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Abstract

Stability and turbulence are often studied as separate branches of fluid dynamics,

but they are actually the two faces of the same coin: the existence of equilibrium,

laminar in one case and steady in the mean in the other. The link between these two

faces is transition. Initial value problems are considered to analyse the dynamics

of disturbances in the three phases.

In the context of stability, linearised equations of motion can be used. Al-

though this is a substantial simplification, the results that are obtained with this

analysis are far from being trivial. The transition to turbulence through the dy-

namics of disturbances is discussed in the context of the zig-zag instability: a

particular kind of instability that occurs in geophysical flows. Eventually, the

perturbations dynamics in turbulent flows is used to analyse the mixing process

between water-vapour in clouds and clear air in the surroundings, in the presence

of a meteorological inversion.
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Introduction

The evolution of the spatial-temporal perturbations is a topic of interest for most physical

systems. From a physical point of view, in fact, disturbances are always present in reality and

can not be eliminated or ignored, whether or not they are infinitesimal. Is therefore essential to

study their spatial-temporal evolution in the two main flow regimes: laminar and turbulent.

Stability, transition and turbulence are often studied as separate strands of fluid dynamics.

Stability and turbulence are actually faces of the same coin. The existence of equilibrium: in

one case is laminar, in the other one is steady in the mean. The link between these two faces is

transition. In this thesis initial value problems are solved in order to analyses the dynamics of

disturbances acting in these three different phases.

In the context of stability, assuming that the velocity and pressure of the perturbations

are small in comparison to those of the main flow, it is possible to use the linearised motion

equations. In this way the physics is significantly simplified since the interactions between

disturbances co-existing in the system (including the self- interaction) and those between the

disturbances and the base flow are neglected. Although this is a substantial simplification, the

results that are obtained with this analysis are far from being trivial. The transients can be

very complex: for example the perturbation can initially lose kinetic energy, subsequently be

amplified for a long time-interval and eventually completely decay when the asymptotic state

is reached. This is just one of the possible scenarios that may occur by introducing travelling

waves as perturbations in different types of shear flows: two-dimensional bounded (Poiseuille

flow) or unbounded (Blasius boundary layer and wake flows) and three-dimensional (boundary

layer in cross flow).

When the base flow is two-dimensional, the temporal evolution of the perturbative waves

is analysed in terms of the velocity at which the phase of any one frequency component of the

wave travels, this is named the phase velocity. This has been poorly investigated so far. Indeed

traditional studies are mostly interested in identify whether a perturbation can be stable or

not. However, also the phase velocity can lead to interesting considerations. In fact, generally

in laminar system more than a disturbance can coexist at the same time and therefore wave

packets can form. The two main features that describe the dynamics of wave packets are

precisely the phase velocity and the group velocity, the velocity with which the overall shape

of the waves’ amplitudes propagates through space. The relation between these velocities gives

2



Introduction 3

us information about how the energy is ”transported” by the packet.

Always under the (realistic) assumption that at any moment in the laminar system can

coexist many small perturbations that evolve independently from each other is also interesting

to investigate how the energy is distributed between the different length scales and how much

it differs from the case of fully developed turbulence.

When in turns a three-dimensional the base flow is considered the direction in which the

disturbance propagates plays a fundamental role in determining its evolution in the transient as

well as the asymptote.

The transition to turbulence through the dynamics of disturbances can be studied in the

context of the zig–zag instability, which is a particular kind of instability that can occurs by

perturbing two counter-rotating columns vortex in the presence of a stable stratification. The

vortices are stretched and bended in such a way as to assume a zig–zag shape. This zig–zag

shape in turn favours the occurrences of a second instability, the Kelvin Helmholtz instability,

which leads to the formation of smaller scales. This brings us to a turbulent regime. Analysing

this flow, we wondered if it is possible to explain and model the obtained inhomogeneous,

anisotropic and stratified turbulence.

Eventually we analyse the perturbations dynamics in a turbulent stratified flow where the

stratification is expressed in terms of temperature. A particular initial condition on the temper-

ature fluctuation is imposed such as to be able to represent an inversion layer that is a deviation

from the normal change of the atmospheric temperature with altitude. An inversion layer can

lead to pollution such as smog being trapped close to the ground, with possible adverse effects

on health. An inversion can also suppress convection by acting as a ”cap.” and it can deeply

modify the interaction between the clouds and the surrounding air.

We try to model this physical problem by study the flow generated by the juxtaposition of two

turbulent regions that have different kinetic energy. In the region with the highest kinetic en-

ergy a concentration of passive scalar is also introduced in order to represent the water vapour

inside the clouds.

The thesis is divided into two main sections. It will first consider laminar flows. A brief

introduction on laminar stability analysis of sheared flows will be given in Chapter 1. The

asymptotic and the transient evolution of three dimensional travelling waves acting on two

dimensional base flow will discussed in Chapter 2. In Chapter 3, it will then go on to describe

a particular time interval which is common in all transients and in which interesting scaling

properties are observed. The case where the base flow is three-dimensional will be treated in

Chapter 4. Some conclusions on the perturbation dynamics in laminar flows will follow.

The second part will concern stratified flows. A brief introduction about these flows will

be in Chapter 5. The transition to turbulence that may result from the zig–zag instability

will discussed in Chapter 6; while turbulent mixing through a temperature inversion layer will

discussed in Chapter 7.

Finally, general concluding remarks will follow.



Part I

Laminar flows
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Chapter 1

Linear stability analysis of sheared

flow: history, mathematical

framework and rationale

The hydrodynamic stability of fluid flow is an important subject in different fields, such as aero-

dynamics, mechanics, astrophysics, oceanography, atmospheric sciences, and biology. Stabil-

ity can be defined as the ability of a dynamical system to be immune to small disturbances [10].

In general, a system excited with infinitesimal perturbations is considered stable if the initial

state of equilibrium, in the short or long term, is reached again. On the contrary, a system is

unstable if, subject to small oscillations, it departs from any state of equilibrium.

The central issue of the stability analysis is to understand the underlying reasons for the

breakdown of laminar flow and its subsequent transition to turbulence. Although many im-

provements have been made over a hundred years, this remains an open question and a defini-

tive means for prediction is still to be found.

The fundamental property of linearity has been often applied in literature to the stability anal-

ysis of flows. Disturbances superposed on the laminar flow are assumed to be small so that

perturbation higher order terms are negligible, and this implies a simplification of the govern-

ing equations. Moreover, from a physical point of view, the assumption of small disturbances

is supported by the fact that these infinitesimal oscillations are always present in a dynamical

system and cannot be eliminated.

Anyhow, as the disturbance velocity grow, non-linear effects become important and the linear

equations no longer accurately predict the perturbation evolution. Although the linear theory

is important in identifying the onset and a possible development of the instability, but not in

considering its following evolution. Indeed, when a perturbation sets in, after a possible initial

transient growth, it shows an exponential behaviour. However, the subsequent temporal evolu-

tion is modified by the non-linear dynamics. This interaction makes the perturbations assume

5



Chapter 1. Linear stability analysis of sheared flow 6

a behaviour which is no longer exponential.

First important contributions to the hydrodynamic stability are due to Helmholtz [54],

Kelvin [64, 65] and Rayleigh [114]. In the early twentieth century, independently, Orr [107,

108] and Sommerfeld [128] framed the basis of the normal mode theory. Although the sta-

bility has been widely recognized as an initial-value problem, for several years the attention

was mainly focused on the final fate of disturbances imposed. It was considered sufficient to

know whether or not a flow is asymptotically stable or unstable. In this context, normal mode

analysis turns out to be a powerful and synthetic means to predict the perturbation asymptotic

behaviour.

Only lately the transient growth has become of great interest and its importance for the

complete temporal evolution of the perturbed system has been widely accepted. Recent shear

flows studies have shown that instability can be due to transient growth of disturbances [21,

28] long before the growing exponential mode occurs. In principle, this kind of behaviour

could cause perturbation amplitude that violates the assumption of linearity and promote rapid

transition, phenomenon known as bypass transition. An example of this possible scenario

is represented by the pipe flow. Linear modal analysis assures stability for all the Reynolds

numbers [36], but this result is in contrast with the experimental evidence, which shows that the

flow becomes turbulent at sufficiently large Reynolds numbers. The disagreement between the

linear modal prediction and laboratory results has motivated several recent works [38, 57, 37]

that focus on transient travelling waves and their link to the transition process. In general, it is

now considered possible that inside the transient life of travelling waves some important events

for the stability of the flow can take place.

The present work is developed within the linear theory framework and the laminar flows

here considered for the stability analysis are:

• the two-dimensional wake past an infinite circular cylinder,

• the plane Poiseuille flow,

• the Cross-flow boundary layer.

These flows are an important prototype of free shear flow for the study as well as for the

applications in environmental, engineering and biological fluid dynamics.

The interest is focused on the behaviour of disturbances through both normal mode analysis

and an initial-value problem to capture the early transient as well as the asymptotic behaviour

of any disturbance initially imposed. The common aspect to both these analyses is the base

flow description. The fundamental aspect of the normal mode approach is the assumption of

an exponential time dependence, which allows the transformation of the linear initial-value

problem into a corresponding eigenvalue problem. This hypothesis yields the temporal asymp-

totic behaviour, once the most unstable mode is established, but is lacking information on the
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transient growth. On the contrary, the initial-value problem formulation for the stability analy-

sis proposed by Criminale and Drazin [28] does not provide any a priori evolution in time, and

the governing equations are expressed in terms of partial differential equations. In like fashion,

the temporal evolution of disturbances initially imposed can be observed at any time.

As a very preliminary comment, the normal mode analysis turns out to be a powerful and

synthetic approach to observe whether or not a flow is asymptotically stable or unstable. In

the initial-value problem formulation both the early transient growth as well as the asymptotic

behaviour are directly taken into account. However, the latter approach is less concise than

the modal analysis, as different parameters have to be considered. In next chapters both the

approach will be used to perform a perturbative analysis on typical two- and three-dimensional

base flows.

In the following section the linear stability analysis is introduced for two-dimensional vis-

cous incompressible steady parallel flows. In section 1.2 it is carried on through the modal

analysis, while the transient dynamics is treated in section 1.3. The physical quantities needed

to describe the perturbations evolution are introduced in section 1.4. In section 1.5 the numer-

ical methods are discussed.

1.1 Perturbed flow and linearized disturbance equations

Stability theory uses perturbation analysis in order to test whether or not the equilibrium flow

is unstable. Consider the flows that are incompressible, time indipendent and parallel or almost

parallel by defining the mean state in Cartesian coordinate as







U =U(y)

V = 0

W = 0

P = P(x,y,z)

where U(y) is the x direction with y the coordinate that defines the variation of the mean flow,

z is in the transverse direction and P is the mean pressure. For some flows, such as that of

channel flow, this result is exact; for the case of boundary layer or unbounded flows then this

is only an approximation but the U component of the velocity is such that U >> V,W and U

varying only weakly with x, and then the designation of almost parallel flow. For the sake of

simplicity here we refer only to bounded flow where both x and z range from minus to plus

infinity with y giving the location of the solid boundaries. P is the mean pressure and the

density is taken a constant.

In particular, in this thesis the channel base flow is represented by the plane Poiseuille

solution

U(y) = 1− y2. (1.1)
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As a wake basic flow, we use the first two order terms of the Navier–Stokes asymptotic solution

described in [136] and reported below:

U(y;x0,Re) =C0 −
1√
x0

C1e−Re y2/(4x0) (1.2)

where C0 = 1 and C1 = 1.22+0.000067Re2 .

Now assume that there are disturbances to this flow that are fully three dimensional, and

hence 





u =U(y)+ ũ(x,y, t)

v = ṽ(x,y, t)

w = w̃

p = P(x,y)+ p̃(x,y, t)

can be written for the velocity and pressure of the instantaneous flow. Here the tilde super-

scripts indicate fluctuation components that are small with respect to the corresponding mean

system quantities (|ũ/U << 1| and |p̃/P << 1|). By writing the continuity and the Navier-

Stokes equations for the perturbed flow and then subtracting from these the corresponding

ones for the base flow, one obtains the following equations

∂xũ+∂yṽ+∂zw̃ = 0 (1.3)

∂t ũ+U∂xũ+U ′ṽ+ ũ∂xũ+ ṽ∂yũ+ w̃∂zũ+∂x p̃ =
1

Re
∇2ũ (1.4)

∂t ṽ+U∂xṽ+ ũ∂xṽ+ ṽ∂yṽ+ w̃∂zṽ+∂y p̃ =
1

Re
∇2ṽ (1.5)

∂tw̃+U∂xw̃+ ũ∂xw̃+ ṽ∂yw̃+ w̃∂zw̃+∂z p̃ =
1

Re
∇2w̃ (1.6)

where Re is the the Reynolds number the dimensionless parameter that represents the ratio of

inertial forces to viscous forces and consequently quantifies the relative importance of these

two types of forces for given flow conditions. It is defined as

Re =
Ure f Lre f

ν

where Ure f is a typical velocity of the base flow, Lre f a typical length scale of the physical

problem and ν the kinematic viscosity. The symbols ∂x, ∂y and ∂z are respectively the par-

tial derivative in the direction x, y and z, while ∇2 is the laplacian operator. The system of

equations 1.3-1.6 has to be combine with proper initial and boundary condition. In bounded

flows we impose no-slip boundary conditions, while for the wake flow uniformity at infinity
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and finiteness of the energy are imposed:

u(±y f ) = v(±y f ) = w(±y f ) = 0 in bounded flow (1.7)

u(±∞) = v(±∞) = w(±∞) =U∞ in umbounded flow (1.8)

where ±y f are the domain limit in bounded flow and U∞ is the undisturbed velocity in the

free stream for unbounded flow. The system of equations 1.3-1.6 is non-linear with respect

to the disturbance terms. The non-linear terms are products of the fluctuating velocities and

their derivatives. If the oscillation has frequency ω , these terms will have frequency 0 or 2ω .

This interaction will either modify the base flow (mean-flow distortion) and feedback to the

fluctuating components or introduce higher harmonics. Such difficulties are overcame with the

assumption that the perturbations are small in comparison with the base flow. As a consequence

the products of the fluctuations and their derivatives (the terms ũ∂xũ, ũ∂xṽ, ũ∂xw̃, ṽ∂yũ, ṽ∂yṽ,

ṽ∂yw̃, w̃∂zũ, w̃∂zṽ and w̃∂zw̃) are negligible in comparison with the other terms as a small

disturbance multiplied by a small disturbance results in a term of smaller order of magnitude

and no longer influences the equations to this order of approximation.

The linear system is

∂xũ+∂yṽ+∂zw̃ = 0 (1.9)

∂t ũ+U∂xũ+U ′ṽ+∂x p̃ =
1

Re
∇2ũ (1.10)

∂t ṽ+U∂xṽ+∂y p̃ =
1

Re
∇2ṽ (1.11)

∂tw̃+U∂xw̃+∂z p̃ =
1

Re
∇2w̃ (1.12)

The perturbations applied to the system will evolve independently because the non-linear

terms, that would permit interaction, have been neglected. The same fundamental property of

linearity occurs in other fields (acoustics, electromagnetism, ...), but non-linear equations must

often be retained to capture the essential physics.

Luckily, the solution of the linear system is sufficient to describe problems where small

oscillations influence the base flow. Moreover, it should be reminded that the infinitesimal

perturbations cannot be removed and are always present in any physical system. However, as

soon as the perturbation energy grows, the non-linear equations are required to correctly cap-

ture the perturbative evolution. For this reason, only the onset and not the following temporal

evolution of a possible instability is the aim of the linear stability theory.

Any velocity vector field can be decomposed into its solenoidal, rotational and harmonic

component. For the problems being discussed here there is no solenoidal part due to the fact

that fluid is incompressible and ∇ ·u = 0. On physical grounds the rotational part of the veloc-
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ity corresponds to the perturbation vorticity with the harmonic pressure related to the pressure.

The reasoning for the decomposition of the velocity can be best understood by actually us-

ing the definitions for the divergence and the curl. First, operate on 1.10-1.12 by taking the

divergence and use 1.9 to give

∇2 p̃ =−2U ′∂xṽ (1.13)

The relation 1.13 is an equation for the perturbation pressure and has an inhomogeneous term

that is effectively a source for the pressure due to interaction of the fluctuating and mean strain

rates. When neither is strained then the pressure is harmonic. If the velocity had not been

solenoidal, than factors relating to the compressibility of the fluid would come into play.

Now the definition of the pertubation vorticity components are

ωx = ∂yw−∂zv (1.14)

ωy = ∂zu−∂xw (1.15)

ωz = ∂xv−∂yu (1.16)

Using this definitions and the operation of the curl on the same set of equations for the mo-

menta, the following equations are obtained:

∂tω̃x +U∂xω̃x −
1

Re
∇2ω̃x = −U ′∂xw (1.17)

∂tω̃y +U∂xω̃y −
1

Re
∇2ω̃y = −U ′∂zv (1.18)

∂tω̃z +U∂xω̃z −
1

Re
∇2ω̃z = +U ′′v+U ′∂xu+U ′∂yv (1.19)

where −U ′ = Ωz is the singe component of the mean vorticity and is in the z direction. Each of

these equation has the expected transport by the mean velocity and diffusion but, in case there

is also an inhomogeneous term that is due to the interaction of the fluctuating strain and the

mean vorticity. Just as in the pressure relation, these interaction are needed for any generation

of the respective fluctuating component. but, it is important to note, such generation here is due

to three-dimensionality. If there was neither the w component of the velocity nor the spatial

dependence in the transverse z-direction, as it would be for the two-dimensional problem,

then the fluctuating vorticity component, except for ωz, could only be advected and diffused

regardless of any initial input.

In order to seek a solution for this problem, the number of equation needs to be reduced.

There are several ways to do this, but one in particular is more than efficient. From kinematic,

it can be shown that

∇2ṽ = ∂xω̃z −∂zω̃x (1.20)
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Thus by combining equations 1.17 and 1.19 an using 1.20, then

∂t∇
2v+U∂x∇2v+U ′′∂xv =

1

Re
∇2∇2v (1.21)

can be obtained and. Although still in a partial differential equation form equation 1.21 is the

Orr-Sommerfield equation of stability theory. It is fortuitous that this equation uncouples

in such a way as to only be fourth order and homogeneous in the v dependent variable. The

solution of 1.21 is the first requirement that must be met. These solutions are then to be used

in 1.18 for the solution of ωy. In like manner, the results found for ωy are combined with v and

the problem is complete when these are used in 1.15 and 1.9 to determine u and w.

If proper initial data and the boundary condition are satisfied, the problem is complete and

the query as to stability can now be answered.

One last observation should be noted here. Equation 1.18 is actually the Squire equation

that is known to accompany that Orr-Sommerfield. In this form, however, the dependent vari-

able is the component of the vorticity that is perpendicular to the x− z plane and is only of

interest in the full three dimensional perturbation problem, strictly speaking.

It is recognized that the coefficient in 1.21 are function of y only. Therefore, since the

extent of the planes perpendicular to y defined by x, z spatial variables is doubly infinite, v can

be Laplace (Fourier) transformed in this two variables. Accordingly define

v̂(α ,γ ;y; t) =
∫ ∞

−∞

∫ ∞

−∞
ṽ(x,y,z, t)ei(αx+γz)dxdz (1.22)

where we have introduced the wavenumbers α and γ respectively in the x and z directions. The

far field boundary conditions in these directions, namely boundedness, are satisfied by the rigid

conditions for the Fourier transforms with α and γ . Although here is no general restriction to

real or complex wave numbers, in this thesis we will consider the spatial wavenumbers both

real. The boundary conditions in y direction in term of transversal velocity and vorticity are

derived by equations 1.9, 1.18 and 1.7

v′(±y f )+αu(±y f )+ γw(±y f ) = 0 → v′(±y f ) (1.23)

ωy(±y f ) = γu(±y f )−αw(±y f ) = 0 (1.24)

Summarizing the Orr-Sommerfeld and Squire problem is described by the system of equa-

tions 





(∂t + iαU)(∂yyv̂− k2v̂)− iαU ′′v̂ =
1

Re

(
∂yyyyv̂−2k2∂yyv̂+ k4v̂

)

(∂t + iαU)ω̂y + iβU ′v̂ =
1

Re

(
∂yyω̂y − k2ω̂y

)

v̂(t = 0) = v0, ω̂y(t = 0) = ωy0

v̂(±y f ) = v̂′(±y f ) = ω̂y(±y f ) = 0

(1.25)
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where k =
√

α2 + γ2 is the polar wavenumber.

The governing equation are now a partial differential equation in terms of the variables y and t

only.

1.2 Modal analysis

Traditionally, investigations of disturbances in shear flows have been characterized using clas-

sical linear stability analysis. However, instead of considering the complete temporal evolution

of the perturbations and analysing the physical cause of a possible instability, the attention has

been widely focused on determining whether or not the flow is asymptotically unstable. If only

the question of stability is to be answered, the modal analysis is the easiest method to use.

First contributions have been given by Orr [107, 108] and Sommerfeld [128] who sepa-

rately derived the now-famous Orr-Sommerfeld equation 1.21. In the framework of the modal

analysis, the solution of the linearized perturbative equations turns into the resolution of an

eigenvalue problem. Introducing wavelike solution of the form

v(x,y,z, t) = v̂(y)ei(αx+γz−σt) (1.26)

ωy(x,y,z, t) = ω̂y(y)e
i(αx+γz−σt) (1.27)

results in the following pair of equations







i(αU −σ)(∂yyv̂− k2v̂)− iαU ′′v̂ =
1

Re

(
∂yyyyv̂−2k2∂yyv̂+ k4v̂

)

i(iαU −σ)ω̂y + iβU ′v̂ =
1

Re
(∂yyω̂y − k2ω̂y

(1.28)

The frequency σ appears as the eigenvalue in the Orr Sommerfeld equation, and together

with he associated eigenfunction v̂ is generally complex. The same hold true for the Squire

equation. It is important to note that the Orr Sommerfield equation is homogeneous. On

the other hand, the Squire equation for the normal vorticity is forced by solutions of Orr-

Sommerfeld equation. We can also write equation 1.28 in easier compact notation. We will

start by introducing the vectorial quantity

q̂ =

(

v̂

ω̂y

)

(1.29)
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which allows us to write the Orr Sommerfeld and Squire equation in a matrix form as

− iσ

(

k2 −∂yy 0

0 1

)

︸ ︷︷ ︸

M

(

v̂

ω̂y

)

+

(

LOS 0

iγU ′ Lsq

)

︸ ︷︷ ︸

L

(

v̂

ω̂y

)

= 0 (1.30)

where

LOS = iαU(k2 −∂yy)+ iαU ′′+
1

Re
(k2 −∂yy)

2 (1.31)

LSQ = iαU +
1

Re
(k2 −∂yy) (1.32)

(1.33)

Here M is a positive definite operator. The generalized eigenvalue problem can be expressed

in compact and recognizable form:

Lq̂ = iσMq̂ (1.34)

The solution of 1.28 can be divided into two classes of eigenmodes:

(

v̂n

ω̂y
p
n

)N

n=1

OS modes

(

0

ω̂ym

)M

m=1

SQ modes (1.35)

The first class is the set of the Orr-Sommerfel (OS) modes where v̂n and σn are found by

solving the Orr-Sommerfeld equation. The corresponding normal vorticity ω̂y
p
n

is found by

solving the inhomogeneous Squire equation with v̂n is the forcing term. The superscript p

empathizes that is equivalent of a particular solution of the driven Squire equation. The second

class of eigenmodes in the set of Squire (SQ) modes where the solution of the Orr Sommerfeld

equation is identically zero, implying that the squire equation is homogeneous. The two set

have in general different eigenvalues.

1.2.1 Three-dimensionality and Squires theorem

In the framework of the normal mode theory, only two-dimensional perturbations are usually

considered. This simplify the eigenvalue problem since it is reduced only in the Orr sommer-

feld equation. In addiction in 1933 Squire [129] recognized that through a simple transforma-

tion (now known as Squire transformation) the three-dimensional Orr-Sommerfeld equation

can be reduced to the same form as the two-dimensional Orr-Sommerfeld equation.

First, this implies that a three-dimensional problem can be reduced to a two-dimensional

one. Second, for parallel flows, only the two-dimensional problem has to be studied for de-

termining stability, as two-dimensional and three-dimensional quantities are linked together
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through the Squire transformation. Third, the two-dimensional and three dimensional prob-

lems have the same formulation, except that the two-dimensional problem has a lower value of

the Reynolds number. Finally, the wave velocity remains unscaled for the three-dimensional

and the two-dimensional problems. All these remarks are summed up in the following theorem

Squires Theorem (1933):

If an exact two-dimensional parallel flow admits an unstable three-dimensional disturbance

for a certain value of the Reynolds number, it also admits a two-dimensional disturbance at a

lower value of the Reynolds number.

In other words the theorem could also be stated as The minimum Reynolds number for insta-

bility will be higher for an oblique three-dimensional wave than for a purely two-dimensional

one or To each unstable three-dimensional perturbation there corresponds a two-dimensional

one with a lower Reynolds number (and with a higher longitudinal wavenumber).

Anyhow, it should be reminded that the Squire theorem only applies to parallel flows. For

more complicated flows, such as three-dimensional or curved mean flows, three-dimensional

perturbations have to be considered. Moreover, the theorem does not rule out the possibility

that, for high enough Reynolds number, an unstable oblique oscillation can occur even though

the purely two-dimensional one (with the same longitudinal wavenumber) is damped. This

point was treated by Watson [147] as well as Betchov and Criminale [10], but has not been

exploited to date.

1.3 Transient dynamics and Initial value problem

In the normal mode analysis the main goal is to determine whether or not the flow is asymptot-

ically unstable, and therefore to find the most unstable mode, for fixed values of the parameters

(e.g. Re) is enough for the stability question to be answered. Only relative recently the tran-

sient dynamic of perturbations has become of some importance in stability theory. Since the

very complexities of mathematics and the lack of adequate computing in the early stage of the

development, it was piratically impossible to actually accomplish this task. At the same time,

traditional thought on this matter did not indicate that this aspect could have any bearing on the

ultimate behaviour and was simply ignored.

Nowadays it is quite clear that the results of stability calculation in the modal form are really

more for the purpose of predicting of the finale state of any disturbance and the transient dy-

namics can have and do lead to events that make this part of the problem even more of interest

than it ever was.

If we are interested in solve an arbitrary initial value problem, i.e the problem 1.25 with

any choice of initial conditions it is done traditionally using a functions expantion. If we can

find a set of solutions of the Orr-Sommerfield equation, φi, that form a base in the space of the

solutions then any solution can be expressed as a series expansion of these base functions and

the unknowns disappear. However, the application of this procedure is not trivial: for a specific
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initial-value designation, there is the question of exactly how express arbitrary functions or

even what set of functions are to be used for expansion of this given initial condition.

Intuitively the set of base functions can be sought among the eigen-modes, but we must be

certain that they are a base and such as able to describe any function belonging to space of

solutions, namely they must be a complete set.

In flows with bounded domain all eigenvalues are discrete and infinite in number. DiPrima

and Habbetler [35] showed that this set is complete. Any initial disturbance can be expanded

in terms of normal modes and thus the complete solution can be expressed in terms of them.

For unbounded domains, general completeness theorems do not exist. However, Miklavcic and

Williams [93, 94] proved rigorously that if the mean flow decays exponentially to a constant

in the free-stream, then only a finite number of eigenvalues exists for a fixed Re, while if the

mean flow decays algebraically, then there exists an infinite discrete set of eigenvalues. In the

first case, a continuum must exist for a complete set to span the space solution, while in the

latter case no continuum exists.

As an alternative to modal expansion for solving the initial value problem 1.25 is the use of

the Laplace transform in time as proposed by Gustavsson in boundary layer flows [49]. In this

way the problem results completely specified and, in principle, can be made tractable. Unfor-

tunately, only general properties can actually be found using this approach since the ordinary

differential equation that must be solved is the same as 1.30. However, the important algebraic

behaviour is shown to exist along with the exponential modes and is due to the existence of

a continuous spectra since he showed that branch cuts as well as poles must exist when the

inversion back to the real space is to be made. This implies the existence of a continuous spec-

trum and the transient behaviour associated to it [49]. Lately Grosch and Salwen [120] showed

(not rigorously) that for unbounded flows the set consisting of the discrete modes and the con-

tinuum is complete. According to this result, to complete the solution the continuum part has

to be included. This can be exploited considering the Orr-Sommerfeld equation with bounded

solutions at infinity. For the discrete set v̂ and v̂′ are required to vanish when |y| → ∞, while

for the continuous spectrum v̂ and v̂′ are required to be bounded when |y| → ∞. Therefore any

solution of 1.25 can be written as

v̂(α ,γ ;y; t) =
N

∑
n=1

Cneiσntvn(y)+Vc(y, t) (1.36)

where N is the number of discrete eigenvalues, vn are the eigenfunctions, Cn depends on the

initial condition and Vc is the continuum. An example of continuum spectra is shown in Figure

1.2 for the Blasius Boundary layer flow. Once computed, the transient dynamic of perturbations

reveals that in the early transient an algebraic behaviour is observed. It can arise for different

reason. First three-dimensional perturbations the eigenfunctions are mutually non-orthogonal

since the operators that describe the linearized equations 1.30 are not selfadjoint. Second, for

three-dimensional perturbations, resonance between Orr-Sommerfeld equation set of solutions
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and those of the Squire equation can occur. Resonance has been demonstrated to be possible for

channel flow [50, 51, 7] but does not occur for the boundary layer. Resonance in the free shear

flows is yet to be determined. With the unbounded flow the continuous spectrum contributes

to such behaviour as well.

We have seen how the transient dynamics has been treated traditionally and how the eigen-

value problem can be associated to the transient life (we will return to better illustrate this

concept in the following chapter). Indeed, although this procedure where travelling wave

normal modes are assumed as solutions is mathematically correct, it is of limited use when

actually studying transient behaviour because of the underlying difficulties in the expansion

process once the eigenfunctions are obtained numerically. In other word the adoption of non-

orthogonal eigenfunctions in the try to build any real arbitrary initial condition introduces un-

necessary mathematical complications. We therefore prefer to follow the approach of Crim-

inale [29] and use arbitrary initial conditions that can be specified without having to recur

to eigenfunction expansions. Within our framework, for any initial small-amplitude three-

dimensional disturbance, this method allows the determination of the complete temporal be-

haviour, including both the early and intermediate transients and the long-time asymptotics.

1.4 Perturbative analysis

To measure the growth of the perturbations, we define the kinetic energy density,

e(t;α ,γ) =
1

4y f

∫ +y f

−y f

(|û|2 + |v̂|2 + |ŵ|2)dy, (1.37)

where −y f and y f are the computational limits of the domain, while û(y, t;α ,γ), v̂(y, t;α ,γ)

and ŵ(y, t;α ,γ) are the transformed velocity components of the perturbed field. For the channel

flow, which is bounded, the computational limits coincide with the walls (y f = 1). The wake is

an unbounded flow and the value y f is defined so that the numerical solutions are insensitive to

further extensions of the computational domain size (y f = 20 for short waves and y f up to 150

for longer waves). We then introduce the amplification factor, G, as the kinetic energy density

normalized with respect to its initial value,

G(t;α ,γ) = e(t;α ,γ)/e(t = 0;α ,γ). (1.38)

Assuming that the temporal asymptotic behaviour of the linear perturbations is exponential,

the temporal growth rate, r, that corresponds to the imaginary part of the eigenvalues of the

modal analysis, can be defined as

r(t;α ,γ) = log(e)/(2t). (1.39)

The frequency, ω , of the perturbation is defined as the temporal derivative of the unwrapped
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wave phase, θ(y, t;α ,γ), at a specific spatial point along the y direction. The wrapped phase,

θw(y, t;α ,γ) = arg(v̂(y, t;α ,γ)), (1.40)

is a discontinuous function of t defined in [−π,+π], while the unwrapped phase, θ , is a contin-

uous function obtained by introducing a sequence of 2π shifts on the phase values in correspon-

dence to the periodical discontinuities. In the case of the wake we use as reference transversal

observation point y0 = 1 or y0 = 5, and in the case of the channel flow the point y0 = 0.5. The

frequency ([122]) is thus

ω(t;y0,α ,γ) = |dθ(t;y0,α ,γ)|/dt (1.41)

It corresponds to the real part of the eigenvalues of the modal analysis.

It should be noted that when r and ω become constant, the asymptotic state is reached. In

the asymptotic limit, in respect to the modal analysis, the IVP can only select the mode which

has the largest growth rate.

The phase velocity is defined as

C = (ω/k)k̂, (1.42)

where k̂ = (cos(φ),sin(φ)) is the unitary vector in the k direction, and represents the rate at

which the phase of the wave propagates in space.

The eigenvalues,

σ = σr + iσi

and the eigenfunctions of the Orr-Sommerfield and Squire equations as defined in 1.30 are also

computed.

1.5 Numerical method

Equations 1.25 are numerically solved in two ways: by the method of lines and, for the

Poiseuille flow where the discrete spectrum is complete, also by an eigenfunction expansion

method of the fifth order based on Chandrasekhar functions [23].

The method of lines [1] is a convenient numerical method: the equations are first dis-

cretized in the spatial domain using a second-order finite difference scheme, and then inte-

grated in time. For the temporal integration we use an adaptative one-step solver, the Bogacki-

Shampine method [19], which is an explicit Runge-Kutta method of order three using approx-

imately three function evaluations per step. It has an embedded second-order method which

can be used to implement adaptive step size. This method is implemented in the ode23 Matlab

function [127] and is a good compromise between non-stiff solvers, which give a higher order

of accuracy, and stiff solvers, which can in general be more efficient.
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Figure 1.1: Comparison between results obtained via the finite difference method and the Galerkin

method. in term of (a) amplification factor and (b) frequency of the pertubation.

In the second case, a Galerkin method is used to obtain a weak formulation based on a

finite number (around 200) of modes [40]. Differently from the previous method, this one can

be used only for confined flows. However the agreement between the two method is really

good

Two different numerical methods are used to compute the spectra of the Orr-Sommerfeld

equation. In Figure 1.2 we report a comparison with literature results as a validation of our

schemes. As mentioned before, for unbounded flows it has been shown by [48] that a continu-

ous spectrum can be analytically found, if the boundary conditions are relaxed to v̂ unbounded

as y → ∞. If homogeneous or exponential (Γ̂ = 0) boundary conditions are imposed and there-

fore only the class of decaying solutions is considered, the continuous part of the spectrum is

approximated in a discrete way. If the boundary conditions are imposed far from the wake, the

approximation is very good. In the present work we use a finite differences scheme of fourth

order of accuracy, and the Galerkin method with Chandrasekhar functions described above.

The last method is here successfully adapted for the wake flow or for the boundary layer flow

and refined non uniform grids have been used.

Since no spectra with our wake base flow [136] have been found in literature, the schemes

have been validated with the Blasius boundary layer flow (see Figure 1.2, panel a). For channel

flow, the comparison with a hybrid spectral collocation method based on Chebyshev polyno-

mials [125] are shown in Figure 1.2, panel b.
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Figure 1.2: Spectra of eigenvalues (σ = σr + iσi) of the Orr-Sommerfeld equation. Comparison of

different numerical methods: 4th order finite differences scheme on uniform grid (blue circles); 5th order

Galerkin method on non-uniform grid (red x); a Chebyshev spectral collocation method (code by S.C.

Reddy, black points on panel (b)); results by [85] (black points on panel (a)). (a) Blasius boundary layer

flow, Reδ ∗ = 998, kδ ∗ = 0.308, φ = 0. The continuous part of the spectrum is discretely approximated.

The black line represents the analytical solution, obtainable only if the boundary condition at y → ∞ is

relaxed to v̂y→∞unbounded. As Reδ ∗ and kδ ∗ increase, particular attention is needed to avoid spurious

eigenvalues due to the spectrum intrinsic sensibility. Refined non-uniform grids may result necessary,

especially for large domains. (b) Channel flow, Re = 10000, k = 1, φ = 0.



Chapter 2

Two-dimensional shear flows:

transient dynamics and dispersion

relation

In this chapter, we focus on the asymptotic behaviour and on the temporal evolution of the

wave frequency and phase velocity in two archetypical shear flows, the plane channel flow and

the bluff-body plane wake.

As mentioned in Chapter 1, the traditional approach of the stability analysis in shear flows

lies in solving the eigenvalue problem which is obtained by imposing a time exponential so-

lution, with complex exponent, to the Orr-Sommerfield equations. The focus is therefore on

the sign of the imaginary part of the eigenvalue with maximum imaginary part, which in our

formulation correspond to the grow rate. If it is positive perturbation is unstable if it is negative

is stable. On the contrary, our analysis concentrates on the real part of the that eigenvalue, that

is the rate at which the phase of the perturbation wave propagates in space, i.e. its phase veloc-

ity. We found the existence of a wavenumber threshold (kd , in the following) that separates the

waves which propagate in a dispersive way from the waves that propagate in a non-dispersive

way. If a wave-packet is only composed by waves of the second kind, it can propagate without

deformation. If it is centred in kd the velocity with which the overall shape of the waves’ packet

amplitudes propagates through space, the group velocity, can be very high. Well as being of

interest for the study of wave packets the existence of this dispersive-non dispersive transition

can also affect the transient dynamics of the travelling waves.

Although both Kelvin [64, 65] and Orr [107, 108] recognized that the early transient con-

tains important information, only in recent decades many contributions have been devoted to

the study of the transient dynamics of three-dimensional perturbations in shear flows [125, 30].

An example of this possible scenario is represented by the pipe flow. Linear modal analysis

assures stability for all the Reynolds numbers [36], but this result is in contrast with the experi-

20
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mental evidence, since the flow becomes turbulent at sufficiently large Reynolds numbers. The

disagreement between the linear modal prediction and laboratory results has motivated several

recent works [38, 57, 37] that focus on transient travelling waves and their link to the transition

process. In general, it is now considered possible that inside the transient life of travelling

waves some important events for the stability of the flow can take place [21, 8, 52, 28, 115].

In fact, early algebraic growth can show exceptionally large amplitudes long before an expo-

nential mode is able to set in. It is believed that this kind of behaviour is able to promote rapid

transition to fluid turbulence, a phenomenon known as bypass transition [11, 55, 73, 80]. Tran-

sient decay of asymptotically unstable waves is also possible, which makes the situation rich

and complex at the same time.

Throughout this work, we investigate the temporal evolution of small perturbations acting

on the plane channel flow and the bluff-body plane wake, with particular emphasis on the phase

velocity transients. Indeed, the frequency or phase velocity transient has been poorly investi-

gated so far. For instance, in the wake flow the attention was mainly devoted to the frequency

of vortex shedding for the most unstable spatial scales [148, 109, 130]. Only very recently,

subcritical wake regimes (up to values 30% below the critical value) of the vortex shedding of

transiently amplified perturbations were studied by considering the spatio-temporal evolution

of wave packets [89]. The situation is quite different within the context of atmosphere and cli-

mate dynamics. Here, the interaction between low-frequency and high-frequency phenomena,

which is related to the existence of very different spatial and temporal scales, is believed to be

one of the main reasons for planetary-scale instabilities [131, 101]. However, due to the in-

herent strong nonlinearity, the evolution of single scales cannot be observed in the geophysical

systems and thus also these studies usually do not account for the frequency transient evolution

of a single wave.

In this study, the transition between the early transient and the asymptotic state is consid-

ered. It is observed that this transition can be highlighted by phase velocity jumps inside the

perturbation temporal evolution. This implies that the perturbation may experience accelera-

tions or decelerations during its transient life. This behaviour depend on the initial condition

adopted and on the wave-length of the perturbation (if it is shorter or longer in respect the

the wavelength that separate the asymptotically dispersive waves from the asymptotically non-

dispersive waves). These transient dynamics are therefore closely linked to the asymptotic

dispersion relation.

The organization of the chapter is as follows. The physical problem treated is described in

Section 2.1. The asymptotic dispersion relation is discussed in Section 2.2. The phase velocity

behaviour in the transient is then described in Section 2.3.
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Figure 2.1: Basic flows and perturbation scheme. A cartesian reference frame is adopted, with unit

vectors e1, e2, e3 in the x, y, z directions, respectively. The base flow profiles are qualitatively represented

in pink. The perturbation is represented by the blue and the yellow waves which propagate in the x and

z directions, respectively. k = αe1 + γe3 is the wavenumber vector, φ is its angle with respect to the

basic flow U =U(y)e1.

2.1 Physical problem

We consider two typical shear base flows, the plane channel flow, an archetype of bounded

flows, and the plane bluff-body wake, one of the few free flow archetypes. A Cartesian ref-

erence systems is adopted, with origin at the channel mid plane in the first case and at the

bluff-body location, for the wake case. The x,y,z axis are oriented in the streamwise, transver-

sal and spanwise directions, respectively (see Figure 2.1). After introducing arbitrary small

perturbations the linearised, viscous and incompressible governing equations Eq. 1.25 is ob-

tained.

The channel base flow is represented by the plane Poiseuille solution

U(y) = 1− y2. (2.1)

As a wake basic flow, we use the first two order terms of the Navier–Stokes asymptotic solution

described in [136] and reported below:

U(y;x0,Re) =C0 −
1√
x0

C1e−Re y2/(4x0) (2.2)
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where C0 = 1 and C1 = 1.22 + 0.000067Re2 . In the present work the frozen-flow approxi-

mation is made, by considering different fixed streamwise locations x = x0 from the body, in

the intermediate and far field of the wake. The domain is −∞ < x,z < ∞, −1 < y < 1 for the

channel flow, and 0 < x < ∞, −∞ < z < ∞, −∞ < y < ∞ for the wake.

To define the Reynold number, as reference length scales the channel half-width h, and the

body diameter D, are considered. The reference velocity for the channel flow is the centreline

velocity U0, while in the wake case the free-stream velocity U f , is taken. The reference time

is the convective one. Consequently, the Reynolds number, defined as Re = U0h/ν , for the

channel flow and as Re =U f D/ν for the wake flow, where ν is the kinematic viscosity.

In order to measure the perturbation evolution we have already defined variable we need in

Section 1.4. In particular in this chapter we will focused on the phase velocity, that we recall

is defined as

c = (ω/k)k̂, (2.3)

and the group velocity that instead is defined as

vg =
dω

dk
. (2.4)

2.2 Dispersive to non dispersive transition

In this section we focus on the asymptotic behaviour of longitudinal waves and show the disper-

sion relations, in order to highlight some features which we found to be relevant to understand

the temporal evolution of the initial perturbations. Our results have been compared with a large

literature data collection, which includes different methods of investigation.

Figure 2.2 shows the dependence of the phase velocity c on the polar wavenumber k, in

the range k ∈ [0.2,5]. We see that although experimental results are affected by the nonlinear

interaction, the agreement between laboratory data and our analysis is very good. In this regard,

it has been shown by Delbende and Chomaz [33] that nonlinear terms limit the amplitude

of perturbation wave packets and leave unaffected the frequency, see also the laboratory and

normal mode data comparisons in [137, 6]. In particular, as regard to the channel flow we

observe a good agreement with the works of Nishioka et al. [103], Asai and Floryan [2] and

Ito [61] (see panels (a,b) of Figure 2.2 ).

As regard to the wake flow our references include the literature data of Paranthöen et al.

[109], Barkley [5], Giannetti and Luchini [44], Nishioka and Sato [104], Norberg [105], Pier

[110], Roshko [118], Williamson [148], and Zebib [150]. The agreement is much better for

Re = 50, i.e. at the onset of instability (Recr ≈ 47), see Figure 2.2 panel (c). However, for

Re = 100 the current results are not far from literature data (the relative error with respect

to the measurements by Williamson lies between 3.3% for Re = 50 and 8.8% for Re = 100).

Moreover, it should be considered that most of the data used for the comparison only present
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Figure 2.2: Phase velocity as a function of the wavenumber for longitudinal waves (φ = 0) and com-

parison with literature results. Channel flow, comparison with literature data by Refs. [103, 61, 2] for

(a) Re = 4000 and (b) Re = 5000. Wake flow, comparison with literature data by for [109, 5, 44, 104,

105, 110, 118, 148, 150] for (c) Re = 50 and (d) Re = 100. Our results are computed at three different

streamwise position: x0 = 10,20,50. Note the jump in the dispersion relation at kd .

the frequency at which vortex shedding takes place past the cylinder, the Strouhal number, and

no information about the wavenumber of the shedding is provided. To compare the results,

we then associate the frequency values reported in literature to the average of the wavenumber

between the one observed by Williamson [148] and the one observed by Paranthöen [109], for

Re = 50. For Re = 100 instead, only k observed by Williamson[148] is known to us.

The comparison is especially rich of data in the range of long waves, which are the most

unstable ones [123]. Indeed, these perturbations are those more easily observed in the labo-

ratory, even if usually in their nonlinear regime. We have instead considered a range of wave

numbers more extended without being limited to those that lead to instability.

In both cases we observe the existence of a threshold wavenumber, kd , where a sudden

variation of the phase velocity distribution in the relation dispersion occurs. For k > kd the

phase velocity is approximately constant and equal to 1 for both the base flows here considered,

typical of a non-dispersive behavior. For k < kd instead, c is a general function of k and the

behavior becomes dispersive. In other word, this value clearly separates the dispersive region in

the c− k map from the non-dispersive one. See also Figure 2.3 (a,b) where the phase velocity

is compared with the group velocity that is the velocity with which the overall shape of the

waves’ amplitudes propagates through space (vg = dω/dk).

The transition between dispersive and non-dispersive behavior is related to the fact that for
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long waves the least-stable Orr-Sommerfeld eigenvalue belongs to the left branch of the eigen-

values spectrum, while for short waves it belongs to the right branch. For three-dimensional

perturbations it can be verified that, except in a neighborhood of kd ,

c(k,φ) = c(k,φ = 0) cos(φ), (2.5)

as a consequence orthogonal waves (φ = π/2) are standing waves. In the neighbourhood of

kd instead the dependence on the angle of obliquity is more complicated. The threshold kd

is a function of the Reynolds number, the wave angle and, for the wake flow, the streamwise

station x0. For the channel flow, values of kd have been computed for Re ∈ [1000,8000] and

φ ∈ [0,π/3] and are reported in the Table 2.1. We observe that kd increases as Re and decreases

as the wave angle. The kd −Re trend is reversed in the wake case and the dependence on x0 is

also shown, values of kd are reported for Re∈ [20,100], φ ∈ [0,π/3] and x0 = [10,20,50]. Note

that in the wake case the results for three-dimensional perturbations cannot be traced back to

the 2D case by the Squire’s theorem, since U =U(y;Re).

2.2.1 The energy equation

In Figure 2.2 we have observed an abrupt transition in the dispersion relation for both base

flows. As argued above this transition can be explained by the fact that for long waves the

least-stable Orr-Sommerfeld eigenvalue belongs to the left branch of the eigenvalues spec-

trum, while for short waves it belongs to the right branch. It should be noted that the the

velocity field is concentrated inside the region where the base flow has a greater shear for the

eigenfunctions associated to the left branch of the eigenvalues spectrum; while the velocity

field is concentrated outside this region for the eigenfunctions associated to the right branch.

In the case of the channel flow this means that the least stable mode takes significant values

near the walls for long waves and it is localized in the center of the channel for short waves.

On the contrary, in the case of the wake flow, the least stable mode is localized in the center of

the domain for long waves while it is distributed outside the cylinder’s wake region for short

waves. A question naturally arises: why for k greater than a given value does the system prefer

to settle on a different configuration? In the attempt to answer this question, we examine the

evolution of the kinetic energy equation, that is:

dE

dt
=−

1

k2Re

∫ y f

−y f

(|∂yyv|2 +2k2|∂yv|2 + k4|v|2)dy

︸ ︷︷ ︸

Viscous terms

+
1

k
ℑ

∫ y f

−y f

Uv̄∂yyvdy

︸ ︷︷ ︸

Convective term

(2.6)

where v̄ indicate the v conjugate and ℑ the imaginary part. In Figure 2.3(c,d,e,f) we compare

convective and the viscous term for the least stable mode and the second last one, where if the

least stable eigenvalue belongs to the left branch (i.e. k < kd) the second last one belongs to
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Channel flow

Re\ φ 0 π/6 π/4 π/3

1000 2.071 2.111 2.168 2.256

2000 1.883 1.922 1.979 2.073

3000 1.764 1.803 1.866 1.960

4000 1.686 1.725 1.784 1.878

5000 1.623 1.662 1.721 1.815

6000 1.576 1.615 1.670 1.765

7000 1.536 1.568 1.627 1.720

8000 1.497 1.536 1.589 1.682

Wake flow, x0 = 10

Re\ φ 0 π/6 π/4 π/3

20 1.061 1.020 0.977 0.861

30 1.364 1.323 1.265 1.143

40 1.626 1.586 1.534 1.406

50 1.869 1.828 1.764 1.628

60 2.091 2.050 1.975 1.851

70 2.293 2.252 2.186 2.052

80 2.475 2.434 2.378 2.254

90 2.657 2.616 2.570 2.436

100 2.818 2.798 2.742 2.618

Wake flow, x0 = 20

Re\ φ 0 π/6 π/4 π/3

20 0.756 0.732 0.691 0.616

30 0.968 0.943 0.896 0.815

40 1.153 1.118 1.086 0.987

50 1.325 1.294 1.250 1.159

60 1.471 1.441 1.400 1.318

70 1.616 1.587 1.550 1.463

80 1.748 1.719 1.686 1.596

90 1.881 1.851 1.809 1.728

100 1.992 1.983 1.945 1.860

Wake flow,x0 = 50

Re\ φ 0 π/6 π/4 π/3

20 0.483 0.461 0.441 0.401

30 0.596 0.593 0.573 0.522

40 0.709 0.714 0.684 0.633

50 0.822 0.815 0.795 0.734

60 0.935 0.916 0.886 0.835

70 1.020 1.007 0.977 0.926

80 1.105 1.088 1.068 1.007

90 1.189 1.169 1.148 1.098

100 1.246 1.249 1.229 1.179

Table 2.1: Values of the dispersive regime threshold wavenumber kd for the channel and the wake flows,

for different Reynolds number and obliquity angles. The uncertainty on kd due to the discretization is

±0.005.
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the right one and vice versa. In the right branch the symmetric and antisymmetric modes have

almost identical eigenvalues. For simplicity we have considered only the symmetric ones but

it can be shown that the results do not change by taking only the antisymmetric ones. C1 and

D1 indicate respectively the convective and the viscous term for the least stable mode, C2 and

D2 for the second last one. It can be observed that the system assume the configuration that

maximize the contribution due to the convection, except that in a neighbourhood of kd .

Though this results are related only to the asymptotic state of the perturbations, but as

will be shown in the next section they are relevant to understand the perturbations transient

dynamics.

2.3 Phase velocity transient dynamics

Recent studies on shear flows [21, 28] have shown the importance of the early time dynamics,

that in principle can lead to non-linear growth long before the asymptotic exponential mode

is dominant. Transient dynamics offers a variety of different behavior and phenomena which

are not easy to predict a priori. It is interesting to note that these phenomena develop in the

context of the linear dynamics, where interaction among different perturbations (and even self-

interaction) is absent. In order to specify how given initial conditions the system evolves with

time, proper initial conditions on v̂ and ω̂y have to be associated to the system of equations

1.25.

In literature the transient dynamics is generally analyzed in terms of amplification factor,

and little attention has been paid to the phase velocity and/or frequency transient. One of the

aims of this paper is instead to analyze the transient perturbation in terms of phase velocity and

to understand how many time scales the perturbation dynamics involves.

We have computed the phase velocity by the transverse velocity component v̂, see Eqs.

1.41-1.42. We can of course consider any component of velocity and vorticity, but v̂ is al-

ways non-zero for any choice of the obliquity angle. Moreover the first equation of 1.25 is

homogeneous and it can be demonstrated that the eventual introduction of an initial transversal

vorticity does not actually affect the perturbation temporal evolution, see Ref. [122]. For this

reason the initial vorticity ω̂y(0,y) is set to zero for all the simulations showed in this paper.

Through an exploratory study that considers different types of initial conditions on the

transversal velocity, we conclude that the characteristics influencing the transient are essen-

tially two: symmetry/antisymmetry and centrality/non-centrality. Note that a “central” initial

condition v̂0 = v̂(t = 0,y) has its largest variations dv̂/dy close to the base flow symmetry plane

y = 0. By combining these two features, it is possible to classify the set of the possible initial

conditions into four types that we can call:

• SC, symmetric and central,

• AC, antisymmetric and central,
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Figure 2.3: (a,b) Phase and group velocity as a function of the wavenumber for longitudinal waves

(φ = 0) and comparison with literature results. The phase velocity is represented with the blue line

(1024 computed points), while the group velocity with the red one and comparison with literature data

as in Figure 2.2. Wave packets containing the wavenumber kd can actually show a very high group

velocity. (c,d,e,f) Energy time derivative convective and dissipative terms as defined in equation 2.6,

for the two least-stable symmetric eigenmodes, as a function of the wavenumber. Blue lines are for

the least stable eigensolution, yellow lines represents the symmetric second-last. (a) Channel flow with

Re = 5000, φ = 0. (b) Wake flow, Re = 50 and x0 = 20. For k < kd the least-stable solution belongs to

the left branch of the eigenvalues spectrum, while for k > kd it belongs to the right branch. Though the

eigenmodes, considered separately, evolve continuously with k, we can observe that the least-stable is,

among all, the solution that maximizes the convective energy term.



Chapter 2. Two dimensional base flow 29

AC, v
0

ANC, v
020

10

0

-10

-20

y

Wake flow

U

SC, v
0

SNC, v
0

Wake flow

U

AC, v
0

ANC, v
0

1

0.5

0

-0.5

-1

y

U

SC, v
0

SNC, v
0

Channel flow

U

Channel flow

Figure 2.4: Initial velocity disturbances v̂0 and base flows (amplitudes have been scaled for clarity).

Top panels: channel flow. Bottom panels: wake flow. Dark lines represent symmetric disturbances (left

panels), while light lines are for antisymmetric ones (right panels). Thick lines indicate central initial

disturbances, thin curves represent the non-central ones.

• SNC, symmetric and non central,

• ANC, antisymmetric and non central.

In Figure 2.4 the prototypes of the different typology of initial condition are shown for both

base flows, while the exact expressions adopted are given in Table 2.2.

We start the discussion by presenting an overview for transient dynamics, showing the evo-

lution of three-dimensional perturbations in terms of amplification factor G, phase velocity c,

and temporal growth rate r, and comparing the results obtained by the IVP with the eigenvalue

spectra given by the modal analysis . In Figure 2.5 the transient dynamics of perturbations with

initial conditions as in Table 2.2 are shown for both the base flows and for k < kd . Trends for

small wave numbers are shown here, as they are the most easily observable in the laboratory.

However in Figure 2.7 we summarize in a general scheme the transient perturbations behavior

also for disturbances with large wavenumbers.

The amplification factors and the temporal growth rates are reported in Figure 2.5 (b,c,f,g)

for the two base flows. For the wake flow, we can observe that an initial condition of the kind
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Figure 2.5: Transient lives of the perturbations observed through the the phase velocity c (a, e), the

amplification factor G (b, f), and the temporal growth rate r (c, g), for four types of initial conditions.

The eigenvalues spectra are shown in panels (d, h). Left column: channel flow with Re= 6000, φ = π/4

and k = 1. Right column: wake flow with Re = 100, φ = π/6 and k = 0.7. The phase velocity is

computed at y0 = 0.5 for the channel and at y0 = 1 for the wake flow (remind that the reference lengths

are the channel half-width and the cylinder diameter). The quantity Tc, see (a) and (e), indicates the

temporal periodicity shown by the phase velocity fluctuations observed in the early and intermediate

term and corresponds to the ratio Tc = 2π/[σrmax −σrmin
], as shown in panels (d) and (h).
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IC Wake flow Channel flow

SC v̂(0) = e−y2

cos(y) v̂(0) = e−
y2

0.01 cos(3y)

AC v̂(0) = e−y2

sin(y) v̂(0) = e−
y2

0.01 sin(3y)

SNC v̂(0) = e−(y−10)2

+ e−(y+10)2

v̂(0) = (1− y2)2

ANC v̂(0) = e−(y−10)2 − e−(y+10)2

v̂(0) = y(1− y2)2

Table 2.2: Initial conditions imposed on the velocity, v̂0 = v̂(0,y), for both the channel and the wake

flows. SC: symmetric and central. SNC: symmetric and non central. AC: antysimmetric and central.

ANC: antysimmetric and non central (see Figure 2.4).

SC - symmetric and localized inside the base flow shear region - and ANC- antisymmetric

external to the base flow shear region - the asymptotic exponential behavior predicted by the

modal analysis is reached after few temporal scales. On the contrary, with the other kind of

initial conditions - SNC and AC - the transients can last up to hundreds of time units. In

these cases quite far along within the transient the phase velocity abruptly changes its value,

a phenomenon that we denominate phase velocity jumps (see panel e). For symmetric initial

conditions external to the base flow shear region, SNC, the perturbation after the jump slows

down, i.e the phase velocity jumps to a lower value. For antisymmetric initial conditions

localized in the base flow shear region, AC, the perturbation the phase velocity jumps to a

higher value, so it experiences an acceleration.

The same behavior is observed in the case of the channel flow, but here the role of the initial

conditions is the opposite. In fact, SNC and AC reach the asymptotic exponential behavior

after few time scales , while SC and ANC have a long transient characterized by the presence of

phase velocity jumps (see Figure 2.5 a). Also in this case the phase velocity of the symmetric

perturbation jumps to a smaller value while in the antisymmetric case it shifts to an higher

value. The different behavior of the two base flows can be traced back to the structure of the

eigenvalue spectra and the associated eigenmodes. Indeed, it is known that for the channel flow

the eigensolutions of the left branch (A-branch) are wall-modes while those of the right branch

(P-branch) are central modes. The opposite applies for the wake flow, whose spectra are made

of a discrete set (left branch) of central modes, and a continuous branch of non-central modes.

As for the channel case, both branches contain symmetric and antisymmetric functions.

Besides the two temporal scales associated to the value of the phase velocity before and

after the jumps (T = 2π/(ck)), we observe a further periodicity, Tc, related to the temporal

modulation of the frequency during the early and intermediate terms, see Figure 2.5 panels (a)

and (e). This period corresponds to the width of the spectral range of frequencies given by the

modal theory Tc = 2π/[σrmax
−σrmin

].

The system presents other two temporal scales: the external scale related to the base flow and

the length of the transient (which can be determined by observing the time instant beyond
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Figure 2.6: Temporal evolution of mixed symmetric-antysimmetric initial conditions for the wake flow

with Re = 100, k = 0.4, φ = π/3 and x0 = 50. A small uniform random noise of magnitude O(10−7)
is added to the initial conditions AC and ANC in order to simulate the transient life of a general initial

disturbance. (a) Growth rate. (b) Phase velocity. The dashed line represents the asymptotic trend given

by the least stable OS eigenvalue.

which the growth rate, r, and the angular frequency, ω , are both constant). Therefore, for each

wavenumber it is possible to count up to five different time scales.

Figure 2.5 show that symmetric and antisymmetric perturbations do not have the same

asymptotic behavior. More precisely symmetric perturbations are always less stable than anti-

symmetric one. This means that if we consider mixed initial conditions, the symmetric compo-

nent will always prevail. Of course, in laboratory experiments, one cannot assume the precise

symmetry because residual disturbance cannot be completely suppressed. As a consequence

the phase velocity that can be eventually observed is the one given by the symmetric part of

the initial condition. In an attempt to reproduce what might happen in laboratory, we can build

up a mixed initial condition with prevailing antisymmetric component, by adding to the AC

and the ANC conditions a small noise which models the presence of a small symmetric part.

The evolution of such a disturbance is shown in Figure 2.6: after an early transient, the phase

velocity experiences a jump (as it happens for AC and ANC) and then the solution keeps the an-

tisymmetric (exponential self-similar decay, 1000 < t < 2900 ) shape until the symmetric part

becomes dominant and the asymptote is eventually reached, announced by a second frequency

jump. In this case the asymptotic solution is a symmetric growing mode.

2.4 Acceleration-deceleration general scheme

Figure 2.7 shows a full scheme of the perturbation transient type, and the possibility of fre-

quency jumps to occur, for any different combinations wavenumber-type of initial condition,

differentiating the cases where the perturbation is accelerated or decelerated after the jump.

Moreover when a perturbation accelerate it goes from a dispersive to a non dispersive behaviour

and vice-versa. Therefore the dispersivity of a waves can change also during its transient which

make the wave packets dynamics more complex.
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Figure 2.7: Scheme of the possible perturbation transient behavior. Left column: type of transient, the

black line represents the phase velocity jump, while the red draw indicates the self-similar velocity

profiles for the wake case. Mid column: wake flow; in each cell the conditions under which the corre-

sponding transient type can realize are indicated, in terms of initial condition type (SC=symmetric cen-

tral, AC=antisymmetric central, SNC=symmetric non-central, ANC=antisymmetric non-central) and

the wavenumber value, namely k < kd or k > kd . Right column: channel flow.
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It is also important to notice that the frequency/phase velocity jumps are observed for long

enough time. For instance in the case of the wake flow, Re = 100 and AC type initial condition

(see red curve in Figure 3.4), if we consider a cylinder with D = 2 cm the jump arrive after

nearly 3 minutes if the fluid is air, and after nearly 40 minutes if the fluid considered is water.

The observations of phase velocity jumps yield an interesting result: the perturbation tem-

poral evolution have a three-part structure, with an early stage, an intermediate stage and an

asymptotic stage. The early transient is the stage where the perturbation is most affected by

the fine details of the initial condition and represents a period of adjustment. During the inter-

mediate stage the perturbation evolves almost exponentially: the phase velocity takes the final

constant value, the transverse velocity profiles maintain a near self-similar nature in time and

the growth factor changes very slowly. This stage appears as a kind of intermediate asymp-

totics and that can be in general considered extinguished only when both the frequency and

the temporal growth rate become constant so that the asymptotic regime is reached. This tran-

sient structure is common to all perturbations. Moreover, in the case in which the frequency

transient presents one or more jumps, the beginning of the intermediate asymptotics is clearly

announced by the last jump.

In the next chapter the properties of self similarity that characterize the intermediate tran-

sient will be investigated.



Chapter 3

Intermediate transient: self similar

solution and energy spectra

In previous chapter we have seen that phase velocity jumps may occur inside the transients. We

have observed up to two jumps. We can interpret the appearance of the jumps, which can be

preceded and followed by modulating fluctuations, as the boundaries between an early transient

and the beginning of an intermediate term. During the intermediate stage the perturbation

evolves almost exponentially: the phase velocity takes the final constant value, the transverse

velocity profiles maintain a near self-similar nature in time and the growth factor changes very

slowly. This stage appears as a kind of intermediate asymptotics and that can be in general

considered extinguished only when both the frequency and the temporal growth rate become

constant so that the asymptotic regime is reached. In this chapter, we analyse the similarity

properties of the time history inside the intermediate term.

Moreover we have considered that, at any instant, the laminar system can host a multiplicity

of scales. Small perturbations which randomly enter the system and, in the linear framework,

evolve independently from each other. Although linearity on one hand allows each evolution to

be determined singularly, on the other, it should be recalled that a large number of perturbations

(not even bounded, in principle) are present at the same time. In this chapter, we try to consider

and observe the collective behaviour of small perturbations. The aim is the understanding and

the discovering of possible similarities with turbulence behaviour.

As an example, in order to understand whether, and to what extent, spectral representa-

tion can effectively highlight the non-linear interaction that occurs among different scales, it

could be useful to consider the state that precedes the onset of both instability and turbulence

in flows. In this condition, even if stable, the system is however subject to a swarming of small

arbitrary three-dimensional perturbations that constitutes a system of multiple spatial and tem-

poral scales subject to all the processes included in the Navier-Stokes equations: linearised

convective transport, linearised vortical stretching and tilting, and molecular diffusion. If we

35
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leave aside nonlinear interaction of the different scales, the other features are tantamount to the

features of the turbulent state.

If it were possible to observe such a system, by computing and comparing a large set of

three dimensional waves, and build spectra, it would be possible, among others, to determine

if a power scaling in the intermediate range exists and, in case, to compare it with the exponent

of the corresponding developed turbulent state (notoriously equal to - 5/3). In the case a power

scaling exists, two possible situations can therefore appear. A - The exponent difference is

large, and as such, is a quantitative measure of the nonlinear interaction in spectral terms.

B - The difference is small. This would indicate a higher level of universality on the value

of the exponent of the intermediate range (the inertial range in turbulence), not necessarily

associated to the nonlinear interaction. For this purpose, by solving a large number of initial-

value problems, we have determined a large set of transient solutions for the two typical shear

flows considered before.

This chapter is organized as follow. Consideration about the duration of the intermediate

transient are made in Section 3.1. Section 3.2 present the features of the velocity field inside

the intermediate transient. How the energy is distributed among the different scales inside the

intermediate transient is treated in Section 3.3.

3.1 Intermediate transient

The observations of the perturbation transient dynamics made in the previous chapter yield an

interesting result: the perturbation temporal evolution has a three-part structure, with an early

stage, an intermediate stage and an asymptotic stage. This is clearly seen by the fact that events

like phase velocity jumps and associated fluctuations split the transient into two parts, where

the second part is much longer than the first one. The asymptotic evolution will eventually

follow.

The intermediate transient can be considered extinguished only when the temporal growth

rate, r, also becomes constant. A measure of the temporal scales related to the end of the

early transient and the reaching of the asymptotic state (te and ta, respectively) is reported

in figure 3.1, by considering different perturbation wavelengths for both the wake with and

channel flows. The initial condition considered are respectively AC and SNC. The length of

the intermediate transient can be obtained by calculating the difference between ta and te, and

is in general one order of magnitude larger than the early term.

We have also determined the scaling with the Reynolds number of the time where the early

part of the transient ends (te) and the time where the transient ends and the evolution reaches the

final exponential state (ta), see Figures 3.2). One may notice that for the total transient duration,

ta, the scaling presents positive exponents less than 1. The exponents for these oblique waves

(φ = π/4) are close in the two cases (0.34 in the channel flow, 0.4 in the wake). The situation

is different for the early transient time scale. The channel flow does not feel the Reynolds
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Figure 3.1: Typical transient time scales. ta (circles): time where the asymptotic limit is reached (r

and ω settle to the final constant values). te (triangles): time where the early transient ends and the

phase velocity jumps occur. The intermediate term is given by the difference ta − te, and generally is

one order of magnitude longer than the early term. Blue symbols: wake flow, Re = 100, AC initial

conditions, φ = π/4, the wake profile is observed at a distance from the body equal to 10 body scales,

x0 = 10, and y0 = 1. Red symbols: channel flow Re = 10000, SNC initial conditions, φ = π/4, the

channel is longitudinally homogeneous, thus to specify the observation point it is sufficient to choose

the transversal location, in this case the point is the midpoint between the wall and the channel axis,

y0 = 0.5. The dashed red and blue lines represent the transition from asymptotically unstable to stable

wavenumbers.

number variation, the wake instead presents a decay with exponent -0.52. In any case, both

cases evidence a definite trend of growth for the intermediate term (equal to the difference

ta − te) with the Reynolds number. In general the intermediate term is more than one order of

magnitude larger than the early transient.

3.2 Scaling propriety inside the intermediate transient

After defining the intermediate transient and discussed its existence and duration, a question

arises: whether in this range the solution has some feature properties.

As mentioned before, during the intermediate stage the perturbation evolution is almost

exponentially and the growth factor changes very slowly. This stage appears as a kind of

intermediate asymptotics and its presence is common to all perturbations transient. Moreover,

in the case in which the frequency transient presents one or more jumps, the beginning of the

intermediate asymptotics is clearly announced by the last jump. In this stage the transverse

velocity profiles maintain a near self-similar nature in time as shown in Figures 3.3 and 3.4.

We present the cases of Re= 100, x0 = 50, k = 0.7, φ = π/6 with SNC and AC initial condition

for the wake flow and of Re = 6000, k = 1, φ = π/4 with SC and ANC initial condition for the

channel flow.
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Figure 3.2: Scaling of the transient time scales with respect to the Reynolds number: te (triangles) is

the time where the early transient ends and the frequency discontinuities occur, while ta (circles) is the

time where the asymptotic limit is reached. Panel (a): channel flow, φ = π/4, SNC initial conditions,

k = 6, the transversal observation point is y0 = 0.5. Re = [500,50000]. For the end of the mid-term

we found a scaling ta ∼ Re0.34 (solid curve), while the early transient remains constant, thus it is not

sensitive to the Reynolds number variation. A log-log scale is adopted. Panel (b): wake flow, φ = π/4,

AC initial conditions, k = 3, the longitudinal and transversal observation points are x0 = 10 and y0 = 1,

respectively. Re = [30,100]. The end of the early transient scales as te ∼ Re−0.52 (dashed curve),

while the time where the asymptotic state is reached scales as ta ∼ Re0.40 (solid curve). For both flows

the intermediate region (ta − te) increases with the Reynolds number. As an indication, the maximum

relative error of the fitting is, in the worst case, about 8%.

In the channel case, since the lateral diffusion is blocked by the walls, to highlight the

similarity, it is sufficient to normalize the solution by the profile peak value (the ∞ - norm).

In the wake case the similarity is showed by normalizing the solution by the peak value

of the profiles and by normalizing the lateral coordinate by the instantaneous width of the

perturbation profile (the distance from the axis where |v̂|/‖v̂‖∞ = 0.01). In the reported cases,

the wake perturbation width scales in time as t p, with p ≈ 0.42. The general trend for p is

shown in Figure 3.5. One can observe that the exponent decreases as the Reynolds number

and increases as the wave obliquity and the polar wavenumber. For very low values of the

Reynolds number, when the inertial effects become very little, the exponent is expected to take

the value 0.5. Note that Re ≈ 20 is the smallest reliable value for which the wake flow can

be represented in terms of a matched asymptotic expansion solution valid in both the spatial

intermediate and far field, see Ref. [136] for major details on the wake base flow computation.

The dependence on the obliquity angle is weak at low angles, while the diffusive scaling t0.5

occurs for perturbations orthogonal to the base flow (φ = π/2) since in this case the convective

transport does not matter, see Eqs.1.25. Moreover, as expected, we observe that short waves

present a more diffusive behaviour than long ones as shown in Figure 3.5, panel (b).

About the cases of expanding perturbation along the y direction, as shown in Figure 3.4,

the rapid change in the perturbation shape (and the y-location of its peak) seem to happen when
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Figure 3.3: Channel flow, Re = 6000, k = 1, φ = π/4, initial conditions ANC (blue lines) and SC (red

lines). (a) Temporal evolution of the phase velocity, computed at y0 = 0.5. A jump is observed at

t ≈ 100 for SC and at t ≈ 600 for ANC. (b) Evolution of velocity profile modulus for the SC initial

condition. The profiles are normalized with respect to their peak value. (c) Evolution of the normalized

velocity profiles for the case of ANC initial condition. The phase velocity shifts indicate a substantial

change in the velocity profiles. This transition can be more or less abrupt depending on the simulation

parameters, and the regions before and after the jump can show a nearly self-similar behavior.
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(blue lines). (a) Temporal evolution of the phase velocity, computed at y0 = 1. A jump is observed at

t ≈ 400 for SNC and at t ≈ 800 for AC. (b) Evolution of the velocity profile modulus for the SNC ic

The profiles are normalized with respect to their peak value. (c) Evolution of the normalized velocity

profiles for the case of AC ic . It can be noticed that the solution for the wake flow admits a three-

part structure with the presence of self-similar terms (see Figure 2.7) of expanding profiles. It is also

interesting to note that the rapid transition happens when the perturbation reaches the shear wake region

from the outer one (as the SNC case, panel b), or viceversa as the AC case (panel c).The perturbation

width follows a power law t p, p ≈ 0.42 in the above cases.
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dependence on the obliquity angle is shown for Re = {30,70,100} and k = {0.7,1.1}.

the perturbation itself reaches the wake high shear region. For this reason one of the relevant

features of the initial condition is its centrality.

3.3 Power law scaling of the energy spectrum

The existence of an intermediate transient in which the perturbation presents characteristics of

self similarity and the fact that set of small three-dimensional perturbations constitutes a sys-

tem of multiple spatial and temporal scales lead as to wonder if there could be other similarities

with turbulent flows. Indeed the three-dimensional disturbances are subject to all the processes

included in the perturbative Navier-Stokes equations: linearised convective transport, molec-

ular diffusion, linearised vortical stretching. Leaving aside the non-linear interaction among

the different scales, these features are the same as those found in the turbulent state. In partic-

ular we query if a power-law scaling for the energy spectrum exist for an intermediate range

of wavenumbers or frequency even in the linear dynamics of the perturbative Navier-Stokes

equations and, if so, how does it compare, in terms of decay exponent and width of range

where it applies, to the well-known −5/3 Kolmogorov law for homogeneous fully developed

turbulence?

In order to answer such questions, we study how the energy spectrum resulting from the

analysis of a large set of solutions of the linearised perturbative Navier-Stokes equations be-
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haves and we compare it with the energy spectrum of homogeneous fully developed turbulence.

We perform this spectral analysis inside common phase of the perturbations life, i.e inside the

intermediate transient. In this interval we have to decide in which instant compare the kinetic

energy of the waves. We have to adopt a criterion that is valid for any wave numbers considered

and which does not introduce an intrinsically scaling law.

To this aim, we have selected the instants, that we call observation time, at which the

amplification factor reaches a given rate of variation, either in growth or in decay, that is the

instant (inside the intermediate transient) at which

dG/dt =±ε

where ε is a given small constant value. Since unstable waves evolve much more rapidly than

stable ones, it is convenient to use slightly different ε values in the two cases. In order to take

the energy in instants equivalent to each other, the variation in absolute value of ε for stable

waves goes from big to smaller values; while for the unstable waves it goes from smaller to

bigger. In Figure 3.6 the results obtained for ε ∈ [10−4−10−2] are presented.

Figure 3.6 top panels show where exactly this observation times defined with different ε

are inside the intermediate transient . The beginning and the end of the intermediate transient

are delimited by the black triangles. Panels (c,d) instead exhibit where the same observation

time are collocated in respect to the temporal evolution of the amplification factor for two of

the cases represented in top panels.

The main results is represented in panel (e-f) where the kinetic energy that the disturbances

have at the observation time is represented as a function of the polar wavenumber in a log-log

scale. The spectral values of G, for both the channel flow case (panel e) and the wake flow case

(panel f) show a scaling in the intermediate range of the polar wavenumber (k ∈ [20,200] for

the channel, k ∈ [2,150] for the wake) that is amazingly close to the turbulent canonical value

of −5/3.

For shorter wavelengths, characterized by very short transients, the scaling is a little higher

in magnitude, approximatively equal to −2. This result does not appear to be influenced to

any great extent by the wave obliquity, the symmetry, or the Re, see Figure 3.7. However, it

is possible to observe that purely orthogonal waves show a closer scaling to −2 than to −5/3,

even at intermediate wavenumbers.

In general, a full decade of intermediate wavenumbers can be observed for both the wall

flow and the free flow. It is possible to show that the present results – in particular, the existence

of an intermediate spectral range where the spectral decay exponent is very close to that of the

Kolmogorov theory – do not depend on the choice of ε provided that the instant belongs to the

intermediate transient.

These data gather all the stable waves occurring in the intermediate range (which is usually

named inertial in turbulence jargon) and in the dissipative range. We would like to point out
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Figure 3.6: (a-b)Spectrum of the observation times where the wave energy is measured and compared

referred to the limit of the intermediate transient (black triangles). (c-d) Position of the observation

times inside the amplification factor transient. (d-e) Energy spectra computed at the times shown in top

panels.The legend in the bottom panel specifies the symbols associated with either the results of the

present study or those of the laboratory, and numerical experiments carried out on fully turbulent flow

fields by other authors.
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Figure 3.7: Spectra of the amplification factor G for the collections of linear travelling waves observed at

the time, |Te : dG/dt(Te)|= 0.001, where the perturbations are out of their transient. Our results concern

both stable flow configurations (a, b) and unstable ones (c,d). The spectra obtained in this study have

been compared qualitatively with the turbulent field spectra available in the literature and obtained from

laboratory or numerical experiments. The legend in the bottom panel specifies the symbols associated

with either the results of the present study or those of the laboratory, and numerical experiments carried

out on fully turbulent flow fields by other authors.
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Figure 3.8: Comparison between the energy spectrum observed in the intermediate transient (green

squares) and the energy spectrum observed at the asymptote (black triangles).

that the data do not highlight a dependence on Re, the flow control parameter. For longer waves

(k < 10 and k < 1−2 for the plane Poiseuille flow and the bluff-body wake, respectively), the

results depend on the perturbation inclination, the symmetry of the initial condition, and on the

boundary conditions (geometry of the system). As expected, they do not reveal any universal

behavior. In Fig. 3.7, panels a-b-c-d, experimental (laboratory and numerical) measurements

[99, 119, 22, 106] in the turbulent states have been included for the sake of comparison of

stable linear perturbations and turbulent scales.

However it is really important to stress that these results are obtained inside the interme-

diate transient. If instead we compare the residual energy that the waves have at the instant in

which they reach the asymptotic regime, i.e. when the growth rate and frequency have reached

their asymptotic values, we get completely different energy spectrum, as shown in figure 3.8.

Taking into account the present results, it is possible to say that the non-linear interaction

distributes the relative energy over different wavenumbers in a way that corresponds to the

that energy each wave has when during the intermediate transient it reaches a common decay

threshold.

This sheds some light on the existence of some common linear and non-linear Navier-Stokes

solutions properties, and helps one to consider them as a whole. In particular, we consider

it is important to explore the collective behaviour of the linear solutions by thinking of them

as a set of multiple elements that fill the wavenumber range which pertains to the geometry

of the system. By means of a comparison of the various elements, or, possibly, by means of

an observation of their collective behaviour, this multiplicity may either reveal trends that are

common to the non-linear dynamics or highlight their differences.



Chapter 4

Cross Flow Boundary Layer

Until now we have considered the two-dimensional base flows, but we think it is also interesting

to see how the stability properties change if a three-dimensional base flow is perturbed. For this

reason we consider the boundary layer in cross flow. The study of three-dimensional boundary

layers is motivated by the need to understand the fundamental instability mechanisms that

cause transition in swept-wing flows.

The cross flow boundary layer is one of the most important boundary layers in engineering

applications (aerospace, mechanical, wind...). Examples of cross flow boundary layer include

flow over a swept back air plane wing, rotating discs, cones and spheres and cones at an angle

of attack. It is important to understand the dynamics of this flow and to learn how to pre-

vent the possibility of breakdown to turbulence. Furthermore, unlike the well-known Blasius

boundary layer, breakdown is far more likely in this flow. For example, it can be unstable in-

viscidly as well as that caused by the influence of viscosity due to the existence of an inflexion

point in the mean profile [47]. This chapter presents a study in an extended portion of the pa-

rameter space of the stability of the cross flow boundary layer in supercritical conditions with

three-dimensional perturbations based not only on the modal approach but also examining the

temporal evolution of the perturbation.

Flow due to an infinite rotating disk often has been used in literature as an archetypal

example of three-dimensional boundary layers [121]. Lingwood in 1995 [77] found that in

this flow a transition from local linear convective to radial absolute instability can occur. This

inspired many authors and led to the investigation of the fully non linear regime (see, among

others the paper of Pier [111] and Healey [53]).

The swept-wing boundary layer is genuinely three-dimensional, which makes its explo-

ration very complex. Despite this complexity, Lingwood’s approach motivated studies on the

possibility of absolute instability operating in the swept-wing boundary layer. In particular,

it was found that close to the attachment line there is chordwise absolute instability above a

critical spanwise Reynolds number of about 545 [78]. Taylor and Peake [133] extended the

46
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study by Lingwood and searched for pinch points in the cross flow direction for a larger range

of flow angles and pressure gradients. Although these crossflow-induced pinch points do not

constitute an absolute instability, as there is no concomitant pinch occurring in the streamwise

wavenumber plane, they can be used to find the maximum local growth rate contained in a

wavepacket travelling in any given direction. Recently, these findings were confirmed by Koch

[71] in a work dedicated to the study of the secondary instability of stationary cross-flow vor-

tices. In general, a rigorous proof that the absolute instability cannot occur in a swept-wing

boundary layer does not yet exist.

The three-dimensional boundary layer has been also investigated in the context of receptiv-

ity and transient optimal perturbations. Most studies of optimal disturbances in wall-bounded

flows [81, 82] deal with temporal growth of perturbations. For example, Corbet and Bot-

taro [27] performed a local stability analysis using a variational technique in the temporal

framework. They found that the three-dimensional boundary layer shows significantly greater

capacity for algebraic growth than the two-dimensional boundary layer with the same base

flow parameters. Moreover, they proved that the cross flow angle that maximizes the transient

growth is nearly equal to 49o. Schrader et al. [126] and Tempelmann et al. [134] studied the

receptivity problem for spatial growing perturbation considering vortical free stream modes,

free stream turbulence and surface roughness. They found that steady cross-flow instabilities

to dominate for low-level free stream disturbance.

Malik et al. [86, 87] investigate the secondary instability characteristics of swept-wing

boundary and found that three types of secondary disturbances can be distinguished. The first

two were high-frequency disturbances with high growth rates and maxima located away from

the wall. Their origin was related to regions of high spanwise shear (type I) and vertical shear

(type II). The third type is a low-frequency disturbance with smaller growth rates and maxima

closer to the wall representing a primary traveling crossflow disturbances being modulated by

the stationary crossflow vortex.

With this study we treat the linear perturbation problem and demonstrates the importance

of the results during the transient period as well the long time behaviour [32]. Near-optimal

perturbations which are localized within the boundary layer thickness are used as initial condi-

tions [73, 27]. We also have good agreement with results obtained by using impulsive forcing

[133] or least-damped Orr-Sommerfeld eigenfunctions as initial conditions [20]. The extreme

simplicity of this method allows for an extended study of the parameter space. In particular,

special attention was given to the role played by the direction of the perturbation both in the

transient and in the asymptotic regime. In sub-critical conditions, a similar analysis was per-

formed by Breuer and Kuraishi [20]. They observed that, when the external flow is accelerated,

the disturbances which have greater transient growth are those that propagate in the crossflow

direction. Vice versa, if the external flow is decelerated, the maximum transient growth is

obtained with disturbances propagating in the opposite cross-flow direction.

With this study we wish to extend the study of Breuer and Kuraishi by considering su-
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percritical conditions. The pressure perturbation during the transient is also investigated. We

observe that the maximum amplification factor for the pressure measured at the wall is not

synchronous with the maximum amplification of the energy.

This chapter is organized as follow. The physical problem is described in Section 4.1.

Subsection 4.1.1 is dedicated to the mean three-dimensional flow, subsection 4.1.2 to the def-

inition of the initial value problem and modal analysis. Sections 4.2 and 4.3 present transient

dynamics and the role of the perturbation inclination and the long term behaviour, respectively.

Section 4.5 gives information on the wall pressure transient.

4.1 Physical Problem

4.1.1 Mean flow configurations

For the present study we assume that locally we can represent the boundary layer as a parallel

shear flow. Mathematically, good approximation of the velocity profiles in a three dimensional

boundary layer is given by the family of similarity solutions known as Falkner-Skan-Cooke

(FSC) boundary layers, [26], where the magnitude of the cross-flow can be varied in a system-

atic manner.

Let us define a local coordinate system as shown in Figure 4.1(a). On an infinite swept

wing, taken any point x∗ lying on the wing, we can always distinguish the chordwise direction,

xc, from the streamline direction , x.

In the coordinate system based on the chordwise direction, we can assume that the base

flow is steady, incompressible, irrotational. We assume also that the free stream velocity de-

pend only on the streamwise direction, U∞ =U∞(xc) and W∞ =W∞(xc). In particular, the FSC

profiles are characterized by a power law dependence of the streamwise free-stream velocity

on the streamwise coordinate direction and zero spanwise free stream velocity

U∞(xc) =Cxm
c , W∞ = 0 (4.1)

Since the flow is irrotational we can apply the Bernoulli principle and write the pressure term

as follow

−
1

ρ

∂ pe

∂xc

=U∞

dU∞

dxc

The Navier-Stokes equations that describe the infinite swept flat plane boundary layer accord-
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Figure 4.1: Flow scheme. (a) Chordwise (xc,y,zc)and streamline (x,y,z) reference frame. The cross flow

angle, θ is represented in green while the direction in which the perturbation propagate, k is in blue. φ
is the angle of obliquity between the streamline and the perturbation direction. The attachment line is

shown as a dashed line, the external streamline is indicated by the dotted line. (b) Three dimensianal

representation of the boundary layer velocity profiles, U(y) and W (y), in the plane aligned with the

external streamline. (c) Solutions of the Falkner Skan Cooke flow. Effect of changing the parameters:

β =−0.1988,1 and θ = π/6,π/4,π/3).
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ing to [124] become

u
∂u

∂xc

+ v
∂u

∂y
= U∞

dU∞

dxc

+ν
∂ 2u

∂y2
(4.2)

u
∂w

∂xc

+ v
∂w

∂y
= ν

∂ 2w

∂y2
(4.3)

∂u

∂xc

+
∂v

∂y
= 0 (4.4)

with the boundary conditions

u = v = w = 0 at y = 0 (4.5)

u →U∞, w →W∞ as y → ∞ (4.6)

where u,v,w are the chordwise (xc), normal (y) and spanwise (zc) velocity components, respec-

tively (see black curves in Figure 4.1a).

A self-similar solution may be found if we select

η = y

√

U∞

(2νxc)
(4.7)

Introducing the stream function

Ψ =
√

U∞νxc f (η) (4.8)

(with u = ∂Ψ/∂y and v =−∂Ψ/∂x) and

w =W∞g(η) (4.9)

reduces the boundary layer equations to a function of the single variable η , and we have

f ′′′+ f f ′′+β
(
1− f ′2

)
= 0 (4.10)

g′′+ f g′ = 0 (4.11)

were β is called Hartree parameter or dimensionles pressure gradient. It is defined as

β =
2m

(m+1)
(4.12)

Here the boundary conditions are

f = f ′ = g′ = 0 if η = 0 f → 1, g → 1 as η → ∞ (4.13)
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Conventionally stability is studied in the the external streamline frame of references, see red

lines in Figure 4.1(a-b). If we introduce the cross flow angle, θ , which is the angle between

the external streamline direction and the chordwise direction

θ = arctan

(

W∞

U∞

)

(4.14)

the velocity components parallel and normal to the external flow are given by

U(y) = f ′(η)cos2 θ +g(η)sin2 θ , (4.15)

W (y) = [g(η)− f ′(η)]cos θ sin θ (4.16)

Figure 4.1(b-c) shows the velocity profiles in this referenceframe. The variables are nondimen-

sionalized by the streamwise displacement thickness, δ ∗ and streamwise velocity component

of the undisturbed flow.

Summarizing, there are two parameters in the FSC formulation that allow the magnitude of

the cross flow to be varied: θ the crossflow angle and β , the dimensionless pressure gradient.

Note that with this approximation

∂ pe

∂xc

=−mρC2x2m−1
c

therefore the external flow is accelerating as the pressure decrease (β ,m > 0) and one can talk

of boundary layer in a favourable pressure gradient. On the contrary the external flow is

decelerating as the pressure rises (β ,m < 0) and one talks of an adverse pressure gradient.

The profiles 4.11 will be used here as base flow in the stability investigation of three di-

mensional disturbances.
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4.1.2 Initial-value problem and modal analysis

The transient as well as the long term behaviours of arbitrary three-dimensional disturbances

acting on the FSC cross-flow boundary layer are investigated. We have considered the velocity

vorticity formulation and have Fourier transformed the governing disturbance equations in the

streamwise and spanwise directions only, using respectively the wave numbers α and γ (see

also Chapter 1 for major details). This leads to generalized forms of the Orr-Sommerfield and

Squire equations:

(
∂
∂ t
+ i(αU + γW )

)(
∂ 2

∂y2 − k2
)

v̂− i(αU ′′+ γW ′′)v̂− 1
Re

(
∂ 2

∂y2 − k2
)2

v̂ = 0
[

∂
∂ t
+ i(αU + γW)− 1

Re

(
∂ 2

∂y2 − k2
)]

ω̂y = i(αW ′− γU ′)v̂
(4.17)

where k2 = α2 + γ2 is the polar wavenumber, v̂ and ω̂y are respectively the the transformed

perturbation vertical velocity and vorticity, U , U ′, U ′′, W , W ′ and W ′′ indicate the base flow

streamwise and spanwise profiles and its derivatives in the y direction. The boundary conditions

require that v̂ = v̂′ = ω̂y = 0 at the wall and at infinity.

On these equation we have performed both a modal analysis and an initial value problem,

which thereafter will be indicated with the abbreviation IVP, as described in Section1.4. We

have considered supercritical flows (Re=1000-5000) subject to positive and negative pressure

gradient (β =−0.1988,1). The cross-flow angle, θ , is taken in the range [π/12, 5π/12]. Con-

cerning the perturbations, we vary both the polar wavenumber, k, and the angle of obliquity φ ,

defined as the angle between the streamwise and the perturbation directions, φ = arctan(γ/α),

see Figure 4.1(a-b). For the IVP as initial condition we have chosen a Gaussian distribution

for the velocity field, while the vorticity is initially zero, namely

v(0) = y2exp(−y2), ωy(0) = 0 (4.18)

However, in order to make some comparison with literature data, in section 4.2 we have per-

formed simulations with different initial condition at Re = 500 and β = 0.2.

Codes Validation and confirmation of previous results

To validate the numerical procedure, both numerical solutions are compared with each other

and with the data in the literature, see Figure 4.2. Panel (a) shows a really good agreement with

the results of Taylor and Peak [133] for both the modal approach and the IVP. Since we have

not found many spectra for the cross flow boundary layer, in panel (b) we have considered as

base flow the Blasius boundary layer and contrasted our results with Mack [85].
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Figure 4.2: Spectra of eigenvalues (σ = σr + iσi) of the Orr-Sommerfeld equation. Comparison of

different numerical methods: 4th order finite differences scheme on uniform grid (blue square); initial

value problem (cyan circle); literature data (red triangle).(a) Cross flow boundary layer Reδ ∗ = 1000,

β = 1, θ = π/4, α = 0.01, γ = 0.35+ i0.125. Comparison with Taylor and Peake data [133]. (b)

Blasius boundary layer flow, Reδ ∗ = 998, kδ ∗ = 0.308, φ = 0 contrasted with Mack 1976 [85]. Please

note that with our approach the continuous part of the spectrum is discretely approximated. The red line

represents the analytical solution, obtainable relaxing the boundary condition to infinity.

4.2 Transient dynamics and role of the obliquity angle

As mentioned in the introduction we want to extend the results of Breuer and Kuraishi [20] to

the case of supercritical flow. As initial condition they use the least-damped Orr-Sommerfield

eigenfunction for the velocity field and set the vertical vorticity equal to zero. See in Figure

4.3(a) the comparison between their initial condition extending outside the boundary layer and

the initial condition defined in Eq. 4.18. Breuer and Kuraishi consider stable waves and found

that transient growth can be observed in a narrow range of wavenumbers (k ∈ [0.2,1.1]). Within

this region, they observe that for positive β positive values of φ show a greater transient growth

that those with negative values, see panel (c), and the peak value is achieved for an obliquity

angle of about 80o (9/20π). For negative value of β , the opposite is true and the peak value is

reached for an obliquity angle of about −80o.

To further validate our simulations we have done some simulation using their initial con-

dition, as done also by Corbett and Bottaro [27] (see figure 3 therein), getting a very good

agreement, see blue squares in Figure 4.3 panels (b) and (c). In panel (c), the transient growth

obtained with the initial condition 4.18 is again contrasted with Breuer and Kuraishi results. We

also have a point of comparison with an optimal perturbation at a similar sweep angle (48.8o)

obtained by Corbett and Bottaro. It should be noted that according to literature [73, 27], our

kind of initial condition fully confined within the boundary layer promotes the initial energy

gain. However, in this study we are not focusing on the use of optimal initial conditions, but we

simply wish to describe how in supercritical condition the obliquity of arbitrary perturbation
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Figure 4.3: Comparison between the current study and Breuer and Kuraishi (BK94). (a) Their (red) and

our (black) initial condition profile. Vertical dash-dotted lines indicate the displacement thickness and

the boundary layer width. (b-c) Numerical results at Re = 500, β = 0.2 and θ = π/4. Red circles indi-

cate results from BK94, green triangles show results by Corbet and Bottaro (CB01) [27], blue squares

are the reproduction of results in BK94 made with our numerical procedure using their initial condition,

black asterisks are the transient growths obtained by the initial condition Eq.4.18.(b) Maximum of the

amplification factor as a function of the spanwise wavenumer with α = 0.1 and initial condition as in

BK94. (c) Maximum of the amplification factor as a function of the the obliquity angle at k = 0.5.

Results in CB01 are obtained at θ = 48.8 using an optimal initial condition.
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Figure 4.4: Temporal evolution of the amplification factor, G(t) for perturbations with different obliq-

uity angles, φ = 0,π/12,π/6,π/4,π/3,5π/12,π/2 at Re = 5000 and θ = π/6. Left panel β = 1,

middle and right panels β =−0.1988. Panels (a,b,d,e) k = 0.2, panels (c,f) k = 0.4

can influence its evolution.

Figure 4.4 shows the temporal evolution of the amplification factor for perturbation with

different obliquity angles at the supercritical Reynolds number of 5000. Fixing the wavenum-

ber, when the external flow is accelerated, the growth rate increases with the positive angle of

obliquity up to φ = 5/12π and then slightly decreases, see panel (a), while for negative angles

the increase is monotonic, see panel (d). One can also note that in case of transient growth

the maximum of G is monotonically increasing with the modulus of φ . When the external

flow is decelerated a rather general rule can be found. When considering positive angles of

obliquity, Figure 4.4 (panels (b), k = 0.2 and (c), k = 0.4) highlights a rich and, for certain

aspects, counter-intuitive scenario on the role of the perturbation direction. We see in fact that

the waves with small obliquity together with the orthogonal waves are unstable but a range of

oblique waves in between are not. Usually, in 2D shear flows, if one sees instability in the

longitudinal direction, one then sees a progressive tendency to stability moving toward the or-

thogonal direction. Instead, here, intermediate angles have an intense initial growth and then

become stable. When considering negative angles of obliquity (panels (e), k = 0.2 and (f),

k = 0.4), we see that the waves do not present significant transient growth and are all unstable.

It should be noted that for the cases in panels (a,b,c) in Figure 4, perturbations beyond

φ = π/3 (i.e. θ + φ > π/2) propagate toward the attachment line of the wing. These trav-

elling waves are unstable for β = 1 and are transiently growing for β = −0.1988. This is a
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Figure 4.5: Temporal evolution of the amplification factor growth, dG(t)/dt for perturbations with dif-

ferent obliquity angles, φ = 0,π/12,π/6,π/4,π/3,5π/12,π/2 at Re= 5000, β =−0.1988 and k = 0.4.

Panel (a), θ = π/6. Panel (b), θ = π/4. Panel (c), θ = π/3.

very dangerous possibility since the growth of this disturbances can contaminates the attach-

ment line region. Note that in this case transient growths are more intense that the growths of

asymptotically unstable waves, as can be seen in Figure 4.5, where for the same time instant in

the transient, the asymptotically stable waves show a transient increase up to six times faster

than that of the unstable waves. According to Lingwood [78], modes propagating along the

span may be able to reach non linear amplitudes and trigger transition before being convected

beyond the wing tip.

4.3 Long-term behaviour

Regarding the influence of the angle of obliquity on the long-term behaviour, the best way to

study it is by means of the modal analysis. In fact, considering the large number of parameters

involved, with the IVP the knowledge of the final growth rate of a perturbation would require

a large computational effort and a large memory space to store the temporal results (there are

simulations that can last up to 105 time scales). In Figure 4.6, for different combination of

obliquity angle, pressure gradient and cross-flow angle and two different wavenumbers taken

in the range of the most unstable one, one can see the growth rate computed as the imaginary

part of the least damped eigenvalue in the discrete spectrum. Taylor and Peake [133] have

also investigated the combined effect of β and θ . Considering wavenumbers supporting pinch

points, they found that asymptotically the perturbations with an adverse pressure gradient flow

are more unstable at lower cross flow angles, while for negative pressure gradient the opposite

is true. Our results are completely in agreement with their observations. Summarizing the

situation, by changing the sign of Hartree’s parameter, the sign of the growth rate changes. A

concentration of the growth factor values that become nearly constant in the range [−60,60]

is observed for the accelerated boundary layer at k = 0.4, see panel (c) of Figure 4.6. A less

intense similar trend is observed in panel (d) for the same configuration with a positive pressure
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Figure 4.6: Growth rate as a function of the obliquity angle for different cross flow angles: θ = π/6 (red

line), θ = π/4 (blue line) and θ = π/3 (black line). Circle, triangles and squares are values computed

by the IVP and reported here to further validate the numerical results. Left panels positive pressure

gradient. Right panels negative pressure gradient. Top panels k = 0.2. Bottom panels k = 0.4

gradient.

We can define two thresholds of the obliquity angle for which the growth rate reaches its

minimum negative value, φmin, and its maximum positive value , φmax. These thresholds are

slightly decreasing with the cross flow angle and almost constant with the Reynold number.

The behaviour with the wavenumber, in the range [0.02−1], is a bit more structured as shown

in Figure 4.7 panel (b). When the external pressure gradient is positive (dashed lines) φmax and

φmin are general decreasing function of the wavenumber. For β = 1 (solid lines), both φmin and

φmax present a local mild minimum at the long wave where k = 0.1. Furthermore φmin has a

local maximum at k = 0.4.

Summarizing, for a given θ and β the Reynolds number dependence of the obliquity angle

of the most unstable waves is very weak. This suggests that this instability is essentially an

inviscid mechanism.
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Figure 4.8: Role of the obliquity angle in the pressure transient, φ =
0,π/12,π/6,π/4,π/3,5π/12,π/2. Pressure amplification, P, temporal evolution. Re = 5000,

θ = π/4, k = 0.4. Panel a β =−0.1988, panel b β = 1.

4.4 Perturbed pressure transient

Probably due to the the fact that the flow considered is incompressible, the perturbed pressure

dynamics have been poorly investigated. However knowing how the pressure behaves on the

wing is of obvious interest to the aerodynamics. For this reason we analyse the evolution of

the perturbed pressure at the wings and we found a behaviour that is not easily predictable by

the amplification factor evolution. The pressure field is computed by the Poisson equation,

∆ p̂ =−ik(cos(φ)U ′+ sin(φ)W ′)v̂ (4.19)

and boundary conditions

p̂(y → ∞) = 0, p̂′(y = 0) = v̂′′(y = 0)/Re (4.20)

As in the previous section, we are interested in the role of the obliquity angle. For this

purpose we define the equivalent of the amplification factor for the pressure:

P = |p̂(y = 0, t)|/|p̂(y = 0, t = 0)| (4.21)

that we can call pressure amplification. Now we consider only the stable waves that, as men-

tioned above, with the initial condition applied, have always a transient energy growth. Top

panel in Figure 4.8 shows the time evolution of the pressure amplification for θ = π/4, k = 0.4,

positive (panel a) and negative (panel b) pressure gradient. As expected the pressure field is

also initially amplified. For adverse pressure gradient, once is reached its maximum value the

pressure has a modulated damping. Moreover in this case the maximum value of the pressure



Chapter 4. Cross Flow Boundary Layer 60

amplification, Pmax, is always higher than in the case of β = 1. Finally we can observe that

Pmax decreases with the obliquity angle for β =−0.1988 while it increases with φ in the other

case.

This behaviour is better represented in the bottom panels of Figure 4.9 where is reported

Pmax (circles) together with the maximum of the amplification factor Gmax (triangles) and the

time difference in which the two maxima are reached ∆T = t(G(t) = Gmax)− t(P(t) = Pmax)

(squares), for the same configurations of figure 4.9. In panels c and d is reported Pmax (circles)

together with the maximum of the amplification factor Gmax (triangles) and the time difference

in which the two maxima are reached ∆T = t(G(t) = Gmax)− t(P(t) = Pmax) (squares) as a

function of the obliquity angle. We can observe that Pmax decreases with the obliquity angle

for β =−0.1988 while it increases with φ in the other case. In the case of favourable pressure

gradient (panel c) we observe that all the quantities increase with the obliquity angle. In the

other case instead Pmax decreases with φ while Gmax growths. ∆T doesn’t have a monotone

behaviour: increases initially than reach a maximum at φ = π/6 and decrease. Please note

that φ = π/6 also correspond to the obliquity angle at which the growth rate is minimum for

this configuration. We also investigate the role of the wavenumber in this transient dynamics.

Panels e and f show the transient growths as a function of the polar wavenumber for waves

with obliquity angle and cross flow angle φ = π/4. For β = 1 all the quantities, Pmax, Gmax,

and ∆T , growth with the wavenumber if k > kunstable and decrease in otherwise, see panel (e).

All the waves shown in (a-e) panels have positive ∆T , i.e. the pressure at the wall is in advance

with respect to the kinetic energy density. This is not true in general. For example panel

f shows that the maximum of P is not always reached earlier that the maximum of G. For

positive pressure gradient and waves longer than the unstable range the pressure at the wall

is in delay with respect to the global energy of the flow. For all the other case (β < 0 and

k > kunstable or β = 1) the maximum of the pressure occurs in advance with respect to the

maximum of the energy. Even if is not represented here, we have observed that in general Pmax

and Gmax have the same relation with the cross-flow angle: increase with θ for negative β and

decrease with θ for positive β .
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Figure 4.9: Comparison between the amplification factor and the pressure transient, Re = 5000, θ =
π/4, Top panels β = 1, bottom panel β = −0.1988. Left panels: examples of transient for P and G,

k = 0.4, φ = π/6. Panels c-f: blue circles indicate the maximum value of the pressure amplification,

red triangles represent the maximum of the amplification factor, the black squares are the difference

between the time in which the perturbation reaches Pmax and the time in which it reaches Gmax. Panels

c-d role of the obliquity angle at fixed obliquity angle k = 0.4, φ = 0,π/12,π/6,π/4,π/3,5π/12,π/2.

Panel e-f role of the wavenumber at fixed obliquity angle φ = π/4.
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In the first part of this thesis we have presented interesting phenomenology relevant to shear

flows perturbation waves. The initial value problem associated to arbitrary shear flow pertur-

bations in the form of three-dimensional travelling waves uniform in space is considered. The

waves lie in the plane normal to the direction of main variation of the basic flow. We have con-

sidered small amplitude perturbation and linearised the perturbed equations that were treated

with both the modal theory and as both he initial value problem.

We have first considered the case of two-dimensional base flows. We have mainly con-

sidered two archetypical cases: the plane channel (Poiseuille) and the plane wake past a bluff

body flows.

Following the traditional approach we began our analysis looking at the dispersion relation

of the phase velocity in the far transient of longitudinal waves for two decades of wavenumber,

extending the literature results that generally are just for long waves. The agreement with this

literature data is really good in particular when these data are obtained in fully non-linear con-

text (laboratory experiments or direct numerical simulations). This validates the use of linear

stability analysis to predict the frequency transient and asymptotic behaviour. Moreover we

observe that long waves present a dispersive behaviour, while short waves are non-dispersive.

Therefore we found the existence of a threshold wavenumber kd that separates the waves that

asymptotically show a dispersive behaviour, that are the longest ones (k < kd), from the waves

with a non-dispersive behavior, the shortest ones (k < kd). The asymptotic velocity profile

taken by perturbation with k < kd has high derivatives in correspondence to the base flow high

shear region. On the other hand, for k > kd the asymptotic velocity field have high derivatives

in correspondence to the base flow low shear region.

We have then solved the initial value problem and analysed the transient dynamics of this

perturbation. Attention is mostly addressed to the phase velocity transient for whom we have

tried to extract a general rule that at each given type of initial conditions associates a kind of

transient behaviour.

The dispersion relation help us to explain also the transient dynamics. Indeed, given an initial

condition, having a wave number higher or lower than kd does significantly change the type of

transient proved. The possible phase velocity transient can be classified into four categories:
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1. really short transient, the phase velocity reaches smoothly its asymptotic values

2. during the transient, the phase velocity jumps to an higher value and the waves are ac-

celerated

3. during the transient, the phase velocity jumps to a lower value and the waves are decel-

erated

4. more than one jump occurs during the phase velocity transient.

When they occur the jumps are in general accompanied with a modulation of the phase ve-

locity value observed before and after the jump. This modulation show a temporal periodicity

that is correlated with the global range of spectral frequencies given by the modal theory.

Of course the type of transient resulting depends on the initial condition imposed. Also the

initial conditions can be classified into four types according to their symmetry and in which

region of the domain is concentrated its largest variation.

The observation of phase velocity transients leads to identify a three distinct stages in the

time evolution of the perturbations. There always is a first part, the early transient, which is

heavily dependent on the initial condition, a second much longer part, the intermediate tran-

sient, which appears as a kind of intermediate asymptotics and a third part, the asymptotic

state that is reached when both the phase velocity and the growth rate take their final constant

values. Inside the intermediate transient the perturbation evolves almost exponentially: the

phase velocity takes the final constant value, the transverse velocity profiles maintain a near

self-similar nature in time and the growth factor changes very slowly. In the wake flow, which

is a system slowly evolving in space, our simulations allowed to obtain the temporal scaling

for the thickness of perturbation profiles with exponents changing not only in function of the

Reynolds number, but also with the wavelength and orientation of the perturbation.

The beginning of the intermediate transient is well marked by the last phase velocity jumps,

if there are any. When a jump occurs it separates the intermediate transient from an other

time interval in which the perturbation show an almost exponential behavior with a different

coefficient.

For each instant belonging to this range, the velocity components profiles of our simula-

tions show the same shape, and this confirmed our hypothesis. In the channel flow case, it is

sufficient to normalize the profiles on their peak values in order to make them collapse on a

single curve. In the wake flow, which is a system slowly evolving in space and unbounded,

the thickness of perturbation profiles increases in time. Therefore to obtain the self-similar

curve, the transversal coordinate must be rescaled Y = y/t p. The p exponent depends on the

Reynolds number and on the obliquity of the perturbation and tends to 0.5 as Re goes to 0 or φ

approaches π/2.

As might be expected, The scaling property of the velocity profile affects the kinetic energy.

The energy that the perturbation has during the intermediate term shows a power law scaling
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which is very close to the −5/3 turbulent one, if taken at a constant change of rate. We

empirically prove that this scaling appears just inside the intermediate transient and is no more

observed in asymptotic regime.

These observations are not specific of a peculiar kind of flow (wall bounded or free). This

can mean that these scaling properties are not only one of the major signatures of the turbulence

interaction, but it also exists hidden inside the dynamics of linear stable waves, where the self-

interaction is absent as well. Once known, these properties could induce an important outcome:

the modelling and forecast of turbulence fields could be done on the basis of linear solutions.

Those solutions are quickly numerically obtained and generally more physically inclusive than

other contemporary turbulence models. Therefore, the use of super-computers could become

less strategic in the future. Linear solutions in fact do not need parallel computations, and can

often be preliminary analytically treated in a way where at least one or two spatial variables

can be removed from the differential system of governing equations. Since our observations do

not depend on the system control parameter (Reynolds number), on the kind of initial condition

and on geometrical parameters, such as the wave inclination, they could also reveal a new set of

structural properties of the Navier-Stokes equation solutions. In particular, we think that they

can be used to build a bridge between the linear and the non-linear interaction in multi-scale

systems.

The perturbation dynamics in three-dimensional shear flow is also considered. We have

presented a comprehensive study of the space of the parameters relevant to the life of small

perturbations of the three-dimensional boundary layer in cross flow. We considered a group

of five parameters: the Reynolds number, the external pressure gradient, the wave number, the

angle of cross flow and the tilt of the perturbation with respect to the streamline of the flow

outside the boundary layer. We adopted almost optimal initial conditions and classical pertur-

bation methods to obtain information on initial transient and temporal long-term behaviour.

We compared our results with results produced by other numerical simulations concerning

the evolution of three-dimensional perturbations. In particular for the long term behaviour we

compare our results with Taylor and Peake [133] and Mack [85], while for the initial transient

we compare our results with Breuer and Kuraishi [20] and Corbett and Bottaro [27]. In both

cases good agreement was found.

Perturbations that have transitional growth but are asymptotically stable could still have

a substantial role in triggering non-linear processes that may lead to transition to turbulence.

Some of our results are related to this role, in particular with respect to the influence of the

wave-angle. We show that in the decelerated three-dimensional boundary layer at a high

Reynolds number there are some asymptotically stable perturbations in the range of wave-

angles [π/125π/12] which are initially able to grow up to six times faster than those which

are asymptotically unstable (waves almost aligned with the external flow or orthogonal to it).

Among these, some have negative phase speeds, that is they propagate in the negative chord-

wise direction, although the associated group velocities are always positive and the energy
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propagates in the positive direction. This was observed for Reynolds numbers based on the

displacement thickness higher than 103, which means Reynolds numbers of the order of 104

or 107, respectively, when calculated on the thickness of the layer or on a chord of the wing

profile of about one meter.

There are two other noticeable aspects. The first is that in the decelerated three-dimensional

boundary layer the most unstable perturbations are either those nearly aligned with the external

current or those almost orthogonal to it, that is almost aligned with the cross flow. Oblique per-

turbations in between always have strong growths which, however, are still transient, while the

perturbations with tilt and direction of propagation opposite to the cross flow are all unstable.

The second aspect is that the perturbed field of pressure at the wall and inside the layer

is not synchronous with the amplification factor of the kinetic energy of the disturbances. In

general, in the case of boundary layers both accelerated and decelerated, the perturbed pressure

field is made in advance up to about 100 times scale. However, in the decelerated case, it is also

observed that the very long wave perturbations can induce a significant delay in the oscillation

of the pressure which again may be approximately up to 100 time scales of the system.
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Stratified turbulent flows
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Chapter 5

Stratified flows

When a flow is in turbulent regime it can potentially act on a huge range of scales, from the

very small, through the medium scales that influence the human environment to the vast length

scales of planets, solar system and galaxies.

Unlike the laminar flows treated in previous part, where viscous forces are dominant and the

fluid motion is smooth and constant, turbulent flows are dominated by inertial forces, which

tend to produce chaotic eddies, vortices and other flow instabilities.

These turbulent flows exist also in the simplest of everyday occurrences, such as water

passing down a plug hole, the movement of air behind a travelling air-plane and in that which

perhaps is one of the most important aspects of daily human life, the weather. Turbulence

indeed is one of the characteristic properties of atmospheric flows: the majority of processes

in the atmosphere, such as transfer of water vapour and atmospheric dust, heat exchange, and

the formation of clouds and precipitation, are extremely closely tied to the turbulent nature

of motion in the atmosphere. Atmospheric turbulence renders an essential influence on the

propagation of sound, light, and radio waves. Finally, atmospheric turbulence influences flight

conditions for aircraft. As a consequence the knowledge of the characteristics of turbulence is

of great significance for many practical purposes.

Geophysical fluid dynamics has recently become an important branch of fluid dynamics

due to our increasing interest in the environment. The importance of the study of atmospheric

dynamics can hardly be overemphasized. We live within the atmosphere and are almost help-

lessly affected by the weather and its rather chaotic behaviour. The motion of the atmosphere

is intimately connected with that of the ocean, with which it exchanges fluxes of momentum,

heat and moisture, and this makes the dynamics of the ocean as important as that of the atmo-

sphere. The study of ocean currents is also important in its own right because of its relevance

to navigation, fisheries, and pollution disposal.

The two features that distinguish geophysical fluid dynamics from other areas of fluid dy-

namics are the rotation of the earth and the vertical variation of the fluid density/temperature
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of the medium.

Rotation is exerted through Coriolis forces which mainly act in horizontal planes whereas strat-

ification largely affects the motion along the vertical direction through the Archimedes force.

Depending on the mean density profile, stratification can either enhance or suppress vertical

motions. Stratification in the atmosphere is usually stable above the boundary layer [143, 45],

i.e. a fluid particle which is displaced in the vertical direction tends to return to its initial

position.

At large scales in the atmosphere rotation becomes of secondary importance and the stratifi-

cation effects dominate. In the last decade there has been important advances in understanding

of turbulence in the presence of strong stratification. In the context of homogeneous stratified

turbulence, it is known [75, 70] that initially isotropic turbulence in a stratified fluid rapidly

becomes anisotropic, with the formation of pancake-like structures in its interior. The forma-

tion of the pancakes is sometimes known as layering and its causes are as yet unclear, with a

number of mechanisms having been put forward over the years, for example the decorrelation

instability of Lilly [74] and the zig-zag instability (see next chapter for major details).

A typical layer formation in turbulent stable stratified flow where a light fluid is on top of

a heavier fluid is represented in Figure 5.1. Here it is reported a DNS simulations performed

by Chunga and Matheou [25]. The images detail the structure of density fluctuations (lighter

colors correspond to denser fluid) in two limiting cases. In the top figure, the stratification is

neutral and density behaves like a passive substance exhibiting ramp-and-cliff structures. At

the same time, the structures are being sheared, giving rise to forward-leaning structures. As

stratification increases, vertical motions are progressively inhibited and eventually turbulence

collapses, forming thin layers as shown in the bottom image.

The chapter is organized as follows. In section 5.1 we derive the motion equation under

the Boussinesq approximation; while in section 5.2 typical parameters of stratified flows are

discussed.

5.1 The Boussinesq approximation

The density may, in general, either increase or decrease with eight. The processes that can lead

to changes in air density in the atmosphere are in principle three: the variation of atmospheric

pressure with height, the pressure changes that occur dynamically because of atmospheric

motions, the phenomena of thermal expansion. Consider separately the three effects. The

first effect and phenomena associated with stratification and correspond to the budget in the

Navier-Stokes equations between the vertical components external forces and pressure

∇P = f ext
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leading to the equation of hydrostatic balance. The second and third effect corresponds to

density fluctuations generated in a dynamics due to motions of fluid and temperature variations.

Imagine an area of medium size L whose speed and its variation are both U . This means that

the corresponding time scale is L/U . In the absence of external forces and viscous terms in

Navier-Stokes will therefore of the order of magnitude, in sequence:

U

τ
≈

U2

L
≈

∆P

ρL

where ∆P is the change in pressure corresponding. From the equation of state we have

P = ρ
T

m
≈ ρv2

th ⇒
∆P

ρ
≈ v2

th

∆ρ

ρ
+

∆T

m

therefore the relative density variation should satisfy

∆ρ

ρ
< max

(

u2

v2
th

,
∆T

T

)

Recall that in less than a factor O(1), vth is the speed of sound c for an ideal gas. We thus

see that if the Mach number M = u/c and the relative variation of the temperature scale ∆T/T

are both small, the density variations produced are themselves small, i.e., the fluid motion

is in a first approximation incompressible. In the troposphere, the first condition is always

verified and it is the only effect that produces changes in density stratification. Therefore,

tropospheric motions, with a vertical scale length much smaller than the troposphere height, is

almost incompressible.

In the stratosphere, things are more complicated, since changes in temperature are asso-

ciated with density variations, and even if the motions occur at scales much smaller than the

stratosphere height, and are in good approximation incompressible, small density variations

produced are still responsible for the same motion through convection. These effects can be

taken into account as perturbations, through the so-called Boussinesq approximation. The

Boussinesq idea consist in take into account the density fluctuation just in the term in which it

is absolutely necessary, while consider it as a constant for all the others. To understand what

this means we have to do an accurate magnitude analysis. Let hypnotizes that the relative

density variation are small ∆ρ ′/ρ0 << 1. We can first consider the continuity equation:

1

ρ

Dρ

Dt
+∇ · ū = 0 (5.1)

It is always possible see the density as a constant plus a time dependent correction term

ρ(x,y,z, t) = ρ0+ρ ′(x,y,z, t) where the fluctuation ρ ′ is related to the temperature effect. Now,
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since ρ0 is a constant, we have Dρ/Dt = Dρ ′/Dt. Furthermore, in the absence of other infor-

mation, we assume that the typical values given by the derivatives of u are approximately equal.

It is also reasonable to assume that the velocity of the fluid remains limited: a particle of fluid

that moves with a speed arbitrarily large has unlimited kinetic energy, and this seems physi-

cally unreasonable. If we indicate with U the typical amplitude of the velocity fluctuations and

we call L the typical distance between its maximum and its minimum value, it is reasonable

that the typical value of the derivative space of (̄u) should be close to the ratio between these

two quantities, then ∣
∣
∣
∣
∣

∂u

∂x

∣
∣
∣
∣
∣
≈
∣
∣
∣
∣
∣

∂v

∂y

∣
∣
∣
∣
∣
≈
∣
∣
∣
∣
∣

∂w

∂ z

∣
∣
∣
∣
∣
≈

U

L
(5.2)

Recall that our aim is to estimate the magnitude of Dρ ′/Dt in a way that is comparable to the

magnitude of spatial derivatives of ū. The convective derivative of the density represents the

variation in time of a particle of fluid followed along its path. The density fluctuations oscillate

between its maximum and its minimum at a characteristic time which we call ∆t and has to be

of the order of

∆t ≈
L

U
.

As a consequence the density variation is

∣
∣
∣
∣
∣

Dρ ′

Dt

∣
∣
∣
∣
∣
≈

∆ρ ′

∆t
≈

∆ρ ′U

L

that implies ∣
∣
∣
∣
∣

1

ρ0

Dρ ′

Dt

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∂u

∂x

∣
∣
∣
∣
∣

≈
∆ρ ′

ρ0

<< 1.

This means that the term containing the density in the continuity equation is small compared

to the terms containing the velocity as much as it is ρ ′ with respect to the reference density ρ0.

In other words,in the continuity equation the density is dominated by the velocity divergence

and thus we can use the continuity equation for incompressible fluids:

∇ · ū = 0.

Let us now consider the momentum equation. Let us suppose that there is no motion and that

the density is constant. In this case the pressure gradient is given by the hydrostatic equation

∂ p0

∂ z
=−ρ0g
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In the general case the pressure field can be expressed as the sum of hydrostatic pressure p0

and a dynamic pressure p′

p(x,y,z, t) = p0(z)+ p′(x,y,z, t)

By replacing the pressure in the Navier Stokes equation we obtain:

(ρ0 +ρ ′)

(

∂ ū

∂ t
+ ū ·∇ū

)

=−∇p′−
(

∂ p0

∂ z
+ρg

)

−ρ ′gk̂+ν∆ū (5.3)

The hydrostatic terms cancel each other, then the density remains only in two terms. We

have adopted the assumption ρ ′ << ρ0, therefore on the left side ρ ′ an be neglected. On

the right side the density fluctuation multiply the gravitational acceleration and can not be

neglected. Therefore the Navier - Stokes equations under the Boussinesq approximating are

expressed as follow

∇̇̄u = 0 (5.4)

ρ0

(

∂ ū

∂ t
+ ū ·∇ū

)

=−∇p′−ρ ′gk̂+ν∆ū (5.5)

at this point we need another equation in order to close the system obtained. We can

consider the internal energy equation expressed in term of temperature:

DT

dt
= κ∆T (5.6)

where κ is the thermal diffusivity. Since we have assumed small density variation, we can

linearise the state equation that relate density and temperature:

ρ = ρ0[1−α(T −T0)] (5.7)

and we can express the energy equation in terms of fluctuation density.

Eventually we can further decompose ρ ′ as the sum of a linear function of z and a proper

fluctuating component and indicate with G the linear density gradient:

ρ ′ = ρ̃(x,y,z, t)+G(z)

In conclusion the equation of motion under the Boussinesq approximation are
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





∇ · ū = 0 (5.8)

Dū

Dt
=−∇p′+

1

Re
∇2ū+

g

ρ0

ρ̃ (5.9)

Dρ̃

Dt
= κ∇2ρ̃ −Gu3 (5.10)

5.2 Density vertical variation and fluid motion

We want now to understand under which conditions the buoyancy forces produce motion of a

fluid. For this purpose we assume that the flow is in absence of motion (ū = 0) and that we

can apply the Boussinesq approximation. In this way, the equations are reduced only to the

hydrostatic relation:

∂ p

∂ z
=−ρg (5.11)

Moreover suppose that ρ depends only on z. To determine if the vertical profile of density

specified by ρ(z) is stable or unstable, let’s suppose to move a fluid particle from its initial

height z at z+h. The equation which give us the vertical velocity of the particle is

Dw

Dt
=−

1

ρ0

∇p−
ρ(z)

ρ0

g (5.12)

For the moment we neglect the viscosity term, but just for simplifying the calculation. If we

suppose to known ρ(z), this equation contains two unknowns: w and p. In general, therefore,

is not resolvable, but in our situation we can find an approximate solution. In fact, if the

vertical velocity is initially zero the pressure is specified by the hydrostatic equation. Also

until w is small, we can use Eq. 5.11 to remove the pressure from Eq. 5.12 without entailing

an appreciable error. In this way we yield:

Dw

Dt
=

g

ρ0

[ρ(z+h)ρ(z)] (5.13)

It is important to note that the pressure term tends to ρ(h+ z), because that is the hydrostatic

pressure at the height at which the particle was increased, while the gravity term keeps ρ(z)

because we assume that during its motion the particles maintains its density. Now, Dw/Dt is

the Lagrangian acceleration of the particle, so we have

Dw

Dt
=

d2h

dt2
(5.14)
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Also note that |ρ(z+h)ρ(z)| ≈ dρ/dzh. Then we can rewrite our equation as follows

d2h

dt2
−

gdρ

ρ0dz
h = 0 (5.15)

It is usual to define the quantity

N2 =−
g

ρ0

dρ

dz
(5.16)

it is positive if the density decreases upward and negative otherwise. Until the displacement h

of the particle is small it is easy to solve this equation, because in this case it is reasonable to

consider dρ/dz as a constant. Some particular solution are almost obvious. It is easy to verify

that if N2 is positive, then both h(t) = cos(Nt) and h(t) = sin(Nt) satisfy the equation 5.15.

These are periodic solutions, then the fluid particle, deviated from its initial position, not goes

away from it, but it fluctuates around it. If, instead, N2 is negative, we define N = −
√

N2; a

pair of particular solutions is given by h(t) = exp(Nt) and h(t) = exp(Nt). The first tells us

that the displacement of the fluid particle increases indefinitely in time, and it no return to its

initial position. In this way we have obtained a stability criterion for stratified flows:

• Statistically stable fluid, N2 > 0 density decrease upward. A fluid particle oscillates if it

deviated from its equilibrium position.

• Statistically unstable fluid, N2 < 0 density increase upward. A fluid particle moves away

indefinitely from its initial position as soon as any perturbation deviate from it.

If the fluid is statically stable, the quantity N is the frequency of oscillations performed by

the fluid particle around its position. It is known as frequency of Brunt- Väisälä .

5.2.1 The Froude number

We consider the case of a three-dimensional flow outside boundary layers at high Reynolds

and Peclet numbers, so that both viscous and diffusive processes are negligible. Thus we write

the momentum and density equations (for steady flow)

ρ ū ·∇ū =−∇p+ρg∇ · ū = 0 (5.17)

We take z vertically upwards and suppose that the basic stratification consists of a uniform

density gradient (−dρ ,/dz). Because ρ0, does not vary horizontally, the balance between ρ0g

and the hydrostatic pressure can be subtracted out from equation 5.17 just as it can subtracted

out for an entirely uniform density case. We now consider, superimposed on this basic config-

uration, a flow with length and velocity scales L and U , produced, for example, by moving an

obstacle of size L horizontally through the fluid at speed U . This will produce a modification
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of the density field which we denote by ρ0, related to the stratification in the form

ū ·∇ρ ′+w
dρ0

dz
= 0 (5.18)

that in order of magnitude give us

ρ ′ ≈
WL

U

∣
∣
∣
∣
∣

dρ0

dz

∣
∣
∣
∣
∣

(5.19)

where W is now restricted by the fact that the flow cannot produce buoyancy forces associated

with rho′ that are larger than the other forces involved. Since the buoyancy force does not

contribute directly to the horizontal components of Eq. 5.17 it is convenient to work in terms

of the vorticity form of this equation

ρ(ū ·∇ω −ω ·∇ū) =−g

(

î
∂ρ ′

∂y
− ĵ

∂ρ ′

∂x

)

(5.20)

Since the order of magnitude of ω is U/L this indicates that the order of magnitude of rho′

must remain not greater than

ρ ′ ≈
ρ0U2

gL
(5.21)

By comparing i with Eq 5.19 we get

W

U
≈

ρ0U2

gL2

∣
∣
∣
∣
∣

dρ

dz

∣
∣
∣
∣
∣
= Fr2 (5.22)

When Fr2 is small the horizontal motion has only much weaker vertical motion associated

with it. Fr is called Froude number, 1/Fr2 is sometimes known as the Richardson number.

Similar analysis can be given for flows in which viscous and/or diffusive effects are strong.

This is a matter of some complexity, since different detailed treatments are appropriate for

low, intermediate and high Prandtl number. Thus we omit consideration on it; when we talk

here after of low Froude number flows, it is assumed that any other criterion for the flow to be

strongly constrained by stratification is also fulfilled. In general we can have three situations:

• Fr → ∞ non stratified flow,

• Fr → 0, strong stratification,

• Fr ≈ 1, intermediate case
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In conclusion the dimensionless Navier Stokes equation with the Boussinesq approxima-

tion are: 





∇ · ū = 0

Dū

Dt
=−∇p′+

1

Re
∇2ū+

1

Fr2
ρ̃

Dρ̃

Dt
= κ∇2ρ̃ −Gu3

(5.23)

The next chapters treat two cases of stratified flows. In the first case the stratification is

homogeneous and we focus on the aspects related to the energy spectrum. In the second case

the typical lapse rate of the atmospheric stratification is perturbed and we examine how this

changes the dynamics of a turbulent mixing.
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Figure 5.1: Direct numerical simulation of stratified turbulence. Lighter colors correspond to denser

fluid. Results by [25]



Chapter 6

Transition to turbulence from

counter-rotating vortex pair in a

stratified fluid

Vortices are ubiquitous in the atmosphere and oceans. The question of their stability has impor-

tant practical and theoretical consequences, since instability provides a mechanism for energy

transfer from large to small scales where dissipation occurs.

As regard to the energy transfer, the wavenumber spectra of kinetic and potential en-

ergy measured in the upper troposphere and lower stratosphere have been debated for several

decades. These spectra, as the spectrum of three-dimensional isotropic turbulence, exhibit at

the horizontal mesoscale (wavelengths ≈ 1500 km) a k
−5/3

h dependence, where kh indicates the

wavenumber in the horizontal plane (see Figure 6.1). This scaling law leads to the hypothesis

of a direct energy cascade.

The question then was how to argue this horizontal cascade. Erik Lindborg [76] develops a

similarity hypothesis for such a cascade based on the ratio between the horizontal and the ver-

tical length scale. He concludes that the forward cascade process is generated by the formation

of layers which is universal in strongly stratified fluids as discussed in Chapter 5 and illustrated

in Figure 5.1. However the detailed physics of why the layers formation would lead to a −5/3

cascade has been unclear.

The layer formation leads to Kelvin Helmotz instability and one could argue, that the local

KH breakdowns would occur intermittently in the horizontal, leading to the horizontal cascade.

However it seems that the Kelvin Helmotz instability affect the spectra only in the range of

the wavenumbers larger than the buoyancy wavenumber (kb = 2πN/U ), where the motion is

near-isotropic [117]. We are interested in whether it can be tied to other physics like, as the

Lundgren model [83]. He argues that the development of -5/3 spectrum appears to be linked to

the generation of stretched spiral vortices, which in turn grow out of locally orthogonal vortices

77
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Figure 6.1: Atmospheric spectra of kinetic energy of the zonal and meridional wind components and

potential energy measured by means of the potential temperature. The spectra of meridional wind

and potential temperature are shifted one and two decades to the right, respectively. Reproduced from

Nastrom & Gage [102].
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created by a series of vortex reconnection events, a configuration that has been seen in some

isotropic calculations just before they become fully turbulent [66].

For this purpose we are analysing the vortex dynamics in stratified flow considering a

simple configuration that shows a transition to turbulence. This configuration consist in two

column vortex parallel to the gravitational direction and it has been recently fully investigated

since it can lead to the zig-zag instability. This instability entail a transfer of energy from

large scales to small vertical dissipative scales. Moreover at high Reynolds number, the zig-

zag instability creates a so intense vertical shear that small-scale Kelvin-Helmholtz instability

develop and leads to a turbulent regime.

The state of the art and the rational for this kind of analysis is discussed in the following

section. Section 6.2 describe the mathematical formulation; while major details about the

zig-zag instability are treated in section 6.3. In section 6.4 we show and discuss our results.

Cocluding remark are in section 6.5.

6.1 Rationale and state of the art

Fluid motions in the atmosphere and oceans are often strongly affected by stable density strati-

fication. In these flows, large vertical motions are inhibited by the buoyancy force, leaving only

two possible modes of motion: internal gravity waves and vortices with vertical axis [116].

Laboratory experiments [75, 24], numerical simulations [116, 70] and oceanic measurements

[46] have revealed that these vortices never have a large vertical extent, but are rather thin like

pancakes. It is now well known that this layered flow structure enhances energy dissipation

through the associated strong vertical velocity shear [56]. This feature has been invoked as the

reason why stratified turbulence departs profoundly from twodimensional turbulence although

the motion is mostly horizontal. However, despite its importance in understanding turbulence

in geophysical flows, the reason why the vortices acquire such a flat ‘pancake’ shape was

unclear: is such layering due to the initial collapse of three-dimensional motions under the

gravitational restoring force or is it an intrinsic behaviour of vertical vortices in the presence

of stable stratification?

Some results of the numerical simulations of two-dimensionally forced stratified turbu-

lence by Herring & Métais [56, 92] suggest that the layering may arise as a result of an

instability. The initial conditions of these numerical experiments consisted of a forced tur-

bulent flow vertically uniform, i.e. purely two-dimensional, upon which a three-dimensional

perturbation was added. This disturbance grow exponentially and resulted in the formation of

decoupled layers. However, the physical mechanism of this instability remains unexplained.

Subsequently, Fincham et al. [39], did an experiment on a vertical cylinder wakes and showed

that layers can emerge from a vertically coherent flow.

In an attempt to further elucidate the mechanism by which decoupled layers arise, Billant

& Chomaz [13] investigate the dynamics of a simple prototype flow initially uniform along the
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vertical: a pair of long counter-rotating vertical columnar vortices in a strongly stratified fluid.

Such a vortex pair has been studied in detail in non-stratified fluids because of its aeronautical

interest. Early work on vortex instability was thus concerned with neutrally stratified fluids.

Lord Kelvin [63] studied disturbances to columnar Rankine vortices (Kelvin waves), and found

them to be neutrally stable. Interest in the instability of such disturbances was revived by Crow

[31], who found that a pair of counter-rotating vortices is unstable to axially varying displace-

ments of the vortex cores (bending waves). Unstable bending waves grow via resonance with

the oscillating strain field induced by each vortex on the other. The corresponding growth rate

is maximum at axial scales much larger than the vortex radii. Instabilities also exist at smaller

axial scales, driven by resonances with Kelvin waves of more complicated radial structure than

the bending waves. These instabilities have been studied extensively in the context of a vortex

filament in an externally imposed strain field. A separate approach has focused on the insta-

bility of two-dimensional flows with elliptical streamlines to three-dimensional perturbations

[146]. Both sets of short-wave instabilities are referred to as elliptic instabilities [69]. Labo-

ratory experiments by Thomas & Auerbach [135] demonstrated that a counter-rotating vortex

pair undergoes an antisymmetric short-wave instability. They suggested that the instability is

driven by the resonance mechanism of the elliptic instability, and called it a cooperative elliptic

instability. Linear simulations and analysis [12] and direct numerical simulations [72] support

this view.

Density stratification modifies the elliptic instability by changing the dispersion relation of

the Kelvin waves. Miyazaki & Fukumoto [41] showed that the elliptic instability of a strained

uniform vortex aligned with a stable density gradient is inhibited by stratification and disap-

pears when the buoyancy frequency exceeds the vorticity. However, they found that other

instabilities connected with higher-order resonances emerge and persist at strong stratifica-

tions. For the case of a vortex pair, Billant & Chomaz [13] showed that the cooperative elliptic

instability is suppressed for strong enough stratification. At these strong stratifications they

found a distinct antisymmetric instability, which they call the zig-zag instability. Similar

to the Crow instability, the zig-zag instability bends and twists the vortex cores horizontally

with little change to their internal structure. It has been studied with laboratory experiments,

multiple-scale analysis, and linear and non linear numerical simulations [13, 14, 15, 34]. The

zig-zag instability directly transfers the energy from large scales to the small dissipative ver-

tical scales. Moreover, for high Reynolds number, the vertical shear created by the zig-zag

instability is so intense that small-scale Kelvin Helmholtz instabilities develop leading to a

turbulent regime.

6.2 Methods

We consider the evolution of two counter rotating vortex columns in a highly stratified fluid

(see a scheme of the initial condition in Figure 6.2).
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Figure 6.2: Scheme of the initial condition. Left panel: isosurface of the vorticity in the entire domain.

Right panel: zoom on columns vortex the perturbation.

The governing equations are the incompressible Navier-Stokes equations under the Boussi-

nesq approximation discussed in the previous chapterEq. 5.23. We have already defined three

non-dimensional parameters: the Reynolds number, the Froude number and the Richardson

number, that are respectively

Re =
Ur

ν
, Fr =

U

Nr
, Ri =

N2

(
∂u
∂ z

)2

+
(

∂v
∂ z

)2
(6.1)

where U is the initial propagating speed of the vortex columns, r is the initial radius of the

columns, G is the vertical gradient of the density linear component, ν the viscosity. In the test

run case that we treat in section 6.4 we have imposed

U = 6.54, ν = 0.008, r = 1,
g

ρ0

= 2.41, −dρ̄

dz
= 2.41

and thus

Re = 817, Fr = 2.712.

The equations are solved by a pseudo-spectral DNS code implemented by Prof R. Kerr (Uni-

versity of Warwick) [66], with whom we have collaborated for this study. As computation

domain box has 256×256×128 grid points.

In respect to the results in the literature we add the an analysis based on the enstrophy

production. The enstrophy, Z, is defined as half the integral of the vorticity square and its rate
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of change is given by

1

2

∂Z

∂ t
+

1

2
(u ·∇)Z = ωSω

︸︷︷︸

vortex stretching

+
g

ρ0

ẑ · (ω ×∇ρ ′)
︸ ︷︷ ︸

baroclinic production

+ν(ω ·∆ω)
︸ ︷︷ ︸

viscous effect

where ω is the vorticity (ω = ∇×u), and Si j is the rate of strain tensor given by

[S]i j =
1

2

(
∂ui

∂x j

+
∂u j

∂xi

)

We normalize the vortex stretching and the baroclinic production terms over Z3/2, in order to

quantify the significance of where the spirals occur:

S =
ωSω

Z3/2
, B =

g
ρ0

ẑ · (ω ×∇ρ ′)

Z3/2
(6.2)

It is known from experiments and simulations that in fully developed isotropic turbulence is

S ≈ 0.5 [142]. In this context find S ≈ 0.1 would mean that the stretching is significant.

6.3 The Zig-Zag instability

As mentioned in Section 6.1 the presence of stratification radically modifies the evolution of

vertical column vortices. When buoyancy effects are dominant, the Crow and elliptic insta-

bilities are inhibited and we show in the present section that a third type of instability spon-

taneously slices the columnar vortex pair into thin horizontal layers of pancake-like dipoles.

This instability, which has been named zig-zag instability by Billant & Chomaz [13], occurs

only when the fluid is strongly stratified and clearly differs from the Crow and elliptic three-

dimensional instabilities. This section is devoted to a characterization of this instability and its

further transition to a turbulent regime.

The linear analysis [14] employs an asymptotic expansion in small Fr and Frz = Ukz/N,

where kz is the vertical wavenumber of the perturbation to the vortex pair. It is therefore re-

stricted to vertical scales much larger than 2πU/N. In this strongly stratified regime, the dimen-

sionless equations for vortex motion describe decoupled layers of two-dimensional solenoidal

flow at lowest order in Fr and Frz. Buoyancy and vertical velocity are slaved to the horizontal

velocity via hydrostatic balance, and gravity waves are filtered out. Billant & Chomaz more-

over showed that the slaved vertical velocity induced by a bending and twisting perturbation

of the dipole stretches the vorticity in a way that amplifies the perturbation. This is the basic

mechanism of the zig-zag instability.

In the laboratory a 60 cm long columnar vertical vortex pair generated with a flap apparatus

has been investigated by Billan & Chomaz [13]. The basic vortex pair closely resembles the
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Figure 6.3: A sequence of frontal (a), (c), (e), (g), (i) and side (b), (d), (d), (h), (j) views showing the

growth of the zig-zag instability for Fr = 0.19 and Re = 365. The pictures have been taken at 7 s (a),

(b); 36 s (c), (d); 75 s (e); 109 s (d); 121 s (g), (h); 176 s (i), (j) after stopping the flap motion. In the side

views, the vortex pair is initially propagating leftward. In this particular experiment, a slight forcing at

the natural wavelength has been applied to make the zig-zag pattern perfectly periodic. Picture by [13]
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Figure 6.4: Visualizations of the zig-zag instability in two different experiments in the absence of forc-

ing for the same parameters Fr0 = 0.19, Re = 365 at t = 121s after stopping the flap motion. In (a) a

regular zig-zag pattern is observed while a defect can be seen in (b). Picture by [13]

Lamb-Chaplygin dipole that they adopt for the numerical analysis. In Figure 6.3 and Figure

6.4 we report some of their experimental results.

Shortly after the end of the flap motion, at t = 7s the columnar vortex pair is initially

straight and uniform along the vertical, see Figure 6.3 (a,b). At t = 36s, it exhibits sinusoidal

antisymmetric deformations which are best seen in the frontal view (Figure 6.3(c)). Obviously,

this antisymmetric instability differs from the Crow instability which is symmetric and ulti-

mately produces vortex rings. Although it has the same symmetry as the elliptic instability,

some differences are readily noticeable. The whole vortex pair is bent without noticeable inter-

nal deformations. This contrasts with the elliptic instability for which the mean axes of the two

vortices remain globally straight, but the two vortex cores and envelopes are bent out of phase.

At t = 75s, in the frontal view, panel (e), the amplitude of the deformations has increased

dramatically. Nonetheless, the instability grows gently without any gravitational collapse and

without subsequent large three-dimensional motions as it would for the elliptic instability. This

distinct behaviour, i.e. the occurrence or not of the collapse phenomenon, has allowed the Bil-

lan & Chomaz to unambiguously define a critical Froude number demarcating the elliptic and

zig-zag instabilities. In Figure 6.4 the ”zig-zag pattern” reached by the perturbed column vor-

tex is shown for two different simulation with the same parameters.

This experiment was then followed by a series of linear stability papers and a few direct

numerical simulations using the three-dimensional, incompressible Boussinesq-Navier-Stokes

equations. For the initial perturbations chosen, the primary instability did not yield the zig-

zags. Recently, it is shown that the primary stratification terms completely oppose the stretch-

ing terms [16]. Only with the inclusion of higher-order terms could zig-zags form, and numeri-
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Figure 6.5: Vertical vorticity isosurfaces of simulation with Fr = 0.66 and Re = 1060. Red and blu

contours represent respectively plus and minus 60% of the vertical average of the maximum vertical

vorticity in each horizontal plane. Transparent isosurface are the same for a 10% level. Picture from

[34]

cally, zig-zags are retarded. The most successful numerical experiment [34] did yield zig-zags,

but only after the order of 50-70 characteristic timescales. What we found perplexing is how

difficult it was for the instabilities to form zig-zags, but not difficult for the experiments. In the

next section a different initial condition that speed up the zig-zag instability is proposed.
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6.4 Vertically shifted perturbation and second instability

By vertically shifting the perturbations on two counter-rotating vortices, it is shown that the

zig-zag patterns seen experimentally develops on a much faster timescale than if the perturba-

tions are on the same horizontal plane [67]. In Figure 6.6 indeed it is shown that the zig-zag

pattern can show up after only 7 time scale, while in [34] we have to wait until 50 time scale.

Please notice also that we are using a smaller Reynolds number, Re = 817 and in a more

weakly stratified fluid, Fr = 2.712. It is also interesting to observe the differences with the

non-stratified case, see Figure 6.7. We can observe that up to T = 6 the kinetic energy tran-

sient is not too different between the two cases, while the enstrophy components show from

the beginning a different behaviour. In both cases a T = 100 spirals are well observed in the

enstrophy isosurfaces, but in the stratified case they are more concentrated on the bottom of

the domain, as a consequence of the buoyancy effect. After T = 10 stratified and non-stratified

flow differentiate completely their behaviour. Indeed in the stratified case a mild horizontal

layering is observed.

In the stratified case, with the vertical shift, the density overturning by the two vortices gen-

erates horizontal density gradients that can force the horizontal baroclinic vorticity production

terms in the incompressible Boussinesq, Navier-Stokes equations, see Figure 6.8 an example

of potential energy isosurface, i.e |ρ |2.

We have thus observed spirals formation and hypnotized a contribution due to the the hor-

izontal baroclinic vorticity production terms. It is then natural to ask how these phenomena

interact in the production of enstrophy. In Figure 6.9 we can observe the temporal evolution of

these terms defined as in Eq. 6.2.

It can be observed that both have a peak value after 10 timescales, but the baroclinic term is

three order of magnitude smaller than the vortex stretching one. It is also interesting to analyse

how this terms are distributed in respect to the enstrophy isosurfaces. See for example left

panel in Figure 6.10. Both terms are obviously concentrated where spirals are formed.

Figure 6.6 moreover shows the development of small-scale structures in the highly sheared

region of the vortices. To address their origin, several authors [117] have proposed considering

the local Richardson number Ri, defined in Eq. 6.1. It is proved that where the Richardson

number is lower than 1/4, [95, 58] the KelvinHelmholtz instability occurs. In right panel of

Figure 6.10 this region is highlighted.

It is shown in literature that the secondary instability can lead to a turbulent regime. By

computing the energy spectra, however, we observe a behaviour far from the −5/3 Kol-

mogorov power law. Anyway we can clearly observed that the small scales gain energy up to

T = 12 when the viscous effect are dominant. We know from the literature that the secondary

instability develops and lead to a −5/3 spectrum for (Re− 400)Fr2 > 4 and ReFr2 ≥ 57 [4].

Even if our test case satisfy both the inequalities, the transition to turbulence is not observed.

Likely we are considering a too small Reynolds number and a weak stratification. Unfortu-
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Figure 6.6: Enstrophy isosurface, |ω2|= 200. Stratified case, Fr=2.712. From time T = 10 isosurfaces

show spirals and the formation of small scales.
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Figure 6.7: Comparison with the non stratified case. Top panels: time evolution of the enstrophy Z and

kinetic energy E . The suffices x,y,z indicates estrophy and energy computed taking into account only

the x, y or z component of the vorticity and velocity respectively. Dotted line: non stratified case, solid

line: stratified with Fr=2.712. Bottom panels: non stratified case enstrophy isosurface, |ω2| = 200 at

time T = 10, T = 15.

Figure 6.8: Potential energy isosurface, |ρ2|= 1
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Figure 6.9: Time evolution of the maximum of the enstrophy production terms: vortex stretching (left

panel) and baroclinic production (right panel).

Figure 6.10: Left panel: isosurface of the enstrophy production term for t=10, both the stretching and

the baroclinic term reach their maximum value where the spirals are formed. Right panel: region in

which the Richardson number is smaller than 1/4, i.e. where some Kelvin Helmotz instability could

occur.
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Figure 6.11: Unidirectional spectra in the different direction.
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nately we had not enough computational time available to make an higher resolution strong

stratified simulation, but we hope to be able to do it in the future.

6.5 Concluding remarks and future work

The evolution of a counter-rotating vortex pair in a stratified fluid has been extensively studied,

in particular because it is one of the simplest flow on which the zig-zag instability develops

and from which the buoyancy length scale naturally emerges as the vertical length [13, 14, 15].

Recently, Deloncle et al. [34], Waite and Smolarkiewicz [145] and Augier and Billant [3] have

investigated the nonlinear development of the zigzag instability. They have shown that both the

shear and gravitational instabilities appear at high buoyancy Reynolds number (Rb = Re Fr2)

when the zig-zag instability has a finite amplitude leading to a transition to turbulence.

The first conclusion that we found is a faster instability mechanism on pairs of vertical vor-

tices than those already proposed. The primary difference in the new initial condition is that the

perturbations are not in the same vertical positions. This shift in the vertical allows a stronger

horizontal density perturbation to form in a shorter time. The vertical layering observed in

many calculations is reproduced and is identified with anti-parallel pairs of horizontal vortices

propagating in different directions at different levels. The new configuration is then primed

for developing a horizontal energy cascade that would start with the reconnection of these

horizontal pairs. With this perturbation, following the formation of the first weak horizontal

temperature gradients, the barotropic (stretching) and baroclinic (from horizontal temperature

derivatives) vorticity production terms never cancel and it took only about 10 characteristic

timescales for significant bends to form. Once the bends form, strong horizontal anti-parallel

vorticity forms in the stream-wise direction at the tips of the bends, which then pulls these

bends into the zig-zags.

Despite the initial conditions are very simple and very far from the turbulent state Augier,

Chomaz and Billant [4] observe a −5/3 horizontal spectra. The vertical spectra, instead, ex-

hibits a −3 slope in range of large scales ( power-law that seems to be due to the vertical

deformations of the dipole induced by the zig-zag instability) and a −5/3 slope for the small

scales (indicating a return to isotropy). Moreover in previous study on column vortex dynam-

ics on Euler equations and quantum turbulence [68] it seems that a second vortex reconnection

is needed in order to see a −5/3 spectrum. In the Billant et al. results a vortex reconnec-

tion doesn’t appear, see Figure 6.12. We have tried to investigate if they miss to identify the

reconnection or some other phenomena that can provide good physical explanation of the oc-

currence of such spectra. We are interested in whether it can be tied to other physics like, as the

Lundgren model [83]. He proposed a model for the intermittent fine structure of high Reynolds

number turbulence. The model consisted in slender axially strained spiral vortex solution of

the Navier Stokes equations and lead to a k−5/3 energy spectrum consistent to the Kolmogorov

ones. The cascade is produced by the tightening of the spiral turns by the differential rotation
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Figure 6.12: Spectral analysis of the transition to turbulence from a dipole in stratified fluid [4]

of the induced swirling velocity. Unfortunately this study has yet to be concluded. In fact,

from our simulations we are able to see the formation of spirals and contribution given by the

vortex stretching, but we do not reach the k−5/3 power low in the energy spectrum.

We have to perform simulations in a much bigger computational grid to proof our hypoth-

esis, but at until now we have not had enough computational time available. With the bigger

simulations we would like to clearly identify the secondary source of vortex stretching that is

needed to generate the −5/3, from the Lundgren model. Moreover Waite and Smolarkiewicz

[145] and Augier and Billant [3] find the Kelvin Helmotz instability for really low value of the

Froude number (Fr ≤ 0.15). As second goal we would like to consider whether the Froude

number and Brunt Vaissala frequencies necessary for achieving the observed KH instability

are physical, or in what context they will be. If we found that the real atmosphere is not as

stratified as we will find is necessary in the vortex dipole calculations, then we need to think

about what will give the KH instability without being this extreme. And finally the bigger

questions of how this fits into the transition at roughly the synoptic scale when the atmosphere

starts the transition from very large-scale nearly two-dimensional dynamics towards dynamics

with a cascade of energy to small scales, even if it is not fully three-dimensional.



Chapter 7

Turbulent mixing in stratified flows.

An application to cloud dynamics

Fluid entrained, or otherwise introduced in a turbulent region, is transported and dispersed

across it by motions induced from the largest to the smallest eddies, where molecular diffusion

has the opportunity to act, and where the ability of high Reynolds number turbulent flow to

generate large interfacial surface area permits the otherwise slow molecular mixing to proceed

effectively. Turbulent mixing can be viewed as a three-stage process of entrainment, dispersion,

and diffusion, spanning the full spectrum of space-time scales of the flow.

The turbulent diffusion is complex and discrete structures or processes, spatially localized

within the system, may exist. To obtain a better handling of fundamental issues, it has been

adopted an approach where the turbulence self-diffusion is modelled by the interaction between

two different isotropic turbulent fields. This simplifies the main mechanisms. In fact, it does

not include the non-linear production of turbulent energy. However, it retains two of the most

important features present in real flows: inhomogeneity and anisotropy.

Recent studies revealed the generation of small-scale anisotropy in non-stratified turbu-

lence self-diffusion. A long-term interaction must be active to transfer to small scale the

information on the anisotropy of the initial and boundary conditions [140]. Data from di-

rect numerical simulations show that there is a departure of the longitudinal velocity deriva-

tive moments from the values found in homogeneous isotropic turbulence (HIT) and that the

anisotropy induced by the presence of a kinetic energy gradient has a different pattern from the

one generated by an homogeneous shear. Other results concern the relationship between the

correlation length and intermittency.

A variation of the correlation length is not necessary to depart from Gaussianity [141, 138].

However, if the correlation length variation is concurrent with that of the energy, the mixing

is enhanced, if is opposite, the mixing is decreased [138]. The transport of a passive scalar or

a stable stratification added to the system highlight other phenomenology. The dimensionality
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of the system is in particular of great relevance for some aspects (temporal mixing growth and

vorticity suppression).

Mixing mechanisms in stratified fluids depend on the nature of the background stratification

and are of course a more complex mechanism due to the inhibition of the vertical motions. As

discussed in Chapter 5 stratification is very typical of atmospheric flows. In particular we are

interested in the mixing process that involve clouds and clear air.

Warm clouds as stratocumuli swathe a significant part of earth’s surface and play a major

role in the global dynamics of atmosphere by strongly reflecting incoming solar radiation –

thus contributing to the Earth’s albedo – so that an accurate representation of their dynamics is

important in large-scale analyses of atmoshperic flows [149]. They are controlled by the tight

interplay between radiative driving, turbulence, surface fluxes, latent heat release, and entrain-

ment. Among them, the mixing and entrainment processes at the cloud top have been identified

as fundamental to determine the internal structure of warm clouds, so that a clear and complete

understanding of their physics is required [43]. As pointed out by Malinowsky et al. [88], data

from most field campaigns and large-eddy simulations are too poorly resolved to allow to infer

the details of the interfacial layer, even if they indicate that, in order to allow for entrainment,

a high level of turbulence must be present. For this reason, in this chapter we study the local

transport through a clear air/cloud interface through DNS (Direct Numerical Simulation). As

our focus is on the dynamics of the smallest scales of the flow which influence the microphysics

of warm clouds, we have simulated an idealized configuration to understand, under controlled

conditions, some of the basic phenomena which occur at the cloud interface over length scales

of the order of few meters. In these conditions, we solve scales from few meters down to few

millimeters, that is, we resolve only the small scale part of the inertial range and the dissipative

range of the power spectrum in a small portion (6 m× 6 m× 12 m) of the atmosphere across

the cloud - clear air interface. This allows us to investigate the dynamics of entrainment which

occurs in a thin layer at the cloud top, which a smaller scale with respect to the scale explicitly

resolved in large-eddy simulations of clouds [98]. This is a preliminary work, where we focus

on two concomitant aspects of the cloud top mixing layer: the effect of the presence of a strat-

ification and of a turbulent kinetic energy gradient. We do not consider the wind shear neither

the phenomena linked to the processes of evaporation and condensation and radiative cooling

which are important in conditions of buoyancy reversal [90, 91]. Therefore, our simulations

were performed by applying the Boussinesq approximation to the Navier-Stokes momentum

and energy equations together with a passive scalar transport equation which models the water

vapour transport.

In next Section we contextualize and motivate better the present study. In Section 7.2 the

physical problem is described; while the numerical results obtained are descried in Section 7.3.
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7.1 Rationale

Clouds cover about 70 percent of the Earth’s surface and have an enormous effect on climate:

Some clouds, especially low-lying hazy or puffy clouds, reflect sunshine and cool the planet;

others, such as high, wispy clouds, trap heat emanating from Earths surface and warm the

planet. Clouds currently have an overall cooling effect on the planet, but as the Earth heats due

to global warming, the type and position of clouds could change. So to predict climate change

over the next 10 to 100 years, scientists need to be able to accurately predict what will happen

to clouds. But despite simple ingredients tiny droplets of water or ice crystals clouds are ex-

traordinarily complex entities governed by competing physical forces, and it takes a significant

amount of computing power to calculate how they form and change. However, though scien-

tists know the equations needed to model the physical processes that determine the formation

and evolution of clouds, today’s computers cannot handle the complex calculations that are

required to simulate each and every cloud that forms across the globe. Instead, atmospheric

scientists resort to dividing the planet into large boxes, or grid cells, ranging from 100 to 300

kilometres on each side. In each of these boxes, a computer algorithm calculates a coarse es-

timate of cloud formation and movement. This way the calculation becomes computationally

feasible, but at the expense of fine detail. Since clouds are formed by small-scale atmospheric

motions the interaction and combination of the different atmospheric motions small and large

is difficult to be accurately represented in the large grid boxes. Because of this, clouds are

not realistically simulated in current weather and climate models. The turbulence simulations

could be used to develop more accurate statistical representations of clouds under different

atmospheric conditions in larger grid boxes

The effect of turbulence on cloud formation and precipitation is a controversial issue that

has long divided the cloud physics community. The difficulty in measuring clouds at small

scales and the lack of realistic cloud models that span all the relevant scales means that the

precise effect of turbulence is hard to quantify (see Figure 7.1) and makes an assessment of

its importance difficult. Nowadays this topic is a major research problem. Theoretical, com-

putational and laboratory tools are applied to all scales of the problem [25]. A scheme of the

length scales that characterize the atmospheric motions is shown in Figure 7.1. With this study

we propose to investigate -through a toy problem- the mixing and entrainment that take place

between clouds and the clean air surrounding [42]. Therefore we consider a problem with a

length scale of the order of 10 meters. Compared to in situ measurement of the atmospheric

energy spectra, as shown in Figure 7.2, we are able to simulate the lowest part of the inertial

range and the dissipative one.

Since we are investigating an atmospheric flow motion we have also to make some consid-

eration about the stratification. Usually, within the lower atmosphere (the troposphere) the air

near the surface of the Earth is warmer than the air above it, largely because the atmosphere

is heated from below as solar radiation warms the Earth’s surface, which in turn then warms
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Figure 7.1: Turbulence on scales from hundreds of meters to fractions of millimetres effects the forma-

tion and dynamics of clouds, with consequences extending to the scale of weather and global climate

(Picture taken from [18])

-4 -3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

Biona [elevat ion 1.3 ÷ 22 m]

Katul (pineforest ) [elevat ion 30 m]

Katul (hardwood) [elevat ion 50 m]

Lothon (lidar measurement) [alt itude s.l. 1÷1.5 km]

Radkewich (cirrus lidar measurement) [alt itude s.l. 8 km]

Radkewich (aerosol lidar measurement) [alt itude s.l. 5 km]

Present  work [alt itude 1 km]

7

8

8

9

10

10

-5
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dissipative range) respect to spectra from in-situ atmospheric measurements [17, 62, 79, 113] (colored

spectra, energy injection and low wave-number inertial scales).
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Figure 7.3: (Top-Left) Temperature as a function of height in the atmosphere measured by radiosondes

at three different cities. Data from the University of Wyoming’s Department of Meteorology and from

the University Center for Atmospheric Research RAP Real-Time Weather Data. (Top-Right) Zoom on

the temperature inversion layers. (Bottom) Possible effect of an inversion layer.

the layer of the atmosphere directly above it, e.g., by thermals (convective heat transfer) [100].

Under certain conditions, the normal vertical temperature gradient is inverted such that the air

is colder near the surface of the Earth. In wintertime, a temperature inversion occurs when cold

air close to the ground is trapped by a layer of warmer air. In summer months it also occurs,

but are a product of even hotter upper air trapping warm air close to the ground. An inversion

layer acts as lid keeping the air beneath from penetrating higher into the atmosphere and limits

the vertical extent of air mixing near the surface [9].

Figure 7.3 shows temperature as a function of height in the atmosphere measured by ra-

diosondes at three different cities and the possible effect due to a temperature inversion.

The presence of these inversion layers plays an important role in atmospheric dynamics,

as well as inhibiting the rates of vertical transport of scalars, such as water vapour contained

inside the clouds. With our simulations we want to investigate how this kind of temperature

profile affects the entrainment at the cloud - quiescent air interface.
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7.2 The physical problem

We consider the interface between clear air and cloud in a 6 m× 6 m× 12 m parallelepiped

domain. As shown in figure 7.2, the system is composed by two homogeneous and isotropic

turbulent regions that interact through a mixing layer, whose initial thickness has been set of

the same order of the integral scale of the turbulence background ℓ, here assumed equal to

3 ·10−2 m. The two isotropic regions have a different kinetic energy and we assumed that the

kinetic energy is higher in the cloud than in the external region. The root mean square of the

velocity inside the cloud is urms = 0.2 m/s, and the energy ratio between the cloud energy E1

and the external region energy E2 is equal to 6.7. This energy ratio is of the same order of the

ones measured in warm clouds (see, e.g., [88]) and, furthermore, it allows us to compare our

results with experiments on shearless mixing (see [144, 139]) in absence of any stratification.

In our simulations the Taylor microscale Reynolds number Reλ of the higher energy region is

equal to 250. The water vapour concentration χ is considered as a passive scalar. The Prandtl

(Pr= 0.74) and the Schmidt number (Sc = 0.61) considered refers to an altitude of 1000 m s.l.

Since we want to simulate what happens in the presence of an inversion layer the equation

that describes a stratified flow, Eq. 5.23, has to be expressed in term of temperature instead of

density:

∇ ·u′ = 0 (7.1)

∂u′

∂ t
+
(
u′ ·∇

)
u′ =−∇

p̃

ρ
+ν∇2u′+αgθ ′ (7.2)

∂θ ′

∂ t
+u′ ·∇θ ′+u3G = κ∇2θ ′ (7.3)

∂ χ

∂ t
+u′ ·∇χ = dχ∇2χ , (7.4)

Here the temperature θ and pressure p are composed as the sum of a fluctuation (θ ′(x, t),

p′(x, t)), a static component (, θ̃(x3) = Gx3, P̃(x3) = αθ̃(x3)G) and a reference constant (θ0,

p0), where is the fluid-dynamic pressure, α the thermal expansion coefficient, g the gravity

acceleration), u′ is the velocity fluctuation and χ is the vapour concentration of the air - water

vapour mixture present in the cloud, here considered as a passive scalar. The constant κ and

dχ are respectively the thermal and water vapour diffusivity. The initial conditions for the

temperature perturbation is described in Figure 7.2 and in Table 7.2. The ratio between inertial

and buoyancy forces is expressed by the Froude number Fr, based on the maximum gradient

within the initial interface, which ranges from 31.2 (negligible stratification) to 0.62 (strong

stratification).

The simulations are performed using our home produced computational code that im-

plements a pseudospectral Fourier-Galerkin spatial discretization and an explicit low storage

fourth order Runge-Kutta time integration scheme. Evaluation of non-linear (advective) terms
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Figure 7.4: Scheme of the initial conditions. E1 is the mean initial turbulent kinetic energy of the

bottom region (inside the cloud), E2 of the upper region (outside the cloud). For the top cloud mixing

here presented we consider E1/E2 = 6.7. The water vapour is initially present only inside the cloud

(bottom region). The zoom in the yellow circle is an example of initial temperature perturbation θ ′ of

the standard boundary layer lapse rate.

Table 7.1: Initial stratification level parameters. G is the maximum gradient of θ , expressed in terms

of the standard troposphere lapse rate G0 = 0.0065 Km−1; Nci =
√

αθ0g dθ
dx3

is the characteristic Brunt-

Väisälä frequency of initial condition. The Froude number Fr=
u′rms
Nicℓ

and the Reynolds Buoyancy number

Reb =
εN2

ν give a measure of the order of magnitude of the buoyancy forces compared with the inertial

terms (ε is the initial energy dissipation rate, ν the kinematic viscosity).

G ∆T [K] Nic [s
−1] Fr Reb

2G0 4.0e-3 2.13e-2 31.2 7

30G0 6.0e-2 5.24e-2 12.7 112

100G0 2.0e-1 1.50e-1 4.4 273

500G0 1.0e0 3.35e-1 1.8 833

5000G0 1.0e1 1.06e0 0.62 2635

Table 7.2: Simulations parameters.
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Figure 7.5: Spatial distribution along the vertical coordinate x3 of the kinetic energy (a), temperature

variance (b) and water vapour concentration variance (c) at t/τ ≈ 6 for different levels of stratification.

is performed through the 3/2 de-aliased method [59]. The initial conditions for the velocity

field are obtained by a linear matching of two different isotropic homogeneous turbulent fields

(that are randomly generated, respecting physical conditions imposing spectra, solenoidality,

integral scale and kinetic energy)[138]. The grid has 1024×1024×2048 points, and allows to

capture all the turbulent scales from the greatest (integral scale ℓ) to the smaller (Kolmogorov

scale η). The computational code uses a distributed memory paradigm through the MPI li-

braries: the simulation were performed at the TGCC Curie supercomputer within the PRACE

project n◦ RA07732011 for a total of 3 million cpu-hours.
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7.3 Results

According to the ratio between buoyancy force and kinematic forces (that are advection and

diffusion), the evolution of the system can be split in two main stages. As long as the ratio

remains small, there are no significant differences with respect to a non-stratified case. On the

contrary, as the stratification perturbation level become higher, buoyancy effects are no more

negligible: differences are present from both a quantitative and qualitative point of view. These

considerations can be observed through the statistical analysis of the simulated fields. The

statistics are computed by averaging the variables in the planes normal to the mixing direction

(with a sample of 1024×1024 data-points), focusing on the variation along the vertical (non-

homogeneous) direction. The effects of the different stratification levels are clearly visible on

the second order moment of velocity, temperature, and vapour as shown in Figure 7.5 (a,b,c).

When the stratification level is mild (Fr > 4) there are no relevant differences with respect

the neutrally buoyant flow, while significant differences appears for intense stratification (Fr <

2). In particular, in correspondence of the local temperature perturbation, the formation of

a layer with a pit of kinetic energy can be observed. The presence of such a layer deeply

changes the physics of the system, because in this situation two interfaces are produced. The

first interface, (which is present also in the absence of stratification), now separates the high

turbulent energy region from the pit, while the second one (not present without stratification)

separates the low turbulent energy region from the center of the mixing layer. Therefore, a

strong stratification induces a physical separation between the two external regions, greatly

decreasing the interaction between them. Both interfaces present an intermittent behaviour, as

shown in Figure 7.6 (a,b) by skewness and kurtosis distribution (respectively third and fourth

moments normalized with the local variance). In fact, two peaks of skewness and kurtosis can

be observed in the highly stratified case: one is placed inside the cloud, and the other is placed

close to the position of the intermittency peak in case of absence of stratification, see data at

Fr = 0.6 in Figure 7.6 (a). Observing the magnitude of the kurtosis maximum in Figure 7.6

(b), it can be noted that the peak inside the cloud reaches values as high as 4, that are about the

10% larger than when the stratification is milder.

It can be also observed that higher levels of stratification produce a relevant reduction of

intermittency in the flow, with a drop of about 70% in the peaks of skewness and kurtosis. The

interaction between the two regions aside the interface is greatly reduced, so the fluctuation

at the sides of the mixing layer are damped, preventing the formation of the intermittent layer

typical of the passive scalar transport [84, 60]. This strong reduction in skewness and kurtosis is

coupled with a slight increase in the higher order moments of vertical velocity – for sufficiently

strong stratification – which is in fair agreement with the trend observed in [112]. Moreover,

observing both Figures 7.5 and 7.6, it is clear that the thickness of the mixing layer is reduced

in case of intense stratification (see next section for more details).
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Figure 7.7: (a) Temporal evolution of the spatial distribution along the vertical direction x3 of the tur-

bulent kinetic energy when Fr=1.8. A pit of energy appears after about 6 eddy turnover times in cor-

respondence of the original interface. (b) Temporal evolution of the ratio ζ between the mean vertical

velocity variance in the lower energy (clear air side) region u3,MLE and the minimum value of the vertical

velocity u3,MIN . When this ratio departs from 1, a pit of kinetic velocity appears as shown in (a).

7.3.1 The onset of a kinetic energy pit

As shown in Figure 7.7 (a), in case of high stratification level, in the center of the domain –

where the initial temperature step is placed – the onset of a layer with a kinetic energy lower

than both the external regions can be seen. This layer can be considered as a pit of kinetic

energy. Varying the stratification intensity, the genesis and the evolution of such pit can be

measured by considering the ratio ζ between the variance of vertical velocity in the low energy

region u2
3MLE (mean value) and in the center of the pit u2

3MIN (where the variance reaches its

minimum); the temporal evolution of ζ is shown in Figure 7.7 (b). Qualitatively similar results

have been observed in the large-eddy simulations of stratocumulos-topped planetary boundary

layer carried out by several physics of the atmosphere research group, as described in [97,

fig.7(c) and 8(a) at pag. 11]: in particular, in the case of sufficiently strong stratification, the

trend of our vertical velocity variance, in Figure 7.3.2 (a), is analogue to those observed in the

LES carried out by the NCAR group (Deardoff TKE model [96]) and the WVU (ARAP TKE

model [132]). In this simulations they consider the planetary boundary layer with Reλ ≈ 5500

and Fr ≈ 0.4.

A visualization of such phenomenology is represented in Figure 7.3.1, where the vertical

velocity fluctuations in a vertical slice of the domain are represented using an elevation plot

(where such elevation is proportional to the square of u3). In presence of a mild stratification,

Fr = 12, even after 8 time scale, there is a smooth mixing layer between the high (left) and the

low (rigth) energy regions. The differences in the case of strong stratification, with Fr = 0.62,
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Figure 7.8: Visualization of the vertical component of the velocity in a vertical plane. The elevation is

proportional to the square of vertical velocity fluctuations and the colors respect the velocity directions

(blue for downward , red for upward) in various case: Fr = 12 after 8 eddy turnover times (a) and for

Fr=0.62 after 4 and 8 eddy turnover times (panels b, c respectively). In the last two panels it can be

observed the formation of the pit of kinetic energy.

after 4 time-scales (b) and 8 time scales (c), are clearly visible: a separation layer is present in

the center of the domain, that becomes even more evident as the time pass by.

As said, the presence of the pit generates a physical separation between the two external

regions, by damping the turbulent mixing, and thus reducing the exchange of information. As

a consequence, there is a saturation of the thickening of the mixing layer ∆E ; such interruption

of the growth is represented in Figure 7.9 (a)

Looking to the temperature mixing layer thickness ∆θ , shown in Figure 7.9 (b), it can be

seen that, for strong stratification, the thickening stops approximately after the same amount of

times scale required by ∆E . In that case, contrary to what observed for the kinetic energy, the

thickening does not stop suddenly, but rather with a transient that lasts a couple of time scales.

7.3.2 Entrainment

The entrainment of clear air inside the cloud is an important aspect of the top cloud interface

as it concurs in the evaporation/condensation of droplets inside a cloud [149].

In any plane parallel to the interface, in absence of a mean velocity, only downward velocity

fluctuations can transport clear air into the cloud. Their presence can be represented by a

marker function ψ that is equal to 1 where u3 is negative, and 0 otherwise. Its average in each

horizontal plane, shown in Figure 7.3.2 (a), shows a small deviation from the mean value of
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Figure 7.9: Thickness of the mixing layer of velocity (a) and temperature (b). For both fields, the mixing

layer thickness is the same as defined in [60].

0.5 which would be observed in an homogeneous and isotropic flow. This implies that upward

and downward fluctuations are almost equally distributed; the maximum departure from an

homogeneous distribution is about 4%, and the spatial distribution of ψ looks like the one

which has been observed in the third order moment of the velocity, see Figure 7.6 (a).

The entrainment of clear air is responsible of the growth of the cloud. In fact, the velocity

we = dx3,i/dt of the cloud top interface (〈x3,i〉 is the mean vertical position of the cloud top,

defined as the position where the mean vapor concentration is 25%) has often been used as a

parameter to measure the entrainment rate [90, 98]. In Figure 7.3.2 (b), the temporal decay of

we for different levels of stratification is represented. In presence of weak stratification, that is

Fr larger than 4, its value gradually decreases with an almost exponential law, due to the decay

of the kinetic energy. On the contrary, when the stratification is stronger, the damping of we is

much faster, and the entrainment vanishes after few times scale, when the presence of the pit

of kinetic energy substantially reduces the flux of clear air inside the cloud.

Figure 7.3.2 (c) shows the vertical derivative of the downward flux of clear air when Fr =

1.8 As the flow evolves, the downward flux reduces and its derivative, which represents the net

variation of 1− χ at a given instant, rapidly tends to zero inside the cloud. This implies that

the entrainment of clear air is confined to a thin interfacial layer.

7.4 Conclusion

In this chapter we have carried out numerical simulations on the transport of energy and scalars

in a turbulent shearless mixing layer associated to temporal perturbation of the temperature

lapse rate across the clear air - cloud interface. The perturbation locally introduces a stable
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Figure 7.10: Evolution of the entrainment across the top cloud. Fraction ψ of downwards velocity (a)

and vertical variation of the mean flux of clear air into the cloud (c) when with Fr= 1.8. Evolution of

entrainment velocity we normalized with the high kinetic energy E1 root mean square (b), see figure 7.2.
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stratification. This idealized configuration models some of the phenomena which are present

in the kinetic dynamics of the cloud and clear air interaction, namely those linked to turbulent

mixing and entrainment.

We have shown that this flow configuration develops an horizontal layered structure char-

acterized by a sublayer – with a kinetic energy lower than both the external regions – which

acts as a barrier for the transport between the cloud and the external ambient. In our transient

simulations, this flow structure appears when the buoyancy terms becomes of the same order

of magnitude of the inertial ones, therefore the time needed for this transition becomes shorter

when the stratification is more intense. Once buoyancy dominates and the new flow regime is

reached, we observed two highly intermittent regions with opposite kinetic energy gradients.

As a direct consequence, the entrainment is damped.

Results obtained so far seemingly support the large eddy simulations of stratocumulus -

topped planetary boundary layers.



Concluding Remarks

In this thesis we have presented interesting phenomenology on perturbation dynamics in both

laminar and turbulent flows. Stability, transition and turbulence are the three main flows regime

and in this thesis they have been investigated through an initial value problem.

First laminar two dimensional flows is considered. By varying the wave number over a

large interval of values, we analyse the phase and group velocity of linear three-dimensional

travelling waves both in the plane wake and channel flows. We solved the Orr-Sommerfeld

and Squire eigenvalue problem and observe the least stable mode. At low wave numbers, we

observe a dispersive behaviour amenable to the typical solution belonging to the left branch of

the eigenvalue spectrum. By rising the wave number value, in both flows, we observe a sharp

dispersive to nondispersive transition. This is located at a critical wave number of the order of

the unity. Beyond this transition, the observed dominant mode belongs to the right branch of

the spectrum.

We also focused on the transient behaviour of the phase velocity of small amplitude three-

dimensional travelling waves. Given an arbitrary initial condition, we verified that the kind of

transient highly depend on the wavelength value with respect to that of dispersion/nondispersion

transition. Furthermore during the transient, the phase velocity may oscillate with a frequency

which is equal to the width of the eigenvalue spectrum. These transients may show abrupt

changes that are related to the Reynolds number, wave angle, symmetry and the vorticity distri-

bution of the initial condition. The existence of an intermediate transient in which the solution

becomes near-similar is empirically proved.

The intermediate transient is the most interesting period to investigate. Indeed, at these

times the perturbations show interesting scaling properties. The velocity components profiles

maintain the same shape every time inside this range, thus they show a self- similar behaviour.

Moreover we show that inside the intermediate term the kinetic energy distribution follows

a power law that is very similar to the one observed in turbulent state, where the energy scales

as k−5/3 ( Kolmogorov 1941). Even if, of course, in this case the energy power law can not

represent an energy cascade, these findings lead us to hypothesize that some properties consid-

ered typical of turbulent flow, such as self similarity and scaling of the energy spectrum, are

instead a more general property of the Navier Stokes equations.

We have then considered a three-dimensional base flow that is the supercritical FSC cross-
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flow boundary layer. We analyse the temporal evolution of individual three-dimensional travel-

ling waves subject to near-optimal initial conditions and considered an extended portion of the

parameter space. Our parametrization included the wave-number, the wave-angle, the cross-

flow angle, the Hartree parameter and the Reynolds number. Special focus was given to the role

played by the waveangle in inducing very steep initial transient growths in waves that proved to

be stable in the long term. We found that the angular distribution of the asymptotically unstable

waves and of the waves that show a transient growth depends greatly on the value of the cross

flow angle and wave-angle as well as on the sign of the Hartree parameter, but depend much

less on the Reynolds number. In the case of the decelerated boundary layer, at sufficiently short

wavelengths, transient growths become much more rapid than the initial growth of the unstable

waves. In all cases of transient growth, pressure perturbations at the wall are not synchronous

with the kinetic energy of the perturbation.

The transition to turbulence is then considered through the dynamics of disturbances in the

context of the zig–zag instability. In the presence of a stable stratification, a particular kind

of instability can occurs by perturbing two counter-rotating columns vortex. The vortices are

stretched and bended in such a way as to assume a zig-zag shape. This zig-zag shape in turn

favours the occurrences of a second instability, the Kelvin Helmholtz instability, which leads to

the formation of smaller scales. This brings us to a turbulent regime. Analysing this flow, we

wondered if it was possible to explain and model the obtained inhomogeneous, anisotropic and

stratified turbulence through the turbulent model proposed by Lundgreen [83]. Unfortunately

at the moment we have not yet succeeded in this aim.

Eventually for the turbulent regime, we considered a simplified physics of the cloud in-

terface where condensation, evaporation and radiation are neglected and momentum, thermal

energy and water vapour transport is represented in terms of the Boussinesq model coupled to a

passive scalar transport equation for the vapour. The interface is modelled as a layer separating

two isotropic turbulent regions with different kinetic energy and vapour concentration. In par-

ticular, we focus on the small scale part of the inertial range as well as on the dissipative range

of scales which are important to the micro-physics of warm clouds. We have numerically

investigated stably stratified interfaces by locally perturbing at an initial instant the standard

temperature lapse rate at the cloud interface and then observing the temporal evolution of the

system.

When the buoyancy term becomes of the same order of the inertial one, we observe a spatial

redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within

the mixing layer. In this situation, the mixing layer contains two interfacial regions with oppo-

site kinetic energy gradient, which in turn produces two intermittent sublayers in the velocity

fluctuations field. This changes the structure of the field with respect to the corresponding non-

stratified shearless mixing: the communication between the two turbulent region is weak, and

the growth of the mixing layer stops.
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