed into approximation (A) and 

detail (D) components; (b) wavelet decomposition tree (from [17]). 

 

 Wavelet packet transform (WPT) 

A signal is decomposed into approximation and detail through low and high band filters, 

respectively. Then both of them are decomposed into a second level approximation and detail and 

the process is repeated as shown in Fig. 2.5.  

 
 

Figure 2.5- Wavelet packet decomposition tree (from [17]). 

 

The basic wavelet packet functions are defined as [16]: 

 

{
 
 

 
 𝑢2𝑛(𝑡) = √2∑ℎ(𝑘)𝑢𝑛(2𝑡 − 𝑘)

𝑘

𝑢2𝑛+1(𝑡) = √2∑𝑔(𝑘)𝑢𝑛(2𝑡 − 𝑘)

𝑘

 

(2.23) 

 

 

where 𝑢0(𝑡) = 𝜙(𝑡) and 𝑢1(𝑡) = 𝜓(𝑡). 
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The WPT decomposes the signal as follows: 

 

{
 
 

 
 𝑑𝑗+1,2𝑛 =∑ℎ(𝑚 − 2𝑘) 𝑑𝑗,𝑛

𝑚

𝑑𝑗+1,2𝑛+1 =∑𝑔(𝑚 − 2𝑘) 𝑑𝑗,𝑛
𝑚

 

(2.24) 

where 𝑑𝑗,𝑛 denotes the wavelet coefficients at the j level, n sub-band, 𝑑𝑗+1,2𝑛 and 𝑑𝑗+1,2𝑛+1 are 

the wavelet coefficients at the level of 𝑗 + 1, 2𝑛 and 2𝑛 + 1 sub-bands, respectively, and 𝑚 is 

the number of the wavelet coefficients. 

 

In general, the CWT is more suitable for time-frequency analysis and visualization, and the 

DWT is more appropriate for decomposition, compression and feature selection. The WPT is 

faster than the CWT technique, as it uses orthogonal and bi-orthogonal bases with a better 

resolution in the high-frequency region [146].  
In the WT approaches, the selection of the mother wavelet function plays a big role for its 

efficiency. There exist some research to investigate the most suitable mother wavelet in 

different applications. Rafiee et al. [147-149], in a thorough study of mother wavelet choice 

investigation, studied 324 candidate mother wavelet functions from various families including 

Haar, Daubechies (db), Symlet, Coiflet, Gaussian, Morlet, complex Morlet, Mexican hat, bio-

orthogonal, reverse bio-orthogonal, Meyer, discrete approximation of Meyer, complex 

Gaussian, Shannon, and frequency Bspline.  

From a simulation point of view, it is found that Daubechies and discrete Meyer are the best 

wavelets to be used in vibration signal analysis [146]. 

Denoising by Wavelet transform 

In general filtering methods, the frequency components beyond a certain limit are often set 

to zero. This may cause some useful fault information to be lost, since faults often appear as 

impulses which often cover a wide frequency range. Instead, wavelet transform (WT) assigns 

big wavelet coefficients to such impulses and then, by setting small coefficients to zero, 

impulses can be effectively retained [61]. The DWT decomposes just the previous 

approximation coefficients through high and low pass filters, whereas WPT decomposes both 

the detail and approximation coefficients, which keeps the important information available in 

higher frequency components. 

The denoising method by WPT is represented in the following steps: 

a) Decomposition:  

A signal is decomposed into approximation and detail using Eq. 2.24. Since the number of 

decompositions from a signal may be very large, it is necessary to find a method to decide 

which components must be taken to have an accurate enough representation of the signal. There 

exist various entropy types for calculating the lowest cost basis, such as Shannon, log energy, 

sure. One of the most frequently encountered functions is Shannon entropy, which is a measure 

of signal complexity to wavelet coefficients.  Higher entropy values indicate higher uncertainty 

and consequently higher complexity. If the entropy value is greater than one, and splitting 

makes the entropy decrease, the component has the potential to reveal more information about 

the signal and it needs to be decomposed further in order to obtain simple frequency 

components of the signal [150]: 
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𝐸(𝑠𝑖) = −𝑠𝑖
2 log(𝑠𝑖

2) 
 

(2.25) 

 

𝐸(𝑠) = −∑𝑠𝑖
2 log(𝑠𝑖

2)

𝑖

 

(2.26) 

where 𝑠 is the signal and 𝑠𝑖 are the coefficients of the wavelet decomposition of 𝑠. 

 
b) Processing the coefficient using thresholding: 

 

Wavelet thresholding is based on the idea that the energy of the signal is concentrated in a 

few wavelet coefficients, while the energy of noise spreads throughout all the wavelet 

coefficients. Thresholding is aimed at removing the components caused by noise and is divided 

into two steps. Firstly, an algorithm is defined to calculate a threshold and then it is necessary 

to determine how to apply the threshold to the data and remove the irrelevant parts in the 

wavelet coefficient. There are some algorithms proposed to determine the threshold, such as 

Universal threshold [151], SURE threshold [152] and the Minimax threshold [151]. The 

Universal threshold rule is used to process the simulation of the signal series in the following 

form [151]: 

 

𝑇 = 𝜎√2 log𝑁 

(2.27) 

where 𝑁 is the signal length and 𝜎 is the noise standard deviation. The true value of the noise 

standard deviation 𝜎 is, generally, unknown. It is often estimated by 𝜎 = 𝑀𝐴𝐷/0.6745, where 

𝑀𝐴𝐷 denotes the median absolute value of the finest scale wavelet coefficients. 

 

The second step is probably the most critical and has quite an impact upon the effectiveness 

of the procedure, in which thresholding is applied to data. It could be hard thresholding or soft 

thresholding [153]: 

 

𝑦𝑔 = {
𝑠𝑔𝑛(𝑦)(|𝑦| − 𝛼𝑇)          |𝑦| > 𝑇

0                                         |𝑦| < 𝑇
 

(2.28) 

where 𝑇 is the threshold and 𝛼 is a constant, which is 0 ≤ 𝛼 ≤ 1 . For 𝛼 = 0, it becomes Hard-

thresholding, and when 𝛼 = 1, it becomes Soft-thresholding, as illustrated in Fig. 2.6. For cases 

where precise recovery of signal magnitude is not required, for example, image noise reduction, 

the soft thresholding is widely used since it can retain the regularity of signal [154]. 
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Figure 2.6- a) the signal, b) Hard thresolding and c) Soft thresholding (from [153]) 

 

The combination of the soft thresholding policy and universal threshold is referred to as 

VisuShrink. It ensures a noise-free reconstruction but often the threshold is set too high. 

Donoho and Jonestone [151] introduced the “minimax” threshold to enhance the universal 

threshold. The “minimax” threshold level can be much lower than the universal threshold level 

when it comes to small-to-moderate sample sizes. 

 

c) Reconstruction: 
 

The denoised signal can be calculated iteratively: 

 

𝑥 =∑ℎ(𝑚 − 2𝑘) 𝑑𝑗+1,2𝑛 +∑𝑔(𝑚 − 2𝑘) 𝑑𝑗+1,2𝑛+1
𝑘𝑘

 

(2.29) 

where  𝑑𝑗+1,2𝑛 and 𝑑𝑗+1,2𝑛+1 are the wavelet coefficients at the level of 𝑗 + 1, 2𝑛 and 2𝑛 + 1 

sub-bands, respectively, and 𝑚 is the number of the wavelet coefficients. 

Application 

The merits of WT have led it to be used widely in fault diagnosis of rotating machines, 

which were presented in two comprehensive reviews [155,156]. The CWT and DWT based 

denoising has been widely adopted in many studies to remove noise in the signals and extract 

fault-related information. 

The first foundations in wavelet-based denoising were implemented by Donoho [154]. Qiu 

et al. optimized the Morlet wavelet shape factor using the Shanon entropy. They performed 

singular value decomposition (SVD) to detect periodicity of the signal (from faulty bearings) 

for appropriate decomposition scale selection [157]. Abbasion et al. [158] studied the condition 

of an electric motor with two rolling bearings and utilized the CWT (Meyer wavelet) for 

denosing the collected signal. Jafarizadeh et al. combined the time-averaging-based noise 

cancellation with Morlet wavelet filtering to identify gear damage [159]. Al-Raheem et al. 

optimized the CWT for denoising the signals measured from faulty bearings to detect the faults 

[160]. He et al. applied the Morlet wavelet filtering with sparse code shrinkage to enhance the 

impulsive features and suppress residual noise for bearing fault identification [161]. Su et al. 

[162] optimized the parameters of the Morlet wavelet using genetic algorithm; it was shown 

that with enhancement of autocorrelation to the wavelet coefficients, it is very effective for 

bearing faults detection. Chiementin et al. [163] applied the DWT to the signals acquired from 

faulty bearings and attempted to optimize the various parameters selection. They concluded 

that the wavelet approach enhanced the signal kurtosis and crest factor more than the other 

techniques. Li et al. [164] developed a gear multi-fault diagnosis method where the DWT was 
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carried out to denoise the vibration signals to extract the features by autoregressive (AR) model 

and principal component analysis (PCA). Altmann and Mathew [165] used the WPT analysis-

based multiple band-pass filtering for the vibration signals of a low speed rolling-element 

bearing and significantly improved results were obtained compared to its high-pass 

counterpart. Peng et al. [166] used the WPT as a pre-processor to decompose the signal into 

narrow band signals to improve the performance of Hilbert–Huang procedure. 

2.2 Signal processing 

After denoising, data are processed to extract features. Decomposition is a common method 

in signal processing, where a multi component signal is broken down into some elementary 

components. Some decomposition techniques such as Empirical mode decomposition are 

introduced in the following sections. In order to extract features, energy operator (e.g. Teager-

Kaiser operator) can be applied to the decomposed signal, which is discussed in section 2.2.3. 

The signals collected under time-varying operating conditions, require the remove non-

stationarity created by operational variation conditions. Cointegration, presented in section 

2.2.4, extracts stationary linear combination among the non-stationary signals.   

2.2.1 Empirical mode decomposition (EMD) 

The Empirical mode decomposition method (EMD) proposed in 1998 [76], is a self-adaptive 

data driven method, which decomposes a complex signal into a number of simple oscillatory 

modes called intrinsic mode functions (IMFs) (Fig. 2.7).  

These IMFs are determined by the signal itself rather than by pre-determined functions and 

designated by the following definitions: 

1) In the whole data set, the number of extrema and the number of zero crossings must either 

equal or differ at most by one. 

2) At any point, the mean value of the envelopes defined by local maxima and the envelope 

defined by the local minima is zero. 

 

 

 
 

Figure 2.7- A simulated signal and the decomposed IMFs using EMD (from [167]). 
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The first point means that all maxima must be over the time axes while all minima must be 

under it. Furthermore, it helps in assuring that the signal is not a wave rising or descending. 

The second aspect is related, instead, one the signal shape, since it must be symmetric, with 

time mean locally equal to zero in order to avoid unwanted fluctuations induced by asymmetric 

waveforms. Each IMF includes different frequency bands ranging from high to low. 

The decomposition consists of the following steps: 

1) To identify all the local extrema, and then connect all the local maxima by an interpolation 

method to produce the upper envelope. Repeat the procedure for the local minima to produce 

the lower envelope. 

2) To determine the difference between the signal 𝑥(𝑡) and 𝑚1 which is the mean of upper 

and lower envelopes to obtain the first component, ℎ1. 

 

𝑥(𝑡) − 𝑚1 = ℎ1 
            

(2.30) 

If ℎ1 is an IMF, then it would be the first component of 𝑥(𝑡). Otherwise, ℎ1 is treated as the 

original signal and step (1)–(2) are repeated: 

 

ℎ1 −𝑚11 = ℎ11          
(2.31) 

in which, 𝑚11 is the mean of upper and lower envelope value of ℎ1. After repeated sifting, up 

to k times (based on sifting stop criterion), ℎ1𝑘 becomes an IMF, that is: 

 

ℎ1(𝑘−1) −𝑚1𝑘 = ℎ1𝑘 

            

(2.32) 

 

Then it is designated as the first IMF component of the data, 𝑐1 = ℎ1𝑘. The sifting process can 

be stopped by any preselected criterion which will be discussed in the next section. 

3) To separate IMF (𝑐1) from the original signal 𝑥(𝑡) to obtain the residue 
1

r : 

    

𝑟1 = 𝑥(𝑡) − 𝑐1 
            

(2.33) 

4) To consider 𝑟1 as the new data and repeat the above described process for n times, so that 

n-IMFs of signal 𝑥(𝑡) can be obtained. Then: 

 

𝑟1 − 𝑐2 = 𝑟2 
…            

(2.34) 

𝑟𝑛−1 − 𝑐𝑛 = 𝑟𝑛   
 

5) To stop the decomposition process when 𝑟𝑛  becomes a monotonic function from which 

no more IMF can be extracted. By summing up Equations (4) and (5), we finally obtain: 

 

𝑥(𝑡) =∑𝑐𝑖 + 𝑟𝑛 

𝑛

𝑖=1

 

(2.35) 
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Thus, a signal 𝑥(𝑡) can be decomposed into n zero-mean amplitude modulation frequency 

waveforms and a residue 𝑟𝑛 representing the mean trend of the signal. Going from one residual 

to the next, the number of extrema is decreased. Thus, the decomposition process is completed 

with a finite number of modes. A real vibration signal collected from a roller bearing and its 

decomposed IMFs (c1-c12) are shown in Fig. 2.8. 

Flandrin et al. [168] recognized that the EMD acts as a dyadic filter bank (a wavelet-like 

filter bank) when it was applied to fractional Gaussian noise. This numerical experiment was 

utilized in order to identify how the EMD behaves in stochastic situations involving broadband 

noise. A dyadic filter bank is a collection of band-pass filters that have a constant band-pass 

shape (e.g., a Gaussian distribution) but with neighboring filters covering half or double of the 

frequency range of any single filter in the bank. The frequency ranges of the filters can be 

overlapped. Wu and Huang [169] investigated white noise and obtained the similar results. 

 

Figure 2.8- A real collected vibration signal of a roller bearing and the decomposed IMFs by 

EMD 
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Figure 2.9- The Fourier spectra of IMFs and the spectra as a function of the logarithm of 

period (from [169]) 

 

They found that the EMD acts as a dyadic filter capable of separating the white noise into 

IMF components having mean periods, each exact twice the value of the previous one.  Second, 

the IMF components are all normally distributed. And third, the Fourier  spectra of the IMF 

components are  identical  in  shape, and cover the  same  area  on  semi-logarithmic  period  

scale (as presented in Fig. 2.9). Gao et al. [170] consider the filtering features of EMD and 

compare it with those of wavelet decomposition. The EMD characteristic of being an adaptive 

band-pass filter bank with the bandwidth self-adaptively determined by the signal decomposed, 

whereas the filter features of wavelet decomposition is not self-adaptive. 

2.2.2 Ensemble empirical mode decomposition (EEMD) 

Although EMD is a powerful tool for signal processing, it has some drawbacks, such as the 

lack of a mathematical base, no robust stopping criterion for the sifting process, mode mixing 

and the border effect problem. The intermittency of the detected extrema which belong to the 

different components is the main reason for mode mixing and make the physical meaning of 

individual IMF unclear. In order to overcome the problem of mode mixing, Ensemble empirical 

mode decomposition (EEMD), which is a noise assisted data analysis method was introduced 

[171]. It is based on the statistical properties of white noise, which showed that the EMD 

method is an effective self-adaptive dyadic filter bank when applied to the white noise, and the 

noise could help data analysis in the decomposition of EMD [168,169,172]. The EEMD 

repeatedly decomposes the original signal with added white noise into a series of IMFs by 

applying the original EMD process, and treats the means of the corresponding IMFs during the 
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repetitive process as the final EEMD decomposition result. Since white noise is added 

throughout the entire signal decomposition process, mode mixing is effectively eliminated. 

Since the noise in each trial is different, it is cancelled out in the ensemble mean of enough 

trials. 

The idea of adding noise proposed by Flandrin et al.[168] to resolve one of the deficiency 

of the EMD. If the data lacks the necessary extrema (a Dirac pulse (delta function)), the 

technique cannot work, as it is based on the existence of extrema. They applied an ensemble 

of 5000 decompositions using different realizations of noise, as the decomposition results are 

sensitive to the added noise. Finally, the mean is utilized as the final decomposition of the Dirac 

pulse. 

The data shown in Fig. 2.10 consists of two parts: a low-frequency sinusoidal wave and an 

impulse high frequency components. The first IMF (decomposed by the EMD) is the mixture 

of both the low-frequency fundamental and the high-frequency intermittent waves. The EMD 

could not express the real characteristics of the both components, whereas the two components 

are accurately decomposed into two IMFs by the EEMD. 

The decomposition steps by the EEMD are illustrated in Fig. 2.11 and can be summarized 

as follows: 

a) To add a random white noise signal to the acquired original signal: 

 

𝑥𝑗(𝑡) = 𝑥(𝑡) + 𝐴𝑚𝑝 ∙ 𝑛𝑗(𝑡)       𝑗 = 1,2, … ,𝑀 

   

  (2.36) 

where 𝐴𝑚𝑝 is the amplitude of added white noise and M  is the pre-determined number of trial. 

b) To decompose the obtained signal (𝑥𝑗(𝑡)) into IMFs using EMD: 

    

𝑥𝑗(𝑡) =∑𝑐𝑖𝑗

𝑁𝑗

𝑖=1

+ 𝑟𝑁𝑗 

  (2.37) 

where 𝑐𝑖𝑗 represents the i-th IMF of the j-th trial, 𝑟𝑁𝑗 represents the residue of j-th trial and 𝑁𝑗 

is the IMFs number of the j-th trial. 

 

c) To repeat steps a and b until the predefined ensemble trial number (M) (add different 

random noise signal each time). 

d) To calculate the ensemble means of the corresponding IMFs of the decompositions as 

the final result (𝑐𝑖): 

 

𝑐𝑖(𝑡) = (∑𝑐𝑖𝑗

𝑀

𝑗=1

) 𝑀                  𝑖 = 1,2, … , 𝐼⁄  

  (2.38) 

where I is the minimum number of IMFs among all the trials. 
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Figure 2.10- A simulated two component signal (a), the decomposed IMFs by EMD (b) 

and the IMFs decomposed by EEMD (c) (Taken from [167]). 

 

However, another challenge still exists: how to better identify the two effective parameters (the 

amplitude of added noise and the number of ensemble trials), which affect the performance of 

the EEMD. 

The number of ensemble for EEMD 

The effect of the added white noise should decrease following the well-established statistical 

rule [171]: 

  

𝜀𝑛 =
𝜀

√𝑁
 

  (2.39) 

ln 𝜀𝑛 +
𝜀

2
 ln𝑁 = 0 

  (2.40) 

where 𝑁 is the number of ensemble members, 𝜀 is the amplitude of the added noise, and 𝜀𝑛 is 

the final standard deviation of error, which is defined as the difference between the input signal 

and the corresponding IMF(s).  
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Figure 2.11- The Flowchart of the Ensemble empirical mode decomposition (EEMD) 

algorithm 

In general, an ensemble number of a few hundred will lead to a very good result, and the 

remaining noise would cause only less than a fraction of 1% of error if the added noise has an 

amplitude that is a fraction of the standard deviation of the original data [171]. 

Application 

Since the EMD and EEMD are powerful for processing nonlinear and non-stationary 

signals, these techniques have been studied and widely applied in fault diagnosis of rotating 

machinery [167]. The following paper review is proposed in terms of different categories called 

the original EMD method, improved EMD methods, EMD combined with other techniques 

and EEMD. The studies have been proposed an improvement in EMD, combination of the 

EMD with other methods to enhance the results and have applied the EEMD for fault detection 

of roller bearing discussed in this section. 

Several improvement have been proposed to enhance the performance of EMD in bearing 

fault diagnosis. Du and Yang [173,174] improved the local mean calculation of EMD (the 

conventional envelope mean is substituted by the average mean) and obtained better result in 

bearing fault diagnosis. Dong et al. [175] improved the efficiency of the sifting process, in 

which only one time of cubic spline fitting is required in each sifting process. As a result, the 

technique decreases the computational cost. Terrien et al. [176] presented an algorithm for IMF 

automatic selection. This algorithm is based on statistical analysis describing the noise 

repartition between IMFs. Yan and Gao [177] proposed two criteria to determine the most 

representative IMFs of EMD to recognize the existence and the location of defects in bearings. 

The improvements in stop criteria of sifting process is discussed in chapter 5. 
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Many researchers have applied the EMD technique combined with other techniques to 

achieved better diagnosis results in bearing fault diagnosis. Some of those studies are 

introduced in this section. Yu et al. [178] and Chen et al. [179] applied EMD and Hilbert-

Huang transform to the vibration signals of bearings to create the local Hilbert marginal 

spectrum for damage detection. Li and Zheng [180] applied the TKEO (Teager-Kaiser energy 

operator) to decomposed IMFs to calculate instantaneous amplitude. Then, transformed it using 

the Fourier transform to obtain envelope spectrum, in which the characteristic frequency of the 

bearing faults can be easily recognized. Rai and Mohanty [181] applied the fast Fourier 

transform to IMFs to recognize the defective bearing through the characteristic defect 

frequencies. Li et al. [182] applied Wigner–Ville distribution based on EMD to bearing fault 

diagnosis and therefore prevented the presence of cross terms. Li et al. [183] developed a 

method based on EMD, order tracking and Teager-Kaiser energy operator for bearing diagnosis 

under the run-up or run-down process. Peng et al. [184] applied wavelet packet transform to 

improve the deficiencies of HHT and formed an improved HHT method for bearing fault 

detection. Yang et al. [185] used the characteristic amplitude ratios of IMFs as the feature 

vectors of support vector machines. Cheng et al. [186] build an autoregressive model (AR) for 

each IMF to recognize the bearing faults. Yang et al. [187] used the energy entropy of EMD as 

the input of artificial neural networks for identifying bearing damages. Cheng et al. [188] 

extracted feature vectors applying the EMD and singular value decomposition, then utilized 

the support vector machines to classify the features of bearings and gears. Lei et al. [189-191] 

decomposed bearing vibration signals by the EMD to identify fault types and damage sizes 

using neural networks and genetic algorithms. 

The EEMD technique has been used in a number of researches to identify the state of 

bearings, which is addressed particularly in this section. An et al. [192] applied the Hilbert-

Huang transform based on the EEMD to detect the bearing pedestal looseness fault in a wind 

turbine. Ai et al. [193] presented an approach based on EEMD and envelope spectrum to 

reliably diagnose bearing defects. Zvokelj et al. [194] combined EEMD and non-linear kernel 

principal component analysis (PCA) to detect defects of large-size and low-speed bearings. 

Zhang et al. [195] investigated parameter selection issues (amplitude of added noise and 

ensemble trial numbers) of EEMD and proposed a modified EEMD method in diagnosing 

bearing faults. Lu and Wang [196] introduced a method based on EEMD and redundant second 

generation wavelets denoising to improve the accuracy of bearing fault diagnosis. Lei et al. 

[197] combined the EEMD and wavelet neural networks (WNN) to construct an automatic 

fault identification method of locomotive bearings. They used a kurtosis based method to select 

the sensitive IMFs decomposed by EEMD. Then, the frequency spectrum and envelope 

spectrum of the selected IMFs were used as input of the WNN. Guo and Tse [198] applied 

EEMD to bearing fault diagnosis and discussed the influence of parameter setting in EEMD 

on the results of reducing mode mixing problem. 

2.2.3 Teager-Kaiser energy operator 

The Teager-Kaiser energy operator (TKEO) was first proposed by Teager [199] and further 

investigated by Kaiser [200]. A number of studies have been carried out on the theory and 

applications of the TKEO operator such as [94-97]. In continuous time, the TKEO operator is 

defined as: 

 

Ψ[𝑥(𝑡)] = 𝐴2 = 𝑥̇2(𝑡) − 𝑥(𝑡) 𝑥̈(𝑡) 

  (2.41) 

For a simple model, a mass m suspended by a spring with constant k, the displacement 

measured from its equilibrium position: 
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𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜃0) 

  (2.42) 

where 𝐴 is the amplitude of oscillation, 𝜔 is the natural frequency (𝜔 = √𝑘 𝑚⁄ ) and is 𝜃0 the 

initial phase. 

 

The total energy of the system is given as the sum of the potential energy of the spring and the 

kinetic energy of the mass: 

 

E =
1

2
 𝑘𝑥2 +

1

2
 𝑚𝑥̇2 

  (2.43) 

It is represented as: 

   

E =
1

2
 𝑚𝜔2𝐴2 

  (2.44) 

It indicates that the total mechanical energy of the simple harmonic oscillation is proportional 

to the square of the amplitude and the square of the frequency. Applying the TKEO to 𝑥(𝑡) 
gives:  

 

Ψ[𝑥(𝑡)] = 𝐴2 = (−𝐴𝜔 sin(𝜔𝑡))2 − 𝐴 cos(𝜔𝑡) (−𝜔2𝐴 cos(𝜔𝑡)) 
                 = 𝐴2𝜔2(sin2(𝜔𝑡) + cos2(𝜔𝑡)) 

  (2.45) 

 

And finally: 

 

Ψ[𝑥(𝑡)] = 𝐴2𝜔2 

  (2.46) 

 

So, the TKEO operator tracks the total energy of the source generating the vibration signal 𝑥(𝑡) 
(per half-unit mass). 

For a discrete time signal 𝑥(𝑛) (where 𝑛 is the discrete time index), using difference to 

approximate differential, the TKEO operator can be formulated as [94]: 

 

Ψ[𝑥(𝑛)] = [𝑥(𝑛)]2 − 𝑥(𝑛 − 1)𝑥(𝑛 + 1) 

  (2.47) 

As at any instant, only three consecutive samples are needed to estimate the instantaneous 

TKEO, it is adaptive to the instantaneous changes in signals and is quite adapt to resolve 

transient events. Therefore, it has a good adaptability to the instantaneous changes in signals 

and an excellent ability to resolve transient events. 

It is an adaptive method and effective in estimating the instantaneous frequency and 

envelope amplitude of nonstationary signals. It has some merits such as low computational 

cost, high resolution of time and frequency and adaptability to instantaneous feature [98]. 

The instantaneous frequency and instantaneous amplitude at any time instant of the signal 

𝑥(𝑛) are defined as: 
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𝑓(𝑛) =
1

2𝜋
 √
Ψ[𝑥̇(𝑡)]

Ψ[𝑥(𝑡)]
 

  (2.48) 

|𝑎(𝑛)| =
Ψ[𝑥(𝑡)]

√Ψ[𝑥(𝑡)]
 

  (2.49) 

They can be represented as follows: 

 

𝑓(𝑛) =
1

2
 𝑎𝑟𝑐𝑐𝑜𝑠 (1 −

Ψ[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]

2Ψ[𝑥(𝑛)]
) 

  

  (2.50)

  

  

|𝑎(𝑛)| =
2Ψ[𝑥(𝑛)]

√Ψ[𝑥(𝑛 + 1) − 𝑥(𝑛 − 1)]
 

  (2.51) 

 

In this method, the signal is decomposed into some IMFs by the EMD algorithm. Then, the 

envelope amplitude and instantaneous frequency of the IMFs are obtained utilizing the TKEO 

method. 

 

As the TKEO operator is an energy operator, it is expected to be a positive quantity. This 

issue was first addressed by Maragos et al. [94]. For the continuous version of the TKEO 

operator, Eq.41, the only way to make the right hand side less than zero is: 

 

𝑥̇2(𝑡) ≤ 𝑥(𝑡)𝑥̈(𝑡) 

  (2.52) 

 

Thus, the operator is nonnegative, regardless of the value of 𝑥̇(𝑡), if any of the following 

conditions is satisfied: 

 

 𝑥(𝑡) = 0 

 𝑥̈(𝑡) = 0 

 𝑥(𝑡) < 0  and 𝑥̈(𝑡) > 0 

 𝑥(𝑡) > 0  and 𝑥̈(𝑡) < 0 

 

This phenomenon was discussed in [201]. As it can be seen in Fig. 2.12 the TKEO of a 

signal is negative for some values. Based on the definition, the TKEO operator tries to model 

the energy of the source of the signal, and not the actual measured signal. The signal, in Fig. 

2.12, is constructed using two simple sinusoidal signals, where one has considerably higher 

frequency, but less amplitude than the other signal. Thus, it is made of two separate sources, 

one high and one low frequency source, where the high frequency source is placed farther away 

than the low frequency source. In this example, it was incorrectly assumed that only one source 

is generating the signal that is why a negative value was achieved. 



44 

 

Application 

As the TKEO detects a sudden change of the energy stream without a priori assumption of 

the data structure, it can be utilized for vibration based condition monitoring (non-stationary 

signals). Junsheng et al. [203] applied the TKEO to each IMFs decomposed by the EMD to 

extract the instantaneous amplitudes and frequencies. Then, envelope spectra were obtained 

using the spectrum analysis to look for characteristic frequencies of damaged roller bearings. 

Li et al. [204] applied the TKEO to the original vibration signals and characteristic frequencies 

were extracted from envelope spectra. They also implemented a novel method [205] to 

recognize faults of roller bearing based on Teager-Huang transform (THT).  Feng et al. [206] 

utilized the Fourier spectrum of Teager energy to identify the characteristic frequency of faulty 

bearings. Liu et al. [207] presented an approach to bearing fault diagnosis based on the TKEO 

and the Elman neural network. The wavelet packet was used to reduce noise existing in the 

Teager energy signal, and then feature vectors were extracted from the Teager spectrum. 

Rodriguez et al. [208] transformed the vibration signal to the Teager-Kaiser domain and 

featured it with statistical and energy-based measures. The diagnosis was performed with the 

neural network and the least square support vector machine (LS-SVM). Kwak et al. [209] 

applied the TEKO in a combination with minimum entropy deconvolution (MED) to detect a 

defective roller bearing in terms of Kurtosis. 

 

 

 
Figure 2.12- the two component signal and the Teager-Kaiser energy operator [202] 

 

2.2.4  Cointegration 

The idea of the cointegration is to find within a signal linear combinations of signal segments 

which are stationary. Engle and Granger [210] formulated one of the first test of cointegration. 

Johanson proposed a maximum likelihood approach for finding stationary linear combinations 

of nonstationary variables, which have the same order of integration. [211]. A signal/stochastic 

process y is said to be integrated of order d (𝒚𝒕~𝑰(𝒅)), if it becomes stationary after d times 
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differencing. Thus, the time series 𝒚𝒕  will be integrated of order 1, if its first difference is 

stationary (∆𝒚𝒕~𝑰(𝟎)). The order of integration can be estimated by a stationarity test applied 

on the residuals of the segments, like e.g. the Augmented Dickey-Fuller (ADF) test [212]. 

Two or more non-stationary time series are said to be cointegrated if a linear combination 

of them is stationary. The signal  𝑌𝑡 is made of n non-stationary segments/time series 

(𝑦1𝑡, … , 𝑦𝑛𝑡), which are I (1) integrated. 

 

 

𝑌𝑡 = (

𝑦1𝑡
⋮
𝑦𝑛𝑡
) 

  (2.53) 

 

The series is said to be cointegrated with r cointegrating vectors (0 < r < n) if there exists a 

(n×r) matrix 𝛽 such that the cointegrating residual 𝑢𝑡 is 0 integrated (𝑢𝑡~𝐼(0)). 
 

𝛽′𝑌𝑡 = (
𝛽1
′𝑌𝑡
⋮

𝛽𝑟
′𝑌𝑡

) =  (

𝑢1𝑡
⋮
𝑢𝑟𝑡
)   

  (2.54) 

 

The cointegration test based on Johansen procedure [211], tests for the existence of r, 0 ≤ r 

< n, cointegrating vectors (𝛽1, … , 𝛽𝑟). It determines which of the cointegrating vectors creates 

the most stationary linear combination. 

The vector autoregressive model (VAR) for the signal  𝑌𝑡 is formulated as follows: 

 

𝑌𝑡 = Ψ𝐷𝑡 + Π1𝑌𝑡−1 +⋯+ Π𝑝𝑌𝑡−𝑝 +  𝜖𝑡  

  

  (2.55) 

where 𝐷𝑡 is deterministic term,  p denotes the model order, Ψ and (Π1, … , Π𝑝) are time-

invariant  matrices and  𝜖𝑡 is error with mean zero and finite variance (i.i.d. (0, Ω)). 
 

The vector error correction model (VECM) takes the form: 

 

∆𝑌𝑡 = ∑Γ𝑖∆𝑌𝑡−𝑖 + Π𝑌𝑡−1 +Ψ𝐷𝑡 +  𝜖𝑡

𝑘−1

𝑖=1

 

  (2.56) 

where p denotes the model order, Π = Π1 +⋯+ Π𝑝 −  𝐼𝑛  and Γ𝑖 = −∑ Π𝑗
𝑝
𝑗=𝑘+1  (k = 1,…, p 

- 1). 

 

 

As 𝑌𝑡 is integrated of order 1, ∆𝑌𝑡 and its lags are stationary, which means that the term 

Π𝑌𝑡−1 must be I (0). Thus, If 𝑌𝑡 is not cointegrated, the parameter matrix must be zero (Π = 0) 

and the VECM model reduces to VAR (p - 1) model in first differences. If the Π matrix have a 

reduced rank; that is 0 < rank (Π) = r < n,  𝑌𝑡 has r linearly independent cointegrating vectors. 

The parameter matrix can be decomposed into two n × r matrices: 

 



46 

 

Π = 𝛼𝛽′ 

  (2.57) 

where α  is called the adjustment parameters matrix. 

 

The model (Eq. 2.56) can be formed as: 

 

∆𝑌𝑡 = ∑Γ𝑖∆𝑌𝑡−𝑖 + α β
′𝑌𝑡−1 +Ψ𝐷𝑡 +  𝜖𝑡

𝑘−1

𝑖=1

 

  (2.58) 

 

In order to find the cointegrating vectors, first we consider the residuals of the following 

regressions: 

 

∆𝑌𝑡 = ∑Γ𝑖∆𝑌𝑡−𝑖 + 𝑈̂𝑡

𝑝−1

𝑖=1

 

  (2.59) 

 

𝑌𝑡 =∑Φ𝑖∆𝑌𝑡−𝑖 + 𝑉̂𝑡

𝑝−1

𝑖=1

 

  (2.60) 

where 𝑈̂𝑡 and 𝑉̂𝑡 denote the residuals and Φ1 and Φ2 are multiplication matrices.  

 

Then, the cointegrating vectors are determined as eigenvectors of the following eigenvalue 

problem: 

 

|𝜆𝑆11 − 𝑆10𝑆00
−1𝑆01| = 0 

  (2.61) 

where  𝑆00 =
1

𝑇
∑ 𝑈̂𝑡𝑈̂𝑡

′𝑇
𝑡=1  , 𝑆01 =

1

𝑇
∑ 𝑈̂𝑡𝑉̂𝑡

′𝑇
𝑡=1  , 𝑆10 =

1

𝑇
∑ 𝑉̂𝑡𝑈̂𝑡

′𝑇
𝑡=1  , 𝑆11 =

1

𝑇
∑ 𝑉̂𝑡𝑉̂𝑡

′𝑇
𝑡=1      are 

the sample covariance matrices. 

 

The eigenvector corresponding to the largest eigenvalue is the most stationary cointegration 

vector. A likelihood ratio (LR) is utilized to indicate the number of possible cointegrating 

vectors. The trace statistic (Eq. 2.62) is utilized to test the hypothesis that there are at most r 

cointegrating vectors.  

 

𝐿𝑅𝑡𝑟𝑎𝑐𝑒(𝑟0) = −𝑇 ∑ ln (1 − 𝜆̂𝑖

𝑛

𝑖=𝑟0+1

) 

  (2.62) 

where 𝜆̂𝑖 denotes the estimated eigenvalues of the matrix Π. If the trace test is higher than the 

critical value, tabulated in [211], the null hypothesis is rejected. 

 

First the null hypothesis (H0(𝑟0 = 0)) is tested against the alternative hypothesis (H1(𝑟0 >
0)). If the null is not rejected then there does not exist cointegrating vectors. If the null is 
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rejected, there is at least one cointegrating vector and the test is continued to test H0(𝑟0 = 1) 
against H1(𝑟0 > 1). There exists only one cointegrating vector, if the null is not rejected. 

Otherwise, it is concluded that there is at least two cointegrating vectors. The procedure is 

continued until the null is not rejected. 

Application 

Applications of cointegration to finance may be found in [213-217]. Cointegration has been 

applied recently in structural health monitoring (SHM) as a powerful method to remove 

nonstationarity produced by environmental variations such as temperature, wind and humidity. 

Cross and Worden [218] discussed why cointegration is applicable to engineering data .Cross 

et al. [219] tested successfully the idea of using cointegration for SHM. It could detect the 

damage introduced in a composite plate. Antoniadou et al. [220] applied Hilbert-Huang and 

Teager- Kaiser transforms to extract relevant information and used cointegration to remove 

non-stationarity produced by variation of environment conditions. Worden et al. [221] 

demonstrated how a multiresolution approach to cointegration can enhance sensitivity for 

damage detection.  
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In this chapter pattern processing (recognition) stage is described. Pattern recognition (PR) 

is the stage where a method is applied to interpret the damage state based on the given feature 

vectors extracted by signal processing techniques. PR system is trained using labelled training 

data in all those methods called supervised learning. However, when the available data are not 

labelled, unsupervised algorithms are used to recognize previously unknown patterns. As 

described in section 1.3.5, depending on the desired diagnosis, the PR algorithms can be 

categorized in two groups; Novelty detection, which uses unsupervised learning, and 

classification, which uses supervised learning algorithm. Nearest neighbour classifier, 

Artificial neural networks (ANNs) and Support vector machine (SVM) are the classification 

techniques usually used for fault diagnosis of rotating machines described in details in this 

chapter. As a novelty detection method, one-class SVM is introduced in section 3.3.3. 

3.1 Nearest-neighbour classifier 

Nearest neighbour classifier is a non-parametric pattern recognition method, which means 

that it does not make any assumption on the statistical properties of data. The simple idea is to 

find the closest neighbour for new given data among the training data and assign the label of 

training data to new data. It is usually performed by evaluating a dissimilarity function or 

distance between the training data and new samples [222]. The Euclidean distance usually used 

as a measure of neighbourhood can be formed as follows: 

 

𝑑(𝒙, 𝒙′) = √∑(𝑥𝑘 − 𝑥𝑘
′ )2

𝑛

𝑘=1

 

  (3.1) 

where 𝑥 denotes the training data including n attributes (𝑥1, … , 𝑥𝑛) and  𝑥′ is the new given 

data (𝑥1
′ , … , 𝑥𝑛

′ ). 
 

The distance introduced can be generalized using the Minkowski distance metric with the 

parameter 𝑟: 

 

𝑑𝑟(𝒙, 𝒙
′) = (∑(𝑥𝑘 − 𝑥𝑘

′ )𝑟
𝑛

𝑘=1

)

1 𝑟⁄

 

  (3.2) 

 

The global distance can be defined as a weighted sum of the local distances. It allows to 

consider different importance for different attributes in the computation of the overall distance. 

 

𝑑𝑤(𝒙, 𝒙
′) = √∑𝑤𝑘 (𝑥𝑘 − 𝑥𝑘

′ )2
𝑛

𝑘=1

 

  (3.3) 

where 𝑤𝑘 denotes the weight for the 𝑘-th dimension. The weights can be set between zero and 

one; a weight of zero indicates a totally irrelevant attribute. 

 

A weighted average distance is formulated as follows: 

http://en.wikipedia.org/wiki/Supervised_learning
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𝑑𝑤(𝒙, 𝒙
′) =

(∑ 𝑤𝑘 (𝑥𝑘 − 𝑥𝑘
′ )2𝑛

𝑘=1 )1 2⁄

∑ 𝑤𝑘
𝑛
𝑘=1

 

  (3.4) 

 

The distance introduced has the following properties: 

 

 Non-negativity:     𝑑(𝒙, 𝒙′) ≥ 0 and  𝑑(𝒙, 𝒙) = 0 

 

 Symmetry:     𝑑(𝒙, 𝒙′) = 𝑑(𝒙′, 𝒙) 
 

 Triangular inequality:     𝑑(𝒙, 𝒙′) ≤ 𝑑(𝒙, 𝒙′′) + 𝑑(𝒙′′, 𝒙′) 
 

When a measure satisfies all three properties it is known as metric. 

K-Nearest Neighbour method (KNN) 

The K-Nearest Neighbour classifier finds K nearest training points of 𝒙′ and uses the 

majority vote of their labels to assign a label to 𝒙′. There exist two common voting approaches; 

majority voting and inverse distance-weighted voting. For majority voting approach, all votes 

are equal we count how many of the K neighbours have that class. Then, the class with the 

most votes is returned. This approach is shown in Fig. 3.1 for the 1-, 2- and 3-nearest 

neighbours of a data point located at the centre of each circle. Following the procedure 

described, the data point in Fig. 3.1a is classified as negative, while in Fig. 3.1c is labelled as 

positive. The situation shown in Fig. 3.1b is the state that there is a tie between the classes and 

the final choice is taken through a random choice. A drawback of this approach occurs when 

the class distribution is skewed. That is, examples of a more frequent class tend to dominate 

the prediction of the new example, because they tend to be common among the K nearest  

 

 

 
 

Figure 3.1- The 1-, 2- and 3-nearest neighbours of an instance (from [222]).  
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Figure 3.2- The K-nearest neighbours with large value of K (from [222]).  

 

neighbours due to their large number [223]. One solution is to weight the classification so that 

closer neighbors get higher votes. The class of each of the K nearest points is multiplied by a 

weight proportional to the inverse of the distance from that point to the test point. Then, the 

votes are summed and return the class with the highest vote. 

Although larger values of K (shown in Fig. 3.2) reduce the effect of noise on the 

classification [224], it makes boundaries between classes less distinct. For two class 

classification problems, K is chose to be an odd number to avoid tied votes. 

Application 

The Nearest neighbour classifier has been used in a number of fault diagnosis studies as a 

simple PR method [23]. Mechefske and Mathew [225] used the Nearest-Neighbour classifier 

for automatic fault diagnosis in low speed (⩽100 RPM) rolling element bearings. Zhang et al. 

[226] used genetic programming is used for feature generation, and then the K-Nearest 

Neighbour is applied as a classifier on roller bearing data. Trendafilova [227] applied a 

combination of the modified Principal component analysis (PCA) and the One-Nearest 

Neighbour approach to detect fault of a ball bearing automatically and classify to one of the 

considered fault categories. He et al. [228] applied HHT to fault identification of full ceramic 

bearing and compared the performance of the KNN based fault classifier with a neural network 

based classifier. Jiang et al. [229] applied KNN classifier to recognize different fault categories 

and severities of bearings. Jiang et al. [230] proposed a new method based on Marginal Fisher 

analysis to excavate low-dimensional fault characteristics embedded in the high-dimensional 

feature space and fed into the KNN classifier to recognize different fault categories.  

3.2 Artificial neural networks (ANNs) 

The basic processing unit of the brain is the neuron, which acts by summing inputs from 

connected neurons. If the total summation or activation exceeds a certain threshold, the neuron 

produce a single output or response [29]. The Artificial neural network (ANNs) attempts to 

find mathematical representations of information processing in biological systems [231]. The 

basic neural network model is constructed by functional transformations. First, linear 

combinations of the input variables (𝑥𝑖) are formed as follows [231]: 

 

 

 

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm#cite_note-Coomans_Massart1982-4
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm#cite_note-5
http://www.sciencedirect.com/science/article/pii/088832709290033F
http://www.sciencedirect.com/science/article/pii/088832709290033F
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𝑎𝑗 =∑𝑤𝑗𝑖
(1) 𝑥𝑖 + 𝑤𝑗0

(1)           𝑗 = 1,… ,𝑀

𝐷

𝑖=1

 

  (3.5) 

where parameters 𝑤𝑗𝑖
(1)

 are weights, 𝑤𝑗0
(1)

  denote biases and quantities 𝑎𝑗 are known as 

activations. The superscript (1) denotes that the parameters correspond to the first layer of the 

network. 

 

Then, the activations are transformed to find hidden unit shown in Fig. 3.3: 

 

𝑧𝑗 = ℎ(𝑎𝑗) 

  (3.6) 

 

The hyperbolic tangent and sigmoid functions are usually used as activation functions [29, 

231]. The linear combination of the hidden units are used to obtain output unit activations, 

which corresponds to the second layer of the network: 

 

𝑎𝑘 =∑𝑤𝑘𝑗
(2) 𝑧𝑗 +𝑤𝑘0

(2)           𝑘 = 1,… , 𝐾

𝑀

𝑗=1

 

  (3.7) 

where K is the total number of outputs, 𝑤𝑘0
(2)

 and 𝑤𝑘𝑗
(2)

 are bias parameters and weight 

parameters corresponding to the second layer, respectively. 

 

 

 

 
Figure 3.3- Two-layer neural network (single-hidden-layer network) (from [231]). 
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Finally, the output unit activations are transformed to obtain network outputs 𝑦𝑘.  

 

𝑦𝑘 =  𝜎(𝑎𝑘) 

  (3.8) 

 

The overall network function described in Eq. 3.9, shows that the neural network model is 

a nonlinear function from a set of input variables  𝑥𝑖 to a set of output variables 𝑦𝑘 controlled 

by adjustable parameters 𝑤 (all weight and bias parameters) [231]. 

 

𝑦𝑘(𝑥, 𝑤) = 𝜎(∑𝑤𝑘𝑗
(2)
 ℎ (∑𝑤𝑗𝑖

(1)
 𝑥𝑖 + 𝑤𝑗0

(1)

𝐷

𝑖=1

) + 𝑤𝑘0
(2)

𝑀

𝑗=1

) 

  (3.9) 

 

Multi-layer network is a network built up with a number of hidden layers. The output of the 

node 𝑖 in the layer 𝑚 (𝑥𝑖
(𝑚)

) is obtained as follows: 

 

𝑥𝑖
(𝑚)

= ℎ (𝑧𝑖
(𝑚)
) = ℎ(∑𝑤𝑗𝑖

(𝑚)
 

𝑗

𝑥𝑖
(𝑚−1)

) 

  (3.10) 

where 𝑥𝑖
(𝑚−1)

 denotes all signals from the preceding layer 𝑚 − 1. 

 

Before using a network, the weight parameters must be adjusted in the training phase. 

Supervised learning is the training algorithm usually used. A set of known network inputs and 

outputs are used so that at each training step, a set of inputs is passed forward through the 

network to obtain estimated outputs 𝑦̂𝑖 and compare with the desired outputs 𝑦𝑖. If the 

comparison error is considered small enough, the weights does not require any adjustment. 

Otherwise, the error is used to adjust the weight parameters so that the error is reduced. For 

each presentation of a training set, the network error is evaluated as follows [29]: 

 

𝐽(𝑡) =
1

2
∑(𝑦𝑖(𝑡) − 𝑦̂𝑖(𝑡))

2
𝑛(𝑙)

𝑖=1

 

  (3.11) 

where J is a function of the network parameters 𝐽(𝑤), 𝑛(𝑙) is the number of output layer nodes 

and the integer 𝑡 labels the presentation order of the training sets. 

 

Generalization problem or overfitting occurs when there exist too many parameters in the 

model compared to the number of training points. In this case, when the model is applied to 

different data collected from the same system, the prediction results could be unsatisfactory 

and the model fails to generalize. In order to avoid overfitting, cross-validation on an 

independent dataset can be used. The data is divided into training, validation and testing sets. 

The network is trained on the training data and the error is calculated on the validation data. 

When the error begins to rise even though the error on the training set continues to decrease, 

the number of hidden units has reached the point where overfitting is beginning. The number 
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of hidden units can be fixed at the point where the minimum error on the validation set occurred 

[29]. Then, generalization can be examined using independent testing set. 

Application 

A number of applications of neural network have been performed for condition monitoring 

of structures, rotating machines and bearings in particular. A review of a variety of diagnostic 

techniques based on artificial neural approach for rotating machinery was presented by Yang 

et al. [232]. McCormick and Nandi [233] used multi-layer network to classify the condition of 

a small rotating machine. The time/frequency-domain analysis and neural networks were 

applied for motor rolling bearing fault diagnosis by Li et al. [234]. Vibration simulations and 

experimental results obtained indicate that neural networks can effectively identify various 

motor bearing faults. Samanta et al. [235] compared the performance of three types of artificial 

neural networks, namely, multilayer perceptron (MLP), radial basis function (RBF) network, 

and probabilistic neural network (PNN) for bearing fault detection. The results showed that the 

classifiers are effective in detection of the bearing condition. Tyagi [236] used simple statistical 

features such as standard deviation, skewness, kurtosis etc. of the time-domain vibration signal 

of rolling element bearing along with peaks of the signal and peak of power spectral density 

(PSD) as features to compare the performance of the ANN and SVM classifier. Jayaswal et al. 

[237] provided a review of recent developments in the area of applications of ANN and 

Wavelet Transform in fault diagnosis. Zarei [238] showed that using time domain features and 

ANN can be effective in accurate diagnosis of various motor bearing faults with high precision. 

3.3 Support vector machine (SVM) 

Classical learning methods (like Neural Networks) attempts to minimize error on the 

training data set called the empirical risk minimization (ERM). On the other side, Support 

vector machine (SVM) is designed based on the structural risk minimization (SRM) principle. 

It provides a trade-off between the complexity of the model used for fitting and the quality of 

fitting the training data. It gives better generalization abilities and SRM is achieved through a 

minimization of the upper bound of the generalization error [239-241]. 

 

The three types of SVM (Two-class, Multi-class and One-class) and their fundamentals are 

outlined as follows. 

3.3.1 Two-class SVM 

Linear SVM is the simplest case that the data which belongs to two different classes can be 

separated using a linear hyperplane, as it can be seen in Fig. 3.4. Consider the data 𝒙𝑖 (i=1, …, 

n) labelled as positive (𝑦𝑖 = +1) or negative classes (𝑦𝑖 = −1). The separating line is defined 

as 

 𝒘 ∙ 𝒙 + 𝑏 = 0 

  (3.12) 

where the parameters w and 𝑏 are the normal vector and scalar, respectively. 

 

All the training data satisfy the following constraints: 

 

 𝒘 ∙ 𝒙 + 𝑏 ≥ +1 if  𝑦𝑖 = +1 

 

𝒘 ∙ 𝒙 + 𝑏 ≤ −1 if  𝑦𝑖 = −1 

  (3.13) 
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Figure 3.4- Classification of two classes of data using SVM (from [116]) 

It can be represented as follows: 

 

𝑦𝑖(𝒘 ∙ 𝒙 + 𝑏) ≥ 1   ∀𝑖 

  (3.14) 

 

As it can be seen in Fig. 3.4, the margin is defined as: 

 

𝑚𝑎𝑟𝑔𝑖𝑛 = 2 ‖𝒘‖⁄  

  (3.15) 

 

The constructed hyperplane, which creates the maximum margin, is called the optimal 

separating hyperplane.  It can be formulized as the following optimization problem: 

 

min (
1

2
‖𝒘‖2) 

  (3.16) 

 

In real problems, an exact line dividing the data is usually difficult to obtain so that, by 

introducing the slack variable (𝜉𝑖) (shown in Fig. 3.5) and ignoring few outlier data points, a 

smooth boundary can be created as well as the model called soft margin-SVM.  
 

The Eq. 3.16 is modified as follows: 
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min (
1

2
‖𝒘‖2 + 𝐶∑𝜉𝑖

𝑁

𝑖=1

) 

  (3.17) 

subject to  {
𝑦𝑖(𝒘 ∙ 𝒙 + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0
    𝑖 = 1, … ,𝑁 

 

where 𝜉𝑖 is measuring the distance between the hyperplane and the samples laying in the wrong 

side of the hyperplane whilst 𝐶  is the error penalty. 

 

 
Figure 3.5- The slack variables 𝜉𝑖 and support vectors (data points with circles around 

them) (from [231]). 
 

Using the Kuhn-Tucker condition the problem is converted into the equivalent Lagrangian 

dual problem [231] 

 

min𝐿(𝒘, 𝑏, 𝛼) =
1

2
‖𝒘‖2 −∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

(𝒘 ∙ 𝒙 + 𝑏) +∑𝛼𝑖

𝑁

𝑖=1

 

 

  (3.18) 

where 𝛼𝑖 are the Lagrangian multipliers. Now, in order to minimize L with respect to w, b the 

saddle point equations are formed as: 

 
𝜕𝐿

𝜕𝒘
= 0,

𝜕𝐿

𝜕𝑏
= 0 

 

The result implies that the solution can be expressed as a linear combination of the training 

vectors: 

 

𝒘 =∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑁

𝑖=1

, ∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

= 0 

  (3.19) 
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Moreover, 𝑏 can be obtained from any support vector 𝒙𝑖, which lies on the margin and satisfies 

Eq. 3.20. Thus the scalar parameter b can be obtained using the support vectors from Eq. 3.21. 

 

𝑦𝑖(𝒘 ∙ 𝒙𝑖 + 𝑏) = 1 

  (3.20) 

 

𝑏 = 𝑦𝑖 − (𝒘 ∙ 𝒙𝑖) 

  (3.21) 

 

Substituting 𝒘 and 𝑏 from Eqs. 3.19 and 3.21, into the optimization problem Eq. 3.18, the dual 

quadratic optimization problem is obtained: 

 

max 𝐿(𝛼) =∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑁

𝑖=1

𝒙𝑖 ∙ 𝒙𝑗 

  (3.22) 

subject to  {
∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1

0 ≤ 𝛼𝑖 ≤ 𝐶
    𝑖 = 1,… ,𝑁 

 

Solving the optimization problem Eq. 3.22, the Lagrangian multipliers (𝛼𝑖) are obtained. These 

multipliers are required to achieve the 𝒘 from the Eq.19. The examples 𝒙𝑖 for which 𝛼𝑖 > 0  

are those points that are on the margin, or within the margin when a soft-margin SVM is used. 

These are the so-called support vectors. 

Non-linear decision function to label new data is: 

 

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖,𝑗=1

(𝒙𝑖 ∙ 𝒙𝑗) + 𝑏) 

  (3.23) 

 

The SVM could also be applied in a case of non-linear classification by mapping the data onto 

a high dimensional feature space, where the linear classification is hence possible as shown in 

Fig. 3.6.  

A non-linear vector function such as 𝚽(𝒙) = (𝜑1(𝒙),… , 𝜑𝑙(𝒙)) is used to map the n-

dimensional input vector x onto l dimensional feature space, so that the decision function 

becomes 

 

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖,𝑗=1

(𝚽(𝒙𝑖) ∙ 𝚽(𝒙𝑗)) + 𝑏) 

  (3.24) 

  

By applying the Kernel function as the inner product of mapping functions Eq. 3.25, it is not 

necessary to explicitly evaluate mapping in the feature space. 
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Figure 3.6- Non-linear mapping from input space to high-dimensional feature space (from 

[242]) 

 

 𝑲(𝒙𝑖, 𝒙𝑗) = (𝚽(𝒙𝑖) ∙ 𝚽(𝒙𝑗)) 

  (3.25) 

 

 Various kernel functions could be used such as: 

 

 Linear    𝑲(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖 ∙ 𝒙𝑗)
𝑑

 

 

 Polynomial  𝑲(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖 ∙ 𝒙𝑗 + 1)
𝑑

 

 

 Guassian radial basis function (RBF)   𝑲(𝒙𝑖, 𝒙𝑗) = 𝑒𝑥𝑝 (−𝜸‖𝒙𝑖 − 𝒙𝑗‖
𝟐
) 

 

 Hyperbolic tangent   𝑲(𝒙𝑖, 𝒙𝑗) = 𝑡𝑎𝑛ℎ(𝑘𝒙𝑖 ∙ 𝒙𝑗 + 𝑐) 

 

As the kernel function defines the feature space in which the training set is classified, the 

selection of the appropriate kernel function is very important. 

The bias parameter (Eq. 3.21) using support vectors (𝒙𝑖 with 0 < 𝛼𝑖 < C) will be: 

 

𝑏 = 𝑦𝑖 − (∑𝛼𝑗𝑦𝑗

𝑁

𝑗=1

𝑲(𝒙𝑗 , 𝒙𝑖)) 

  (3.26) 

 

Utilizing a kernel function, Non-linear decision function will be: 

  

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖,𝑗=1

𝑲(𝒙𝑖, 𝒙𝑗) + 𝑏) 

  (3.27) 

http://en.wikipedia.org/wiki/Hyperbolic_function


59 

 

The error penalty (C) in Eqs. 3.17 and 3.22, is a parameter that allows one to trade off 

training error versus model complexity. A small value for C will increase the number of training 

errors, while a large C will lead to a behavior similar to that of a hard-margin SVM. The best 

values for the C parameter and kernel parameter are determined by optimising the performance 

of the classifiers on the validation sets or applying cross-validation for verifying performance 

using only a training set.  

3.3.2 Multi-class SVM 

Sometimes, the problems of interest involves more than two classes such as for the case of 

fault diagnosis of rotating machineries where several fault sources exist. There exist two 

strategy to construct a multi-class SVM: One-against-all and One-against-one [116]. 

 

 One-against-all (OAA) 

 In this method k different classifier SVM are constructed where k is the number of classes. 

The training data in the i-th class with positive labels, and all the other data (k-1 classes) with 

negative labels are utilized for training the i-th SVM. For the given data {𝑥𝑖  , 𝑦𝑗} where 𝑥𝑖𝜖𝑅
𝑛 

, 𝑖 = 1, … , 𝑙 and 𝑦𝑗𝜖 {1, … , 𝑘}  is the label of each class of 𝑥𝑖 , the problem of constructing i-th 

SVM is [116]: 

 

𝑚𝑖𝑛 
1

2
‖𝒘𝑖‖

2
+ 𝐶∑𝜉𝑗

𝑖(𝒘𝑖)
𝑇

𝑙

𝑖=1

 

  (3.28) 

Subject to  

{
 

 (𝒘
𝑖)
𝑇
𝜙(𝑥𝑗) + 𝑏

𝑖 ≥ 1 − 𝜉𝑗
𝑖            𝑖𝑓   𝑦 = 𝑖

(𝒘𝑖)
𝑇
𝜙(𝑥𝑗) + 𝑏

𝑖 ≤ −1 + 𝜉𝑗
𝑖           𝑖𝑓   𝑦 ≠ 𝑖

𝜉𝑗
𝑖 ≥ 0                                                𝑗 = 1,… , 𝑙

 

 

where the training data is mapped to a higher-dimensional space by function 𝜙. 

 

 One-against-one (OAO) 

 

In this method 𝑘(𝑘 − 1)/2 SVM models are constructed so that each model is trained using 

data from two classes. For training data from the i-th and the j-th classes, the classification 

problem is formed as follows [116]: 

 

𝑚𝑖𝑛 
1

2
‖𝒘𝑖𝑗‖

2
+ 𝐶∑𝜉𝑡

𝑖𝑗
(𝒘𝑖𝑗)

𝑇

𝑡

 

  (3.29) 

Subject to  

{
 

 (𝒘
𝑖𝑗)

𝑇
𝜙(𝑥𝑡) + 𝑏

𝑖𝑗 ≥ 1 − 𝜉𝑡
𝑖𝑗
            𝑖𝑓   𝑦 = 𝑖

(𝒘𝑖𝑗)
𝑇
𝜙(𝑥𝑡) + 𝑏

𝑖𝑗 ≤ −1 + 𝜉𝑡
𝑖𝑗
          𝑖𝑓   𝑦 ≠ 𝑖

𝜉𝑡
𝑖𝑗
≥ 0                                                𝑗 = 1, … , 𝑙
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There exist various approaches for future testing after constructing all classifiers. After some 

tests, the decision is made as follows: if 𝑠𝑖𝑔𝑛 (𝒘𝑖𝑗)
𝑇
𝜙(𝑥𝑡) + 𝑏

𝑖𝑗 says 𝑥 is in the i-th class, then 

the vote for the i-th class is added by one. Otherwise, the j-th is increased by one. Then 𝑥 is 

predicted in the class using the largest vote [116]. 

3.3.3 One-class SVM 

One-class SVM constructs the separating hyperplane using only one class of data and to 

classify new samples belong to other possible classes as outliers [113]. As it can be seen in Fig. 

3.7, it constructs a hyperplane around the data, such that its distance to the origin is maximal 

among all possible hyperplanes. The one-class SVM (like supervised two-class SVM) could 

also be applied in a case of non-linear classification by mapping the data onto a high 

dimensional feature space, where the linear classification is then possible.  

 
Figure 3.7- Classification by one-class SVM (from [242]).  

 

The Margin is defined as [113]: 

 

𝑚𝑎𝑟𝑔𝑖𝑛 = 𝜌 ‖𝒘‖⁄        

  (3.30) 

 

To separate the data set from the origin, the following quadratic program must be solved [113]: 

 

min (
1

2
‖𝒘‖2 +

1

𝜐𝑙
∑𝜉𝑖

𝑙

𝑖=1

− 𝜌) 

  (3.31) 

subject to  {
𝑦𝑖(𝒘 ∙ 𝜙(𝒙𝑖)) ≥ 𝜌 − 𝜉𝑖

𝜉𝑖 ≥ 0
    𝑖 = 1,… , 𝑙 

          

where 𝒘 and 𝜌 are the weight vector and the offset parameterizing the hyperplane.  𝜉𝑖 is the 

slack variable, 𝜐 is the regularization parameter and represents an upper bound on the fraction 

of outliers (training errors) and a lower bound on the fraction of support vectors (SVs) with 

respect to the number of training samples. It is a variable taking values between 0 and 1 that 

monitors the effect of outliers (hardness and softness of the boundary around data).  
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Introducing Lagrange multipliers we obtain the dual problem as: 

𝑚𝑖𝑛 
1

2
∑ 𝛼𝑖𝛼𝑗

𝑙

𝑖,𝑗=1

𝑲(𝒙𝑖, 𝒙𝑗) 

  (3.32) 

Subject to  {
0 ≤ 𝛼𝑖 ≤

1

𝜐𝑙

∑ 𝛼𝑖
𝑁
𝑖=1 = 1

 

 

If 𝜐 approaches 0, the upper boundaries on the Lagrange multipliers tend to infinity, so the 

second inequality constraint in Eq. 3.32 becomes void. As the penalization of errors becomes 

infinite, it returns to the corresponding hard margin algorithm. 

 

For the positive, non-zero multipliers (support vectors 𝑥𝑖)) we will have: 

𝜌 = 𝒘 ∙ 𝜙(𝒙𝑖) =∑𝛼𝑗

𝑙

𝑗=1

𝑲(𝒙𝑗, 𝒙𝑖) 

  (3.33) 

 

Accordingly the non-linear decision function for labelling new samples is represented as 

follows: 

 

𝑓(𝒙) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑖

𝑙

𝑖=1

𝑲(𝒙𝑖, 𝒙) − 𝜌) 

  (3.34) 

Applications 

Support vector machine has been widely used for damage detection and identification of 

rotating machines. Widodo et al. [116] presented a very complete review of the recent 

developments of SVM in machine condition monitoring and fault diagnosis.  

Jack and Nandi [243] calculated statistical features for vibration signals of roller bearings 

and selected the optimal features using genetic algorithm (GA). They used SVM and ANN for 

fault identification. Samanta et al. [244,245] proposed an improved method in fault detection 

of bearing. They applied GA for feature selection and searching proper RBF kernel parameters. 

Several effect conditions such as sensor location, signal preprocessing, number of features were 

presented to show the performance of SVM compared with ANN. Shin et al. have presented in 

[242] a comparison of the results of damage detection for one-class SVM and multi-layer 

networks for electro-mechanical machinery. Experiments performed on artificial and real 

dataset showed that the performance of one-class method is mostly superior to that of 

multilayer perception. Yang et al. [246] proposed a fault diagnosis method based on multi-class 

SVMs for a rotating machinery. A comparison between the SVMs and ANNs algorithms were 

performed and the great characteristics of SVMs were demonstrated.  Zhang et al. [247] 

proposed probabilistic SVM to reduce the number of samples for fault diagnosis of bearing. 

Hu et al. [248] used improved wavelet package transform (IWPT) and SVM ensemble for fault 

diagnosis of rolling element bearing. Yang et al. [249] defined the ratios of amplitudes at the 

different fault characteristic frequencies in the envelope spectra of some IMFs (obtained using 

EMD) as the characteristic amplitude ratios. Then, they were used as input to the support vector 

machine (SVM) classifiers to identify fault patterns of the roller bearings. Pirra et al. [250] 
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used feature vectors extracted by EMD as input for one-class SVM to detect defect of roller 

bearing operating under different speed and external load conditions. Zhang and Zhou 

[251] applied ensemble empirical mode decomposition (EEMD) and optimized support vector 

machine (SVM) for multi-fault diagnosis of rolling element bearings. 
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Chapter 4 

 

 

 

 

Experimental datasets 
 

 

 

 

 

 

 

 

 

 

 

  



64 

 

The fault detection approaches proposed in this thesis have been tested on experimental 

datasets. In order to validate the methods for early damage detection, the acceleration signals 

were collected for healthy and faulty bearing using the test rig described in section 4.1. 

Validation of the method proposed for damage detection of bearing operating under time-

varying condition are tested using the data collected on the test rig 2 described in section 4.2. 

In this chapter the procedure of data acquisition process is presented and the test rigs are 

described in details in sections 4.1 and 4.2, respectively. 

4.1 Test rig1 

The test rig 1 shown in Fig. 4.1 has been developed and assembled by the Dynamics & 

Identification Research Group (DIRG) at the Department of Mechanical and Aerospace 

Engineering of Politecnico di Torino. It is equipped with an electro-spindle, its power supply, 

three bearings and their supports (1 and 3 in Fig. 4.1), a load applying mechanism, a load cell, 

four accelerometers to measure acceleration signals and thermocouples to measure temperature 

of the oil and bearings. It is possible to change the rotational speed, the external load applied 

and the oil temperature. The electro-spindle has been selected so that a rotating speed up to 

30000 rpm can be reached. The radial force is applied by the green springs to the bearing shown 

by 3 in Fig. 4.1. Moreover, it is possible to heat the oil in the tank with an electric resistance in 

order to change its temperature. 

 

 

 
 

Figure 4.1- The test rig 1 assembled in DIRG group. 
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4.1.1  Description 

The test rig has been equipped with triaxial accelerometers fixed to the bearing supports 

using a set screw. Their axes orientation x, y and z axis can be seen in Fig. 4.2 and correspond 

to the axial, radial and tangential direction, respectively. Technical characteristics of the 

accelerometers are introduced in Table 4.1. Kistler piezoelectric accelerometers utilize ceramic 

shear sensing elements that generate an electrical charge when mechanically loaded. 

The calibration characteristic of the load cell is illustrated in Fig. 4.3, which shows the 

sensitivity of load cell for measuring the radial load: it is 0.499 mV/N. In order to record some 

significant temperature values, two thermocouples are placed in the oil basin and in proximity 

of the external ring of bearing 3, respectively. 

All the accelerometers are connected to the OROS OR38 data acquisition system shown in 

Fig. 4.4. The data acquisition system is able to sample up to 24 channels synchronously with a 

maximum sampling rate of 102.400 kHz with a passing band of 40 kHz and anti-aliasing filters. 

It can be set to measure time record histories up to many minutes each channel. 

The bearings used in the test rig are from an aeronautical application (type of bearing is SKF 

NN 76141). SKF has also provided the creation of various damages in their laboratories. A list 

of artificial defect type and their extent is presented in Table 4.2 and an example of these 

damages is shown in Fig. 4.5.  

 

 

 

 
 

Figure 4.2- The triaxial accelerometer used to collect data in three directions. 

 

 

Table 4.1- Technical characteristics of the accelerometers 

 

Producer Model Full scale Nominal sensitivity Resonance 

Kistler 8763A500, triaxial 500 g 10 mV/g ~55 kHz 
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Figure 4.3- The Characteristic of the load cell. 

 

 
Figure 4.4- Oros OR38 acquisition system with its PC. 

 

Table 4.2- Various type of defects and sizes created on the different bearings 

 

Defect 

location 
Inner ring Inner ring Inner ring 

Roller 

element 

Roller 

element 

Roller 

element 

Size 

(microns) 
150 250 450 150 250 450 
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(a) 

 
(b) 

Figure 4.5- The defective bearing with damage created on one roller (a) the defect size 

with the scale in tenths of millimeters (the values 2, 4, 6 and 8 are in millimeters). 

 

 

The test rig consists of four accelerometers used for the acceleration acquisitions, as shown 

in Fig. 4.6. Three accelerometers located on the bearing supports in order to collect the 

vibration signals.  They are connected to channels 1-2-3, 4-5-6 and 7-8-9. The last 

accelerometer, giving channels 10-11-12, is placed on the elector-spindle support in order to 

acquire the mechanical noisy components given by the spindle itself.  The defective bearings 

are assembled in the support where the accelerometers connected to channels 1-2-3 are 

mounted. Moreover, two thermocouples used to measure the bearing and oil temperatures. One 

of them is placed in contact with the support of the bearing and the other is put in the oil tank.  

Datasets required to validate the proposed techniques for early damage detection were 

acquired using the test rig 1. The healthy bearing and six defective bearings described in Table 

4.2 were mounted and, for each of them, the tests were performed under five different shaft 

speeds (100, 200, 300, 400 and 500 Hz) and three values of loading (1.0, 1.4 and 1.8 kN). A 

total number of 15 acquisitions per bearing type was finally obtained. Each acquisition consists 

usually in 8 seconds of accelerations at a sampling frequency of 102.400 kHz. For each 

acquisition, also oil and bearing casing temperatures are measured using two thermocouples. 
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Figure 4.6- The setups used for the datasets acquisitions. 
 

4.2 Test rig 2 

The experimental setup detailed in Figs. 4.7 and 4.8 was used to record signals 

corresponding to the time-varying conditions. The test rig 2 assembled at the Dynamics of 

Advanced Structures and Machinery (DASM) Group at Department of Mechanical and 

Aerospace Engineering of Strathclyde University. It consists of a shunt DC motor (1 hp and 

2000 rpm), bearing assembly, a mechanical loading system, an accelerometer and a portable 

data acquisition system. 

4.2.1  Description   

The data acquisition system used to collect acceleration signals is the portable reactec 

system shown in Fig. 4.9. Its frequency range is between 2 Hz and 40 kHz. The time block 

length which can be measured is 256 to 32768 samples. 

The accelerometer used in the test rig 2 is MTN/1120 model and shown in Fig. 4.9. It is 

fixed to the bearing supports by magnetic coupling. The technical characteristics of the 

accelerometer is introduced in Table 4.3. 

The bearings used in the experiment are SKF deep grooves 6308. The defect created for the 

faulty bearing used in the experiment was a very small notches on the inner race. Two bearing 

conditions are considered in this study (i.e. healthy and inner race faulty) and 20 signals are 
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acquired for each signal class. For all the acquired signals, the run up time varying operating 

condition are considered by varying the speed from 150 to 1500 rpm. 

 

 

 
 

Figure 4.7- The experimental setup. 

 

 
 

Figure 4.8- Sketch of the installation used. 
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Figure 4.9- The data acquisition system and accelerometer used in the test rig. 

 

Table 4.3- Technical characteristics of the accelerometers 

 

Producer Model Dynamic range Nominal sensitivity 
Mounted base 

Resonance 

MONITRAN MTN/1120 ±80 g 100 mV/g 20 kHz 
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Chapter 5 

 

 

 

 

Analysis and results 
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In this chapter, the Diagnostic techniques presented in Chapter 2 and 3 are applied to real 

data acquired on the test rig 1 and the test rig 2, described in chapter 4. As mentioned in section 

2.2.1, one of the drawbacks of the EMD is sifting stop criterion, which might affect fault 

diagnosis results. In section 5.1, the criteria proposed for sifting stop of the EMD technique are 

investigated whether affect the damage detection of roller bearings. The signals (collected on 

the test rig1) are decomposed by the EMD using different stopping criteria and the feature 

vectors obtained from IMFs are classified using SVM to compare the labelling success rates 

and the calculated Margin.  

Then, a combination method is proposed for early damage detection of roller bearing.  The 

WPT technique is applied to data (collected on the test rig1) for denoising and the clean data 

is break-down into IMFs using the EEMD method.  

In the section 5.3, in order to enhance the EEMD, a Performance improved EEMD 

(PIEEMD) is proposed to determine appropriate value for the amplitude of added noise.  

A novel feature extraction method is proposed in the section 5.4 for identifying the small 

size defect based on the model created using only healthy bearing signals. The TKEO is applied 

to IMFs decomposed by PIEEMD technique to create new feature vectors as input data for one-

class SVM.  

Finally, a cointegration based method is proposed for fault diagnosis of roller bearing 

working in time-varying condition. The signals collected on test rig 2 are divided into some 

segments and each segment is decomposed by PIEEMD. The cointegrating vectors of first three 

IMFs are obtained by utilizing cointegration method. Then, TKEO is applied to each 

cointegrating vector to create three dimensional feature vectors used to construct the 

hyperplane of one-class SVM. 

The results of this work have been published in some articles [252-256]. 

5.1 Sifting stop criterion of EMD   

Although the EMD has been successfully used in various applications, there exist some 

drawbacks such as lack of a mathematical base, no robust stopping criterion for sifting process, 

mode mixing and border effect problem. One of the most relevant drawbacks in fault diagnosis 

is the sifting stop criterion. By definition, an IMF has to satisfy the condition whose mean 

between the upper and lower envelopes must be zero. Thus, the sifting process is repeatedly 

performed to make the symmetric zero mean modes. On the other hand, too many sifting steps 

will reduce the physical meaning of IMFs which are extremely important for fault diagnosis. 

Thus, an appropriate criterion is required to identify the step when the sifting process is 

concluded. The criteria proposed so far are: Cauchy-type convergence, Mean fluctuations 

thresholds, Energy difference tracking, Resolution factor, Bandwidths, and Orthogonality 

criterion, which are discussed in the following. 

Cauchy-type convergence (SD) 

 Huang et al. [257] proposed a criterion where the size of the standard deviation-SD- of two 

consequent sifting results (ℎ𝑛,ℎ𝑛−1) should be limited and when it reaches a certain predefined 

value, sifting must stop: 

 

𝑆𝐷 =∑
[ℎ𝑛−1(𝑡) − ℎ𝑛(𝑡)]

2

ℎ2𝑛−1(𝑡)
𝑡

 

    (5.1) 

 

The main flaw of this approach is that it is unrelated to the definition of IMFs. 
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Mean fluctuations thresholds (MFT) 

Rilling et al. [258] introduced a new criterion based on two thresholds (𝜃1, 𝜃2) aimed at 

guaranteeing globally small fluctuations in the mean while taking into account locally large 

excursions. For (1 − 𝛼) fraction of data, sifting will be continued when 𝜎(𝑡) < 𝜃1 and for 

remaining fraction when  𝜎(𝑡) < 𝜃2. The fraction 𝜎(𝑡) is defined as follows: 

 

𝜎(𝑡) = |
𝑚(𝑡)

𝑎(𝑡)
| 

  (5.2) 

where 𝑎(𝑡) and  𝑚(𝑡) are defined as: 

 𝑎(𝑡) = (𝑒𝑚𝑎𝑥(𝑡) − 𝑒𝑚𝑖𝑛(𝑡))/2 

 𝑚(𝑡) = (𝑒𝑚𝑎𝑥(𝑡) + 𝑒𝑚𝑖𝑛(𝑡))/2 

𝑒𝑚𝑎𝑥(𝑡) and 𝑒𝑚𝑖𝑛(𝑡)  are the upper and lower envelopes, respectively. 

 

They suggested a setting, in which 𝛼 ≈ 0.05, 𝜃1 ≈ 0.05 and 𝜃2 ≈ 10 𝜃1. The shortcoming of 

MFT is that the thresholds are not adaptive. 

Energy difference tracking (EDT) 

The energy difference tracking (EDT) is based on the assumption that the residue and IMFs 

are mutually orthogonal [259].  

The total energy of the signal is computed as follows: 

 

𝐸𝑥 = ∫ 𝑥2(𝑡) 𝑑𝑡

+∞

−∞

 

  (5.3) 

Due to orthogonality of the components: 

 

∫ 𝑥𝑖(𝑡) 𝑥𝑗(𝑡) 𝑑𝑡

+∞

−∞

≅ 0 

  (5.4) 

where 𝑖 ≠ 𝑗. Thus, the total energy is represented as the sum of energy of the components: 

 

𝐸𝑥 = ∫ 𝑥1
2(𝑡) 𝑑𝑡

+∞

−∞

+ ∫ 𝑥2
2(𝑡) 𝑑𝑡 + ⋯+ ∫ 𝑥𝑛

2(𝑡) 𝑑𝑡

+∞

−∞

+∞

−∞

 

  

  (5.5) 
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The sum of energy of decomposed IMF (ℎ1) and those of the residual signal is formulated 

as follows: 

 

𝐸𝑡𝑜𝑡 = ∫ ℎ1
2(𝑡) 𝑑𝑡

+∞

−∞

+ ∫ [𝑥(𝑡) − ℎ1(𝑡)]
2 𝑑𝑡

+∞

−∞

 

  (5.6) 

 

If  ℎ1 is an orthogonal component of 𝑥(𝑡), the 𝐸𝑡𝑜𝑡 equals to the original signal energy 𝐸𝑥. 

Otherwise, there exists a difference denoted as 𝐸𝑒𝑟𝑟. Hence, 𝐸𝑒𝑟𝑟 is tracked as the stopping 

criterion and when it reaches a certain minimum and the mean value of envelope becomes 

small enough, sifting process is terminated. 

 

𝐸𝑒𝑟𝑟 = 𝐸𝑡𝑜𝑡 − 𝐸𝑥 = ∫ℎ1
2(𝑡)𝑑𝑡 − ∫𝑥(𝑡) ℎ1(𝑡) 𝑑𝑡 

      

  (5.7) 

Resolution factor (RF) 

Rato et al. [260] applied the ratio between the energy of the signal at the beginning of the 

sifting (𝐸𝑥) and the energy of mean of envelopes (𝐸𝑚) as the sifting stop criterion. The process 

is terminated when the ratio ascends a predefined factor (resolution factor (RF)).   

 

𝐸𝑥
𝐸𝑚

≤ 𝑅𝐹 

  (5.8) 

 

Setting the RF criterion is determined by practice for each signal and they set it 40 dB to 

decompose an Electro-Cardio-Gram (ECG) signal and 50 dB for an Electro-Encephalo-

Graphy (EEG) signal.    

Bandwidth (BW)  

Xuan and Xie [261] designed a new stop criterion based on two types of bandwidth: 

instantaneous bandwidth and frequency bandwidth which is caused only by frequency changes. 

It uses the MFT criterion to get a result that almost satisfies the two conditions of IMF. Then, 

sifting process is continued until to find the minimum of 𝜎𝑓
2 (variance of instantaneous 

frequency) or until the difference of 𝜎𝑓
2 between two consequent sifting results is very small: 

 

|(𝜎𝑓
2)ℎ𝑛 − (𝜎𝑓

2)ℎ𝑛−1| < 𝜀 

  

  (5.9) 

Orthogonality criterion (OC) 

Based on orthogonality definition, Lin and Hongbing defined orthogonality criterion (OC) 

[262]: 
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𝑂𝐶 = |∑
𝑚(𝑡) 𝑥(𝑡)

𝑚(𝑡) (𝑥(𝑡) − 𝑚(𝑡))

𝑁

𝑡=1

| 

  (5.10) 

when OC reaches to a pre-defined value, the sifting will be terminated.  

 

If  𝑚(𝑡) = 𝑏 𝑥(𝑡) so that 0 < 𝑏 < 1 , then  𝑂𝐶 =
1

1−𝑏
> 1. If 𝑚(𝑡) is irrelative to 𝑥(𝑡), then 

𝑂𝐶 < 1. They set OC > 1.05 as the sifting condition in the inverse EMD filter. They applied it 

to a vibration signal to show that their improved EMD, which includes some modifications 

such as the proposed stopping criterion, achieves less mode mixing problem. 

Methodology 

The goal is to evaluate the criteria to identify which stopping criterion is more efficient for 

bearing damage detection. The bearing data set (acceleration signals) were collected under 

various operating conditions and different fault severities using the test rig 1 (section 4.1) 

developed and assembled by the Dynamics & Identification Research Group (DIRG) at the 

Department of Mechanical and Aerospace Engineering of Politecnico di Torino. The data 

collected with three different shaft speeds (200, 300 and 400 Hz) and three different external 

radial loads (1.0, 1.4 and 1.8 kN) are utilized. The original acquired signals are divided into 10 

segments including 10000 data points each, to extract required informative feature vectors. 

Thus, each signal includes 10 segments. 

The fault diagnosis method is given as the following:  

1) To apply EMD with different sifting stop criteria to decompose each segments into 

some IMFs. The first m IMFs which include the most dominant fault information are 

chosen to extract the feature. 

2) To calculate the total energy iE  of the first m IMFs: 

 

𝐸𝑖 = ∫ |𝑐𝑖(𝑡)|
2 𝑑𝑡

+∞

−∞

 

  (5.11)

  

3) To create a feature vector with the energies of the m selected IMFs: 

 

𝐹𝑉 = [𝐸1, 𝐸2, … , 𝐸𝑚]   

  (5.12)

  

4) To normalize the feature: 

 

𝐹𝑉𝑛 = [𝐸1 𝐸⁄ , 𝐸2 𝐸⁄ ,… , 𝐸𝑚 𝐸⁄ ] 

  (5.13) 

where 𝐸 = (∑ |𝐸𝑖|
2𝑚

𝑖=1 )1/2  

 

5) To construct the SVM by utilizing the normalized feature vectors. The 60% of data are 

used for training and the rest are taken as the test samples. 
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Results and analysis 

By implementing the methodology described, feature vectors for each sifting stop criterion 

and defect size are obtained. The IMFs obtained using the SD criterion are presented in Fig. 

5.1. The normalized energy of IMFs introduced as an efficient feature vector in fault diagnosis  

 

 

 
 

Figure 5.1- A real collected vibration signal of a roller bearing and the obtained IMFs 

using the EMD method 

 

of roller bearing, has been adopted using only the first three elements of the feature vectors. In 

Fig. 5.2, feature vectors for healthy and defective bearings (150 and 250 microns defect levels) 

are shown for a specific operating condition (Shaft speed = 200 Hz and external load = 1.4 kN). 

For bigger size damage (250 microns), two classes of data (healthy and damaged) are perfectly 

separated for all criteria. Whereas, for smaller defect (150 microns), it seems that still exists a 

confusion between the two classes in some cases such as the SD algorithm. For example, the 

results in Figs. 5.3 and Fig. 5.4, show the data confusion adopting the SD criterion, whereas 

results are distinctly divided into two groups applying the MFT. The classification results of 

the samples obtained by applying all sifting stop criteria and for various operating conditions 
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are proposed in Table 5.1 and Table 5.2 for small and big defects, respectively. For those cases 

where the test success rate is perfect (100%), the calculated margin is presented, instead. 

Comparing the success rates proposed in Tables 5.1 and 5.2, it can be found that the most 

accurate defect detection can be achieved by using MFT, EDT and RF criteria. In fact only in 

two cases the detection rates are not perfect for these criteria (considering both damage sizes). 

It seems that the worst result of the classification rates have been acquired applying the SD 

criterion so that in eight states there exist some wrong labeled samples. 

a) SD criterion b) MFT criterion
 

 

c) EDT criterion d) RF criterion 
 

e) BW criterion f) OC criterion 

 

Figure 5.2- 3D Feature vectors of all criteria at speed = 200 Hz and load = 1.4 kN
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Figure 5.3- Feature vectors of SD criterion at speed = 200 Hz and load = 1.4 kN 

 

 
Figure 5.4- Feature vectors of MFT criterion at speed = 200 Hz and load = 1.4 kN 
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higher shaft speeds whereas for small level, such an incorrectly labelling exists even for lower 

speed. 

In next step, all the data which belongs to different speeds and loads are considered in a whole, 

to investigate how efficient each method is, to remove the effects of speed and external load. Nine 

operating conditions (three speeds and three loads) and three bearing conditions (normal, small 

and big defect sizes on Roller (150 and 250 microns) are investigated; 180 samples (9×2×10×1) 

for each criterion are divided into 108 training and 72 test samples. The defect identification 

accuracy of different methods is shown for both damage levels in Table 5.3. As it can be seen, the 

most accurate results for smaller defect level is achieved using EDT criterion (93.5% classification 

rate for training and 80.6% for test) and for higher damage level by using RF criterion (99.1% 

classification rate for training and 97.2% for test ). The lowest success rates for both levels is 

obtained using SD criterion. 

Table 5.1- Margin (In the case of 100% success rate) and success rate -in bold- of fault diagnosis 

(Defect size 150 microns) 

 

Criterion 

200 (Hz) 

1.0 (kN) 

200 (Hz) 

1.4 (kN) 

200 (Hz) 

1.8 (kN) 

300 (Hz) 

1.0 (kN) 

300 (Hz) 

1.4 (kN) 

300 (Hz) 

1.8 (kN 

400 (Hz) 

1.0 (kN) 

400 (Hz) 

1.4 (kN) 

400 (Hz) 

1.8 (kN) 

Margin Margin Margin Margin Margin Margin Margin Margin Margin 

SD 1.3170 87.5% 87.5% 1.0695 87.5% 87.5% 75.0% 1.2141 1.1310 

MFT 1.3609 0.9137 1.0093 1.1867 87.5% 0.9849 1.0178 0.9556 1.0041 

EDT 1.3224 1.0078 87.5% 1.2530 1.2973 1.1433 87.5% 1.1752 1.1623 

RF 1.3397 87.5% 1.0940 1.3213 1.0109 0.9877 1.0198 1.2151 1.0738 

BW 1.3738 1.1292 87.5% 1.3784 1.1359 1.3151 1.0427 1.1069 1.1265 

OC 1.3261 0.9798 0.9733 1.2131 87.5% 87.5% 1.0901 1.0301 1.0893 

 

Table 5.2- Margin (In the case of 100% success rate) and success rate-in bold- of fault diagnosis 

(Defect size 250 microns) 

 

Criterion 

200 (Hz) 

1.0 (kN) 

200 (Hz) 

1.4 (kN) 

200 (Hz) 

1.8 (kN) 

300 (Hz) 

1.0 (kN) 

300 (Hz) 

1.4 (kN) 

300 (Hz) 

1.8 (kN) 

400 (Hz) 

1.0 (kN) 

400 (Hz) 

1.4 (kN) 

400 (Hz) 

1.8 (kN) 

Margin Margin Margin Margin Margin Margin Margin Margin Margin 

SD 1.2922 1.3947 1.1601 1.2121 87.5% 87.5% 1.0479 0.9910 75.0% 

MFT 1.3725 1.3769 1.3275 0.9529 1.0497 87.5% 1.1075 1.1053 1.1013 

EDT 1.4079 1.3347 1.1917 1.2991 1.3496 1.3565 1.2393 1.2559 1.2580 

RF 1.3913 1.3729 1.3859 1.0668 1.0882 87.5% 1.1029 1.0508 1.2163 

BW 1.3884 1.3867 1.3060 1.0622 1.1507 0.8300 1.1005 87.5% 75.0% 

OC 1.3543 1.3453 1.3341 75.0% 1.0637 1.0006 1.3578 1.3360 1.2039 
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Table 5.3- Success rate of speed and load effects removal and fraction of correctly labeled 

samples for both defect sizes 

 

 

 

 

150 microns 250 microns 

Training Test Training Test 

Criterion 

Success rate 

Fraction of 

correctly 

labeled 

Success rate 

Fraction of 

correctly 

labeled 

Success rate 

Fraction of 

correctly  

labeled 

Success rate 

Fraction of 

correctly 

labeled 

SD 73.1%  (79/108) 72.2% (52/72) 87.0%  (94/108) 83.3%  (60/72) 

MFT 84.3%  (91/108) 83.3%  (60/72) 97.2%  (105/108) 95.8%  (69/72) 

EDT 93.5%  (101/108) 80.6%  (58/72) 96.3%  (104/108) 94.4%  (68/72) 

RF 85.2%  (92/108) 84.8%  (61/72) 99.1%  (107/108) 97.2%  (70/72) 

BW 88.0%  (95/108) 83.3%  (60/72) 93.5%  (101/108) 91.7%  (66/72) 

OC 82.4%  (89/108) 81.9%  (59/72) 95.4%  (103/108) 93.1%  (67/72) 

 

Conclusions 

 It has been shown that the highest success rate in the recognition process of the bearing state, 

is obtained using MFT, EDT and RF criteria. Although higher mean value of margin is achieved 

using EDT, the mean values obtained by MFT and RF are not far less. In addition, in order to 

remove speed and load effects contemporary, the most accurate results are obtained by using EDT 

and RF criteria for small defect size and higher level of defect, respectively. 

5.2 Early damage detection using EEMD and denoising 

Acceleration signals acquired are usually noisy, which significantly affects the results of fault 

diagnosis. Thus, the signals must be denoised before applying diagnostic techniques. The 

denoising methods were discussed in section 2.1. Wavelet packet Transform (WPT) is a powerful 

method utilized effectively for the denoising procedure of the acquired signals. Furthermore, based 

on the results of section 5.1, in some cases, small defect size are not perfectly detected using the 

EMD technique. Therefore, a more powerful diagnostic method has been developed. As mentioned 

in section 2.2.2, the EEMD method has been proposed to eliminate one of the drawbacks, i.e. the 

mode mixing problem of the EMD technique. Two important parameters which may influence the 

performance of the EEMD are the amplitude of added noise and the number of ensemble trials. If 

the amplitude of the added noise is too small with respect to the original signal, a considerable 

mode mixing improvement cannot be achieved. On the other hand, if the amplitude of the added 

noise is too large, it will create some redundant IMF components which lead to misinterpretation 

of the analysis result. Although an infinite number of ensemble trials is needed to completely 

cancel out the effect of the added white noise, too many trial numbers would increase the 

computational cost. Wu and Huang [171] suggested 0.2 of standard deviation of the original signal 

for the amplitude of the added white noise and a few hundred ensemble trials. However, it seems 

that there is no robust guide to choosing the optimum amplitude from the wide range suggested. 

In this section a combined method is investigated to detect very small defects on roller bearings. 

The WPT is applied to clean the noisy signals, then, informative feature vectors are extracted using 

the EEMD technique. 
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Methodology 

It is investigated whether the proposed combined method is able to detect very small defects on 

roller bearings. The bearing data set (acceleration signals) were collected under various operating 

conditions and different fault severities using the test rig 1 (section 4.1). Three different shaft 

speeds (200, 300 and 400 Hz) and three different external radial loads (1.0, 1.4 and 1.8 kN) are 

considered to acquire the signals in different operating conditions. The early defect over one roller 

is 150 microns in diameter. The original acquired signals were divided into 20 segments including 

10000 data points each, to extract required informative feature vectors. The Normalized energy of 

IMFs are used as the feature vectors. 

The fault diagnosis method is given as the following: 

1) To apply WPT to extract the clean data from the collected noisy signals. 

2) To apply EEMD with different amplitude of added white noise (from 0.2 to 0.6 of standard 

deviation of the original signal) to decompose the vibration signals into some IMFs.  The 

first m IMFs including the most dominant fault information are chosen to extract the 

feature. 

3) To calculate the Normalized feature vectors as explained in section 5.1. 

4) To construct the SVM by utilizing the normalized feature vectors.  60% of data are used 

for training and the rest are taken as the test samples. 

Results and analysis 

By implementing this methodology the normalized energy of the IMFs is calculated using only 

the first three IMFs. In Table 5.4, it is shown that the small defect size (150 microns) is not 

recognized using the EMD for some working conditions. Increasing speed and load lead to less 

success rates. From Fig. 5.5, it is clear that healthy and faulty samples cannot be separated 

completely and consequently the labeling success rate will not be perfect. 

The present step is hence devoted to investigate whether the proposed combined method is able 

to better detect the defect for those working conditions in which the EMD was not able to do so 

(Table 5.4). In order to eliminate the riding noise from the noisy signal, the WPT is applied using 

the discrete Meyer and Daubechies mother wavelet. In Fig. 5.6, the noisy signal, the separated 

noise and the denoised signal are shown for a specific working condition (Speed = 300 Hz and 

load = 1.4 kN). The signal to noise ratios (SNR) presented in Table 5.5 (for both healthy and faulty 

signals) reveals that the use of WPT allows to clean the data effectively, especially for the lower 

speed. For those load and speed settings whose damage detection was unsatisfactory by simply 

using EMD (Table 5.4), it is now possible to identify the defect adopting the proposed combined 

techniques (Table 5.6). 

 

Table 5.4- Success rates of classification for different operating conditions using EMD 

EMD 
200 (Hz) 

1.0 (kN) 

200 (Hz) 

1.4 (kN) 

200 (Hz) 

1.8 (kN) 

300 (Hz) 

1.0 (kN) 

300 (Hz) 

1.4 (kN) 

300 (Hz) 

1.8 (kN) 

400 (Hz) 

1.0 (KN) 

400 (Hz) 

1.4 (kN) 

400 (Hz) 

1.8 (kN) 

Training 100 100 100 100 100 100 100 100 100 

Test 100 100 81.3 100 81.3 100 100 93.8 62.5 
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Figure 5.5- Normalized energy of first three IMFs for the worst condition (Speed = 400 Hz and 

load = 1.8 kN) 

 

             (a) (b) 

Figure 5.6- Denoising signals using db10 (Speed = 300 Hz and load = 1.4 kN). a) Healthy signal 

b) Faulty signal 

Table 5.5- SNR ratio for healthy and faulty bearing signals of each operating conditions 

(After applying WPT) 

WPD 
200 (Hz) 

1.8 (kN) 

300 (Hz) 

1.4 (kN) 

400 (Hz) 

1.4 (kN) 

400 (Hz) 

1.8 (kN) 

 Healthy Faulty Healthy Faulty Healthy Faulty Healthy Faulty 

SNR 12.0 12.4 22.8 21.3 27.8 27.3 26.4 27.2 
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Table 5.6- Fault diagnosis success rate for those operating conditions whose state was not 

possible to be recognized using EMD algorithm 

 

Method 

Added noise 

amplitude 

200 (Hz) 

1.8 (kN) 

300 (Hz) 

1.4 (kN) 

400 (Hz) 

1.4 (kN) 

400 (Hz) 

1.8 (kN) 

 Training Test Training Test Training Test Training Test 

EMD - 100 81.3 100 81.3 100 93.8 100 62.5 

EMD_Meyer - 100 87.5 100 87.5 100 93.8 100 62.5 

EMD_  db10 - 100 93.8 100 87.5 100 93.8 100 75.0 

EEMD 0.2 100 87.5 100 87.5 100 100 100 100 

EEMD 0.3 100 87.5 100 93.8 100 100 100 100 

EEMD 0.4 100 81.3 100 100 100 100 100 100 

EEMD 0.5 100 87.5 100 100 100 100 100 100 

EEMD 0.6 100 87.5 100 100 100 100 100 100 

EEMD_Meyer 0.2 100 93.8 100 87.5 100 100 100 100 

EEMD_Meyer 0.3 100 93.8 100 87.5 100 100 100 100 

EEMD_Meyer 0.4 100 93.8 100 100 100 100 100 100 

EEMD_Meyer 0.5 100 93.8 100 100 100 100 100 100 

EEMD_Meyer 0.6 100 93.8 100 93.8 100 100 100 100 

EEMD_db10 0.2 100 100 100 87.5 100 100 100 100 

EEMD_db10 0.3 100 100 100 87.5 100 100 100 100 

EEMD_db10 0.4 100 93.8 100 93.8 100 100 100 100 

EEMD_db10 0.5 100 100 100 100 100 100 100 100 

EEMD_db10 0.6 100 93.8 100 100 100 100 100 100 

 

Some interesting results are: 

- Although denoising improves the results in many cases, a perfect classification accuracy is 

not obtained using denoising in a combination with the EMD technique. Denoising with 

the Daubechies (db10) mother wavelet achieves higher success rates than the Meyer 

mother wavelet. 

- By applying the EEMD to the noisy signals (amplitude of 0.4, 0.5 and 0.6 of standard 

deviation of the original signal), in the most cases the condition is perfectly recognized 

(except for the condition with shaft speed of 200Hz and 1.8kN load). 

- For the noisy signals, the most appropriate amplitude of added noise seems to be 0.5 or 

0.6 of standard deviation of the original signal. 

 

Applying the EEMD (amplitude of 0.4 or 0.5) to the signals denoised by the Meyer mother 

wavelet, the state of bearing in the most cases is correctly recognized. It improves the result for 

the previously mentioned condition (speed of shaft = 200 Hz and the load = 1.8 kN).A perfect 

success rates is achieved by denoising with Daubechies mother wavelet (db10) and using the 

amplitude of 0.5 of standard deviation of the original signal for the all operating conditions. As an 
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illustrative instance (Fig. 5.7), healthy and faulty samples of the worst condition (using EMD (Fig. 

5.5)) are completely separable. 

For those operating conditions whose states were perfectly detected by using EMD (Table 5.4), 

only for one specific condition (Speed = 200 Hz and load = 1.4 kN) EEMD could not successfully 

identify the state. The success rates achieved applying the EEMD are 93.8%, 100%, 93.8%, 87.5% 

and 87.5% utilizing 0.2, 0.3, 0.4, 0.5 and 0.6 as the amplitude, respectively. Denoising improves 

the results and then EEMD can achieve the perfect classification rate for this specific condition.  

 

Table 5.7- Defect detection success rate for speed and load effects removal 

 
Added noise 

amplitude Training Test 

EMD - 87.0 70.1 

EMD_db10 - 88.0 69.4 

EEMD 0.3 91.2 77.1 

EEMD 0.5 90.3 75.7 

EEMD 0.6 88.4 70.8 

EEMD_db10 0.3 91.7 77.8 

EEMD_db10 0.5 89.8 70.1 

EEMD_db10 0.6 88.9 73.4 

 

Figure 5.7- Normalized energy of IMFs using WPT (db10) and EEMD with noise amplitude = 

0.5 standard deviation of the signal (Speed = 400 Hz and load = 1.8 kN) 
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Next, we consider all the data belonging to different speeds and loads together (at the same 

time) to investigate the performance of each method in removing the effects of speed and external 

load. The success rates of data labelling of different methods is shown in Table 5.7. As it can be 

seen, denoising could not improve the results, whereas using EEMD instead of EMD is increased 

the classification accuracy. The most accurate results is achieved by applying WPD (using db10 

as the mother wavelet) and EEMD with 0.3 of the standard deviation of the signal as the amplitude 

of the added noise.  

Thus, the most appropriate amplitude to obtain the perfect classification rate for each specific 

operating condition (with denoising by db10) are 0.5 and 0.6, whereas 0.3 seems to be the best for 

removing both speed and load effects. 

Conclusions 

In the denoising process, more accurate classification results are obtained using the Daubechies 

mother wavelet (db10). In addition, it is shown that the accuracy of damage identification is 

significantly affected by the amplitude of the added white noise (in the EEMD processing step). 

The new samples of all operating conditions are labeled perfectly by using db10 as a mother 

wavelet and 0.5 of standard deviation of the signal as the amplitude of the added noise. However, 

to remove speed and load effects contemporarily, the most accurate results are obtained by using 

smaller amplitude (0.3). 

It is shown that the amplitude of added noise affects the results of early damage detection 

significantly. However, there is no robust guide to selecting an optimal amplitude for the added 

noise. In the next section, instead of using previously suggested amplitudes which are predefined 

and constant, a reliable and adaptive method will be investigated to determine an appropriate 

amplitude. 

5.3 Performance improved EEMD (PIEEMD) 

As discussed in section 5.2, the EEMD is a powerful technique for damage detection. However, 

to successfully handle this technique still remains a great challenge: how to better identify the two 

effective parameters (the amplitude of added noise and the number of ensemble trials), which 

affect the performance of the EEMD. If the amplitude of the added noise is too small relative to 

the original signal, a considerable mode mixing improvement cannot be achieved. On the other 

hand, if the amplitude of the added noise is too high, it will create some redundant IMF components 

which lead to misinterpretation of the analysis result. In addition, although, an infinite number of 

ensemble trials is required to completely cancel out the effect of the added white noise, too many 

trial numbers would increase the computational cost.  Although a number of algorithms or values 

have been proposed, there is no robust guide to select optimal amplitude and the ensemble trial 

number yet, especially for early damage detection. 

Wu and Huang [171] suggested the value of 0.2 of standard deviation of the original signal as 

the amplitude of the added white noise and a few hundred for trial number of ensemble. It has been 

shown in various cases that such an amplitude is not appropriate. Zhang et al. [263] suggested 

using a band-limited white noise to decrease the computational cost. Analyzing a simulated signal, 

it was concluded that appropriate range of SNR (signal to noise ratio based on signal power) is 

[50-60] dB. However, they used another range ([0.01-0.1]), which is outside of the suggested SNR. 

A non-stationary signal was constructed to mimics realistic vibration signals measured from 

rolling bearing and the appropriate range of SNR was considered [49-58] dB for the vibration 

signals. Applying the EEMD to the simulated signals, it was obtained that when the number of 
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ensemble trials is 100, the corresponding correlation coefficient approaches 0.95. Using the 

modified EEMD method, the acceptable results were achieved approximately after 70 ensemble 

trials, instead of the100 trials suggested for the original EEMD method. For real data (acceleration 

signals), it was shown that the percentage improvement of the computational efficiency (the 

consumed time ratio) varies from 30% to 45%, depending on the operating conditions. Guo and 

Tse [264] investigated the influence of the parameters setting on the results of reducing the mode 

mixing problem using a simulated signal. The effects of frequency and amplitude ratio of two 

different parts of the simulated signal (the high frequency and low frequency components) were 

investigated as well. The investigated amplitudes were considering again coefficients of standard 

deviation of the original signal (0.01, 0.1, 0.2, and 0.3). As real data is noisy (produced by other 

industrial equipment) and the amplitudes and composition of frequency are unknown, lower 

amplitude of noise was added and more number of ensemble trials applied (0.1 of standard 

deviation of the original signal for amplitude and 3000 for ensemble trial number). As only one 

specific operating condition with a single pre-defined amplitude was investigated, it would not 

represent a reliable guideline for properly setting the best parameters for real signals. Lin [265] 

tried to provide a guidance on choosing the appropriate amplitude and reduce the tremendous time 

waste occurring in the EEMD method. An optimal interval was suggested that lies between the 

square root of the average power of the weak sinusoid component and that of the weak transient 

component. When the amplitude is selected from the mentioned interval, the Pearson’s correlation 

coefficients of the components reach their maximum value. Taking into consideration that only 

one specific gearbox vibration signal was investigated to verify the suggested procedure, its 

performance does not seem too reliable to identify small defects. Furthermore, applying such a 

procedure results difficult in damage identification, especially for automatic damage detection. 

Jiang et al. [266] applied multiwavelet packet as a pre-filter to enhance the weak multi-fault 

features in the narrow frequency bands. Then two ranges were suggested for the amplitude: [0-

0.2] of the standard deviation of the original signal for high frequency components and [0.2-0.6] 

of the standard deviation of the original signal for the low frequency components. As some specific 

amplitudes were selected (0.04, 0.08 and 0.5) without any justification in this study, it seems that 

no robust guide is yet available to choose the optimum amplitude based on the wide suggested 

ranges. In section 5.2, It was concluded that more appropriate amplitude was [0.4-0.6] of the 

standard deviation for noisy signals, and 0.5 for denoised signals. The number of trial was set on 

100 for all conditions. Furthermore, as mentioned in section 5.2, there is no suggestion for the 

ensemble trial number; it is only declared in three before-mentioned studies - the modified new 

number for simulated signals (70 trials) in [263], a very high number (3000 trials) in [264] and the 

100 trials in [171,252].  

Now, a reliable method is proposed to determine the suitable amplitude and the proper number 

of trials is investigated as well.  

Performance improved EEMD (PIEEMD) 

Here, an adaptive method, Performance Improved EEMD (PIEEMD) is proposed and its 

performance and applicability are evaluated utilizing several real vibration signals. After adding a 

random white noise, by applying the SNR definition (Eq. 5.14), the Amplitude value for each data 

point of a sample is obtained from Eq. 5.15. Considering an appropriate value for SNR, there 

would be a confidence that the extrema of the original signal are influenced adequately. 
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𝑆𝑁𝑅(𝑡) = 20 log(𝑥(𝑡) (𝐴𝑚𝑝𝑗(𝑡) ∙  𝑛𝑗(𝑡))⁄ ) 

  (5.14) 

 

𝐴𝑚𝑝𝑗(𝑡) = 10
−(𝑆𝑁𝑅(𝑡) 20⁄ )  ∙ (𝑥(𝑡) 𝑛𝑗(𝑡))⁄  

  (5.15) 

where  𝑗 = 1,… ,𝑀 (𝑗 is the is the ensemble trial number). Then, the noise added signal is 

formulated as follows (as explained in section 2.2.3): 

 

𝑥𝑗(𝑡) = 𝑥(𝑡) + 𝐴𝑚𝑝𝑗(𝑡) ∙ 𝑛𝑗(𝑡) 

(5.16) 

 

In Fig. 5.8, a vibration signal of a roller bearing and a created random noise are shown. A 

suggested fixed value (0.3) multiplied by standard deviation of the original signal, creates a 

predefined constant value along the whole signal (Fig. 5.9). Thus, affecting on the extrema depends 

on value of random noise at the location of the extrema. Using the proposed algorithm (Eq. 5.15), 

an adaptive value (Fig. 5.9) is generated to preserve the SNR ratio. It means that for any randomly 

created noise, the amplitude will be high enough to affect the extrema. Investigating the result of 

adding noise to the vibration signal shows how the proposed amplitude acts more efficiently on 

the extrema (Fig. 5.10). 

 

 
 

Figure 5.8- A real vibration signal of a roller bearing (up) and a random white noise (down) 
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Figure 5.9- The predefined constant amplitude (0.3 standard deviation of the signal)) (up) and 

the proposed amplitude algorithm (PIEEMD with SNR = 10) (down) 

 

 
Figure 5.10- Influence on extrema, using constant amplitude (0.3 standard deviation of the 

signal)) and the PIEEMD algorithm (SNR = 10) 
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Methodology 

The goal is to evaluate the performance of the proposed amplitude calculation algorithm, 

performance improved EEMD (PIEEMD), for the various operating conditions of a roller bearing. 

The fault diagnosis method is as follows: 

1) To apply the EEMD with different amplitude of added white noise to decompose the 

vibration signals into some IMFs. 

2) To follow the steps 2-5 explained in section 5.1 in order to create normalized feature 

vectors and construct SVM classifier.  

 

The bearing data set (acceleration signals) were collected using the test rig 1 (described in 

section 4.1). In addition to the healthy bearing, two defective bearings were utilized during the 

test, one with the very small artificial defect severity over one roller (150 microns in diameter) and 

another with the same fault level on the inner ring. A number of real vibration signals (various 

operating conditions and the two mentioned damage locations) is analyzed to verify effectiveness 

and robustness of the proposed method in discriminating and separating the faulty conditions.  

The original acquired signals are divided into 20 segments including 10000 data points each, to 

extract required informative feature vectors. Thus, each signal includes 20 segments which create 

20 feature vectors as inputs for the SVM. 

Results and analysis 

By performing the methodology, the feature vectors for each algorithm, damage location and 

signal direction are obtained. The normalized energy of IMFs introduced as an efficient feature 

vector in fault diagnosis of roller bearing, has been adopted using only first three elements of the 

feature vectors, i.e. IMF1 to 3. 

In Table 5.8, it is shown that the smallest defect size (150 microns on a roller) is not recognized 

using EMD (in some working conditions) for signals collected through the accelerometer in Y 

direction (section 4.1). Although applying the EEMD (with the 100 trails) improves the success 

rates, it could not perfectly classify the samples in some operating conditions. It seems that 

amplitudes with 0.3, 0.5 and 0.6 lead to less misclassification (only in three operating conditions). 

Now, by applying the PIEEMD algorithm, the accuracy of damage detection is investigated.  

 

Table 5.8- The classification rates for different operating conditions (signals collected in Y 

direction) 

 

Method 

 

Noise 

100 Hz 

1.0 kN 

100 Hz 

1.4 kN 

100 Hz 

1.8 kN 

200 Hz 

1.0 kN 

200 Hz 

1.4 kN 

200 Hz 

1.8 kN 

300 Hz 

1.0 kN 

300 Hz 

1.4 kN 

300 Hz 

1.8 kN 

400 Hz 

1.0 kN 

400 Hz 

1.4 kN 

400 Hz 

1.8 kN 

EMD - 100 100 75.0 100 100 81.3 100 81.3 100 100 93.8 62.5 

EEMD 0.2 100 100 81.3 100 93.8 87.5 100 87.5 100 100 100 100 

EEMD 0.3 100 100 93.8 100 100 87.5 100 93.8 100 100 100 100 

EEMD 0.4 100 100 87.5 100 93.8 81.3 100 100 100 100 100 100 

EEMD 0.5 100 100 87.5 100 87.5 87.5 100 100 100 100 100 100 

EEMD 0.6 100 100 87.5 100 87.5 87.5 100 100 100 100 100 100 
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The success rate of defect detection is shown in Table 5.9 for various preselected SNR values. 

Obviously, a considerable improved success rates are achieved for some SNR values, especially 

for SNR = 10 so that there exist only one working condition (speed = 200 Hz and load = 1.8 kN) 

whose bearing state is not perfectly identified. Increasing the SNR (to SNR = 20), increases the 

success rate for the mentioned operating condition which means that such a signal needs weaker 

noise to affect the extrema and consequently decrease the mode mixing. Whereas for some signals 

(such as speed = 100 Hz / load = 1.8 kN and speed = 300 Hz / load = 1.4 kN) the smaller value 

(SNR = 10) seems to be more appropriate. It means that those signals require some stronger noises. 

Exploring reliability of the obtained success rate, the Margin of each SVM classification is 

calculated and presented in Table 5.10. It is clear from the definition of Margin that higher Margin 

means more reliable hyperplane and classification. As it can be seen, some Margins are much 

smaller than others such as 0.6806 (SNR = 20, speed = 300 Hz and load = 1.4 kN). It means that 

the possibility of sorting out new misclassified samples (like the result shown in Table 5.9) is 

increased. On the other hand, it is reasonable to expect that higher Margins have more reliable 

results (a correct classification and defect detection for new unknown sample). The most important 

conditions are those achieving a perfect classification rate (100%), whereas the calculated Margin 

is not high enough such as 0.7749 (SNR = 20, speed = 200 Hz and load = 1.8 kN).  

 

Table 5.9- The success rates of damage detection using the proposed algorithm (PIEEMD) in Y 

direction 

 

SNR 

100 Hz 

1.0 kN 

100 Hz 

1.4 kN 

100 Hz 

1.8 kN 

200 Hz 

1.0 kN 

200 Hz 

1.4 kN 

200 Hz 

1.8 kN 

300 Hz 

1.0 kN 

300 Hz 

1.4 kN 

300 Hz 

1.8 kN 

400 Hz 

1.0 kN 

400 Hz 

1.4 kN 

400 Hz 

1.8 kN 

5 100 100 81.3 100 87.5 73.3 100 100 100 100 100 100 

10 100 100 100 100 100 87.5 100 100 100 100 100 100 

15 100 100 93.8 100 100 93.8 100 87.5 100 100 100 100 

20 100 100 87.5 100 100 100 100 87.5 100 100 100 100 

25 100 100 81.3 100 100 93.8 100 87.5 100 100 100 93.8 

30 100 100 81.3 100 100 93.8 100 87.5 100 100 100 93.8 

 

 

Table 5.10- The Margin calculated using the proposed algorithm (PIEEMD) in Y direction 

 

SNR 

100 Hz 

1.0 kN 

100 Hz 

1.4 kN 

100 Hz 

1.8 kN 

200 Hz 

1.0 kN 

200 Hz 

1.4 kN 

200 Hz 

1.8 kN 

300 Hz 

1.0 kN 

300 Hz 

1.4 kN 

300 Hz 

1.8 kN 

400 Hz 

1.0 kN 

400 Hz 

1.4 kN 

400 Hz 

1.8 kN 

5 1.1553 1.0479 0.7044 1.2654 0.7560 0.7179 1.2676 1.0039 0.9007 0.8362 1.0402 0.9647 

10 1.1627 1.0881 0.8863 1.2660 0.8095 0.6854 1.1806 0.8123 0.8628 0.9342 0.8768 0.9274 

15 1.2295 1.1278 0.7577 1.2779 0.8885 0.7732 1.1139 0.7493 0.8810 0.9128 0.8454 0.8652 

20 1.2519 1.1192 0.7303 1.2750 0.9342 0.7749 1.0344 0.6806 0.8959 0.8668 0.8547 0.7864 

25 1.2066 1.1015 0.6819 1.3166 0.9003 0.7793 1.0172 0.7014 0.9039 0.8631 0.8189 0.7514 

30 1.1962 1.0799 0.7069 1.2634 0.8601 0.7705 0.9985 0.7425 0.9084 0.8292 0.7611 0.7108 
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Table 5.11- The Margin calculated using EEMD with different amplitudes (Y direction) 

 

Method 

 

Noise 

100 Hz 

1.0 kN 

100 Hz 

1.4 kN 

100 Hz 

1.8 kN 

200 Hz 

1.0 kN 

200 Hz 

1.4 kN 

200 Hz 

1.8 kN 

300 Hz 

1.0 kN 

300 Hz 

1.4 kN 

300 Hz 

1.8 kN 

400 Hz 

1.0 kN 

400 Hz 

1.4 kN 

400 Hz 

1.8 kN 

EMD - 1.1684 1.0417 0.6961 1.2276 0.8157 0.7156 0.9656 0.7523 0.8620 0.8438 0.7013 0.7109 

EEMD 0.3 1.2248 1.1168 0.8136 1.3011 0.8000 0.6922 1.2131 0.8100 0.9289 1.0498 0.8895 0.9143 

EEMD 0.5 1.2162 1.1324 0.8112 1.3009 0.7000 0.6372 1.2868 1.0633 0.9100 0.8995 0.8779 0.9069 

EEMD 0.6 1.2388 1.1706 0.7633 1.3019 0.7693 0.7099 1.2880 1.0276 0.9312 0.9056 0.8980 0.9543 

SNR 10 1.1627 1.0881 0.8863 1.2660 0.8095 0.6854 1.1806 0.8123 0.8628 0.9342 0.8768 0.9274 

SNR 20 1.2519 1.1192 0.7303 1.2750 0.9342 0.7749 1.0344 0.6806 0.8959 0.8668 0.8547 0.7864 

 

Table 5.12- The reliability test of the constructed SVM with 20 new samples (Y direction) 

 

Method 

 

Noise 

100 Hz 

1.0 kN 

100 Hz 

1.4 kN 

100 Hz 

1.8 kN 

200 Hz 

1.0 kN 

200 Hz 

1.4 kN 

200 Hz 

1.8 kN 

300 Hz 

1.0 kN 

300 Hz 

1.4 kN 

300 Hz 

1.8 kN 

400 Hz 

1.0 kN 

400 Hz 

1.4 kN 

400 Hz 

1.8 kN 

EMD - 100 100 75 100 100 80 100 85 100 100 85 65 

EEMD  0.3 100 100 90 100 100 80 100 90 100 100 100 100 

EEMD  0.5 100 100 90 100 85 75 100 100 100 100 100 100 

EEMD  0.6 100 100 85 100 85 80 100 100 100 100 100 100 

PIEEMD (SNR)  10 100 100 100 100 100 80 100 100 100 100 100 100 

PIEEMD (SNR) 20 100 100 80 100 100 90 100 80 100 100 100 100 

 

Since there exist the possibility of misclassification for the new samples based on the constructed 

SVM. It is worth to mention that it does not exist a determined reliable value for Margin. The 

Margin of those amplitude calculation algorithms achieve better results are shown in Table 5.11. 

In order to test the reliability of the constructed SVM, 20 new samples (10 healthy and 10 damaged 

samples) for each operating condition are classified with the previously constructed SVM (Table 

5.9). The results are proposed in Table 5.12. Obviously, as it was expected, the new samples are 

not classified perfectly for previously mentioned low Margin (SNR = 20, speed = 200 Hz and load 

= 1.8 kN). Although the previous success rate was 100% and it seemed to be a reliable constructed 

SVM, its low Margin (in comparison with those showing a perfect damage detection) indicates 

that it may not be a confident SVM (Fig. 5.11). However, for all other conditions, which have 

higher Margin, the states of the new samples are correctly identified. As it can be seen in Fig. 5.12, 

all faulty and healthy samples are completely separable.  

For the EMD and EEMD (with the predefined constant amplitudes or the presented method 

(SNR = 10), the previously constructed SVMs can successfully detect the fault, as it was expected, 

because of their high Margins. The results shown in Table 5.12 confirm such an expectation. 

In order to investigate in more details, the collected signals of another defective bearing (small 

defect on the inner ring) in two directions (Y and Z) are analyzed. The results of classification are 

shown in Table 5.13. As all the SVMs constructed have high Margins, they are reliable and leads 

to perfect success  rates for both Y and Z directions, except for one condition (speed = 200 Hz and 

load = 1.8 kN) in Z axis which achieved 81.3% success rate. 
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Figure 5.11- The normalized energy of the three first IMFs ( nFV ) with new samples, SNR = 

20 (speed = 200 Hz and load = 1.8 kN) 

 

 

Figure 5.12- The normalized energy of the three first IMFs ( nFV ) with new samples, SNR = 

10 (speed = 200 Hz and load = 1.0 kN) 
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Finally, the appropriate ensemble trial number for damage detection is investigated. The results 

of fault diagnosis for different trials are presented in Table 5.14. In the most of the operating 

conditions, the 30 ensemble trial numbers is enough to achieve a perfect labelling rate, which is 

far lower than the numbers used in previous studies. It leads substantially to less time consuming 

and decreasing the computational cost. The higher Margin is not obtained by increasing the 

number, even in some cases the 30 trials achieves a little higher Margin. For two conditions (Speed 

= 200 Hz, load = 1.4 kN and speed = 300 Hz, load = 1.4 kN), the 100% success in detection is 

achieved by applying the 100 trails. However, there exists only one operating condition in which 

the 100 trials does not achieve perfect success rate (Speed = 200 Hz and load = 1.8 kN). As it can 

be seen in Table 5.15, implementing the proposed method with 50 trials improves the success rate 

and the Margin. Increasing the trials to 1000, a little higher classification accuracy is achieved 

(from 87.5% to 93.8%), whereas the Margin does not change considerably after the 50 trial 

numbers. Although with the 70 trials the classification result improves from 81.3% to 87.5%, the 

original EEMD does not obtain higher rates by applying more trial numbers (even up to 1000). 

On the contrary, denoising the signals can improve the results to obtain perfect classification 

results (section 5.2). Using only 30 trials, the success rate is 93.8%, whereas the same rate was 

achieved with 1000 trials for the noisy signals (Table 5.16). The 50 trials seems to be sufficient to 

achieve 100% labelling classification rate. Furthermore, increasing the trail could not improve 

considerably the Margins. 

 

Table 5.13- The Margin calculated (using PIEEMD with SNR = 10), for the defective inner ring 

 

Direction 

100 Hz 

1.0 kN 

100 Hz 

1.4 kN 

100 Hz 

1.8 kN 

200 Hz 

1.0 kN 

200 Hz 

1.4 kN 

200 Hz 

1.8 kN 

300 Hz 

1.0 kN 

300 Hz 

1.4 kN 

300 Hz 

1.8 kN 

400 Hz 

1.0 kN 

400 Hz 

1.4 kN 

400 Hz 

1.8 kN 

Y  
1.2186 0.8674 1.4268 1.3744 1.2852 1.0538 1.3522 1.1211 0.8542 1.2552 1.2583 0.8326 

Z  
1.2603 0.8788 1.3713 1.3391 0.9743 0.7350 1.2272 1.0937 1.1128 1.1918 1.1989 1.3516 

 

Table 5.14- The results of using different trial numbers (NR) using PIEEMD (SNR 10) for Y 

direction 

NR  100 Hz 

1.0 kN 

100 Hz 

1.4 kN 

100 Hz 

1.8 kN 

200 Hz 

1.0 kN 

200 Hz 

1.4 kN 

200 Hz 

1.8 kN 

300 Hz 

1.0 kN 

300 Hz 

1.4 kN 

300 Hz 

1.8 kN 

400 Hz 

1.0 kN 

400 Hz 

1.4 kN 

400 Hz 

1.8 kN 

100 
Margin 1.1627 1.0881 0.8863 1.2660 0.8095 0.6854 1.1806 0.8123 0.8628 0.9342 0.8768 0.9274 

Success rate 100 100 100 100 100 87.5 100 100 100 100 100 100 

90 
Margin 1.1584 1.0700 0.8506 1.2383 0.7776 0.7356 1.1625 0.8339 0.8704 0.9009 0.8886 0.9049 

Success rate 100 100 100 100 93.8 93.8 100 93.8 100 100 100 100 

70 
Margin 1.1714 1.0856 0.8575 1.2234 0.7344 0.7043 1.1347 0.7825 0.8819 0.8238 0.8668 0.9005 

Success rate 100 100 100 100 93.8 87.5 100 93.8 100 93.8 100 100 

50 
Margin 1.1487 1.0633 0.8858 1.2563 0.7450 0.7244 1.1732 0.8410 0.8700 0.8748 0.8685 0.9103 

Success rate 100 100 100 100 93.8 87.5 100 93.8 100 100 100 100 

30 
Margin 1.1586 1.1026 0.8378 1.2413 0.8442 0.6353 1.1698 0.8271 0.9037 0.8861 0.9065 0.9346 

Success rate 100 100 100 100 93.8 81.3 100 87.5 100 100 100 100 
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Table5. 15- The results of using different trial numbers (NR) for the condition: speed = 200 Hz 

and load = 1.8 kN 

Method 

NR 

30 50 70 100 500 1000 2000 

PIEEMD 

(SNR 10) 

Success rate 81.3 87.5 87.5 87.5 87.5 93.8 93.8 

Margin 0.6353 0.7244 0.7043 0.6854 0.7254 0.7151 0.7267 

EEMD  

(0.3) 

Success rate 81.3 81.3 87.5 87.5 87.5 87.5 87.5 

Margin 0.6912 0.6998 0.7032 0.6922 0.6975 0.7086 0.7116 

 

 

Table 5.16- The results of using different trial numbers (NR) after denoising, for the 

condition: speed = 200 Hz and load = 1.8 kN 

SNR 10 

NR 

30 50 70 100 500 

Margin 0.7175 0.8119 0.7573 0.7643 0.7913 

Success rate 93.8 100 100 100 100 

 

Conclusions 

It is shown that the proposed method (performance improved EEMD (PIEEMD)) achieves 

higher damage detection success rate and creates larger Margin than the original algorithm. 

Exploring the reliability, the Margin of each SVM classification is calculated and it is confirmed 

that for those conditions whose Margin is relatively high, the results are more reliable. For the 

defective inner ring, the acceleration signals of two radial directions are investigated to achieve 

more confident results and it is validated that the PIEEMD algorithm looks reliable and can be 

favorably applied instead of the previous pre-determined approach. 

It is shown that substantially low trial numbers are required to achieve perfect labelling of 

samples, which leads to considerably less computational cost. In the most operating conditions 

only the 30 trial numbers are sufficient to achieve successful damage detection. Using the 100 trial 

numbers leads to 100% success rate for all working conditions, except for one condition (Speed  = 

200 Hz, load = 1.4 kN), which increasing the number improves its result, however, the perfect 

classification can be achieved only after denoising. 
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5.4 Anomaly detection using novel feature extraction 

As shown in section 5.2 and 5.3, there exist still some cases for which the state of the bearing 

cannot perfectly identified. 

In this study a new feature extraction method is proposed for anomaly detection of roller 

bearings. As Teager-Kaiser energy operator (TKEO) technique, discussed in section 2.2.3, can 

track the energy of signals, at any instant, it is applied to create feature vectors. The three 

dimensional feature vectors of healthy bearing signals are used to construct the one-class SVM. 

Since in some real applications, the faulty bearings data are not available. 

Methodology 

The goal of this study is to evaluate the performance of the proposed feature extraction algorithm 
in fault detection of a roller bearing.  
The fault diagnosis method for the traditional EEMD technique is as explained in section 5.2. 
Whereas the proposed feature extraction is implemented as the following steps: 

1. To decompose the signal using the PIEEMD with SNR = 10 dB (proposed in section 5.3). 

2. To apply the TKEO to the first m IMFs of each signal. 

3. To calculate the sum of each TKEO. 

 

𝑇𝐾𝐸𝑂𝑖 =∑𝜓(𝐼𝑀𝐹𝑖)

𝑚

𝑖=1

 

            (5.17) 

4. To create a feature vector with the sum of the calculated TKEO: 

 

𝑇𝐾𝐸 = [𝑇𝐾𝐸𝑂1, 𝑇𝐾𝐸𝑂2, … , 𝑇𝐾𝐸𝑂𝑚]  
            (5.18) 

5. To normalize the feature: 

 

𝑇𝐾𝐸𝑛 = [𝑇𝐾𝐸𝑂1/𝑇𝐾𝐸𝑂𝑡𝑜𝑡, 𝑇𝐾𝐸𝑂2/𝑇𝐾𝐸𝑂𝑡𝑜𝑡, … , 𝑇𝐾𝐸𝑂𝑚/𝑇𝐾𝐸𝑂𝑡𝑜𝑡] 
            (5.19) 

where  𝑇𝐾𝐸𝑂𝑡𝑜𝑡 = (∑ 𝑇𝐾𝐸𝑂𝑖
𝑚
𝑖=1 ) . 

 

Finally, the training procedure of one-class SVM is carried out by utilizing the normalized 

feature vectors so far obtained. The 80% of healthy samples are used for training and the rest 

(remaining healthy samples and all faulty data) are taken as the test samples. 

The bearing data set (acceleration signals) were collected using the test rig 1 (section 4.1). In 

addition to the healthy bearing, One defective bearing was utilized during the test with the very 

small artificial defect severity over one roller was 150 microns in diameter. A number of real 

vibration signals (various operating conditions) is analysed to verify effectiveness and robustness 

of the proposed method in discriminating and separating the faulty conditions. The original 

acquired signals are divided into 20 segments including 10000 data points each, to extract required 

informative feature vectors. Thus, each signal includes 20 segments which create 20 feature 

vectors as inputs for the SVM. 
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Results and analysis 

An acquired acceleration signal, its three first IMFs (obtained using EEMD) and the TKEO of 

those IMFs are shown in Fig. 5.13. By implementing the methodology to the signals collected in 

tangential (Z) direction, the normalized energy (𝐹𝑉𝑛) of IMFs for the EEMD method and the 

normalized feature (𝑇𝐾𝐸𝑛) for the proposed method are obtained. The 0.3 of standard deviation of 

each original signal is used as the appropriate amplitude of added noise in the original EEMD.  

 
(a) 

 
(b) 

 
(c) 

Figure 5.13- a) A collected acceleration signal, b) first three IMFs and c) TKEO of those IMFs. 
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As it can be seen in Fig. 5.14, there exist a confusion among healthy and faulty samples obtained 

by the EEMD method. In view of this, the novel feature proposed along this section is applied to 

check whether it can improve the performances of detection. As it is evidenced in Fig. 5.15, the 

healthy and faulty samples are perfectly separable. Thus, it is expected to achieve higher success 

rate in labelling of new samples. 

 
Figure 5.14- The feature vector of three first IMFs (𝐹𝑉𝑛 ) using EEMD (Speed = 300 Hz and load 

= 1.8 kN) 

 

 
Figure 5.15- The novel feature vector of three first IMFs (𝑇𝐾𝐸𝑛) (Speed = 300 Hz and load = 1.8 

kN) 
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In Tables 5.17 and 5.18, the results of classification (For shaft speed = 200 and 300 Hz) using one-

class SVM are shown. The results are highly dependent on the classification parameters. The 

optimal values of the classification parameters (  and  ) are presented for each methods. The 

success rates obtained using the proposed feature extraction, are higher so that in some cases there 

exist considerable differences. For example, in the condition 300 Hz speed and 1.8 kN load, the 

proposed technique improves the test success rate up to 23.1%. 

In addition to the classification rate index, the complexity of the constructed hyperplane and 

the calculated Margin are used to compare the results from traditional EEMD and the proposed 

method (Tables 5.19 and 5.20). The bearing condition can be perfectly recognized (using EEMD) 

for a single working condition (Speed = 200 Hz and load = 1.4 kN). In this condition, the fraction 

of Support Vectors (SVs) is 8/24, whereas applying the new method the complexity of the 

hyperplane decreases because it is defined by a lower SVs fraction (5/24). Furthermore, the Margin 

created by the EEMD is 0.999305, while using the PIEEMD the Margin is improved to 1.146190.  

 

Table 5.17- The classification results for both methods (Shaft speed = 200 Hz) 

 Load 

              

Method 

1.0 kN 1.4 kN 1.8 kN 


 
  training test 

 
  training test    


 

  training Test 

EEMD 0.3 0.1 100 96.2 0.1 0.3 100 100 0.3 0.05 100 92.3 

PIEEMD+TKEO 0.1 0.3 100 100 0.1 0.3 100 100 0.1 0.3 100 100 

 

Table 5.18- The classification results for both methods (Shaft speed = 300 Hz) 

 Load 

              

Method 
1.0 kN 1.4 kN 1.8 kN 


 

  training test    


 
  training test    


 
  training Test 

EEMD 0.1 0.3 95.8 96.2 0.1 0.1 95.8 92.3 0.05 0.3 100 73.1 

PIEEMD+TKEO 0. 05 0.35 100 100 0.05 0.2 100 92.3 0.1 0.2 100 96.2 

 

 

Table 5.19- The fraction of SVs and calculated Margin (Shaft speed = 200 Hz) 

 Load 

              

Method 
1.0 kN 1.4 kN 1.8 kN 

Fraction of 

SVs 
Margin 

Fraction of 

SVs 
Margin 

Fraction of 

 SVs 
Margin 

EEMD 3/24 0.999722 8/24 0.999954 2/24 0.999305 

PIEEMD+TKEO 8/24 1.13989 8/24 1.16538 8/24 1.26256 

 

Table 5.20- The fraction of SVs and calculated Margin (Shaft speed = 300 Hz) 

 Load 

              

Method 
1.0 kN 1.4 kN 1.8 kN 

Fraction of 

SVs 
Margin 

Fraction of 

SVs 
Margin 

Fraction of 

SVs 
Margin 

EEMD 8/24 1.000010 3/24 0.999994 8/24 1.000030 

PIEEMD+TKEO 8/24 1.098540 5/24 1.094330 5/24 1.146190 
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It means that the proposed feature extraction generates a less complex and more reliable 

hyperplane.  

In all operating conditions, by adopting the proposed method to construct the hyperplane, higher 

Margins are obtained, which indicates more reliable classification. It achieves the perfect success 

rates in the most cases, except for two operating conditions (Speed = 300 Hz, load = 1.4 and 1.8 

kN). Even in these conditions, the success rates are higher than the EEMD.  In the load = 1.8 kN 

condition, there exist only one misclassified sample, which is a healthy sample labelled as a faulty 

bearing (faulty alarm). In fault diagnosis, it is more important not to classify a faulty sample as a 

healthy one than having a faulty alarm. When the  parameter approaches zero, the problem then 

resembles the corresponding hard margin algorithm, since the penalization of errors becomes 

infinite (section 3.3). As it can be seen in Tables 5.17 to 5.20, in some cases, the constructed 

hyperplane based on EEMD, seems to be hard-margin because of very low  and very small number 

of SVs. For example, the condition corresponding to the speed of 200 Hz and the applied load of 

1.8 kN, the parameter value is 0.05 and the achieved number of SVs is only 2. It indicates a hard-

margin condition that only a few outlier can determine the boundary and makes the classifier 

significantly sensitive to noise in the data. By increasing the  parameter to create a soft-margin 

model, the training accuracy will be reduced considerably. 

In contrast, all the constructed models based on the proposed feature extraction method are soft-

margin SVM and more reliable. 

In order to detect the larger defect size (450 microns), the proposed feature extraction method 

is applied and the perfect success rates of classification are achieved for all operating conditions. 

As it can be seen in Fig. 5.16, the healthy and faulty samples are perfectly separable, even for the 

condition where the states of the bearing were not detected perfectly for the smaller defect size 

(Speed = 300 Hz and load = 1.4 kN). 

 

 
Figure 5.16- The novel feature vectors of three first IMFs ( ) for the 450 microns defect 
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Conclusions 

Applying the EEMD does not lead to a perfect anomaly detection in the case of small size defect 

(150 microns). However, it is shown that the proposed feature extraction method is a powerful 

method for detecting even the smallest damage level (150 microns) so that it can classify the 

samples perfectly in many operating conditions. It create less complex (less fraction of SVs) and 

more reliable (higher Margin) hyperplane than the EEMD method. For the larger defect size (450 

microns), utilizing the proposed technique, the healthy and faulty samples are completely 

separable and the success rates of labelling the new samples are exact in all operating condition.  

5.5 Defect-sensitive feature for time-varying operational conditions 

The diagnostic methods shown in this thesis seem to be powerful for only stationary conditions 

(constant speed and load). However, bearings often work at time-varying conditions such as for 

wind turbine supporting bearings, mining excavator bearing, vehicles, robots and all processes 

with run-up and run-down transients. Extracting feature for those nonstationary operating 

conditions, especially for early defects, requires an appropriate defect-sensitive method which, at 

the same time, is insensitive to operational and environmental condition variations. The order 

tracking method has been widely used when there exist speed variations. However, there still exist 

two drawbacks: limitation of speed variation and measurement cost. It can effectively detect faults 

when the speed variation is limited. Moreover, an extra device such as an encoder or a tachometer 

is required to provide a phase reference signal, which increases instrumentation cost and produces 

installation and adjustment problems. Many studies have been carried out to improve it [64-69] 

and to develop it so that it can be applied in tacho-less form [267,268]. 

In this study, a new method is proposed and investigated to detect the state of roller bearings 

operating in time-varying condition based on cointegration. The method decomposes the acquired 

signal into intrinsic mode functions (IMFs), then cointegration (section 2.2.4) is subsequently 

applied to the obtained intrinsic mode functions to extract stationary residuals, which are 

insensitive to operating conditions. It is looking for linear stationary combinations within non-

stationary time series. 

The bearing data set (acceleration signals) were collected using the test rig 2 (section 4.2) 

assembled at the Department of Mechanical and Aerospace Engineering of Strathclyde University. 

The small artificial defect was created on the inner ring, which is illustrated in section 4.2. A run-

up time-varying operating condition was considered to acquire the signals coming from the healthy 

and faulty bearings. The measurement was manually started from 150 rpm to 1500 rpm and each 

signal includes 30000 elements. The data consists of 20 measured signals for each of the healthy 

and faulty bearings. One acquired acceleration signal for normal and one for damaged bearings are 

shown in Fig.5.17. The signal is divided into segments and each segment is broken down into some 

elementary modes the intrinsic Mode Functions (IMFs) using the performance improved EEMD 

(section 5.4)Then, three dimensional feature vectors are created by applying the Teager-Kaiser 

Energy Operator (TKEO) to the cointegrated residuals of the first three IMFs. The feature vectors 

obtained from healthy bearing signals are further utilized as input to construct a separating 

hyperplane for a one-class Support Vector Machine (SVM). The SVM can be trained to categorize 

signals coming from healthy and faulty bearings. 
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a) 

 
b) 

Figure 5.17- Two acquired signals during run-up condition a) from the healthy bearing b) from 

the damaged bearing. 

Methodology 

The method proposed is given as the following: 

1. To divide each collected signal into five equal segments so that each segment includes 

6000 elements. 

2. To apply the PIEEMD to each segment, in order to decompose them into some IMFs.   

3. To Select first three IMFs of each segment and call them IMF1, IMF2 and IMF3, 

respectively. 

4. To test the existence of cointegrated residuals for the five first IMF1s from the segments 

of the whole signal. 

5. To apply the step 4 for the five IMF2 and five IMF3 from the five signal segments. 

6. To apply the TKEO to the obtained cointegration vectors obtained from the five IMF1, 

IMF2 and IMF3 and calculate the sum of the obtained TKEOs as shown below. 

𝑇𝐾𝐸𝑖 =∑𝜓(𝑐𝑜𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟(𝐼𝑀𝐹𝑖)) 

(5.20) 

where  𝜓 denotes the Teager-Kaiser operator. 

7. To create a three dimensional feature vector.  

 

𝐹𝑉 = [𝑇𝐾𝐸1 𝑇𝐾𝐸2 𝑇𝐾𝐸3] 
(5.21) 

where 𝑇𝐾𝐸1, 𝑇𝐾𝐸2, and 𝑇𝐾𝐸3 are calculated for 𝐼𝑀𝐹1, 𝐼𝑀𝐹2 and 𝐼𝑀𝐹3 using Eq. 5.20, 

respectively.  
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8. To normalize the feature vectors by dividing to the norm. 

 

𝐹𝑉𝑛 = [𝑇𝐾𝐸1/𝑛𝑜𝑟𝑚(𝑇𝐾𝐸1) 𝑇𝐾𝐸2/𝑛𝑜𝑟𝑚(𝑇𝐾𝐸2) 𝑇𝐾𝐸3/𝑛𝑜𝑟𝑚(𝑇𝐾𝐸3)] 
(5.22) 

which can be written as: 

 

𝐹𝑉𝑛 = [𝐹𝑉1 𝐹𝑉2 𝐹𝑉3] 
(5.23) 

9. To utilize the healthy feature vectors to build the classifying hyperplane by one-class SVM. 

The 80% of healthy samples are used for training and the rest (remaining healthy samples 

and all faulty data) are taken as the test samples. Once the training procedure is successfully 

performed, the parameters are hold to test samples to identify the different work conditions 

and fault patterns. 

Results and analysis 

First, the novel feature extraction proposed in section 5.4 is applied to the signals collected in 

time-varying operating condition (run-up). The result of applying this method is shown in Fig. 

5.18. Although the feature extraction method is a powerful method for small fault level detection, 

it cannot identify whether the bearing is healthy or faulty when it is working in non-stationary 

condition. The healthy and faulty vectors are not separable but are significantly confused. Now, it 

is investigated if the method proposed in this study (explained in the section of Methodology) can 

recognize the state of the bearings. First, each signal is divided into five segments so that each 

segment includes 6000 data points. Then, each segment is decomposed by the PIEEMD algorithm 

(as it is displayed for a healthy and faulty signals in Figs. 5.19 and 5.20). The cointegration 

procedure is carried out for each five common number of IMFs to achieve one or more 

cointegrating vectors.  

 

Figure 5.18- The normalized TKE of three first IMFs (𝑇𝐾𝐸𝑛) using PIEEMD. 
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For example, the five IMF1 (first IMFs of five segments shown in Fig. 5.21) are used to obtain 

the possible cointegrating vectors. The cointegration residuals for these IMFs are displayed in Fig. 

5.22 and the results are given in Table 5.21. As it can be seen, the null ranks are displayed in the 

first column. The Cointegration ranks labeled r0, r1, etc. The values of h equal to 1 indicate 

rejection of the null hypothesis, which means there is a cointegration vector.  It is full ranked since 

all the null hypothesis are rejected. The right-tail probabilities of the test statistics are considerably 

less than the significance level, which is 0.05. The test statistics value decreases from r0 to r4. The 

critical values for right-tail probabilities are presented determined as explained in section 2.2.4. 

The eigenvector corresponding to the largest eigenvalue is the most stationary cointegration vector. 

Thus, the most stationary cointegration vector is the first one (r0) and the stationarity degree 

decreases from r0 to r4. 

 

 
 

 

Figure 5.19- the IMFs of the healthy signal (Fig. 5.17a) obtained by performance improved 

EEMD (PIEEMD). 
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Finally, the TKEO is applied to each cointegrating vector (Eq. 5.20) and the results are shown 
in Fig. 5.23. The three dimensional feature is created using Eq. 5.22. After normalizing the feature 
vectors are used for the classification. Thus, for each signal divided into five segments, we achieve 
one three dimensional feature vector. 

The healthy and faulty feature vectors are shown in Figs. 5.24 to 5.27 for each cointegrating 

vectors. The normal and damaged samples of the first and the second cointegrating vectors shown 

in Figs. 5.24 and 5.25 are obviously separable. The feature vectors extracted from healthy signals 

used as training input of the one-class SVM. Then, the hyperplane constructed is utilized for 

labelling the new samples, test samples includes faulty samples and 20% of healthy samples.  

 

 

 

 
 

Figure 5.20- the IMFs of the faulty signal (Fig. 5.17b) obtained by performance improved 

EEMD (PIEEMD). 
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Figure 5.21- The first IMFs (IMF1) of the five segments of the signal shown in Fig. 5.17a. 

 

 
Figure 5.22- The cointegrating vectors obtained from IMF1 of the five segments shown in Fig. 

5.21. 
 

Table 5.21- The results of cointegration for IMF1 of five segments of the healthy signal shown in 
Fig. 5.21 

Null ranks 

r 

Null hypothesis 

h 
Test statistics Critical values 

Right-tail 
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Eigen value 

0 1 24466.1675 69.8187 0.0010 0.5753 

1 1 19328.1531 47.8564 0.0010 0.5604 

2 1 14397.1423 29.7976 0.0010 0.5589 

3 1 9486.5483 15.4948 0.0010 0.5565 

4 1 4608.9054 3.8415 0.0010 0.5362 
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Figure 5.23- The TKEO applied to the cointegration vectors obtained from the five IMF1, 

IMF2 and IMF3, respectively. 

 

 

 
 

Figure 5.24- The three dimensional feature vectors obtained from first cointegrating vectors. 
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Figure 5.25- The three dimensional feature vectors obtained from the second cointegrating 

vectors. 

 

 
 

Figure 5.26- The three dimensional feature vectors obtained from the third cointegrating 

vectors. 
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Figure 5.27- The three dimensional feature vectors obtained from the fourth cointegrating 

vectors. 
 

 

Table 5.22- The classification results for different cointegrating vectors 

Cointegrating 

vectors 
training test Success ratio Margin 

1 100 100 24/24 1.00428 

2 100 100 24/24 1.00272 

3 100 91.7 22/24 0.998041 

4 100 83.3 20/24 0.999554 

 
The classification results are evidenced in the Table 5.22. The training and test success rates 

are 100% for the first and the second cointegrating vectors, as it was expected based on Figs 5.24 

and 5.25. Although the training success rate is perfect for the third and the fourth cointegrating 

vectors, the test samples were not classified perfectly. The third one classified incorrectly two 

samples, whereas the fourth one labelled wrongly three samples. The Margin obtained in each 

classification is indicated in Table 5.22. Two first vectors create more reliable hyperplane, as they 

obtain higher value of margin. 
Thus, implementing the method proposed in this study, the state of the bearings could be 

identified perfectly, although the shaft speed changes significantly.  

Conclusions 

In this section, a novel combined method based on cointegration is proposed for the 

development of fault features which are sensitive to the presence of defects while in the same time 

they are insensitive to changes in the operational conditions. It does not require any additional 

measurements and can identify defects even for considerable speed variations. The results show 

that by using the first and the second cointegrating vectors (the higher stationarity level), the 

normal and damaged sample are completely separable and the classification success rate is 100%. 
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The proposed method can identify the state of bearings even if the shaft speed changes 

considerably. Whereas other methods such as the order tracking method can be effectively applied 

when the speed variation is limited.  
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Conclusions 

In this thesis two main topics were investigated; early damage detection of roller bearings by 

adopting different techniques and defect detection of roller bearings working in time-varying 

condition. 

For the first part, Empirical mode decomposition (EMD), which has been widely used in recent 

years for damage detection, was investigated. One of the drawbacks of the EMD is sifting stop 

criterion, which might affect fault diagnosis results. Influence of the criteria proposed for sifting 

stop criterion of EMD on early defect detection of roller bearing was deeply investigated along the 

thesis. The signals collected in various speed and load conditions were decomposed by the EMD 

using different stopping criteria and the feature vectors obtained from energy content of the IMFs 

were classified using SVM. The success rate of classification and margin demonstrated that the 

criterion can affect damage detection results. 

Then, a combination method was proposed for early damage detection of roller bearing.  The 

wavelet packet transform (WPT) was applied to the experimental data for denoising and the clean 

data was break-down into IMFs using Ensemble empirical mode decomposition (EEMD) method. 

It could successfully distinguish between healthy and faulty bearings. 

In order to enhance the EEMD, Performance improved EEMD (PIEEMD) was proposed to 

determine appropriate value for the amplitude of added noise. The method proposed was validated 

using the signals collected under various operating conditions. 

A novel feature extraction method was also proposed for detection of a small size defect which 

was only based on healthy bearing signals. The Teager-Kaiser energy operator (TKEO) was 

applied to IMFs obtained by PIEEMD technique to create new feature vectors as input data for 

one-class SVM. It was demonstrated that the method can effectively label the new unseen signals 

and recognize the healthy and faulty bearings.  

Finally, a new cointegration based method was proposed for fault diagnosis of roller bearing 

working in time-varying condition. The signals collected during run-up operating condition were 

divided into some segments and each segment was decomposed by the PIEEMD. Then, the 

cointegration method was applied to the IMFs to extract stationary residuals. The feature vectors 

were created by applying the Teager-Kaiser energy operator (TKEO) to the obtained stationary 

residuals. Finally, the feature vectors of the healthy bearing signals were utilized as input for one-

class support vector machine. The results verified that the method can successfully distinguish 

between healthy and faulty bearings even if the shaft speed changes dramatically. 

 

Future work that might be of interest would be application of similar signal processing methods 

to other components of the rotating machines, i.e. gearbox and shaft that might need a completely 

different approach in the analysis in order to extract damage features. Moreover, the datasets 

processed in this thesis were collected on the test rig assembled in a laboratory conditions. The 

methods proposed for damage detection will be validated by applying to data acquired on real 

industrial rotating machines, where the acquisition and the system noise are by far more relevant. 

It was demonstrated that the proposed methods could detect early damages. One more 

improvement that could be made is early damage identification and defect extent recognition.   

Further works will investigate the potentiality of the method proposed for damage detection of 

roller bearings working in time-varying condition. The run-up condition was examined in this 

study as the time-varying condition. Some other condition with higher speed variations will be 

checked in order to verify the ability of the method.  In addition, the kind of roller bearing defect 
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examined was limited to a localized defect on inner ring. It would be investigated if the method 

would be effective for early damage detection and identification. 
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