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Abstract 
 

This thesis presents the development of a tool integrated in the UNS3D code, proprietary 

of Alenia Aermacchi, for the simulation of external aerodynamic flow in a rotating reference 

frame, with the main objective of predicting propeller-aircraft integration effects. The 

equations in a rotating frame of reference have been formulated in terms of the absolute 

velocity components; in this way, the artificial dissipation needed for convergence is lessened, 

as the Coriolis source term is only introduced in the momentum equation and it is not 

necessary a transformation of the variables between the rotating and no rotating zones. An 

Explicit Algebraic Reynolds Stress turbulence model is used. A first assessment of 

effectiveness of this method is made computing stability derivatives of a NACA 0012 airfoil. 

Finally, steady Navier-Stokes and Euler simulations of a four-blade single-rotating propeller 

are presented, demonstrating the efficiency of the chosen approach in terms of computational 

cost. 
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Chapter I 

 

Introduction 

 

1. The analysis of unsteady fluid flows around moving bodies and 

boundaries 

The present work is aimed at extending the features of an existing computational fluid 

dynamics solver (UNS3D) to the solution of fluid flows in unsteady geometric domains, thus 

basically around moving bodies and boundaries. Topics of noticeable and recent interest such 

as the study on the trails of single or contra-rotating propellers and fans, the secondary flows 

inside turbomachines, the aeroelastic flutter phenomena of wings, rotorcraft blades or even 

buildings and chimneys are all examples requiring moving domain capabilities inside the fluid 

dynamics solvers. 

Despite the study of unsteady flows has always been of primary importance since the 

dawn of computational fluid dynamics, the analysis of the flows around moving bodies and 

boundaries grew a noticeable spread only later on: even if several theoretical results for the 

analytical solutions have been already available since prewar studies, the lack of an adequate 

scientific background on numerical approaches and moreover the limited computational 

speeds available have always been critical issues to overcome. Other potential issues were the 

need of unsteady boundary conditions, for which adequate support by the numerical solver 
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had to be developed, and even transient initial conditions, for which further preliminary 

calculations were necessary, thus improving the criticism of computational powers available. 

Nowadays, methods for the treatment of moving domains are more and more commonly 

available both in commercial and academic solvers and so the study of fluid flows around or 

inside moving domains is finally widespread both in the research field and in the development 

and design fields. The support for unsteady geometries is therefore a more and more 

compelling requirement for the vast majority of both specialized and non-specialized solvers, 

and a noticeable interest is also gathered around the look for a best possible approach in 

terms of computational quickness, flexibility, robustness, reliability and overall simplicity. 

 

2. Structure of the work 

The thesis is divided into five chapters. In the present introductory Chapter I, we present 

the main approaches for treating moving domains in Computational Fluid Dynamics solvers, 

some of their prominent advantages and drawbacks, the reasons behind the choices of Moving 

Reference Frame method as subject of this work, the global organization of the work and its 

objectives.  

Chapter II is a development of the governing equations in non-inertial frame system that 

are applicable to compressible, unsteady, three-dimensional viscous flows. The method for 

including the non-inertial frame terms into an existing absolute frame solver (UNS3D) are 

presented in this chapter. 

Chapter III presents the solution methodology and the basic structure of UNS3D program. 
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Chapter IV is dedicated to results. Two applications are presented: the first application is 

the determination of the stability derivatives for a NACA 0012 airfoil and the latter is the 

simulation of the flow field around a rotating propeller. The first application allows us to 

assess the method by comparing the results to a reference test case, for which several authors 

have obtained a solution [9, 10, 11]. In this case the flow field is computed using Euler 

equations. The second application is a more complex test case, which has the purpose to 

evaluate the accuracy, efficiency and robustness of the current method to predict the complex 

flow field of a rotating propeller. For this test case a comparison with experimental results for 

cruise conditions in terms of thrust coefficient is also made. 

Chapter V is devoted to conclusions and suggestions for future work. 

 

3. Overview of the presently available numerical strategies 

Considering all the possible variations, the number of proposed numerical methods to 

account for the domain movement available in the literature is noticeable. By restricting the 

search around some topical tasks, among which are the study of rotating propeller blades, 

turbomachines channels and wings in flutter, the possible numerical approaches are the 

following: 

 a pure Lagrangian solver, with body movement achieved thanks to the assignment 

of strict boundary conditions. The theoretical literature behind is vast, and other 

main advantages are that the domain deformations and movement are inborn 

features and so is also the study of "free surface" problems. The drawbacks are the 

constant need for untangling, remeshing and remapping of the fluid field, even for 
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steady domains, the delicate and complex cell centered finite volume formulation 

and the degradation on the shape of the bodies/boundaries after several iterations; 

 a Moving Reference Frame rigidly fixed on the moving body, for which the solver 

must correctly handle the additional non-inertial forces. The critical advantages are 

the very simple theoretical formulation, the complete absence of mesh updates and 

remeshing steps. Among the drawbacks we must consider that only rigid 

movements can be achieved (at least in the presently selected and developed 

version of MRF), that the whole domain is moving so mutual relative movements 

are only available as boundary conditions, that the additional contributes are in the 

form of source terms, thus potentially introducing additional errors, and that the 

analysis input and outputs must be defined in the relative reference system, so 

transformation routines will be needed; 

 an Arbitrary Lagrangian-Eulerian approach, that enables free mesh movement 

thanks to the introduction of additional flux terms in the solver to account for it. It 

statedly combines the advantages of Eulerian and Lagrangian approaches while 

attempting at minimizing their drawbacks. It is therefore credited as ideal for fluid-

body interaction studies, but depending on the formulation can manifest great 

versatility and flexibility and can also neglect remeshing in selected cases. 

Recognized disadvantages are the vastness of the family of methods laying behind 

the same name, the usefulness of remeshing and remapping capabilities to prevent 

degraded performances and solution qualities, and the complexity of free surface 

modeling, contrary to the pure Lagrangian methods; 

 an over-set grid method, such as "Chimera", that allows domain movement thanks 

to the relative movement of the grids, but requiring an intensive solver's source 
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code rewriting and a more complex preliminary treatment of the analysis cases, 

thus falling beyond the frames of the present work. 

Among the discussed possible choices, the Moving Reference Frame has been selected, 

developed, validated and tested since they stately offered the best features increase while 

being integrally compatible with the original solver's source code. As well promptly explain 

later on, limited version of the Moving Reference Frame extension has been chosen and 

developed in the present work. More precisely, only a rigid non-inertial Moving Reference 

Frame has been adopted, avoiding the theoretical and practical complexity of a non-rigid 

frame, which could grant only limited further functionality improvements.  
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Chapter II 

 

The Moving Reference Frame 
Approach 

 

1. Preliminary considerations 

As previously stated in the general introduction, a very basic method providing a reliable 

way to account for moving geometries in the computational domain is known as the "Moving 

Reference Frame" approach, for which we actually move the whole study in a non-inertial 

relative reference system. Even if not mathematically complex, the Moving Reference Frame 

approach can already provide a significant functionality improvement to the CFD solver, since 

it enables a thorough study of fluid flows around bodies or boundaries in rigid motion, the 

latter being a three-dimensional accelerating or oscillating rotation or translation, while 

avoiding mesh deformations issues completely. 

 

2. The non-inertial MRF for moving geometries 

A consistent CFD study of rotating or oscillating bodies such as propellers and flutter 

studies for airfoils or finite three-dimensional rigid wings can be easily performed by simply 

introducing the rigid motion as a parameter for the analysis of the fixed mesh containing the 
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aforesaid body/boundary. The solver will in fact work in a relative observer's perspective, 

evaluating the fluid field in a single mesh representing a fixed domain, thus around fixed 

bodies and boundaries; those latter, thanks to the introduction of the non-inertial terms in the 

solver's equations, will actually correspond to moving geometries in the inertial perspective. 

The only significant limitation of the MRF for moving geometries is that a single global rigid 

law of motion must be inferred for all the bodies in the domain, that are actually rigid 

boundaries in the mesh. Some improvements may be obtained by using an expanded set of 

source terms for the fluid dynamics equations, including expansion/contraction terms that 

may account for some relative motion between the rigid boundaries, but the mathematical 

complexity of the MRF parameters will raise quickly for very little practical advantage, so 

other methods may be more profitably used instead. 

 

3. The non-inertial MFR for large translational velocities 

The Moving Reference Frame approach counts another less manifest feature: a very large 

global component in fluid motion, like in "Hubble flows" and among high Mach number 

problems generally, is usually source of significant numerical errors in a traditional inertial 

reference frame study. The ratio between the thermal energy and the kinetic energy is in fact 

extremely small due to the superimposed global motion, so the numerical solution in a 

floating point environment will manifest large errors on the thermal energy and thus on the 

pressure field, compromising the quality of velocity and density solutions too. In the Moving 

Reference Frame approach, the global motion is completely detracted from the numerical 

computation, so that even very little local variations can be observed and precisely calculated. 

This aspect puts the Moving Reference Frame approach in maximum consideration for 
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astrophysical and plasma nuclear magneto fluid-dynamics studies: rotating, expanding or 

contracting fluid flows in accelerating volumes, rotating ducts, collapsing stellar cores and 

pyrotechnic or supernovae explosions, or even in Inertial Confinement Fusion (ICF) problems 

can be successfully studied in a consistent, precise and much simpler way [16]. 

The aforesaid feature correspond, on the other hand, to another minor disadvantage for 

the MRF analysis of moving bodies: big domains will easily grow large fictitious advective 

components even for slow angular velocities, thus degrading the quality of the real solution in 

the absolute reference frame. 

 

4. Basic concepts and setbacks of the MRF approach 

In a Moving Reference Frame analysis, a full reference frame transformation is actually 

done and not a simple coordinate transformation like in Moving Mesh methods (among which 

the Arbitrary Lagrangian Eulerian can be included): both the solver inputs, the variables and 

the outputs becomes integrally relative, and not just in the sense they are functions of a new 

relative coordinate system, like in the Moving Mesh approaches. While conceptually more 

complicated, the development setbacks are pretty straightforward: while casting the 

governing equations to describe the flow in a non-inertial frame there are two choices 

regarding the velocity vector. Either it can be the velocity vector with respect to the inertial 

reference frame [1, 17], hereafter called the absolute velocity vector for brevity, or it can be 

the velocity vector with respect to the non-inertial reference frame [18], hereafter called the 

relative velocity vector for brevity. Depending upon this choice various formulations result. 

Therefore, developing a Moving Reference Frame extension to the solver will initially consist, 

as we will discuss further on, in the simple introduction of the non-inertial terms, such as 
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fictitious forces and expansion/contraction effects, in the original Euler/Navier-Stokes 

equations. As already stated previously, by adopting this basic technique alone any mesh 

update is actually neglected, at least at the beginning: mathematical and development 

complexities and computational time will then be noticeably lower than in other methods. On 

the other hand, if analysis input parameters and output requirements are in the absolute 

reference frame, which is a very typical case, the development of transformations from/to the 

solver's now relative reference system will be needed. These transformations are not 

necessary if the Navier-Stokes equations are formulated in a non-inertial reference frame in 

terms of absolute velocity. This approach has the advantages to use a steady-state 

formulation, if the flow field can be viewed as a steady state in the reference frame. Thus, 

many efficient acceleration techniques, such as local time stepping and multigrid method, can 

be used. 

This section will aim at the determination and explanation of the Navier-Stokes equations 

formulations in terms of absolute velocities and the additional terms, derived from this 

choice. 
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5. Governing equations 

 

5.1. Derivation of the Navier-Stokes equations in a non-inertial reference 

frame 

Considering a material point P seen from both an inertial frame "1" and a non-inertial 

frame "2", and accounting for both the translation and the rotation of frame "2", the following 

kinematical relations can be obtained: 

   ⃗⃗ ⃗⃗  ⃗        ⃗⃗⃗⃗  ⃗        ⃗⃗ ⃗⃗  ⃗                                                                

 Deriving this equation in time twice, we obtain the relation for the velocity and the 

acceleration:   

   
⃗⃗⃗⃗ ⃗⃗       

⃗⃗ ⃗⃗  ⃗     ⃗     ⃗⃗       ⃗⃗ ⃗⃗  ⃗                                                         

   ⃗⃗ ⃗⃗ ⃗⃗       ⃗⃗⃗⃗ ⃗⃗       ⃗⃗ ⃗⃗ ⃗⃗       ⃗⃗       ⃗⃗ ⃗⃗ ⃗⃗    ⃗⃗     ⃗⃗        ⃗⃗ ⃗⃗  ⃗    ⃗⃗̇      ⃗⃗ ⃗⃗  ⃗                     

It is then convenient to rename the variables as follows : 

   
⃗⃗⃗⃗ ⃗⃗   ⃗                                                                               

   
⃗⃗ ⃗⃗  ⃗    

⃗⃗  ⃗                                                                             

   
⃗⃗ ⃗⃗ ⃗⃗    

⃗⃗  ⃗                                                                            

   ⃗⃗ ⃗⃗  ⃗                                                                                  

The material acceleration in a non-inertial reference frame can then be written as follows: 

 ̇ 
⃗⃗  ⃗   ⃗̇    ̇ 

⃗⃗  ⃗     ⃗⃗      
⃗⃗  ⃗     ⃗⃗     ⃗⃗           ⃗⃗̇                                       
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where: 

  ̇ 
⃗⃗  ⃗ is the frame "2" linear acceleration, 

   ⃗⃗      
⃗⃗  ⃗ is the "Coriolis acceleration", 

  ⃗⃗     ⃗⃗        is the "centrifugal acceleration", 

  ⃗⃗̇      is due to the frame "2" angular acceleration. 

The additional fictitious forces that account for both the translation and the rotation of the 

non-inertial frame will then be: 

    ̇ 
⃗⃗  ⃗      ⃗⃗      

⃗⃗  ⃗      ⃗⃗     ⃗⃗        ⃗⃗ ⃗⃗  ⃗      ⃗⃗̇                                          

that is, four negative contributes in the right hand side of the momentum equation.  

 By simply scalar multiplication for the velocity vector, the aforesaid additional 

momentum terms give birth, in turn, to subsequent energy terms: 

    
⃗⃗  ⃗  ̇ 

⃗⃗  ⃗       
⃗⃗  ⃗ ( ⃗⃗      

⃗⃗  ⃗)      
⃗⃗  ⃗   ⃗⃗     ⃗⃗              

⃗⃗  ⃗( ⃗⃗̇     )                  

 

5.2. Original system of Navier-Stokes equations 

The Navier-Stokes equations in a inertial frame of reference are expressed as: 

   

  
                                                                              

 where    is defined as: 

    [

 

  ⃗ 

  
]                                                                            
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⃗⃗  ⃗ and   

⃗⃗⃗⃗  are the respective flux vectors: 

     

[
 
 
 
 

   

           

           

           

        ]
 
 
 
 

                                                                   

     

[
 
 
 
 

 
   

   
   

         ]
 
 
 
 

                                                                      

The system of Euler equations will not be explicitly described since it can always be 

considered a sub-case of the Navier-Stokes system and all the subsequent analytical 

achievements are valid in both the cases. 

 

5.3. Navier-Srokes equations in a non-inertial reference frame (relative 

velocities) 

By introducing the formerly deferred additional non-inertial terms in both the momentum 

and the energy equations, the original system of Navier-Stokes equations become: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  

  
    (  ⃗  )   

   ⃗  
  

    [  ⃗    ⃗     ̿    ̿]      ⃗⃗    ⃗⃗                               

                                                             ⃗⃗   ⃗                                

                                                                                     ⃗⃗̇                                                   

     

                                                                          ⃗̇                                                      
    

  
    [        ⃗     ̿   ⃗        ]      ⃗     ⃗⃗    ⃗⃗      

                                                                                     ⃗   ( ⃗⃗   ⃗  )

                                                                             ⃗   ( ⃗⃗̇    )

                                                                  ⃗    ⃗̇  
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   is the total energy per unit of mass as seen from a non-inertial frame: 

     
 

 
  ⃗    ⃗                                                                            

 

5.4. Navier-Stokes equations in a non-inertial reference frame (absolute 

velocities) 

To express the Equation (11) in terms of a relative reference frame and using the absolute 

velocities, the following relations for substantial and local derivatives are used: 

  

  
  

   

   
                                                                                 

  

  
  

   

   
   ⃗⃗    ⃗                                                                        

  

  
  

   

   
  ( ⃗    ⃗⃗     )                                                                

  

  
  

   

   
  ( ⃗    ⃗⃗     )    ⃗    ⃗⃗    ⃗                                                 

where the prime ′ denotes the operation with respect to the relative reference frame. By using 

relations (17) – (20), the right hand side of Equation (11) becomes  

  
⃗⃗⃗⃗  ⃗   [

 

  ( ⃗⃗   ⃗ )

 

]                                                                  

With this formulation, the source term vector (Equation (21)) contains only the 

contribution of the Coriolis force and the contribution of the centrifugal force is omitted. In 

this way the magnitude of the source term is greatly reduced and a smaller amount of 

artificial dissipation is required to ensure convergence. 
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To take into account the rotation and the translation of the coordinate system, Equation 

(13) is modified in the following way: 

     

[
 
 
 
 
 

   

           
      

           
      

           
      

        ]
 
 
 
 
 

                                                      

where   ⃗⃗⃗⃗  is defined as: 

  ⃗⃗⃗⃗   ⃗    ⃗⃗                                                                  

Therefore the Navier-Stokes equations, in differential form, became: 

{
  
 

  
 

  

  

  
    (  ⃗ )   

 
   ⃗ 

  
    [  ⃗  ( ⃗      )    ̿    ̿]        ⃗⃗   ⃗                                        

   

  
    [       ⃗    ̿   ⃗       ]    

 

 

5.4.1. Conservative Form of the Governing Equations 

The non-inertial Navier Stokes equations (24) can be written in the Cartesian coordinate 

system x, y, z of the non-inertial reference frame in the following compact form: 

   

  
  

   

  
  

   

  
  

  ⃗⃗ 

  
   

⃗⃗⃗⃗  ⃗   
   
⃗⃗  ⃗

  
  

   
⃗⃗⃗⃗ 

  
 

   
⃗⃗ ⃗⃗  

  
                             

where    is defined as  

    

[
 
 
 
 
  

  

  

  

  ]
 
 
 
 

   

[
 
 
 
 

 
   

   

   

  ]
 
 
 
 

                                                                

Here 
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[
 
 
 
 
 

   

           
            

           
          

   (   (   
        ))

        ]
 
 
 
 
 

          
⃗⃗  ⃗   

[
 
 
 
 
 

 
   
   

   

                    

  

  ]
 
 
 
 
 

       

    

[
 
 
 
 
 

   

            
          

            
            

            
          

        ]
 
 
 
 
 

        
⃗⃗⃗⃗   

[
 
 
 
 
 

 
   

    

   

                    

  

  ]
 
 
 
 
 

       

 ⃗⃗   

[
 
 
 
 
 

   

            
          

           
          

            
            

        ]
 
 
 
 
 

       
⃗⃗ ⃗⃗    

[
 
 
 
 
 

 
   
   

   

                    

  

  ]
 
 
 
 
 

       

are the components of the conservative and viscous fluxes and  ⃗  , for the formulation in 

terms of absolute velocities, is given by: 

  
⃗⃗⃗⃗  ⃗   

[
 
 
 
 

 
  (         )

             

  (         )

 ]
 
 
 
 

                                                   

An important thing to be noted here is that, except for the source term   
⃗⃗⃗⃗  ⃗, the functional 

form of the non-inertial Navier-Stokes equations is similar to the functional form of the 

standard conservative equations defined for inertial reference frames and including the 

Algebraic Lagrangian Eulerian (ALE) approach for generalized motion of the grid. Therefore, 

it is possible to implement a conservative formulation in terms of the conservative variables 

   defined in Equation (26) and the introduction of the ALE approach permits a local 

application of the non-inertial frame of reference as a building block in a more complex 

configuration framework, without any interface between the non-inertial and inertial part of 

the same mesh, because this formulation guarantees the flux conservation.  



26 
 

Let’s start by showing that all the physical variables and fluxes can be re-written in terms 

of the conservative variables Q. From equation (26) one gets that 
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According to the principles of thermodynamics the temperature can be given in terms of 

the internal energy and density, and as a consequence for any fluid, the temperature can also 

be written in terms of the conserved quantities Qi. A similar fact is true for the static pressure 

p and the speed of sound a since by the state equation, they are functions of the temperature 

and density only. In particular if the fluid is given by a (calorically perfect) gas one can write 

                                     √                                                

  √  
    

    
             

 

 
                                                         

and as a consequence: 
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Using equations (31)-(39) one can write the conservative flux vectors as 
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In a similar way, the viscous fluxes    ,     and  ⃗⃗   can be expressed as functions of the 

conservative quantities. 
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Using equations (31)- (39) in (30),  ⃗   can also be expressed in terms of the conservative 

variables as: 

 ⃗    
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5.4.2. Integral Formulation of the Navier-Stokes Equations  

Integrating the conservative form of the non-inertial Navier-Stokes equations around a 

finite volume V enclosed by a surface S one gets: 
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This equations can be written in a compact form, in the following way: 
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5.4.3. Non-Dimensional Form of the Navier-Stokes Equations in Non-Inertial 

Reference Frame 

The form of the above equations remains unchanged if an appropriate non-

dimensionalization is performed. As a consequence, equations (24) can also be considered as 

the no dimensional non-inertial Navier-Stokes equations. For example, if the non-dimensional 
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variables (denoted with an asterix: *) are defined in terms of reference (far-field) conditions 

 denoted with the “∞” symbol  and a reference length   as: 

 ⃗        ⃗⃗⃗⃗                 ⃗⃗  ⃗              
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The non-dimensional equations are obtained simply by replacing each variable by its 

corresponding non-dimensional variable. Parameters including the viscosity coefficient μ, the 

thermal conduction coefficient    and the specific heat at constant volume    should be 

replaced by: 

  
  

   
                                                                          

   
    

  
 

 

    
 
 
 

  
  

  

        
      

                                      

    
    

  
 

  
        

           
 

  
  

          
 

  
 

        
 
                         

 

where      
     

  
 is the Reynolds number,  r   

   

  
 is the Prandtl number and    

  

  
  

is the Mach number. 
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6. Kinematics 

 

By adopting relative dynamics, we have just discovered the appearance of new terms 

which are function of either the velocity or the acceleration, and yet even in the successive 

developments of transformation routines we realistically observe the contemporary presence 

of velocity and acceleration vectors. This fact alone has very important setbacks: as well 

known, angular acceleration vector is the first time derivative of the angular velocity vector, 

so the first one is completely known as soon as the second is. A single time derivation step 

links the two, but from the development point of view this isn't so trivial: computers don't 

have an inborn derivation capability. They can be "taught" derivation in two possible way: 

 finite numerical derivation 

 symbolic analytical derivation 

Both of them are widely and successfully undertaken, but hide some drawbacks: the 

numerical derivation forcefully gives rise to computational errors that depend on the 

derivation algorithm, on the step and on the to-be-derived function but can't be fully 

overcome, whereas the symbolic analytical derivation requires a very extensive development, 

even if an already available mathematical library is going to be used, and this would fall 

seriously beyond the goals of the proposed work. Two remaining choices were left: 

 the end user's supply of both the velocity and acceleration symbolic relations as 

analysis input parameters 

 providing a limited set of kinematical cases for which the symbolic relations for both 

position, velocity and acceleration are hard-coded in their exact form 
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The first choice isflaw-vulnerable since no verification is performed on the correctness 

and coherence of the input functions, so problems di-cult to discover and unexpected results 

may appear. The second choice was therefore pursued. 

 

6.1. Constant translational acceleration 

The linear translation case is pretty straightforward: the moving reference frame is 

undergoing a single constant acceleration vector that will develop its initial velocity vector. 

There is no dependence from the initial position, that is therefore omitted. We then obtain the 

well-known uniformly accelerated motion: 

          
 

 
    

 ̇          

 ̈     

                                                                  

The only active MRF source terms will be the translational inertia term in the momentum 

equation, written in terms of relative velocity, and its corresponding one in the energy 

equation, whereas in the other formulation, all the sources terms are inactive. 

 

6.2. Constant rotation 

A constant initial angular velocity is the only free parameter for the constant rotational 

speed case. As before, there is no dependence from the initial position. 

        

 ̇      

 ̈     
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The only active MRF formulation, using relative velocity, source terms will be the 

centrifugal and Coriolis forces in the momentum equation and their corresponding ones in the 

energy equation and if we consider the MFR formulation with the absolute velocity, the 

unique source term, which represents the Coriolis force, is present. 

 

6.3. Oscillating translation 

The translational oscillation case incorporates also the constant acceleration and initial 

velocity vectors. Again, there is no dependence from the initial position. The equations are as 

follows: 
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Despite the complexity of the law of motion, the only MRF source term active is the same 

of the constant translation acceleration case. 

 

6.4. Oscillating rotation 

The rotational oscillation case includes the constant rotation case too. As usual, there is no 

dependence from the initial position. The equations are then: 
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The active MRF source terms will be all the rotational ones, therefore in the formulation 

with relative velocity the active source terms are the Coriolis and the centrifugal force and the 

unsteadiness (rotational) term, whereas in the second formulation the Coriolis forces is 

present. 

 

6.5. Combined oscillation 

The combined oscillation case includes both the translational and the rotational 

oscillations superimposed, thus retaining their original kinematical relations. All the derived 

MRF source terms will be active. 
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Chapter III 

 

Numerical Formulation 

 

1. Introduction 

The section describes the spatial and time discretization of Navier-Stokes equations. The 

spatial discretization is based on a finite volume, node centered approach operating on an 

hybrid unstructured grid. The artificial dissipation model is derived from the nonlinear 

scheme of Jameson [14], with no eigenvalue blending. Scalar or matrix dissipation can be 

chosen. The numerical scheme, used for the time discretization is a second order backward 

difference scheme and dual time stepping. A five stage Runge-Kutta scheme is used to drive 

toward zero the residual at each time step. With the use of residual averaging, a local CFL 

number of 4.9 could be employed in the multistage sub iteration process. The Algebraic 

Lagrangian Eulerian approach for generalized motion of the grid is included [8]. 

The Weiss and Smith version of low Mach number preconditioning is implemented in the 

code [6]. A sensor depending on cell Reynolds number was also introduced to avoid applying 

the preconditioning inside boundary layers.  

Matrix dissipation was also found to be beneficial, allowing a strong reduction of the 

dissipation associated with convective eigenvalues, hence enabling a better resolution of 

vortices. 
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2. Space Discretization 

 

2.1. Finite Volume Discretization 

A finite volume discretization of equation (45) may be written according to 
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In these expressions     indicates the position vector of node i, εi the set of the elements 

belonging to the patch Pi of elements surrounding a given internal node I and Ki the set 

formed by the nodes on the boundary of Pi.      ,      
 and       represent a discretization of the 

convective ALE fluxes, viscous fluxes and the integrated finite volume normal related to the 

node-pair ij, respectively. 

Integrating equation (55) between tn and tn+1 leads to 
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3. Time Integration and Dual Time Step Approach 

A second-order time accurate implicit algorithm that is popular in CFD is the second-order 

backward difference scheme. A generalization of this algorithm for dynamic meshes may be 

written as  
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and    ,     denote some linear combination of the mesh configurations and their velocities, 

i.e. 
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In the present work, the following choice has been made for    ,    , denoted by  ̃ and  ̃ , 

 respectively 

 ̃   
         

 
                   ̃   

         

   
                                            

The basic idea of the dual time-stepping approach is to treat the equation (60) as a steady 

state problem and to solve it as an artificial unsteady equation: 
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Since the artificial time    is used as a relaxation parameter to find the steady solution of 

problem (65), variable local time steps     and residual averaging techniques are allowed. 

The pseudo-steady 

Equation (65) is solved by using an explicit multistage algorithm originally developed for 

steady state applications. 

4. Enforcement of Compatibility Conditions 

The numerical source error due to the non inertial reference frame, can be examined 

analytically by imposing the conservation of the freestream. In this case all the flow 

derivatives are zero and the velocity vector is: 

 ⃗     
⃗⃗ ⃗⃗    ⃗⃗                                                                        

where   
⃗⃗ ⃗⃗   is equal to: 

  
⃗⃗ ⃗⃗   (

  

  

  

)                                                                        

The continuity, momentum, and energy equations (Eq. (24)) can then be reduced to the 

following expressions: 

        ⃗⃗                                                                             
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For the first application case, where we have a steady rotation parallel to the y-direction, 

equations (69)-(71) can be reduced to the following expression: 

      (
  

  
  

  

  
)                                                                      

that is identically zero for any non-zero angular velocity   . Whereas, for the second case, 

with a rotation parallel to x-direction , the Eq. 72 becomes: 

      ( 
  

  
  

  

  
)                                                                    

 

In both cases, for the numerical formulation the right-hand side is not exactly zero, 

however, producing a freestream error. 

Using the results of Eq. (72) and Eq. (73), and denoting the right-hand side as S , a simple 

and straightforward source term correction can be applied in Eq. (11). In particular, an 

additional source term  ⃗⃗  can be included to exactly cancel the freestream error: 

   

  
                

⃗⃗⃗⃗  ⃗    ⃗⃗                                                           

where  ⃗⃗  for a rotation around the y-axis is: 
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whereas for the propeller the Eq. (75) becames: 
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5. RANS Turbulence Model 

The k- turbulence model proposed by Hellsten [2] has been employed. The model 

constants have been calibrated requiring consistent behaviour near boundaries between 

turbulent and laminar flow, inside shear flows and for zero pressure gradient wall flows. In 

particular, the calibration has been considered taking into account a variable c , as it is the 

case if an algebraic stress model (EARSM) is included.  

The Wallin-Johansson Explicit Algebraic Stress Mode (WJ-EARSM) [15] is implemented 

using  Hellsten’s k- as the basis RANS model.  The model is an exact solution of the 

corresponding ARSM in two-dimensional mean flow. In three dimensions there is still a 

complete, while approximate, solution. 

The full anisotropic version of the model is used, i.e. the anisotropic part of the Reynolds 

stress tensor is directly introduced in the momentum equations, while the isotropic part is 

taken into account in the form of an effective variable c.  
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6. Boundary Conditions 

The boundary conditions along solid walls for Navier-Stokes (viscous) flows are different 

from those for Euler flows. In the case of viscous flows, the velocity of the flow must vanish at 

the walls, while in the case of Euler flows, it is only required that the flow does not go through 

the wall.  

As a consequence of the foregoing statement, at the airfoil the condition of non-

penetration has been imposed, whereas on the blade surface, no-slip and no-penetration 

conditions are used by setting the absolute velocity equal to the absolute local blade velocity 

and the adiabatic wall condition and zero-normal pressure gradient condition at the wall are 

imposed at the blade surface.  

In general, the boundary conditions applied at the far-field boundary are the same for 

Navier-Stokes and Euler flows, therefore the farfield boundaries are treated by using 

characteristic boundary conditions.  

 

7. Mixing inertial/non-inertial reference frames in a multi-block 

system  

Complex engineering simulations involving  both fixed and moving parts of a vehicle or a 

machinery,  such as the simulation of the effect of  the rotation of a propeller on the 

aerodynamics of an aircraft or on the hydrodynamics of a ship are usually carried out defining 

several grid blocks in relative movement. The most used techniques in the literature are 

 the unsteady Chimera technique 

 the sliding grids approach 
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Both methodologies involve the creation of very complex  data structures requiring the 

development and use of dedicated, specialized CFD codes. In addition, an efficient 

implementation in a multi-processor environment is hard to be attained due to the difficulty 

in achieving a satisfactory load balance between processors. 

In case we are interested in the quasi-steady effect of the moving parts on the 

aerodynamic of the configuration (regardless, for example, acoustic effects or unsteady aero-

structural coupling) we can consider the aerodynamic field as frozen in correspondence to a 

single phase angle of the periodic movement.  In this case a simpler and faster approach can 

be followed, solving the Euler/Navier-Stokes equations in a mixed frame of reference. In 

practice, two or more mesh blocks are defined in which inertial or accelerated reference 

frames are respectively prescribed. 

A simple data structure are then created in order to ensure the correct conservation of  

fluxes on both sides of the boundary between different RF. 

The algorithm can be roughly described as follows: 

 the coordinates of the grid points corresponding to the “non-inertial” blocks are 

read 

 the grid elements residing across the block boundaries are found and flagged, say 

in blue 

 for each “blue” element  the points residing in the “inertial” side are also red 

flagged.  

 a set of “ghost” points is defined  corresponding two-way with the set of “red” 

points. 
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At each iteration of the solver: 

 the Coriolis source term is computed for all points internal to non-inertial blocks 

and for “ghost” points  set to zero elsewhere 

 the fluxes on all but “blue” elements are computed 

 the fluxes on “blue” elements are computed  taking the source term of “ghost” 

points 

It is worth noting that in the absolute velocity formulation there is no need to make any 

variable conversion at the block interfaces, resulting in a simpler and faster procedure. 

 

 

Figure 1: Data structure for mixing inertial/non-inertial reference frames in a multi-block system 
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Chapter IV 

 

Numerical Results 

 

1. Model validation: steady rotary NACA 0012 airfoil 

To validate the numerical model, the stability derivatives for a NACA 0012 were computed 

using finite differences and compared with the results obtained by Limache and Cliff [9]. In 

the experiment, an airfoil is submitted to a steady rotation performed at constant incidence α 

for a given pitch rate q, generating a steady flowfield in a reference frame attached to the 

airfoil. The radius of the loop is inversely proportional to q. Thus, as q reduces to zero, the 

radius approaches infinity and steady level flight is recovered. 

The results presented below are all computed for an angle of attack equal to zero, so we 

use the wind-axis reference frame for the computation of the derivatives. 

 

1.1. Aerodynamically Motion 

In this Section it will be proved that the aerodynamically steady motions are well-defined 

and physically meaningful. 

Consider the vector     that describes the velocity of a specified point of the airfoil with 

respect to a fixed observer in the inertial reference frame where the undisturbed air is 

assumed to be at rest. Note that the quantities    , α, β are scalars so that their rates of change 
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are independent of the reference frame. For vector quantities the rates of change in two 

reference frames are related by the standard Eulerian formula 

    
  

  
 ′   
 ′ 

  ⃗⃗                                                                  

where  ⃗⃗  is the angular velocity of non-inertial reference frame respect to the inertial 

frame. 

For an aerodynamically steady motion the speed of the airfoil     and the aerodynamic 

angles α, β must remain constant. Then, it follows that: 

 the orientation of any body-frame is fixed with respect to the wind-frame, i.e. the 

body-frame and the wind-frame have the same angular velocity with respect to the 

inertial frame. Furthermore, in an aerodynamically steady motion, the components 

of the angular velocity are constant and this implies that: 

 ′ ⃗⃗ 

  
                                                                        

 the velocity of the body-frame with respect to the inertial frame is a fixed vector in 

the body-frame, so: 

 ′   
 ′ 

                                                                      

This property combined with the Equation (77) leads to 

    
  

  ⃗⃗                                                                  

Equation (80) defines a system of linear, constant-coefficient, ordinary differential 

equations for the components of     in the inertial frame. The system (80) can be integrated to 

yield 
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A second integration gives the inertial-frame position components as 
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Equations (81)-(82) are a parametric description of a spiral. Note that Equation (81) 

includes a constant component along the direction       ⃗⃗  ⁄  and a harmonic part. The 

constant vector multiplying cos      in Equation (81) is the orthogonal complement of the 

constant part, while the constant vector multiplying sin      is orthogonal to the plane 

spanned by {        }. The magnitude of the vectors in the harmonic part are, in fact, equal. 

Such spiral motions are the most general class of motions of an aircraft for which an 

aerodynamically steady description is possible. For a related discussion see the book by von 

Mises [23 ]. 

 

1.2. Particular Cases 

Let’s restrict the general steady-motion to the case where  ⃗⃗  and     are orthogonal. In this 

case Equations (81) and (82) reduce to 
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Moreover, in equation (84) the constant vector multiplying sin ωt  has the same 

magnitude as that multiplying cos ωt  and is orthogonal to it. Than, it follows that, the motion 

is planar, and that in fact it is a circular path. 

This result can be seen more clearly if, the coordinate system is chosen in such a way that 

 ⃗⃗  points in the y-axis and      in the direction of the x-axis. Then, equations (83) and (84) 

simplify to: 
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It is obvious from the above expression that the motion is a circular motion in the plane (x, 

z). This circular motion is exactly a circular aerodynamically steady motion. Note in particular 

that the radius of the circular path satisfies the relationship: 

   
   

 
                                                                      

 Finally note that in the limit where  ⃗⃗    the general motion reduces to the condition 

  ⃗⃗  ⃗     ⃗⃗ ⃗⃗  ⃗                                                                           

which is the well-known uniform, rectilinear, steady motion. 

 

 



47 
 

1.3. Airfoil in Planar Steady Motion 

Consider an airfoil moving in a rectilinear motion through the air at constant speed    and 

at constant angle of attack α. Following the usual convention and as shown in Fig. 2, the body-

fixed coordinate system is chosen such that the z-axis points in the direction of the span and 

the x, y axes form the plane of the airfoil. The x-axis is chosen to be along the chord of the 

airfoil. 

 

Figure 2: Body- fixed coordinate system 

Since the problem is two-dimensional the only aerodynamic forces and moments that have 

to be considered are the lift , the drag and the pitching moment. For the class of rectilinear 

motion defined above these three aerodynamics forces and their corresponding non-

dimensional coefficients can be represented in terms of the steady function  ̅ as: 

    ̅                                                                         ) 

Assuming the flow is inviscid, these aerodynamic forces can be determined by an 

appropriate integration of the static pressure along the airfoil’s surface  By running the CFD 

code at different Mach numbers and angles of attack the three set of functions can be 

constructed: 

      ̅                                                                               

      
̅̅ ̅                                                                             
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̅̅ ̅̅                                                                            

In a general planar motion, the three functions that describe the airfoil motion are  ̅     

 ̅    and the pitch-rate  ̅   . The dependence of the aerodynamic forces on the pitch rate can 

not be obtained from the equation (89). This dependence can only be determined by 

calculating the aerodynamic forces acting on a general class of aerodynamically steady 

motions: circular motions as the one shown in Fig. 3. For the present case of the airfoil 

problem, the choice of the body-fixed coordinate system, defined above, implies that the 

angular velocity vector can be written as  

 ⃗⃗     ̃                                                                              

where q defines the pitch-rate. In Fig. 3 it can also be observed how the coordinate system 

moves with respect to the inertial reference frame. It is clear that the system of reference in 

non-inertial. 

 

Figure 3: Steady circular motion for an airfoil 

For the numerical determination of the aerodynamic forces along these planar 

aerodynamically steady motions, the flow equations derived in Section 2 must be used. It is 

necessary: 
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 setting w = 0 

 zeroing any dependence with respect to z 

 setting p = q = 0 and using q instead of r 

We note the following about the code UNS3D: 

 we do not need time-accurate solutions since we are looking for the steady state 

solution; 

 for the case of generalized aerodynamically steady motions, the residual contain additional 

terms due to the presence of the source term; 

 the additional term Q may change some stability properties [19], and this is the case 

indeed. For stability purposes the Jacobian must contain terms involving the Jacobian of 

the source term. It must be pointed out that we did not get the convergence when these 

terms were neglected; 

 following Tobak and Schiff we will define the non-dimensional pitch rate as: 

 ̂   
  

 
                                                                              

Other authors (such as Etkin) define the non-dimensional pitch-rate as  ̂       ⁄   

 the non-dimensional pitch rate is related to the radius of the circular trajectory through 

 ̂   
 

  
                                                                           

 The numerical scheme will allow us to evaluate the aerodynamic forces and moments and 

its non-dimensional coefficients. As a consequence, equations (90)-(92) can be generalized 

to include the dependence on the pitch-rate q: 

      ̅      ̂                                                               

      
̅̅ ̅      ̂                                                             

      
̅̅ ̅̅       ̂                                                            
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1.4. Numerical results 

In Fig. 4 is shown the 2D unstructured grid. The outer boundary is at a distance 30 times the length 

of the airfoil’s chord with respect to the grid center  coincident with the leading edge of the airfoil  The 

grid is made by 12334 nodes and 12096 elements. 

 

 

Figure 4:  Mesh: a) wide- view, b) close- view 

To verify the implementation of 3D Navier-Stokes equations in terms of absolute velocities, we 

compare results for the NACA0012 airfoil rotating at a finite q to those produced by Limache [10] 

simulating inviscid flow around a NACA 0012 airfoil at Mach equal to 0.2 for non-dimensional pitch 

rate  ̂ equal to 0, 0.01, 0.03, and 0.05. In facts, at the present test conditions (low Mach number, low 

incidence) we do not expect that the integral quantities computed using viscous and inviscid methods, 

respectively, differ significantly. 
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Figure 5:  Cp contours and streamlines comparison for rotating NACA      airfoil at Mach       and α    °: a  

present work,  ̂      , b) Limache [10],  ̂       

The Cp distributions around the airfoil are shown in Fig. 5 where the computed Cp distributions and 

streamlines of relative velocity are compared with those presented in [10] for  ̂ = 0.01. In Fig. 6 the 

pressure coefficient contours and streamlines of relative velocity in the whole computational domain 

are shown. 

 

Figure 6:  Cp contours and streamlines comparison for rotating NACA      airfoil at Mach       and α    °: a  

present work,  ̂      , b) Limache [10],  ̂       
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As we mentioned, these flow solutions correspond to cases where the airfoil is flying in 

circular trajectories as in Fig. 3. 

Fig. 5-6 show the pressure coefficient contours and the velocity streamlines for the case 

where the airfoil has a non-dimensional pitch-rate of  ̂       . According to equation (95) 

this value corresponds to a circular trajectory of radius Rc  equal to 100 times the airfoil 

chord. 

In Fig. 7 we see the flow solutions for the case where the pitch rate has been set 

to  ̂       . This value corresponds to a circular trajectory of radius Rc equal to 33 times the 

airfoil chord. In Fig. 8 we see the flow solutions for the case where the pitch rate has been 

increased to  ̂       . This value corresponds to a circular trajectory of radius Rc equal to 20 

times the airfoil chord. 

From the close-view of the Figures 5- 8 an interesting phenomenon can be seen: as the 

pitch rate increases nose-down the pressure in the upper surface of the airfoil tends to 

increase while in the lower surface tends to decrease. Then, it follows that an increasing 

negative lift is produced as q increases nose-down. This behavior is also clear from the Table 

1 where the results corresponding to Limache and Cliff [9 ] are shown between parentheses. 

From these numerical simulations, it follows that C_ is a decreasing function of the (nose-

down) pitch-rate q. Conversely, C_ is an increasing function of a (nose-up) pitch rate q. 

Similarly, from the results shown in Table 1, it follows that a restoring pitching moment 

(nose-up) is produced when the airfoil is pitching (nose-down). The magnitude of this 

restoring moment increases with the magnitude of the pitch rate.  

If we look at the far-field behavior of the flow solutions, we see that the streamlines tend 

to be circular curves. This result is in complete agreement with the physics of the problem 
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since that is the behavior an observer in the body-fixed reference frame will see when the 

airfoil is flying in a steady circular trajectory. The result is also in agreement with the 

mathematics, since the flow defined in equation (86) corresponds to circular streamlines. 

These results are in agreement with what is observed in reality and the two 

implementations match quite well over a range of  ̂ values. 

Finally, observe that in all the solutions the center of the circular streamlines is located at 

a distance equal to the radius Rc. This phenomenon can be seen clearly for the case  ̂        

(corresponding to Rc = 20c) shown in Fig. 8. It is important to mention that this phenomenon 

appears naturally from the flow solution and has not been imposed explicitly. 

The other condition that we can check at the far-field is if the pressure coefficient tends to 

zero as ‖  ‖  ∞. 

This property seems to be true for all the  ̂ values and the cause of this phenomenon is the 

choice of the use of the absolute velocity for the formulation of the equations. In fact, the 

unperturbed velocity is longer uniform and the rotational component that increases 

proportionally to q and ‖  ‖ as ‖  ‖  ∞ is deleted by the freestream error. 
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Table 1  Comparison of lift and moment coefficients for the NACA      at α    ° and Mach       al 

various values of  ̂ (Results from Limache [10] are in parentheses) 

 ̂ Cl Cm 

0.01 -0.051 (-0.053) -0.02 (-0.018) 

0.03 -0.153 (-0.157) -0.06 (-0.053) 

0.05 -0.26 (-0.262) -0.1 (-0.088) 

 

 

Figure 7:  Cp contours and streamlines for rotating NACA      airfoil at Mach       and α        ̂       
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Figure 8:  Cp contours and streamlines for rotating NACA      airfoil at Mach       and α        ̂       

 

The stability derivatives are calculated using finite differences: 

 

      
                            

  
 

 

In Table 2 the stability derivatives are compared with the results obtained by Limache. 

 

Table 2  Comparison of stability derivatives for the NACA      at α    ° and Mach        

Derivatives UNS3D Limache and Cliff 

Clq -5.225 -5.250 

Cmq -1.932 -1.766 
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It is possible concluding that the results obtained by UNS3D are in good agreement with the 

numerical results obtained by Limache and Cliff [9]. 

 

 

2. Propeller Application 

 

2.1. Geometrical Model 

 

 

Figure 9:  Geometrical and experimental model 

In Fig. 9 it is possible to see the geometry of the experimental model used by D. Biermann 

and Eiiwin P. Haetman [5]. The experimental results were performed for four- and six-blade 

single-rotating  and dual-rotating propellers with and without the symmetrical wing in place. 

The maximum propeller speed was 550 rpm. The results for four-blade single-rotating 

propeller were made up with two two-way hubs mounted in tandem and the spacing between 

front and rear blades are not equal and therefore the front blade led the rear by 85.4 deg. In 
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this session only the four-blade single-rotating propeller with and without wing are 

considered for the comparison with the experimental results in terms of thrust coefficient. 

The propeller, namely an Hamilton Standard 3155-6, consists of four blades installed on a 

single way hub in front of a streamline body, or nacelle, housing the engine needed to spin it. 

The four blades are streamlined using Clark Y profiles and the angle between two blades is 90 

deg. 

In the report of Biermann and Haetman [4] several blade pitch angles, defined as the angle 

between the rotation plane and the airfoil chord at 75% of the radius of the propeller, ranging 

from 20 deg to 65 deg. In our case it was decided to investigate a propeller with a blade pitch 

angle of 45 deg. The propeller diameter is 3.08 m. Starting from the geometrical details 

reported in the mentioned report, a mathematical model describing the propeller has been 

created with CATIA V5 (Fig. 10). The wing, shaped using NACA 0012 airfoils, is located in a 

mid position of the spinner and set at an angle of attack of 0 deg. Wing chord is 1828.8mm and 

wing span is 4241.8mm. 

 

Figure 10:  CATIA model: a) propeller with wing, b) propeller without wing 
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2.2. Results for the four-blade single-rotating propeller + spinner 

(viscous) 

A 3D unstructured grid of the propeller + spinner has been generated with ICEM-CFD (Fig. 

11). This grid is strongly refined in the region around the blades and on the blade surfaces. It 

is made by: 

 5672824 nodes 

 16265544 elements 

 21 prismatic layer on solid surfaces to correctly match boundary layer behavior 

 

Figure 11:  Grid generated with CFD-ICEM. 

In the code UNS3D it is possible to specify an arbitrary velocity for a specific group of 

nodes within the mesh (ALE formulation). The resulting fluxes are automatically interfaced in 

order to ensure conservation at the boundary between rotating and non rotating zones. The 

solution is then computed specifying a rotational velocity, as described in Eq. (23), only for 

the nodes inside the rotating block (Fig. 12) and taking into account the source terms (Eq. 

(21)) and the correction terms as in Eq. (75)-(76). 
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Figure 12:  Rotating block within the mesh: a) propeller, b) mesh inside the block. 

Five different operating conditions, shown in Table 3, were investigated. The axial 

undisturbed velocity has been set equal to 49.1744 m/s, corresponding to the maximum wind 

tunnel test speed of 110 mph [4]. 

 

Table 3  Operating conditions investigated 

Advance Ratio Velocity, m/s 
Rotational speed, 

rps 

1.43 49.1744 11.14 

1.5 49.1744 10.6 

1.8 49.1744 8.9 

2.0 49.1744 8.0 

2.4 49.1744 6.6 
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In Fig. 13 it is possible to note a general increasing level of the relative Mach number from 

the nacelle surface toward the tip, which is the result of the increasing rotational speed with 

increasing radius. 

 

 

 

Figure 13: Relative Mach number contours in the plane (y,z): a) J=1.8, b) J=1.43 

 

Both the pressure coefficient, Fig. 14, and Mach number distribution, Fig. 15, on  the 

suction side of the blade indicate higher load on the forward portion of the blade. Near the 
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nacelle surface on the suction side, the high pressure and low Mach number regions are 

caused by the rapid increase in spinner diameter. On the pressure side of the blade, the high 

relative Mach numbers at about mid-chord, which is the location of maximum thickness on 

the blades, is apparently related to the thickness distribution of the airfoils used in the blade. 

 

 

Figure 14: Pressure coefficient distribution around the propeller in the plane (x, y) for J=1.8 

 

Figure 15: Mach number distribution around the propeller in the plane (x, y) for J=1.8 
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The Mach number distribution on the blades generally follows the same trends as the 

pressure  coefficient, as demonstrated in Fig. 16. 

 

Figure 16: Mach number and pressure coefficient over a 65% section of a blade for J=1.8 

 

Note, that the flow is accelerated as it passes through the propeller. As the flow 

accelerates, the region defined by the streamlines passing through the propeller region 

(slipstream) contracts. Patches of higher velocity flow correspond to passage of individual 

blades. The acceleration of fluid is related to the pressure gradient, which determines the 

thrust on the propeller. Part of the acceleration occurs upstream of the propeller as the 

pressure on upstream (suction) side of the blade is lower than the ambient pressure, and part 

of the acceleration occurs downstream as the pressure on downstream (pressure) side of the 

blade is higher than the ambient pressure. This is documented by the  pressure coefficient 

contours in Fig. 17. 
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The flow around a blade is essentially 3D because of the presence of the spinner that 

induces radial displacement of the incoming fluid, but also because of the local pressure 

distributions along the radius. 

 

 

Figure 17: Pressure coefficient on the pressure and the suction side of a blade for J=1.8 

 

 

In Fig. 18 it is possible to see as the particles pass around the propeller due to the 

rotational speed. It can be seen that the stream has a swirl velocity after it passed through the  

propeller. The direction of the swirl velocity is the same as the propeller blade rotation 

direction. It is also clearly that the slipstream contracts through the propeller. And the 

contraction of the slipstream at J=1.8 is smaller than that of J=1.43, so the degree of the 

contraction of the slipstream is determined by the advanced ratio.  
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Figure 18: Slipstream around the propeller for J=1.8 and J=1.43  

 

 

The flow field generated by the propeller is characterized, as expected, by the formation 

and convection of strong tip vortices. 

Concerning vertical structures, there are essentially three regions of intense vorticity: the 

tip vortex, the horse-shoe vortex at the root and a sheet of trailing vorticity. These structures 
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are illustrated in Fig. 19. The tip vortex follows the helical path of the tip and has a strong 

intensity. Its core extension, measured to the point of maximum circumferential velocity, is 

typically of the order of 5% to 10% of the blade chord [20] and tends to increase with 

decreasing blade tip thickness [21]. The horse-shoe vortex in comparison has a much smaller 

spatial extent [22]. The wake of the blade contains a sheet of trailing vorticity that usually 

vanishes within one chord length. 

 

Figure 19: Main flow features around a propeller blade  

 

 These phenomena can be explained if we consider a bound vorticity on a lifting surface, 

which varies in magnitude along the span. In this situation a free vortex filament must 

emanate from the trailing edge with magnitude equal to the change of bound vorticity. The 

derivative of the strength of the free vortex sheet in the spanwise direction must be equal to 

the negative of the derivative of the strength of the bound vorticity in the spanwise direction. 

The vortex sheet may be thought of as drifting with the fluid. There can be no forces on it, no 

discontinuity of pressure, and no discontinuity of normal velocity, only a discontinuity of 

tangential velocity the magnitude of which is the vortex strength of the sheet. 
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Although the pressures on either side of the sheet are equal, suggesting that it may 

translate freely without deformation, there is a serious difficulty at the edge of the sheet 

where there is a singularity in the velocity field.  

 We suppose that, after an initial distortion, the vortex sheets shed from the trailing edges 

of the propeller blades form a set of interleaved helicoidal sheets which translate uniformly 

downstream parallel to the axis without further deformation as if they were rigid surfaces. 

The change in radial velocity across the sheet is the vortex strength of the sheet and 

everywhere has the magnitude required for it to be in equilibrium. The helicoidal vortex 

sheets are floating freely in an irrotational field with equal velocity on either side of the sheet, 

hence equal pressure. Since there is no pressure discontinuity across the sheets, it may be 

hypothesized that the sheets move axially backward without deformation. The system of 

helicoidal vortex sheets moving backward without deformation is a mathematical model 

which provides a means of connecting the induced velocity at the propeller with the propeller 

loading. Most importantly, under certain assumptions it has been shown to be the slipstream 

condition for maximum efficiency for a given required thrust. Consequently, it dictates the 

radial load distribution on the propeller blades for best efficiency. For these reasons, it is the 

essential framework for a propeller design system. 

Vortex sheets are considered to be of vanishing thickness, simple surfaces of velocity 

discontinuity. 

All of the fluid in the slipstream is contained between the vortex sheets and is therefore 

everywhere irrotational even as the distance between sheets becomes vanishingly small.  

In a real fluid the sheets always have some thickness and in the limit the fluid must be 

filled with vorticity. The vortex sheet treatment is only valid where the distance between the 
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sheets is at least comparable with the thickness of the sheets. Passing from the case of the 

plane vortex sheet behind a wing to the case of the postulated helicoidal sheets behind a 

propeller, the outer parts of the sheets are absorbed into a set of helical vortices equal in 

number to the number of interleaved sheets and the inner parts are absorbed in a single 

vortex of opposite sense lying on the axis. 

Freely moving helicoidal vortex sheets in the slipstream of a propeller would seem to be 

an unrealistic hypothesis in view of the necessity of an edge force with nothing on which to 

act. 

However, they can and do exist in the modified model of helicoidal sheets which are more 

or less gradually absorbed into a set of helical vortices. Several arguments may be put forth to 

justify the helicoidal vortex sheets as adequate representations of the trailing vortex system 

for the purpose of relating the loading of the propeller to the velocities induced by the trailing 

vortices at the propeller blades. First consider the following two principles: 

 In the evolution of a free vortex system in the absence of external forces acting on the 

fluid, hydrodynamic impulse is conserved. 

 If in an unbounded fluid at rest at infinity there is a vortex system having a certain 

impulse, replacement of the vortex system by another of the same impulse may result 

in a very different distribution of velocity in the neighborhood of the vortex, but the 

velocity fields will be identical at large distances. 

From these two principles it is inferred that the velocities induced at the propeller by 

downstream portions of the fully rolled-up helical vortex system are the same as would be 

induced by undeforming helicoidal vortex sheets. Immediately behind the propeller there are 

helicoidal vortex sheets. It is only the part of the vortex system in an intermediate region 
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where the sheets are rolling up that there may be some doubt of the accuracy of the helicoidal 

sheet model as contributor to the velocity induced at the propeller. 

Consequently, it is justifiable to consider that the system of helicoidal vortex sheets 

translate backward without deformation. This is to be understood as a special case since for 

arbitrary radial distribution of circulation the axial induced velocity of the trailing vortices 

will not be uniform and the vortex sheets will have a continuously changing form. The vortex 

system of heavily loaded propellers may, in some circumstances, roll up in quite strange and 

unexpected ways.  

In our case, as the propeller rotates, it induces swirls in the slipstream and the blade tip 

vortices pass by periodically. This phenomenon is more evident when the advance factor 

decreases. In fact for lower advance factors, we see a strong vortex shedding, which starts 

from each blade and travels downstream with the perturbation velocity creating strong spiral 

type regions in the rear wake for each blade (Fig. 21). Furthermore strong hub and tip 

vortices (Fig. 20) are continuously shed from the respective blade regions and ‘absorb’ the 

weaker vorticity regions at inner blade radii producing also spiral type patterns. A strong tip 

vortex with negative vorticity and nearby a red spot corresponding to a counter-rotating 

vortex. At the trailing edge of the blade, free vortices are shed the rotation of which is 

opposite to that of the leading-edge vortex (change in gradient sign of the circulation 

distribution curve). The trailing-edge vortex is originally connected to the trailing vortex 

sheet. When the leading-edge vortex leaves the blade trailing-edge, it interacts with the vortex 

sheet, which is thus warped and gives birth to a concentrated trailing-edge vortex. This one is 

embedded in the flow field of the dominant leading-edge vortex. The latter induces velocities 

at the trailing vortex which lead to an helical path of the trailing vortex around the leading-

edge vortex. 
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Figure 20:  X-vorticity in the plane (x,z) for J=1.43. 
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Figure 21: X-velocity in the plane x = 750 mm: a) J=1.8, b) J=1.5. 

The vortices can be followed in their evolution as long as the resolution of the 

computational grid is reasonably good, whereas are rapidly damped when the grids stretches 
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towards the outflow. In the Fig. 22 are also visible the vortices that form at the root of the 

blades and eventually merge into the hub vortex. 

 

 

 

Figure 22: X-vorticity around the propeller for J=1.8 

 

The effect of a nacelle on the distribution of the loading on a propeller for maximum 

efficiency can be developed from the requirement that the trailing vortex system be a 

helicoidal sheet moving as if rigid, exactly as in the case of an isolated propeller. First consider 
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an ideally loaded propeller moving in free air without interference from any adjacent body. At 

some distance behind the propeller the trailing vortices appear as a regular helicoidal sheet. 

Now, at some lesser distance behind the propeller, interpose on its axis a streamlined nacelle. 

The nacelle, being at a sufficient distance, has no effect on the propeller. 

Neglecting viscous effects and the instability of vortex sheets, it also has no effect on the 

final form of the vortex system, which will flow around the nacelle and finally resume its fixed 

helicoidal form. 

Now consider how the propeller must be modified if it is moved downstream to a position 

immediately in front of the nacelle and is required to give rise to the same final form of the 

trailing vortex system, the remote helicoidal trailing vortex sheet being regarded as an 

unchanging given (Fig. 23). The flow in front of the nacelle will be retarded and there will be a 

radial displacement of streamlines. As it is moved to proximity to the nacelle, blade elements 

of the free running propeller must be displaced radially and the bound circulation of each 

element must remain unchanged if the final trailing vortex system is to remain unchanged. 

 

Figure 23: A free running propeller and an equivalent propeller on a nacelle 

Since, in locating the propeller close to the nacelle, the relative peripheral velocity at a 

blade element is subject to little change while the axial component may be substantially 

reduced by an additional interference from the nacelle, the angle of attack and the circulation 

will be increased unless the local blade angle b is reduced. The design of a propeller in the 

presence of a nacelle with ideal load distribution requires the determination of the radial 
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coordinates of blade elements in relation to the radii of the hypothesized free-running 

propeller and the determination of the blade angle which results in the proper bound 

circulation. 

The flow around the nacelle may be described by a distribution of sources and sinks on the 

axis. 

However, the flow in the region of a propeller just ahead of a nacelle or fuselage is 

probably adequately represented by a single source. 

The transformation of the design of a free-running propeller to a propeller at the nose of a 

nacelle will result in the stretching of the circulation distribution over a greater radius. This 

will usually result in a somewhat greater thrust, but both propellers result in the same trailing 

helicoidal vortex system, hence the same net thrust. The difference is due to a drag force on 

the nacelle induced by the proximity of the propeller. We may also observe that the design of 

a pusher propeller with ideal load distribution is, if we neglect the effects of viscosity, exactly 

the same as for a tractor propeller. 

In Fig. 24 and Fig. 25 the axial velocity profiles downstream the blades are shown at 

different position of x and it is possible to note how the swirl induced by the rotation of the 

propeller vanishes with the increasing of the distance from the blades. 

To understand this phenomenon, we can hypothesize that the blade elements lie on radial 

lines and may be considered to act as two-dimensional foils upon which the forces are the 

same as would be found in a uniform two-dimensional flow with the same local velocity and 

direction. For this to be justifiable, the velocity field must be effectively uniform in the 

immediate region of the airfoil. Aircraft propeller blades are almost always narrow enough 

that this assumption is reasonable. It is possible to develop a correction to the camber of 
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blade elements to compensate for the curvature of the velocity field, but this refinement is 

probably not worthwhile for typical aircraft propellers.  

From the following argument it can readily be seen that the induced velocities at the 

propeller plane tend to be half the induced velocity at a corresponding point on the helicoidal 

vortex sheet far behind the propeller. 

Assume a set of equally spaced right helicoidal vortex sheets extending in both directions 

from a plane normal to the axis. Consider any point on the vortex sheets where they intersect 

the plane. From the Biot–Savart law, it can be seen that the induced velocity at such a point 

due to a vortex element at an arbitrary distance from the plane is exactly equal and in the 

same sense as the velocity induced by a like element at the same distance in the other 

direction from the plane (See Appendix B). Consequently, if the helicoidal vortices are semi-

infinite, extending in only one direction from the plane, the velocities on the plane will be half 

what they would be for the doubly infinite system. This is taken as an adequate approximation 

for the velocities induced at the propeller plane by the trailing vortex system except that the 

tangential velocity is modified for the effect of radial displacement of the trailing vortex 

system immediately behind the propeller. 

It must be recognized that representing the vortex system behind the propeller by regular 

semi-infinite helicoidal vortex sheets is a simplification since both the pitch and the radius of 

the vortices will be modified to some extent immediately behind the propeller. Also, the 

helicoidal sheets are unstable and at some distance behind the propeller will roll up into a set 

of helical vortex filaments, one for each blade, and another of opposite sense on the axis. It 

was shown that the rolling up of the sheets at a distance from the propeller has no significant 

effect on the velocity field at the propeller, but the contraction of the trailing vortex system 

immediately behind the propeller must be taken into account. The exception to this is the case 
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of a lightly loaded propeller where a simplified treatment is appropriate. The radial 

displacement of the trailing vortex system immediately behind the propeller occurs in any 

case and is augmented by the effect of a hub of significant size. The effect of the radial 

displacement is taken into account by observing that the circulation as measured by a line 

integral on a circle of radius r must be the same at any plane behind the propeller when r is 

drawn through the same vortex filament. 

 

Figure 24:  Sections for the analysis of the axial velocity profiles 
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Figure 25:  Axial velocity profiles downstream the blades at positions of Fig. 8 for J=1.8. 
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With the aim of comparing the results with those obtained by Biermann and Haetman [4], 

the thrust  coefficient, defined as: 

   
 

     
                                                                     

has been calculated. Following the experimental procedure adopted by D. Biermann and 

Eiiwin P. Haetman [4] the thrust force T has been obtained by integrating the forces along x-

direction on all the blade surfaces, and subtracting the drag force due the blades alone, in case 

of zero thrust coefficient.  

In the following figure (Fig. 26), the obtained thrust coefficients for five different advance 

ratio are 

Plotted and compared with those obtained by Biermann and Haetman [4]. 

 

Figure 26:  Computed vs experimental thrust coefficient. 
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The computed thrust coefficients are in good agreement with the experimental values with 

(Table 4):  

 

Table 4  Experimental and computational results for the thrust coefficient 

Advance Ratio J Experimental    Computational    

1.43 0.2192 0.217 

1.5 0.2175 0.215 

1.8 0.1782 0.174 

2.0 0.1374 0.1376 

2.4 0.0487 0.05 

 

 

As the experimental errors are unknown, it is not possible to determinate whether the 

computed results are or not within the range of the experimental uncertainty and to give a 

precise assessment of the quality of the results. 

 

2.3. Results for the four-blade single-rotating propeller + spinner + wing 

(inviscid) 

Steady Euler results for the propeller+spinner+wing are presented in this section. The 

grid is generated with ICEM-CFD (Fig. 27) and it is made by:  
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 2173935 nodes 

 10718702 elements 

 

Figure 27:  Rotating block within the mesh: a) propeller, b) mesh inside the block. 

 

A rotational velocity has been imposed for the nodes inside the block around the blades, as 

indicated in Fig. 27. The investigated operating conditions are the same of the previous case. 

The pressure gradients in spanwise direction are moderate except for the wing-nacelle 

juncture region. At that location a typical pattern is obtained that demonstrates a small loss of 

lift. Although the pressure distribution changes dramatically (large differences between wing 

upper and lower side) when the angle of attack is increased, still a rather small spanwise 

gradient is maintained. This is important with respect to the changes that the slipstream 

exhibits when it strikes the wing (Fig. 28). 

Although some disturbances are found at the wing tip, it is expected that the wing tip flow 

pattern has only minor influence on the propeller-wing interactive flow at the more inboard 

located position. 
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Figure 28: Sleapstream around the propeller for J=1.43 
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Figure 29: Mach number: a) upper side for J=1.8, b) lower side for J=1.8; c) Cp on surface for y=1000 mm  and 

y=-1000 mm. 

 

The Mach distributions in Fig. 29 clearly show the effect of the propeller slipstream that 

washes the wing. Especially, the impact of the swirl velocity component is very pronounced. 

The high axial velocity induced by the propeller increase the dynamic pressure of the fluid in 

the slipstream.  

It is clear that the Mach number distribution on the section has changed due to the 

slipstream. 

The swirl velocity of the slipstream changes the local attack angle of the wing which 

immerse in it. 

The propeller induced upwash at the up going blade side leads to an increased local attack 

angle while downwash at the down going blade side leads to a decreased local attack angle. 
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The wing has an increased lift at the up going blade side and decreased lift at the down going 

blade side. 

The capability of the UNS3D code to incorporate the deformation of the slipstream, as 

sketched in Fig. 28, is essential for a detailed analysis of the propeller-wing interactive flow. 

The strongest point of the UNS3D code in the analysis of the propeller-wing interaction 

problem is its intrinsic modeling of the swirl recovery effects. Furthermore, no user 

intervention is needed to prescribe the slipstream position within the computational domain. 
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Figure 30:  Relative Mach number  in x =1000 mm and x = 1500 mm for J=1.8 

 

 

Figure 31:  Total pressure contours in the plane (y,z) for J=1.43 
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Figure 32:  Total pressure and streamline in the plane (y,z) for J=1.43 

 

It should be reminded that the relative Mach number distributions (Fig. 30), like so the 

total pressure distributions, as presented in Fig. 31-32, are affected both by the local propeller 

induced flow angles and the dynamic pressure increasing in the slipstream. 

Since the slipstream consists of a swirl and an axial velocity component as well as a 

pressure jump, with reference to the undisturbed flow, the lift distribution and with it the 

overall wing coefficients, are strongly affected. As a result of the modified flow pattern due to 

the propeller the effects are not confined to the wing part within the slipstream but to parts 

outside of it as well. 

The axial and the swirl velocity induced by the propeller both have their own very specific 

influence on the flow over the wing. The axial velocity (or alternatively the dynamic pressure) 

increase does not change the local lift and drag coefficient when based on the local flow 

conditions inside the slipstream, the local forces, however, are strongly affected. The axial 

velocity distribution is non-uniform; it changes radically in radial direction. Depending on the 

vertical position of the propeller the wing cross sections are thus more or less affected with 



85 
 

higher dynamic pressure values leading to higher values of the local lift- and drag coefficient, 

based on the undisturbed flow conditions. With the axial velocity distribution symmetrical 

with respect to the propeller thrust axis  the effect on the wing load is equal for both the 

inboard and outboard side of the nacelle (Fig. 33). 

 

Figure 33:  Axial velocity for J=1.43 

 

Contrary to this, the effect of the swirl velocity component is anti-symmetrical. The 

propeller induced upwash at the upgoing blade side (UBS) introduces an angle of attack 

increase while the component at the downgoing blade side (DBS) leads to a decreased local 

wing angle of attack. With the wing at a positive angle of attack the wing generates a positive 

lift that results in an augmented lift at the UBS and decreased lift at the DBS. 

Due to the anti-symmetrical character of the swirl velocity the rotation direction of 

propeller dominates the final shape of the spanwise wing loading distribution. 

Combining the effects of the axial and the tangential velocity components in the slipstream 

and taking into account changes in the loading distribution outside the slipstream domain the 

picture becomes more complicated. As sketched in Fig. 28-29 wing regions are directly 

influenced by the slipstream that washes the wing. The lift effect of the propeller swirl 
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velocity, that changes the local wing angle of attack, is enhanced by the increased dynamic 

pressure. Considering the inboard up rotation case, in W-III these two slipstream effects 

counteract each other. The result is a smaller difference between the powered and 

unpowered case in this region. It can be clearly seen that the propeller effect is not limited to 

the wing part (with a span equal to the contracted slipstream diameter) directly behind the 

propeller. Due to the changed wing inflow conditions generated by the propeller the loading 

in some particular regions changes as well, both for the inboard up and outboard up running 

propeller. This is the result of the distorted vorticity sheet that leaves the wing. 

  The total pressure distribution on each blade face is a superposition of the pressure due 

to the thickness effect which produces no lift, on the pressures arising from the effects of 

"non-planar" thickness camber and angle of attack of the blade and of spatial non-uniformity 

of the inflow field.  

The last four components contribute to the lift because each produces a pressure 

difference between the back and front faces of the blade surface. 

 

Figure 34:  Mach number in the plane (y,z) for J=1.8 
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Figure 35:  Total pressure loss in the plane (y,z) for J=1.8 

 

An-other phenomenon that is clearly visible, due to the interference between the propeller 

and the wing, is the rise of vortices around the juncture of spinner and  wing (Fig. 36). A 

shedding of these vortices can be individuated, which is indicative of the high gradient of 

spanwise load on the wing. 

The vortices can be followed in their evolution as long as the resolution of the 

computational grid is reasonably good, whereas are rapidly damped when the grids stretches 

towards the outflow. In the Fig. 32-36 are also visible the vortices that form at the root of the 

blades and eventually merge into the hub vortex. From the Fig. 30 can be clearly seen the 

contraction of the flow tube caused by the acceleration induced by the propeller and, from a 

numerical standpoint, the rapid destruction of the vortex due to the mesh coarsening. 
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Figure 36:  Vorticity magnitude in the plane (y,z) for J=1.8. 

 

Figure 37:  X-vorticity magnitude in the plane (y,z) for J=1.8. 
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In fact, the streamwise and spanwise locations of blade vortices are staggered on the 

upper and lower surfaces of wing and interacted vortices are induced near spinner. 

In order to make a further verification of the method the numerical calculations have been 

compared to experimental data (Fig. 38). 

 

 

Figure 38:  Computed vs experimental thrust coefficient 

Again, the computational results are in good agreement with the experiment and the 

maximum error is around 5% (Table 5). Also in this case the experimental errors is unknown.  

Once accurate results are needed for the propeller-wing interference problem and details 

of the flow are needed to determine the secondary flow effects that influence the drag 

performance of the model, which is very important for the estimation of the thrust force, the  

UNS3D code becomes indispensable. 

This approach facilitated the identification of typical flow phenomena, like the 

deformation of the slipstream when passing the wing. The spanwise distributions of the drag 

force are sensitive to the form the velocity distribution in the slipstream as well as the way the 
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slipstream deforms when passing the wing. Hence, a calculation model based on the NS-

equation, respect to the other mathematical models (Appendix A), yields a more realistic 

estimation of the propeller wing interactive flow since the slipstream is allowed to develop 

and deform freely and no artificial swirl recovery  is needed. 

 

Table 5  Experimental and computational results for the thrust coefficient 

Advance Ratio J Experimental    Computational    

1.43 0.206 0.2 

1.5 0.2052 0.196 

1.8 0.175 0.18 

2.0 

2.4 

0.14 

0.049 

0.135 

0.054 
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Chapter V 

 

Conclusions 
 

The Alenia Aermacchi UNS3D code was modified, introducing the capability of flow 

simulations in a non inertial frame of reference. The modified code was at first applied to the 

computation of damping derivatives of a rotating profiles, then to the prediction of the 

performance of a propeller, following the experimental test case described by Biermann and 

Haetman [5], for different rotational speeds. In the first case, good agreement has been 

obtained with the numerical results of [10]. In the second, the results are in good agreement 

with the experimental data within the propeller operating range. The computational results 

clearly showed the effect of the swirl velocity and the increased total pressure on the spinner 

and the wing. Therefore, this approach facilitates the identification of typical flow phenomena, 

like the deformation of the slipstream when passing the wing, being able to model 

aerodynamic phenomena linked to the propeller-airframe integration. 
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Appendix A 
 

Engineering methods for the 

estimation of propeller data 
 

1. Introduction 

To be able to work with the flow phenomena that occur in propeller flow it is beneficial to 

shortly restate the typical propeller flow characteristics and discuss methods by which both 

the propeller force as well as the slipstream parameters can be obtained. 

A logical step towards the analysis of the propeller is to consider a propeller that operates 

in an undisturbed uniform flow generating a slipstream that is free of any disturbance caused 

by the proximity of a nacelle or any other airframe part. The flow field that is generated is 

very similar to that of a wing. The local lift on the blade section at any radial position is 

associated with the local circulation around the blade. This circulation varies from the blade 

root to the blade tip resulting in the shedding of a vortex sheet from the blade trailing edge, as 

sketched in Fig. A.1. 
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Figure A.1: Sketch of a vortical wake generated by a propeller blade 

The vortex sheets of all blades pass downstream in a helical path together forming the 

slipstream. The vortex sheets springing from all propeller blades are free to move under their 

own self-induced influence and the influence of the other sheets. The resulting slipstream 

shows a contraction as it moves downstream due to the increasing axial velocity inside the 

slipstream tube. The bound vorticity on the propeller blades and the trailing vorticity 

generate a propeller induced velocity vector. This local induced velocity can be added 

vectorially to the free stream velocity and the local rotational velocity of the blades to form 

the total local velocity vector in a fixed (Eulerian) frame of reference. Once the slipstream is 

generated in the form of helical wakes its geometry will change gradually as it progresses 

downstream. This deformation of the slipstream tube is the result of both the contraction and 

the rolling up of the vorticity sheets into a discrete tip and root vortex. The distance over 

which this process takes place is dependent on the propeller loading since this strongly 

determines the advance ratio of the blade wakes (see Fig. A.1). 

An attractive starting point to describe possible losses and gains for the propeller is found 

in the description of the so-called free air thrust. This is the thrust of the propeller blades 

without any other aircraft part present. The induced losses are typically the effect of the axial 

and swirl velocity components generated by the helical vortex sheets that emanate from the 
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blades. In case of interference with other aircraft parts these velocities will of course be 

strongly affected. 

The loss in efficiency due to blade airfoil drag is related to the drag of the blade airfoil 

sections and are insofar rather independent on the selection of the three-dimensional 

propeller blade geometry and the propeller position relative to other aircraft parts. To reduce 

the profile losses the airfoil sections will be designed to produce a high lift to drag ratio, Cl/Cd, 

over a wide range of propeller inflow conditions, i.e. a range of advance ratios that the 

propeller experiences going from take-off to cruise condition. The final selection of the airfoils 

is therefore based on a compromise aiming at high efficiency at a specified flight condition 

(generally the cruise phase) whilst maintaining acceptable penalties for other flight phases. 

Accordingly the profile loss associated effects are part of the propeller design process which is 

only loosely related to the propeller wing interference problem. 

On the other hand, the induced loss of the propeller is an important issue when treating 

the propeller wing interaction effects. Because the inflow conditions of the 

propeller are mainly dictated by the propeller-airframe configuration the loading 

distribution on the propeller blades and, consequently, the trailing vortex system will change 

with reference to the uninstalled propeller condition. Even though the free air efficiency is an 

interesting property as far as propeller design is concerned the most important condition for 

the treatment of the performance of the complete aircraft will be the installed propeller case. 

In the next sections first of all the main features of the uninstalled propeller and various 

methods to calculate the performance will be discussed. 
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2. Actuator disk theory 

The thrust delivered by a propeller can be achieved by imparting axial momentum to the 

passing fluid to force a backward motion. The energy associated to the fluid is an inevitable 

loss. The original theory, as first formulated by Rankine and Froude, excludes the viscous 

effects, the rotation of the slipstream, and the uneven load distribution, with the scope of 

evaluating the ideal efficiency of such a propulsive system (also called actuator disc). 

The rotor is degenerated into a disc perpendicular to the direction of the thrust, and is 

capable of sustaining a pressure difference between its two sides, and of 

generating/imparting linear momentum to the fluid that passes through it. The determination 

of the thrust requires the evaluation of the mass flow through a stream tube bounded by the 

disc. In a later refinement the load distribution on the disc was taken into account with the 

momentum equation, and led to the conclusion that the load (i.e. the pressure difference), in 

fact, must be constant over the actuator disc to produce optimal thrust (e.g. with minimum 

energy losses). With this in mind the actuator disk theory is discussed briefly. 

The momentum theory of propellers, as proposed decades ago by Rankine and Froude, 

provides a basic understanding of various aspects related to the performance of propellers. As 

sketched in Fig. A.2 the propeller is approximated by an infinitely thin actuator disk across 

 

Figure A.2: Actuator disk model with control volume for the application of the momentum equation 
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which the static pressure rises in a discontinuous way. Important simplifications that are 

applied in this model can be summarized as follows: 

 both the pressure and the velocity are distributed uniformly over the disk 

 the rotation (swirl) imparted to the flow as it passes the disk plane is completely 

neglected 

 the flow passing through the propeller disk can be separated from the rest of 

the flow by a streamtube 

 the flow is assumed to be incompressible 

In order to apply the momentum theory, four planes, 0 to 3, all perpendicular to the thrust 

axis, are defined. Planes 0 and 3 are assumed to be lying far upstream and far downstream of 

the disk respectively. Planes 1 and 2 are positioned just in front of and behind the propeller 

(Fig. A.2). This means that the local static pressure in the these planes is constant and equal to 

the undisturbed pressure, p. 

A volume exists across the inflow plane, with surface area S, the outflow plane with the 

same area and the cylindrical surface S. The flux passing out of the surface across plane 3 

minus the flux entering across plane 0 will be: 

                                                                       

                                                                            



97 
 

If V3≠  , a flux enters the control volume from the side. When the cylindrical control 

volume is chosen large enough the external pressure forces cancel out. In this case the 

momentum equation results in: 

       
           

      
                                          

With equation (A.2) this leads to: 

                                                                        

Where       is equal to the mass flux passing through the propeller plane. Alternatively 

the thrust of the propeller can be derived from the pressure force acting on the actuator 

disc plane: 

                                                                           

Where Sp = S1 = S2 is the propeller disk area. 

To relate p1 and p2 Bernoulli’s e uation can be applied both for the domain upstream and 

downstream the propeller: 

   
 

 
   

      
 

 
   

                                                               

   
 

 
   

      
 

 
   

                                                               

Subtracting equation (A.6) from equation (A.7) and noting that the velocity is continuous 

across the propeller disk leads to: 
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From the continuity equation it follows that : 

                                                                                 

Combining this with equations (A.4)-(A.5)-(A.8) results in: 

    
      

 
                                                               

So, we conclude that the velocity at the location of the propeller is equal to the average of 

the velocity far upstream and far downstream of the propeller. With the propeller induced 

axial velocity increase at the propeller plane, va: 

                                                                       

the thrust can be written as: 

                                                                 

To determine the efficiency of the propeller a relation for the power has to be established. 

From the increase in kinetic energy of the flow the power can be written as: 

  
 

 
          {            

 }                             

Substitution of equation (A.12) leads to the following important result: 

                                                                  

The efficiency of the propeller  is the ratio between the useful power and the power that is 

absorbed. Hence: 
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or: 

   
 

      ⁄
                                                         

Solving equation (A.12) for va leads to: 

   
 

 
     √  

         ⁄                                      

With the definition for the thrust coefficient,      
 ⁄    

   ⁄  , the combination of 

equation (A.16) and (A.17) the efficiency of the propeller can be written as: 

  
 

  √    

                                                         

This means that the propeller efficiency approaches unity when the disk loading (and 

therefore the thrust coefficient) approaches zero. 

Expression (A.18) represents the theoretical maximum value of the efficiency. This value 

is however not attainable in practice since the momentum equation neglects viscous losses 

due to the boundary layer on the propeller blades. Moreover, additional induced losses arise 

due to the loss of lift near the propeller tips. The helically shaped vortex system that is 

produced as a result reduces the efficiency even further similar to the performance 

degradation of a wing due to the tip vortices. 

Although the actuator disk model, based on the momentum equation, fails to accurately 

predict the power of a propeller it is very useful for estimating the propeller induced axial 

velocity in the slipstream, as indicated above. 
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3. Vortex Theory 

The actuator disk theory helped in the understanding of propellers but failed to relate the 

blade loading with the propeller geometry and operating conditions. Prandtl [32] introduced 

the lifting line theory in which he described the lift of finite wings in three dimensional flow 

introducing the idea of a trailing vortex sheet. The basis effect of the vortex sheet is to induce 

velocities at the location of the wing (or bound vortex) which can be calculated with the Biot-

Savart Law. For the special case of an elliptically loaded wing the induced angle of attack will 

be constant. 

In reality, the vortex sheet is not stable and tends to roll up behind the wing into two 

distinct "tip vortices". If however if the vortex sheet that leaves the wing is assumed to stay 

flat its position will vary in a state of uniform motion perpendicular to itself. The downwash 

angle far downstream will then be twice the value as found at the location of the wing. This 

picture led the way to the vortex theory of propellers assuming that an equivalent vortex 

system will be produced by the rotating propeller blades . 

The vortex theory, developed by Betz [25], assumes a rigid "wake" and can be used to 

design a minimum induced loss propeller in analogy with the elliptical wing which produces 

minimum induced drag. The optimum distribution of the circulation along the propeller blade 

produces a propeller with maximum efficiency excluding any viscous losses due the profile 

drag of the propeller blade sections. 

From the known optimum circulation distribution the optimum value of the local loading, 

expressed in Cl   c, is found for one specific operation condition of the propeller. Now 

combinations of blade angle distributions and chord distributions can be produced delivering 

an optimum (minimum induced loss) propeller. 
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If the focus is on the analysis of a given propeller, rather than the design of a new 

propeller, the vortex theory of propeller is of little use. Especially when the slipstream 

characteristics of a given propeller are the subject of research a more extended procedure as 

outline in section 4 is to be used as a starting point. One concept however that can be 

described based on the original vortex theory of propellers is the so-called "Tip loss factor", 

denoted with F. To understand its importance for the description of the inflow field of a 

propeller the derivation of an expression for F will be summarized here, based on the so-

called displacement velocity. 

Consider an elementary helical vortex filament being part of in a helical vortex sheet 

which forms part of the slipstream of a propeller as shown in Fig. A.4. The vortex filament is 

constrained to move everywhere perpendicular to itself with a velocity ws, which is the same 

as the local slipstream velocity. When the local helix angle is   , the axial velocity becomes 

  cos      and the circumferential velocity   sin       , where rs is the local helix radius. For 

an observer that is unaware of the angular velocity it seems that the vortex filament has a 

displacement velocity: 

     cos                                                                   

Betz [25] shows that for a propeller of minimum induced loss the displacement velocity is 

constant in blade spanwise direction (i.e. radially constant). The axial component and the 

swirl component of the vortex sheet are then given by: 
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Figure A.3: True and apparent transport velocity of the vortex sheets behind the propeller blade 

 

       cos               

                 cos    sin    
                                         

When the advance ratio is small or the number of blades is high enough the distance 

between the vortex sheets, produced by two succeeding blades, will be small. 

Based on this model Prandtl showed that the fluid velocity between the sheets is a fraction 

F of the vortex sheet velocity. Prandtl realized that that at small values of rs the velocity 

between the vortex sheets will be approximately the same as the local displacement velocity 

of the sheets. 

Further he indicated that then local flow velocity at the outer edge of the vortex sheet will 

be different from the displacement velocity. This flow type now exhibits much similarity with 

the 2-dimensional flow along the edges of parallel plates in a uniform flow as sketched in Fig. 

A.4. 
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For this particular flow field the ratio between the local average flow velocity between the 

plates,   ̅̅ ̅ and the speed of the plates with reference to the undisturbed flow at great distance 

from the plate, vn, becomes: 

  ̅̅ ̅

  
  

 

 
arccos (  

  
 )                                                        

 

Figure A.4: 2D potential flow along a row of semi-infinite parallel plates as used by Prandtl in the derivation of 

the tip loss factor F 

 

To put this in a form that is directly related to the propeller vortex sheet geometry, 

distance d is replaced by R - r and s by the distance between the two succeeding tip vortices 

(index t): 

  
   

 
sin(   )                                                           

where index 3 again indicated plane 3 far downstream of the disk. Thus for a circle with 

radius r: 
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̅̅ ̅̅

   

 
   ̅̅ ̅̅

   

                                                                      

where: 

  
 

 
arccos                                                                     

and: 

  
      

   
 sin     

 
      

 sin    
                                                       

where     ⁄ . It should be noted that for the limiting case were the propeller is lightly 

loaded the induced velocities become very small. 

 

4. Blade Element Theory 

As indicated before, in order to estimate the performance of the propeller and assess the 

slipstream that is generated it is necessary to examine the aerodynamics of the blade in detail. 

A relatively simple method of predicting the performance of a propeller is the use of blade 

element theory. The propeller is divided into a number of independent sections along the 

blade spanwise direction. 
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Figure A.5: Velocity and force diagram acting on a propeller blade section 

 

 

Fig. A.5 contains the velocity and force diagram for a blade section positioned at radius , r. 

Before the forces acting on the propeller can be determined from the known airfoil 

characteristics of the blade sections, it is necessary to calculate the effective velocity, Ve, or 

equivalent : the induced velocity components, va and vt. 

To calculate the induced velocities one could start using the Biot-Savart law in the process 

of calculating the velocity induced by every single vortex filament in the slipstream. This leads 

to a rather laborious calculation technique that not necessarily produces more accurate 

results than the method based on conservation of momentum as sketched hereafter. In case 

the number of propeller blades is limited the induced velocity components will exhibit a 

fluctuating character at the location of the propeller disk. This again makes the Biot-Savart 

techniques complex since unsteady equations have to be solved. However, a very acceptable 

result is obtained by considering the case that the number of blades   ∞ [24]. 
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Following a simplified conservation of momentum approach only requires the avail- 

ability of the Prandtl tip loss factor. Considering a circular streamtube, between r and r + dr  

the conservation law of momentum in axial direction becomes: 

        (    ̅  
)     

                                                 

where index 0 refers to the condition were the profile drag of the blade element is zero (Cd 

= 0). The right hand side,    
  , is the force acting on the fluid inside the tube element which is 

equal to Btimes the force acting on the blade element. In tangential direction we may write: 

        (    ̅  
)  

   
 

 
                                                  

The attribute Cd = 0 is essential since the left hand sides of the equations (A.26) and 

(A.27) are based on an idealized vortex system in which the effect of the profile drag is not 

represented for the moment. With the lift force dL acting on the blade element the thrust and 

torque can also be expressed as: 

   
      cos       

 

 
   

     cos                                               

   
 

 
     sin       

 

 
   

     sin                                                

where dL denotes the lift force acting on an element of a single propeller blade. The 

velocity Ve can be written as : 

   
     

sin    
 

       

sin   
                                                    

or 
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cos    
   

      

cos   
                                                

The axial and tangential velocity ratio at the location of the propeller and at cross section 3 

may be approximated by: 

  ̅̅ ̅

  
 

  ̅

  
 

   
̅̅ ̅̅

   

 
   ̅̅ ̅̅

   

                                                    

In theory   ̅̅ ̅   ⁄  will be different from    
̅̅ ̅̅    

⁄  due to the influence of the bound circulation 

on the blades and the "development" of the trailing vortex system that is infuenced by self-

induction. However, the angle    
will differ only slightly from    

. This is especially the case 

for lightly loaded propellers. Accepting the value of F as calculated by the method described in 

section A.4, the blade element model now proceeds as follows. 

Substitution of equations (A.32) and (A.28) into equation (A.26) leads to: 

                  

 

 
   

     cos                              

Thus: 

     

    
 

   

    
 

   

   
 
  cos   

        
                                      

In an analogue way for the tangential direction we find: 

     

    
 

   

     
 

   

   
 

  

 cos   
                                     

For the known values of V     r  B  β and c equations (A.34) and (A.35) constitute a relation 

between the induced velocities va; vt and the angle φ (or α). The value of the lift coefficient Cl 

for all blade sections is known at every angle of attack from a look-up table. Remember that α  
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is simply found from α = β - φ. The Prandtl tip-loss-factor, F, is known for a given value of φ 

but an initial guess is needed for     which is unknown at the start of the calculation process. 

For a lightly and optimal loaded propeller V + w3 may be approximated as being 

independent of r. Hence: 

   (   )  
 

 
tan(   

)                                                    

Using the assumptions based on the use of the Prandtl tip-loss-factor it is beneficial and 

acceptable to start the calculation process with sin(    
)  

 

 
sin     

 . 

 Thus factor f  in equation (A.25) becomes: 

  
 (  

 
 )

  
 sin(   

)
                                                      

Initially the relation between    
 and φ must be predicted appropriately. For lightly 

loaded propellers a start value of    
   is acceptable. For a non-zero flight speed,   , 

equations (A.34) and (A.35) may be put in the form : 

    

   
 

  

   
   

  cos   

        
                                                         

    

   
 

  ′

   ′
   

  

 cos   
                                                        

where         ⁄  denotes the solidity of the propeller blade section. With equation 

(A.38) the axial induction factor can be determined for all values of φ. Subsequently the value 

of the tangential induction factor, a’, can be calculated with equation (A.39). 
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In cases where the axial velocity increase, va, is small compared to the undisturbed flow 

velocity (i.e. cruise condition), the term (1 + Fa)/(1 + a) may be approximated by 1. Thus 

equations (A.38) and (A.39) become: 

 

   
   

  cos   

         
                                                               

 ′

   ′
   

  

        
                                                               

These expressions relate the induction factors a and a’ with the flow angle φ. To calculate 

these three variables a third equation is needed which fluxes the operating condition of the 

propeller. For this purpose the advance ratio, J, is used : 

    
            

             
   tan   

    

   
                                  

Equations (A.40), (A.41) and (A.42) now have to be solved for a, a’ and  φ by performing 

an iterative process. 

In reality the propeller blade section, beside the lift force, produces a profile drag force 

which means that equations (A.28) and (A.29) have to be rewritten as : 

   
      cos      sin     

 

 
   

                                           

   
 

 
     sin      cos     

 

 
   

                                          

With Ve = V (1 + a)/sin(φ) and dP =  dQ and the definitions for the thrust and power 

coefficient, the equations (A.43) and (A.44) can be rewritten : 

   

  
    

 

 

      

        
   cos      sin                              
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   sin      cos                              

and the propeller efficiency can be calculated from : 

  
  

  
                                                                

With these equations the system that determines the propeller characteristics is now 

complete. As input parameters we need the blade geometry (chord and blade angle 

distribution) and the characteristics of the blade airfoil sections. The latter may be taken 

either from experiments or calculations on 2D-airfoils. Two factors that need further attention 

before appropriate lift and drag coefficients can be used in the BEM-analysis, as discussed 

above, are the effect of compressibility and the tip relief effect (TRE).  

5. Effect of Compressibility 

In contrast to the Mach numbers that are attained on the wing, the local propeller blade 

section Mach number may be quite high. At a flight speed of V = 100 m/s with a 3.65m 

diameter propeller running at an RPM of 2200 in standard atmosphere at height of h = 

3000m the tip Mach number already reaches a value of M = 0.815. This means that the lift and 

drag characteristics taken from experiments or calculations under incompressible conditions 

should be corrected for compressibility effects. For Mach numbers below 0.7 the Prandtl-

Glauert correction may be applied, leading to acceptable results: 

      
  

  

√    
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where the coefficient Cx is either the lift or the drag coefficient of the blade airfoil section. 

For M > 0.7 the airfoil characteristics have to be corrected through dedicated prediction 

codes or should directly be taken from appropriate high speed windtunnel tests. 

 

6. Tip Relief Effect 

Experiments on rotating propeller blades have shown that the pressure distribution and 

the local lift curve slope, Clα, may diffeer significantly from the 2D-airfoil data of the particular 

blade section [26]. This phenomenon can be attributed to the existence of the centrifugal and 

Coriolis forces that act on the boundary layer flow over the propeller blades. The total effect is 

comparable to a favorable pressure gradient. Fig. A.6 shows the situation on the propeller 

blade. 

 

Figure A.6: Effect of the Coriolis force on the propeller blade boundary layer 

 

We see that material in the boundary layer that moves with the propeller is swept 

outward due to the centrifugal acceleration while the Coriolis force depends on the direction 

of the relative velocity vector, Vr. In case Vr  is directed outward due to the action of the 
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centrifugal acceleration, the Coriolis force will be in the direction of the blade trailing edge, as 

indicated in Fig. A.7. 

 

Figure A.7: Example of the effect of the blade rotation on the sectional lift coefficient of the propeller blade [27] 

 

Comparison of results of boundary layer calculations of rotating blades with those of 2-

dimensional stationary ones showed that the secondary flow induced over the rotating blades 

has strong effects by suppressing the boundary layer growth which results in delayed 

transition and separation of the boundary layer [26]. 

An indication of these effects can be found from the measurements of Himmelskamp [27]. 

Himmelskamp performed measurements on a rotating propeller and determined the local 

blade section lift coefficients from surface pressure measurements. 

Some of his results are reproduced in Fig. A.7 where the Cl -α curves at various radial 

stations are compared with 2D windtunnel data. A significant increase in lift coefficient can be 

found going from the tip to the hub, combined with separation delayed to a higher angle of 

attack. 
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These effects on the lift curve slope can be explained by the influence of the Coriolis force 

acting on the boundary layer material. Additionally the centrifugal force transports boundary 

layer material away from the hub. The resulting boundary layer at the inner portion of the 

blade thus becomes thinner, leading to favorable Cl –α behavior. 

To incorporate these effects in the calculation process of the propeller forces the lift 

coefficients should somehow be corrected. This procedure however is not straightforward 

since the correction needed depends very much on the state of the local boundary layer. 

Several attempts have been made to derive a convenient correction formula. A quite 

acceptable method was developed by ECN and NLR as described by Bosschers [28] in the 

form of an empirical formula. This method is based on the work of Snel [29] on 

incompressible boundary layers. The method proposed is particularly suited for high lift 

conditions were separated flow is affected by the Coriolis force pressure force and shear 

stresses. An acceptable correlation between the predicted and the measured data was found 

for some typical wind turbine applications. The empirical relation for the rotational effects on 

the flow in the stall region is based on the difference between the 2D inviscid and the viscous 

lift curve slope, Clα, as expressed by: 

        
         

 (         
          

)       ⁄                                

where          
 is the local blade lift coefficient on the rotating propeller,         

 and 

        
are the 2D lift coefficients for the viscous and the inviscid flow respectively. 

The function      ⁄   is a function of the chord distribution. Although it is evident that    

will be affected by parameters like the airfoil shape, local Reynolds number, etc. the following 

approximation produces interesting results : 

     ⁄   tanh     ⁄                                             
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The procedure as described above should however be treated carefully since the boundary 

layer transition process may influence the lift enhancement process [30]. 

The resulting decrease in lift and increase in skin friction drag complicates the effect of 

blade rotation which in general is thought to increase lift and decrease drag for the inboard 

blade sections. 

7. Nacelle  Effects 

In most cases the nacelle has a relative large dimension compared to the blade root chord 

and the propeller tip radius. The presence of the nacelle therefore alters the flow field by 

changing the axial flow velocity, u, and the radial flow velocity, vr , as sketched in Fig. A.8. 

 

Figure A.8: Axial velocity increase due to the blockage effect of the nacelle  

To get a first estimate of the performance of the installed propeller the axial force acting 

on the nacelle can be estimated by calculating the change in static pressure upstream and 

downstream of the thrusting propeller. For this purpose the approximate relation as 

presented by Koning [31] can be used. Downstream of the propeller, the static pressure 

change becomes: 
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while upstream: 
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Here x is the distance downstream of the propeller. The axial pressure gradient that exists 

causes a buoyancy force on the nacelle that can be calculated with the known area 

distribution Sn(x): 

    
 

    
∫ (

  

 
    

 
)

  

 

(
   

   
)                                              

where Sref    is the reference area used in the calculation of drag coeffcients, Ln is the nacelle 

length. The net thrust of the propeller-nacelle configuration then becomes: 

   
    (  

    

   
    )                                                    

 

8. Propeller at angle of attack 

The effective velocity vector at the blade section in the propeller axis reference system is 

the sum of the undisturbed flow vector and the induced flow vectors induced by all aircraft 

parts (index ap) and by the propeller itself (index p) : 

(    ) 
         (   )

 
  (  ) 
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This velocity vector is defined in the orthogonal propeller axis system, denoted by     . 

To find the velocity vector in the cylindrical propeller axis system, denoted by      , the 

velocity vectors have to be transformed from the global axis system. Thus: 

                                                                        

where M and N are the transformation matrices respectively from global to orthogonal 

propeller axis system and from orthogonal to cylindrical propeller axis system. Index gl 

denotes the global axis system. 

The general form of the matrix M is: 

  (

            
            

            

)                                           

where i,  j,  k and ip, jp, kp are the unit vectors in the global and the orthogonal axis system 

respectively and the vector product merely represent the cosine of the angles between the 

different axes. The matrix N simply becomes: 

  (
                       
   sin   cos   

 cos    sin   
)                                             

In flight there will generally be some angle of attack to the free stream and therefore a 

component of the forward speed will act in the plane of the propeller that will combine with 

the rotational component to produce a periodic variation of the angle of attack as the 

propeller rotates. To get some understanding of the resulting effects on the propeller 

performance assume the propeller flow is only affected by a plain αp-effect. 

In this case M becomes: 
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  (

cos(  )      sin(  )

                                   
sin(  )   cos(  ) 

)                                              

and the effective velocity vector can be written as: 

     (

       cos(  )

  sin(  ) cos   

     (  )                  

)                                    

This means that the expressions for the local thrust and power of the blade element 

change to: 

   

  
    

 

 

      

         
   cos       sin                                            

   

  
   

 

 
 

 

 

       

         
   sin       cos                                           

with: 

tan     
       cos(  )

     (  )                   
                                   

The coefficients now show a periodic variation which will cause an asymmetric loading 

over the propeller disk and moments about the axes normal to the propeller axis. 
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Appendix B 
 

Slipstream contraction 
 

1. Introduction 

Due to the velocity increase induced by the propeller the slipstream will contract. 

This is an important aspect as this results in a region of influence that is smaller than the 

volume occupied by the cylinder with constant radius R. Besides this the slipstream 

contraction causes an inflow angle that affects the local angle of attack of the wing. 

An attractive way to study the slipstream contraction is to realize that its form is 

determined by the forces that the propeller exerts on the air. In view of the fact that in general 

the problem in its most general form is very complex it is beneficial to simplify the propeller 

again as a this disk. Realizing that the function of the propeller is to generate a force in x-

direction it is expected that the axial components of the general force system will dominate 

the slipstream geometry. Accepting the simplification that these axial forces are constant over 

the propeller disk we arrive at the definition of the so-called "ideal propeller". 

To be able to find the velocities that in their turn determine the slipstream boundary and 

contraction the flow is simplified even further by neglecting the effects of viscosity and 

compressibility. 

A simple procedure that can be followed to find a first estimate for the contraction, is 

described here. 
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The boundary of the slipstream can be modeled as a body of revolution with a radius, Rs, 

that changes with the axial coordinate, x. By considering the law of continuity the amount of 

fluid that has passed the propeller disc is equal to the amount found in all cross section of the 

slipstream. With the acceptance of a uniform velocity distribution this leads to: 

   
                                                                

Here a is the axial inflow factor representing the axial velocity increment at the location of 

the disc. Its value follows from the axial momentum theory of propellers, in which the 

tangential velocity component, vt, is neglected: 

  
 

 
(   √  

 

 
  )                                                  

For a given value of the axial inflow factor the contraction ratio, Rs/R, depends on the 

streamwise development of the axial velocity perturbation, vx(x). This function can be 

determined by considering the Navier-Stokes equations for inviscid, incompressible flow with 

only an external force in x-direction active. For small perturbations due to the propeller: 
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The external force only acts on the disc while the pressure, apart form the propeller disc 

surface, is continuous everywhere. By eliminating the velocity components, vx, vy and vz , from 

equations (B.3)-(B.5) combined with equation (B.6) the Laplace equation for the pressure is 

found: 

   

   
 

   

   
 

   

   
                                                            

The potential function for p can now be obtained by a distribution of doublets of strength 

(p2 - p1) per unit disc area. Point 1 is taken in front of the propeller disc and point 2 directly 

behind it. The pressure in a point Q located at a distance lQ from any point on the disc then 

becomes: 
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Rewriting equation (B.8) in cylindrical coordinates leads to: 
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The flow inside and outside the slipstream has a velocity potential and it shows a 

discontinuity in vx at the disc. Let the value of p at r = 0 be representative for the flow in the 

slipstream (uniform velocity distribution). In this case the expression for the pressure 

becomes: 

   
     

  
∫ ∫

   
   

        

  

 

 

 

         
     

 
(

 

√  
 

 

√     
)                  

For x > 0 this leads to: 
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Integrating the equation (B.3) and combining this with equation (B.11) results in: 

    
     

    
(  

 

√     
)                                          

which represents the streamwise development of the axial induced flow velocity in the 

slipstream. Combining equation (B.1) and equation (B.11) now determines the slipstream 

radius as a function of the streamwise x-coordinate: 
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√     
))                           

At x = 0 the axial component becomes aV , hence the term (p2 - p1)/2ρV can be replaced by 

aV . Working out equation (B.13) results in the contraction ratio, Rs/R: 
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√     
)
                                             

Accepting the assumptions made with respect to the actuator disc with uniform axial force 

distribution over the disc, expression (B.14) produces very acceptable values of the 

contraction ratio. It should be noted however that the introduction of a nacelle has strong 

effects on the contraction due to the mirror vortex system inside the nacelle geometry. 

Mindless usage of equation (B.14) then leads to erroneous results. 
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