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A transistor based sensing platform and a microfluidic chip for a scaled-up

simulation of controlled drug release

by Alessio Verna

The framework of my thesis are Biomedical (or Biological) Microelectromechanical Sys-

tems (BioMEMSs). Two fields in which this discipline is involved are sensors and fluidics.

Functionalized organic materials are under investigation to be the means for target bi-

ological sensing, and sensors are evolving to be integrated in fluidics platforms in order

to produce in the future new small portable diagnostic devices. On the other hand one

of the challenges of micro and nanofluidic technology is the fabrication of drug release

devices, in order to control the amount of drug present in an organism. In this thesis

these two arguments are considered. First we will discuss the implementation of a pro-

cess oriented to the fabrication of an hybrid Organic Field Effect Transistor (OFET)

with sensing capabilities from the semiconductive layer. In the second part we will show

the fabrication process of a silicon based structure for the scaled-up characterization of

drugs in nanochannels for controlled drug release. The characterization will consider

charged microspheres playing the role of drugs to be tracked with a microscope. We

will highlight also the possibility of implementing the transistor related technology in

nanofluidic systems for the electronic controlled drug release.
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Chapter 1

Overview on MEMS fabrication

technologies

We will describe in this chapter the micromachining techniques we mostly used in this

thesis work for the devices fabrication shown in the next chapters. Since not all the

MEMS related techniques are discussed here, the interested reader can refer to [1] for a

complete description.

1.1 Cleanroom environment

The fabrication of devices with features of the micrometric scale needs a laboratory with

a controlled environment. Just some dust can be at same size of the device. In fact, for

manufacture of structures in micro- or even sub-micrometer regions the surroundings

of the manufacturing area must be scrupulously controlled. This includes the room

temperature, the air humidity and above all the particle density in the air and in the

media being used. If one contaminant particle of 0.5 µm settles on a critical part of an

integrated circuit, it can already cause considerable damage if not lead to failure of the

circuit. Semiconductor technology, as well as microstructure technology and clean room

techniques are therefore concepts that are inseparable with each other.

Figure 1.1 shows the general concept of a clean room. An atmosphere with a low

number of particles is of utmost importance and hence there is a constant exchange

of “contaminated” air with recovered air free of particles. High quality clean rooms

are operated in laminar flow. Air turbulence increases the retention period of particles

in the laboratory surroundings. The actual clean room is a shell-type construction

surrounded by a second enclosure, the “grey room”, in which the airflow is freshly

1
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Figure 1.1: Air Flow principle for unidirectional (laminar) flow Cleanrooms

prepared with respect to temperature and air humidity. Once addicted, the fresh air it

is pushed through the filter ceiling into the clean room. The air which flows laminarly

at right angles to floor of the clean room is forced through a perforated flooring and

transported through air channels again to the processing room above the filter cover.

The air effluents of certain chemical processes are drawn directly from the process stage

and separately disposed of. The circulating air is mixed with fresh air, humidified,

temperature controlled and fed back into the pressurized room above the filter ceiling.

Depending on the pore size of the filter, the air turnover and other parameters of the

manufacturing environment, an atmosphere is obtained which is categorized into quality

classes based on the amount of suspended particles. The class of the cleanrooms used

for this thesis work are class 100 and class 1000. The numbers denote, refer to FED-

STD-209E, the particles of size 0.5 µm or larger permitted per cubic foot of air.

1.2 Thin film deposition techniques

Thin films are the essential basis for the fabrication of integrated circuits as well as

microsystems components in both the mass fabrication of products or in single samples

for research applications. Thin films are either the carrier of the desired functions

(sensors, actuators, electrical parameters), or serve an auxiliary purpose (e. g. isolation

and protection layers, removable sacrificial layers). Depending on the area of application
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the thickness of these films ranges from a few nanometers to some micrometers. The

requirements which are placed on the films vary considerably, however the quality of

films with respect to purity, absence of foreign matters, homogeneity of the internal

structure, and adhesion to the substrate are always desirable properties.

1.2.1 Thermal evaporation

Figure 1.2: The evaporation process. The crucible is heated, and the atoms move
without collision (for the high vacuum condition) to the substrate and condense forming

a film. The average energy of the atoms is in the order of 0.2 eV.

In evaporation, the material, which is to be deposited onto a substrate, is heated in

a crucible above melting temperature (Fig. 1.2). Due to the thermal energy and the

low binding force in a liquid some of the atoms can leave the melt by evaporation and

travel to the substrate, where they condense and form a film. Unwanted deposits on

the substrate surface can be removed by heating (desorption of the adatoms) prior to

deposition. This process takes place in a vacuum chamber under a vacuum of 10−4 to

10−7 mbar. In this range the mean free path of the particles exceeds that of the inside

dimensions of the chamber and the probability of unwanted collisions with other gas

particles decreases to almost zero.

The choice of the evaporation source is influenced by the kind of material to be evapo-

rated.

For metal (and some metal oxides) thin film deposition the electron beam vaporiza-

tion (e-beam) is the most frequently used. An electron beam is directed to the crucible

material and vaporizes it. In order to protect the hot cathode from bombardment by

ionized source atoms, the cathode is placed sideways of or underneath the source, and

the electron beam is bend and guided into the crucible by a permanent magnetic field.
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(a) E-beam source scheme (b) Ulvac EBX 14D evaporation system

Figure 1.3: Electron beam evaporation. Electron gun scheme and evaporator cham-
ber.

For organic thin films, or more generally for materials in which a well-defined kinetic

energy is needed, a effusion cell or Knudsen cell (Fig. 1.4) evaporation source is

requested. Typical process in which these cells are used is for organic molecules evapo-

ration, since they allow to evaporate at a very precise temperature.

A Knudsen cell is a heated cavity with an orifice that is small enough so as not to disturb

the equilibrium vapor pressure inside the cavity. The effusion rate from the orifice is

only dependent on the vapor pressure of the evaporant and not on its amount. If the

evaporation takes place in a vacuum chamber the mean free path becomes very large

compared with the dimensions of the chamber [2].

The crucible is typically made from quartz or pyrolytic boron nitride and has thermo-

couples mounted on the backside to measure temperature. The heat is supplied to the

crucible by resistively heated wire. Obviously the thermal mass of Knudsen cells is large,

so rapid changes in temperature (and hence in the deposition rate) are not possible.

Small-molecule and oligomer organic semiconductors are typically deposited by vacuum

evaporation. This technique is usually not applicable for polymers, because polymers

tend to decompose by cracking at high temperatures. The main advantages of vacuum

evaporation are the easy control of the thickness, the purity of the deposited film and

the ability to realize highly ordered films by monitoring the deposition rate and the
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Figure 1.4: Knudsen cell

Figure 1.5: Edwards thermal evaporation system
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substrate temperature [3, 4]. Patterned films can be realized by evaporation through

photolithography or using a shadow mask.

1.2.2 Sputtering

A target (the source) and a substrate are placed opposite to each other in a chamber,

which is filled with Argon gas at 10−3 - 10−4 mbar. The target and substrate are

separated at a distance of a few centimeters (Fig. 1.6). When an electric field is applied

between the target and substrate electrode, then the ever present few charged particles

in the neutral gas are accelerated towards the cathode and anode respectively. The

charged particles are due to cosmic radiation and natural radioactivity of the surrounding

material. The accelerated electrons, when hitting neutral Ar atoms on their way to the

anode, can generate new ions and electrons. These electrons in turn can again generate

new pairs of ions and electrons and so on. The ions on the other hand will generate

secondary electrons when hitting the cathode. This avalanche of electrons maintains a

plasma. Collision of electrons with neutral particles can cause one of the three effects:

ionization, dissociation, excitation. Dissociation is used in certain processes to generate

radicals, which are neutral particles with free bonds. These radicals are chemically very

reactive and are utilized for composite layers and for etching. Atoms which arc being

hit by electrons may get into an excited state. The absorbed energy is released again by

emitting a photon. De-excitation and production of photons of characteristic wavelength

is the reason for the glow of a particular color of the plasma.

In self-maintained discharges the ions arc generated by accelerated electrons within the

electric field are due to the secondary electron emission at the cathode. The discharges

are dependent on the electric field and the gas pressure.

Even if the evaporation is a well controlled process and is used to produce very pure

films, it has the disadvantage of a relatively low adhesion due to the low energy of

the condensing atoms. Sputtering gives better results for applications which require

a strong adhesion to the substrate. The argon ions which are generated in the

discharge are accelerated onto the target and because of their high kinetic energy kick

out neutral atoms and molecular fragments from the target surface, which fly towards

the substrate at high velocity and hit the surface. In contrast to thermal processes, the

sputtered atoms have 10-100 times the amount of kinetic energy (Fig. 1.6). The adhesion

of the film which forms on the substrate is hence high in comparison to evaporated films.

Another advantage of the sputtering process is the fact that the target material does

not have to be heated. Consequently, refractory materials such as tantalum or tungsten

or ceramics, can also be sputtered.
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Figure 1.6: The sputtering process. Neutral noble gas atoms (usually Argon) are
ionized by collision with energetic electrons in the plasma. These ions are accelerated
toward the target. By impact with the target neutral atoms are released from the
surface. These neutral atoms condense on the substrate forming a film. The average
energy of the atoms approaching the substrate is in the order of 10 to 100 eV. By
adding a reactive gas to the chamber compound films such as Al2O3, or TiN can be

fabricated.

Figure 1.7: Kurt J. Lesker PVD75 - RF Magnetron Sputtering.

1.2.3 Solution-Processed Deposition

Various techniques are available for processing soluble polymer semiconductor films from

the liquid phase; these include spin-coating, casting, printing, and soluble pre-

cursor conversion. One of the most simple and effective ways to realize a nice polymer
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film is by spin-coating. When the technique is well handled, it allows the production

of very homogeneous films with precise control of their thickness over relatively large

areas. Control parameters of a spin-coating process include spin-coating speed, ramping

rate, choice of solvent for the polymer solution, drying temperature, drying time, and

so on; these parameters need to be optimized to achieve a film of desired thickness and

uniformity. A limitation of the spin-coating technique is the lack of the possibility of

patterning [4].

1.3 Optical photolithography

The wafer is first covered with a thin layer of a photosensitive polymer. This is done

by spin-coating. For this, the wafer is first mounted onto a rotatable chuck and fixed

by vacuum. Next to the center of the substrate to be coated (generally a round silicon

wafer) with polymer, a drop of liquid coating is applied and the wafer is brought into

rotation with a high peripheral velocity. Due to centrifugal force the coating is spread

very evenly across the wafer surface, and a very homogeneous layer can be produced.

By increasing the speed of rotation the layer thickness decreases. This process of spin-

coating is used in the application of resist layers on the substrate for optical lithography

and electron beam lithography as well, although the resist composition is different in

both cases. In microelectronics, the final thickness after drying and pre-baking is only

fractions of a micrometer, whereas in MEMS depending on the application, the thickness

may amount of up to 100 µm.

Figure 1.8: Scheme showing different kinds of photoresist

After the above processing the desired pattern is imaged (usually with UV light with

a controlled energy) onto the resist layer. During the lithographic process the resist
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(a) Exposure/mask aligner tool: lamp–mirror–
shutter–filter–lens system, and mask and wafer.

(b) Neutronix Quintel NXQ4006 double side
mask aligner.

Figure 1.9: Mask aligner working scheme and equipment.

changes its chemical properties, so that irradiated and non-irradiated regions have dif-

ferent solubility in a particular solvent or developer. Which region is soluble depends on

the tone of photoresist. For positive resist, in the subsequent development, the exposed

areas are dissolved, whereas the non-exposed areas remain untouched. The pattern of

the mask is now transferred into a chemical resistant stencil on the surface of the wafer.

After the subsequent processes, such as etching, evaporation, or modification processes

the resist is removed, leaving either an additive or subtractive pattern, or a pattern of

a modified surface on the wafer.

As we said, depending upon whether the exposed or non-exposed region is dissolved,

it is possible to differentiate between positive or negative resists. With a positive re-

sist the polymer is changed such that the exposed regions can be dissolved, whilst the

non-exposed regions remain unchanged. With a negative resist, the polymer becomes

insoluble in the developer after exposition. Exposing of a positive resist, chain scission

processes are induced in the long polymer chains so that the molecular weight of resists

decreases greatly.

Optical lithography is most important in the production of microelectronic circuits and

also in microtechnology. For many years optical lithography was considered to come to

an end at pattern resolution of under 0.5 µm. Nevertheless due to intensive development

this limit could be reduced to below 0.2 µm [1].

In photolithography the pattern is produced by imaging a mask into the photosensitive

resist. Mercury vapor lamps are conventionally used as illumination sources, which have

strong emission lines at 435 nm (G-line), 405 nm (H-line) and 365 nm (I-line).

The masks which are used in optical lithography consist of glass or quartz plates with

a thickness of about 1.5 to 3 mm. A sputtered chromium layer serves as the absorber

and has a thickness of usually 100 nm, which is sufficient for complete opacity.
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Figure 1.10: Lithographic markers for three steps process.Vernier pattern helps to
fine adjust the alignment.

1.3.1 Markers

Sequential lithography pattern have to be precisely adjusted to each other. Often even

the first lithography pattern in the process sequence has to be centered to the virgin

wafer and aligned with respect to the crystallographic orientation (i.e. with respect to

the flats at the wafer circumference).

Certain spaces in standardized mask design are provided for this kind of adjustment pat-

tern. In Fig. 1.10 such an adjustment pattern is shown which facilitates the adjustment

of the mask to the geometry of the wafer.

1.3.2 Double side lithography

MEMS micromachining often involves the fabrication of structures on both sides of

a wafer. For this purpose double-sided lithography is necessary. First the front side

is processed: the resist is applied on top, the wafer is aligned and exposed, developed,

rinsed and dried. Then, depending on device structure, etching (or some other kind of

fabrication) of the front side is done.

Back-side lithography involves the application of photoresist on the back-side, which

means that the front side of the wafer is placed in vacuum contact with the spin-coater

chuck and thus must be protected. Photoresist is often used but it cannot be used for

patterning after being vacuum chucked.

The alignment mechanism in double-sided lithography relies on image processing. An

image of the mask alignment marks is stored, and the wafer is then inserted between the

mask and the alignment microscope, so the alignment marks on the wafer are aligned
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Figure 1.11: Double side alignment scheme: (A) the image of mask alignment mark
is stored; (B) the alignment marks on the back side of the wafer are brought on focus;
(C) the position of the wafer is adjusted by translation and rotation to align the marks

to the stored image. From [5]

with the stored mask alignment marks (Figure 1.11). Alignment accuracy is about 1 µ

m at best, and usually a few microns.

1.3.3 Computer Aided Design (CAD)

In order to produce a mask, the information has to be exposed pixel by pixel into the

resist layer of the mask. This is done with a pattern generator, which in our case

is a laser writer (see next section). The pattern generator requires information about

which sections of the mask should be exposed. In order to generate this information, a

so-called CAD-system is used, with which the design can be carried out in an interactive

mode with the designer at the computer terminal. The aim of the CAD-layout is to

specify light transmitting and absorbing areas of a mask.
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Figure 1.12: Example of CAD test pattern

1.4 Laser lithography

The laser lithography technique is a kind of maskless lithography. In maskless lithog-

raphy the radiation that is used to expose a photosensitive emulsion (or photoresist) is

not projected from, or transmitted through, a photomask; instead, most commonly, the

radiation is focused to a narrow beam. The beam is then used to directly write the

image into the photoresist.

In this class of devices a laser beam of suitable wave length (able to expose most pho-

toresist) is focused by a microscope lens on a substrate. The substrate is mounted on a

XY stage which allows precise movement of the substrate in order to achieve the best

resolution during the scan process 1.13. The details of this kind of apparatus are de-

scribed in [6].

The fields in which this technique is suitable are the production of lithographic masks,

as we stated before, or the direct exposition of few samples in order to test a techno-

logical process without the need of mask fabrication (Figure 1.13 ). By direct writing

on samples it is possible also to reach a higher resolution than normal photolithography

(up to 0.5 µ m).
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(a) Optomechanical concept of the laser-
scanning system: (M) microscope objective;
(AOM) acoustooptic modulator; (Ph) pinhole;
(BS) beam splitter; (PD) photodetector; (PM)
photomultiplier; (SOS) start-of-scan signal; (L1,

L′1, L2,L′2) scanning optic. From [6].

(b) Microtech Laserwriter

(c) Example of laser patterned photoresist:
calibration of image reversal photoresist.

(d) Particular of (C) showing submicrometric
patterns

Figure 1.13: Laser-scanning system working scheme, equipment and lithographed
patterns.
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Figure 1.14: Lift-off process: left, metal deposition on resist pattern; right, resist
dissolution and metal lift-off.

1.5 Patterning techniques

1.5.1 Etching

In this case the pattern transfer process consists of two steps: lithographic resist pat-

terning and the subsequent etching of the underlying material. Resist protects the areas

where the material needs to remain, and open areas are etched. More details on these

class of processes are given in the next section.

1.5.2 Lift-off

Lift-off is metallization with sacrificial resist: after lithography, metal deposition is done

on the resist pattern, followed by resist dissolution in solvent and lift-off, with all the

metal that is not in contact with substrate being removed (Figure 1.14).

Solvent used include acetone, dimethylsulfoxide (DMSO) or N-Methyl-2-pyrrolidone (NMP).

NMP is a powerful lift-off medium due to its physical properties: NMP yields a low va-

por pressure, strongly solves organic impurities as well as resists, keeps solved particles

in solution, and can be heated up to 80◦C due to its high boiling point. DMSO can be

regarded as a non toxic alternative to NMP.

Lift-off metallization should have poor step coverage, and therefore the method of choice

is evaporation, even though sputtering can be used too. The deposition process has,

however, photoresist-imposed limitations: it must take place under about 150◦C tem-

perature because of resist thermal stability. To avoid deposition on the sidewalls, special

techniques have been devised to make lift-off easier. One way is to use negative resists

or image reversal resists which typically have negative sidewall angles (Figure 1.8).
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Figure 1.15: Deposition with a shadow mask

1.5.3 Shadow mask

Shadow masks (also known as stencil masks) are mechanical aperture plates. Shadow

mask patterning is basically lift-off with a mechanical mask instead of a resist mask.

The shadow mask is aligned with and temporarily attached to a substrate, and this

stack is then positioned in the deposition system (Figure 1.15). Basically any deposition

technique can be used, but line-of-sight methods like evaporation lead to the smallest

penumbra under the mask. The smaller gap between the stencil and the wafer minimizes

unwanted deposition, too.

Some materials are so sensitive that their deposition has to be the very last process step,

for example (bio)chemical sensor films. The application of photoresist on these films is

not possible, and solvent dissolution cannot be used, ruling out lift-off. And the shadow

mask saves a lot of process steps: resist spinning, baking, exposure, development, rinsing

and drying are eliminated. If the shadow mask and wafer can be aligned with each

other in a mask aligner or a bond aligner, micrometer alignment accuracy is possible;

often, however, shadow masks are only used for non-critical applications where manual

alignment is enough.

Patterning by depositing vaporized materials through shadow masks was one of the

earliest and simplest routes for making OLEDs and OTFTs. In this process, metals or

low molecular weight organic molecules are evaporated from a source in a physical vapor

deposition system and travel through openings in masks placed near the surface of the

substrate. The deposition typically occurs under high vacuum (from 108 to 106 torr)

such that the mean free path of the evaporated species exceeds the distance between the

source and the substrate [7]. When this condition is satisfied, the evaporated material

travels in a directional manner through the gaps in the mask and onto the substrate

[8]. This technique is additive at the substrate level, which enables sequential deposition

of multiple layers of different materials. The shadow mask technique is attractive for

OTFT fabrication because it can guarantee a simple, robust, and low cost source/drain
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contact definition process without damage to underlying organic materials if present. A

shadow mask can also provide a constructive tool to deposit patterned low-molecular

weight organic films, to define the active semiconductor of the OTFT [4].

1.6 Wet etching

1.6.1 Thin film wet etching

The oldest form of etching is immersion of the patterned substrate in a suitable liquid

chemical that attacks the exposed region of the substrate, and leaves the protected re-

gions alone. The rate of etching and the shape of the resulting etched feature depend

on many things: the type of substrate, the specific chemistry of the etchant, the choice

of masking layer (and the tightness of its adhesion to the substrate), the temperature

(which controls reaction rates), and whether or not the solution is well stirred (which af-

fects the rate of arrival of fresh reactants at the surface). Depending on the temperature

and mixing conditions, the etching reaction can be either reaction-rate controlled, dom-

inated by temperature, or mass-transfer limited, determined by the supply of reactants

or the rate of removal of reaction products.

Most wet etching is isotropic, in that the rate of material removal does not depend on

the orientation of the substrate. However, when etching single-crystal substrates with

certain etchants, orientation-dependent etching can occur. Figure 1.16 illustrates the

use of isotropic wet etching through the openings in a masking layer to pattern a thin

film on a substrate. Note the undercut of the mask feature. This is because of the

isotropic etch behavior; if there is a sufficient supply of reactants, lateral etching occurs

at about the same rate as vertical etching. Adhesion of the mask to the thin film is

also important. If this adhesion is weak, enhanced etching can actually occur at the

film-mask interface, exaggerating the sloping of the sidewall. Not shown in the figure is

the fact that the sidewall, in addition to having a slope, is actually somewhat curved.

Such tapered sidewalls can be an advantage when attempting to cover the etched feature

with an additional film.

Table 1.1 illustrates the variety of materials that can be etched with wet etchants.

One of the most important and widely used etching process is the etching of SiO2 with

BOE 7:1. BOE stands for Bufferd Oxide Etchant, a solution composed by Ammonium

fluoride (34,8%) and Hydrofluoric acid (6,5 %). The etching of SiO2 films undergoes

the following reaction [9]:

SiO2 + 6HF → H2SiF6 + 2H2O
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Table 1.1: Wet etchants for photoresist masked etching (mostly room temperature)

SiO2 NH4F : HF (7:1) Called BOE, for buffered oxide etchant
Poly-Si HF : HNO3 : H2O (6:10:40)
Al, Cu H3PO4 : HNO3 : H2O (80:4:16) at 70◦C

Mo H3PO4 : HNO3 : H2O (80:4:16)
W, TiW H2O2 : H2O (1:1)

Cr Ce(NH4)NO3 : HNO3 : H2O (1:1:1)
Ni HNO3 : CH3COOH : H2SO4 (5:5:2)
Ti HF : H2O2 (1:1)
Au KI : I2 : H2O

Pt, Au HNO3 : HCl (1:3), “aqua regia,” H2O dilution may be used
Ag NH3 : H2O2 (1:1)

Figure 1.16: Etching with photoresist mask: thin film has been etched, with some
etching of the underlying material and resist, too. There is some undercutting and the

profile is not perfectly vertical.

If etched with a buffered HF (containing NH4F ), two species are present:

HF → H+ + F−HF + F− → HF−2

Unbuffered HF etchants by comparison dissociate less readily and produce slower etch

rates, and, additionally, they are powerful resist penetrants and failure due to pinholing

and delamination are more likely than with buffered oxide etches.

The selectivity of the etchant for the desired material, compared to other materials that

may be present, is important. For example, HF etches silicon dioxide, but also etches

silicon nitride slowly. If nitride is the masking material, one must be concerned with

how long it must remain exposed to the etchant. This is not a problem when simply

patterning a thin film beneath the mask, but in sacrificial processes, collectively referred

to as surface micromachining, in which long etch times may be required to remove

all of the oxide beneath structural elements, the etch selectivity of protective layers is

important.
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Figure 1.17: Undercutting in isotropic etching: wide lines are narrowed but narrow
lines are completely undercut and released

Figure 1.18: Anisotropic wet-etched profiles in < 100 > wafer. The sloped sidewalls
are the slow etching (111) planes; the horizontal planes are (100). Etching will terminate

if the slow etching (111) planes meet

1.6.2 Silicon wet etching

The isotropic etching front proceeds as a spherical wave from all points open to the

etchant. Because the etch front proceeds under the mask (resulting in undercut),

isotropic etching cannot be used to make fine features (Figure 1.17). In fully isotropic

etching lateral extent (undercutting) is identical to vertical etched depth.

Silicon isotropic wet etching is often done in HF : HNO3 : CH3COOH (sometimes

water is used instead of acetic acid). Depending on the ratio of nitric acid to hydrofluoric

acid, the etch rate can be modified from a few hundred nanometers per minute to tens

of micrometers per minute.

Anisotropic etching results in a profile following crystal orientation of silicon (Fig. 1.18),

which is suitable for fine structure fabrication. Anisotropic wet etching take place be-

cause the different silicon crystal planes have different etch rates. Potassium hydroxide

(KOH) is the prototypical anisotropic wet etchant for silicon. In KOH silicon (100) crys-

tal planes are etched 200 times faster than (111) planes. KOH etching at about 80◦C

cannot be done with photoresist mask. Instead, resist is used to etch silicon dioxide or
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Figure 1.19: Etching of < 110 > silicon: slow etching (111) planes form vertical
sidewalls.

silicon nitride, and after resist stripping silicon etching is done in KOH with oxide or

nitride mask. Initially the shape is determined by the fast etching crystal planes (100)

and (110) but in the end etching terminates when only slow etching (111) planes are

present. When the slow etching (111) planes meet, etching will terminate. The etched

depth is determined by the mask opening and the angle between the (111) and (100)

planes, 54.7◦. This angle is very characteristic of silicon MEMS structures. Note that

it is important that the structures are aligned to the crystal planes (indicated by the

wafer flat).

1.7 Deep Reactive Ion Etching (DRIE)

Reactive ion etching (RIE) and the closely related process of deep reactive ion

etching (DRIE) are the most commonly used dry etching methods in the field of mi-

crofabrication. Here, general reactive ion etching mechanisms are discussed, and both

the Bosch and the Cryo processes are introduced and compared with each other.

Both Bosch and Cryo processes typically utilize reactors which are equipped with two

plasma sources: an inductively coupled plasma (ICP) source for high density plasma gen-

eration and a capacitively coupled plasma (CCP) source for controlling the ion energies.

1.7.1 Mechanism of etching

Plasma etching is performed in a vacuum chamber by reactive gases excited by RF

fields. Both excited and ionized species are important for plasma etching. Excited

reactive molecules and ionic species are accelerated by the RF field and impart energy

directionally to the surface. Plasma etching is thus a combination of chemical (reactive)

and physical (bombardment) processes. In a plasma discharge a number of different
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Figure 1.20: DRIE Oxford Plasmalab 100 System

(a)

(b)

Figure 1.21: DRIE process chamber.
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mechanisms are operative. The discharge generates both ions and excited neutrals, and

both are important for etching.

Plasma etching is based on reaction product volatility. Silicon is easily etched by halo-

gens: the fluorides (SiF4), chlorides (SiCl4) and bromides (SiBr4) of silicon are volatile

at room temperature at millitorr pressures. For this reason the gas most utilized to

etch silicon is SF6. No ion bombardment is needed for etching because the reactions

are thermodynamically favored and the role of ion bombardment is used just to induce

directionality. Fluorine is chosen for MEMS DRIE because of its high etch rate ( SF6

etches silicon an order of magnitude higher than Cl2 or HBr) [5].

1.7.2 Bosch deep reactive ion etching process

The Bosch process is the most widely used DRIE technique. The processing of masked

silicon wafer starts with a short etching step that utilizes a SF6 based plasma. After

this etching step, a thin fluorocarbon film is deposited on the wafer. The fluorocar-

bon film passivates the surface and prevents etching. Octofluoro cyclobutane (C4F8) is

commonly used in the passivation step. It generates (CF2)n radicals and results in a

Teflon-like soft polymer film. At the beginning of the next short etching step, the fluoro-

carbon film is removed from horizontal surfaces. The SF6 etching step is not anisotropic,

but the plasma etches preferentially the horizontal surfaces due to directional ion bom-

bardment, while the vertical sidewalls remain protected. The repetition of etching and

passivation cycles results in almost vertical sidewalls [10].

The drawback of the process is the scalloping of the sidewalls due to the alternating

etching and passivation steps (see figure 1.22). The sidewall roughness can be reduced

by shortening the duration of the etching and passivation steps or by post processing

[11].

1.7.3 Cryogenic deep reactive ion etching process

The cryogenic DRIE process does not have separate etching and passivation steps, as

they both occur simultaneously. The etching is performed by a SF6/O2 plasma. At

cryogenic temperatures (around -120◦ C) a passivating SiOxFy layer forms on top of

the silicon surface [13, 14], which again is sputtered away from horizontal surfaces by

directional ion bombardment. When the temperature is fixed, the thickness of the

passivation layer is mainly determined by the O2 flow rate. Too low oxygen flow results

in the failing of the passivation layer and isotropic etching profiles, whereas too high

oxygen content in the plasma leads to over passivation, a reduction to the silicon etch

rate and the creation of black silicon. Changing the SF6/O2 ratio is the most convenient



Chapter 1. Overview on MEMS fabrication technologies 22

(a) Profile of a DRIE trench using the Bosch
process [12]. The process cycles between an
etch step using SF6 gas and a polymer depo-
sition step using C4F8. The polymer protects
the sidewalls from etching by the reactive fluo-
rine radicals. The scalloping effect of the etch

is exaggerated.

(b) SEM Image of typical etching profile

Figure 1.22: The Bosch process.

way to optimize passivation layer thickness and, ultimately, the sidewall angles. The etch

rate of silicon is mainly dependent on SF6 flow rate and the power of the ICP source.

Higher SF6 flow and ICP power increase the quantity of free fluorine radicals that result

in the higher etch rate of silicon. The etch rate of the masking material is mainly

dependent on the ion energies that are determined by CCP source. The ions have to

have sufficient energy to remove the passivation layer from horizontal surfaces, but when

a certain threshold is reached, an increase in CCP power only increases the etch rate of

masking material and undercutting. The effect that the process parameters have on the

conditions of the process and, ultimately, on the etch rate, selectivity and anisotropy of

the process are summarized in Figure 1.23. The sidewall quality of structures etched

using cryogenic DRIE is superior to Bosch process. Scanning electron microscope (SEM)

images of cryo-etched structures are shown in Figure 1.24.

The substrate temperature plays a key role in cryo processes. The possibility of con-

trolling the substrate temperature accurately at very low temperatures is crucial. In

Bosch processes, the temperature control is also important, but the temperatures used

are considerably higher.

The Bosch process uses etching and passivation steps that last only a few seconds.

Therefore extremely high speed mass flow controllers, with sub-second settling times
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Figure 1.23: Guidelines for adjusting cryogenic DRIE process. Seven parameters
that can be directly controlled using the equipment are shown at the top row. Their
influences on process conditions and, ultimately, on the silicon etch rate, selectivity and

anisotropy are indicated by the arrows. From [15].

Figure 1.24: SEM image of structures etched using anisotropic cryogenic DRIE pro-
cess.
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Figure 1.25: Cryo etching set-up. The substrate is cooled with liquid nitrogen. The
magnetic field is to increase the ion yield in the plasma

are required. In the Bosch process it is also important to have an adequate ratio be-

tween ions and radicals. A relative ion concentration that is too high degrades the

sidewall profiles. Generally, high etch rates are always achieved at the expense of under-

cutting and profile control and the etchable area must be small. Cryo processes typically

have higher selectivity than Bosch processes, because ions that are at a lower energy are

already enough to sputter the thin passivation layer.

Even though DRIE techniques are typically utilized to create sidewalls that are as ver-

tical as possible, DRIE can be used to produce tilted sidewalls as well. By controlling

the amount of passivation during the process, both positively and negatively tapered

sidewalls are attainable [10]. If passivation is not used, DRIE is capable of producing

completely isotropic etch profiles. Crystallographic dependent etching is also possible

with cryogenic etching, when extremely low temperatures and low ion energies are used

[16].

1.8 Rapid Thermal Processing/Rapid Thermal Annealing

Thermal treatments constitute a major fraction of front end processes. Thermal oxida-

tion, diffusion and implant annealing all call for temperatures around 1000◦C. Batch fur-

naces, horizontal and vertical, with loads of up to 200 wafers are traditional workhorses

of thermal processing. More recently single wafer rapid thermal processors (RTP) have

come on the scene. These new developments enable very high temperature ramp rates
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Figure 1.26: Tungsten-lamp heated RTP system, warm-wall system. From [5].

and combinations of very high process temperatures with very short process times, on

the order of milliseconds and seconds instead of hours as in traditional furnaces.

Rapid heating is realized by three alternative methods: switching on powerful lamps,

rapidly transferring the wafer(s) into a hot zone (Figure 1.27), or, for millisecond anneal,

using lasers (either CO2 or solid state lasers).

Tungsten halogen lamps deliver a kilowatt or two and a bank of lamps is needed, while

a single xenon arc lamp can deliver tens of kilowatts. Ramp rates on the order of

50− 300◦C/s are used in RTP, a factor of 1000 higher than in horizontal furnaces. Arc

lamp output is in the visible and near infrared; the tungsten lamp spectrum extends

to 4 µm. This leads to some differences in processes because high-energy photons can

contribute to, for example, oxidation.

Typically RTA systems are equipped with different mass flow controller for different

gasses to be flushed in the inside of the chamber during the heating process. In this way

different atmospheres can be exploited for different process requirements.

1.9 Anodic Bonding

Anodic bonding, also known as field-assisted bonding, is a simple process to join together

a silicon wafer and a sodium-containing glass substrate (e.g., Corning Pyrex). It is

used in the manufacturing of a variety of sensors, including pressure sensors, because

it provides a rigid support to the silicon that mechanically isolates it from packaging

stress. It is also used in microfluidic to bond etched silicon and glass thus obtaining

microchannels and chambers. The bonding is performed at a temperature between 200◦

and 500◦ C in vacuum, air, or in an inert gas environment. The application of 500 to
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Figure 1.27: Solaris 100 Rapid Thermal Processor.

Figure 1.28: Illustration of anodic bonding between glass and silicon. Mobile sodium
ions in the glass migrate to the cathode, leaving behind fixed negative charges. A
large electric field at the silicon-glass interface holds the two substrates together and

facilitates the chemical bonding of glass to silicon.

1500 V across the two substrates, with the glass held at the negative potential, causes

mobile positive ions (mostly Na+) in the glass to migrate away from the silicon-glass

interface toward the cathode, leaving behind fixed negative charges in the glass (see

Figure 1.28). The bonding is complete when the ion current (measured externally as

an electron current) vanishes, indicating that all mobile ions have reached the cathode.

The electrostatic attraction between the fixed negative charge in the glass and positive

mirror charge induced in the silicon holds the two substrates together and facilitates

the chemical bonding of glass to silicon. Silicon dioxide on the silicon surface should be

removed before bonding, as a thin (100 nm) layer is sufficient to disturb the current flow

and the bond. The coefficient of thermal expansion of the glass substrate is preferably

matched to that of silicon in order to minimize thermal stresses.
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Preliminary studies on OTFTs for

bio-sensing application

This part of my work is focused on the realization and study of bottom-gate bottom-

contact Organic Thin-Film Transistors (OTFTs) using various organic semicon-

ductors including porphyrins to form the active layer. The purposes are to evaluate the

best choices upon materials and processes in a technological framework to provide both

a silicon based structure to be useful for the study of many organic semiconductors,

and, on the other hand, new characterizations of semicondutive behaviour of various

compounds. The final goal of this work will be the implementation of these results for

the fabrication of chemical sensors exploiting the three contacts nature of the transistor.

In the first part of this chapter will be discussed the fabrication process of a bottom-gate

bottom-contact OTFT substrate. This device has been chosen in order to produce a

versatile silicon substrate that can be used for the deposition and electrical characteri-

zation of a large number of organic compounds which are not compatible with standard

lithographic processes. The device basically include a first metallization for the gate

electrode, which has to be electrically isolated by a thin film of dielectric material, and

source and drain electrodes patterned over the insulating layer. A organic semiconduc-

tive layer will be then deposited over the previously fabricated device.

In the second part we will discuss the semiconductors deposition techniques and char-

acterization. The semiconductor of choice are mainly porphyrins but we will show

preliminary results also on squarains and PEDOT:PSS.

Porphyrins analyzed are OEP, Zn[OEP], EptOTPP, Zn[EptOTPP] and Ni[ButOTPP].

Relatively to porphyrins we will include evaluation on sublimation behavior, scanning

27
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electron microscopy (SEM) characterization which will give information about the sur-

face morphology of semiconductors and X-ray Diffraction (XRD) for crystallization anal-

ysis. Finally electrical characterization will give information on device behavior and

performance.

2.0.1 OTFT- based bio-sensors

OTFTs offer a great deal of promise for applications in chemical and biological sensing.

For a broad range of sensing applications (e.g., medical diagnostics, food monitoring, de-

tection of chemical, biological warfare agents, etc.), there is a demand for small, portable,

and inexpensive sensors. OTFTs have many advantages over other types of sensors that

may allow them to meet this need. Organic semiconductors can be deposited using low-

temperature processes on a variety of substrates, including mechanically flexible ones.

As a result, low-cost fabrication techniques can be used to produce OTFTs. Miniatur-

ization of these devices is straightforward, so portability, small sample volumes, and

arrays with many elements are achievable. In addition, they provide a response (current

change) that is easy to measure with simple instrumentation. With these advantages, it

is feasible that single-use, disposable sensors could be realized using OTFTs. Of course,

it is also important in many applications for sensors to be able to detect low con-

centrations of specific analytes with high sensitivity and high selectivity. Here, too,

OTFTs offer distinct advantages. Because OTFTs are based on organic semiconductors,

precise organic synthesis can be used to fine-tune their chemical and physical properties.

Both molecular structure and morphology can be adjusted to enhance sensitivity and

selectivity. Furthermore, it is possible to covalently integrate recognition elements

directly to the organic semiconductor to provide highly specific interactions with cho-

sen analytes. Detection limits and sensitivity also benefit from the signal amplification

that is inherent in transistor devices, allowing transistor-based sensors to outperform

chemiresistors as well as amperometric and potentiometric sensors [17].

In general, OTFTs utilize a thin film of organic semiconducting material as the active

layer of the transistor. Two electrodes (source and drain) in contact with the organic

semiconductor are used to apply a source-drain voltage and measure the source-drain

current that flows through the organic semiconductor, while a third electrode (gate) is

used to modulate the magnitude of the source-drain current. The gate can be used to

switch the transistor “on” (high source-drain current) and “off” (negligible source-drain

current).

Depending on the organic semiconducting material used as the active layer, the mo-

bile charge carriers can either be electrons (n-type material) or holes (p-type material).
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Figure 2.1: Typical architectures employed in OFET biosensors: a. bi-layer structure
(dielectric–semiconductor) with receptors anchored at the semiconductor surface and
exposed to the aqueous sample containing the analyte; b. functional bio-interlayer
structure (FBI) with the receptor in the semiconductor channel, at the interface of
semiconductor/dielectric; c. organic electrochemical transistor (OECT) and EGOFET
(electrolyte gated OFET), both having similar geometries but subtle different operation
principles. The bio-receptor layer is placed on top of the semiconductor channel. From

[18].

OTFTs can be roughly classified into two primary categories: organic field-effect tran-

sistors (OFETs) and organic electrochemical transistors (OECTs) and EGOFET (elec-

trolyte gated OFET). In OFETs (Figure 2.1 a, b), the source-drain current is modulated

by field-effect doping, where the charge carrier density in the organic semiconductor is

controlled by the gate electrode via an electric field applied across an insulating layer

(gate dielectric). In OECTs and EGOFET (Figure 2.1 c) the source-drain current is

modulated by electrochemical doping or de-doping, where the change in conductivity

of the organic semiconductor is mediated by ions from an adjacent electrolyte. OECTs

exhibit much lower operating voltages than OFETs, but due to the movement of ions in-

volved in OECTs, their switching times are considerably slower (on the scale of seconds

or longer) than those for OFETs (on the scale of milliseconds or shorter).

In the early stages of research, researchers tried first to adapt the electronic device struc-

tures to the world of biological media governed by both electronic and ionic motion. One

such successful demonstration was accomplished by Zhenan Bao’s research group that

used water stable OFETs for sensing applications [19]. Employing a cross-linked poly-

mer gate dielectric (polyvinyl phenol), and using either pentacene or 5,5-bis-(7-dodecyl-

9H-fluoren-2-yl)-2,2-bithiophene (DDFTTF) for the p-channel semiconductor, the fab-

ricated devices displayed remarkable stability to operation in aqueous media without

encapsulation, exceeding 104 cycles. Moreover the semiconductors showed sensitivity as

low as parts per billion to various alcoholic analytes based on the sensing mechanism

working in a similar manner to vapor detection: the small analyte or ions of interest dif-

fuse at the dielectric/semiconductor interface and influence the charge transport in the
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semiconductor channel. Nevertheless, bare (non-functionalized) OFETs have no speci-

ficity to the analyte, their responses being governed by weak and nonspecific van der

Waals interaction. Selectivity of field effect transistors can be achieved by incorporating

receptor molecules at different positions in the device structure and relying on these

receptors to selectively bind to analytes of interest and consequently modify/alter the

electric signal of the device. By doing so, the direct, label-free detection (bio-recognition)

of analyte of interest will offer the alternative of miniaturization and fast processing of

recorded data. Typical geometries derived from the classic OFETs to be employed for

detection and signal transduction in the biological world (OFET bio-sensors) are shown

in Figure 2.1 [20]. Both porphyrins and squarains we used in our preliminary study have

the possibility to be functionalized ([21, 22]) so they represent a good strarting point for

technological process integration.

2.1 Basic theory of operation of a OTFT

Figure 2.2: Cross-section of a thin-film FET showing the nomenclature used in this
part.

A TFT is basically a resistor with two electrodes. The important device dimensions

are its length L and width W (the thickness is not an important parameter). Nearby

is placed a third electrode called the gate, resulting in a three-terminal device. Ideally,

there is never current flowing from the gate to the resistor, and the only function of

the gate is to modulate the charge density in the resistor. Once a substantial amount

of free charge is induced in the resistor, it is said that a channel is formed. With a

large density of free charge, the resistor becomes conductive and large external currents

can be observed for relatively small biases applied. Although the device is still fully

symmetric, the electrodes of the resistor are often called source and drain to denote

their functionaiity in an electronic circuit. The source (often connected to ground) is

that electrode that is emitting the majority carriers. For instance, in a TFT with a p-

type (hole) channel, the source is at a relative positive bias. Holes are emitted from this

source, travel through the resistor, and sink into the drain on the other side. The output
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current IDS , is a function of both drain-source voltage VDS and gate-source voltage VGS .

There exists therefore two type of scans: either the gate is kept constant and the drain

is varied, resulting in so-called output curves, or simply I-V curves, or the drain is kept

constant and the gate varied resulting in transfer curves.

The active layer of a TFT can be made as thin as possible; as long as a continuous

coverage of the insulating layer exists, the TFT works. Thus, a TFT can be made of

a single monolayer and any additional layers deposited on top acts as passive buffers

only for mechanically and chemically stabilizing the layer accommodating the current

[23, 24].

The conduction mechanism in OTFT (and in all organic devices) is still an open question.

Whether it is hopping conduction or band conduction it is not possible to distinguish

between the two by simple measurements. Often the mobility is used as reference. High

mobility indicates band conduction and low mobility points at hopping conduction with

10−6− 10−4 cm2/V s being some sort of division line. However mobilities in a very large

range (10−8−1000 cm2/V s) can be explained without change in conduction mechanism

[25]. The only distinction that can be made is conductive states and non-conductive

states [26]. See Appendix A for a detailed description.

2.2 OTFT configurations

A number of OTFT structures can be obtained by varying the relative placement of

the gate and source/drain electrodes with respect to the semiconductor layer. The

resulting devices are described as top-contact, bottom-contact, top-gate, bottom-gate, or

dual-gate structures. Each design possesses distinctive strengths and weaknesses in terms

of operating mode and ease of fabrication. Thus, each structure may find unique usage

in specific applications/configurations.

Depending on the arrangement of the source and drain contacts relative to the semicon-

ductor layer, two configurations are possible, as depicted in Figure 2.4: a top-contact (or

staggered) OTFT and a bottom-contact (or co-planar) OTFT. For top-contact OTFTs,

the source and drain electrodes are placed on top of the semiconductor layer. For

bottom-contact OTFTs, the organic semiconductor is deposited onto the gate dielectric

and the prefabricated source and drain electrodes. The top-contact structure can have a

performance advantage over bottom-contact devices in terms of lower contact resistance.

On the other hand, the bottom-contact structure enjoys simpler and more robust pro-

cessing schemes over top-contact structures. Research has shown that this small contact

area tends to generate large contact resistance in bottom-contact OTFTs [27].
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Figure 2.3: Cross-section of (a) top-gate, (b) dual-gate, and (c) bottom-gate OTFTs.
Devices shown are in bottom-contact configuration.

A feature of top-gate OTFTs is that the gate dielectric can provide encapsulation and

protection of the organic semiconductor layer. Encapsulation is suitable because most

organic materials are chemically sensitive to environmental influence. However, the top-

gate design poses some process integration challenges. First, the gate dielectric and gate

electrode have to be deposited and structured on top of the organic semiconductor, and

this process must preserve the organic material. Secondly, vertical interconnects and vias

between the conductive layers have to be built through the organic semiconductor; this

necessitates developing a compatible patterning/etching process for the organic layer.

From a processing perspective, the bottom-contact design is preferable over the top-

contact structure. This is because the deposition of the organic semiconductor consti-

tutes the last fabrication step in bottom-contact OTFTs (assuming no encapsulation),

and is not limited or affected by other processing steps. Thus, there is greater flexi-

bility in selecting a patterning/deposition method for the various device layers. If an

inorganic dielectric is used, the source/drain contacts can be patterned by a photolithog-

raphy technique to deliver higher resolution features. On the other hand, the top-contact

design is susceptible to physical damage of the organic layer from subsequent processing

of source/drain contacts, or from metal–semiconductor reactions (which may influence

the contact resistance). With the top-contact architecture, contacts are often deposited

through shadow masks, with substantial loss of resolution. Moreover, the metal–organic

interaction during metal deposition may lead to deterioration of device performance. For

the results reported in this work, fabrication processes are geared toward bottom-contact

structures to ensure minimum process-induced disruption to the organic semiconductor

layer.

2.3 Process Flow

In this thesis work we fabricated two similar structures: a structure with highly doped

silicon acting both as substrate and gate electrode, and another structure with a metallic
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Figure 2.4: Cross-section of two bottom-gate OTFT configurations: (a) top-contact
and (b) bottom-contact.

gate over a silicon/silicon dioxide or silicon/silicon nitride substrate. The first process

has been done using just one lithographic mask and the second using three masks.

Masks have been fabricated using a laser writing technique on chromium coated soda

lime glass (also coated with iron oxide to prevent light scattering). The process for

fabricating photolithographic masks is the following.

• Exposition of coated soda lime glasses.

• Developing of the mask using suitable developer.

• Etching of the iron oxide/chrome thin film usign a Ce based solution: a mixture

of perchloric acid HClO4 and ceric ammonium nitrate (NH4)2[Ce(NO3)6]

The reaction undegoing during Cr etch is:

3Ce(NH4)2(NO3)6 + Cr → 3Cr(NO3)3 + 3Ce(NH4)2(NO3)5

Chromium nitrate steadily produced during etching forms a dark film on the chromium

surface and - due to its aqueous solubility - is dissolved in the etchant.

2.3.1 Basic One-Mask Processing Scheme for Bottom-Gate OTFT

The fabrication sequence of a bottom-gate bottom-contact OTFT on highly doped Si

substrate as gate, employing a single patterning step (i.e., one-mask process), is depicted

in Figure 2.9. The source/drain contacts are defined by photolithography and patterned

by wet etching of a metallic thin film previously deposited on the substrate . Although

this common-gate configuration may not deliver devices with the best overall perfor-

mance (e.g., overlap capacitance will limit speed) and may not be highly compatible

for circuit integration (e.g., lack of individually addressable gates), this design provides
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Figure 2.5: CAD for masks realization. Entire mask is shown.

Figure 2.6: CAD of OTFT single device. Source and drain electrodes have been
designed with 3 different channel length: 10 µm, 30 µm and 100 µm.
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Figure 2.7: Optical microscope image of the lithographic mask for source and drain
contacts definition.

the simplest method to evaluate material systems and interfaces. Furthermore, it has

the least number of processing variables and the lowest possibility of process-induced

damage, thus one can focus strictly on evaluation and/or characterization studies of new

material systems. This configuration and fabrication scheme serves as the basic platform

for the dielectric and interface investigations in this work.

We used n++ silicon substrate with a thermal oxide 190 nm thick. A metallic thin

film (usually silver) was deposited on the surface by e-beam evaporation. The electric

contacts were then defined by with etching using Fujifilm HPR 504 photoresist. We then

removed the silicon oxide from the back of the wafer reaching the gate electrode (the

doped silicon bulk) using a BOE 7:1 solution.

2.3.2 Fully-patterned bottom-gate bottom-contact OTFT Scheme

Figure 2.10 shows the processing scheme for a photolithographically-defined fully-patterned

bottom-gate bottom-contact OTFT, developed in this research. First, the bottom-gate

metal is deposited and patterned (mask 1), followed by deposition of the gate dielectric

across the wafer. A second metal layer is deposited on the dielectric surface, and is

subsequently patterned by photolithography to define the source/drain contacts (mask

2). The last step (mask 3) concerns forming a via in the dielectric to reach gate contact

pad.
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Figure 2.8: Fabrication sequence of bottom-gate bottom-contact OTFT on highly-
doped Si substrate with a one-mask patterning step to define the source/drain contacts.

Figure 2.9: Illustration of individually addressable gates on the same substrate, which
is a basic requirement to enable circuit implementation.

Figure 2.10: Fabrication sequence of bottom-gate bottom-contact OTFT by a three-
mask photolithography process.
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2.4 Material selection and fabrication details

2.4.1 Gate and gate dielectric

The gate dielectric is one of the most critical materials for organic transistor performance.

It has an important function in establishing field-effect operation in TFTs. A general

specification for the gate dielectric of TFTs is summarized as follows: the dielectric

material has to withstand strong electric fields without breakdown, must have good

insulating properties and low rate of charge trapping at lower electric fields and it should

form a high quality interface with the semiconductor layer [28]. In addition, the dielectric

films should possess low trapping density at the surface, low surface roughness, low

impurity concentration, and compatibility with organic semiconductors.

A high-k dielectric (e.g., Al2O3, Ta2O5, TiO2) is a good candidate for the gate di-

electric in OTFTs because its high-k value can increase the intrinsic gate capacitance

(Ci = kε0
A
d ) of a transistor, which in turn increases the current output. Thus, high-k

dielectrics can partially compensate for the relatively low mobility (µ) of the organic

semiconductors, and can enable device operation at lower drive voltages. However, a

key shortcoming of high-k materials is their higher degree of disorder and surface rough-

ness, which can create traps, reduce mobility, and lead to localization of carriers at the

dielectric/semiconductor interface [28].

From a process oriented point of view the bottleneck of the realization of a patterned

metal-insulator-metal structure is to produce a good insulating layer. The dielectric

performances of the insulator not only depend on the material of choice, but depend on

the following factors:

• Smoothness of the underlying metal layer

• Compactness of the oxide (crystal dimensions and holes in the structure)

• Thickness of the oxide

Due to these eventual problems the choice of the suitable oxide depending on the fab-

rication capabilities may be difficult. We present here two approaches. The first using

alumina (Al2O3) and the second using tantalum oxide (Ta2O5). For both approaches,

as will be highlighted, thermal treatments are necessary. For this reason also the metal

for gate electrode must be chosen carefully. The metal must be a good conductor, in

order to be good performing as gate electrode even if very thin (less than the desired

oxide layer) and it must preserve his uniformity also after temperature annealing up to

800◦. Problems in high temperature could be island formation, cracking or diffusion of
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Figure 2.11: Metal ribbon formed by adhesion of metal on the photoresist mask.

the metal in the adhesion layer. Also for what concerns the gate metal we tried two dif-

ferent solutions: a sputtered platinum thin film over sputtered tantalum adhesion layer

and a sputtered molybdenum layer. The system used was a RF magnetron sputtering

Kurt J. Lesker PVD75.

The patterning technique of the gate also affects the performance of the structure. The

surface of the metal must be as smooth as possible and defect-free because any bumps

or residual metal can carry to a short circuit of the three layers device. Tantalum/-

platinum thin films cannot be easily patterned via wet etching, only aqua regia (nitric

and chloridric acid) can be employed, but this etching is fast and not easily control-

lable, resulting in a rough edge morphology of the pattern, which negatively affects the

performance of the device. Thus we employed a lift-off process to pattern the tantalum/-

platinum layer. But also for this technique problems may occur: due to the fact that

sputtering deposition tends to be multidirectional, if a too thick photoresist is chosen,

deposited material can adhere to vertical side walls of the resist forming characteristic

ribbons (see figure 2.11) resulting in an impossible electrical isolation of the gate.

Due to the difficulties in fabricating good performing devices with tantalum/platinum

gate electrode we chose sputtered molybdenum which is easily patterned by wet etching

using a E6 metal etchant: 80 volumes of Phosphoric Acid (at 85% wt), 5 volumes of

Acetic Acid (Glacial), 5 volumes of Nitric Acid (at 60% wt) and 10 volumes of DI water

(16:1:1:2 ratio).

We deposited then alumina by e-beam evaporation using a ULVAC EBX-14D system

at high vacuum condition (10−7 torr) with 10kV beam acceleration voltage. As shown in
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(a) (b)

Figure 2.12: Optical and SEM a image of alumina layer: bumps over the surface are
observed.

figures 2.12 resulting thin film present good surface coverage and acceptable uniformity

but sub-micrometrics bumps are present on the surface due to dynamics of thin film

formation which probably are affected by the temperature of the substrate and kinetic

energy of alumina molecules. Evaporation is a simple and cost effective technique to

produce alumina thin film but the process must be carefully calibrated. In fact electron

beam current must be kept quite low (in our case 60 mA) because when the energy of

the beam exceed a threshold value aluminium and oxigen atoms tend to separate leading

to two detrimental consequences: vacuum condition gets worse reaching auto shut-off

of the beam in the evaporation system and the melting material looses stoichiometry

becoming black and so not suitable for following depositions. To improve compactness

of the alumina layer we subjected the samples to a rapid thermal annealing of 1 minute

at 800◦ C with atmospheric gas (no gass flow) with a 50◦ C/s increasing temperature

rate. The annealing was necessary to obtain an insulating film, because metal deposited

over not annealed, or lower temperature annealed samples, was able to percolate in the

alumina film short circuiting the device. Rapid thermal annealing (RTA) was performed

using a RTP Solaris 100 equipped with 13 quartz halogen lamps on top and bottom of

the wafer.

For what concerns tantalum oxide the approach we used has been different: we em-

ployed the thermal oxidation of tantalum metal [29] in controlled atmosphere. We

deposited a tantalum thin film (approx 60 nm) over the gate electrodes using a RF mag-

netron sputtering followed by a thermal oxidation. We performed the annealing at 600◦C

for 15 minutes with a 10◦C/s increasing temperature rate in oxidizing atmosphere. We

chose pure oxigen atmosphere and a oxigen/nitrogen (50% - 50%) blend atmosphere

both with a total flux of 2 sccm. We noticed that the thickness of the oxidized film
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Figure 2.13: SEM image of tantalum oxide layer morphology: the insulating layer
uniformly covers the underlaying layer even on pre-existing defects.

Figure 2.14: SEM image of tantalum oxide layer morphology growth on different
surfaces: tantalum oxide cristals on metal (right) and silicon nitride (left) are different.

rises of 40% - 50% with respect to the metallic film, due to the oxidation process. With

simple naked eye inspection the film produced in this manner appear very transparent

with no noticeable macroscopic defects.

To analyze the stoichiometry of the fabricated samples we used X-Ray Photoelectron

Spectroscopy (XPS). XPS is a surface sensitive chemical analysis technique that can be

used to analyze the surface chemistry of a material. It is a quantitative spectroscopic
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Figure 2.15: SEM image of a tantalum oxide layer over the metallic gate in cross
section.

technique that measures the elemental composition, empirical formula, chemical state,

and electronic state of the elements that exist within a material’s surface. In this chapter,

XPS is used to study the surface chemical composition (i.e., elemental concentration)

of as evaporated Al2O3 and Ta2O5 thin films with varying annealing conditions. Both

surface spectrum (Figures 2.16 and 2.18) and depth profiles are provided.

The depth profile of oxides samples was analyzed by in situ XPS ion beam sputtering

with argon (Ar). The results are reported in figure 2.17 and where the changes in

elemental concentrations of oxygen (O), tantalum (Ta), aluminium (Al) and nitrogen

(N) on the samples were analyzed as a function of depth (or etch time) by interleaving

XPS analysis and argon ion sputtering.

XPS measurements were obtained using a PHI 5000 Versa Probe X-ray photo electron

spectrometer.

Both spectra and depth profile show good stoichiometry of the oxides, but, in the case

of Ta2O5 annealed with O2/N2 atmosphere, still a presence of nitrogen can be detected

in the thin film, thus we discarded this process.

2.4.2 Metal contacts

The choice of material for source/drain contacts is quite stringent; conscientious en-

ergetic matching between contact and semiconductor is important to establish efficient

charge injection in OTFTs. Ohmic contact is desirable, which requires the work function
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Figure 2.16: XPS spectrum of Al2O3.

Figure 2.17: XPS depth profile of Al2O3.
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Figure 2.18: XPS spectrum of Ta2O5 oxidized in O2 atmosphere.

Figure 2.19: XPS depth profile of Ta2O5 oxidized in O2 atmosphere.
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Figure 2.20: XPS spectrum of Ta2O5 oxidized in O2/N2 atmosphere.

Figure 2.21: XPS depth profile of Ta2O5 oxidized in O2/N2 atmosphere.
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Figure 2.22: SEM image of silver electrode over tantalum oxide: the edge is not
perfectly smooth for underetching of metal under the photoresist mask.

of the contact metal to match with the HOMO of the organic semiconductor in the case

of a p-type OTFT, and with the LUMO in the case of an n-type OTFT. This implies

a high work function metal for p-type OTFT and a low work function metal for n-type

OTFT [4].

In our work, since the choice of semiconductor and relative deposition process was an

open task, the requirements for the metal were more process-oriented. In fact the metal

of choice, besides being a good condutor, had to be quite stable in atmospheric envi-

ronment and easily patterned by wet etching, with the additional requirement for the

etchant to be not aggressive on the underlying layer (alumina or tantalum oxide). In

the case of tantalum oxide gate, being very stable under chemical attack, a large range

of metal could be used. In the case of alumina only gold (Au), silver (Ag), copper (Cu)

and few others were fulfilling the requirements. After evaluation, for the purpose of

providing preliminary characterization of the structure, we chose silver.

Patterning of silver was obtained by wet etching using a NH4OH : H2O2 : H2O solution

in 1:1:10 volumetric proportion. This etching is quite fast and underetch may occur (see

Figure 2.22) but the resulting reduction in the dimension of the pattern was negligible

for our purposes. In fact silver oxidize in contact with hydrogen peroxide, and silver

oxide is made soluble in water by ammonia with the reaction:

Ag2O + 4NH4OH → 2[Ag(NH3)2]OH + 3H2O (2.1)
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Figure 2.23: SEM image of the completed structure: source and drain contacts de-
posited on gate and gate insulator are visible.

Figure 2.24: Cross section of the metal - oxide - metal structure: the oxide layer is
clearly distinguishable.
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Figure 2.25: Optical microscope image of alumina thin film over a metallic electrode
thinned by basic developer exposure (TMAH) on selected areas.

Patterning of metal contacts can be performed also via lift-off, but, if the resist devel-

oper is composed of Tetramethylammonium hydroxide (TMAH) or other basic solutions

(KOH, NaOH), the evaporated alumina thin film can be damaged resulting in bad insu-

lating properties (see Figure 2.25). To overcome this problem we patterned silver via wet

etching as said before. Another solution if the metal of choice etching is not compatible

with the process could be using organic solvent based photoresit developer.

2.4.3 Etching of the insulator

Last step of the fabrication process before the organic semiconductor deposition is the

etching of the insulating layer to form a via for the gate metal contact. Before this step

the insulator also works as protective layer for the gate metal during thermal oxidation

or annealing of the insulator. To pattern alumina we used a wet etching: a Hydrofluoric

acid (at 39.5% wt) and DI water solution (in a 1:10 ratio).

Wet etching of tantalum oxide is quite difficult to perform, so we use a Deep Reactive

Ion Etching: The main parameters of the etching were: SF6 with flow rate at 60 sccm

CCP power at 12 W, ICP power at 1000 W. Temperature was set at -20◦ C, with baking

Helium at 10 sccm, and chamber pressure was set at 15 mtorr. Samples were previously

masked with Microchemicals AZ 9260 photoresist. No particular care on the etch rate

was taken because the underlying metal layer (the gate pad) acted as stop etch.
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2.5 Organic layer: porphyrins

Porphyrins are widespread compounds in nature, where they play essential functions

for life, like Heme group of hemoglobin and chlorophyll; because of the richness of their

properties, they have assumed a peculiar role in different fields of disciplines, ranging

from medicine to material science [30].

Figure 2.26: Basic structure of a porphyrin. The central metal can host many of the
metal of the periodic table, while at the R, R’ position lateral groups can be linked.

A great number of features makes porphyrins eligible as good “sensing material” able to

detect the volatile organic compounds present in the environment or chemical compounds

in aqueous solutions. Porphyrins in fact are rather stable compounds and their properties

can be finely tuned by simple modifications of their basic molecular structure (see Figure

2.26).

The coordinated metal, the peripheral substituents, the conformations of the macrocyclic

skeleton influence the coordination and the related sensing properties of these compounds

[31]. Almost all metals present in the Periodic Table have been coordinated to the

porphyrins [32]; furthermore the organic chemistry of these compounds is well developed,

and a wide range of different substituents can be introduced at their peripheral positions

[33]. Porphyrins are also insoluble in water, thus are suitable for wet chemical sensing

investigation in acqueus environment. All together these characteristics increase the

versatility of these molecules and different transducers have been proposed for porphyrin-

based chemical sensors [34], all showing outstanding properties of these materials in

terms of stability, chemical sensitivity and reproducibility.
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2.5.1 Semiconductivity of porphyrins

Charge transport in organic semiconductors is dependent on π−bonding orbitals and

quantum mechanical wave-function overlap. In disordered organic semiconductors, there

is limited π−bonding overlapping between molecules and conduction of charge carriers

(electrons or holes) is described by quantum mechanical tunneling [35]. Charge transport

depends on the ability of the charge carriers to pass from one molecule to another [36].

Molecules consisting of several benzene rings merged along one bond are called polycyclic

aromates.

Figure 2.27: Electronic delocalization in the metalloporphyrin aromatic system [37,
38].

For these molecules the place of the double and single bonds is not uniquely determined,

but has two distinct configurations with exactly the same energy. In these cases, res-

onance of the two forms causes a dislocation of the electrons; it is no longer possible

to identify the place of the single and double bonds. A charge injected into a π molec-

ular orbital can relatively easily migrate along the chain and, for limited conjugation

lengths, macroscopic conduction is then made possible by further overlap of molecular

orbits with neighboring molecules, causing so-called Davydov splitting of the molecular

levels [26].

Porphyrins are a group of heterocyclic macrocycle organic compounds, composed of four

modified pyrrole subunits interconnected at their carbon atoms. The porphyrin macro-

cycle has 26 (delocalized) π electrons in total, therefore by Huckel’s rule it is aromatic,

possessing 4n + 2 π electrons (n = 4, for the shortest cyclic path). Thus porphyrin

macrocycles are highly conjugated systems and consequently they typically have very

intense absorption bands in the visible region. In heterocyclic molecules one or more
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carbon atoms are replaced by an atom of other species, like nitrogen or sulfur. Because

of their chemical valence, they possess more electron than carbon. In six-rings the addi-

tional electrons do not contribute to the π−system, but may be used for forming bonds

to other atoms. In five-rings they help stabilizing the conjugation [39].

In case of metalloporphyrins the metal coordination modifies the π electrons’ delocal-

ization [38], thus in principle changing the electronic behavior of the molecules.

2.5.2 Vacuum deposition

Porphyrins may be deposited by spin-coating, drop casting and other solution-processed

deposition techniques, up to deposition able to produce self organized thin films or single

molecular crystals for molecular electronics application [40].

Both the morphology and molecular arrangement in organic semiconducting layers play

significant roles in the performance of OFETs. In order to achieve a more efficient charge

transport, ideally the organic molecules should pack along the current direction in the

conducting channel. There is no doubt that, due to their perfect molecular arrangements,

free of grain boundaries, and minimized charge traps, single crystal transistors should

display higher performances than those of thin films. Hence, well-ordered, continuous

films, especially crystalline films, are being seriously investigated for high performance

OFET applications [41].

Figure 2.28: Molecular packing motifs in crystals. (A) Herringbone packing (face-
to-edge) without π − π overlap (face-to-face) between adjacent molecules (example:
pentacene); (B) herringbone packing with π − π overlap between adjacent molecules
(example: rubrene); (C) lamellar motif, 1-D π−stacking (example: hexyl substituted

naphthalene diimide); (D) lamellar motif, 2-D π−stacking. From [41].
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(a) Schematic repre-
sentation of the tilted
columnar stacking [33].

(b) Schematic representation of the
columnar arrangement of discotic zinc
n-decil ether octa-substitued por-

phyrin stacks [42].

Figure 2.29

Our approach took under examination the evaporation of porphyrins from a Organic

Spintronics Knudsen cell in a Edwards thermal evaporator equipped with a turbomolec-

ular pump. We chose evaporation in order to investigate a fast and cost effective deposi-

tion process oriented in a medium-large production (evaporation in principle allows the

production of hundreds samples in the same time). With this approach, the following

eventual implementation of the device as sensor would be easy given the large availabil-

ity of samples in comparison to other solution deposition techniques, which allow low

rate of samples fabrication.

Due to the difficulty in choosing a single porphyrin in a device oriented approach we

preferred, in this preliminary work, to perform a screening of different porphyrins trying

to highlight their behaviour under typical restrictions of fabrication processes. Following

this approach we will show preliminary characterization and results over 5 different

porphyrins (Figure 2.30).

As we highlighted molecular crystallization plays a fundamental role in the device per-

formance, but a lot of deposition parameter and conditions have and effect on it. In

particular crystallization in porphyrin thin films is influenced (as can be expected) by

substrate temperature during deposition [43, 44], vacuum condition and eventual gas
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Figure 2.30: Structure of the porphyrins under investigation.

presence in the chamber [45]. Furthermore semiconductive properties are also non-

linearly dependent on the thickness of the film [46].

We chose to evaporate porphyrins at room temperature in high vacuum with a chamber

pressure of 10−6 torr. The evaporation temperature was found by observing thickness

variations by means of a quartz thickness sensor (inside the chamber). The process, due

to the lack of data on porphyrin evaporation, didn’t allow us to monitor real thickness of

the thin film during evaporation, and the thickness monitor was observed to detect evap-

oration and check a relative rate of evaporation. The porphyrins, evaporated in powder

form, were supplied by Prof. Roberto Paolesse, Department of Chemical Science and

Technology, University of Rome Tor Vergata. OEP and Zn[OEP] starting evaporation

temperature was found at 275◦ C and was set at 280◦ C to obtain a suitable deposition

rate, while Ni[ButOTPP], Zn[EptOTPP] and EptOTPP starting evaporation tempera-

ture was 375◦ C and was set at 380◦ C. From first observation thin film resulted uniform

and preserved the typical color of the porphyrin powder, thus evaporation preserved the

integrity of the porphyrins’ chromophores. Low weight porphyrins (OEP and Zn[OEP])

adhesion was worst than in the case of higher weight porphyrins, and residual material

in the quartz boat was still in powder form suggesting a sublimation, while higher weight

porphyrins residual was melted thus suggesting an evaporation from liquid phase.
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(a) (b)

Figure 2.31: SEM images at different magnification of Octa-Ethyl Porphyrin (OEP)
layer on source and drain electrodes.

(a) (b)

Figure 2.32: SEM images at different magnification of Octa-Ethyl Porphyrin (OEP)
layer morphology.

2.5.3 Morphological characterization

SEM characterization of porphyrin show compact thin film formation. In Figure 2.31 is

visible the patterning with shadow mask on the previously patterned electrodes and the

uniform covering of a step.

As evinced from Figures 2.32 and 2.33 the morphology is slightly different for different

porphyrins.The typical porphyrin molecular stacking of Figure 2.29 seems to form the

basic unity of the thin film. The stacks of molecules are far from forming an ordered array

but tend to fill the available space deforming themselves. Some additional structures

with high aspect ratio (long around 100 nm and lage 10 nm) emerge from the background.
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Figure 2.33: SEM image Zinc Octa-Ethyl Porphyrin (Zn[OEP]) layer morphology.

To investigate eventual crystal orientation on the porphyrin thin films we analyzed

the samples with X-Ray Diffraction (XRD). The instrument used in this analysis is a

PANalytical X’Pert 5000 X-ray diffractometer.

XRD is a powerful and commonly available technique for identifying the presence of

crystalline phases. XRD patterns typically represent a spatial average over several mm2

of area and few µm in depth. X-rays with λ between 0.5 and 2Å are impinged upon

a sample. The diffracted X-rays are measured and 2θ, the angle between the X-ray

source and detector (Figure 2.34). The diffraction can then be described by Bragg’s law

(λ = 2d sin θ), where d is the spacing between atomic or molecular planes within the

sample. The relative intensity of a diffraction peak from a given set of planes can be

determined by using the symmetry of the lattice and to calculate a structure factor.

Due to the difficulty to derive crystal structure from peaks position usually diffraction

patterns are compared with patterns corresponding to well-known geometries. Also it

is possible to simulate a diffraction pattern for a given crystal structure. In our case we

can notice the presence of sharp diffraction peaks which indicate that the deposited layer

has a well-ordered crystal structure. The substrate has been also analyzed in order to

exclude his characteristic peaks. Unfortunately it is difficult to determine information

on crystal structure because numerical calculation are needed to carry on the analysis

[47].
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Figure 2.34: XRD working principle.

Figure 2.35: XRD spectrum of Zinc Octa-Ethyl Porphyrin (ZnOEP) thin film.
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Figure 2.36: XRD spectrum of Nichel Tetraphenylporphyrin (Ni[ButOTPP]) thin
film.

2.5.4 Electrical characterization

We analyzed our devices in order to investigate conductivity and field effect dependence

of porphyrin thin films. The measurement set-up is shown in Figure 2.37. We used a

aixPES of aixACCT Systems for the IV curve and a GW Instek GPS-4303 Laboratory

DC power supply to apply the gate voltage.

The first consideration in that two porphyrins with the same structure but one with the

coordinated metal and the other without, have completely different electronic behaviour:

the porphyrins with metac behave as semiconductors while porphyrins without metal

are insulators and no appreciable field effect was observed. In Figures 2.38 and 2.39

IV curves of OEP and Zn[OEP] are shown for comparison. We observed this different

behaviour also for EptOTPP and Zn[EptOTPP].

We can also notice from Figure 2.39 the nonlinear shape of the curve which is due to the

presence of a traps-based conduction mechanism also called Poole–Frenkel effect (see

Appendix A). Notice also the appearance of this effect in Figures 2.40 and 2.41, which

refer to samples only differing in channel length: when the channel length of the device

increases more traps affect the conductivity.
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Figure 2.37: Electrical characterization measurement setup.

Figure 2.38: OEPIV IV curve.
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Figure 2.39: Zn[OEP] IV curve.

Figure 2.40: IV curve at different gate voltages of a Zn[EptOTPP] OTFT with
channel 30 µm and Al2O3 gate oxide.
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Figure 2.41: IV curve at different gate voltages of a Zn[EptOTPP] OTFT with
channel 100 µm and Al2O3 gate oxide.

Figure 2.42: IV curve at different gate voltages of a Ni[ButOTPP] OTFT with channel
30 µm and Ta2O5 gate oxide.
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Figure 2.43: Calculated output characteristics of a field-effect transistor in the am-
bipolar regime with two separate channels of holes and electrons for positive (first

quadrant) and for negative (third quadrant) Vg and Vds, respectively [49].

Figures 2.40, 2.41 and 2.42 refer to different samples all displaying the same field effect

beaviour. The conductivity of the channel is lowered both for positive and negative

voltage. This may suggest an ambipolar operation (both hole and electrons play

a role in conductivity) [48] where, in the voltage ranges we were able to apply in our

experimental setup, is possible to observe only a depletion operating mode. Unluckily

this characterization is not enough to provide a full explanation of the observed effect.

Similar results are present in literature for copper phthalocyanine (CuPc) and fluori-

nated copper phthalocyanine (FCuPc) based transistor (reported in [49]) where below a

threshold gate voltage of 40 V the curves are similar to the reported in our work but

above the threshold gate voltage the behaviour changes.

It is interesting to notice the almost perfect correspondence between the curves obtained

with positive and negative gated device in Figure 2.40. From a scientific perspective,

the ability to realize ambipolar transistors, which accumulate and conduct both holes

and electrons, enables new ways to improve the understanding of the physics of these

organic devices. In an ideal ambipolar transistor with just one semiconducting layer,

the ambipolar regime is characterized by a hole and an electron accumulation layer

next to the respective electrode that meet at some point within the transistor chan-

nel. There, oppositely charged carriers recombine. In electroluminescent materials, this

leads to light emission from within the channel. The length of each channel and thus

the meeting point and position of the recombination zone depend on the applied gate

and source-drain voltage and mobility ratio. The potential of the transistor channel in

the ambipolar regime can roughly be imagined as that of a saturated hole and electron

channel in series, resulting in an s-shaped transition region (Figure 2.43) [50].
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2.6 Organic layer: squarain dyes

In this section we will show preliminar result in the utilization of squarains as active

layer of a OTFT device.

2.6.1 Squarain dyes

Squaraines are such a class of dyes which are well-known for their strong absorption and

emission in the long-wavelength region accompanied by a remarkable (photo)stability

under ambient conditions [51, 52]. They were successfully used as gas sensors [53], in

bioimaging probes [54], for photodynamic therapy, in nonlinear optics [55], and many

further applications. In particular, squaraine dyes were applied as highly potent p-type

semiconductor materials in xerographic photoconductors [56] and organic solar cells [57].

However, their applicability in OTFT devices has yet been explored rather sporadically.

Squaraine dyes OTFTs were designed for near-infrared light-emitting ambipolar organic

field-effect transistors [58], nanowire transistors [59], and NIR detectors [60]. OTFTs

were obtained for the first two cases by spin coating, while in the latter well-aligned and

single crystalline squaraine nanowires were used as the active layer of transistor devices.

Others approach for thin film fabrication are using solution-shearing techniques and

vacuum evaporation [61].

2.6.2 Experimental results: morphology and electrical characteriza-

tion

Our first test has been drop casting of squareins solutions in dichloromethane (DCM) on

previously patterned substrates and thus characterize the OTFT. Squaraines under test

were synthesized by the Chemical Deparment of the Torino University; their chemical

structure is shown in Figure 2.45. For simplicity we will refer to them as squarain

A and squarain B. Drop casted samples, after 20 minute from the deposition, were

annealed at 120◦ for 4 minutes. SEM characterizations (Figure 2.46) of both squaraines

show a disordered discontinuous structure slightly different for different molecules.

The device was then characterized with the measurement set-up shown in Figure 2.37.

The very low conductivity of the samples led to reach very high source-drain voltages for

the characterization. Result are shown in Figure 2.47 an lead to suppose an ambipolar

behaviour. From our point of view we preferred investigate other deposition techniques

in order to reach a higher conductivity (better crystallization) of the molecular thin film.
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Figure 2.44: Squaraine dye A in a test tube.

(a) Squaraine dye A with X =
C(CH3)2 and R = C12H25

(b) Squaraine dye B with X = S and
R = C16H33

Figure 2.45: Chemical structure of the chosen squaraines.
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(a) Squarain A (b) Squarain B

Figure 2.46: SEM images of squaraines morphology.

Figure 2.47: Drop-casted squaraine A I-V curves.

The second test was oriented to find suitable condition for thermal evaporation of

squarains on previously patterned substrates. Since thermal evaporation process of these

particular squaraines could damage the molecules, a heat decomposition mass curve was

needed. For this reason we performed a Thermal Gravimetric Analysis (TGA). TGA is

a method of thermal analysis in which changes in physical and chemical properties of

materials are measured as a function of increasing temperature (with constant heating

rate). TGA can provide information about physical phenomena, such as second or-

der phase transitions, including vaporization, sublimation, absorption, adsorption, and
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Figure 2.48: TGA on squaraine A.

(a) (b)

Figure 2.49: Optical microscope images at different magnification of evaporated
squaraine A thin film morphology on patterned electrodes.

desorption [62]. The differential curve (DTG) in Figure 2.48 shows a peak at 303◦ C

representing material degradation so evaporation temperature was set at 280◦ C. We

evaporated the squaraine from a quartz boat of a Knudsen cell in a Edwards thermal

evaporator in high vacuum (10−6 torr) on room temperature substrate.

Optical microscope images of evaporated thin film patterned with shadow mask shows

a non-uniform structure. It is clearly visible from Figure 2.49 the presence of domains

with varying thickness with a hills and valleys profile in the range of 5-10 µm.

Also evaporated thin films show very low conductivity (Figure 2.50) which is probably
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Figure 2.50: Evaporated squaraine A I-V curves.

caused by the lack of uniformity and not sufficient crystal formation. Further investiga-

tion could be focused on changing deposition parameters, such as substrate temperature

and pressure in chamber, in order to improve crystallinity, and, as in the case of por-

phyrins, perform XRD characterization for each fabrication parameter variation.

2.7 Organic layer: PEDOT:PSS

We carried on investigations on PEDOT:PSS as active layer of the device in order to

easily test the inorganic part of the process fabrication of OTFTs. In particular we were

interested in the ability of the device to show a field effect and avoid the presence of

leakage currents and other fabrication defects. Commercial PEDOT:PSS was used for

his easy implementation and stable characteristics. Results of this screening are included

here only to highlight the OTFT capabilities. See [63] for more details on PEDOT:PSS.

Poly(3,4-ethylenedioxythiophene), or PEDOT [64], is an electro-chemically stable conju-

gated polymer initially developed to give a soluble conducting polymer that lacked the

presence of undesired couplings within the polymer backbone. Prepared using standard

oxidative chemical or electrochemical polymerization methods, PEDOT was initially

found to be an insoluble polymer, yet exhibited some very interesting properties. In

addition to a very high conductivity (ca. 300 S/cm), PEDOT was found to be al-

most transparent in thin films and showed a very high stability in the oxidized state

[65]. The solubility problem was subsequently circumvented by using a water-soluble

polyelectrolyte, poly(styrene sulfonic acid) (PSS), as the charge-balancing dopant during

polymerization to yield PEDOT:PSS. This combination resulted in a water-soluble poly-

electrolyte system with good film forming properties, high conductivity (ca. 10 S/cm),
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high visible light transmissivity, and excellent stability [66]. Films of PEDOT:PSS can

be heated in air at 100 ◦ C for over 1000 h with only a minimal change in conductiv-

ity. Although initially used as an antistatic coating in photographic films from AGFA,

several new applications have been implemented over the past few years (e.g., electrode

material in capacitors, material for through-hole plating of printed circuit boards) [67].

Figure 2.51: Chemical structure of the PEDOT:PSS blend.

In OTFTs, the active layer is composed of an undoped semiconductor that forms a

conductive channel at the interface with the dielectric when an electrical field is applied.

It was therefore unexpected to observe a field effect in devices comprising an intrinsic

conducting polymer like PEDOT:PSS as the active layer [68].

The change of resistance of the conducting channel on variations of the external field

was different from semiconductor-based OTFTs: the current change on the applied

electrical field was slow, in the order of minutes. Additionally the field effect disappears

completely when the temperature is decreased from room temperature by only 10◦ C

[69]. This led to the assumption that ion diffusion motion within the PEDOT:PSS

channel is responsible for the observed IDS modulation. It has been also observed a

pronounced dependence of the field effect on the humidity level [70]: in dry atmosphere

almost no change of IDS on the gate voltage was found. An electrochemical mechanism

was proposed to explain the electric field dependence including the dedoping of PEDOT

in the presence of water.

A different explanation was proposed by Hsu et al.[71]. Dedoping of PEDOT was ruled

out as the total number of injected ions from out of the gate into the PEDOT:PSS

channel was too low to explain the observed current decrease. Instead a model was

favored assuming a change of percolation paths caused by rendered ion positions. A small

fraction removal of mediated hopping states near the Fermi level on charge transport
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Figure 2.52: OFET with PEDOT:PSS active layer: drop casted PEDOT:PSS - H2O
solution on chip surface.

paths causes carriers to hop over longer distance to conduct current and therefore IDS

is reduced.

Technological exploitation of PEDOT:PSS as active layer for stand-alone transistors is

not easy due to the slow dynamics, but could be investigated as chemical sensor. In fact

the physical properties of conducting polymers strongly depend on their doping levels.

Fortunately, the doping levels of conducting polymers can be easily changed by chemical

reactions with many analytes at room temperature, and this provides a simple technique

to detect the analytes [72]. Most of the conducting polymers are doped/undoped by

redox reactions; therefore, their doping level can be altered by transferring electrons

from or to the analytes. Electron transferring can cause the changes in resistance and

work function of the sensing material. The backbones of common conducting polymers

are built up with aromatic rings, which are easy to attach various grafts through elec-

trophilic substitutions. By introducing different substituents, or copolymerizing with

different monomers, it is facile to adjust both the chemical and physical properties of

conducting polymers; these adjustments are useful for promoting selectivity of sensors,

and convenient in fabricating sensor arrays.

2.7.1 Experimental results: fabrication process and electrical charac-

terization

We started with Sigma-Aldrich Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)

blend 1.3 wt % in H2O with PEDOT content at 0.5 wt. % and PSS content at 0.8 wt.

%. In order to obtain a suitable polymer concentration for drop casting method, the

commercial solution was further diluited at 5% in DI water. A drop of this solution was
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Figure 2.53: I-V curves of a OTFT with PEDOT:PSS active layer and 10 µm channel
length: different gate voltages show different conductivity.

then casted on patterned silver electrodes of the one-mask substrate (see Section 2.3.1)

made of Si n++ as gate and silicon oxide dielectric. The solution was then baked for 10

min at 100◦ C resulting in a continuous, transparent-bluish thin film (Figure 2.52).

As expected, the application of a field to the PEDOT:PSS channel of the OTFT has

reduced the conductivity. The behaviour of this class of devices is not easy to characterize

because of the long lasting dynamics, as highlighted above. The curves in Figure 2.53

are obtained by waiting 5 minutes after the application of different fields.

As shown, OTFT architecture is a useful and robust tool to exploit also properties

of polymer semiconductors. Further investigation could be oriented in find suitable

condition to test the device as sensor in a controlled enviroment, fully characterize the

time constant of the I-V curve after field application and possibly exploit it as parameter.
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Microfludic platform for diffusion

test: a microgravity experiment

3.1 Controlled release drug delivery systems

Conventional dosage forms, such as oral delivery and injection, are the predominant

routes for drug administration. However, these types of dosages are not easily able to

control the rate of drug delivery or the target area of the drug and are often associated

with an immediate or rapid drug release. Consequently, the initial concentration of the

drug in the body peaks above the level of toxicity and then gradually diminishes over

time to an ineffective level. The pharmacodynamics and efficacy of treatments have

indeed been demonstrated to be related to the frequency, time and duration of drug ad-

ministration [73]. In recent years, increasingly sophisticated and potent drugs have been

developed by the biotech industry. For many of these new protein-based and DNA-based

compounds, the therapeutic concentration range is often small, toxicity is observed for

concentration spikes, or the therapeutic concentration range varies with time, which ren-

ders traditional methods of drug delivery ineffective [74]. An immense amount of interest

has been increasingly placed on controlled release drug delivery systems to maintain the

therapeutic efficacy of these drugs. There are a number of mechanisms that can provide

such controlled release of drugs, including transdermal patches, implants, bioadhesive

systems, and microencapsulation [75, 76].

3.2 Principles of micro and nanofluidics

Nanofluidics is intrinsically associated with nanoscale phenomena which are primarily

caused by the confinement of the fluid at the molecular scale. At this level, the integral

69
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balance of different forces creates a complex system which significantly affects the trans-

port of fluids with respect to the macroscale. While at the macroscopic level volume

properties and inertial forces play a dominant role over the fluid transport, as the size

of the system decreases, fluid-surfaces interaction becomes more and more important.

When the system shrinks to the nanometer scale (frequently assumed to be below 300

nm), the fluidics is dominated by viscous forces. Under these conditions, the Reynolds

number (Re) is typically less than 102 and the convective flow is laminar [77] with mix-

ing accomplished only through diffusion. In general, the transport of molecules at the

nanoscale is dominated by their interaction with the boundaries.

The transport of solutes and solvent through nanochannels or nanopores depends on

three factors. First, the presence of external forces, such as an electrical potential

gradient or a pressure gradient: these forces are needed to drive transport along the

nanochannel. Second, the presence of various colloidal forces, which lead to a variation

in the solute concentration across the nanochannel. Third, the presence of friction

forces between the wall and the solvent, and also between the wall and the solute

molecules. The solute and solvent transport fluxes can be deduced from knowledge of

these three forces.

As almost all wall materials (in particular dielectric materials) carry surface charge,

there is often an electrostatic force that repels ions with the same charge as the wall

(co-ions) and attracts ions with the opposite charge (counter-ions). However, all the

counter-ions do not end up against the wall: instead, the homogenizing action of the

thermal (Brownian) motion results in an electrical double layer (EDL) adjacent to

the wall, with an increased concentration of counter-ions and a decreased concentration

of co-ions (Figure 3.1).

The EDL consists of a Stern layer and a diffuse layer, which are occupied by immobile

counterions and mobile ions, respectively. By using the basic Stern model, some stud-

ies have shown that the immobile Stern layer plays a crucial role in the ion transport

phenomena in nanochannels [78]. Its thickness depends on the ionic strength of the solu-

tion. The differential surface charge is monotonically screened departing from a surface

and can drop to zero in the bulk of the fluid. The electric surface potential measured

at the boundary between the Stern and diffusive layers is called zeta-potential (or

ζ-potential).

In point of fact, many surfaces in nanochannel systems are charged due to the chemical

nature of their materials, their fabrication process, or the functional modification of their

surfaces. Crystalline silicon is one of the most common substrates used in nanofluidics.

Silicon develops an amorphous silica layer (SiO2)n under ambient conditions [79]. A wet

environment hydrophilizes the silica surface to different extents by introducing silanol
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Figure 3.1: Schematic of double layer in a liquid at contact with a negatively-charged
solid.

groups, which get ionized in water based buffers by experiencing deprotonation:

Si−OH → Si−O− +H+.

Therefore, the charge density on a silica surface is a function of the environ-

ment, including pH or salt concentration, and can range from -1 to -10 µC/cm2

[80].

As nanochannel size decreases, the EDLs formed on opposite surfaces start to overlap.

This causes the occurrence of electrostatic phenomena which affect the transport of

charged molecules (Figure 3.2). Among these, the electrostatic exclusion of molecules is

one of the most important [81]: when the EDL overlaps in a nanochannel, ions presenting

the same charge as the surface are electrostatically excluded from the passage, while

counter-ions can freely diffuse cross the nanochannels. Several studies investigated this

phenomena due to its potential application in ion separation and filtration [82].

It is possible to control solute transport in nanochannels by modulating the electrostatic

interactions between the solute molecules and the walls (similar to the methods used to

control solvent transport). One example of this approach applied to controlling the

flow of ionic solutes include changing the pH to control transport through a

membrane [84] and changing the electrolyte strength to gain control over the transport

properties of a specifically engineered nanochannel [85].

Another important phenomena influencing molecular transport at the nanoscale is elec-

troosmosis. Electroosmosis represents the motion of a fluid along the charged surface

of a channel driven by an applied electrical field. More specifically, the electrical field

drags counter ions in the EDL together with associated water molecules, causing a net

electroosmotic flow along the nanochannel.
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Figure 3.2: Surface charge effects in microchannels and nanochannels. a. In a mi-
crochannel, the Debye length is typically much smaller than the channel dimensions
and most of the solution in the channel is neutral. b. In a nanochannel, the solution is
charged when the Debye length is larger than the channel dimensions. c. The electric
potential in the microchannel decays rapidly to its bulk value in a distance of the order
of the Debye length. d. The electric potential even at the center of the nanochannel
is influenced by the surface charge and is not equal to the bulk potential. e. The
concentration of cations (orange) and anions (blue) in the microchannel is equal to the
bulk concentration. f. In a nanochannel, the counterion concentration (orange) is much

higher than the coion concentration (blue). From [83].

Figure 3.3: Schematic representation of the modulation of the zeta potential ψd

and electroosmotic flow (EOF) by a field effect transistor. Four major regions under
consideration are identified: the dielectric material layer of thickness δ, the immobile
Stern layer with surface capacitance Cs, the diffuse layer of Debye length λD, and the
bulk solution. Vg is the gate potential imposed on the gate electrode, and ψ0 is the
surface potential stemming from the association and dissociation reactions of functional
groups on the nanochannel wall. The green line illustrates the variation of the electric

potential. From [78].
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Another promising and versatile technique involves the use of electrodes on the exterior

of a nanochannel with thin walls (made of native silica) to actively vary the electro-

static potential at the wall to control the electrokinetic transport of charged species

[83].

These class of devices are called nanofluidic transistor based on a metal-oxide-solution

system 3.4. These devices are similar to field-effect transistors: a gate voltage modulates

the concentration of ions and molecules in a channel and controls the ionic conductance.

Unlike the FET, where the only function of the gate voltage is to control electrical

conductance, the nanofluidic transistor could be used to tune the ionic environment

as well as to control the transport and concentrations of ions or particular charged

biomolecular species. Since biomolecules are typically multivalent, gating control may

be expected to be more effective for controlling biomolecules than for monovalent ions.

3.3 A microscopic simulation of nanoscopic dynamics

Nanochannels design for a controlled drug release is not an easy task: classical math-

ematical models for diffusion do not work properly and it is necessary to improve the

direct understanding of the underlying physics by direct observation. By improving the

knowledge on the physics and chemistry of diffusion in nanochannels, it is possible to

develop a model that will make much easier to design delivery devices for any drug, and

speed up the development of these technologies.

The drugs of interest are usually tiny (1-6 nm) and too small to be seen or tracked with

microscopes. Usually fluorescence and electrical measurements are applied [83] but the

dynamics inside a channel can only be predicted and simulated. Much larger particles

(around 1 µm) instead can be seen and tracked.

Two aspects play a major role in how particles move and diffuse through channels:

• the relative size of particles and the channel

• electric charge interactions between the particles and channel.

We used functionalized (charged) micrometric fluorescent polystyrene particles to mimic

ions, furthermore we designed and fabricated a MEMS-like structure consisting of mi-

crochannels to mimic nanochannels. By scaling up the system we expect to be able to

mimic the complex dynamics of diffusion described above by using only concentration

gradient and pH as driving forces. A fluorescent microscope will be used to character-

ize the system, tracking the motion and speed of particles considering the influence of

charge gradients in affecting the their movement.
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Figure 3.4: The nanofluidic transistor. a. Schematic of a nanofluidic field-effect tran-
sistor. In a conventional field-effect transistor, the current flowing through the channel
between the source and drain electrodes is driven by the voltage applied across these
electrodes, and it can be controlled by applying a voltage to the gate electrode. The
voltage on the gate electrode essentially modulates the type (that is, electrons or holes)
and number of charge carriers in the semiconductor channel below it. In a nanofluidic
transistor the flow through a nanochannel can be driven by pressure, an applied electric
field or a concentration difference. By applying a bias voltage between the gate elec-
trode and the solution, the wall potential can be changed, modulating the counter-ionic
charge in the solution. b. When the gate voltage is zero, the electrostatic potential
ψ (red line) does not vary with position in the oxide, but it decays exponentially to a
minimum in the centre of the channel (shown in blue; ψ is positive to the left of the
line showing ψ = 0). In this example the walls have a negative surface charge (black
symbols) and the electrical double layers at each wall almost meet in the centre of the
channel, so the channel is mostly occupied by counter-ions (which are positive in this
system). For positive gate voltage the electrostatic potential at the wall becomes less
negative, effectively decreasing the transport rate of the positive ions (or even strongly
increasing the transport rate negative ions for a high gate voltage). This results in a
positive wall because the applied voltage polarizes the oxide layer, which can be repre-
sented by a positive surface charge (green symbols) on one side and a negative surface
charge on the other, with ψ decaying linearly within the oxide layer. For negative gate
voltage the electrostatic potential at the wall becomes more negative, increasing both

the number and transport rate of positive ions. From [86].
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Scaling-up the system means also take under consideration mass-dependent forces: since

molecular mass in nanochannels doesn’t feel gravity as a micrometric particle, the results

of the experiment could be slighty different from reality. Gravity in fact represents a con-

stant interfering force during slow diffusive dynamics and could affect other important

forces. For this reason, if preliminary characterization with the designed experimen-

tal set-up will be promising, the experiment will be carried on also on the International

Space Station U.S. National Laboratory. Methodist Hospital Research Institute at Hous-

ton, BioServe Space Technologies at the University of Colorado at Boulder and NASA

Glenn Research Center in Cleveland, Ohio, will be also involved in this study.

3.4 MEMS technology and nanofluidics

Once shown the ideas upon nanofluidics is based we will provide here a description of

a MEMS-based process relating the fabrication of a nanochannel in silicon membrane.

This description is provided here to give the idea of a nanofluidic device whose working

principle is under investigation by our scaled-up chip.

A large percentage of the literature revolves around two primary techniques.

The first is the use of an embedded and patterned sacrificial layer which is embedded

into a second material which will constitute the walls of the nanochannel [87, 88].

The second primary technique, and perhaps the most attractive for the production of

nanochannel drug delivery implants, is to create a nanoscale trench in the substrate

surface and then use one of the previously described bonding techniques to cap the

trench with a second substrate and form the channel [89].

We report here an example of the first family of devices.

The original method pioneered by Chu et al. [87] consists of two basic steps: (1) surface

micromachining of nanochannels in a thin film on the top of a silicon wafer, and (2)

forming the nanopore membrane by etching away the bulk of the silicon wafer underneath

the thin-film structure. The overall fabrication process is shown schematically in Figure

3.5.

The fabrication sequence begins by lithographically patterning and etching trenches into

the silicon surface (Figure 3.5 A). After stripping the resist and cleaning the substrate,

a sacrificial oxide is grown across the wafer surface (Figure 3.5 B). Next polysilicon is

deposited onto the oxide covered trenches to a thickness exceeding that of the trench

depth (Figure 3.5 C). The surface is then planarized using a plasma etch process such

that the excess thickness of the polysilicon and the layer of oxide on the top of the trench
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Figure 3.5: Schematic of key steps in silicon nanopore membrane fabrication process
[88].

is removed (Figure 3.5 D). This planarization is followed by boron doping of the crystal

lattice of the bulk silicon and polysilicon (Figure 3.5 E). The boron doping has the

effect of dramatically reducing the etch rate of this region of the silicon and polysilicon

substrate in KOH. Silicon nitride is then deposited on both sides to act as a masking

layer (Figure 3.5 F) during KOH etching of the back side bulk silicon to release the

membrane (Figure 3.5 G). The boron doped silicon and polysilicon act as an etch stop

due to the differential etch rate. The silicon nitride etch mask is then removed (Figure

3.5 H) followed by removal of the sacrificial oxide (Figure 3.5 I), both of which can be

etched in hydrofluoric acid with almost no silicon or polysilicon removal, to complete the

process. Experimental results of drug diffusion through this device are shown in Figure

3.6. The solid line has been obtained by simply combining the first Fick’s law with the

mass conservation principle and multiplying the mass flux times the total nominal pore

area.

To achieve a further insight in the mechanisms involved in nanochannel diffusion, the ex-

perimental phenomena can be described in mathematical terms, thus yielding a dynamic

model. Such a model is outlined in Appendix B.
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Figure 3.6: In vitro interferon diffusion through nanopore membrane (20 nm pore
size) under sink conditions: experimental data, Fick’s law prediction, and model-based

simulation [88].

3.5 A scaled-up nanofluidic model

3.5.1 Chip design

We designed and fabricated the experimental setup for monitoring the diffusion of mi-

crometric fluorescent polystyrene particles as follows.

We realized a micromachined silicon chip, with etched patterns on the surface to

be bonded to a pyrex glass. The patterns consisted of two chambers (source and sink

reservoirs) connected with an array of microchannels of different width and depth

with rectangular cross section. The inlets and outlets were placed on the bottom side

of the silicon chip, because previously fabricated chip with inlets and outlets on the

side manifest a cross contamination due to the capillary action of water around the chip

along the silicon/pyrex interface.

A CAD project of the chip is shown in Figure 3.7 while the process flow is represented in

Figure 3.10. The process involved three lithographic steps (three masks) and front-back

alignment of the geometries.

The photomasks patterns were generated with the software PhoeniX CleWin and trans-

ferred onto a high-quality chrome - soda lime mask (ML&C GmbH, Germany).

• Mask 1: inlets and outlets. Low resolution geometries (100 µm)

• Mask 2: microchannels. High resolution geometries (1 µm)

• Mask 3: source and sink reservoirs. Low resolution geometries (100 µm)
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Figure 3.7: 3D CAD representation of the drug delivery test platform

(a) (b)

Figure 3.8: CAD chip design and microchannels detail.

The three photolithographic steps are represented in Figure 3.18 with different colors.

The entire chip width is 1 cm, the source and sink reservoirs are 500 µm wide and the

inlets and oulets have 600 µm diameter.

The microchannels range from 2 to 10 µm width with 10 µm interdistance and are 1.5

mm long for one class of samples and 5 mm long for another class of samples (see the

full reproduction of the mask in Figure 3.9).

3.5.2 Fabrication process

The scheme of the fabrication process is represented in Figure 3.10. The first step is

the inlets and oulets fabrication. We performed a DRIE implementing the Bosch

process (see Chapter 1.7). The depth of excavation in this step was 500 µm (the wafer
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Figure 3.9: CAD for masks realization. Entire mask pattern is shown.

was 625 µm thick); to obtain such a deep etching a suitable mask was needed. For this

purpose we chose to utilize oxidized wafer (with 2 µm of oxide) patterned with a thick

photoresist (spin-coated Microchemicals AZ 9260, 7 µm thick).

Before resist application, double side polished wafers were dehydratated at 150◦ for

5 min, cooled with a jet of N2 gas and spin-coated with HMDS. After exposure and

development the oxide on the patterned side of the wafer was etched in BOE 7:1 for 25

min (with etch rate of 80 nm/min); the opposite side was protected from etchant with

dicing tape.

DRIE parameters were previously calibrated in order to obtain a suitable selectivity in

respect to the chosen masks and perform a successful process.

As we discussed before the CCP (plate) power is employed to vary the substrate poten-

tial, whilst the ICP (coil) power is the higher power and is used to generate the plasma.

ICP power, CCP power, gas flow rate, chamber pressure and etch/deposition time are

the controlling parameters and can affect the resulting profile, the etch rate and the

selectivity.

Bosch process parameters:

• Etch step: SF6 with flow rate at 100 sccm, CCP power at 11 W, ICP power at

1500 W. Step duration: 7 seconds.
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• Deposition step: C4F8 with flow rate at 50 sccm, CCP power at 10 W, ICP power

at 1500 W. Step duration: 4 seconds.

For both step temperature was set at 20◦, with baking Helium at 10 sccm, and chamber

pressure was set at 20 mtorr. Obtained etch rate was 5 µm/min. After DRIE a piraña

cleaning was performed. Then the oxide on the opposite side of the wafer was removed,

again with BOE.

For the next photolithographic step involving microchannels fabrication few consid-

eration are necessary.

Photoresist is a good masking material for the DRIE of silicon, if only shallow features

are required and the etching is performed at room temperature. The low temperatures

involved in the cryogenic DRIE process set new requirements for masking materials be-

cause common photoresist are subjected to cracking. Usually hard masks are used, but

the necessity of further deposition/etching steps can affect the resolution. Thus a special

photoresist was used: Microchemicals AZ 701 MiR, which is a thermally stable (soft-

ening point > 130◦ C), high resolution photoresist optimized for dry etching of sub-µm

structures.

Before photoresist spin coating, wafer were again dehydratated and spin-coated with

HMDS. Exposition of photoresist for this step needed a special equipment, the front-back

alignment feature of the mask aligner. After the photolithographic step, microchannels

were created with Cryo process:

• SF6 with flow rate at 60 sccm, O2 with flow rate at 6 sccm, CCP power at 5 W,

ICP power at 900 W. Temperature was set at -120◦ C, with baking Helium at

10 sccm, and chamber pressure was set at 10 mtorr. Obtained etch rate was 3.5

µm/min.

We fabricated two set of samples: one with channels 15 µm deep and another with

channels 30 µm deep.

For the next step, after a piraña cleaning, the wafers were then spin-coated with Micro-

chemicals AZ 9260 photoresist for the source and sink reservoirs patterning. After

exposure and development, wafers were then etched again using the Bosch process with

the same parameters used before. The needed etching depth for this step was around

125 µm, after that the geometries on the top side meet the holes in the back side of the

wafer and the circuit results complete. This step is particularly difficult because when a

hole is formed the backing Helium passes through them in the chamber with detrimen-

tal effects: the process temperature rises (because the refrigerant capability depends on
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Figure 3.10: Process flow of drug delivery test platform: a. Patterning the inlets and
outlets on the back side of the oxideized wafer with thick photoresist. b. Wet etching
of silicon oxide in BOE solution. c. DRIE dry etching of silicon with Bosch process.
d. Patterning of microchannels with thin photoresist on the front side. e. DRIE dry
etching of silicon with Cryo process. f. Patterning the source and sink reservoirs with

thick photoresist. g. Anodic bonding.

Helium presence under the wafer) and the plasma changes chemistry with resulting pho-

toresist degradation and lost of selectivity. To overcome this difficulty we kept observing

the Helium pressure stopping the process when the indicated value started to lower.

To seal the top side escavated geometries, fabricated wafers have been then permanently

bonded with borosilicate glass (Pyrex) using anodic bonding. This step has been per-

formed by Rockwood Wafer Reclaim- France. The Pyrex wafer was 500 µm thick and

has been bonded at 350◦ C and 500 V.

3.5.3 Improvements from previous versions of the chip

A previous version of the chip was fabricated with one side process, with inlets and

outlets on the side. This setup gave problems because the colloidal particles tend to

migrate from one side of the chip to the opposite by capillary action, and the apertures

were difficult to seal. The etching was done with KOH on 100 silicon thus obtaining a

54.7◦ angle of the wall of both chambers and channels thus creating a mirror effect during

microscope characterization. Furthermore, in the second layout of the chip, reservoirs
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were designed longer to prevent evaporation of solvent during the slow diffusion dynamics

and to prevent bubble formation during the filling procedure.

3.6 Experimental

The experimental setup is oriented in characterize diffusion dynamics of charged flu-

orescent microspheres having different surface functionalization in different pH solu-

tions at constant concentration.

These microspheres columbic-interact with each other and with the walls of the channels,

which are electrically charged too. The electrostatic repulsion between the spheres leads

to a boosted diffusion. The electrostatic repulsion between the spheres and the walls of

the channel can lead to a gating effect: the spheres cannot enter the channels. The

electrostatic attraction between the spheres and the walls of the channels can lead to

sticking effect: the spheres stick to the walls of the channel, preventing other spheres

from passing through the channel. The electrical charge of the walls and of the spheres

can be modulated acting on the pH of the solution: the spheres are, in fact, func-

tionalized with a certain chemical group (either carboxylic, or amminic, or sulphate)

which is linked to a different electrical charge (or, better, to a different zeta potential)

according to the ionic strength of the solution in which they are submerged.

The pH variation and the concentration gradient hence are the driving forces for micro-

spheres diffusion through microchannels.

3.6.1 Microspheres zeta-potential

As we previously discussed, zeta potential is the potential difference between the dis-

persion medium and the stationary layer of fluid attached to the dispersed particle.

According to general colloid chemistry principles, an electrostatically stabilized disper-

sion system typically loses stability when the magnitude (i.e. absolute value) of the

zeta potential decreases to less than approximately 30 mV [90]. As a result, there will

be some region surrounding the condition of zero zeta potential (i.e. the isoelectric

point, or IEP) for which the system is not stable. Within this unstable region, the

particles may agglomerate.

We determined the pH conditions of the isoelectric point using a zeta potential ana-

lyzer. The used equipment was HORIBA SZ-100 nanoPartica system.

Basically a zeta potential measurement works as follows. The sample is located in a

transparent cell equipped with two electrodes. A laser is used to provide a light source
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Figure 3.11: Zeta-potential of a negatively charged particle. From [91].

(a) (b)

Figure 3.12: Zeta potential vs pH of Amine-Modified and Carboxyl-Modified Micro-
pheres.

both to illuminate the particles within the sample and reference beam. The incident

laser beam passes through the centre of the sample cell, and the scattered light at a

fixed angle is detected. When an electric field is applied to the cell, any particles moving

through the measurement volume will cause the intensity of light detected to fluctuate

with a frequency proportional to the particle speed and this information is passed to a

digital signal processor and then to a computer.

In Figure 3.12 we show the measurements of the zeta potential vs pH both for the spheres

ammino-functionalized and for the spheres carbox-functionalized. The general trend is



Chapter 3. Microgravity experiment 84

quite evident, despite all the uncertainties: zeta potential decreases if the solution gets

more basic. The isoelectric point of the ammino-spheres is probably around 6 while the

isoelectric point of the carbox-spheres is a probably less than 2.

3.6.2 Experiment setup

The core idea is making use of two different solutions: one containing a fixed concen-

tration of microspheres and another devoid of them. Filling procedure comprises

three steps. In the first step we loaded the sink reservoir with the solution devoid of

spheres, taking particular care that the solution completely fills all the reservoir and the

micro channels, but not the source reservoir.

In the second step we filled the source reservoir with the solution rich in spheres, and

the final step is sealing the inlets and outlets as fast as possible to prevent evaporation

and start the acquisition under microscope. Sealing has been preformed with common

insulating tape.

We prepared solutions having different pH (ranging from 1 to 13). We obtained acid

solutions by adding HCl and basic solutions by adding NaOH to DI water (having pH

7). The pH variation, in fact, varies the zeta potential of the spheres and hence the

magnitude of the electrostatic interaction (among themselves and with the channels’

walls). For a certain pH the zeta potential of the spheres vanishes (the isoelectric

point) with reciprocal columbic interactions obtaining pure diffusive behaviour. Also

the concentration of spheres in the source reservoir influences the diffusion speed: higher

concentration of spheres are gives more electrostatic repulsion and a faster motion.

We used a solution with concentration of 8 ·10−4 spheres/µl in water (or water and HCl,

or water and NaOH).

We made use of the following surface-modified polystyrene microspheres supplied by

Life Technologies - Thermo Fisher Scientific:

• F8823 FluoSpheres Carboxylate-Modified Microspheres, 1.0 µm, negative charged

in 7.5 pH solution

• F8765 FluoSpheres Amine-Modified Microspheres, 1.0 µm, positive charged in 7.5

pH solution

• F8859 FluoSpheres Sulfate Microspheres, 4.0 µm, negative charged in 7.5 pH so-

lution

All the microspheres of choice were yellow-green fluorescent (505/515 nm).
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Figure 3.13: Operating principle of a fluorescence microscope.

These spheres have a relative density of 1.05. This means that they will tend to sediment

on the bottom of the chips, thus affecting the diffusion mechanism and compromising

the results. To overcome this problem we increased the density of the solution in which

they are submerged. This has been obtained by simply adding a precise amount of

sucrose in the water. In order to have a density of 1.05 g/ml we used a concentration

of sucrose of 12.62% Sucrose has been chosen because its presence does not affect the

pH and the ionic strength of the solution.

3.6.3 Fluorescence Microscopy

The spheres were made of polystyrene so they were practically transparent, hence a

traditional optical microscope was not suited to observe them. In order to overcome

this problem we used a fluorescence microscope

A fluorescence microscope is an optical microscope that uses fluorescence and phospho-

rescence instead of, or in addition to, reflection and absorption to study properties of

organic or inorganic substances. The specimen is illuminated with light of a specific

wavelength (or wavelengths) which is absorbed by the fluorophores, causing them to

emit light of longer wavelengths (i.e., of a different color than the absorbed light). The

illumination light is separated from the much weaker emitted fluorescence through the

use of a spectral emission filter (see Figure 3.13). Our equipment was a Zeiss BioScope

microscope with Axio Observer.
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Figure 3.14: Diffusion dynamics of ammino-functionalized spheres at pH 5. The
fastest spheres are those in the wider channels arrays. Journey times are: 31 minutes
for spheres in the 4 µm wide channels, 65 minutes for spheres in the 3.5 µm wide
channels, 85 minutes for spheres in the 3 µm wide channels and 4 hours for spheres in
the 2.5 µm wide channels. After 15 hours the diffusion is still very active, with net flux

towards the sink reservoir.

3.7 Observations Results

The motion of the spheres in the channels is affected by these factors:

• Functionalization (Ammino, Carbox, Sulfate);

• pH of the solution in which they are submerged;

• Size of the channels. We will distinguish narrow channels chips, with 2.5, 3, 3.5

and 4 µm wide channels, and large channels chips, with 4.5, 5, 6 and 7 µm wide

channels.

We summarize here the observations:

For ammino-functionalized spheres in narrow channels:

• Acid (pH 3 and 4): partial gating, slow diffusion;

• Neutral (pH 7): diffusion;
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Figure 3.15: Diffusion dinamics of ammino-functionalized spheres at pH 11. At the
beginning of the observation spheres have already reached the end of the channels and
their motion is fast. Channel width are respectively 4, 3.5, 3 and 2.5 µm. The relative

diffusion speed is evident from the amount of particles in the sink reservoir.

Figure 3.16: Diffusion dinamics of ammino-functionalized spheres at pH 13. Gating
effect is observed: most of the spheres are kept outside the channels. Few particles
succeed in entering the channels at the very beginning probably injected by pressure

differences.
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Figure 3.17: Diffusion dinamics of carboxylate-functionalized spheres at pH 2. All
the channels are filled with stuck particles which prevent other particles from entering

the channels.

• Basic (pH 11): fast diffusion;

in large channels:

• Acid (pH 2): sticking;

• Neutral (pH 6): diffusion with gradual sticking;

• Basic (pH 9): fast diffusion; good mobility.

Carboxyl-functionalized spheres in narrow channels:

• Acid: missing data;

• Neutral (pH 7): diffusion;

• Basic (pH 10,12): fast diffusion, bad mobility;

in large channels:

• Acid (pH 2,4 and 6): diffusion with gradual sticking: the more acid, the faster the

sticking;
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• Neutral (pH 7): diffusion;

• Basic: missing data.

Sulfate-functionalized spheres in narrow channels: not tested (diameter of microsphere

exceeds channel dimensions);

in large channels:

• Acid (pH 4): slow diffusion with gradual sticking; bad mobility

• Neutral (pH 7): gating in the narrowest array , slow diffusion in the others;

• Basic (pH 9): mobility only in the largest channels.

3.8 Preliminary evaluation of gate and gate oxide imple-

mentation for nanofluidic transistor application

What we describe here is just a short report of feasibility involving the eventual inte-

gration of a process presented in the first section, involving the growth of Ta2O5 over a

metallic electrode, for a nanofluidic transistor application.

In nanofluidic transistors the main challenge is to obtain a insulating layer over a elec-

trode preventing leakage currents. One of the cause of bad insulating properties of

common oxides (SiO2, Al2O3) is the possibility of corrosion due to the action ionic

species inside biological solution. Ta2O5 is a good candidate for gate oxide in these

application, being also uses as anticorrosive coating in pH sensors [92].

To investigate the corrosion resistence of Ta2O5 we fabricated a sample as discussed in

the previous chapter by thermal oxidation of tantalum: we used a platinum electrode

on a silicon/silicon nitride wafer covered by Ta2O5. For mimic a biologic environment

we used a 0.1 M phosphate buffered saline (PBS) solution. PBS is a buffer solution

commonly used in biological research. It is a water-based salt solution containing sodium

phosphate, sodium chloride and, in some formulations, potassium chloride and potassium

phosphate.

Some samples have been kept in a stirred PBS solution for 48 hrs at 40◦ C and others

at 80◦ C . Parafilm has been used to prevent evaporation during the experiment. We

then compared the samples with the different treatments by SEM analysis.

By comparing SEM pictures (Figure 3.18) we can notice no evident modification of the

surface, just we can see some impurities probably due to some salt precipitation during

the experiment.
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(a) (b)

(c) (d)

Figure 3.18: SEM characterization of Ta2O5 layer on metal before and after immer-
sion in PBS. A. Tilted and B. frontal view of not immersed sample. Roughness is more
accentuated where the oxide is grown on metal electrode. C. Surface of the samples

after 48 hrs immersion in PBS at 40◦ C and D. at 80◦ C.

By this characterization we can conclude that Ta2O5 is a good candidate for nanofluidic

transistor gate oxide application. Further characterization will involve the application of

a voltage to the underlying electrode in order to evaluate field effect induced corrosion.

The applied field, in fact, modifies the concentration of the ions at the surface, thus in

principle enhancing the corrosion.



Chapter 4

Conclusive Remarks

In the first part of this work we analyzed different possibilities for the fabrication of

sensors based on Organic Thin Film Transistors (OTFTs). Our approach has been

process-oriented in order to give a report of feasibility with low-cost fabrication. Our

consideration started from the basic step of these devices fabrication until electric char-

acterization. The main challenge has been to provide OTFTs with addressable metallic

gate electrode in order to better investigate the process integration on these devices. In

this work, being a pioneering activity, the organic semiconductors sensing capabilities

are not yet been investigated, but we provided a qualitative description of the semicon-

ductors processability and their compatibility with classical MEMS oriented processes.

One part of the following work could be finding suitable means to activate the semi-

conductor surface in order to investigate target biological sensing, on the other hand

another possible future implementation could be based on the microfluidic integration

of this device by fabricating a suitable case with a channel leading to the active part of

the transistor.

In the second part we presented an application for controlled drug release systems. The

technology involved in this part is usually related to control the diffusion dynamics of

ionic species through nanochannels. We discussed here the design, fabrication and char-

acterization of a chip for a scaled-up microscopic simulation molecular drug dynamics.

Charged fluorescent microspheres played the role of drug molecules and micrometric

channels were the magnificated reproduction of nanochannels. The microspheres were

driven in our simulation by the pH of the solution of choice. The experimental setup

was fabricated with similar microfabrication technologies involved in the first part of my

work.

A future approach could take in account the implementation of a gate electrode and

gate oxide to better control the diffusion of ions in nanochannels (or microspheres in
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microchannels in our system). For this purpose we reported a preliminary study on the

possible application of part of the technology developed in the first part of the thesis for

the fabrication of a nanofluidic transistor.

This work has been oriented towards the technological integration of multiple aspects

relating biological microtechnologic devices, both for sensing and drug administration

with the future perspective of integrating in the same chip both diagnosis and terapeutic

tools.



Appendix A

Thin film transistors (TFTs)

basic theory of operation

This part is a theoretic treatment (from [26]) on TFT. The aim of this appendix is to

provide a description of the current theory regarding TFT conductive behaviour. We

will discuss mainly the effects that were easily observable in the characterization phase

of our devices.

A.1 Noncristalline semiconductors

Since most of materials used in TFT are noncrystalline, the treatment of the material

by a band model might seem inadequate. However a periodic electric field of the lattice

is not essential for the occurrence of typical semiconducting properties and the band

model may be applied also in the case in which there is a loss of periodicity of the lattice

[93].

Long-range order is not needed to give the material semiconducting properties. The

edges of the bands are not well defined though. In other words, noncrystalline (disor-

dered) materials can be treated by semiconductor (band) theory with nondiscrete bands.

Together with the noncrystallinity comes a large density of trap states and they severely

change the electronic behavior. Trap states are deep localized states that can capture

carriers that would otherwise contribute to conduction. It is irrelevant if the trap states

originate from the disorder of the material or from impurities. Once captured by a trap,

these charges are unavailable for conduction (in other words, the mobility is zero).

In band conduction the charge is highly delocalized and can travel freely. Charges,

however, spend most of their time on localized deep states from where they cannot

93
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Figure A.1: Distinction between hopping conduction (a) and Poole-Frenkel conduc-
tion (b). In the former charges occasionally jump (‘hop’) from trap to trap. In the
latter carriers spend most of their time trapped but occasionally are excited to the
delocalized (conduction or valence) band from where they can contribute to current.

contribute to current, thus reducing the average mobility. One example of this is Poole-

Frenkel conduction, which also includes a field-dependence of mobility.

In contrast, in hopping conduction models only localized states exist or play a role, for

instance because the delocalized bands are too far away or the temperature too low to

allow for thermal excitation of trapped carriers [94]. The charges spend all of their time

on these states. Transport of charge occurs by instantaneous hops between these states.

This can also cause a fieid and temperature dependence of the effective mobility.

A.1.1 Chemistry and conduction

Where the basic ingredient of organic materials is the carbon atom, the basic ingredient

of organic semiconductors is conjugation. Conjugation is a chain of carbon atoms with

alternating single and double bonds, as shown in Figure A.2.

This has two important results, namely the opening of a band gap, a splitting of the

energy levels, in the range of semiconductors, and the delocalization of charge in these

levels.

The four electrons on each carbon atom in the chain can be considered to reside in sp2

hybridized orbitals and in a pz orbital. The three sp2 electrons are used to form covalent

bonds via σ molecular orbitals to neighboring carbon atoms in the chain on either side

and to the sidegroup (for instance a simple hydrogen atom). The remaining electron in

the pz orbital is then used in a covalent bond via a π molecular orbital with a neighboring
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Figure A.2: (a) The principle of conjugation in organic electronic materials shown
in Lewis structures. Conjugation consists of a chain of carbon atoms with alternating
single and double bonds. Note that any of the hydrogen atoms can he replaced by a
functional side group, for instance to make the compound soluble. (b) The simplest
organic polymeric semiconductor, polyacetylene. (c) The nonconjugated equivalent,
polyethylene. The difference in room temperature conductivity between polyethylene
and polyacetylene is about seven orders of magnitude. (d) Polyallene with only double

bonds also has relatively low conductivity

carbon atom in the chain on one side only. The result is a chain of alternating single (σ

only) and double (σ and π) bonds.

Figure A.3 shows the energy diagram of an interaction between two carbon atoms form-

ing a double bond. After filling the levels from low to high it can be recognized that

four electrons (two from each carbon atom) are used in bonding, two in σ molecular

orbitals, and two in π molecular orbitals. The remaining four electrons are in nonbond-

ing orbitals and are still available for bonding to the rest of the chain and the ligands.

The basic feature is the splitting between the π and π∗ molecular orbitals caused by the

interaction between the pz atomic orbitals. interactions between pz orbitals further away

in the chain cause additional, smaller splittings of the levels, as schematically indicated

in Figure A.3(b). A highest occupied molecular orbit (HOMO,π) and lowest unoccupied

molecular orbital (LUMO, π∗) can be recognized.

The formation of a chain of single and double bonds thus causes an energy structure

with a HOMO and a LUMO level, with a splitting (‘band gap’) in the range of semicon-

ductors.

For polymeric organic electronic materials, the size of the chain of alternating single

and double bonds is, in principle, infinite. For oligomeric organic materials, the chain is

limited to the molecule.

For limited conjugation lengths, macroscopic conduction is then made possible by fur-

ther overlap of molecular orbits with neighboring molecules, causing so-called Davydov

splitting of the molecular levels. Figure A.4 summarizes the intramolecular interac-

tions causing molecular orbits and inter-molecular interactions further dispersing the
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Figure A.3: (a) Energy diagram of two interacting carbon atoms. sp2 and pz atomic
orbitals of the two individual carbon atoms combine to form π, σ and nonbonding
molecular orbitals. (b) A hand structure starts emerging with a narrowing hand gap
when the conjugation length of alternating single and double bonds is increased. A
HOMO and LUMO can he recognized that is part of the valence band (VB) and con-

duction band (CB), respectively.

energy levels, and delocalizing the electrons. The interactions cause the wavefunctions

with maximum same-sign overlap to have lowest energy and those with proximity of

opposite-sign parts to have highest energy.

Half of the electronic states are occupied (each pz orbital contributes one electron and

in each electron wavefunction fit two electrons, with opposing spin directions) and in

this way a HOMO and LUMO can be identified.

When the splitting between these two levels is relatively small, and a large delocaliza-

tion of the electrons occurs, a semiconductor results. In this case it is better to use the

jargon of semiconductor physics and replace the chemistry words ‘HOMO’ and ‘LUMO’

by ‘valence band’ and ‘conduction band’, respectively. In this language, we can say that

an electron is promoted from the top of the valence band (VB) to the bottom of the

conduction band (CB). Both the electron in the CB (LUMO) and the missing electron,

or ‘hole’, in the VB (HOMO) can nearly equally well contribute to current. In practice,

most organic semiconductors conduct better via holes because of a higher efficiency of

trapping (immobilizing) electrons.
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Figure A.4: lntramolecular interactions between pz electrons causing molecular orbits
π and π∗. Additional (intermolecular) interactions cause a further spreading of the
electronic levels. The interactions make the Wavefunctions with maximum same sign
overlap to have the lowest energy, in this case h1 and the Wavefunction with maximum
opposite-sign overlap to have the highest energy, in this case l1. Half of the levels are
occupied and this causes the distinction between HOMO and LUMO (in this case h0

and l0, respectively)

A.2 A simple model to describe TFTs

We report here a simple analytical model for thin-film field-effect transistors (TFTs)

[95, 96] useful to rapidly identify why a device is behaving in a particular peculiar way.

The active layer of the devices is considered purely two-dimensional.

Figure A.5: Cross-section of a thin-film FET showing the nomenclature used in this
part.

Fig. A.5 shows a cross-section of a thin-film FET with the nomenclature used in this

part. The device consists of a conductor called the gate (made of metal or a highly doped

semiconductor) an insulating layer (which we will call the oxide layer, as an inheritance

from silicon technology) of thickness dox (resulting in capacitance density Cox = εox/dox,
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with εox the permittivity of the insulator material) and a semiconducting layer that ac-

commodates the channel of charged carriers and can thus be called the active layer.

The basic working principle of the field effect transistor is that charge density in this layer

and thus its conductivity can be modulated by a tension at the gate relative to the semi-

conductor. The charges are injected and collected by the source and drain electrodes,

respectively. Observable external electrical quantities are: Ids the drain–source current,

Vds the drain–source voltage and Vg the gate–source voltage. The leakage currents, such

as drain-gate or gate-source, are considered zero.

It is standard practice in literature to use textbook inversion - channel metal - oxide

- semiconductor field-effect transistor (MOS-FET) theory to describe the behaviour of

organic FETs [97]. There are two reasons why this might be inappropriate. First, the

real devices are, without fail, thin-film FETs (TFT) and as such do not have a bulk

region. The main concern is that a TFT, without a bulk region, cannot accommodate

a band bending. Second, organic TFTs are all accumulation-channel FETs. In this

situation, in the absence of localized states (donors) to store immobile positive charge,

no band-bending can be maintained, even if the active layer is thick. Summarizing,

the thick semiconductor in a standard MOS-FET can accommodate band bending and

will have band bending in inversion mode. Charges induced by the gate are then not

all located close to the interface and a complicated charge-voltage and hence current-

voltage relation results. In a thin-film FET, or in general an accumulation-type FET,

all induced charge is necessarily close to the insulator and the charge-voltage relation is

always simply:

ρ(x) = [V (x)− Vg]Cox (A.1)

with ρ and V the local charge per area and voltage in the channel, respectively. This

charge in a TFT might still be either mobile or immobile, though. This explains why,

as has been shown, for organic FETs only the quality of the first monolayer matters. At

best, the consecutive layers help to stabilize the integrity of the first layer, in terms of

diffusion of impurities and crystallinity.

For a standard MOS-FET, the assumption is made that the induced free charge in the

channel is linearly depending on the gate bias. This is because, once the channel has

been formed, all the charge induced by the gate is free charge. This in turn is caused

by the type of semiconductor used in FETs. For traditional materials as Si or GaAs,

the acceptors and donors introduce shallow levels, which are consequently all ionized at

all operational temperatures. In organic semiconductors, the acceptor and donor states

are very deep and abundant. As a result, even at room temperature, not all levels are
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ionized and temperature and bias can change the degree of occupancy. As we will show,

the as-measured mobility does not change because of an increased depth of the acceptor

level. On the other hand, traps, that differ from acceptors in that they can be neutral

or positively charged, have a severe effect on the electrical characteristics of the device.

First we will derive equations for the basic operation of a TFT. Then we will discuss the

differences and perturbations to the model, including contact effects and traps. As a

starting remark, the units of densities used are all “per area”. This includes the charge

densities, carrier densities and densities of states.

A.2.1 Basic model

It is easy to show that the equation for currents of a MOS-FET is also applicable to

thin-film FETs. In the case of a TFT the thickness of the channel is constant, but the

density of charges p inside the channel varies from one electrode (“source”, x = 0) to

the other (“drain”, x = L). To calculate the currents through the device, we have to

understand that, locally, the current Ix(x) at a certain point x in the channel is equal to

the local induced charge, Cox[(Vg−Vt)−V (x)], multiplied by the carrier mobility µ (for

a definition of mobility see [8]), the field felt by the charges, dV (x)/dx, and the channel

width W . In other words, we have the following differential equation:

Ix(x) = qWp(x)µ
dV (x)

dx
, p(x) =

Cox[V (x)− (Vg − Vt)]
q

(A.2)

where Vt is the threshold voltage, the lowest voltage (in absolute value) which affects

the conductivity of the channel. The threshold voltage can only deviate from zero in the

presence of traps. With boundary conditions V (0) = 0, V (L) = Vds, and Ix(x) = Ids for

all x, the solution is

Ids = −W
L
Coxµ[(Vg − Vt)Vds −

1

2
V 2
ds] (A.3)

with Vds and Vg both negative. This equation for TFTs is very similar to the equation

for MOS-FETs [8]. The only prerequisite is (low) ohmic contacts. The effects of the

contacts will be discussed later. The equation is valid up to Vds = Vg − Vt. After that,

saturation starts in: a region close to the drain is below threshold voltage and is devoid

of charges. When the sub-threshold conductivity is (close to) zero this region can be

infinitely small and still absorb all of the above-saturation voltage Vds − (Vg − Vt). In

this way, the charge and voltage distribution across the device (except for an infinitely
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thin zone) is independent of the drain-source voltage and hence the current is constant

at Ids = −(1/2)(W/L)µCox(Vt − Vg)2.

Figure A.6: I–V curves (Ids vs. Vds) of an ideal thin-film FET resulting from equation
(A.3) (thin lines) . Absolute values for current and voltage. Thick lines indicate the

saturation regime.

Fig. A.6 shows the electrical characteristics of an ideal TFT.

For low voltages, the quadratic term in Vds disappears from Eq. (A.3) and this is called

the linear region (considering Vt = 0):

Ids = −W
L
CoxµVgVds (A.4)

This allows for the definition of the as measured field-effect mobility as

µFET =
dIds
dVg

1

W/LCoxVds
(A.5)

where the subscript FET is used to distinguish it from mobilities measured by other

techniques. For various reasons, for an organic TFT, the as-measured mobility can

depend on things such as the temperature and the bias and can substantially deviate

from mobilities measured with other techniques [95].
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A.2.2 Contact resistence

In organic TFTs, often non-linearities in I–V curves are observed [98]. The argumen-

tation is using the generic term “contact effects” [99]. In an FET there might be two

possible contact effects, namely contact resistance [100] and contact Schottky barriers

[101].

The first might be caused by the formation of a high resistive area in the vicinity of the

drain and source electrodes. This can then impede carrier injection. A standard pro-

cedure for extracting this resistance is by measuring the device resistance as a function

of channel length and extrapolating to zero [102]. This method requires an easy access

to a large number of devices prepared under identical conditions and is rather time

consuming. Later we will present a faster way of determining the contact resistance.

On the other hand, when a metal is brought into intimate contact with a semiconductor,

usually a depletion layer is formed at the interface [8]. When their respective work

functions are different, a Schottky barrier results that limits charge carrier injection.

Note that the work function of the semiconductor is here defined as the electron affinity

plus the Fermi-level depth, or, in other words, the distance between the vacuum level

and the Fermi-level. Now we will demonstrate the effects of both type of contacts on

the electrical characteristics.

Figure A.7: Equivalent circuit of an FET with resistances at the contacts

For strong currents, the contact resistance can become the limiting factor and the current

saturates and becomes independent of Vg: we have to imagine that the FET is made

up of two contact resistances (2Rc) and the channel resistance, connected in series.

Initially the current grows linear with Vg (as explained by the text above). The channel

resistance is thus proportional to 1/Vg. For large Vg the channel resistance disappears
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and the current settles at Vds/2Rc. More exact: when the current is increasing, the

contact resistance induces a voltage drop at the source, Vs = IdsRc, the field at the

source (Vgs = Vg − Vs) is reduced and the current drops.

Figure A.8: Simulations of I–V curves of FETs with contact resistance R as indicated
for different gate bias. Absolute currents and voltages shown.

The interface regions are not necessarily ohmic, as described above. Contacts are nor-

mally made of metal and the contact of this metal with a semiconductor might result in

a Schottky diode. When a depletion layer is formed between the electrodes and the semi-

conductor, the current, might be limited by this Schottky barrier. When such Schottky

barriers exist, they come in pairs, with a forward biased Schottky diode at the drain and

a reverse-biased Schottky diode at the source (or vice verse). In other words, the maxi-

mum current through the device is a reverse-biased Schottky barrier current. When the

Schottky barriers are the limiting elements, the current thus follows a hyperbolic tan-

gent, Ids = tanh(Vds) and saturates at a voltage of approximately Vsat = kT/q = 26mV

at room temperature, see the simulation A.10. This is not what is normally observed

for TFTs. The conclusion therefore is that Schottky barriers play no role in TFTs [95].

A.2.3 Effects of traps on the electrical characteristics of TFTs

Non-linearities are often observed in I–V curves. They can be described as supra-linear

close to the origin, and are often attributed to the effects of the contacts. As we have

shown, this in not an adequate physical picture. We will now discuss how an abundant

amount of traps can readily explain these anomalous I–V curves.
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Figure A.9: Equivalent circuit of an FET with Schottky barriers at the contacts

Figure A.10: Simulation of an FET with Schottky barriers at the contacts.

A Poole and Frenkel approach shows how the current, and thus the effective mobility

(µ ∝ Ids/Vds), of a trap-ridden material can depend on the temperature and electrical

field [8]:

µPF = µ0exp

[
−

(ET − EV )− q
√
q|Ex|/πε

kT

]
, (A.6)

with µ0 the free carrier mobility, ET −EV the discrete trap depth, Ex = dV (x)/dx the

in-plane electric field, ε the permittivity of the material and q the elementary charge.

Including a field dependent mobility into the model, the differential equations for TFTs

now become
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(a)
(b)

Figure A.11: (A) Experimental from [103] and (B) simulated I–V curves for field-
dependent mobility as described by Poole and Frenkel model. For significative field

dependence, the curves become pronouncedly concave (supralinear).

Ix(x) = Wqp(x)µ(x)
dV (x)

dx

p(x) =
Cox[Vg − Vt − V (x)]

q

µ(x) = µ00 exp
(
− a

kT

√
q|dV (x)|/dx

)
,

(A.7)

where the same boundary conditions apply as before (V (0) = 0, V (L) = Vds and Ix(x) =

Ids) and µ00 = µ0exp[−(ET −EV )/kT ] depends on the temperature and the trap depth

and a =
√
q3/πε is a constant that depends only on the permittivity of the material

(ε). The above equations do not have a simple analytical solution, however, they are

not difficult to solve numerically. Fig. A.11a shows experimental data and Fig. A.11b

shows simulations of the I–V curves for different temperatures (see [96]).

A.2.4 Insulator Leakage

In many cases, the insulator is less-than-perfect and currents may exist through the

insulator to the gate. For high mobility materials, such as silicon in the MOS-FET

geometry, even the low-end silicon oxide is good enough and gate currents are negligi-

ble compared with channel currents. For most organic materiais and for TFTs of low

mobility materials in general, the channel currents are smaller and requirements on the

insulator stronger if distortions of the ideal characteristics are unwanted. In a very rudi-

mentary way, is possible simulate this by placing a resistor bridging the drain and the
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Figure A.12: Equivalent circuit of an FET with leakage

source (assuming the current meter is placed at the drain), as shown here on the picture

A.13.

Figure A.13: Simulation of I-V curves of an ideal TFT with a resistor bridging the
gate and the drain. The thin lines are the linear regime and the thick lines are the

saturation regime

A way of eliminating the measured leakage current is to measure with Vds always equal to

Vg, in what is callled ‘locus curves’ since they follow the locus points of FigureA.6. This

reduces the power of electrical measurements as an analytical tool, though. Moreover,

it reduces the device effectively to a simple nonlinear two terminal component, like a

diode.
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Figure A.14: Charge distribution and potential in an ambipolar TFT when the gate
bias is in between the drain and the source bias. For this conditions, the device is in a

dual-injection regime, with a zone of positive and zone of negative charge.

A.3 Ambipolar devices

We will now extend the idea and show what happens when electrons have a mobility

comparable to that of holes. When ignoring the sub-threshold (“minority carrier”)

concentrations, the basic equations are replaced by

V (x) > Vg : (A.8)

p(x) =
Cox[V (x)− Vg]

q
(A.9)

n(x) = 0 (A.10)

V (x) < Vg : (A.11)

p(x) = 0 (A.12)

n(x) =
Cox[Vg − V (x)]

q
(A.13)

and

Ix(x) = qW [p(x)µp + n(x)µn]
dV (x)

dx
(A.14)

with µp and µn the effect field-effect mobility of holes and electrons, respectively. In

the general case, the solution is not just treating the device separately as p-channel
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and n-channel devices and then summing the currents, because both types of charge

and current can exist at the same time in different parts of the device (with carrier

recombination at the transition point in space). When the gate bias is outside the range

0 - Vds it has only one type of charge throughout the device and it can be treated as

a p-channel or n-channel device. Care has to be taken when Vds and Vg are not of the

same sign. It can be shown, by using device symmetry operations and potential offset

invariance, that this, effectively, is equal to subtracting the drain bias from the gate bias

and inverting the drain-source potential. A more complicated case exists when the gate

bias is in the range between the drain and source potential. In this case, there exists

a region of length Ln with free electrons and a region of length Lp with free holes, see

Figure A.14 . At the junction point, the potential is equal to the gate-bias. When we

assume that at this junction the electron– hole recombination is not the limiting factor,

we can treat each region as an FET in saturation. Then, demanding equal current in

both regions (example for Vds > 0):

1

2

W

Lp
Coxµp(Vds − Vg)2 =

1

2

W

Ln
Coxµn(Vg)

2 (A.15)

and knowing that the total length is equal to the channel length:

Lp + Ln = L (A.16)

will yield (for Vds > 0):

Ids =
1

2

W

L
Cox

[
µnV

2
g + µp(Vds − Vg)2

]
(A.17)

In the same way can be found for Vds < 0

Ids =
1

2

W

L
Cox

[
µn(Vds − Vg)2 + µpV

2
g

]
(A.18)

Figure A.15 shows transfer curves of ambipolar devices. The thick parts of the curves

indicate this dual-injection regime. The minimum of a particular transfer curve can be

found by taking the derivative of Eqs. A.17 orA.18 and putting to zero:

V min
g (Vds<0)

=
µp

µp + µn
Vds (A.19)

V min
g (Vds>0)

=
µn

µp + µn
Vds (A.20)
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Figure A.15: Transfer functions for ambipolar devices for drain-source biases as indi-
cated. The thick parts of the curves indicate the dual injection regime as shown in Fig.
A.14. The solid curves are for negative drain-source biases whereas the dashed curves

are for positive Vds.

Ids =
1

2

W

L
Cox

µpµn
µp + µn

V 2
ds (A.21)

The ratio of the positions of the minima in positive and negative bias thus directly yields

the ratio of electron and hole mobility and can serve as a rapid evaluation tool of the

material properties. Since normal saturation does not exist anymore (no infinitely thin

zone can support a finite voltage drop), the effect on the I–V curves is pronounced, see

FigureA.16. Note the absence of saturation for Vds > Vg. After initially settling on a

plateau, as for normal saturation, the current continues to increase rapidly.



Appendix A. Thin film transistors (TFTs) basic theory 109

Figure A.16: I–V curves in linear scale for ambipolar devices for gate biases as indi-
cated. The thick parts of the curves indicate the dual injection regime as shown in Fig.

A.14. The curves have been scaled by the gate bias for visibility.



Appendix B

Theoretical background of

diffusion kinetics in nanochannels

The basic principle of diffusion, as a mixing process with solutes free to undergo Brow-

nian motion in three dimensions, in case of nanochannels or pores does not apply, since

in at least one dimension solute movement within the nanopore is physically constrained

by the channel walls.

Classical diffusion theory establishes that the movement of solute molecules in a non-

homogeneous solution can be predicted, from a macroscopic point of view, by Fick laws.

The basic principle is that the flux vector is proportional to the concentration gradient.

Fick laws have been successfully applied to predict the diffusion kinetics of molecules

through thin semipermeable membranes. Nevertheless, experiments have shown that, as

the size of the membrane pores approaches the molecular hydrodynamic radius, unex-

pected effects, which cause substantial deviations from kinetics predicted by Fick laws,

can occur [88].

One could impose a single file dynamics (SFD) diffusion, which implies N (N →
∞ ) identical Brownian hard spheres in a quasi-one-dimensional channel of length L

(L→∞ ), such that the spheres do not jump one on top of the other, and the average

particle’s density is approximately fixed. But, in the case of SFD, the molecular flux

is overestimated by Fick law: the kinetics of SFD and Fickian diffusion are different

because the molecules in SFD cannot pass each other in nanopores, regardless of the

influence of the concentration gradient [104].

However, unlike SFD case, the ordering of solute particles imposed by the nanopore

geometry is not as strict as true cylindrical pores, but particles could conceivably pass

each other laterally. Furthermore, the wall drag effect has been evidenced using plastic
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micro-sphere moving into microchannels, which could be significantly different from the

case of low weight molecules diffusing in nanochannels [105].

B.1 Classical diffusion model

When there is a chemical potential gradient in a single-phase fluid mixture, which implies

that a concentration gradient is present in the solution, each species will diffuse in the

direction of decreasing concentration. The mathematical formula which describes this

phenomenon is known as Fick law. It represents a linear relationship between the mass

(or molar) flux JA (with respect to the mass average velocity), and the concentration

gradient, ∇cA; for a binary mixture, Fick first law is given by [106]:

JA = −DAB∇cA (B.1)

where DAB is the diffusion coefficient of a solute A in a solvent B. In order to have

a good insight of the process, we first apply the classical theory to our specific case-

study, but still neglecting the effect of the membrane. Then we will introduce the

mathematical description of the membrane effect, so that we can compare this case with

the free-diffusion case. The binary mixture consists of a solvent, e.g. phosphate buffer

saline (PBS), and a given solute, which is initially concentrated in a well defined region

of the reservoir volume. In order to obtain a suitable model, we require the following

hypotheses to hold:

• the experimental volume, which contains the drug A, can be divided into two

compartments of volume V1 (the reservoir) and V2 (the sink), with the respective

initial mass concentrations c0A1 = cA1(0) and c0A2 = cA2(0) (c0A1 > c0A2);

• the concentration is homogeneous in each compartment and the concentration

variation is spatially defined in a thin boundary region of depth L;

• given a Cartesian reference system (O, x, y, z), the concentration gradient,∇cA,

has null components along the y and z axes. Therefore the mass flux turns out to

be a scalar variable directed along the x axis and denoted by JA.

Our aim is to calculate the mass flux of drug through a generic surface, of area S, which

we assume to be perpendicular to the diffusion path. By a first order approximation

[107] we obtain:

JA(t) = (c0A1 − c0A2)
DAB

L
e−λAt (B.2)
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where:

λA =
DABS

V1L

(
1 +

V1
V2

)
(B.3)

Therefore in the free diffusion case the release profile is exponential. At this point we can

also calculate the amount of drug A, QA(t), which passes from V1 to V2 over an arbitrary

time interval [0, t], by integrating the mass flux times the area, S, thus obtaining:

QA(t) =

∫
S
JA(t)dt = (c0A1 − c0A2)

V1V2
V1 + V2

(1− e−λAt) (B.4)

B.2 Constrained diffusion model

Now let us derive the constrained diffusion model. Experimental results show that the

release profile remains linear for a certain period, and then it switches to the Fickian

exponential trend [88]. This observation suggests that the classical theory can be still

suitable provided that we can devise a more general model capable of explaining the

linear release in the first part of the experiment, and recovering the Fickian diffusion

kinetics when the concentration drops below a certain threshold. Such model shall

also shed some light on the physical mechanisms underlying the non-Fickian behavior

observed in the diffusion experiments. First, consider that classical diffusion theory is

based on Einstein relation, which expresses the diffusion coefficient of spherical Brownian

particles in a solution as:

DAB =
kT

6πrη
(B.5)

where k is the Boltzmann constant, T the temperature, r the radius of the solute par-

ticles, and η the viscosity coefficient of the liquid.

In order to derive a more general model, one needs to take into account the fact that the

mixture does not satisfy the hypothesis of ideal gas law. When the state of Brownian

particles in the Einstein argument deviates from the ideal gas law, it assumes the form

of the van der Waals equation:

(
p+

a

γ2

)
(γ − b) = RT (B.6)

where p is the pressure, R is the universal gas constant, and γ = V/n is the molar

volume, V being the total volume and n the number of moles. It is well known that the

constants a and b have a physical interpretation: The term a/γ2 represents the additional

positive pressure caused by the presence of other solute particles, as a consequence of
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the long-range attractive forces; the constant b, instead, represents the volume occupied

by the gas molecules, so that the term (γ − b) represents the effective “free volume”.

In the following, we will exploit [108] who derives from Eq. B.6 the generalized expression

for the diffusion coefficient (compare with Eq. B.5):

D∗AB =
kT

6πrη

[
1

(1− b0ν)2
− 2a0
kT

ν

]
(B.7)

where ν = ν(t, x) is the average number of Brownian particles at position x at time t,

a0 = a/N2
0 , b0 = b/N0, and N0 is Avogadro number. Note that the generalized coefficient

D∗AB recovers the Einstein coefficient DAB when a = b = 0. It is important to note that,

according to Eq. B.7, the diffusion coefficient is an increasing function of b, and a

decreasing function of a. This is intuitively what we could expect, because the value

of a is determined by long-range attractive forces, which oppose to particles dispersion,

whilst the value of b is related to the short range repulsive forces, which foster particles

dispersion. The generalized expression B.7 also allows deriving the effect of temperature

and pressure variations on the diffusion coefficient: a temperature increase corresponds

to a larger diffusion coefficient; conversely, a pressure increase has the opposite effect.

The expression B.7 yields the following relation:

∂ν

∂t
=

(
kT

6πrη

2b0
(1− b0ν)3

− 2a0
6πrη

)(
∂ν

∂x

)2

+

(
kT

6πrη

1

(1− b0ν)2
− 2a0

6πrη
ν

)
∂2ν

∂x

2

(B.8)

which is a generalized diffusion law (it recovers Fick second law of diffusion in the case

a = b = 0) [106].

Figure B.1: Lysozyme mass flux through a 13 nm pore height membrane: Fick law
prediction, model based simulation with parameters derived by fitting, model based

simulation with parameters derived by molecular dynamics simulation. [109]

Figure B.1 shows result of comparison between a finite-element model and experimental



Appendix B. Diffusion kinetics in nanochannels 114

data [109]. Understanding the mechanism of diffusion through nanochannels is impor-

tant not only from a theoretical perspective, but also in view of the potential applications

of nanopore silicon membranes. The release rate has been shown to be constant for a

long period, under suitable choice of the experimental parameters (initial concentration,

channel height and size of solutes); this property can be exploited in clinical medicine

for prolonged and constant administration of drugs.
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Locklin, Wolfgang Knoll, and Zhenan Bao. Water-stable organic transistors and

their application in chemical and biological sensors. Proceedings of the National

Academy of Sciences, 105(34):12134–12139, 2008.

[20] Mihai Irimia-Vladu. ”green” electronics: biodegradable and biocompatible mate-

rials and devices for sustainable future. Chemical Society Reviews, 43(2):588–610,

2014.

[21] Huchen Zhou, Laura Baldini, Jason Hong, Andrew J Wilson, and Andrew D

Hamilton. Pattern recognition of proteins based on an array of functionalized

porphyrins. Journal of the American Chemical Society, 128(7):2421–2425, 2006.

[22] Luca Beverina and Patrizio Salice. Squaraine compounds: tailored design and

synthesis towards a variety of material science applications. European journal of

organic chemistry, 2010(7):1207–1225, 2010.



Bibliography 117

[23] Franco Dinelli, Mauro Murgia, Pablo Levy, Massimiliano Cavallini, Fabio Bis-

carini, and Dago M de Leeuw. Spatially correlated charge transport in organic

thin film transistors. Physical Review Letters, 92(11):116802, 2004.

[24] Maren Daraktchiev, Adrian von Mühlenen, Frank Nüesch, Michel Schaer, Martin
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