
Chapter 5

Particle Deposition

As underlined in the introductory chapter of this thesis, the transport and

eventual deposition of colloidal particles flowing through porous media is a

phenomenon of great importance in both natural systems and for many in-

dustrial applications. In all these cases, the possibility of employing reliable

mathematical models for the simulation of colloidal particle transport and

deposition in porous media is particularly interesting, and often needed.

In order to describe large spatial domains the models have to ignore the

micro-porous structure of the medium and must be derived from an averag-

ing procedure. The final macro-scale models result in different submodels

for the each phenomenon involved and this work focuses on one of them:

the rate of particle deposition on the surface of the grains constituting the

porous medium. The commonly used theoretical framework for treating de-

position of colloidal particles onto stationary collectors is the classic colloid

filtration theory (CFT) (Nelson and Ginn, 2005). CFT describes fluid flow

and particle deposition in porous media and is based on seminal work by

Happel (1958), Levich (1962) and Kuwabara (1959), as described in more

detail in Chapter 2. Some of these models have become very popular, as

for example the Happel model, that has been used in many works (Tufenkji

and Elimelech, 2004; Elimelech, 1991; Rajagopalan and Tien, 1976) even

in derivative forms, some of which developed upon the sphere-in-cell model

while retaining many of its features (Ma et al., 2010; Ma and Johnson, 2010),

while others only use the simplicity of the spherical model as a starting point

to develop more physical investigations (Cushing and Lawler, 1998; John-

son et al., 2007). Hydrodynamics and particle deposition for a number of

different systems, namely the rotating disk, parallel-plate channel and for

The content of this chapter, in a modified form, has been published in Boccardo et al.
(2014b)
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stagnation point flow have also been studied (Elimelech, 1994). The dif-

ficulties in investigating these issues from the experimental point of view

have prevented the development of accurate corrections to account for the

presence of many grains (collectors) of irregular (i.e.: highly non-spherical)

shapes and characterized by wide grain size distributions. Nowadays, the

advancement of detailed mathematical models based on computational fluid

dynamics (CFD) offers an interesting alternative to experimental investiga-

tion: some pore-scale simulations of physical packing of spheres (Long and

Hilpert, 2009) and uniformly-sized flattened half-spheres have recently been

performed (Long et al., 2010).

The objective of the work of this chapter is therefore to improve the

current understanding of particle transport and deposition in porous media,

by means of more detailed CFD simulations. In the micro-scale simulations

small but representative portions of several porous media are considered

and the details of the porous structure included. Many different represen-

tations of grain packings are investigated, in order to explore the influence

of porosity, grain size and shape values. Some of the geometries used in

this work were also successfully used in a recent study of pore-scale flow of

non-Newtonian fluids in porous media (Tosco et al., 2013), and are similar

to those employed by other authors in similar studies (Keller and Auset,

2007). First fluid flow is described by solving the continuity and Navier-

Stokes equations, since particles are assumed to follow the flow, and results

are compared with theoretical predictions of flow in porous media. Then, un-

der the hypothesis of clean-bed filtration, particle deposition is investigated

with focus on Brownian and steric interception mechanisms. Particular at-

tention is devoted to the quantification of the effect of the irregularity of the

grains and of the presence of multiple grains (or collectors) in the packing.

5.1 Test cases and operating conditions

In this work, Eqs. (2.1 - 2.14) are solved, in steady state conditions, on

two sets of two-dimensional geometric porous medium models and results

are then interpreted by using the theoretical models reported in Eqs. (2.5 -

2.36). The first set is composed of four randomly arranged distributions of

non-overlapping identical circular elements, with their placement calculated

via an appropriate algorithm (see Fig. 5.1a). The second set is constituted of

eight realistic geometries with irregularly shaped and polydispersed grains

(see Fig. 5.1b). The various cases for each of these sets represent porous

media characterized by different values of mean grain diameter, dg, and

porosity, ε. A total of 12 geometries were necessary in order to provide for
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a large enough field of investigation.

The first four synthetic cases were made via a simple brute-force algo-

rithm that sequentially placed the items in random locations, each time

checking for possible contacts with the other items already in place, repeat-

ing the step if necessary: thus preventing any overlap between them. The

source for the eight realistic geometries were instead as many SEM (Scan-

ning Electron Microscopy) images of real sand samples, which were treated

in order to be transformed in geometric structures compatible for the use in

a CFD code. The rationale behind the choice of these two different types of

models (i.e., irregular versus circular grains) is to investigate two different

situations: one that more closely resembles reality, and a more simplified

one in which there is no effect of grain polydispersity and irregularities. In

this way, it will be possible to study the influence of grain size distribution

and shape on particle transport and deposition.

Since porosity (ε) is an important parameter with respect to packed bed

collector efficiency, we considered a wide range for this variable (0.3-0.5) in

order to gain better insight with respect to its influence on particle removal

efficiency. A similar choice (although in a complementary range 0.28-0.38)

was made in recent works (Pazmino et al., 2011) which also highlighted the

strong influence of porosity and grain size distribution on particle deposition.

The final 12 geometries resulted also in nominal grain size dg from 200 µm

up to 650 µm, as detailed in Tab. 1. Figure 5.2 reports instead the nominal

grain size distribution for some selected cases. The nominal grain size was

estimated for those two-dimensional models from the specific surface area,

s, of the porous medium: Dg = 4/s.

Table 1 also reports the spatial extent in the flow direction (Lx) of the 12

geometries, excluding the premixing and postmixing zones added to improve

the accuracy of the solution of the flow field and to reduce the impact of the

backflow. In fact in order to minimize anomalous flow recirculations caused

by the irregular nature of the packings, and to get a more accurate solution

for the flow field (i.e.: less influenced by boundary effects), the length of

these geometries was extended by adding two new “buffer” zones, before

the inlet and after the outlet, as shown in Fig. 5.1.

After having built the 12 geometries, GAMBIT 2.4.6 was used to gen-

erate suitable meshes for the CFD code. Two-dimensional, quadrilateral,

unstructured meshes were generated, minimizing cell skewness and aspect

ratio. Then the meshes were refined uniformly and on the grain borders

to fully resolve the momentum and particle concentration boundary layers.

In Fig. 5.3 an example of a typical mesh near the border of a grain, as it

undergoes the refining process, is reported.
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Figure 5.1: Sketch of the synthetic (left) and realistic (right) porous medium
models investigated in this work.

Case Geometry Type ε , - dg , µm Lx × Ly , mm

S1

Synthetic

0.418 205 2.05× 2.05
S2 0.464 206 2.24× 2.24
S3 0.404 309 3.07× 3.07
S4 0.458 308 3.36× 3.36

R1

Realistic

0.339 328 2.69× 2.32
R2 0.352 358 2.69× 2.23
R3 0.433 413 2.69× 2.32
R4 0.489 381 2.69× 2.32
R5 0.326 644 6.65× 5.75
R6 0.405 514 6.65× 5.74
R7 0.469 471 5.56× 5.75
R8 0.488 367 4.75× 5.74

Table 5.1: Porosity, nominal grain size (µm) and domain extension (mm) for
the synthetic geometries (first four rows) and the realistic geometries (subse-
quent eight rows).

One parameter was used to assess the grid independence of the results for

the flow field. In order to obtain this single parameter for each geometrical

model and for all the flow rates investigated (with particular attention to the

momentum boundary layer near the grain border), pressure drop data from
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Figure 5.2: Grain size distribution for geometries (left to right and top to
bottom): R1, R2, R6, R8.

Figure 5.3: Particular of a mesh, showing the series of grid refinements.

the simulations were analyzed using the Ergun law, reported in Eq.(2.13).
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Figure 5.4: Effective grain size, d∗g, with varying number of mesh cells, cases
R1 (#) and S3 (2).

These results were then fitted to this law, in order to obtain a new equiv-

alent or effective grain size, d∗g. As it can be seen in Fig. 5.4, where the

variation of d∗g increasing the mesh cell number is reported (starting from

the original cell number), grid independent flow field results are obtained for

the second (uniform) refinement. It is therefore possible to conclude that

the corresponding grid fully describes the momentum boundary layer.

The boundary layer of particle concentration required a finer mesh (near

the grains) due to the resulting Schmidt number (Asano, 2006), especially for

the larger particles. Grid-independence for particle transport and deposition

will be, for clarity, discussed later on, and Tab. 2 reports the final number

of mesh cells for the 12 investigated cases.

The system is considered isothermal at T = 293 K, and the fluid is New-

tonian (density ρ = 998, 2 kgm−3 and dynamic viscosity µ = 0, 001003 kgm−1s−1).

The flow is considered laminar, and thus the CFD code did not solve addi-

tional turbulence models. This is justified given the range of velocities ex-

plored: in fact, the superficial velocities, U , ranged from 10−6 to 10−1 ms−1

(roughly corresponding to Re∗ ranging from 10−4 to 10).

As for the boundary conditions for these cases, an inlet zone was set

on one side of the geometry, where water flowed into the domain at a fixed

velocity, and the outlet at the opposite side. This setup aims to represent a
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Case Mesh cells (thousands)

S1 894

S2 1 058

S3 1 525

S4 1 840

R1 893

R2 884

R3 816

R4 642

R5 1 950

R6 2 254

R7 1 828

R8 1 931

Table 5.2: Final number of mesh cells for the synthetic geometries (first four
rows) and the realistic geometries (subsequent eight rows).

situation in which the fluid is moving predominantly in one direction, and

as such the simplest and most appropriate way to reconstruct the large-scale

system with a smaller, representative domain is to align the flow direction

with one of the three main cartesian axis, resulting in the two sides orthog-

onal to that axis to be respectively the inlet and outlet boundaries of the

domain. It has to be noted that gravity was not considered in our model

and its effect was not accounted and solved for in the CFD calculations, thus

ignoring the influence of sedimentation on particle deposition. This results

implicitly in considering ηG = 0. On the two remaining sides a condition

of symmetry was set. This condition ensures that all property fluxes are

equal to zero along the specified border, resulting in no fluid flow across

these boundaries. Regarding the interpretation of the results, those of most

interest refer to the pressure drop, which was calculated as the difference be-

tween the inlet and outlet boundary values. After normalizing on the length

of the domain (∆P/Lx), the results for the cases at small superficial velocity

was used to estimate the permeability of the porous media k = U µ∆P/Lx.

Pressure drop results were also compared with the predictions of the Ergun

law, as explained earlier.

As for particle deposition, only Brownian motions and interception were

considered, for different populations of monodispersed particles, with diam-

eters, dp, equal to 1, 10, 100, 200, 500, 625, 750, 875 nm and 1 µm. The

presence of the particles flowing into the domain with the fluid was simu-

lated by representing them with a scalar, namely the normalized particle

concentration, C. Initially the particle deposition velocity was calculated
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with a two-fluid Eulerian multiphase model, however, in the range of oper-

ating conditions considered in this work particle velocity always relaxed to

the fluid velocity. This result was to be expected since, as explained ear-

lier, both Stokes numbers for all considered cases are very low, and viscous

drag forces causing hydrodynamic retardation were not considered in our

simulation framework, thus the assumption of one-way coupling between

particle and fluid, with the velocity of the former always relaxing to that of

the latter; moreover, the typical particle concentration is low enough not to

have any two-way coupling. Brownian motions were accounted for by the

diffusive term of Eq. (2.14), with the diffusivity coefficient calculated with

the Einstein-Stokes relationship reported in Eq.(2.15). While diffusivity of

particles could be anisotropic and in general will vary between the bulk of

the fluid and near the borders of the solid grains, here it will be considered

constant.

The boundary conditions for this normalized concentration scalar were

set to one at the inlet, with diffusive flux at the outlet set to zero. Regarding

the initial conditions, in all cases scalar concentration was set to zero in all

the domain, as it provided for a smoother and faster convergence of the

numerical solution with respect to other initialization values.

The last fundamental boundary condition is imposed at the grain bor-

ders. As described earlier, since in this work we are interested in evaluating

the deposition efficiency, η0, all the repulsive forces responsible for the re-

duction of the attachment efficiency, α, were ignored (making α = 1), which

translates into setting a particle concentration at the border of the grains

equal to zero. To account for interception caused by steric effects due to

the finite size of the particle, a user-defined function (UDF) was used to set

to zero the particle concentration in all the mesh cells whose centroids’ dis-

tance from the grain wall was less than the particle radius. In practice, the

UDF shifts the grain boundary by a distance equal to the particle radius.

It has to be noted that the lengths involved are very small, representing yet

another reason for the need for a finer grid at the grain border. The final

grid sizes, reported in Tab. 2, are however reasonable, since interception is

only significant for large particles.

From these simulations the value of particle concentration in the mi-

croscale domain is obtained. Our objective is to extract from this informa-

tion, i.e. C(x, y), a macroscopic model with which to calculate the particle

deposition rate without describing the details of the pores. As it has been

said, the fluid moves mainly from the inlet to the outlet, and it is thus along

this direction that a meaningful particle concentration gradient will be iden-

tifiable. More specifically, it is useful to express the results as the difference
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in concentration between the porous inlet and outlet zones. First then, the

concentration value at any point along the porous bed is averaged in the

direction orthogonal to the flow (0 < y < Ly):

Ĉ(x) =
1

Ly

∫ y

0
C(x, y) dy . (5.1)

The concentration at the inlet and outlet boundaries, equal to Ĉ(x = 0) and

Ĉ(x = Lx), is readily available from our CFD simulations. From these, a

simplified description which ignores pore details but results in the same over-

all deposition rate can be obtained simply by using the following deposition

efficiency (in the case of α = 1):

η0 =

ln

(

C0

C

)

−3

2

(

1− ε

ε

)(

Lx

dg

) , (5.2)

where again C0 = Ĉ(x = 0) and C = Ĉ(x = Lx) are obtained from CFD

simulations. A preliminary test case was set up, in order to validate the

methodology used both in the CFD simulations and in the analysis of the

results. The system chosen as a benchmark was Levich case of diffusion on

a free-falling solid sphere, for the simplicity of its geometrical model and

for its solution resulting surely from an analytical derivation. Results from

simulations replicating this model and ran in operating conditions inside the

range of validity of the Levich model were then compared with the theoreti-

cal predictions of Eq. (2.27). The outcome was positive, as the coefficients of

the power law describing the CFD results showed a remarkable accordance

with Eq. (2.27), thus ensuring the appropriateness of the methodology used

in this work for treating this kind of systems.

Summarizing, the following strategy was used. First, simulations with

only the Brownian diffusion mechanism accounted for were run, resulting

in the Brownian deposition efficiency ηB. Secondly, both Brownian motion

and interception mechanisms were considered resulting in the overall depo-

sition efficiency η0. Subsequently ηI was calculated by inverting Eq. (2.36)

(keeping in mind that in our case, ηG = 0). Eventually the relationship be-

tween ηB (and ηI) and U, ε, d∗g and dp, was assessed by running simulations

at several superficial velocities, U , for the porous media (characterized by

several porosity, ε, and effective grain size, d∗g, values) previously described

and with different particle sizes, dp.
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5.2 Results and discussion

In this section the results obtained from simulations run on the grids re-

ported in Tab. 2 are discussed. First, values of pressure drops in the domain

were calculated and used to estimate the permeability of the system. As well

known, Darcy’s law has an upper range of validity (in terms of Reynolds

number) beyond which the relationship between pressure drop and fluid ve-

locity is not linear anymore: typical values of Re∗ for this transition are

of the order of unity (Hassanizadeh and Gray, 1987). These considerations

are confirmed in Fig. 5.5, where values of the group qµ/(∆P/Lx) (equal to

permeability for low Re) are reported in a logarithmic scale against q and

labeled with the corresponding Re values. As it can be clearly seen this

group is characterized by a constant value up to Re ≈ 1 (corresponding to q

of about 10−2 m s−1 for these two cases), after which it undergoes a sharp

decrease, for both the realistic and the synthetic geometries.

Figure 5.5: Values of the group qµ/(∆P/Lx), case R1 (#) and S1 (2).

The next step in analyzing fluid flow results is to compare pressure drop

values obtained from simulations with Ergun’s law predictions calculated

with the nominal grain size, dg. As it can be seen in Fig. 5.6 (left), the

qualitative behaviour of ∆P ∗ versus Re∗ follows the theoretical predictions,

with a large displacement with respect to the theoretical law. By fitting the

Ergun law (see Fig. 5.6, right), the modified or effective grain diameter, d∗g,

is calculated. As already explained this is done by fitting the value of dg,

appearing in Eq. (2.12) in order to reduce the distance between the CFD
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simulation data and the Ergun’s law predictions to less than 10% in value,

moving from Fig. 5.6 (left) to Fig. 5.6 (right). In Table 3 the values of the

original grain diameter dg and the equivalent diameter resulting from fitting

the Ergun law are compared. While there is a difference between dg and d∗g
in the case of the eight realistic geometries, values are much closer for the

four synthetic geometries. Finally, qualitative description of the flow field

can be found in Fig. 5.7.

Label dg d∗g

S1 205 133

S2 206 143

S3 309 315

S4 308 291

R1 328 215

R2 358 210

R3 381 179

R4 413 178

R5 644 224

R6 514 198

R7 471 215

R8 367 123

Table 5.3: Original and fitted equivalent grain size, for synthetic geometries
(first four rows) and realistic geometries (subsequent eight rows)

Figure 5.6: Comparison of CFD results (symbols) with Ergun’s law (contin-
uous line).
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Figure 5.7: Contour plots of fluid velocity (ms−1) for cases (left to right and
top to bottom): R2, R4, S1, S2, R5, R6, for superficial velocity q = 10−6 ms−1.
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Figure 5.8: Contour plots of normalized particle concentration for case R8,
for q = 10−6ms−1 (first row), q = 10−5ms−1 (second row), q = 10−4ms−1

(third row), for dp = 1 nm (first column) and dp = 100 nm (second column).
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After having investigated the flow in the system, particle deposition was

simulated as previously explained. Contour plots of particle concentration

for one case are reported in Fig. 5.8. As explained, from these results the

overall deposition efficiency, η0, is calculated with Eq. (5.2), and plotted

versus fluid velocity (10−6 < q < 10−2 ms−1 corresponding to 10−4 <

Re∗ < 1) and particle size in Fig. 5.9.

Figure 5.9 clearly shows how the deposition rate (and consequently, η0)

progressively decreases as the superficial velocity is increased (for small par-

ticles). This is due to the time scale of convective transport becoming smaller

with respect to diffusive transport; in fact, particles at higher velocities have

less time to reach the grain borders (and thus to be removed) from the bulk

of the fluid. The behaviour changes for particles of about 500 nm and larger,

as η0 initially decreases but then stays approximately constant. This is due

to the effect of steric interception, which has a higher impact on deposition

velocity only for larger particles (on the contrary of Brownian diffusion which

acts predominantly at smaller particle sizes) and for higher fluid velocities,

when the effect of Brownian deposition becomes negligible. The same data

(for the same parameters) is represented in Fig. 5.10, where the deposition

efficiency, η0, is now plotted versus particle size, dp, at different superficial

velocities q. As already discussed, for the lower superficial velocities the par-

ticle deposition efficiency always decreases as the particle size is increased,

while for higher velocities the particle deposition initially decreases for small

particle sizes and instead sees a positive slope for larger particles. In fact,

for q larger than 10−3ms−1 a minimum for η0 is detected at about 300 -

500nm. Similar trends were experimentally observed (although in a slightly

different porosity range) by other authors (Pazmino et al., 2011).

These results and the general considerations just made are consistent

with the underlying theory and are valid both for the realistic and the syn-

thetic geometries. There are, however, some differences between these two

cases. In order to better highlight these differences, let us consider results for

Brownian deposition efficiency only, ηB. In Fig. 5.11 the aggregate results of

the overall deposition efficiency, η0, normalized by the porosity-dependent

function, As, of (2.34) are reported versus Pe = qdg/D for all the synthetic

geometries. This normalization is done to compare data from different ge-

ometries.

First of all, it is interesting to highlight that when data corresponding to

different synthetic geometries obtained under different superficial velocities

and particle sizes are plotted versus the Péclet number, a single master

curve is obtained, which is consistent with the theoretical predictions of Eq.

(2.33). By fitting the results of our CFD simulations with an equation of
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Figure 5.9: Particle deposition efficiency for case R1, at different fluid veloc-
ities and particle sizes.

Figure 5.10: Particle deposition efficiency for case R1, at different fluid ve-
locities and particle sizes.

the form:

ηB = C1As
1
3 Peβ , (5.3)

the following values C1=0.487 and β = −0.552 are obtained. While the

value of C1 is quite different from the theoretical (Pfeffer, 1964) value, a
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small difference between β = −0.552 and the −2/3 exponent of the theoret-

ical law, reported in Eq. (2.33), is detected. Regarding these deviations, it is

interesting to note a recent work (Ma et al., 2013) which has shown in detail

some of the shortcomings of correlation equations with a power-law depen-

dence on Peclet number and of employing Eulerian models with Dirichlet

boundary conditions for concentration (as is the case in this work), arising

predominantly at very low fluid velocities. These findings can help to ex-

plain the presence, in Figs. 5.11 and 5.12 of values of η over unity. Moreover,

since when one single circular collector is considered, as in the benchmark

case of Levich, the original exponent is obtained (β = −2/3) from our sim-

ulations, the difference can be attributed to the presence of many collectors

in the porous medium, due to the interactions of the particle concentration

boundary layers.

These two values of C1 and β are also used to assess grid independence of

these results. As grid independence for flow field predictions was evaluated

with the effective grain size, d∗g, the grid independence of particle deposition

predictions was assessed with the invariance of the fitted C1 and β values

to further grid refinements. Results showed that using the meshes of Tab.

2 grid independence was achieved.

A different scenario emerges when looking at results of ηB versus Pe for

the eight realistic geometries, shown in Fig. 5.12.

Comparison of Figs. 5.11 and 5.12 reveals two main differences: the first

lies in the different coefficients for the power law ηB versus Pe, whereas the

second one is the separation between the curves corresponding to different

geometries, highlighting the imperfect collapse of the data into one single

master curve for realistic grains. In fact, the fitted master curve for the

synthetic grains (see Fig. 5.11) corresponds to a coefficient of determination

(R2) of 0.9789, whereas that of the realistic grains (see Fig. 5.12) shows a

much lower coefficient of determination, equal to 0.9141.

These deviations call for the search for another parameter (besides poros-

ity and grain size) to be included in the predictive laws for Brownian particle

deposition. In this work, possible influences of the tortuosity of the porous

media and of other forms of the porosity-dependent term As were analyzed.

In the first case, tortuosity of each system was estimated, via CFD simula-

tions, by means of analyzing the residence time distribution function of an

inert tracer flowing through the medium. In the second case, a search for a

new porosity-dependent function was performed, with the aim of eliminat-

ing the offset seen in Fig. 5.12. This was done in practice by trying to find a

constitutive equation that can correctly predict the value of ηB for different

systems, at different values of Pe. Unfortunately, for both cases, no clear
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Figure 5.11: Brownian deposition efficiency ηB versus Pe for synthetic ge-
ometries, compared with the theoretical law (Eq. (17), continuous line).

relationship linking tortuosity to deposition efficiency, nor a new and more

adequate form of As, could be found. It is also interesting to highlight here

that the use of the Kuwabara function, g(ε), of Eq. (2.32) instead of the

porosity dependent function, As, of (2.34) led to very similar results.

Regarding the coefficients of the power law, and again referring to an

equation of the form of Eq. (5.3), the values of C1 = 0.1926 and β = −0.52

were found. As it can be seen, the coefficient β has a similar value with

respect to results for the synthetic grids, while the value of C1 lies even

further from the theoretical one. Even in this case the discrepancies can be

attributed to the complex interactions between collectors that result in a

very different overall behaviour.

Moreover, it has to be taken into account that our simulations were

conducted with the same assumptions of the Smoluchowski-Levich approx-

imations, valid only for particles smaller than a few hundred nanometers.

Including the drag correction in the calculations would decrease the rate

of collection with effects of increasing magnitude with increasing particle

size (Rajagopalan and Tien, 1976; Spielman and Fitzpatrick, 1973). Quan-

titative comparisons between the inclusion of the drag corrections, or lack

thereof, can be found in Rajagopalan and Tien (1976) and Prieve and Ruck-
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Figure 5.12: Brownian deposition efficiency ηB versus Pe for realistic geome-
tries, compared with the theoretical law (Eq. (17), continuous line).

enstein (1974). The use of the Smoluchowski-Levich approximation in the

case of large particles would lead to an overestimation of the collector effi-

ciency. This is clearly shown in the work of Tufenkji and Elimelech (2004)

which included the contribution of hydrodynamic retardation, obtaining a

different exponent of the Péclet number in the equation for the Brownian

deposition efficiency and also added a dependency on NR, absent in the orig-

inal Levich-Yao formulation. These findings are related to the influence of

hydrodynamic interactions. Nonetheless, it has to be noted that the range

of particle sizes explored in that work was considerably wider (up to 10

µm), with hydrodynamic interactions influencing more the deposition effi-

ciency for larger particles. In fact, when comparing their results with works

not fully including hydrodynamic effects (Rajagopalan and Tien, 1976), the

maximum of the difference (about 50%) was found at dp=2 µm, with much

lower discrepancies at smaller particle sizes. While it wouldn’t be possible

to provide an accurate estimate for the deviation between our results (based

on the Smoluchowski-Levich approximation) and a more complete model,

due to the presence of attractive forces which where also not explicitly in-

cluded in our simulations and that would balance out, in a measure, the

hydrodynamic retardation effect (Tufenkji and Elimelech, 2004; Adamczyk
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et al., 1983), the indications found in these references call for greater care

when interpreting results for particles in the 1-µm range, and the possible

dependence on a new term in the brownian deposition efficiency equation

(NR) warrants for a deeper investigation of these phenomena.

Finally, interception results are also presented. In this case there are no

clear differences between results of synthetic and realistic geometries. Fig-

ure 5.13 shows the results of ηI at different values of NR, compared with

the theoretical predictions of Eq. (2.35). For clarity of exposition, only re-

sults pertaining to case R3 are reported in Fig. 5.13, but very similar results

were obtained for the other 11 cases. In this case it is clear that while the

theoretical law restrains the interception effect as being dependent on the

parameter NR, defined as the ratio between grain diameter and particle size,

our results show large deviations between cases corresponding to different

fluid velocities. In this case, searching for a new and corrected predictive

equation clearly points towards adding a dependence of ηI on the fluid veloc-

ity (or more properly, in order to retain a law dependant on dimensionless

parameters, the Reynolds number), which would result in a form similar to

the original law:

ηI = C2AsN
2
RReγ . (5.4)

A least-squares fitting of these results returns a best value for C2 and γ

respectively equal to 1.116 and 0.145. Even if the value for γ does not show

a strong correlation between Re and ηI, it is nevertheless possible to obtain

more accurate predictions of the interception effect on deposition with the

new law, as shown in Fig. 5.14. Again, only results pertaining to case R3 are

reported, for a clear comparison with Fig. 5.13, but it has to be noted that

this least-squares fitting process, resulting in the C2 and γ reported above,

has been performed not on this single geometry but on the aggregate of all

the particle deposition efficiency results for all the geometries considered in

this work. At last we highlight that interpreting the data with the other

laws available in the literature reported in Eqs. (2.28) and (2.31), resulted

in similar conclusions.

5.3 Conclusions

Particle transport and deposition in porous media was investigated in this

work by means of detailed microscale CFD simulations. Firstly results were

carefully analysed to assess grid independence. When considering one single
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Figure 5.13: Interception deposition efficiency ηI results for case R3 varying
the parameter NR and for a range of Reynolds numbers (specified on the key)
compared with the theoretical relationship Eq. (2.35) (continuous line).
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Figure 5.14: Interception deposition efficiency ηI results for case R3 varying
the parameter NR and for a range of Reynolds numbers (specified on the
key) compared with the new modified relationship, obtained from fitting the
aggregate results of all the geometries (continuous and dashed lines).

collector with Brownian motion as the dominant mechanism for deposition,

the original correlation proposed by Levich was obtained: ηB = 4.04Pe−2/3,

thus proving the consistency of the methodology adopted with the under-

lying theory. When considering complex porous media constituted by dif-
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ferent circular collectors an analogous dependency, characterised by a dif-

ferent slope: ηB = 0.487As1/3Pe−0.552, was found. In this case porosity,

ε, and effective grain size, d∗g, were capable of fully characterizing the ob-

served behaviour. In the case of irregular collectors a similar dependency

was again observed (ηB = 0.1926As1/3Pe−0.52) although porosity, ε, and

effective grain size, d∗g, seem not to be capable alone to fully characterize

the porous medium. In fact, comparing Figs. 5.11 and 5.12, the former

shows a collapse of the results on a single master curve dependent on these

two parameters, while the latter shows a clear separation of the results per-

taining to each geometry. This is further highlighted by the very different

coefficients of determination showed by the two obtained master curves, re-

spectively equal to R2=0.9789 and R2=0.9141. This deviation arising in the

case of realistic geometries would seem to indicate that another parameter

should be included in the laws predicting Brownian particle deposition. We

are confident that the effect of the neglected hydrodynamic retardation on

our results is small for nanometric particles, but might be more important

(up to 50%), for micrometric particles. Therefore results for the largest

particles investigated in this work should be treated with great care. When

interception is also considered, the interaction between the particle bound-

ary layers of the different grains create a complex dependency resulting in

the following relationship: ηI = 1.116AsN2
RRe0.145, valid for both circular

and irregularly shaped collectors.
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Chapter 6

Homogenization by

multiple-scale expansion

As stated and demonstrated in the second chapter of this thesis, homoge-

nization is a powerful and versatile tool for the upscaling of transport and

reaction equations in porous and heterogeneous media. For example, Taylor

dispersion in porous media has been approached in this way (Auriault and

Adler, 1995), and a recent example in the literature deals with the problem

of heterogeneous (surface) reaction (Battiato and Tartakovsky, 2011). More-

over, it is especially suited to the combination with microscale methods (e.g.:

computational fluid dynamics) due to the necessity of obtaining a solution

of the cell problem. A number of constraints to the homogenization of the

chosen problem also arise during the procedure, usually in terms of ranges of

operating conditions where the final upscaled equation will be employable.

Having identified these regions, within the same theoretical framework (as

demonstrated by Battiato et al. (2009)), it is then possible to set up hybrid

pore-scale/homogenized simulations for a complete and robust treatment of

the problem under investigation, at the relevant spatial scale.

Our objective is then to start from the same equations solved in the CFD

model and obtain an employable macroscale formulation of the advection-

diffusion-deposition problem. As it will be shown, only one simplifying as-

sumption will be used in this respect, and that is the choice to restrict the

range of fluid velocities to the Stokes’ regime, thus solving the Stokes’ equa-

tion of motion instead of the full Navier-Stokes equation. Then, we will

consider an advection-diffusion equation with no explicit source term, and

the surface deposition phenomenon will be introduced by setting a boundary

condition of particle concentration equal to zero, as it was done in Chap-

ter 5 and also used in the CFD simulations. Again, the purpose is to obtain

99
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a macroscale predictive model for the particle removal rate by deposition

which does not need to take into account the details of the medium mi-

crostructure.

6.1 Problem Formulation

We will consider a porous medium having a structure identical to the one de-

scribed as a “medium with obstacles” in the Section 2.3.2 earlier in this the-

sis. That is, a macroscale structure Ω̂ with characteristic length L, composed

of spatially repeating unit cells Ŷ with characteristic length: l = ξL ≪ 1.

As mentioned, we consider an incompressible fluid flowing at very low veloc-

ities, which is thus described by the Stokes and continuity equation in the

fluid domain B̂ξ, coupled with a no-slip condition on the grains walls, Γ̂ξ, as

following:















µ̂∇̂2v̂ξ −∇p̂ξ = 0 x̂ ∈ B̂ξ

∇̂ · v̂ξ = 0 x̂ ∈ B̂ξ

v̂ξ = 0 x̂ ∈ Γ̂ξ

(6.1)

where µ̂ is the fluid dynamic viscosity, v̂ξ(x) its velocity and p̂ its pressure.

The superscript φ̂ means that φ is a dimensioned variable (or differential op-

erator applied on dimensioned variables). Then, we consider particle trans-

port, governed by an advection-diffusion equation as Eq. (2.14), which we

rewrite in the following form:







∂ĉξ

∂t̂
+ v̂ξ · ∇̂ĉξ = ∇̂ ·

(

D̂∇̂ĉξ

)

x̂ ∈ B̂ξ

ĉξ = 0 x̂ ∈ Γ̂ξ
(6.2)

where ĉξ(x) is particle concentration, and D̂ the molecular diffusion coeffi-

cient. As it was done in Chapter 5, we will consider molecular diffusion to

be isotropic and as such D̂ = D̂mI, where D̂m is the Stokes-Einstein molecu-

lar diffusion coefficient, obtained from Eq. (2.15). The boundary condition

ĉξ = 0 on the solid surface Γ̂ξ is, as mentioned, the way to set the “perfect

sink” particle deposition problem. Next, a nondimensionalization step is

taken for the Stokes and continuity equations, defining the following quan-

tities:

p =
p̂l2

µ̂UL
; x =

x̂

L
; v =

v̂

U
,
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where U is the system characteristic velocity (usually the superficial velocity

U = εvξ,x where ε is the porous medium porosity ε = |B|/|Y |). This results
in the system















ξ2∇2vξ −∇pξ = 0 x ∈ Bξ

∇ · vξ = 0 x ∈ Bξ

vξ = 0 x ∈ Γξ

(6.3)

The same operation is done for the advection-diffusion-deposition system,

introducing the quantities

cξ =
ĉξ
c̄
, D =

D̂

D , t̂
D
=

L2

D , t̂
A
=

L

U
, t =

t̂

t̂
D

where c̄ and D are characteristic values for particle concentration and diffu-

sion coefficient. Moreover, the two characteristic time-scales for advection

(t̂
A
) and diffusion (t̂

D
) are defined as:

t̂
A
=

L

U
, t̂

D
=

L2

D ,

whose ratio define the Péclet number, Pe, as:

Pe =
t̂
D

t̂
A

.

This results in the dimensionless system







∂cξ
∂t

+∇ · (−D∇cξ + Pevξcξ) = 0 x ∈ Bξ

cξ = 0 x ∈ Γξ
(6.4)

6.2 Upscaled Model

The next step is to apply the principles of the multiple-scale asymptotic

expansion to the two systems (6.3) and (6.4). The procedure for the homog-

enization of Stokes’ equation is reported in Chapter 2 (and the references

mentioned therein), so it won’t be reported again here: it has nevertheless to

be noted that a number of results obtained in that procedure will be relevant

and of use when dealing in the upscaling of the advection-diffusion equation

in this chapter, and will be referenced as appropriate. As usual, the method

introduces a “fast” spatial variable y, to which a new time variable τa is
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added, defined as follows:

y =
x

ξ
, τa = tPe =

t̂

t̂
A

. (6.5)

Then, cξ is represented as cξ(x, t) = c(x,y, t, τa), and the latter is expanded

into an asymptotic series of ξ

c(x,y, t, τa) =

∞
∑

m=0

ξmcm(x,y, t, τa) (6.6)

The same expansion is also applied for the velocity vector field vξ(x, t):

v(x,y, t, τa) =
∞
∑

m=0

ξmvm(x,y, t, τa) (6.7)

Replacing cξ(x, t) with c(x,y, t, τa) (adding the ”fast” variable), leads to the

following derivation rule for the spatial and temporal derivatives:

∇cξ = ∇xc+ ξ−1∇yc , (6.8)

∂cξ
∂t

=
∂c

∂t
+ Pe

∂c

∂τa
. (6.9)

We now have expressed all the coefficient functions in their form valid in the

unit cell Y . Hence, for the sake of clarity and compactness, from now on

(unless where needed otherwise) we will always refer to them in a shortened

form: e.g. ci instead of ci(x,y, t, τa). Using (6.8) and (6.9) in (6.4) leads to:



















∂c

∂t
+ Pe

∂c

∂τa
+

+(∇x + ξ−1∇y) · (−D(∇xc+ ξ−1∇yc) + Pevc) = 0 y ∈ B
c = 0 y ∈ Γ

(6.10)

Then, using the expansions reported in Eqs. (6.6) and (6.7) (up to terms

O(ξ2)) , together with setting

Pe = ξ−α, (6.11)
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the transport equation for the fluid zone B reported in Eq. (6.10) becomes:

ξ0
∂c0
∂t

+ ξ1
∂c1
∂t

+ ξ2
∂c2
∂t

+ ξ0−α ∂c0
∂τa

+ ξ1−α ∂c1
∂τa

+ ξ2−α ∂c2
∂τa

=

∇x · {−D[∇x(ξ
0c0 + ξ1c1 + ξ2c2) + ξ−1∇y(ξ

0c0 + ξ1c1 + ξ2c2)]+

+ ξ−α(ξ0v0 + ξ1v1 + ξ2v2)(ξ
0c0 + ξ1c1 + ξ2c2)}+

+ ξ−1∇y · {−D[∇x(ξ
0c0 + ξ1c1 + ξ2c2) + ξ−1∇yg(ξ

0c0 + ξ1c1 + ξ2c2)]+

+ ξ−α(ξ0v0 + ξ1v1 + ξ2v2)(ξ
0c0 + ξ1c1 + ξ2c2)} (6.12)

or more clearly, in order to arrange the power-like terms of ξ,

ξ−2∇y · (−D∇yc0 + ξ1−αv0c0)+

ξ−1

{

∇x · (−D∇yc0)−∇y · [D(∇xc0 +∇yc1)]+

+ ξ1−α

[

∂c0
∂τa

+∇x · (v0c0) +∇y · (v0c1 + v1c0)

]}

+

+ ξ0
{

∂c0
∂t

−∇x · [D(∇xc0 +∇yc1)]−∇y · [D(∇xc1 +∇yc2)]+

ξ1−α

[

∂c1
∂τa

+∇x · (v0c1 + v1c0) +∇y · (v0c2 + v1c1 + v2c0)

]}

= O(ξ)

(6.13)

Similarly, the same expansion operated on the boundary condition on Γ of

Eq. (6.10) leads to:

ξ0c0 + ξ1c1 + ξ2c2 = O(ξ3) y ∈ Γ (6.14)

It has to be noted that expressing the dimensionless Pe number as a func-

tion of the still dimensionless scale parameter ξ and the number α ∈ R is

legitimate, and it is done for simplicity of the treatment of the Péclet num-

ber during the multiple-scale expansion procedure. Moreover, in this way a

clear constraint in the homogenization of the advection-dispersion equation

is identified, which is the condition that α < 2, as clearly stated in Auriault

and Adler (1995).

Terms of order O(ξ−2)

Next, we collect the leading order terms of Eqs. (6.13) and (6.14) to create

a hierarchical scale of systems of equations. In the first one, terms of order
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ξ−2 and ξ−1−α are collected:

{

(∇y · (−D∇yc0 + ξ1−αv0c0) = 0 y ∈ B
c0 = 0 y ∈ Γ

(6.15)

The homogeneity of both equations in this system ensures the existence

of a trivial solution, i.e.: c0 = c0(x) (and consequently ∇yc0 = 0). It has

to be mentioned that the same result was obtained during the upscaling of

the Stokes equation with regards to fluid pressure (Eq. (2.71)), and again

this is consistent with physical intuition, as it expresses the concentration

behaviour as the sum of large-(spatial)scale dynamics and fast pore-scale

oscillations.

Terms of order O(ξ−1)

Then, terms of order ξ−1 and ξ−α are collected:



















[∇x · (−D∇yc0)]−∇y · [D(∇xc0 +∇yc1)]+

+ξ1−α

[

∂c0
∂τa

+∇x(v0c0) +∇y(v0c1 + v1c0)

]

= 0 y ∈ B

c1 = 0 y ∈ Γ

Now, we consider that, since ∇yc0 = 0 as obtained in the previous scale,

[∇x · (−D∇yc0)] = 0 . (6.16)

Then, we integrate Eq. (6.16) over the fluid domain B with respect to y,

resulting in:

∫

B

−∇y · [D(∇xc0 +∇yc1)]dy+ ξ1−α

(
∫

B

∂c0
∂τa

dy+

+

∫

B

∇x · (v0c0)dy+

∫

B

∇y · (v0c1)dy+

∫

B

∇y · (v1c0)dy

)

= 0

At this point, we introduce the local volumic averages of a quantity A(x),

as follows:

〈A〉 = 1

|Y |

∫

B

Ady, 〈A〉B =
1

|B|

∫

B

Ady, 〈A〉Γ =
1

|Γ|

∫

Γ
Ady

(6.17)

where 〈A〉 = ε〈A〉B, in order to express two of the terms in Eq. (6.17) in the
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following way:

∫

B

∂c0
∂τa

dy =
∂c0
∂τa

∫

B

dy = |B|∂c0
∂τa

and
∫

B

∇x · (v0c0)dy = ∇xc0(x)

∫

B

v0dy = ∇x · (c0|B|〈v0〉B)

Next we will use the divergence theorem and considering that thanks to the

assumption about the unit cells structure made in Eq. (2.65), the boundary

of the fluid domain, dB, can be split in the boundary of the unit cell dY

and the solid surface Γ: dB = Γ + dY . This results in:

∫

B

∇y · (v0c1)dy =

∫

Γ
n · v0c1dy+

∫

dY
n · v0c1dy = 0 ,

where the two integrals vanish due to, respectively, the no-slip condition on

v0 and the assumed periodicity of the coefficient functions v0 and c0. For

the same reason,

∫

B

∇y · (v1c0)dy = c0(x)

(
∫

Γ
(n · v1)dy+

∫

dY
(n · v1)dy

)

= 0 .

Regarding the last term,

∫

B

−∇y[D(∇xc0 +∇yc1)]dy = −
∫

Γ
n · [D(∇xc0 +∇yc1)]dy−

−
∫

dy
n · [D(∇xc0 +∇yc1)]dy = −

∫

Γ
n · [D(∇xc0 +∇yc1)]dy

(6.18)

At this point it is useful to write the macroscale (in the Ω domain) expression

of the diffusive particle flux towards the grain surface Γξ. With the usual

assumption of Fickian transport, we can define the flux as:

jξ =

∫

Γξ

−n · (D∇cξ)dy (6.19)

and using the derivation rule in Eq. (6.8), operating the multiple-scale ex-
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pansion of Eq. (6.6) and arranging the power-like terms of ξ results in:

j =

∫

Γ
−n · [D∇x(ξ

0c0 + ξ1c1 + ξ2c2)]dy+

+ ξ−1

∫

Γ
−n[·D∇y(ξ

0c0 + ξ1c1 + ξ2c2)]dy =

= ξ−1

∫

Γ
−n · (D∇yc0)dy+

+ ξ0
∫

Γ
−n · [D(∇xc0 +∇yc1)]dy+

+ ξ1
∫

Γ
−n · [D(∇xc1 +∇yc2)]dy+O(ξ2) , (6.20)

where the first term in ξ−1 vanishes due to the result from the scale of ξ−2,

stating that ∇yc0 = 0. We can thus write the flux in a more compact way

as follows:

j = ξ0
∫

Γ
−n · [D(∇xc0 +∇yc1)]dy+ ξ1

∫

Γ
−n · [D(∇xc1 +∇yc2)]dy+O(ξ2) =

= j,ε−1 + j,ε0 , (6.21)

and comparing Eq. (6.18) with Eq. (6.21), the result of the ξ−1 term is:

j,ε−1 + ξ1−α

(

|B|∂c0
∂τa

+∇x(c0|B|〈v0〉B)
)

= 0 , (6.22)

or

ξ1−α ∂c0
∂τa

= ξ1−α[−∇x(c0〈v0〉B)]− ĵ,ε−1 , (6.23)

where we defined the volumetric particle flux to the surface (from the scale

ξ−1) as:

ĵ,ε−1 =
j,ε−1

|B| . (6.24)

Substituting Eq. (6.23) in the original Eq. (6.16) (before the integration step)

in order to eliminate the temporal derivatives, the following is obtained:

−∇y · [D(∇xc0 +∇yc1)]− ĵ,ε−1+

+ ξ1−α [−∇x · (c0〈v0〉B) +∇x · (v0c0) +∇y · (v0c1 + v1c0)] = 0

(6.25)

Now, considering the Y -periodicity of v1, the no-slip condition at the scale
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ξ1, ∇y · v0 (from the continuity equation at the scale ξ−1), that ∇y · v1 +

∇x · v0 = 0 (from the continuity equation at the scale ξ0), and again the

result from the advection-diffusion equation at the scale ξ−2, we can write

some of the terms in Eq. (6.25) in the following way:

−∇x · (c0〈v0〉B) = −c0∇x · 〈v0〉B − 〈v0〉B · ∇xc0 = −〈v0〉B · ∇xc0 ,

∇x · (v0c0) = c0∇x · v0 + v0 · ∇xc0 ,

∇y · (v0c1 + v1c0) = v0 · ∇yc1 + (c1∇y · v0) + v1 · (∇yc0) + c0(∇y · v1) =

v0 · (∇yc1) + c0(∇y · v1) ,

which, substitued in Eq. (6.25) and coupled with the “perfect-sink” bound-

ary condition for the scale ξ1, result in the system















−ĵ,ε−1 −∇y · [D(∇xc0 +∇yc1)]+

+ξ1−α[(v0 − 〈v0〉B) · ∇xc0 + v0 · ∇yc1] = 0 y ∈ B
c1 = 0 y ∈ Γ

(6.26)

Then, in order to obtain a suitable cell problem, we look for a solution in

the form of Eq. (2.52), such as

c1(x,y, t, τa) = χ(y) · ∇xc0(x, t, τa) + c̄1(x, t, τa) (6.27)

leading to:

∇yc1 = ∇xc0 · ∇yχ , (6.28)

Substitution in Eq. (6.26) leads to:















−ĵ,ε−1 +∇xc0 · [−(∇yD) · (∇yχ+ I) + ξ1−αv0∇yχ] =

= ξ1−α[(〈v0〉B − v0) · ∇xc0] y ∈ B
χ(y) · ∇xc0 + c̄1 = 0 y ∈ Γ

(6.29)

This boundary value problem has a clear coupling between the pore-scale

and the macroscopic scale, as the solution χ(y) still has a dependency on

the macroscopic particle concentration co(x). This inconsistency is solved
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by eliminating the dependence of χ(y) on ∇xc0 by defining χ(y) to be the

Y -periodic solution of the cell problem:























−∇yD(∇yχ+ I) +
1

|B|

∫

Γ
n ·D(∇yχ+ I)dΓ +

+ξPev0∇yχ = ξPe(〈v0〉B − v0) y ∈ B
χ(y) = 0 y ∈ Γ

(6.30)

where the highlighted part is the partial volumetric surface particle flux

ĵ,ε−1 :

ĵ,ε−1 =
1

|B|

∫

Γ
n ·D(∇yχ+ I)dΓ (6.31)

No additional constraints to upscaling arise, apart from the already men-

tioned α > 2 to guarantee homogenizability and ξ ≪ l
L to ensure scale

separation. Thus, we can get to a form of the macroscale efective transport

equation by moving up one step in the hierarchy of scales, to scale ξ0.

Terms of order O(ξ0)

The terms of order ξ0 and ξ1−α in Eq. (6.13) are collected:























∂c0
∂t

−∇x · [D(∇xc0 +∇yc1)]−∇y · [D(∇xc1 +∇yc2)]+

ξ1−α

[

∂c1
∂τa

+∇x · (v0c1 + v1c0) +∇y · (v0c2 + v1c1 + v2c0)

]

= 0 y ∈ B

c2 = 0 y ∈ Γ

(6.32)

Again, we integrate Eq. (6.32) over B with respect to y resulting in, term

by term:

∫

B

∂c0
∂t

dy = |B|∂〈c0〉B
∂t

;

then, using Eq. (6.27),

−∇x · [D(∇xc0 +∇yc1)] = −∇x · [D(∇xc0 +∇yχ · ∇xc0)]

= −∇x[·D∇xc0(∇yχ+ I)]
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which, integrated over B, reads:
∫

B

−∇x ·D∇xc0(∇yχ+ I)dy = −∇x · ∇xc0|B|〈D · (∇yχ+ I〉B =

= −∇x ·D∗∗∇xc0|Y|

where D∗∗=〈D · (∇yχ+ I)〉 . Then,
∫

B

∂c1
∂τa

dy = |B|∂〈c1〉B
∂τa

and
∫

B

∇x · (v0c1 + v1c0)dy = |B|∇x · (〈c1v0〉B + c0〈v1〉B) .

and
∫

B

∇y · (v0c2 + v1c1 + v2c0)dy =

∫

B

∇y · (v0c2)dy+

∫

B

∇y · (v1c1)dy+

∫

B

∇y · (v2c0)dy = 0.

It can be immediately proven that this integral vanishes, using the diver-

gence theorem as done earlier and considering the no-slip conditions for

v0,v1 and v2 coming from the different expanded scales of the boundary

condition on Γ of Eq. (2.70), and the periodicity on the boundary dY of

coefficient functions v1, v2, c1 and c2. Finally, the last term

∫

B

(∇y ·D(∇xc1 +∇yc2)dy)

canbe treated much in the same way as Eq. (6.18) and, comparing it to

Eqs. (6.20),(6.21), we have:

∫

B

(∇y ·D(∇xc1 +∇yc2)dy) = −
∫

Γ
n ·D(∇xc1 +∇yc2)dy = j,ε0

Hence, the result of the ξ0 term is:

|B|∂〈c0〉B
∂t

−∇x ·D∗∗∇xc0|Y|+ j,ε0

+ ξ1−α

(

|B|∂〈c1〉B
∂τa

+ |B|∇x(〈c1v0〉B + c0〈v1〉B)
)

= 0 .
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Then, with

ĵ,ε0 =
j,ε0

|B| (6.33)

and rearranging the terms by powers of ξ and dividing by volume B, we
have:

∂〈c0〉B
∂t

−∇x · (ε−1D∗∗ · (∇xc0)) + ĵ,ε0 + ξ1−α

(

∂〈c1〉B
∂τa

+∇x

(

〈c1v0〉B + c0〈v1〉B
)

)

= 0

(6.34)

Since v0 = −k(y)∇xp0, where k(y) =
wj(y)

µ
as expressed in Eq. (2.76),

〈c1v0〉B = 〈(χ(y) · ∇xc0 + c̄1)v0〉B = 〈(χ(y) · ∇xc0)v0 + c̄1v0〉B =

= 〈χ(y) · k(y)〉B · (∇xp0 ⊗∇xc0) + c̄1〈v0〉B .

Since 〈A〉B = 〈A〉|Y |/|B|, and defining a new effective dispersion coefficient

D∗ = D∗∗ + ξPe〈χk〉∇xp0, we obtain

∂〈c0〉B
∂t

+ ξ1−α∂〈c1〉B
∂τa

= ∇x · (ε−1D∗ · ∇xc0)− ε−1ξ1−α∇x(c0〈v1〉+ c̄1〈v0〉)− ĵ,ε0

(6.35)

Now, using:

∂〈cξ〉B
∂t

=
∂〈c〉B
∂t

+ Pe
∂〈c〉B
∂τa

and

〈c〉B = 〈c0〉B + ξ〈c1〉B +O(ξ2)

leads to:

∂〈c〉B
∂t

=
∂〈c0〉B
∂t

+ ξ
∂〈c1〉B
∂t

+ ξ−α

(

∂〈c0〉B
∂τa

+ ξ
∂〈c1〉B
∂τa

)

,

and multiplying by ξ, to:

ξ
∂〈c〉B
∂t

= ξ1−α∂〈c0〉B
∂τa

+ ξ

(

∂〈c0〉B
∂t

+ ξ1−α∂〈c1〉B
∂τa

)

+O(ξ2) (6.36)
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Now, multiplying Eq. (6.35) by ξ, and adding the results to Eq. (6.22), and

using the result from Eq. (6.36), the following expression is obtained:

ξ
∂〈c0〉B
∂t

+ ξξ1−α∂〈c1〉B
∂τa

+ ξ1−α ∂c0
∂τa

=

ξ∇x(ε
−1D∗ · ∇xc0)− ε−1ξξ1−α∇x(c0〈v1〉+

+ c̄1〈v0〉) + ξ1−α(−∇xc0〈v0〉B)− ĵ,ε−1 − ξĵ,ε0 (6.37)

We can immediately compare the left hand side of this last equation with

Eq. (6.36), and since c0 = 〈c0〉B (due to ∇yc0 = 0),

ξ
∂〈c〉B
∂t

= ξ∇x

(

ε−1D∗ · ∇x〈c0〉B
)

− ε−1ξ1−α∇x ·
(

〈c0〉〈v0〉B + ξc0〈v1〉+ ξc̄1〈v0〉
)

− (ĵ,ε−1 + ξĵ,ε0) . (6.38)

Now, it is self evident that

〈c0〉〈v0〉B = 〈c0〉B〈v0〉

which, via the usual expansion of both functions, becomes:

〈c〉B〈v〉 = 〈c0〉B〈v0〉+ ξ〈c0〉B〈v1〉+ ξ〈c1〉B〈v0〉+O(ξ2)

We can now expand 〈c〉B in this way:

ξ〈c〉B = ξ〈c0〉B +O(ξ2) ,

and thus can express the diffusive term in Eq. (6.38) in terms of 〈c〉B which,

(after dividing by ξ and multiplying by ε), becomes:

ε
∂〈c〉B
∂t

= ∇x ·
(

D∗ · ∇x〈c〉B
)

− Pe∇x ·
(

〈c〉B〈v〉
)

− j̃ · 1
ξ

(6.39)

where j̃ = εĵ = ε(ĵ,ε−1 + ξĵ,ε0). This is the final form of the upscaled

equation, approximated up to the order ξ2. Unfortunately, this expression

does not constitute a proper macroscale expression for advective-diffusive-

reactive transport, as the term j̃ still shows a dependence on the coefficient

functions c0, c1 and c2, which themselves are defined in terms of both the

slow and the fast variables x and y, whereas a proper macroscale formulation

has to ignore the features and oscillatory behaviour at the pore-scale and as

such, show no dependence on y.
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6.3 Conclusions

In this final chapter we changed the perspective with which we approached

the issue of obtaining an appropriate predictive model for the particle de-

position problem. In the previous part of this thesis we analyzed fluid flow

and particle transport at the microscopic level by means of accurate nu-

merical simulations, at certain operating conditions and in different porous

media with specific features, and subsequently using the information gained

at the microscale to build predictive models employable at the macroscopic

scale. In this chapter instead, the method of asymptotic homogenization via

multiple-scale expansion was employed, in order to obtain a upscaled for-

mulation within a purely theoretical framework. First of all, we made the

assumption that the fluid flow follows Stokes’ equation of motion: this is

legitimate for a very wide range of practical cases, such as flow in aquifers.

This was done in order to build our analysis upon a well-known and es-

tablished result of homogenization theory, providing for a robust procedure

for the upscaling of Stokes’ equation, and an example of the framework

in which the following steps were taken. Next, the pore-scale formulation

of the advection-diffusion reaction was given, with the particle deposition

problem expressed (as explained in Chapter (5) in the form of a Dirichlet

boundary condition of particle concentration equal to zero at the border of

the grains. Then, in the hierarchy of problems coming from the asymptotic

expansion, a cell problem was identified, the solution of which would provide

for the determination of the effective particle transport coefficients in the

upscaled transport equation, obtained in the last step of the procedure. This

work was then successful, inasmuch it was possible to obtain a final formu-

lation of the particle advection-diffusion-reaction where a source term (not

present in the original, pore-scale, formulation) appears, which refers to the

macroscale removal of particles in the porous medium due to deposition phe-

nomena. Nevertheless, in the current form of this equation the macroscale

source term still shows a dependence on the microscale coefficient functions

describing the behaviour of particle concentration at the pore-scale, and is

thus not readily employable. More work is thus needed to obtain an ap-

propriate formulation of this term, in a way that ignores the details of the

microscopic structure and only depends on the length scales of the full sys-

tem. Finally, when this last step will have been solved, the framework has

already been developed in order to solve the proposed cell problem with mi-

croscale methods (e.g.: CFD) and obtain the upscaled transport coefficients,

thus connecting the methodology employed in the remainder of this thesis

with a rigorous and robust method of transport equations upscaling.
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Conclusions

In this dissertation, the investigation of particle and scalar transport and

reaction, or deposition, in porous media is discussed. The approach cho-

sen in this work has been to explore the nature of fluid flow and particle

transport and deposition performing detailed computational fluid dynamics

(CFD) simulations of these phenomena, by using accurate reproductions of

the microscopic structure of the packings considered. In addition to CFD

simulations, also the methodology to obtain the geometric models was fully

“artificial”, that is, the structure of the porous media investigated was algo-

rithmically reconstructed with rigid-body simulations reproducing the actual

process of the packing formation. Moreover, we placed great emphasis on

the use of free and open-source codes and software in this work, in order

to maximize the reproducibility of the results and the easiness of furthering

the development of the techniques proposed herein.

Chapter 2 gives a theoretical background on the nature of studying

porous media and specifically on the issue of their inherent multiscale nature.

The equations for fluid flow, scalar and particle transport in saturated media

are stated, along with their corresponding classic upscaled form. Then, the

problem of particle surface deposition is introduced, along with a descrip-

tion of current state of the research. The equivalence of the investigation

of this problem and that of surface reactions involving scalars is also men-

tioned. The limitations coming from the statement of this problem in the

form of simplified geometrical models are made clear, manifesting the need

for detailed pore-scale simulations.

Thus, in Chapter 3 the first results coming from pore-scale simulations of

single phase flow and scalar transport are shown. Only one porous medium

model was considered, but wide ranges of Reynolds and Péclet numbers have

been investigated, including non-linear regimes. In this initial approach to

113
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detailed microscale simulations, great care was given in the pre-processing

phase and mesh construction process, in order to ensure the highest possible

accuracy with respect to numerical and computational issues, often encoun-

tered when solving the Navier-Stokes and the advection-diffusion equation

with the finite-volume method. In order to ascertain the applicability of

this methodology, all the basic features of the resulting geometric structure

and fluid flow and scalar transport are analysed. Permeability, mean tor-

tuosity, and mean shear rate have been calculated explicitly from the flow

field results, while the dispersivity has been estimated both with the method

of moments and using the least-square formulation of the inverse problem.

The results demonstrate the validity of the method, predicting the linear

and non-linear regimes of Darcy’s law with well-defined permeability and

tortuosity constants in the first regime, and three different regimes for hy-

drodynamic dispersion at increasing Péclet numbers: one dominated by the

molecular dispersion, then a region where the mechanical and molecular

dispersion are of the same order of magnitude, and finally a region where

the inertial effects dominate. This correlation for the hydrodynamic dis-

persion in terms of Péclet number is verified for the porous medium under

study with the proposed simulation and upscaling tools. The asymptotic

dispersion regime is quickly reached and dispersion is well approximated by

the Fickian hypothesis, even if the fluid velocity distributions are not Gaus-

sian. In this chapter, the viability of artificially constructed porous media

in CFD simulations has been proved, but the rigid-body simulation method

was employed for just one geometric model.

The capabilities of this technique were explored in much greater detail

in Chapter 4, where a variety of realistic systems describing a wide vari-

ety of catalytic bed packings characterized by different size distributions

and catalyst shape were investigated. Catalytic particles in the shape of

spheres, cylinders and trilobes were considered. The software Blender was

used which, integrated with the Bullet Physics Library, provided for the rigid

body simulation code with which to obtain the geometric models. This work

showed how the main advantage of this approach (versus other alternatives)

stands in the possibility of simulating packings constituted by particles with

complex shapes (e.g. non-convex objects such as trilobes). First, the geo-

metrical features of the artificial packings were compared to corresponding

experimental data, and this demonstrated that the generated packings real-

istically describe the behaviour of catalytic fixed bed reactors, for instance

with respect to the resulting bulk porosity. Interesting results are also ob-

tained regarding the influence of the grains polidispersity on the resulting

packing bulk porosity, where while for spherical and cylindrical particles the
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expected inversely proportional relationship is found, this is not true in the

case of trilobes. Finally, when working with spherical particles and cylin-

drical beads, the well known radial porosity profiles are obtained, with an

accuracy superior to other similar tools. Having positively validated this

methodology with regards to geometrical features of the packings, pressure

drop simulations were carried out. These also showed very good agreement

with the predictions of the Ergun law, both in the case of spherical and cylin-

drical catalyst shape, but also in the case of polydisperse trilobes very good

results are obtained, especially considering that these complex non-convex

objects are very difficult to treat. The results obtained in this Chapter

show that this approach can be used to more deeply study the effect that

the shape, size and length distribution of catalyst particles have on fluid

flow in fixed bed reactors, and improve existing models for pressure drop

predictions.

Chapter 5 comprises the last part of this thesis dealing with microscale

CFD simulations. There, the study is extended to consider particle deposi-

tion, or equivalently scalar surface reaction. As mentioned earlier, the issue

of the currently used models for treating particle deposition is their reliance

on simplified descriptions for the porous medium, which cannot accurately

describe the real pore structure, with clear effects on the predictive capabil-

ities for this models. Thus for validation purposes, we firstly considered one

single spherical collector, with Brownian motion as the dominant mechanism

for deposition. In this case the original correlation proposed by Levich was

obtained, thus proving the consistency of the methodology adopted with

the underlying theory. Then, we took steps of increasing complexity of the

porous medium model investigated. When considering complex porous me-

dia constituted by a random arrangement of different circular collectors a

power-law dependency analogous to the Levich one (albeit, with different

coefficients), is found. In this case porosity and effective grain size were ca-

pable of fully characterizing the observed behaviour. Then, packings consti-

tuted by irregularly shaped collectors are considered. In this case, a similar

dependency was again observed although porosity and effective grain size

seem not to be capable alone to fully characterize the porous medium. This

deviation arising in the case of realistic geometries would seem to indicate

that another parameter should be included in the laws predicting Brownian

particle deposition, and is a clear indication of the failure of simple classic

particle deposition models in the treatment of packings of realistic collec-

tors. This issue also arises in the case of particle interception, where the

results of the microscale simulations clearly manifest a dependency of the

deposition efficiency on the Reynolds number, which the classic models do
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not consider.

Chapter 6 closes this dissertation with a more theoretical approach to

the problem of obtaining an appropriate upscaled form of the equations

governing scalar and particle transport at the pore-scale, where the method

of asymptotic homogenization via multiple-scale expansion was employed.

Given the usual pore-scale formulation of the advection-diffusion reaction,

we introduced the scalar/particle deposition problem, as in the preceding

Chapter, with a boundary condition of particle concentration equal to zero at

the walls of the solid grains. Using this procedure, it was possible to formally

separate the scales of this problem in two distinct scales. First, a microscale

cell problem was identified, then the final upscaled form of the original

pore-scale problem is obtained, whose effective transport coefficients are the

result of the solution of the cell problem. The final result proposed in this

Chapter is a formulation of the particle advection-diffusion-reaction where

the particle removal is not expressed as a boundary condition on the grains

walls anymore (as the geometric structure details are lost in the macroscale

equation), but as a source term depending on particle concentration. Further

work is still needed on the formulation of this source term, as it was not

yet possible to express it only as a function of macroscopic quantities, but

still shows a dependence on the pore-scale coefficient functions, making it

unsuitable for the use in a fully macroscale transport equation. Finally, it

has to be noted that this homogenization method, obtaining an upscaled

eqaution whose effective coefficients are obtained from the solution of an

identified cell problem, pairs very well with the methodology and techniques

presented in the rest of this thesis, where efficient and reliable methods

for the solution of microscale scalar and particle transport and deposition

problems are shown.

Concluding, this work proves the success and viability of a fully in-silico

open-source approach for the investigation of multi-phase packed systems

via rigid-body simulations and computational fluid dynamics.
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