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Mathematical derivation of the distributed radial line input admittance

We refer in the following to the equivalent circuit in Fig. 4 of the manuscript.

The per-unit-length parameters (p.u.l) of the radial line can be derived by considering a

circular section of length dr with radius r, whose parallel capacitance and conductance model

the gate/IL/channel cross section, whereas the series resistance describes hole transport

across the channel:

dC = CGC2πrdr

dG = Gd2πrdr (1)

dR = Rch
dr

2πr

where, with reference to Fig. 4, the gate-channel capacitance CGC (V ) is defined as

CGC (V ) =
CILCch

CIL + Cch

. (2)

The parameters CIL and Cch(V ) are the per-unit-area IL and channel capacitance, respec-

tively. In Eq.(1), Gd is the per-unit-area conductance accounting for the gate-channel leak-

age current. Finally, Rch = 1/ (qµhps) is the equivalent channel sheet resistance, where µh

and ps are the 2DHG mobility and sheet density, respectively. The 2DHG concentration is

evaluated self-consistently with the gate-channel capacitance of the circular section as

ps (VG) = −1

q

∫ VG

VG0

CGC (V ) dV (3)

where VG0 is a bias point in the off state, such that ps (VG0) = 0.

Applying the Kirchhoff’s voltage and current laws to a line section of radial length dr

located in r, the line equations result as

dV

dr
= −Rch

2πr
I

dI

dr
= −Yp2πrV (4)
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with Yp = Gd + jωCGC. Differentiating, substituting and exploiting the variable change

x =
√
YpRchr, we have for the line voltage

x2
d2V

dx2
+ x

dV

dx
− x2V = 0 (5)

i.e. a zero-order Bessel differential equation, admitting a closed-form solution in terms of

modified Bessel functions of the first (I) and second (K) kind. The resulting values for the

line current and voltage are, respectively:

I(r) = A2πr

√
Yp
Rch

I1 (kr) +B2πr

√
Yp
Rch

K1 (kr)

V (r) = AI0 (kr) +BK0 (kr) , (6)

where A and B are integration constants, and k =
√
YpRch. The line current is derived

from the voltage by differentiation. Finally, considering a line with radius R and applying

the boundary conditions I (r = 0) = 0 and V (r = R) = V0, the line input admittance is

calculated as

Yi =
I(R)

V (R)
= 2πR

√
Yp
Rch

I1 (kR)

I0 (kR)
. (7)

The total equivalent impedance of the device is then computed by including the effect of the

parasitic access and contact resistances (Rs) as 1/Yi +Rs.

The analytic model has been validated against 3D physics-based simulations1, under AC

condition, of a planar device with 5 nm thick IL (εr = 9), carrier mobility of 50 cm2V−1s−1,

and radius of 25 µm. Fig. S1 shows the parallel capacitance and conductance associated with

the small-signal admittance Yi = Gi+jωCi as derived from the physics-based simulation and

as predicted by Eq. (7), demonstrating the high accuracy of the analytic distributed model.

As discussed in the manuscript, reducing the gate radius to a few µm will make the

dispersive effect of the channel resistance (Rch in Fig. 4 of the manuscript) negligible, thus

allowing the accurate extraction of the physical paramaters by a lumped model that can be

derived from the series expansion of Eq. (7) when kR→ 0. Truncating the series at the 4th

order, one obtains

Yi,lumped = πR2Yp −
πR4

8
Y 2
pRch. (8)

The approximation admits for an interpetation in terms of a lumped equivalent circuit

made by the series of the admittance πR2Yp and the resistance Rch/8/π, as can be demon-

strated from the series expansion of the input impedance 1/Yi. Thus, in the lumped limit,
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FIG. S1. Ci/V (a) and Gi/V (b) curves at various frequencies of a large area planar device as

predicted by physics-based simulations (symbols) and by the analytical distributed model in Eq. (7)

(solid lines). Frequency points are logarithmically equally spaced between 10 kHz and 10 MHz.

the equivalent resistance of the line is the sheet resistance (Rch) corrected by a suitable scale

factor (1/8/π).
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