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A Game-theory Analysis

of Charging Stations Selection by EV Drivers
Francesco Malandrino, Claudio Casetti, Carla-Fabiana Chiasserini, and Massimo Reineri

Abstract—We address the problem of Electric Vehicle (EV)
drivers’ assistance through Intelligent Transportation System
(ITS). Drivers of EVs that are low in battery may ask a navigation
service for advice on which charging station to use and which
route to take. A rational driver will follow the received advice,
provided there is no better choice i.e., in game-theory terms, if
such advice corresponds to a Nash-equilibrium strategy. Thus, we
model the problem as a game: first we propose a congestion game,
then a game with congestion-averse utilities, both admitting at
least one pure-strategy Nash equilibrium. The former represents
a practical scenario with a high level of realism, although at a
high computational price. The latter neglects some features of
the real-world scenario but it exhibits very low complexity, and
is shown to provide results that, on average, differ by 16% from
those obtained with the former approach. Furthermore, when
drivers value the trip time most, the average per-EV performance
yielded by the Nash equilibria and the one attained by solving a
centralized optimization problem that minimizes the EV trip time
differ by 15% at most. This is an important result, as minimizing
this quantity implies reduced road traffic congestion and energy
consumption, as well as higher user satisfaction.

I. INTRODUCTION

Any technology touted as environmentally-friendly is likely

to have its place secured on news media around the globe.

Among green solutions, Electric Vehicles (EVs), viewed by

all as emission-free, clean and noiseless, are rapidly rising

in popularity and expectations, also thanks to the predictable

shortage of fossil fuel in the not-so-distant future. Indeed, EV

mass-production and widespread adoption seem all but likely if

some early hurdles are overcome, such as short driving range,

lack of recharging infrastructure and long charging time.

Arguably, any road scenario in ten years’ time will likely

feature some ratio of EVs taking over the streets [1]. Old-

fashioned gas pumps might also be gradually phased out by

public charging stations, with electric outlets popping up in

places such as curbside parking, parking lots and cab stands.

Even in this rosy scenario, one wonders when worries about

vehicle range and availability of charging stations will be lifted

and whether drivers will not be forced to plan their entire

trip or commute around such availability, at least early on in

charging station development. Finally, it is not clear when the

“time consuming” tag will be removed from the task of car

recharging.

Given the above concerns, ICT and Intelligent Transporta-

tion System (ITS) can step in and provide solutions that

alleviate such concerns. Indeed, traditional navigation services
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could be integrated with the information provided by roadside

network infrastructure and on-board user terminals through

wireless communication [2], [3]. A Central Controller (CC)

could collect information on the vehicular traffic conditions

and on the occupancy status of the charging stations through

ITS facilities. Then, EV drivers with low battery level could

send a request to the CC and ask for advice on the specific

charging station to choose and the route to take.

The key point in this scenario, however, is that drivers that

resort to such a navigation service will very likely behave

as self-interested users, who aim at finding the best trade-off

between the trip time (including the time they have to stop at

the charging station) and the charge/change price they pay at

the station. Thus, they will follow the advice provided by the

CC only if they find it advantageous to themselves.

In this work, we show that the advice provided by the CC

may not conform to the interests of EV drivers when it is

obtained by solving a centralized optimization problem that

maximizes the average per-EV utility. We demonstrate instead

that the above requirement is satisfied when the problem is

modeled as a non-cooperative game. Specifically, we resort

to a congestion game [4] and a game with congestion-averse

utilities [5], where the players are the EVs with low battery

level. EVs behave differently from ordinary players of ordinary

games, in that they do not compute their strategy themselves,

but rather follow the CC’s advice. However, as explained

below, the advice EVs received by the CC corresponds to the

choice they would make themselves, had they all the necessary

information.

In both congestion games and congestion-averse games, the

decision to be made concerns the charging station that an EV

should use, along with the route to take passing through such

a station. The two game models exhibit a different level of

realism and complexity; however, for both of them, we show

that, when the CC uses the game solution to provide advice

to the EVs, the following facts hold.

(i) The navigation strategies suggested by the CC corre-

spond to Nash Equilibrium (NE) strategy profiles1, i.e., each

EV finds the suggestion by the CC advantageous to itself and

is willing to adhere to it.

(ii) When drivers value their trip time most, the advice

provided by the CC leads to an average per-EV trip time

that is very close to the minimum obtained by solving a

centralized optimization problem, and much shorter than the

one the drivers can obtain by adopting a greedy approach

(e.g., always select the closest or the least congested charging

1Recall that an NE is a game solution, in which no player can gain anything
by unilaterally changing his own strategy.
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station). This is highly desirable since, shortening the average

per-EV trip time, contributes to reducing road congestion and

energy consumption due to EVs.

The remainder of the paper is organized as follows. In

Sec. II, we discuss previous work highlighting the novelty of

our contribution. The system scenario is introduced in Sec. III,

along with the statement of the problem under study. We

motivate our work in Sec. IV, by showing that centralized

optimal solutions may lead to advice that may not be followed

by the EV drivers. The game-theoretic approach that we adopt

for the problem solution can be found in Sec. V. In Sec. VI,

we introduce the simulation scenario that we use to derive

the results presented in Sec. VII. There, we show the low

complexity of the proposed method and its excellent perfor-

mance. The latter results are derived through the Simulation

for Urban MObility (SUMO) tool [6] and using a real-world

road topology. We draw our conclusions in Sec. VIII.

II. RELATED WORK

Recently, both the academic and industrial communities

have devoted a great deal of interest to EVs and to the use

of ITS services in support of EV drivers. As an example,

in [7] Ferreira et al. consider the case where the behavior

of EV drivers, i.e., whether they drive to the closest or the

cheapest charging station, depends on their profile (age or

gender). The authors design a system that, through various

communication technologies, provides EV drivers with several

pieces of information, among which, the locations of charging

stations. The burden of selecting the charging station, however,

is left to the drivers, as the study of the trip time associated

to different alternatives is not within the scope of [7].

An analytical model for the study of the EVs trip time is

presented in [8]. The road topology is modeled as a graph

whose edges are associated with a fixed, i.e., non traffic-

dependent, waiting time. Charging stations are likened to

multi-server queues, and a theoretical lower bound to the

charging time is derived. The model, however, does not include

the availability of a central controller and, unlike our study,

it does not consider that vehicles may deviate from their

originally-planned route in order to reach a suitable charging

station. Thus, the study in [8] does not account for the EV

travel time to and from a charging station. The presence of a

central controller is considered in [9], [10], where the route

of an EV is minimized while accounting for stop-overs at

charging stations. A multi-objective decision-making model is

also presented in [11], where the gas station selection depends

on drivers’ personalized requirements and gasoline price, and

it aims at minimizing travel distance and refuelling price. In

these works, however, individual EV routing and charging are

optimized through standard techniques, and the effect of such

decisions on each other is not taken into account.

The works in [12]–[20] are mostly concerned with the EV

consumption and its impact on the power grid. Indeed, what

is a charging station from the viewpoint of EVs is at the

same time an energy storage station from the viewpoint of

the power grid – a place where surplus energy, produced

during low-demand periods, can be stored for later usage.

In particular, in [14] the authors envision a central controller

that predicts the EVs mobility and advises each EV about

which charging station to use and when, so as to smooth

the power consumption peak. The work in [14], however,

accounts neither for the time that EVs may have to wait in

line at the charging station, nor for the fact that EVs may

act strategically. A fully-distributed mechanism is proposed

in [16], which lets EVs select fast charging stations along a

highway. The mechanism is based on a multi-agent approach

and requires EVs to continuously interact in order to adapt to

each others’ individual decisions. The work in [17] proposes

a family of algorithms that, by regulating the voltage fed

to EVs using different charging stations, aim at minimizing

the load factor, the load variance or the power losses over

the grid. Similarly, the goal of [18] is to ensure that EVs

can obtain the energy they need to recharge their batteries,

without impairing the stability of the power grid. The work

in [18] takes into account the behavior of EV drivers, but it

aims at influencing it by means of monetary incentives. The

study in [19] jointly addresses the optimal power flow and

the EV charging problems. The authors show that the optimal

power flow problem is generally non-convex and non-smooth,

but it can be solved optimally using its convex dual problem

for most practical power networks. In [20], the rate at which

EVs charge is controlled so as to lead to a better utilization

of the power grid. A rather different approach is followed

in [21], in which vehicles are assumed to negotiate day-ahead

charging schedules. The overall objective is to shift the load

due to EVs to fill the overnight electricity demand valley.

On a similar note, the work [22] looks at charging stations

from the viewpoint of the power grid, viewing them as energy

storage stations. The authors envision generating more energy

when the demand is low, and storing it – under the guise

of charged EV batteries – for usage during subsequent, high-

demand periods. We remark, however, that the study of the

impact of EVs on the power grid, although interesting, is not

within the scope of our work. Indeed, properly accounting for

such aspects as the integration of distributed power sources in

the power grid, would require a totally different study [23].

The study in [24] focuses on estimating the battery dis-

charge time. The trips of the EVs are modeled using real

data and traffic statistics, and vehicles are assumed to use

the closest available charging station. Again, the waiting time

at the charging station and the fact that EV drivers may

significantly deviate from their planned route to reach a station

are neglected.

A game-theoretic approach is adopted in [25], whose main

contribution is to provide an analytical framework that is suit-

able for capturing the interactions between charging stations

and EVs. The latter are assumed to act in groups, and need

to decide on their charging profiles. The problem is modeled

as a generalized non-cooperative Stackelberg game, in which

the charging stations act as leaders and the EV groups are

the followers. With respect to this work, we account for the

fact that EVs pursue a trade-off between charge price and trip

time, and that such a trade-off can be vehicle-specific.

At last, we mention that in [26], we presented a preliminary

work that investigates which information is important that
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EV drivers receive through ITS. In particular, we showed the

benefit of transmitting specific suggestions to EV drivers on

which charging station to use with respect to the case where

only mere updates on traffic conditions and charging station

occupancy are provided. The evident advantages brought by

specific advice motivated our present work, which is concerned

about how such advice should be determined. A sketch of this

work with a few preliminary results has been included in [27].

III. SYSTEM SCENARIO AND PROBLEM STATEMENT

We consider a road topology including a set of road

segments L and a set of charging stations C. Any ordered

sequence of adjacent segments l ∈ L is said to form a route.

Among all vehicles that travel across the topology, we identify

the following three categories:

(i) non-EVs or EVs with medium-high battery level, which

are not interested in using a charging station;

(ii) EVs whose battery is low, but that will not resort to the

navigation service to identify the charging station;

(iii) EVs with low battery that use the navigation service to

select a charging station.

Note that the vehicles in the first category just contribute to

the traffic intensity over the roads, while those in the last two

categories contribute both to the intensity of vehicular traffic

and to the occupancy of the charging stations. Furthermore,

the fact that vehicles start looking for a charging station when

their battery level becomes low, implies that they will all have

(approximately) the same battery level. We account for all

these types of vehicles and their influence on the effectiveness

of our solution in Sec. VII.

Upon stopping at a charging station, the battery of the

vehicle will be replaced with a fully-charged one. This is

due to the comparatively long charge times in both current

and (conceivably) future technologies [28]. In this case, the

charging station also represents an energy storage station as

defined in Sec. II. Our model also accounts for the fact that

there may not be fully-charged batteries at a station. In this

case, the battery is recharged, in a time which is assumed

to be constant and equal to half an hour [28]. Assuming

a constant recharge time does not account for the fact that

different vehicles may have different battery capacity and

arrive at the station with different battery levels. However,

since batteries are replaced in virtually all cases, the impact of

this assumption on our results is negligible. Charging stations

have a number of replacing stalls (hereinafter servers), possibly

varying from one station to another. Clearly, upon reaching a

charging station, an EV incurs a waiting time that depends on

the occupancy of the station, the service time, the number of

fully-charged batteries available and the number of servers.

Next, we focus on EV drivers that belong to the last

category, i.e., they have got a low battery level and resort to the

navigation service. As mentioned, such EVs can be considered

as self-interested (or, rational) users. Specifically, we assume

that their goal is to pursue a (possibly, user-specific) trade-

off between the trip time and the charge price. This translates

into assuming that drivers consistently act in order to pursue

such an objective – as opposed to, e.g., driving to the charging

station they like better, or to the one where they can collect

bonus points or miles.

In the most general case, such EV drivers may be able to

reach a number of possible charging stations and, for each

of them, they may choose among multiple, different routes.

Therefore, they will ask the advice of the CC to make a

decision on the charging station to use and the route to take,

including their current position and final destination in the

request. It is fair to assume that the CC has knowledge of the

road topology, the traffic conditions, as well as the locations of

the charging stations, their current occupancy and availability

of fully-charged batteries. Also, the CC can collect information

on the position, speed and heading of cars through a real-time

traffic monitoring system, such as those currently implemented

by recent navigation solutions [2], [29]. How the CC gathers

the information is an orthogonal problem with respect to ours;

in general, secure positioning schemes [30] could be employed

to make sure that vehicles do not lie about their positions.

Based on the collected information, the CC indicates to the

EVs which station to use and the route to take. Upon receiving

a response from the CC, all rational EVs that made a request

will be willing to follow the suggestion of the CC if they find it

advantageous, even if they have to deviate from their original

route to reach the charging station suggested by the CC. Note

that EV drivers that are not rational, and eventually decide not

to adhere to the received advice, fall into the second of the

categories mentioned at the beginning of this section.

IV. WHY A GAME MODEL?

A natural choice to solve the problem of selecting the

charging station for each EV, and the corresponding route,

would be to let the CC formulate an optimization problem that

maximizes the EV utility, defined as a function of its trip time

and the charge price2 the driver has to pay. However, it is easy

to show that in general such an approach yields solutions that

EV drivers may find not advantageous to themselves, hence to

which they will not adhere. The same observation holds in the

case where the CC tries to maximize the minimum EV utility.

As an example, consider the EV utility to be represented by

its expected trip time only, and let us focus on the toy scenario

depicted in Fig. 1, where there are two charging stations, ca
and cb, both with one idle server and service time equal to 2

time units. Assume that, at the same time, two EVs, v1 and

v2, have low battery and ask for the help of the navigation

service to select the charging station to use. EV v1 can reach

either ca or cb, but its travel time toward the two stations is 2

and 1 time units, respectively, while from both stations to its

final destination, d1, the travel time is equal to 1 time unit. EV

v2 instead can only3 head toward cb, with travel time equal to

1.5 time units, and from there it can reach its destination d2
in 1 time unit.

It is easy to verify that, if the CC provides its advice to the

EVs so as to minimize either the average per-EV trip time or

2In the following, we indicate by charge place the price that drivers have
to pay to obtain a fully charged battery, whether by replacing or recharging
their one.

3Indeed, v2 could travel to cb, then to the location of v1, and from there
to ca, but such an option is clearly dominated by choosing cb (see Tab. I).
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v1

v2

ca

cb

d1

d2

2 1

1 1

11.5

Fig. 1. A toy scenario.

the maximum EV expected trip time, then the solution is: v1
heads to ca while v2 uses cb. This would indeed lead to an

average per-EV trip time and a maximum EV expected trip

time equal to 4.75 and 5 time units, respectively4. However,

v1 will not find the advice of the CC advantageous since, by

heading to cb, it would incur a total trip time of 4 time units,

against the trip time of 5 time units it would experience by

following the suggestion of the CC. Thus, v1 will ignore it.

Based on the above observation, we propose a different

approach. We model the problem of selecting the charging

station, and the corresponding route, as a non-cooperative

game, which the CC solves considering as players the EVs

that use the navigation system for advice. Then, we look for

a strategy profile that is an NE and is advantageous from the

viewpoint of the system performance, and we take this as a

solution to the problem. Since in this case the advice by the CC

corresponds to an NE, there is no alternative choice for an EV

that leads to a shorter time to destination, hence self-interested

drivers will adhere to it. For instance, in the example above,

the CC will suggest to both v1 and v2 to use cb, and no one will

deviate from the advice of the CC. It is clear, however, that a

game-theoretic approach does not ensure that the average per-

EV trip time is minimized (e.g., in the above toy scenario it

increases from 4.75 to 5 time units)5. Nevertheless, in Sec. VII

we show that, even in real-word scenarios, the average per-

EV trip time obtained through our game-theoretic approach is

remarkably close to the optimum.

In summary, it is worth stressing that vehicles do not

compute any Nash equilibrium themselves. It is the task of the

CC to issue suggestions that correspond to the most rational

action of each vehicle– even if this comes at some cost in

terms of global optimality, as in the above example. Also,

we remark stress that the game could be solved by the EVs

themselves, provided that they have the required information.

In our case, however, we take a practical perspective and

consider that it is the CC that collects all the information,

processes it and solves the game so as to provide the EV

drivers with the strategy to adopt (i.e., the charging station

to use and the route to take). This implies that the proposed

mechanism neither significantly increases the system overhead

due to communication protocols, nor requires EV drivers to

4If v1 uses ca, its trip time is 2+2+1=5 time units, while the trip time of
v2 is 1.5+2+1=4.5 units. This results in an average per-EV trip time of 4.75
and a maximum EV expected trip time of 5. If instead v1 heads toward cb, it
arrives there first and its trip time becomes 1+2+1=4 units, while v2 finds the
station server occupied by v1, thus its trip time increases to 1.5+1.5+2+1=6.
It follows that the average per-EV trip time and the maximum EV expected
trip time become 5 and 6 time units, respectively.

5In game theory, this concept is related to the price of anarchy (PoA), which
is defined as the ratio of the average per-EV trip time at the equilibrium to
the optimal one.

TABLE I
TRAVEL PLUS WAITING TIMES IN THE TOY EXAMPLE

P
P
P
P
PP

v1

v2 ca cb

ca (5, 9.5) (5, 4.5)
cb (4, 9.5) (4, 6)

Fig. 2. Abstract representation of the vehicular scenario where each EV may
take several different routes to a given charging station and from there to its
intended destination.

exchange sensitive information about themselves, or make any

computation to make a decision.

V. THE RECHARGING GAME

We now detail the game models we use to solve the recharg-

ing problem in the system scenario described in Sec. III.

Assume that the CC processes the requests received from EVs

with low battery every T seconds. We denote the set of EVs

that ask for advice during a T -second time period by N , and

its cardinality by N . The vehicles that resorted to the advice

of the CC in the previous time periods are not considered

as players (e.g., because they do not change their choice), but

their impact on charging times is taken into account by the CC.

Consider the most general case in which each of the N EVs

may reach several charging stations and take different routes to

arrive at a given station, as well as to go from there to its final

destination. For clarity, we depict an abstract representation of

such a scenario in Fig. 2; we will deal with a real-world road

topology and realistic vehicular mobility while deriving the

performance results in Sec. VII.

In the figure, lines connecting vehicles with charging sta-

tions, and the latter with final destinations, represent the

possible road segments that EVs can take to or from the

charging station. The different thickness of the lines denotes

the fact that road segments may be characterized by various

levels of traffic intensity, hence they may imply different travel

times. Clearly, in a more general setting, road segments may

end at any intersection on the map, other than a charging

station or an entry/destination point.

We then consider the N EVs to be the players of a

congestion game [4] (solved by the CC), i.e., a non-cooperative

game, in which players strategically choose from a set of

facilities and derive utilities that depend (in an arbitrary way)

on the congestion level of each facility, i.e., on the number of

players using it. Congestion games are of particular interest to

us since they have been proved [4] to admit at least one pure-

strategy6 NE. Thus, if the CC derives its advice by modeling

6A pure-strategy NE is a deterministic solution, as opposed to a probabilistic
one (e.g., go to charging station cx, rather than go to cx with probability 0.5).
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⌊
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⌋
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Bc−Sc
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⌋

σ +
⌊

wc−Bc

Sc

⌋

ρ+ ρ if wc ≥ Bc ∧Bc < Sc

(2)

the system as a congestion game and finding a solution that

is an NE, then all rational, self-interested EVs will follow the

advice.

A. The Congestion Game

Congestion games [4] are games where the utility of a player

depends on (i) the resources she chooses to utilize, and (ii) how

many other players choose to utilize those resources. For these

games, we are guaranteed [4] that at least one pure-strategy

Nash equilibrium exists.

A congestion game is defined by the 4-tuple

Γ = (N ,F , {Si}, {τl(nl), ηc(nc)}) , (1)

whose elements in our case are as follows.

(a) The set of players, N = {v1, . . . , vN}, which, as

mentioned, correspond to the EVs using the navigation service

and that have asked for the advice of the CC during the past

T seconds.

(b) The set of facilities, F , which is composed of all

possible charging stations and road segments included in the

road topology, i.e.,

F = C ∪ L = {ca, cb, . . . l1, . . . }.

Given F , for each player i ∈ N , a subset Fi ⊆ F can be

identified, including all facilities that EV i can reach and use

on its way to the destination. Clearly, if the road topology is

fully connected, then Fi = F , ∀i ∈ N . Note that considering

the road segments li allows us to account for driver-spcific

travel times.

(c) Denoting by P(Fi) the set of all possible partitions of

Fi, Si ⊆ P(Fi) is the set of viable strategies for EV i, i.e, all

groups of facilities that can be used by i. In our context, each

strategy in Si = {{ca, lia, lai}, {cb, lib, lbi}, . . . } is composed

of:

(i) one of the charging stations that EV i can reach, along

with

(ii) the road segments forming a route that allows i to go

from its current position to the selected charging station

(for brevity, indicated as lia, lib, . . . ), and from there to

its final destination (for brevity, indicated as lai, lbi, . . . ).

(d) For each strategy, there is a cost to pay for each facility

that is used (either a charging station or a road segment).

Such a cost is defined as a function mapping the number nf

of players selecting the facility f onto a time value in R.

Note, however, that congestion games are characterized by the

so-called anonymity property, i.e., the facility cost cannot on

depend the players identity. In our context, we therefore define

the cost of a strategy as the sum of 1) the waiting time and

the service time at the corresponding charging station incurred

by the generic player, 2) the expected travel time on the

associated route, from current road segment to destination, via

the charging station, and 3) the charge price πc at the selected

station, multiplied by the equivalence factor K (expressed in

hour/$) representing how much EV drivers value their time

with respect to money. We denote the first contribution by

ηc(nc), with c ∈ C and nc being the number of players

selecting station c, while we denote the second contribution by
∑

l τl(nl), with the l’s being the road segments in the chosen

route and nl the number of players taking segment l. Thus,

the total cost for the strategy, corresponding to the selection

of charging station c, can be written as:

ηc(nc) +
∑

l

τl(nl) +Kπc,

and each player will aim at minimizing such a cost. In

accordance with the scenario detailed in Sec. III, we write

ηc(nc) so as to account for (a) the number of servers at station

c, Sc, (b) the service time, (c) the number of fully-charged

batteries currently available at c, Bc, and (d) the waiting time

before an EV can be served. The quantity wc that appears in

the last three lines of (2), however, deserves a more detailed

explanation.

Before we can write the expression of ηc(nc), we need to

study the expected number of EVs that the generic player

finds at the charging station upon its arrival. This is because

the anonymity property of congestion games forbids player-

specific utilities and payoffs. Such a value is given by

wc = mc + qc + nc (3)

where:

mc is the expected number of non-player EVs that the CC

estimates to be already at the station upon the arrival of the

generic player;

qc is the expected number of EVs that took part in the

previous rounds of the game and that the CC estimates to be at

the station upon the arrival of the generic player (this includes

the players that selected c in one of the previous rounds but

have not reached it yet);

nc is the number of player EVs selecting station c at the

present round.

The first two terms are overlined because they represent

the expected number of EVs that a generic player will find

before her in line7. Also, we remark that, since none of the

7The fact that the payoffs of our games include expected values is consistent
with the fact that deterministic utility functions can include probabilities and
expected values [31, Ch. 1].
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above quantities depends on the player identity, our definition

complies with the anonymity property of congestion games.

The price that we pay, in terms of realism, to comply with

such a property is twofold:

• the number of waiting player vehicles qc does not include

the ones of the current round, and

• utility functions cannot account for the fact that different

players may value their time differently.

As will be shown in Sec. V-B, we will be able to remove both

assumptions by switching to a CAG model.

Finally, note that the term qc represents the link between

subsequent rounds of the game, and that the wc and qc can

be acquired by the CC through the ITS, by exploiting services

similar to those currently implemented by recent navigation

solutions [2], [29]. We study the impact of errors in such an

estimation in Sec. VII.

We are now able to write ηc(nc) as shown in (2). In (2), we

assume all players to select the server with the shortest queue.

The parameters σ and ρ are the time necessary for battery

replacement and battery charging, respectively; for simplicity,

we assume them to be constant8. Also, φ and ψ represent

the (estimated) remaining fraction of, respectively, replace and

recharge time for the vehicle now being served at the selected

station.

The first and second line of (2) correspond to the case where

the generic player finds an idle server, hence its stopping time

at c coincides with the time necessary for battery replacement,

σ, if there is any fully-charged battery available, or with

the battery charge time, ρ, otherwise. The third line, instead,

represents the case where all servers are busy and the tagged

player is able to replace her battery with a fully-charged

one. The last two lines apply when the fully-charged batteries

are not enough for the vehicles waiting at the station, hence

the batteries of the vehicles arriving after the Bc-th are not

replaced but charged, in a time ρ. In particular, the different

expressions reported in the two lines account for the cases

where the available fully–charged batteries are, respectively,

more and less than the servers at the charging station.

To summarize, we report the game elements in Tab. II. As

mentioned, it has been shown in [4] that congestion games

admit at least one pure-strategy that is an NE. However, finding

the NE for one-shot games9, such as ours, is NP-hard [32]. In

order to lower the level of complexity, below we introduce a

new game, namely, a game with congestion-averse utilities.

8Considering ρ to be a constant is a fair assumption as it is conceivable that
EVs resort to the CC advice only when their battery is low; hence, differences
in the EVs battery level can be neglected.

9Equilibria for congestion games in which players subsequently make their
moves can instead be found in polynomial time [33].

Fig. 3. Abstract representation of the vehicular scenario where for each EV
there is only one possible route toward a given charging station, and from
there to its intended destination.

B. Game Model with Congestion-averse Utilities

Games with congestion-averse utilities [5] are a variant of

congestion games, where utility functions can depend upon

the identity of the player – and not only upon their decisions,

as in congestion games. As shown in [5], these games (i)

admit at least one pure-strategy Nash equilibrium, and (ii) such

equilibrium can be found in polynomial time.

Let us now consider the same scenario as above, but assume

that, for every EV-charging station pair, there exists only

one possible route to take, as depicted in Fig. 3. We stress

that, although simpler, such a model is still realistic if, for

the current strategy, the CC associates to each EV-charging

station pair the route deemed to be the fastest one, based

on its recent estimates. Indeed, such a route, dynamically

selected depending on the current road traffic status, is likely

to be the most advantageous to the EV, hence neglecting the

others will not lead to significantly worse performance. This is

also confirmed by our results derived in real-world scenarios,

shown in Sec. VII.

Under the above assumption, the system can be modeled as

a game with congestion-averse utilities (CAG), for which NEs

are pure-strategies and can be found in polynomial time [5].

The game is defined as a 4-uple similar to Γ, as in (1), however,

two main differences exist between CAGs and congestion

games:

• in CAGs, it must hold that Si = P(Fi) , ∀i ∈ N , i.e., all

partitions of Fi are possible strategies, and

• the costs of the facilities can depend on player identities.

The first difference implies that, for each player i, the

CC has to consider as viable strategies not a subset but all

possible partitions of Fi. A set F defined as in the case

of the congestion game would force the CC to consider

non-meaningful strategies where an EV stops at more than

one charging station, located either on the same route or on

different routes. In order to overcome this issue, as a first step

we redefine the set of facilities as F = C, i.e., we remove

the road segments and consider only the charging stations. It

TABLE II
COMPARING CONGESTION GAMES VS. CAGS

Players Facilities Strategies Strategy Cost

Congestion N F = C ∪ L ∀i ∈ N : Si = {{cx, l1, . . . , lm}x} s.t. cx ∈ C is reachable by i, and ηc(nc) +
∑

l τl(nl)

game {li}i=1...m ∈ L form a route from current i’s segment to dest., through cx (sum over l’s ∈ route)

CAG N F = C ∀i ∈ N : Si = {{cx}x, {cx, cy}x,y , {cx, cy, cz}x,y,z} ηc(n
(i)
c ) + τi,c

s.t. cx, cy, cz ∈ C and reachable by i; Si = {{cx}, {cy}, {cz}} (depends on player id)
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follows that the set of facilities that the generic player i can

use, Fi, is now given by just the charging stations that the

EV can reach. This is a viable choice since, per the initial

assumption in this subsection, each EV-charging station pairs

is implicitly, and univocally, associated to one route only. As

a second step, we prove the lemma below.

Lemma 1: Consider the game with congestion-averse utili-

ties introduced above, in which each facility has a cost greater

than 0. Then, in order to identify a pure-strategy NE, for any

player i ∈ N it is sufficient to examine the subset of viable

strategies Si ⊆ Si, such that each strategy in Si includes one

facility only.

Proof: Players are self-interested and aim at finding an

optimal trade-off between trip time and charge price. Recall

that costs are positive, thus selecting more than one facility

(i.e., charging station) leads to an increased overall cost. A

player will therefore always deviate from a strategy profile

that makes her use more than one facility. Thus, in order to

find an NE, it is enough to consider as viable strategies the

ones that imply the use of one facility only.

Based on the above result, we can limit our attention to the

set of strategies Si, which includes only partitions of Fi with

cardinality equal to 1, and each of them corresponding to only

one of the charging stations that EV i can reach.

Next, we leverage the second difference between CAGs

and congestion games, i.e., the fact that in CAGs utilities can

depend on the player identity. In particular, we define the cost

of a charging station c, which can be used by player i, as the

total trip time i would incur, and we write it as:

ηi,c(n
(i)
c ) + τi,c +Kiπc . (4)

In (4), the first term is the sum of the delay due to the estimated

waiting time and the charging time at station c, while the

second term is the travel time through the route associated

to the EV-charging station pair (i, c). Note that all the terms

in (4) depend on the player identity i, including Ki. It follows

that, unlike the congestion game described above, the CAG

formulation can account for player-specific trade-offs between

trip time and charge price, i.e., for the fact that players may

value time differently with respect to money. Furthermore, the

following remarks hold.

(a) ηi,c(n
(i)
c ) can be obtained from (2) by replacing ρ with

ρi, and wc with

w(i)
c = m(i)

c + qc + n(i)
c . (5)

Indeed, the recharging time ρi may be different from one

player to another, and depend on the remaining battery charge

of the EV. Also, the terms in (5) are not averaged over the

players i ∈ N , but estimated with reference to the position

and route of i, as now the CC can account for the number m
(i)
c

of non-player EVs that it estimates to be at the station upon

the arrival of player i. Similarly, q
(i)
c + n

(i)
c is the number of

players, respectively, of the previous rounds and of the current

one, that the CC estimates to arrive at c before player i does.

(b) The travel time τi,c, associated to the EV-charging

station pair (i, c), does not depend on n
(i)
c , as it now accounts

for the vehicular traffic intensity due to all non-player vehicles

only. The impact of such an approximation is very limited

since typically the number of players, i.e., the number of EVs

with low battery that ask for advice in a time period T , is

much smaller than the number of all other vehicles traveling

over the road topology (see also the results in Sec. VII). This

approximation represents the price we have to pay for the

lower complexity of the CAG model with respect to the CG

one.

The elements of the CAG are summarized in Tab. II. By

comparing the elements above to the ones of the congestion

game (Sec. V-A), we observe three important aspects. First,

the facilities F in the CAG correspond to the charging stations,

as road segments are not taken into account. Second, in the

CAG, the sets Si of possible strategies correspond to the

possible subsets P(Fi) of reachable facilities, including the

non-viable ones like {ca, cb}. Third, such dominated strate-

gies are discarded by moving to the sets of non-dominated

solutions Si which, by Lemma 1, only includes subsets of Fi

with cardinality one.

As mentioned, in the case of CAGs, pure-strategy NEs can

be found in polynomial time [5], thus the CC can solve the

game with low complexity. Below, we evaluate the number of

strategies that the CC has to process before an NE is found

and the social utility corresponding to such an NE, i.e., how

good the NE is from the system performance viewpoint. We

also show that, in spite of its low complexity, the CAG model

approximates very well the previous scenario where multiple

routes may exist for any EV-charging station pair.

VI. SIMULATION SCENARIO

In order to show the benefits that can be obtained through

our game-theoretic approach, we use a real-world road topol-

ogy representing a 3×2 km2 section of the urban area of

Ingolstadt, Germany [34], depicted in Fig. 4. The vehicle

mobility has been synthetically generated using the SUMO

simulator [6], with a time granularity of 0.1 s. The mobility

trace is representative of 60-minute-long road traffic and of

average traffic intensity in the area. We stress that we preferred

a synthetic trace over real-world ones, e.g., taxi or bus traces,

since these only include a small portion of car traffic and the

represented vehicles have predetermined routes that cannot be

changed. Arguably, using synthetic mobility over a real topol-

ogy allows us to fine-tune such parameters as the number of

vehicles and players. The number of vehicles simultaneously

present in our road topology is a varying parameter of the

system, and the average vehicle trip time clearly depends on

such a value.

The scenario includes 6 charging stations, which are placed

on the main arteries of the road topology, as portrayed by the

red dots in Fig. 4. The number of servers at each station may

vary; namely, two stations have 2 servers, other two have 6

servers and the remaining ones have 4 and 10 servers each.

We assume that the time to replace a battery with a fully-

charged one is equal to 3 minutes, while the battery recharging

time is 20 minutes. Unless otherwise specified, we assume

that the fully-charged batteries available are enough to serve

all EVs resorting to the navigation service in a time period
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Fig. 4. Road topology: red dots highlight the six charging stations.

T . Also, unless otherwise specified, we keep charge prices

constant at πc = 10 $ per charge, and 1/Ki = 15 $/hour. The

latter figure roughly corresponds to the minimum wage in the

U.S., which could represent a lower bound for the value an EV

driver may give to her time (at least in popular culture [35]).

Without loss of generality, all vehicles are assumed to

be electric. The average number of EVs that resort to the

navigation service is a varying parameter in our simulations.

The time instant at which an EV finds itself in need of a

charged battery and asks the CC for advice is uniformly

distributed over its trip time, i.e., the time interval since the EV

enters the road topology till it leaves. Notice that in practice

this time corresponds to the moment when the battery level

is medium, rather than low, as suggested by manufacturers in

order to improve battery life.

The navigation service is provided via the cellular network,

through which an EV may issue a query to and receive a

response from the CC without significant delay. However,

alternative solutions exploiting 802.11p-based roadside units

could be considered as well. As for the CC, we consider

that information on the number of EVs currently waiting at

a charging station to be served, as well as on the traffic

conditions, is acquired and processed every 10 seconds. The

requests for the navigation service sent by the EVs are instead

processed by the CC every T = 60 s. Such an interval is

sufficiently short, so that, even if impatient, vehicles will wait

for the suggestions of the CC. Also, even if in general low

values of T imply a high correlation between game rounds,

we properly account for such a correlation in (3) and (5).
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Fig. 5. Average computational complexity vs. number of players, when they
are 20% (left) and 60% (right) of all vehicles. CAG and congestion game
(CG) are compared.

VII. RESULTS

We now show the performance that is attained through

our approach, and compare it to the results obtained when a
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Fig. 6. Average per-EV trip time as a function of the number of players,
when they represent 20% (left) and 60% (right) of all vehicles. CAG and
congestion game (CG) are compared against the optimal, for both player and
non-electric vehicles.

centralized optimization problem is solved at the CC as well

as when a greedy selection of charging station and route is

adopted. In order to derive the results in the cases where the

CC generates its advice from the solution of the CAG or of

the congestion game (labelled as CG in the plots), we proceed

as follows. Every time interval T , the CC solves the game

considering as players the EVs from which it has received a

request. To do so, the CC starts from a random strategy profile,

i.e., a random assignment of the facilities to the players. In

the case of the congestion game, it assigns both the charging

station and the corresponding route, while in the CAG, it

assigns only the charging station and associates to each player-

charging station pair the fastest route that takes the EV from

its current road segment to the station, and from there to its

destination. Player payoffs (i.e., trip times) are then computed

through SUMO in the scenario described in Sec. VI. To derive

the trip times, we assume that every non-player vehicle takes

its originally-planned route, while players will conform to the

advice of the CC, hence they will follow the suggested route.

Given the current strategy profile and player payoffs, the CC

examines other strategies according to the solution algorithm

in [5] for the CAG, and to the one in [31, Ch.7] for the con-

gestion game. For every strategy, player payoffs are computed

via SUMO as before. If a more profitable strategy is found

for any of the players (i.e., if any of the players could deviate

from the previous strategy), then the new strategy is adopted

and the whole procedure is repeated until an NE is reached.

Unless otherwise specified, we consider that the CC takes

the first NE it finds as the solution of the game. While

subsequent equilibria could in principle be better, we found

that in practical cases all the equilibria found for the CG

yielded virtually the same payoffs. Using different starting

solutions, e.g., assigning to each player the closest station or a

station at random, did not influence the quality of the solution

but only the convergence time, i.e., the number of iterations

needed to find it.

For both the CAG and the congestion game, we evaluate the

computational complexity, i.e., the number of strategies that

the CC has to examine before reaching the game solution,

which also corresponds to the number of SUMO runs. Then,

we calculate the per-player trip time associated to such a

solution. All results are averaged over 10 runs. We compare

such values with the trip time obtained through the techniques
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described below.

Optimal: the solution that the CC can obtain by minimizing

the trip time averaged over all EVs that ask for advice. This

solution in general is not an NE, thus it may not be followed

by rational drivers.

Greedy: the CC only disseminates information on the road

travel time, and on the occupancy and the charging time at sta-

tions. Based on this knowledge, each EV independently makes

its own decision by selecting the charging station and the route

that are deemed to minimize its own trip time. Note that, in

this case, the CC just informs the EVs without providing any

advice, and the EV decision is taken disregarding the presence

of other vehicles looking for a charging station.

Now, let us initially neglect the presence of non-rational

drivers and of EVs with low battery whose drivers do not use

the navigation service. Fig. 5 depicts the number of strategies

that the CC has to examine before the solution to the game

is found, for both the CAG and the congestion game (CG).

We stress that the CC returns its advice to EV drivers only

once the game solution (which is a pure-strategy NE) has been

reached, thus the computational burden is solely carried by

the CC. The two plots in the figure refer to the cases where

the average number of EVs that are low in battery and ask

for advice (i.e., players) is, respectively, 20% and 60% of the

average total number of vehicles simultaneously present in the

road topology.

As expected, the complexity of the congestion game is

always higher than that of the CAG and, in both cases, it

increases as the number of players grows. In particular, for our

range of player numbers, the CC always examines less than

4000 strategies before finding the solution in the case of the

CAG, and less than 8000 in the case of the congestion game.

We remark that one SUMO run only takes a few seconds,

hence simulation time is manageable.

The plots also provide a striking comparison between the

CAG and the congestion game. While the complexity of the

former remains remarkably low, the complexity of the latter

increases severely as the number of players grows beyond 60.

On the contrary, the total number of EVs in the road topology

has just a marginal impact on both the CAG and the congestion

game solution time. These results indicate that the CAG model

is highly scalable, hence it can be successfully applied even

to very large, crowded system scenarios.

Next, one may wonder whether the solution obtained

through the CAG is as good as the one of the congestion

game, or if the gain in complexity we have with the CAG

takes a high toll in terms of system performance. To answer

this question, in Fig. 6 we show the average vehicle trip time,

for both player and non-electric vehicles, again as the number

of players is 20% and 60% of the total number of vehicles.

The performance corresponding to the solutions of the two

games are also compared to that of the optimal solution.

The figure shows that the average trip times of player and

non-electric vehicles have the same qualitative behavior, with

the former clearly being higher than the latter since players

stop at a charging station during their trip. Also, comparing the

two plots, it can be seen that the smaller the total number of
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Fig. 7. Trip time breakdown for the CAG (top) and congestion game (bottom),
when players are 60% of the total number of vehicles.

vehicles simultaneously present in the road topology, the lower

the traffic intensity and the shorter the average per-EV trip

time. As for the comparison among the CAG, the congestion

game and the optimal, the difference in performance can be

barely noticed when the players are 20% of the total number

of EVs (left plot of Fig. 6). When the percentage of players

is large (right plot), the difference with respect to the optimal

is limited in the case of the CAG, and it is again unnoticeable

for the congestion game. This indicates that neglecting the

contribution of player EVs to the travel time makes the CAG

model less precise only when players represent the majority

of vehicles on the road topology.

Fig. 7 confirms such an observation. The figure highlights

the different contributions to the average per-player trip time,

due to the waiting time at the charging station, the service time

(which is constant) and the travel time. The results refer to

the CAG (top plot) and to the congestion game (bottom plot),

when the players are 60% of all vehicles. It can be seen that

the difference between the two game models mainly resides

in the travel time, which is higher when the CAG solution is

adopted.

Fig. 8 depicts the 10th (dashed line) and the 90th (solid

line) percentiles of the per-player trip time, when players are

20% (top) and 60% (bottom) of all vehicles. In the case of

the 10th percentile, the difference, among the solution of the

CAG, that of the congestion game and the optimal, can be

barely detected. As for the 90th percentile, it can be observed

that, when the optimal solution is adopted, a fraction of player

EVs may experience a significantly longer trip time than under

the congestion game or the CAG. This suggests that applying

the optimal solution may lead to higher unfairness in the user
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Fig. 8. CAG, congestion game and optimal: 10th and 90th percentile of the
per-player trip time, vs. number of players, when they are 20% (top) and 60%
(bottom) of all vehicles.
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Fig. 9. Average per-player trip time vs. number of players, when they
represent 20% (left) and 60% (right) of all vehicles. Comparison among CAG,
congestion game, optimal, and greedy. CAG-10 indicates that the CC takes
as a solution of the game the best among the first 10 NEs it finds.

performance. Intuitively, this lack of fairness is connected to

the fact that some users will deviate from the optimal solution,

which is therefore not an equilibrium.

We now investigate the benefit of our approach with respect

to the aforementioned greedy scheme. Recall that the greedy

technique assumes the EVs to have periodically updated infor-

mation about road traffic and status of the charging stations.

In spite of this, Fig. 9 clearly shows that a greedy approach

cannot cope with the other techniques in terms of performance:

the degradation that is observed is indeed severe and becomes

exceedingly high as the number of players increases. Intu-

itively, this is due to many users selecting the (currently) least

crowded station, which suddenly becomes overloaded (as in

the well-known route-flapping effect). Fig. 9 also depicts the

performance of the CAG when the CC does not solve the game

using the first NE that is reached, but the NE that minimizes

the average per-player trip time among the first 10 it finds. In
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Fig. 10. Average trip time vs. number of EVs with low battery, when they
are 20% (top) and 60% (bottom) of all vehicles. Comparison between EVs
that resort and those that do not resort to the advice of the CC.

the plots, we label this curve by CAG-10. Interestingly, such a

simple enhancement to the solution procedure makes the CAG

approach as effective as the congestion game and the optimal,

without impairing its scalability.

In conclusion, not only modeling the system through a CAG

is a feasible, practical approach to the problem, but its solution

also leads to a performance that is remarkably close to the

optimum and much better than that attained with a greedy

scheme.

We now consider the case where not all EVs with low bat-

tery resort to the navigation service, rather they act according

to the greedy scheme. Recall that this case also represents

the behavior of non-rational EVs, i.e., EV drivers that ask

the CC for advice but they do not follow its suggestion. The

results portrayed in Fig. 10 refer to the case where there is

an equal number of rational EVs (i.e., player EVs) that ask

for advice and of EVs that instead do not resort to the CC.

The plot shows that EVs that do not exploit the navigation

service, on average, experience a higher trip time than those

that use it. Such a difference in performance is particularly

evident as the number of EVs with low battery increases. This

further confirms that our game-theoretic approach always leads

to solutions (i.e., advice from CC) that are advantageous to the

EVs, thus increasing the user satisfaction.

Next, we assume that the information the CC can acquire

through the ITS is not fully accurate. Specifically, Fig. 11

shows the effect of such inaccuracy when the waiting time at

the charging stations is affected by a random jitter, uniformly

distributed between 0 and 300 s. From the plots, we can see

that the average per-EV trip time increases, and that a longer
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Fig. 11. Inaccurate information at the CC: average per-EV trip time as a function of the number of players, when they represent 20% (left), 60% (middle)
of all vehicles and CAG is used; time breakdown for the latter case (right).

time is spent waiting at the stations. Indeed, stations that were

free might have been advertized as busy and vice versa. As

a consequence, EVs avoid free stations that are advertized as

busy, while they flock to busy stations advertized as free.

In Fig. 12, we consider that the number of charged batteries

available at the charging stations is limited, i.e., EVs may

have to wait until their own battery is charged. Fig. 12 refers

to the case where at every time period T , the number of

charged batteries available at each station is equal to twice the

number of servers at the station. We observe a sharp increase

in the average per-EV trip time as the number of player EVs

increases. More interestingly, the right plot in Fig. 12 shows

that only a fraction of such an increase is due to vehicles

waiting for their battery to be charged. Rather, vehicles find

it advantageous to travel very far away to find a station with

charged batteries available – hence the longer travel times –

and possibly waiting in line at such stations – hence the longer

waiting times.

Finally, we focus on the CAG and look at the case in

which stations have significantly different charge prices. More

specifically, such prices are uniformly distributed in [10, 50]
and Ki = K . In Fig. 13, we study the effect of the “value of

time”, 1/K , on the average trip time of player EVs. Recall that

the higher 1/K , the more EV drivers value time with respect

to money. As expected, we observe that if vehicles give more

importance to the charge price rather than to the trip time, the

latter tends to increase. Indeed, vehicles will be more willing

to wait in line at the cheapest stations, as well as to make

longer trips to reach them.

Tab. III highlights another interesting aspect: giving a higher

importance to money rather than to time significantly de-

creases the computational complexity of finding an equilib-

rium. This effect has the following intuitive explanation: trip

times depend on other players’ choices, while charge price

only depend on the station selected by each player. Therefore,

the more important price is for a player, the less likely it

is that her choice will be affected by the decisions of other

players, which only influence trip times. Fig. 14 shows the

average per-charge prices paid by the vehicles. When vehicles

only consider time (1/K = ∞), prices are very close to the

average. If price is also accounted for, we observe that (i)

prices are lower, and (ii) fewer players (hence shorter trips)

are associated to cheaper prices.

TABLE III
COMPUTATIONAL COMPLEXITY AS A FUNCTION OF K , WHEN PLAYERS

REPRESENT 60% OF VEHICLES AND CAG IS USED

1/K = ∞ 1/K = 30$/h 1/K = 15$/h

20 350 284 124
60 3854 1425 960
100 7112 3487 2301
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Fig. 14. Average price paid by players for different values of K and as a
function of the number of players, when they represent 60% of vehicles and
CAG is used.

VIII. CONCLUSIONS

Leveraging the use of ITS, we envisioned the availability of

a navigation service that provides electric vehicles (EVs) that

are low in battery with advice on the charging station to use

and the route to take. We focused on how to determine such

advice so that EV drivers find it advantageous to themselves

and they are willing to follow it.

After showing that traditional optimization approaches fail

to achieve the above goal, we considered a realistic scenario

and modeled the problem as a congestion game, for which

at least one pure-strategy Nash equilibrium exists (i.e., a

solution that all EVs find satisfactory). Then, in order to lower

the complexity, we introduced a game with congestion-averse

utilities (CAG) that applies to a slightly simpler scenario but

for which an NE can be found in polynomial time. We assessed

the performance of our approach through SUMO and under a

real-world vehicular environment. The results show that using

CAGs, not only is a viable, scalable technique, but it also leads

to an average per-EV trip time that is remarkably close the
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Fig. 12. Limited number of fully-charged batteries: average per-EV trip time as a function of the number of players, when they represent 20% (left), 60%
(middle) of all vehicles and CAG is used; time breakdown for the latter case (right).

minimum that can be found through a traditional optimization

approach.
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