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Abstract: The maximum entropy principle is often used for bi-level or multi-level thresholding of images. 

For this purpose, some methods are available based on Shannon and Tsallis entropies. In this paper, we 

discuss them and propose a method based on Kaniadakis entropy. 

 

Keywords: Kaniadakis Entropy, Image Processing, Image Segmentation, Image Thresholding, Texture 

Transitions 

 

1. Introduction 

The concept of entropy was born in thermodynamics 

and statistical mechanics. Shannon, in 1948, formulated 

it for the theory of information, obtaining the 

“information entropy”. In an intuitive understanding of 

it [1], this entropy relates to the amount of uncertainty 

about an event associated with a given probability 

distribution. 

 

In image processing, Shannon entropy was the first 

being used, but today, it is the Tsallis formulation of 

entropy that seems to be preferred [2-4]. For the 

elaboration of images, the entropy uses their 

histograms. For instance, in the bi-level segmentation 

of a gray-level image, a threshold is determined which 

separates the gray tones in two systems A and B, 

maximizing the entropy. Considering A and B 

independent, the entropy )( BAS   is the 

generalized sum 
BA SS  , where 

BA SS ,  are the 

corresponding entropies of the systems. In this paper, 

we will discuss the use of Shannon and Tsallis 

entropies for image thresholding. Among the other 

formulations of entropy [5], here we propose the 

thresholding using Kaniadakis entropy, which is a quite 

attractive entropy based on the relativistic formulation 

of the statistical mechanics [6,7]. 

 

Both Tsallis and Kaniadakis entropies have an entropic 

index. If these entropies are used for a bi-level 

thresholding of an image, the bi-level black and white 

image that we obtain depends on the value of the 

optimize threshold, which is depending on the entropic 

index. Here we compare the results we can obtain with 

Kaniadakis and Tsallis entropies, proposing a 

“measure” on the output image. In this “measure”, we 

evaluate the number of edge pixels that separate black 

and white regions. After experiments on some images, 

we can conclude that the two entropies compare 

positively. We have the same results, but Kaniadakis 

entropy has the intuitive advantage of recovering the 

Shannon result when its entropic index goes to zero. 

 

2. Images and information entropy 

Before proposing the use of Kaniadakis entropy for 

image thresholding, let us shortly illustrate the classic 

method using the Shannon entropy applied for 

segmentation. Let us consider an image which as N 

elements of luminance. These elements can have g gray 

tones, labelled  nxxx ,...,, 21 , for instance 

 g,...,2,1,0 , with 255g . Let us suppose that 

each tone ix  is chosen iN  times. The frequency is 

NNf ii / . Accordingly, we have a set F=

 nfff ,...,, 21 , that we call “the scene”. Any given 

scene has a certain multiplicity FW : 

 

)!()!(

!

1 n
F

NfNf

N
W


  (1) 

 

Equation (1) gives the number of ways in which we can 

generate the same scene [8]. Let us consider that each 

of the generated copy of the scene has the same 

probability, which is equal to FW/1 . In the case N is 

large, we can apply the Stirling approximation:

http://www.ijsciences.com/pub/issue/2015-02/


  
 

 

Shannon, Tsallis and Kaniadakis Entropies in Bi-level Image Thresholding 

 

 

http://www.ijSciences.com                                  Volume 4 – February 2015 (02)  

 36 

 

 

 

  




















n

i

iinn

nnn

nnn

n
n

F

ffffff

fNfNNffNfNNf
N

NN
N

NfNfNfNfNfNf
N

NNN
N

NfNfN
NNfNf

N

N
W

N

1

11

111

111

1
1

lnln...ln

lnln...lnln
1

ln
1

ln...ln
1

ln
1

])!ln(...)![ln(!ln
1

)!()!(

!
ln

1
ln

1



 (2) 

In (2), we use 



n

i

if
1

1 . This is the Shannon 

entropy; it is depending on “objective” frequencies if  

instead of “subjective” probabilities ip  [8]. 

 

3. Thresholding 

For a bi-level thresholding of an image, let us follow 

the approach of reference 4. 

Let us consider two independent systems A and B, for 

which the joint probability is 

)()(),( BpApBAp  . The entropy )( BAS   is 

BA SS  . The systems can be given as in the 

following [4]. A contains elements with g gray tones, 

labelled  txxx ,...,, 21 , for instance  t,...,2,1,0 , 

that is, with gray tone below or equal a given threshold 

t. Let us suppose that each tone ix  is chosen iAN ,  

times, according to frequency: AiiA NNff /,  . We 

have: 



t

i
Ai

t

i

iA NPfNNfN
11

. 

Therefore: AiAiiA PfNPNff /)/(,  . 

Moreover, 



t

i

iAf
1

, 1 . In the same manner, B 

contains elements  nt xxx ,...,, 21 , that is, 

 gtt ,...,2,1  . Let us suppose that each tone ix

is chosen iBN ,  times, according to frequency:

BiiB NNff /,  . Again: 

B

g
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Then, using Stirling again: 
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For B: 
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The abovementioned frequencies for a gray-level image can be given by the normalized histogram.  

To find the best value of threshold t, we have to maximize 
BA SS   [4]. 

 

3. Bi-level thresholding with Tsallis and Kaniadakis entropies 

Let us remember that the Tsallis entropy is given by [9,10]: 
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In fact, the Tsallis entropy is defined, using the q-logarithm, as: 
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Let us assume a bi-level threshold t for the gray levels. In [3], two systems had been introduced, A and B, and their 

probability distributions. Let us assume the properties of A and B as in the previous section. The Tsallis entropies, 

one for each distribution, are given by: 
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Taking the limit 1q , Tsallis entropy gives Shannon’s entropy. The total Tsallis entropy is given by the 

generalized sum: 

)()()1()()()( tB
qStA

qSqtB
qStA

qStqS   (10) 

In fact, in a generalization of statistical mechanics, a deformed entropy had been proposed, the Kaniadakis entropy, 

also known as κ-entropy [6,7]: 

 
i
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 (11) 

This entropy has the remarkable property of having the same behavior of Shannon entropy, that is: 
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In it, we have the generalized version of the logarithm [7]: 
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We can apply this entropy to the bi-level thresholding. Let us call the threshold τ. 

Generalizing (3) and (5), κ-entropies are: 
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In the limit 0 , Kaniadakis entropy becomes Shannon entropy. 

Let us consider the composition of systems A and B, but in the framework of this deformed statistics. According to 

[11], the generalized sum:  
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When entropies, (10) or (16), are maximized, the corresponding gray level τ is considered the optimum threshold 

value. In the gray bi-level thresholding, we have a resulting processed image, which is a black and white image. The 

output image is created as in the following: if pixels have a gray tone larger than the threshold, they become white. 

If pixels have a lower value, they become black.   

 

4. More deeply in the limit of Kaniadakis entropy 

In fact, we have that: 
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In the limit 0 , Kaniadakis entropy becomes Shannon entropy, and therefore we must have the normal 

additivity. And in fact: 
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BSAS ,  are the Shannon entropies. In the limit 
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4. Discussion 

Let us note that, both Tsallis and Kaniadakis entropies 

have entropic indices that can give different results 

when applied to the sample. To choose among these 

several results and define an output image, we propose 

a “measure” of the bi-level image, given by the number 

of edge pixels between black and white regions. We 

imagine that, increasing the number of edge pixels, we 

are able to see more textures in the black and white 

image. Of course, other measures can be defined. 

 

Figures 1-5 give images, bi-level images and the 

corresponding Tables, which are displaying the results 

of maximizing Tsallis and Kaniadakis entropies, 

according to (10) and (16). In experiments, their 

entropic indices are spanning interval (0,1). Let us 

avoid, in the calculations, the values 0 and 1.  

 

Of the five examples proposed in the corresponding 

figures, we have that the results we obtain using the 

Kaniadakis entropy are the same of that we obtain with 

Tsallis entropy, within an uncertainty of one gray-tone. 

Let us also note that, in three of the examples, the best 

result that we obtain, according to the proposed 

“measure”, is the same of that we can have from the 

Shannon approach. However, in the case of the two 

examples (Figs. 4 and 5), where the method is applied 

to microscopic images of blood, the best result is 

different from that given by the Shannon limit. 

Moreover, in the case of Figure 5, we have the 

evidence of an “image transition” (see Ref.12 for more 

details). 

 

Besides the fact that the Kaniadakis entropy possesses a 

formalism closer to that of Shannon entropy, a good 

reason for preferring κ-entropy is that it has the more 

intuitive behavior of an entropy recovering the 

Shannon result, when its entropic index is going to 

zero. Another relevant advantage of Kaniadakis 

entropy is in the evaluation of multi-level thresholding 
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of images. This will be discussed in a future paper.  
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Fig.1. Lena and the corresponding bi-level black and white image, for threshold 120.  The table shows the optimized 

thresholds obtained using Tsallis (T-entropy) and Kaniadakis (κ-entropy) entropies, for several values of entropic 

indices. In the limit q 1 , Tsallis entropy provides Shannon result, and for κ 0 , Kaniadakis entropy becomes 

Shannon entropy. When the image is segmented in a bi-level black and white image according to the given 

threshold, the number of edge pixels between black and white regions are calculated. If we assume the “best” bi-

level image being that having the largest number of edge pixels, the threshold to choose is 120 from T-entropy and 

κ-entropy.   
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Fig.2. Cameraman and the corresponding bi-level black and white image, for threshold 176.  The table shows the 

optimized thresholds obtained using T-entropy and κ-entropy, for several values of entropic indices. Note again, that 

in the limit q 1 , Tsallis entropy provides Shannon result, and for κ 0 , Kaniadakis entropy becomes Shannon 

entropy. As we did for Lena, the image is segmented in a bi-level black and white image according to the given 

threshold; the number of edge pixels between black and white regions are calculated. If we assume the “best” bi-

level image being that having the largest number of edge pixels, the threshold to choose is 176 from κ-entropy. Note 

that the best result is corresponding to the Shannon limit 
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Fig.3. Microscopic image of cells (courtesy Kristian Peters, Wikipedia) in gray-level rendering and the 

corresponding bi-level image. The table is showing the optimized thresholds obtained using T-entropy and κ-

entropy. As we did for Lena and Cameraman, the image is segmented in a bi-level black and white image according 

to the given threshold; the number of edge pixels between black and white regions are calculated. If we assume the 

“best” bi-level image being that having the largest number of edge pixels, the threshold to choose is 150 from T- and 

κ-entropies. Again, the best result corresponds to the Shannon limit. 
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Fig.4. Microscopic image of blood cells (courtesy Wikipedia) and the table showing the optimized thresholds 

obtained using T-entropy and κ-entropy. If we assume the “best” bi-level image being that having the largest 

number of edge pixels, the threshold to choose is 102 from T- and κ-entropies. Note that, in this case, the best result 

is quite different from the Shannon limit. It is at the opposite end of the interval spanned by the entropic index.  
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thresholds obtained using T-entropy and κ-entropy. If we assume the “best” bi-level image being that having the 

largest number of edge pixels, the threshold to choose is 96 from T- and κ-entropies. Note that, in this case again, 

the best result is different form the Shannon limit. It is about the values 0.6 and 0.7 of the κ entropic index, and 

about 0.3 and 0.4 of the q index. In fact, here we are observing, as the index is spanning the interval (0,1), an “image 

transition”, which is accompanied by a texture transition in it [12]. 

 

 
Fig.5. Another microscopic image of blood cells (courtesy Wikipedia) and the table showing the optimized 
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