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Chapter 1

Introduction

Many systems of practical interest can be characterized as porous (or “packed”)

media, which can be both natural or engineered.

For example, regarding the former category, in recent years the droughts

and water scarcity affecting many parts of the developing and developed

world brought renewed attention to the problem of water availability and

re-emphasized the necessity of studies of water flow in aquifers.

An even greater push in this direction (and connected with the issue

of safe drinking water availability) is given by the growing concerns about

environmental contamination of said water sources, be it saltwater intrusion,

from chemical contaminants coming from industrial waste, biotic (bacteria

or viruses) colloids coming from agricultural waste or even radioactive waste.

As a direct consequence, new innovative remediation techniques are being

developed and put into application, for which the employment of new and

more accurate studies of transport phenomena in porous media are needed.

An example over all is the use of micro- and nano- sized zerovalent iron

particles degrading non-aqueous organic contaminants in aquifers. In this

field of particular interest is the investigation of particle transport in the

porous medium, and particle deposition in the grains constituting the porous

medium.

Another example of a natural system of great interest is that of oil reser-

voirs: in recent times, due to the falling in extraction rates caused by the

natural exhaustion of oil fields, new techniques are being developed and ex-

tensively studied such as polymer flooding and alkali-surfactant methods,

which collectively go under the umbrella term of tertiary or enhanced oil

recovery. Also in this field the investigation of (mainly non-Newtonian)

fluid flow and scalar transport is of paramount importance.

Regarding artifical systems, a great many of the unit operations relevant
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2 CHAPTER 1. INTRODUCTION

to chemical engineering are carried out in packed system. Some example are

catalytic or inert packed bed reactors, trickle bed reactors, all filtration pro-

cesses and chromatographic separation. While most of these systems have

been in use and hence studied for some decades now, new and fast-growing

technologies are coming to the forefront of industrial and commercial inter-

est, such is the case of fuel cells: also in this case, new studies focusing on

transport in porous media are needed.

This brief overview serves as a reminder of the vastitude of this field

and ever-growing importance in today’s world. In fact, as it is known

and as it has been mentioned, porous media have been studied for a long

time. Darcy’s famous empirical law relating pressure drop and fluid velocity

through a packed system dates back to the nineteenth century; its eventual

correction for the accounting of non-linearities arising in the inertial range

by Forchheimer, and observations by Knudsen about the so-called slip flow

of rarefied gases in porous media took place at the start of the twentieth;

Brinkman’s addition of effective viscosity term to Darcy’s law, the widely

successfully employed Ergun’s law, amongst other consolidated studies and

theories, followed by a few decades. That is not to say, however, that our

knowledge of transport, reaction and other phenomena in porous media is

complete. As is it evident, the models that are employed in homogeneous

media cannot be directly employed in inhomogeneous ones, as the presence

of the solid influences these phenomena in a significant way.

Two problems arise when trying to obtain accurate models when dealing

with packed systems, and both of them are related to the spatial scale of the

problem. First, having made the assumption of working at the continuum

scale as it will be the case in this dissertation, the smaller relevant scale at

which transport or reaction phenomena are to be studied (the “pore-scale”),

can still range from a few millimeters down to a few tens of micrometers:

this makes direct observation and the preparation of suitable experiments

difficult.

Secondly, the characteristic lengths at which this pore-scale has to be

investigated almost never matches the spatial scale at which dynamics of

the real system or industrial application develops. This difference could

be, in some cases, of many orders of magnitude: suffice as examples the

aforementioned cases of water remediation or enhanced oil recovery, where

the difference between the micrometer sized pore-scale and the kilometers

extension of the aquifer or oil fields is unbridgeable.

The first attempts to tackle this problem were to search for models

that could have practical applicability, through ignoring the microscopic

structure of the medium and deriving relationships valid at the appropriate
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macroscopic scale, and which would take into account the small-scale phe-

nomena through “effective” parameters. This is the case of Darcy’s law in

which permeability is the upscaled parameter which considers pore struc-

ture, while the domain of Darcy’s law is a new pseudo-homogeneous system,

where the difference and the boundary definition between the solid and the

fluid zone are lost. While this works quite well for certain problems and un-

der certain conditions (in the latter case, if the fluid is Newtonian and veloc-

ities in the Stokes regime), issues arise in a large number of other important

cases of interest. For example in the case of catalytic reactors, large experi-

mental campaigns are run in order to obtain macroscale mass transfer and

dispersion coefficients, however these studies are not at all straightforward,

due to the pore structure which characterises these systems. Near-wall chan-

neling effects and other small-scale complexities may arise, having a great

impact on the overall fluid flow and transport process, which are not easy

to translate into adequate effective macroscale coefficients. This makes the

preparation of comprehensive bench-scale experiments difficult, and results

in a challenging scale-up of the results obtained at the small-scale to the

larger industrial scale of interest. There are many other examples in which

classic macroscopic models fails to represent the actual physical reality, such

as the onset of instability in variable density flows, the rate of mixing con-

trolled chemical reactions or mixing-induced precipitation phenomena, and

asymmetrical long tails in breakthrough curves in some non-standard sys-

tems.

The purpose of the work presented in this thesis is then to tackle both

the problem of accurately studying fluid flow, scalar and particle transport

and deposition in porous media at the microscopic scale (or pore-scale),

and also to work on how the information and insights gained at the pore-

scale can be translated into effective models applicable at the macroscopic

scale. With respect to the first issue, the approach that we have chosen is

to perform detailed computational fluid dynamics (CFD) analyses of

these phenomena. With the growing availability of computational power,

which has been in a predictably upward trend in the past decades, CFD

can now be used to treat even complex systems and phenomena, like the

ones explored in this work. This complexity, in the case of heterogenous

systems, as it has been made clear earlier, is first and foremost related to

the geometrical structure of porous media, whose characteristic lengths and

range of variation can be nigh impossible to reliably reproduce with ex-

periments. In fact, the very first issue our work has encountered was the

choice of the geometric models on which to perform CFD simulations or

more appropriately, their origin. The choice most frequently made, even
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when performing computer simulations, is to start from actual experimen-

tally obtained models of the packed system under investigation, such as

X-ray micro-computer-tomography (µ-CT) or scanning electron microscopy

(SEM) scans, and then in some way digitize these models for the use in the

CFD code. Our approach, for reasons which will be made clear momentarily,

has been different. In fact, we decided to use artificial models, which means

that we employed algorithmic reconstruction methods to simulate on a com-

puter (given a certain grain shape and grain size distribution function) the

packing process and thus obtain a precise representation of the chosen sys-

tem. Specifically, robust and tested rigid-body interaction codes were

employed, as it will be described in detail in the relevant chapters.

This choice was made for two reasons, the first of which is practical in

nature, as it is much easier to treat computer-generated models as basis

for CFD simulations than actual reconstructions of experimental data that,

while describing very accurately the porous medium, suffer from big prob-

lems in the post-processing of that data in order to extract suitable meshes

to use in finite-element or finite-volume codes.

The second reason, central to this work, is to offer a proof of concept

of the possibility of investigating complex transport phenomena in systems

which are themselves very complex in nature from the standpoint of their

geometrical structure, only using an in-silico framework and thus rely-

ing only on computer simulations, and on experiments just for the needed

validation and verification of the latter. Moreover, as it will be made clear,

great emphasis has been placed on the choice and use of fully free and

open-source codes and software, in order to both stress the importance of

the widest possible availability of the research instruments employed herein,

and also (maybe more importantly) to provide for the reproducibility of the

results presented.

The second issue arises when, having extracted precise models at the

pore-scale, it becomes necessary to obtain reliable models for use at the

macroscale. As it will be detailed in this work, this has been the endpoint

of each CFD simulation campaign and subsequent analysis. Also, there was

a specific effort to obtain macroscopic models through the upscaling of the

relevant differential equations at the pore-scale through a purely theoretical

approach, which is homogenization through asymptotic expansion.

As it will be shown in detail later on, this approach can both, as stated,

provide for upscaled equations for use at the macro-scale but also identify

regions of applicability for these same equations, and thus making possible

the use of hybrid CFD-macroscale models which, while not being contem-

plated in this dissertation, are a clear next step in the direction towards a
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reliable modeling of complex transport phenomena in porous media.

So, as a brief overview and reading guide, this thesis is organized as

follows.

Chapter 2 gives a theoretical background with regards first to incom-

pressible fluid flow in saturated porous media, then to particle dispersion and

surface particle deposition phenomena. In all these cases, both the micro-

and the macro-scale formulations are given and the multiscale problem is

stated, which brings to the last section about homogenization theory, which

is laid down in the closing of the chapter.

In Chapter 3 fluid flow, scalar transport and particle transport in a

fully three-dimensional porous medium is described by means of CFD sim-

ulations, investigating hydrodynamics dispersion and the coherence of the

results with the Fickian hypothesis. In this chapter the algorithmic recon-

struction method for the creation of the medium models is first used and

described.

Chapter 4 deals with fluid flow in a variety of realistic systems de-

scribing a wide variety of catalytic bed packings characterized by different

size distributions and catalyst shape. More detail is given with regards

to the features of the geometry creation—simulation—analysis open-source

framework developed in this thesis. This work has been carried out in col-

laboration with IFP-Energies Nouvelles.

Chapter 5 introduces the problem of surface particle deposition, which

is again investigated through CFD simulations performed both in realistic

systems and in simplified reconstructions of porous media. Results are com-

pared with other existing correlations based on the “perfect sink” deposition

model.

Chapter 6 closes this dissertation by changing the approach to the

particle deposition problem, which here is studied via a theoretical upscaling

method, which is homogenization theory. The microscale formulation is

given, and the macroscale “homogenized” result is presented. The work

presented in this chapter has been carried out with the assistance of Prof.

Daniel Tartakovsky at University of California, San Diego.
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Chapter 2

Theoretical Background

In this chapter, the basics regarding fluid flow, scalar transport and particle

transport and deposition in porous media will be covered and explained. A

great deal of attention will be given to the analysis and modelling of surface

reaction and particle deposition processes. As already stated in the intro-

duction, this has a huge impact on the development of macroscale models

for catalytic reactors, filtration processes and aquifer remediation processes

employing particulate systems. Then, an overview of the computational

methods employed in this work will be provided, ranging from the tools em-

ployed in the reconstruction of the porous media models used in the fluid

dynamics simulations, to the specifics of the computational fluid dynamics

(CFD) work performed. In the last section an overview of the theoretical

foundation of homogenization theory will be given and its usefulness in the

upscaling process of transport phenomena in porous media will be made

clear, setting the stage for the results presented in the last chapter of this

thesis.

2.1 Single-Phase Flow in Porous Media

As it has been noted in the previous chapter, the length scales involved in

the investigation of transport phenomena in porous media at the scale of the

pores are very small: most often at the order of hundreds of micrometers.

Even at these scales, the continuum hypothesis holds true, and thus these

phenomena are governed by the well known continuity and Navier-Stokes

equations, which respectively read as follows:

∂Vi

∂xi
= 0, (2.1)

7



8 CHAPTER 2. THEORETICAL BACKGROUND

∂Vi

∂t
+ Vj

∂Vi

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2Vi

∂x2j
, (2.2)

where Vi is the ith component of the fluid velocity, p is the fluid pressure,

and ρ and ν are its density and kinematic viscosity, respectively, and the

Einstein or index notation has been used.

However, in the vast majority of cases it would be impractical (and

frequently outright impossible) to attempt to describe the flow through a

porous medium via a formulation of this kind, that is, a micro-scale formu-

lation. As a matter of fact, this would result in the need for a precise knowl-

edge of the microscopic geometric structure of the whole porous medium,

which is unattainable in practice.

Consequently, these problems are traditionally approached using contin-

uum macro-scale formulations, where the relevant variables are the result of

an averaging operation carried out on the underlying microscopic features.

This kind of treatment entails the loss of distinction between the solid and

the fluid portions of the domain, and the elementary particle in this formu-

lation becomes a blended fluid-solid zone, characterized only by its porosity.

For clarity, this simplification operation and the loss of information which

accompanies it could be considered akin to, at a lower scale, the transi-

tion between the molecular description of a fluid and the fluid-continuum

description (the one governed by Eqs. (2.1) and (2.2)). Performing these op-

erations, on the continuity and Navier-Stokes equations, results respectively

in:

∂Ui

∂xi
= 0 , (2.3)

and

∂Ui

∂xi
+ εUj

∂Ui

∂xj
= −1

ρ

∂P

∂xi
+ gi − γUi , (2.4)

where Ui is the Darcyan velocity in the ith direction, P the upscaled (Dar-

cyan) pressure, γ is the friction factor and gi the gravity acceleration. Also,

as it has been noted, the domain to which these equations apply to is not

restricted to the fluid volume anymore, but to the whole porous medium

volume, hence the appearance of porosity, ε.
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2.1.1 Flow at low Reynolds numbers

The earliest approaches to this problem are to be considered in the context of

the search for a simple equation dealing with the relationship between pres-

sure drop and superficial velocity, and implicitly made use of the macroscopic

description of a continuous fluid-solid domain just presented. Translated in

the notation of the previous section, this corresponds to identifying a con-

stitutive equation for the friction factor γ.

Case in point are the experiments by Henry Darcy, which investigated

the aquifer and sand filter system employed in the delivery of freshwater to

the city of Dijon. From his work resulted the extremely well-known (and

still relevant) Darcy’s law (Darcy, 1856):

∆P

L
=

µ

k
q , (2.5)

where ∆P is the integral pressure drop across the porous medium, L is

its length and thus characterizes flow in saturated porous media via its

permeability, k, and the fluid superficial velocity q, which corresponds to

the magnitude of U (introduced in Eqs. (2.3) and (2.4)) in the main flow

direction. These two last parameters are the result of the aforementioned

averaging procedure, and it is apparent how the actual velocity of the fluid

inside the pores (henceforward, pore-velocity) differs from the superficial

velocity q. Since part of the cross-sectional area (with respect to the main

fluid direction) is occupied by the solid matrix, fluid flow takes place only

in part of it, leading to a porosity-dependent relationship between the two:

V =
q

ε
, (2.6)

where again, with V is to be considered the magnitude of V (introduced

in Eqs. (2.1) and (2.2)) in the main flow direction. This law was originally

derived by Darcy himself on phenomenological and experimental grounds,

and is valid for low fluid velocities. Equivalently, it can be derived from

the “first principles” of fluid flow employing simple conceptual models of a

porous medium, and working up from micro- to macro-scale. Neglecting the

transient and inertial term in Eq. (2.4) and considering a one-dimensional

problem, Darcy’s law is obtained, with the friction factor assumed to be

constant: γ = µ/ρk, resulting in:
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∂P

∂xi
=

µ

k
Ui , (2.7)

which, integrated on a finite domain of length L in the main flow direction

results in Eq. (2.5).

A clear overview of these approaches can be found in Bear (1988). More-

over, this procedure has also been accomplished, in a particularly mathemat-

ically sound way, using the tools of asymptotic homogenization (Hornung,

1997), univocally upscaling Stokes’ law for creeping flow to obtain Darcy’s

law. This (now classic) result will be presented in the second to last chapter

of this work, along with its use as a stepping stone towards the upscaling of a

specific case of particle transport and deposition. Equation (2.5), while still

being useful in many aquifer systems cases characterized by conditions of low

fluid flow, has been found to have an upper range of validity, expressed in

terms of superficial velocity q. More appropriately, and by analogy with the

usual analysis of the laminar-turbulent flow transition, it can be expressed

in terms of the Reynolds number (Bear, 1988),

Re =
q Dg

ν
, (2.8)

where the system’s characteristic length (usually taken to be the reactor or

pipe diameter in the process industry) is the average grain diameter Dg.

Details of the calculation of this average diameter for each case considered

will be provided later on: but in most cases it is an equivalent diameter

calculated from the specific surface of the grains assuming their spherical

shape. As such, in the vast majority of cases, Darcy’s law will find an upper

range of validity at Re ranging from one to ten (Bear, 1988; Hassanizadeh

and Gray, 1987).

2.1.2 Flow at high Reynolds numbers

Beyond this limit, the linear relationship expressed in Eq. (2.5) between

superficial velocity and the hydraulic gradient (∆P/L) ceases to be valid,

making Darcy’s law unsuitable for describing the non-linearities arising un-

der these conditions (Sethi, 2011).

Instead, a similar macroscopic law can be used to that end, which is the

Forchheimer equation (Forchheimer, 1901; Tosco et al., 2013):
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∆P

L
=

µ

k
q + βρq|q| , (2.9)

where β is the so-called inertial flow parameter and, like k, is independent

of fluid properties and only depends on the microstructure of the porous

medium. Again in terms of the closure needed for the upscaled Eq. (2.4),

this corresponds to assuming γ = µ
k + βρ|q|.

Various attempts at an explanation of this phenomenon have been made:

the most intuitive of which would be to ascribe this nonlinearity to the onset

of turbulence, by immediate analogy with the relationship between head loss

and fluid velocity for the flow in pipes, which becomes non-linear right af-

ter the transition to the turbulent region corresponding to higher Reynolds

numbers. The problem with this approach is that while for the flow in pipes

the laminar and turbulent zones are clearly identifiable, the transition in

the case of flow in porous media is much smoother, with no clear separa-

tion between the two: this can be related to what is known for flow around

spheres, where the same behaviour is found. As a side note, this is but one

example of the difficulties in the conceptualization of simplified models of

porous media: what was just mentioned explains why trying to reduce a

packed bed (for example) to a collection of straight tubes would fail. Later

on it will be shown that the opposite approach (a collection of submerged

objects) wouldn’t be satisfactory either, with the most promising results

coming from a middle-of-the-road approach. Moreover, and even more im-

portantly, a number of experiments were conducted in the past to identify

the critical Reynolds number associated with the transition to the turbulent

zone in porous media, and found it to be several orders of magnitude higher

than the Re at which the nonlinearities begin to become apparent (Schnee-

beli, 1955; Dudgeon, 1966). Another explanation, and the accepted one, is

for this behaviour to be due to the rising importance of inertial forces at

higher velocities, whereas they are negligible (with respect to viscous forces)

at Re lower than the aforementioned threshold. The concurrency of these

two effects together with the flow separation at high Re (due to inertial

forces) in the zones where flow abruptly changes direction in the vicinity of

a solid wall, explain the observed relationship between pressure drop and

superficial velocity. A more in-depth review of these concepts can be found

in Bird et al. (1960); Bear (1988).

Amongst the various conceptual models used in porous media modeling,

one that has been particularly successful is a modified form of the mentioned

“bundle of tubes” mentioned earlier, which deserves special attention here as
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its end results will be the basis for the analyses of fluid flow results performed

in this work. An even more in-depth description, along with a comparison

with other models (as the somewhat less successful “collection of spheres ”

model), can be found in Bird et al. (1960). Its origin lies in the attempt

to conceptualize and simplify a very important and widely used system in

process engineering, which is the packed column. It does so by visualizing

it as tangled assembly of crooked tubes, and re-obtaining an appropriate

friction factor (starting from the usual expression for smooth tubes) for flow

through the entire packed bed. Then, the result is adapted to the cases of

both laminar and high-turbulent flow, resulting in the Blake-Kozeny and

Burke-Plummer equations, which read respectively as follows:

∆P

L
= 150

(

µq

Dg

)

(1− ε)2

ε3
, (2.10)

∆P

L
=

7

4

(

ρq2

Dg

)

(1− ε)2

ε3
. (2.11)

These two, after taking care of superposing the expressions to deal with

the transition region between laminar and turbulent regimes, can be com-

bined together into the well-known Ergun’s law (Bird et al., 1960):

∆Pρ

G2
0

dg
L

ε3

(1− ε3)
= 150

1− ε

(DgG0)/µ
+ 1.75 , (2.12)

whereG0 is the mass flux (G0 = ρ q). The Ergun law is often expressed in

terms of the dimensionless pressure drop, ∆P ∗, and the modified Reynolds

number, Re∗, as follows:

∆P ∗ =
150

Re∗
+ 1.75 , (2.13)

where of course ∆P ∗ = ∆Pρdgε
3/LG2

0(1−ε3) and Re∗ = DgG0/(1−ε)µ . It

has to be noted that this modified Reynolds number differs from the above

defined Reynolds number just for the presence of the porosity.

2.2 Scalar/particle transport and deposition/reaction

The same continuum approach used to describe fluid flow at the pore-scale

(expressed by Eqs.(2.1), (2.2)) can be adopted to describe scalar transport
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and reaction and particle transport and deposition. 1 This results, in an

Eulerian framework, in the well-known advection-diffusion equation:

∂c

∂t
+ Vj

∂c

∂xj
=

∂

∂xj

(

D ∂c

∂xj

)

, (2.14)

where c is the pore-scale particle/scalar concentration and D is the par-

ticle/scalar diffusion coefficient. In the case of a reacting scalar this is the

standard molecular diffusion coefficient, whereas in the case of particles this

is the diffusion coefficient due to Brownian motion, which is in turn generally

estimated with the Einstein equation (Einstein, 1905):

D =
kBT

3πµdp
, (2.15)

where kB is the Boltzmann constant, T is the temperature, µ = ρ ν is

the dynamic viscosity of the fluid and dp is the particle size. The overall

approach is valid only if the size of the particles being transported is much

smaller than the size of the pores, and if their concentration is low enough

to describe diffusive flux through Fick’s law. Surface chemical reaction and

particle deposition do not usually appear in Eq. (2.14), since they are treated

as superficial phenomena. Particle deposition is generally accounted for

with a boundary condition at the pore wall. This aspect will be clarified

in the later chapters. Beneath a treatment of this kind is the underlying

assumption that the solid particles are following the fluid flow along its

streamlines: this condition is typically verified for solid particles (of density

of about 5000-10000 kg m−3) moving in water at room temperature with

size equal to or smaller than 1 µm or, more properly, when the suspended

particles’ Stokes number, identifying the ratio between the characteristic

relaxation time of the particle and that of the fluid is very small (≪ 1), as

it is the case in the majority of the operating conditions under scrutiny in

this work. Following the same steps taken when dealing with fluid flow, a

macroscopic equivalent of Eq. (2.14) is usually employed, resulting in:

1In this work particle and scalar transport are treated with the same approach. In
fact, when particles are small enough to closely follow the fluid, they can be treated as
scalars, advected with the fluid velocity. In this context particle deposition on the surface
of the grains constituting the walls of the porous medium can be thought of as a surface
chemical reaction involving the transported scalar. Therefore results obtained for particle
deposition can be easily employed for simulating scalar transport and reaction.



14 CHAPTER 2. THEORETICAL BACKGROUND

∂C

∂t
+ Uj

∂C

∂xj
=

∂

∂xj

(

D
∂C

∂xj

)

− kdC , (2.16)

where Uj is the superficial velocity in the jth direction, C is the macroscale

particle concentration, D is the dispersion tensor whereas kd is the parti-

cle deposition rate constant. As already mentioned, the discussion related

to Eq. (2.16), which mainly pertains particle deposition, can be easily ex-

tended to the problem of transport of a scalar involved in a surface chemical

reaction.

2.2.1 Particle dispersion

The dispersion tensor, D, is comprised of two contributes, and is customarily

expressed as the sum of the effective (macroscopic) molecular diffusion D0

and mechanical dispersion (Di Molfetta and Sethi, 2012). The first one (D0)

is the upscaled effect of the molecular diffusion and it is worth noting that

while D is a scalar, its macroscopic counterpart, D0, could be a tensor when

the porous medium is not perfectly isotropic: this is due to the effect of tor-

tuosity (τ or a tensor τ ) which slows down particle migration. Mechanical

dispersion is instead due to pore structure (and hence fluid streamline) het-

erogeneities at the pore scale, which result in non uniform distributions of

fluid velocities in a pore throat, different velocities among the various pore

throats, and in a rise of a transversal component of the velocity, again due to

tortuosity. Extensive lab testing has found that the magnitude of mechan-

ical dispersion is proportional to the fluid superficial velocity (Di Molfetta

and Sethi, 2012). It is also usually subdivided in two separate contributions

identified by two other dispersion coefficients, one representing longitudi-

nal, DL, and the other transversal dispersion, DT. These coefficients (or in

general D) depend on the porosity, ε and on the tortuosity of the porous

medium and on the Péclet number of the flow Pe = qDg/D. Since they

can be The effect of diffusion and mechanical dispersion combined is also

called hydrodynamic dispersion. Fluid flow both in natural and in engi-

neered systems usually has one main direction (and that is the case in all

the systems studied in this work), hence its macroscopic average velocity

in that direction can be expressed with a surface averaging operation over

the two other (orthogonal) directions of the pore-scale velocity Vi(x), result-

ing in a one-dimensional form of the velocity Ux(x). The same operation

can be performed on pore-scale concentration, resulting in the macroscopic

concentration C(x). With these definitions it is straightforward to obtain a
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one-dimensional form of Eq. (2.16),

(∂Cε)

∂t
+ Ux

∂C

∂x
=

∂

∂x

(

εD
∂C

∂x

)

, (2.17)

where D is a simplified form of the tensor D of Eq. (2.16), and is a

scalar equal to the sum of the effective (as in, macroscale) molecular and

longitudinal dispersion coefficients. The difference lies in neglecting flow in

the two other orthogonal directions, which causes the transversal dispersion

coefficient to be equal to zero and thus the mechanical dispersion to develop

only in the longitudinal direction:

(

ǫD0
∂C

∂x
− ǫ〈V ′

xc
′〉
)

= εD
∂C

∂x
, with D = D0 +DL, (2.18)

where V ′
x and c′ are respectively the pore-scale deviations of velocity and

concentration from their average values: V ′
x = Vx − Ux/ε and c′ = c − C.

For the unclosed term 〈V ′
xc

′〉 an expression akin to the standard Fick’s law

was implicitly used:

〈V ′
xc

′〉 = 1

εLyLz

∫

Ly

0

∫

Lz

0
V ′
xc

′ dy dz ≈ −DL
∂C

∂x
. (2.19)

When the porosity ε is constant in time, it is possible to rewrite (2.17) as

follows:

∂C

∂t
+

(

Ux

ε
− 1

ε

∂εD

∂x

)

∂C

∂x
= D

∂2C

∂x2
, (2.20)

The coefficient D, being comprised of two terms respectively accounting for

diffusive and advective phenomena, is best described as a function of the

Péclet number. For Pe tending to zero, when diffusion predominates, this

relationship holds (Bear, 1988):

D

D =
1

τ2
, (2.21)

Regarding the calculations of τ , many definitions and formulas have

been proposed and recent works (Koponen et al., 1996; Clennell, 1997; Duda

et al., 2011) have demonstrated their effectiveness and the difference between

formulations. The most common definition involves the computations of

streaklines (i.e. Lagrangian trajectories) of the flow and the calculation of
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the ratio between their length and the porous medium size. Koponen et al.

(1996) and Duda et al. (2011) proposed a simpler way to compute τ as a

volume integral

τ =

∫

|V| dx
∫

Vx dx
. (2.22)

Going to higher Pe numbers other correlations are used. For example a

very common one, D = αUx, links the dispersion coefficient to a parameter,

α, of the order of the mean grain size. One which is valid for different ranges

of Pe (van Milligen and Bons, 2012), is:

D ≈















γD when Pe ≪ δ
√
Pec

βPe2/Pec when δ
√
Pec ≪ Pe ≪ Pec

βPe when Pe ≫ Pec.

(2.23)

where γ is the coefficient that scales the macroscale dispersion, D, to

the molecular diffusivity, D, for Pe ≪ 1 whereas β is the linear coefficient

between D, D and Pe for Pe ≫ 1.

This simple relationship is not universally valid, in fact, it typically does

not hold for more complex porous media (where, for example, a non-linear re-

lation can appear for high Péclet number) and in the pre-asymptotic regime.

Another common expression is the correlation proposed by Bear (1988):

D

D = γ +
αV

D
Pe

Pe + 2 + 4δ2
, (2.24)

where γ and δ have the same physical meaning of the coefficients appearing

in Eq. (2.23).

2.2.2 Particle deposition

As far as particles are concerned, the deposition or “collection” performance

of a porous medium are usually expressed (Yao et al., 1971; Logan et al.,

1995; Tufenkji and Elimelech, 2004) through the deposition rate constant

kd. Once again it is useful to remind here that the results obtained in

this context can be extended to the problem of scalars involved in surface

reactions. The theoretical concepts can therefore be applied not only to the

problem of particle deposition in aquifers and of particle filtration, but also

to, for example, reactions in catalytic packed bed reactors. However, for
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the sake of clarity, in the following only reference to the particle deposition

problem will be made.

It is usually assumed that the deposition rate coefficient is linearly de-

pendent upon particle concentration resulting in the following expression:

kd =
3

2

q

Dg

1− ε

ε
αη0 , (2.25)

where η0 is the collection efficiency and α the attachment efficiency. This

latter parameter, depending on the balance between repulsive and attrac-

tive forces between colloidal particles and the solid grains can assume values

0 ≤ α ≤ 1. In the case of favourable chemical conditions this factor is as-

sumed equal to unity, neglecting the effects of any energy barrier to particle

attachment. It has to be noted, though, that hydrodynamic interactions,

namely the increase in viscous drag force on the particles in the vicinity of

the collector, are also present. As a result, particles’ velocity decreases due to

the additional friction between the fluid and the wall; this is true even if the

particles’ Stokes number (as it has been noted being the case in this work)

is much lower than unity. This hydrodynamic retardation phenomenon may

cause a deviation of some significance in the particles’ path from the stream-

lines of the undisturbed flow near the collector when the distance between

the particle and the collector is of the order of two or three particle radii

(Goren and O’Neill, 1971). Moreover, the particles’ mobility near the wall

is also reduced, decreasing the particle diffusivity coefficient which is not

constant anymore but depends on the distance to the wall. Corrective fac-

tors for both particle velocity and their diffusivity coefficient, accounting for

these hydrodynamic interactions, have been obtained in a number of earlier

studies (Goren and O’Neill, 1971; Brenner, 1961; Adamczyk et al., 1983).

In this work we will be considering the case where chemical conditions

to particle attachment are favourable (as will be explained later on), thus

accounting for the contribution of all attractive and repulsive forces (e.g.:

London attraction forces) in a single attachment efficiency parameter. In

this framework, it wouldn’t be possible to include explicitly the effects of

hydrodynamic interaction separate from the calculation of these forces as, in

the absence of any attractive force, the particles wouldn’t be able to reach the

collector lacking the means to overcome the viscous repulsion (Rajagopalan

and Tien, 1976). A useful approximation in this case is the Smoluchowski-

Levich approximation, in which it is assumed that the hydrodynamic retar-

dation experienced by the particle while approaching a solid wall is balanced

by the attractive London forces (Levich, 1962; Adamczyk et al., 1983). In
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fact, Van der Waals, electrical double layer and hydrodynamic interactions

are excluded from the calculations. Neglecting the effects of the latter makes

it possible to assume that the particles move with velocity equal to the fluid

(as seen earlier) and that the diffusion coefficient is independent of the par-

ticle’s position in the domain. This approximation is only valid when the

particle size is smaller than the thickness of the particle diffusion boundary

layer, which sets an upper limit equal to, in the majority of cases, a few

hundred nanometres of size (Prieve and Ruckenstein, 1974; Elimelech et al.,

1995). This range covers a large part of the cases explored in this work, and

an assessment of the possible deviations due to the use of this approximation

in the results section of the appropriate chapter.

Particle deposition efficiency

The collection efficiency, η0, of a single spherical collector is defined as the

ratio between the rate of collision of particles with the collector and the rate

of particles flowing towards it (Yao et al., 1971)

η0 =
rate of particles colliding the collector

qC0

(

πD2
g

4

) , (2.26)

where C0 is the concentration of particles at a long distance upstream the

collector.

The particle deposition rate coefficient in Eq. (2.25), kd, contains the

deposition efficiency, η0, a parameter accounting for all the non-idealities in

the transport of particles to the collector and the correlations for its calcu-

lation typically include three mechanisms: Brownian diffusion, interception

and sedimentation. Interception is a steric effect occurring when particles

moving with the fluid along a streamline come into contact with the solid

grains due to their finite size, and as such is the endpoint for all deposition

mechanisms. Interception of the smallest particles is enhanced by Brownian

diffusion, which is the dominant effect for nanoparticles. Interception of the

largest particles is enhanced by sedimentation, which acts when their den-

sity is higher than that of the carrier fluid and will not be considered in this

preliminary work.

There are a number of theoretical models which provide with the means

to determine the single collector efficiencies pertaining to each of the trans-

port mechanisms individually, namely Brownian motion, ηB, interception,

ηI, and sedimentation, ηG. Precise analytical solutions are thus obtained,

which are nonetheless valid only in the simplified system these models were
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built on, which is, a single spherical collector immersed in an infinite fluid

field in creeping motion.

The simplest case, pertaining Brownian diffusion, was developed by Levich

(1962) and builds upon the aforementioned Smoluchowski-Levich approxi-

mation, resulting in:

ηB = 4.04Pe−
2
3 , (2.27)

Later, Yao added the case for interception and sedimentation (Yao,

1968), resulting in:

ηI =
3

2
N2

R , (2.28)

and:

ηG =
(ρp − ρ)gd2p

18µq
, (2.29)

where NR is the ratio dp/Dg and ρp is the solid particles density.

Subsequently then, many works improved on these relations (with re-

gards to Brownian deposition and interception), mainly to account for the

influence of the other collectors in the system on the velocity field. For

example, taking the steps from the analysis made by Kuwabara (1959),

Konstandopoulos et al. (2000) derived the following equations for the single

(spherical) collector efficiency:

ηB = 3.5 g(ε)Pe−
2
3 (2.30)

and:

ηI =
3

2

N2
R

(1 +NR)s
g(ε)3 , (2.31)

where the exponent s = (3 − 2ε)/3ε and g(ε) is the Kuwabara porosity

function:

g(ε) =

(

ε

2− ε− 9
5(1− ε)

1
3 − 1

5(1− ε)2

)

. (2.32)

Another approach (Pfeffer, 1964), and the one more used in recent works,
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builds upon the Happel model (Happel, 1958) following the Levich proce-

dure. This model takes accounts for the presence of the other collectors by

considering a shell of fluid around the single spherical collector of the appro-

priate size for the porosity of this unit cell to be equal to that of the whole

bed. In this way, the following result is obtained for the diffusive efficiency:

ηB = 4As
1
3Pe−

2
3 , (2.33)

where As, like g(ε), is a function of bed porosity:

As =
2(1− γ5)

2− 3γ + 3γ5 − 2γ6
, (2.34)

where γ = (1 − ε)
1
3 . A similar law for interception, which improves Yao’s

result, also exists (Elimelech et al., 1995):

ηI =
3

2
AsN2

R . (2.35)

From these, it is possible to obtain the total efficiency of the single

spherical collector with the relation (Pfeffer, 1964):

η0 = ηB + ηI + ηG . (2.36)

2.3 Asymptotic homogenization

A mentioned earlier in this chapter, one of the greatest difficulties in the

study of transport phenomena in porous media is the inherent multiscale

nature of the vast majority of processes of interest. A precise model or sim-

ulation describing the local, pore-scale, phenomena would be needed but of

little practical applicability. Hence the need for an upscaled model, equiv-

alent to the first one but able to treat the problem at the macro-scale (in

the case of porous media, the difference spatial scales between the two can

be of many orders of magnitude). A variety of methods are usually em-

ployed to perform this upscaling procedure. One is the method of spatial

averaging, in which a spatial smoothing of the equations valid for a single

phase (the fluid one) is performed in order to obtain equations valid for the

resulting macro-scale pseudo-homogeneous phase, where the details of the

pore structure are lost but the resulting problem can be approached with

classical methods. When performing an averaging operation, the first step is

to identify an appropriate representative elementary volume (REV). Thus,
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considering a function u (for example, the pressure of the fluid in the porous

medium), the smoothed function will be the results of a local averaging:

〈u〉(x) =
∫

V (x)
u(y)dy , (2.37)

where V (x) represents the minimum volume necessary to smooth our

the oscillations of function u at the pore scale, resulting in an averaged 〈u〉
applicable for the treatment of the problem at the macro-scale. A compre-

hensive reference about this method is found in Whitaker (1999), along with

some examples of applications.

Another way of performing this upscaling procedure, and the one used

in this thesis work, is the method of asymptotic homogenization (Hornung,

1997). This method is, in general, used to study partial differential equations

with rapidly varying coefficients: the usefulness in treating porous media,

which possess rapidly changing structure at the microscale, is then obvious.

In this case, the emphasis is not placed on the identification of a repre-

sentative volume, but instead on considering a family of functions uξ, where

ξ is a length scale parameter identifying the ratio of the period of the struc-

ture (or of the oscillation of the coefficients of the differential equation) to

the macroscopic length scale of the problem. This results in a hierarchy of

problems parameterized by the scale parameter ξ, with the end point of the

procedure being the determination of the limit

u = lim
ξ→0

uξ , (2.38)

where u is the resulting upscaled equation, as 〈u〉 was in the case of

spatial averaging. In short, the core of the distinction between the two

methods is that the former comes to the macroscale form of the equations

by smoothing and spatial averaging, while with homogenization the upscaled

equation is obtained by letting the microscale (described by the parameter

ξ) tend to zero, as is shown in Fig. 2.1.

2.3.1 Multiple-scale expansion in periodic media

A number of different methods exist to treat the problem of solving the

limit in Eq. (2.38) and obtaining the effective coefficients for the macroscale

equation: among these are themultiple-scale method, the energy method (or

more appropriately the oscillating test functions method), the probabilistic
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Figure 2.1: Homogenization of the porous medium as the limit of ξ tends to
zero. Image from Hornung (1997).

formulation and the spectral decomposition of operators (the so-called expan-

sion in Bloch waves). In this work the multiple-scale method will be used, of

which a brief description will be now given. For a more in-depth discussion

of both this method and the others mentioned, excellent explanations can

be found in the foundational works of Palencia (1980), Bensoussan et al.

(1980), Cioranescu and Donato (2000) and especially in Hornung (1997).

Let Ω be a bounded open set in R
N with a smooth boundary dΩ, ξ > 0

the aforementioned scale parameter (with value tending to zero). We can

consider the general equation

Aξu
ξ = f , (2.39)

with a Dirichlet boundary condition for u on dΩ. This model case is

relevant both for the laying out of homogenization theory (as most of the

theoretical hurdles to solve are already present in this case) and for a lot of

practical applications. The expression Aξ is a compact way of describing a
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family of partial differential operators

Aξ = −
N
∑

i,j=1

∂

∂xi

(

aξij
∂

∂xj

)

, (2.40)

A classic form of this problem is the diffusion case

{

−∇ · (aξ(x)∇uξ(x)) = f x ∈ Ω

u(x) = u
D
(x) x ∈ ∂Ω

(2.41)

where the coefficient aξ is rapidly oscillating, which means that it can

be expressed as

aξ(x) = a

(

x

ξ

)

, (2.42)

for all x ǫ Ω. Moreover, the function a is Y -periodic in R
N with

periodicity cell Y = {y = (y1, . . . , yN ) : 0 < yi < 1 for i = 1, . . . , N}.
Here lies one of the core assumptions of homogenization theory, which

is the existence of two separate scales for the phenomenon under investi-

gation, described by two different separate variables. The macroscale, for

which Eq. (2.41) is written, is described by the “slow” variable x, while

the microscale, where the rapid changes in the pore structure (or, in the

sense of the model problem of Eq. (2.41), the coefficients ai) happen, is de-

scribed by the “fast” variable y =
x

ξ
. In short, x gives the position of a

point in the domain Ω where y gives the position in the reference cell Y .

Figures 2.2 and 2.3 exemplify this concept (albeit referring to the case of

a periodic medium with obstacles, which shall be introduced momentarily).

Implicitly, an assumption is also made about the existence of a periodically

repeating cell constituting the porous medium. In many cases this could

be untrue, but this simplifying assumption is not a limitation as it can be

shown that both periodic and randomly arranged media can be treated in

this way resulting in a similar macroscopic description (see Auriault and

Adler (1995) and Auriault (1991) for more details). Framing the problem in

this two-scale interpretation brings about the ansatz stating the existence

of a formal asymptotic expansion for uξ of the form

uξ(x) = u0(x,y) + ξu1(x,y) + ξ2u2(x,y) + . . . , (2.43)

where the coefficient functions uj for j = 1, 2, . . . are defined for x ǫ Ω

and y ǫ Y and are Y -periodic. Now, regarding the differential operators
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Aξ, consider a generic function Ψ = Ψ(x,y) depending on two variables in

R
N and express as Ψξ the following:

Ψξ(x) = Ψ(x,y) = Ψ(x,
x

ξ
) . (2.44)

Notice that the derivatives obey the law

∂Ψξ

∂xi
(x) =

∂Ψ

∂xi
(x,y) +

1

ξ

∂Ψ

∂yi
(x,y) (2.45)

in index notation, or or more compactly with differential operators:

∇ = ∇x +
1

ξ
∇y . (2.46)

Consequently, using Eq. (2.43) and Eq. (2.46) in Eq. (2.41), it is immediate

to obtain the equation

ξ−2∇y · (a(y)∇yu0(x,y))+

+ξ−1
(

∇y · (a(y)∇yu1(x,y)) +∇y · (a(y)∇xu0(x,y))+

a(y)∇x · ∇yu0(x,y)
)

+

+ξ0
(

∇y · (a(y)∇yu2(x,y) + a(y)∇xu1(x,y))+

a(y)∇x · ∇yu1(x,y) + a(y)∇x · ∇xu0(x,y)
)

+

+ξ1(. . . ) + · · ·+ f(x) = 0 (2.47)

Now, we have to consider that different scales of ξ (if ξ is very small)

correspond to different scales of the problem, and thus Eq. (2.47) becomes

an infinite system of equations, obtained equating the power-like terms of

ξ. The first equation, in the term of ξ−2, is:

∇y · (a(y))∇yu0(x,y) = 0 for y ǫ Y (2.48)

from which, given the Y -periodicity of u0(x,y), this latter can be ex-

pressed as a function of x alone u0(x,y) = u0(x), independent of y. This

is an important and general result which will be used in the next section in

the homogenization of Stokes’ law and will also come up again in Chapter 6

in the homogenization of the advection-diffusion equation with particle de-

position. Using this result in the following step of the hierarchy of problems
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(the one with the term ξ−1), results in

∇y · (a(y)∇yu1(x,y)) = −∇y · (a(y)∇xu0(x,y)) for y ∈ Y

(2.49)

The next step is to express the function u1(x,y) only in terms of the function

u0(x). Expanding the derivative in its N dimensions we write the identity

∇xu0(x,y) =
N
∑

j=1

ej∂xj
u0(x) (2.50)

where ∂xj
indicates the differential operator ∂

∂xj
: this notation will hencefor-

ward be used, for clarity, throughout the rest of this chapter. Consequently,

using this identity in Eq. (2.49),

∇y(a(y)∇yu1(x,y)) = −
N
∑

j=1

∂yja(y)∂xj
u0(x) for y ∈ Y (2.51)

At this point in the procedure it is possible to construct the cell problem,

from which the effective coefficients of the upscaled equation will be calcu-

lated. The cell problem is a purely microscale form of the problem under

investigation, which means that only those coefficient which are function of

only the fast variable y =
x

ξ
may appear, and not those with a dependency

on the slow variable x.

We then look for a solution to the problem at the scale of ξ−1 in the

form of

u1(x,y) =
N
∑

j=1

wj(y)∂xj
u0(x) + u1(x) (2.52)

where u1(x) is independent of y and wj is the Y -periodic solution of the cell

problem arising when coupling Eq. (2.52) with Eq. (2.49), which reads as:

∇y · (a(y)∇ywj(y)) = −∇y · (a(y)ej) for y ǫ Y, (2.53)

since it can be shown that Eq. (2.49) should be satisfied whatever the

∇xu0(x) (more details on this can be found in Hornung (1997) and Au-

riault and Adler (1995)). Then, proceeding to the terms in ξ0 in Eq. (2.47)

and remembering that the Y -periodic cell is of unitary volume, the following
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equation is obtained:

∇y ·
(

a(y)∇yu2(x,y) + a(y)∇xu1(x,y)
)

+

a(y)∇x · ∇yu1(x,y) + a(y)∇x · ∇xu0(x) + f(x) = 0 for y ∈ Y.

(2.54)

Integrating this equation over the volume of Y results in:

∫

Y
∇y ·

(

a(y)∇yu2(x,y) + a(y)∇xu1(x,y)
)

dy+

+

∫

Y
a(y)∇x · ∇yu1(x,y)dy+

+

∫

Y
a(y)dy∆xu0(x) + f(x) = 0 . (2.55)

Using Stokes’ theorem (or more precisely the divergence theorem) on the

first term of Eq. (2.55), we obtain

∫

Y
∇y ·

(

a(y)∇yu2(x,y) + a(y)∇xu1(x,y)
)

dy =

=

∫

∂Y
n ·
(

a(y)∇yu2(x,y) + a(y)∇xu1(x,y)
)

dΓ(y), (2.56)

where n is the unit vector normal to ∂Y (which represents the boundary of

the volume of the cell Y ).

Due to the assumed Y -periodicity of the coefficient functions u1(x,y)

and u2(x,y), this integral is equal to zero. Then, using a differentiated form

of (2.52), namely:

∇yu1(x,y) =
N
∑

j=1

∇ywj(y)∂xj
u0(x) (2.57)

in the second term of equation Eq. (2.55), we get:

∇x · ∇yu1(x,y) =
N
∑

i,j=1

∂yiwj(y)∂xixj
u0(x) . (2.58)

Then finally, rewriting Eq. (2.55),

N
∑

i,j=1

∫

Y
a(y)∂yiwj(y)∂xixj

u0(x) +

∫

Y
a(y)dy∆xu0(x) + f(x) = 0 .

(2.59)
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For clarity, we can express this in a more compact form using the abbrevi-

ation

aij =

∫

Y
a(y)(δij + ∂yiwj(y))dy (2.60)

thus obtaining the final result:

N
∑

i,j=1

aij∂xixj
u0(x) + f(x) = 0 (2.61)

This equation is the homogenized limit of the equation in problem (2.41).

For a clearer comparison, we state that the homogenized form of the prob-

lem (2.41) is:

{

∇ · (A∇u(x)) + f(x) = 0, x ∈ Ω

u(x) = u
D
(x) x ∈ Ω

(2.62)

or equivalently, that the differential operator ∇ · (A∇u(x)) is the homoge-

nization of the operator family∇·(aξ(x)∇uξ(x). The most important step in

the passage from the original problem (2.41) to its homogenized form (2.62)

is the explicit construction of A, which is obtained, as shown, through the

solution of the cell problem (2.53).

Following the procedure which has been just described, a wide range of

problems can be tackled. In order to better explain the process, and demon-

strate its usefulness with the application to a real case, in the next section

a classic result of homogenization will be presented, which is the formal

derivation of Darcy’s law starting from the microscale Stokes’ equation.

2.3.2 From Stokes to Darcy

Media with Obstacles

Before giving the statement of the problem and beginning the homogeniza-

tion procedure, an important remark has to be done. In the previous section

we analysed a very general problem (identified by the family of operators

Aξ) in a medium which was just specified as being periodic, with unit cell Y ,

but nothing else was assumed about the structure of Y . When one identifies

a periodic repeating cell in a porous domain, its most important feature will

be its inhomogeneity: even ignoring the particulars of the pore structure,

at the very least there will be two phases, a solid and a fluid one. The

simplest way (and the one we’ll use) to describe this domain is to consider
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This differs from the usual statement of Stokes equation, having scaled the

viscosity µ by a factor of ξ2. This is done in order to ensure that the velocity

vξ has a nontrivial limit as the scale factor ξ goes to zero. The linearity of the

equations allow this scaling as it is always possible to replace vξ with ξ2vξ.

Phisically speaking, the now very small viscosity ξ2vξ balances exactly the

friction on the walls of the solid grains due to the no-slip boundary condition.

More details on this can be found in Hornung (1997) and Allaire (1989).

Then, both velocity vξ and pressure pξ are expanded asymptotically, as

per Eq. (2.43), resulting, respectively, in:

vξ(x) = v0(x,y) + ξv1(x,y) + ξ2v2(x,y) + . . . , (2.68)

and

pξ(x) = p0(x,y) + ξp1(x,y) + ξ2p2(x,y) + . . . . (2.69)

where the coefficient functions are periodic with period Y . Using the differ-

entiation rules of Eq. (2.46), we have the system



































ξ0µ∇2
yv0(x,y) + ξ1(. . . ) + · · · =
= ξ−1∇yp0(x,y) + ξ0 (∇yp1(x,y) +∇xp0(x,y)) y ∈ B

ξ−1∇y · v0(x,y) + ξ0 (∇y · v1(x,y) +∇x · v0(x,y))+

+ξ1(. . . ) · · · = 0 y ∈ B
ξ0v0(x,y) + ξ1v1(x,y) + · · · = 0 y ∈ Γ

(2.70)

Then, new expressions equating the power-like terms of ξ are written, start-

ing from the lowest order. The ξ−1 term of the expanded Stokes’ equation

reads

∇yp0(x,y) = 0 y ∈ B , (2.71)

from which it follows that p0(x,y) is independent of y, p0 = p0(x). This

results is coherent with the actual physical case, where pressure can be con-

sidered as a superposition of slow large scale variations, and fast microscale

oscillations: this is the sense of the expansion Eq. (2.69). The next term, in

ξ0, reads

µ∇2
yv0(x,y) = ∇yp1(x,y) +∇xp0(x,y) y ∈ B , (2.72)
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while the ξ−1 term in the expanded continuity equation is

∇y · v0(x,y) = 0 y ∈ B . (2.73)

Then, similarly to Eq. (2.50),

∇xp0(x) =
∑

j

ej∂jp0(x) (2.74)

At this point it is possible to construct the following family of cell problems,















∇2
ywj(y) = ∇yπj(y)− ej y ∈ B

∇ ·wj = 0 y ∈ B
wj(y) = 0 y ∈ Γ

(2.75)

having as solutions the Y -periodic vector fields wj(y), and where πj(y) are

the corresponding pressure fields. Solving these cell problems, the following

result is obtained:

v0(x,y) = − 1

µ

∑

j

wj(y)∂jpo(x). (2.76)

Then, we can define the average of this vector field as

ū(x) =

∫

B

v0(x,y)dy , (2.77)

whose i-th component is

ūi(x) = − 1

µ

∑

j

kij∂xj
p0(x) , (2.78)

with

kij =

∫

B

wji(y)dy. (2.79)

For compactness, the tensor K = (kij)i,j is introduced, leading to

ū(x) = − 1

µ
K∇p0(x) (2.80)

which is the familiar form of Darcy’s law. It can also be shown that the

vector field ū is divergence-free, completing the upscaling. This detail and a

more in-depth description of this procedure can be found in Hornung (1997),
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Palencia (1980) and Tartar (1980).

Equation (2.80) constitues a very important result, as it gives one of the

few mathematically solid justifications for the most widely known empirical

law in the field of flow in porous media, and serves to show the method’s

capabilities in treating the upscaling of transport problems. In Chap. 6 this

method will be used to work on the upscaling of the superficial reaction

(deposition) problem described earlier in this chapter, central to this thesis.



Chapter 3

Scalar and particle dispersion

In this chapter fluid flow and scalar/ particle transport and dispersion

through a three-dimensional model of a porous medium will be described, by

means of CFD simulations with finite-volume method discretization (FVM).

Moreover, this work has the purpose of developing and validating reliable

computational tools for the efficient pore-scale simulation in complex geome-

tries, accompanied by the choice of adequate numerical methods and grid

convergence tests, as currently done in computational fluid dynamics anal-

ysis. There are a number of novel points in this work, with respect to other

works recently appeared in the literature. In this work the full Navier-

Stokes equation is solved, instead of solving the simpler Stokes equation

(often adopted in this context). Secondly, instead of considering a porous

structure (obtained “in-silico” with a ballistic physics algorithm) composed

of monodisperse spheres, in this work the porous medium has been generated

by randomly packing non-spherical highly irregular non-convex polydisperse

objects, whose shape and size distribution have a direct link to experimen-

tally characterized sands. Another important novelty of this work is that

this operation is conducted here by using for the first time the open-source

computer graphics three-dimensional code Blender. This code can easily

overcome the limitations of other codes, that are limited to the treatment of

spheres and convex objects. In addition to this, particular attention is paid

here to the well-known numerical issues related to mesh generation and spa-

tial discretization encountered when the Navier-Stokes and the advection-

diffusion equation are solved with the finite-volume method, which play an

important role in determining the final accuracy of the finite-volume scheme

and are often overlooked. This is done here by using the open-source CFD

The content of this chapter, in a modified form, has been published in Icardi et al.
(2014)
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code OpenFOAM. Another point worth of notice, beyond the fully open-source

computational tools, is the usage of an “Eulerian” method to analyze solute

dispersion at the pore-scale. We will show that this approach, in contrast to

the commonly used tracer particle “Lagrangian” approach, has many com-

putational and practical advantages. The manuscript is organized as follows.

First the computational tools developed to extract grain information from

real images, reconstruct realistic geometries and discretize the pore space

are described. Subsequently the numerical details about the pore-scale sim-

ulations are reported together with the results. Simulation predictions are

eventually processed to extract velocity distributions and dispersion coeffi-

cients, as well as to assess the validity of the Fick law to describe dispersion

phenomena. Conclusions and possible next steps are discussed in the last

section.

3.1 Test cases and operating conditions

In this section the strategy employed to create the three-dimensional porous

medium used in this work and the mesh generation procedure for performing

the finite-volume discretization are briefly described.

3.1.1 Grain packing generation

Figure 3.1: SEM image of the real sand sample used to extract grain size
distribution and approximate the grain shapes.

The first necessary step requires to build a representative microscopic

model of a porous medium sample in order to simulate fluid flow in these
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systems. There are many ways to obtain such a model: the first choice

is between real sand sample images, for example experimentally acquired

by micro-computer tomography techniques, and realistic reconstructions by

means of suitable algorithms (Blunt et al., 2013). Although the former

provides representations of the pore microstructure which are real, the ex-

traction procedures (segmentation, surface reconstruction, etc.) are usually

quite complicated, expensive and with a high degree of arbitrariness. There-

fore, it was chosen to reconstruct a realistic porous medium with ad-hoc

algorithms. It has to be noted that when following this approach one has

to make sure that the characteristics and features of the generated porous

medium (e.g. porosity, grain size distribution and pore-throat structure) are

representative of a real system. Notwithstanding these difficulties, there are

several advantages with this approach; it is possible, for example, to test

simple geometries (where real grains are modeled as spheres) that make it

easier to study multiple test cases (e.g. models with different grain diameter

or porosity) in a semi-automatic fashion (Boccardo et al., 2014b), as it will

be shown in Chapter 5 of this thesis.

A number of methods have been proposed to synthetically generate real-

istic packed geometries. Some of them are based on the idea of representing

the medium with a pore-network model, whereas some others “reconstruct”

the entire structure of the porous medium, down to the single grains, using

different algorithms (i.e. random sequential adsorption, gravitational depo-

sition, collective arrangement, binary random fields) (Feder, 1980; Pilotti,

1998; Yeong and Torquato, 1998; Øren and Bakke, 2002; Koutsourelakis and

Deodatis, 2005; Adler and Taylor, 2007). In this work, two different methods

of packing generation, both based on the open-source library Bullet Physics

(Coumans, 2006), were tested: SettleDyn (Blöcher and Zimmermann, 2008)

and Blender (Van Gumster, 2009). The tested methods simulate the sed-

imentation of real three-dimensional grains, represented by convex polygo-

nal surface meshes, generating loose sand-like structures from given particle

forms and grain size distributions.

The first step is the definition of grain shape and grain size distribution,

that in this work were obtained respectively by two-dimensional scanning

electron microscopy (SEM) scans (see for example Fig. 3.1) and static-light

scattering measurements carried out on standard sand samples. For the case

investigated in this work the final mean grain size d50 was equal to 0.277

mm. The grain size distribution was then fitted with a Weibull distribution

(Boccardo et al., 2014b; Tosco et al., 2013) and was then randomly sampled

when creating the packing. Figure 3.2 compares the experimentally mea-

sured grain size distribution of the sample with the reconstructed Weibull
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distribution.

Different confined packings of thousands of grains were then generated,

by randomly sampling the Weibull distribution, on a single core machine,

with large quantity of memory in a few hours. These tests highlighted,

for the operating conditions investigated in this work, a higher flexibility

when using Blender, especially in terms of robustness and convergence. One

of these packings (created with Blender) with more than 3000 grains, was

extensively used in this work for most of the pore-scale simulations. The

final optimized porous medium is a cube domain of 2.1 mm length and is

characterized by an average porosity of 0.35. By splitting the geometry in

ten sub-volumes along the x-axis, it was noted that the porosity (in these

sub-volumes) fluctuates around this value by approximately 1%, while the

porosity calculated on the surfaces (between each subsequent sub-volume)

varies between 0.31 and 0.39.

3.1.2 Mesh generation

After the generation of the grain packing, the geometric representation

(made of polygonal surface mesh) of the resulting grain packings was cleaned

through mesh re-sampling, in order to remove intersections and artifacts.

This was done with the marching cubes algorithm (Lorensen and Cline,

1987; Cignoni et al., 2008). An example is reported in Fig. 3.3, that shows a

surface mesh, obtained with the algorithms previously described and grains

characterized by very sharp edges, and the final re-sampled mesh. After

re-sampling the pore domain is ready to be discretized through body-fitted

meshes, as commonly done when the FVM is used.

As mentioned before, great care was put forward during the pre-processing

phase of this work in order to ensure the highest possible accuracy with re-

spect to numerical and computational issues. A careful analysis of the mesh

generation process now follows, along with the description of the steps taken

to ascertain the validity of the final mesh thus obtained.

The mesh utility snappyHexMesh, native to the open-source package

OpenFOAM (OpenCFD, 2013), was used. Grid building was performed in two

steps. First, a structured, cartesian mesh was created in the fluid portion of

the domain, in order to minimize average non-orthogonality and skewness

in the final mesh. The handling of the actual surface of the solid part in this

initial step is done in a way similar to how immersed boundary meshes are

constructed, resulting in a step-wise approximation of the grains. However,

a precise reconstruction of the actual grain geometry was deemed essential

in this work, thus requiring a second step in which the mesh was modified
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by means of relocating boundary vertices, resulting in a body-fitted mesh.

A visual aid for the description of this process is found in Fig. 3.4.

Figure 3.4: Details of the mesh refinement process. Step-wise castellation
(left), body-fitting via vertices moving (center) and precise geometry recon-
struction with subsequent mesh refinements (right).

In addition to these two steps, one of the subsequent grid refinement steps

is also visualized. In fact, the most critical operation was the construction

of a mesh of high quality to ensure grid-independent results. To this end,

a number of refinements were performed, and two parameters monitored

throughout in order to quantitatively assess the resulting mesh suitability

for use with the CFD code. Given the heavy computational resources re-

quired for the CFD calculations (as described in the following sections),

these tests were not performed on the full domain used for the production

runs, but rather on two smaller sub-volumes. The linear dimensions of each

of these volumes are smaller by a factor of four with respect to the complete

geometry, resulting in 500 µm × 500 µm × 500 µm cubes. This is shown in

Fig. 3.5.

Case Mesh cells (thousands) ǫ (-) D∗
g (µm)

coarse grid 37 0.3025 203.0
unif. ref. 308 0.3088 207.8

near-grain ref. 1 1 218 0.3102 217.4
near-grain ref. 2 2 284 0.3104 214.9
near-grain ref. 3 3 539 0.3105 216.1
near-grain ref. 4 5 053 0.3105 215.6

Table 3.1: Number of mesh cells, porosity and effective grain diameter (µm)
for each of the grid refinement steps.

An outline of all the mesh modification steps, along with the calcu-

lated relevant parameters associated with each test (for one of the two sub-

volums), is reported in Tab. 3.1. As a qualitative description of these cases,

the first represents a coarse grid, whereas the second is obtained after a
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the heavy mesh refinements performed in the subsequent cases correspond

to negligible changes in effective grain diameter. Thus, the mesh for the

complete geometry used in the final runs, from which all the results pre-

sented in this work were obtained, was built in such a way to result in the

same features as those identified in the case (near-grain ref. 2) of Tab. 3.1.

3.1.3 Numerical details of the CFD simulations

The flow field in the reconstructed geometry was simulated with the open-

source code OpenFOAM. The three-dimensional incompressible steady Navier-

Stokes equations were solved with the simpleFoam solver. As mentioned

the equations were discretized with the FVM. The numerical schemes used

were chosen in order to minimize the numerical errors for the different test

cases characterized by a wide range of Reynolds numbers (see Table 3.2). A

second-order central scheme with limiters to avoid oscillations was used for

spatial discretization and the SIMPLEC scheme was used to overcome the

pressure-velocity coupling problem.

The whole cubic domain, extracted by the packing and reported in

Figs. 3.3 and 3.5, was studied with a fixed hydraulic head drop between

inlet and outlet and with symmetric conditions on the lateral boundaries.

On these boundaries it is imposed that the derivatives of the velocity com-

ponents along the orthogonal direction are null and that the orthogonal

velocity component is also null. For example, for the two boundaries or-

thogonal to the y-axis: Vy = 0, whereas Vx and Vz are kept free; the same

conditions hold also for the boundaries orthogonal to the z-axis. This means

that the resulting main flow is directed along the x-axis and there is no flow

escaping from lateral boundaries (in the y and z directions). The problem of

the best boundary conditions was also investigated in previous works from

the author and co-workers (as explained more in detail in Chap. 5), where

it was shown that this set of conditions resulted in the least invasive ap-

proach, that could avoid the use of pre- and post-mixing conditions, as well

as the exclusion of the external part of the flow from the statistical analysis

(Tosco et al., 2013; Boccardo et al., 2014b). The simulated domain length

was Lx = Ly = Lz = 2 mm and it contained about three thousands sand

grains. For each value of hydraulic head drop, the mean flow rate and Darcy

fluxes Ux were calculated in sections of the porous medium orthogonal to the

mean flow field. A summary of the resulting Reynolds, Re = D∗
gq/εν, and

Péclet numbers, Pe = D∗
gq/εD, is reported in Table 3.2; both dimensionless

numbers are evaluated by using D∗
g = 0.270 mm as en estimation of the

grain size Dg. As it is seen, the flow fields obtained at different Reynolds
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numbers were used to transport an Eulerian scalar/particle concentration

field with different diffusion coefficients resulting in Péclet numbers ranging

from 10−2 up to 106. As already mentioned this coefficient corresponds to

molecular diffusion for scalars and to the Brownian diffusion coefficient for

particles.

The simulations of the flow field were carried out in parallel on a Linux

workstation with 12 Intel Xeon X6960 cores. The computational bottle-neck

for these simulations turned out to be the huge memory usage (100GB),

rather than the convergence iterations (usually less than 100). In our con-

figuration this resulted in 12 hours of total CPU time for each flow field

computation.

The simulations of solute transport were carried out in OpenFOAM but

with a unsteady solver, up to the full saturation of the medium. A constant

concentration (constant Dirichlet boundary conditions with a fixed concen-

tration equal to unity) was employed as boundary condition at the inlet. A

null concentration gradient was instead used as boundary condition on the

grain surfaces (neglecting therefore particle deposition) and on the lateral

and outlet boundaries (approximating an infinite medium).

It is worth mentioning here that the grid independence study conducted

in the previous section, should be repeated also for the solute dispersion

simulations, in order to ensure that not only the predicted flow field is grid-

independent, but also that grid independence holds for the solute concentra-

tion field. A computational grid resulting in a grid-independent flow field,

may not result in a grid-independent solute concentration field, because the

solute concentration gradients occur on length-scales smaller than the those

of momentum, when the Schmidt number, Sc, is greater than one. Although

the computational grids should be refined accordingly, the grid used to ob-

tain a grid-independent flow field oftentimes results in a grid-independent

solute concentration field. This condition will certainly hold here, where

there is not a solute concentration boundary layer to resolve, as the solute

is not reacting on the grain surface, but is simply advected and diffused and

therefore gradients at the pore-scale are not very large.

These more computationally demanding simulations were carried out in

parallel on the Curie supercomputer, owned by GENCI and operated by

CEA, using 48 Intel Nehalem-EX X7560 cores. In our configuration this re-

sulted in 240 hours of total CPU time for each scalar transport computation.

The domain was decomposed by simply splitting the domain in each direc-

tion by powers of two. Scalability tests were performed for the flow solver

and for the scalar transport, showing that, even if the three-dimensional

mesh is highly irregular and unstructured, it is possible to reach an almost
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linear speed-up up to 512 cores, excluding the I/O operations. Due to the

high Péclet number flows a second-order limited upwind space discretiza-

tion with second-order Crank-Nicholson time stepping was used to solve the

solute concentration transport equation (i.e. Eq. (2.14)).

Pe
q Re D = 5× 10−9 D = 5× 10−10 D = 5× 10−11

(m s−1) (m2 s−1) (m2 s−1) (m2 s−1)

1.2× 10−7 9.6× 10−5 1.9× 10−2 1.9× 10−1 1.9× 100

1.2× 10−6 9.6× 10−4 1.9× 10−1 1.9× 100 1.9× 101

1.2× 10−5 9.6× 10−3 1.9× 100 1.9× 101 1.9× 102

1.2× 10−4 9.6× 10−2 1.9× 101 1.9× 102 1.9× 103

1.2× 10−3 9.6× 10−1 1.9× 102 1.9× 103 1.9× 104

1.2× 10−2 9.2 1.8× 103 1.8× 104 1.8× 105

8.3× 10−2 66 1.3× 104 1.3× 105 1.3× 106

3.9× 10−1 314 6.1× 104 6.1× 105 6.1× 106

Table 3.2: Superficial flow velocities, q, Reynolds numbers, Re, molecular
diffusion coefficients, D, and resulting Péclet numbers, Pe.

3.2 Results and discussion

In what follows the results of our simulations are presented, focusing first

on the flow field predictions, and subsequently on the solute transport pre-

dictions.

3.2.1 Fluid flow

Figure 3.6 reports a typical example of the flow field inside the porous

medium for a Reynolds number of 9.6 × 10−3. We begin our analysis by

plotting the normalized pressure drops, ∆P/ρq2Lx, versus the normalized

Darcy velocity, q/ν, resulting in the well known behavior reported in Fig. 3.7.

As expected two domains are identified, one at low Darcy flux values corre-

sponding to the region of validity of the Darcy law (and a linear behaviour

in this graph), and a second one at higher values of Darcy flux where this

law is not valid anymore. From the slope of the curve (in the first linear

region) an intrinsic permeability of 4.0 × 10−8 cm2 can be obtained. By

using Eq. (2.22), the tortuosity, τ , was estimated in our case to be equal to

1.2 for low Re. However, for Reynolds numbers greater than ten it increases

and reaches the value of 1.7 for Re = 314. This is due to the different
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flow conditions in the pore space arising at higher velocities, changing the

trajectories of the moving fluid and thus τ .

Figure 3.6: Visualization of the flow field in the porous medium for Re =
9.6 × 10−3. Velocity magnitude is computed in a central slice and some flow
streamlines are shown. Color coding from blue to red: 0 - 2.5× 10−6 m s−1.

Further analysis of the simulation data requires some upscaling, for which

different methodologies were proposed and we refer to the work of Cushman

et al. (2002) for an overview. In the present work simulation results were

analyzed by both volume-averaging on the whole three-dimensional domain

and by surface-averaging on ten equispaced sections orthogonal to the main

flow direction x. In addition to that these ten surfaces were also used to

evaluate how relevant properties are spatially distributed.

For example, by analyzing how the fluid velocity differs from point to

point on these ten surfaces, the data reported in Fig. 3.8 and Fig. 3.9 were

obtained. These figures show the velocity distributions for the x, y and z

fluid velocity components, in three of the ten sections investigated, for two

superficial velocities, resulting in Reynolds numbers of Re = 9.6× 10−3 and

of Re = 66, respectively. The histograms were computed with 1000 samples
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Figure 3.8: Probability density functions (m−1 s) for Re = 9.6×10−3 and for,
from top to bottom, the x-, y-, and z-velocity components (m s−1) and for, from
left to right, the first, fourth and tenth section. The histogram corresponds
to the actual distribution as calculated from the simulations, whereas the red
curve is the Gaussian distribution with identical mean and variance.

3.2.2 Hydrodynamic dispersion

To quantify the effect of these distributions in generating dispersion phe-

nomena in the porous medium, let us analyze the results of the solution

dispersion simulations. One typical result is reported in Figure 3.10, where

the normalized solute concentration at three instants of the simulation is re-

ported. As it is seen, as the solute moves downstream hydraulic dispersion

takes place and the concentration front becomes more and more smoothed

out.

As already said, the three-dimensional results were surface-averaged on

sections perpendicular to the main flow direction, and, among other vari-

ables, the average solute concentration in these sections was tracked versus

time. The resulting time-evolution curves (known as breakthrough curves)

were then used to characterize the dispersion dynamics in the medium.

Three typical results for different Re and Pe numbers are reported in Fig. 3.11,

for nine equidistant sections, from x = 0.15Lx to x = 0.95Lx (to avoid
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Figure 3.9: Probability density functions (m−1 s) for Re = 66 and for, from
top to bottom, the x-, y-, and z-velocity components (m s−1) and for, from
left to right, the first, fourth and tenth section. The histogram corresponds
to the actual distribution as calculated from the simulations, whereas the red
curve is the Gaussian distribution with identical mean and variance.

Figure 3.10: Contour plots of the solute dimensionless concentration in the
porous medium at three instants of the simulation for Pe = 1.9× 103.
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boundary effects).

The breakthrough curves reported in Fig. 3.11 with continuous lines cor-

respond to three different regimes. In the first one (top) molecular diffusion

is prevailing over advective transport, in the second and third ones (middle)

the two effects are of the same order of magnitude, while in the fourth one

(bottom) molecular diffusion can be neglected with respect to advection.

Due to the small changes in porosity of the sections, some of the curves of

contiguous sections overlap.

The concentration transport at the macroscale (as sketched in Fig. 3.11)

should obey to the macroscopic advection-diffusion equation reported in

its general form in (2.16) and for the problem investigated in this work,

Eq. (2.16) takes the one-dimensional form reported in Eq. (2.20), whose

coefficients are in turn unknown. Neglecting the presence of a possible stag-

nant phase or a retardation factor, the only actual unknown parameter is

the hydrodynamic dispersion. However, also the effective transport velocity

(Ueff) was included as a unknown parameter, to check the validity of the

transport equation. Since we are considering a volume comparable to the

representative elementary volume (i.e.: the smallest volume representative of

the macroscale characteristics of the porous medium), there are not enough

data along the x-direction, but temporal data can be indeed considered (for

fixed spatial locations).

The two unknown parameters (i.e. Ueff and D) were computed with

two methods. The first method is based on the inverse problem formula-

tion. Given the breakthrough curves (concentration over time), the effective

parameters are estimated with non-linear least square minimization using

standard optimization techniques. The second strategy is instead based on

the method of moments (Aris, 1956), where the unknown parameters are

calculated from the first three normalized centered temporal moments at

the outlet of the computational domain:

M0 =

∫

∞

0
g(x = Lx, t) dt;

M1 =

∫

∞

0

g(x = Lx, t)t

M0
dt;

M2 =

∫

∞

0

g(x = Lx, t)t
2 dt

M0
−M2

1 ,

(3.1)

where g(x, t) is the Green function of Eq. (2.16) (i.e. the solution for a

Dirac delta boundary condition centered at x = 0 and t = 0). The effective
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Figure 3.11: Comparison between breakthrough curves (normalized dimen-
sionless solute concentration, continuous red line) over dimensionless time
t′ = tε/q obtained by surface-averaging over equidistant sections of the porous
medium for different Péclet numbers (from top to bottom, Pe = 1.9 × 10−1,
Pe = 1.9×101, Pe = 1.9×103, Pe = 1.3×105) with the analytic solutions of the
semi-infinite advection-diffusion equation with the fitted parameters (dashed
blue line). For the largest Pe number an insert in log-log scale is included.
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velocity is then given by:

Ueff =

(

εLx

M1

)

, (3.2)

whereas the dispersion coefficient is given by:

D =
M2

2Lx

(

Ux

ε

)3

. (3.3)

This method in general performs better for the estimations of porosity (or

equivalently the Darcy fluxes) and hydrodynamic dispersion in terms of

computational time, accuracy and stability. Since the two methods resulted,

however, in very similar (if not almost identical) results, only the parameters

estimated with the method of moments will be shown and discussed.

It is moreover interesting to observe that the simulated breakthrough

curves, reported in Fig. 3.11, compare well with the analytical solutions

with the parameters estimated with the method of moments. However,

some small differences are observed especially in the case of large Péclet

numbers. To highlight these differences, of primary interest when it comes

to anomalous diffusion, an insert in log-log scale has been added.

Figure 3.12 shows the estimation of the effective velocity (Ux) divided

by the value of Ux computed from the averaging for the different Péclet

numbers. As it can be seen, the effect of diffusive flux (see Eq. (2.20)) is

important for low Péclet numbers when they can be order of magnitudes

larger than the advective fluxes. When this effect is no more visible (i.e.

for high Péclet numbers), the estimated velocity is always slightly lower

than the theoretical one. This is clearly explained by Eq. (2.20) where the

gradient of porosity appears as an additional convective flux (in our case in

fact the porosity in the last sections used for the fitting is about 3% lower

than the initial one).

Figure 3.13 shows the estimated dispersion coefficients D divided by

the molecular diffusion coefficient D for the different Péclet numbers inves-

tigated. It should be observed that the scaling of D/D with the Péclet

number reproduces many recent computational results and classical power

laws (obtained in turn by experimental and theoretical studies (Bear and

Bachmat, 1967; Sahimi, 2012; Auriault and Adler, 1995)). As it is seen a

constant behavior is observed in the first region (very low Pe), followed by

a superlinear relationship (with an exponent of 1.2) in the central part, and

a linear scaling at very high Pe in the last part.

It is interesting to notice that in the constant part (Pe → 0) of the plot,
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Figure 3.12: Effective transport velocity (blue circles), as estimated by the
method of moments, and its fitting, of the form a + b/Pe (continuous line),
with a = 0.97 and b = 0.15 .
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Figure 3.13: Dispersion coefficients for different Péclet numbers, as estimated
by the method of moments (blue circles) together with two fitted correlation
laws; the continuous black line is Eq. (2.23) whereas the dashed red line is
Eq. (2.24).



3.3. CONCLUSIONS 51

the result of Eq. (2.21), is confirmed. In fact, for this system the tortuosity

was quantified to be about 1.2, resulting in a ratio between D and D of

about 0.69 (as observable in Fig. 3.13). Considering the linear regime (high

Péclet numbers) the already introduced expression: D = αVx, was found to

be an adequate description for our medium; the constant α was estimated

to be between 60 and 90 % of d50, depending on the Péclet number.

Eventually, if the data ofD/D versus Pe are fitted with the laws reported

in Eqs. (2.23) and (2.24), the following results are obtained. The fitted

parameters for Eq. (2.23) are: γ = 0.51, β = 0.52 and Pec = 0.99, whereas

for Eq. (2.24) are: γ = 0.59, α = 1.52× 10−4, and δ = 1.76. It is interesting

to highlight that the coefficient γ estimated with these two correlations are

in good agreement with each other and with the estimation of tortuosity

given by Eqs. (2.21) and (2.22). Both laws are reported (with these values

of γ, α, β, δ and Pec) in Fig. 3.13 together with our simulation results.

At last it is interesting to verify the validity of Fickian diffusion, that was

used to close Eq. (2.19). In order to perform this analysis the quantity 〈v′xc′〉,
reported on the left-hand side of Eq. (2.19), was calculated and compared

with the quantity reported on the right-hand side of Eq. (2.19) for ten differ-

ent sections. This latter quantity is the product of the dispersion coefficient

and the gradient on the main flow direction (x) of the surface-averaged con-

centration, C(x), or in other words the dispersive flux as approximated by

Fick’s law, with the value of DL calculated with the fitting performed with

the method of moments. Typical results of this analysis for two superficial

velocities are reported together with the dispersive fluxes at four different

instants of the simulations in Fig. 3.14 and, as it is possible to see, the two

curves are very close at low superficial velocity (Re = 9.6 × 10−3). Larger

deviations from the theoretical Fickian behavior are noticeable for higher

velocities (Re = 66), where vorticity and wakes develop more extensively.

However, for both cases the hypothesis of Fickian behavior can be safely

assumed.

3.3 Conclusions

Pore-scale simulations of single phase flows and scalar transport have been

carried out by means of CFD with high-order numerical schemes and ad-

vanced meshing techniques. Wide ranges of Reynolds (from 10−4 to 102) and

scalar Péclet (from 10−2 to 106) numbers have been investigated, including

non-linear regimes. Results from steady-state (for flow field) and transient

(for transport) simulations have been extracted on a hundred mesh slices

perpendicular to the x−axis. Permeability, mean tortuosity, and mean shear
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Figure 3.14: Comparison of the dispersion flux 〈v′xc′〉 (m s−1) along the
flow x-coordinate (m) as calculated from the three-dimensional simulations
(dotted lines with symbols) and as approximated by Fick’s law (computed as
the spatial derivative of the analytic solution for semi-infinite media with the
fitted parameters, continuous line) for two different Reynolds numbers (top:
Re = 9.6× 10−3; bottom: Re = 66) and at two instants (from left to right).

rate have been calculated explicitly from the flow field results, while the dis-

persivity has been estimated with post-processing tools based on the method

of moments and on the least square formulation of the inverse problem.

The results demonstrate the validity of the method, predicting the lin-

ear and non-linear regimes of Darcy’s law with well-defined permeability

and tortuosity constants in the first regime, and three different regimes

for hydrodynamic dispersion (Sahimi, 1995): the first one is dominated by

the molecular dispersion (for low velocity and fine particles), then a region

where the mechanical and molecular dispersion are of the same order of

magnitude, and finally a region where the dispersion depends linearly on

the Péclet number, where the inertial effects dominate. This correlation for

the hydrodynamic dispersion in terms of Péclet number is verified for the

porous medium under study with the proposed simulation and upscaling

tools. The asymptotic dispersion regime is quickly reached and dispersion

is well approximated by the Fickian hypothesis, even if the fluid velocity

distributions are not Gaussian. Further studies will include a more careful
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characterization of the influence of the porous structures in terms of poros-

ity and tortuosity and numerical upscaling of more complex macroscopic

models will also be considered.
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