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MEMORY–AWARE I–VECTOR EXTRACTION BY MEANS OF SUB–SPACE
FACTORIZATION

Sandro Cumani and Pietro Laface

sandro.cumani, pietro.laface@polito.it - Politecnico di Torino, Italy

ABSTRACT

Most of the state–of–the–art speaker recognition systems use i–
vectors, a compact representation of spoken utterances. Since the
“standard” i–vector extraction procedure requires large memory
structures, we recently presented the Factorized Sub-space Estima-
tion (FSE) approach, an efficient technique that dramatically reduces
the memory needs for i–vector extraction, and is also fast and accu-
rate compared to other proposed approaches. FSE is based on the
approximation of the matrixT, representing the speaker variability
sub–space, by means of the product of appropriately designed matri-
ces. In this work, we introduce and evaluate a further approximation
of the matrices that most contribute to the memory costs in the FSE
approach, showing that it is possible to obtain comparable system
accuracy using less than a half of FSE memory, which corresponds
to more than 60 times memory reduction with respect to the standard
method of i–vector extraction.

Index Terms— Speaker Recognition, I-vectors, I-vector extrac-
tion, Probabilistic Linear Discriminant Analysis, matrix rotation.

1. INTRODUCTION

I–vectors [1], a compact representation of a Gaussian Mixture Model
(GMM) supervector [2], in combination with Probabilistic Linear
Discriminant Analysis (PLDA) [3, 4], allow speaker recognition sys-
tems to reach state–of–the–art performance [5, 6, 7, 8, 9, 10, 11].

Since the “standard” i–vector extraction procedure requires large
memory structures and is relatively slow, several approaches have
been proposed that are able to obtain either fast approximate solu-
tions, possibly traded for lower memory costs, or accurate solutions
based on a Variational Bayes (VB) formulation, at the expense of
an increase of the computational load [12, 13, 14, 15, 16]. In [16]
we have highlighted that the incidence of the time spent for i-vector
computation in a system using large models and scoring long speaker
segments is negligible compared to the importance of keeping the
original accuracy and reducing memory usage. The effectiveness
of the i-vector extractor is more relevant for systems dealing with
short utterances [17, 18, 19, 20, 21] such as, for example, the text
prompts in speaker verification [22, 23]. Saving memory is impor-
tant not only for small footprint applications, but also because larger
and possibly more precise models can be used. We have recently
proposed an approximate i–vector extraction approach [24], the Fac-
torized Sub-space Estimation (FSE). FSE tackles the main memory
cost issue in the standard i–vector extraction: the size of the variabil-
ity sub–space matrixT, and the huge amount of memory devoted to
pre–computation of the matrices, which are needed for speeding–
up the i–vector computation. In [24] we have shown that our so-
lution not only substantially improves the performance with respect

Computational resources for this work were provided by HPC@POLITO
(http://www.hpc.polito.it)

to the fast, but inaccurate, eigen-decomposition approach [12], but
also dramatically reduces (approximately by 35 times) the mem-
ory needed for i–vector extraction compared to other methods [1],
[14, 16], which require storing the original sub–space matrixT.

In this work, we further improve the memory requirements of
the i–vector extractor module by an additional approximation of the
matrices that most contribute to the FSE memory costs, and we
show that it is possible to obtain comparable system accuracy us-
ing less than half of FSE memory, which corresponds to approxi-
mately 60–85 times memory reduction with respect to the standard
i–vector extraction. Our experiments, performed on the extended
NIST SRE2010 female tests, allow comparing different i–vector ex-
traction approaches and appreciating the contribution of our proposal
in terms of accuracy and memory costs.

The paper is organized as follows: Section 2 summarizes the
i–vector representation for speaker recognition, and the standard ex-
traction process. The FSE approach and the key idea for the opti-
mization of its memory costs are introduced in Section 3. Section 4
details the FSE optimization steps, focusing on the factors that re-
quire more memory. The optimization of the novel data structures is
introduced in Section 5. The experimental results are presented and
commented in Section 6, and conclusions are drawn in Section 7.

2. I–VECTOR REPRESENTATION

The i–vector representation [1] constrains the GMM supervectors,
representing both the speaker and channel characteristics of a given
speech segment, to live in a single sub–space according to:

s = m+Σ
1
2Tw , (1)

wherem is the UBM supervector,T is a low-rank rectangular ma-
trix with C × F rows andM columns.C are the mixture compo-
nents, andF is the feature dimension. TheM columns ofT are
vectors spanning the variability space, andw is a random vector of
sizeM having a standard normal prior distribution.T is multiplied
for convenience byΣ

1
2 , whereΣ denotes the block–diagonal matrix

whose diagonal blocks contain the UBM covariance matricesΣ(c).
It is worth noting that the i–vector representation (1) is equivalent to
the classical one, but takes advantage of the UBM statistics whiten-
ing introduced in [12] to simplify the i–vector computation.

Given a set of feature vectorsX = {x1, . . .xt . . .xT } extracted
for a speech segment, the corresponding i–vectorwX is computed
as the mean of the posterior distribution P(w|X ):

wX = L
−1
X T

∗
fX , (2)

whereLX is the precision matrix of the posterior distribution:

LX = I+
∑

c

N
(c)
X T

(c)∗
T

(c) . (3)



In these equations,N (c)
X are the zero–order statistics estimated on the

c–th Gaussian component of the UBM for the set of feature vectors
in X , T(c) is theF × M sub-matrix ofT corresponding to the

c–th mixture component such thatT =
(

T(1)∗, . . . ,T(C)∗
)∗

, and

fX is the supervector stacking the covariance–normalized first–order
statisticsf (c)X , centered around the corresponding UBM means:

f
(c)
X = Σ

(c)
−

1
2

[

∑

t

(

γ
(c)
t xt

)

−N
(c)
X m

(c)

]

, (4)

wherem(c) is the mean of thec–th Gaussian component of the
UBM, xt is thet–th feature vector inX andγ(c)

t is its occupation
probability on thec–th Gaussian.

3. MEMORY AWARE I–VECTOR EXTRACTION

The complexity of a single i–vector computation (2) mainly depends
on the computation ofLX and on its inversion: it isO(M3) +
O(CFM) for (2) plusO(CFM2) for (3). Usually the number of
Gaussian componentsC is greater than the sub–space dimension
M , and the latter is greater that the feature dimensionF . Popular
settings for state–of–the-art systems are:F = 60, C = 2048, and
M = 400. The termO(CFM2), thus, accounts for most of the
computation complexity, whereas the memory demand for storing
matrix T is O(CFM). The standard i–vector extraction approach
consists in pre–computing and storing all the factorsT(c)∗T(c).
This allows reducing the computational costs toO(CM2), at the
expense of additionalO(CM2) memory.

We have recently proposed an approximate i–vector extraction
approach [24] that tackles the main memory cost issues in the stan-
dard i–vector extraction: the size of the variability sub–space matrix
T, and the size of the set of theT(c)∗T(c) matrices. In [16] we have
shown that the computation of the i–vector covariance matrixLX is
unnecessary because the solution of (2) can be obtained by means of
a Conjugate Gradient approach which requires only matrix– vector
multiplications involving the subspace matrixT. In [24] we have
further shown that an effective approximation of the rows of the sub-
space matrixT can be obtained as a linear combination of the atoms
of a common dictionary. This approach, combined with the Con-
jugate Gradient approach for i–vector extraction, allows obtaining
approximate i–vectors without explicitly reconstructing the original
T matrix and without explicitly computingLX . In particular, a good
approximation of theT(c) matrices can be obtained by means of the
decomposition:

T̂
(c)

= O
(c)

Π
(c)

Q ≈ T
(c) , (5)

whereO(c) is an orthogonalF ×F matrix,Π(c) is a sparseF ×K
matrix having at most one non-zero element per row, andQ is a

K×M dictionary matrix, shared among allT̂
(c)

, includingK atoms

in its rows. T̂
(c)

is, thus, a linear combination ofF scaled and ro-
tated atoms ofQ. It is worth noting that the original FSE model
does not requireO(c) to have a positive determinant. However, since
multiplying by−1 one column ofO(c) and the corresponding row
ofΠ(c) does not change the result of the factorization, without loss
of generality we can further impose that the matricesO(c) are proper
rotation matrices. Since the sizeK of the dictionary that we estimate
can be selected according to memory-accuracy trade–offs, and it is
usually much less thanC × F , our solution is able to preserve the
performance with respect to the standard approach, dramatically re-

ducing the memory needed for i–vector extraction compared to other
methods [14, 16], which require storing the original sub–space ma-
trix T.

Analyzing the memory cost of the matrices involved in the FSE
model, with typical settings for the dimensions of the UBM, of the
i–vectors, and of the dictionary, it can be easily verified that most
of the memory in the FSE implementation is devoted to the rotation
matricesO(c). In this work we propose to approximate eachF × F
matrixO(c) by means of a sequence ofJ rotations, where, for each
index j, the rotation planes are shared among the set of matrices
O

(c)
j . In particular, we approximate each matrixO(c) as [25]:

O
(c) ≈

∏

j

UjB
(c)
j U

−1
j (6)

where each matrixUj , shared among allO(c)’s, is an orthogonal
rotation matrix, which identifies a set of shared rotation planes, and
eachB(c)

j is a block–diagonal matrix obtained as the direct sum of
Givens rotations:

B
(c)
j =







Gc
j,1

. . .
Gj,⌈F

2
⌉






, (7)

where

G
(c)
j,i =

[

cos(θ
(c)
j,i ) − sin(θ

(c)
j,i )

sin(θ
(c)
j,i ) cos(θ

(c)
j,i )

]

, i = 1, . . . ,
F

2
,

andGj,⌈F
2
⌉ = 1 if F is odd. DefiningA0 = U1, AJ = U−1

J and

Ai = U−1
i Ui+1, i = 1, . . . J − 1, expression (6) can be rewritten

as:
O

(c) ≈ Õ
(c)

= A0

∏

j

B
(c)
j Aj . (8)

It is worth noting that each matrixAi is orthogonal. Although the
termsAi are not independent, in the following they will be esti-
mated independently, with the only constraint that each matrixAi is
a proper rotation matrix.

The factorization (8) allows reducing the memory costs for
storing the matricesO(c) from O(CF 2) to O(CJF/2) for the
parameters of the block–diagonal matrices, plusO(JF 2) for the
shared matrices. It is worth noting that the FSE i–vector ex-
tractor requires the matricesO(c) only for computing the term

T̂
(c)∗

f
(c)
X = Q∗Π(c)∗A0

∏

j

(

B
(c)
j Aj

)

f
(c)
X , which can be com-

puted without explicitly reconstructing the approximatedÕ
(c)∗

, by
means of matrix by vector multiplications.

4. FACTORIZED SUB–SPACE ESTIMATION OF T(c)

The matricesO(c), Π(c), andQ in (5) are obtained by minimizing a
weighted average square norm of the difference between eachT(c)

and its approximation̂T
(c)

. In particular, ifω(c) is the weight of the
c–th component of the UBM, the objective function is:

min
{O(c)},{Π(c)},Q

∑

c

ω(c)
∥

∥

∥
T

(c) −O
(c)

Π
(c)

Q

∥

∥

∥

2

. (9)

where matricesO(c) are constrained to be orthogonal, and matrices
Π(c) are constrained to have at most one non–zero element per row.



The optimization is performed by updating a matrix while keep-
ing constant the others, according to the iterative sequence of opti-
mizations illustrated in [24]. We here recall only the optimization
procedure forO(c), because we use similar considerations for the
optimization of the FSE objective function with respect to the terms
of the factorization given in (8).

4.1. Matrix O(c) optimization

The minimization of (9) with respect toO(c) is equivalent to the
maximization:

max
{O(c)}

∑

c

ωc tr
(

T
(c)∗

O
(c)

Π
(c)

Q
)

. (10)

Since the optimization of each matrixO(c) can be done indepen-
dently, and recalling that the trace operator is invariant under cyclic
permutations, eachO(c) can be estimated as the maximizer of:

max
O(c)

tr
(

T
(c)∗

O
(c)

Π
(c)

Q
)

= max
O(c)

tr
(

O
(c)

Z
(c)
)

. (11)

whereZ(c) = Π(c)QT(c)∗.
The Von Neumann’s trace inequality [26, 27] states that:

∣

∣

∣
tr(O(c)

Z
(c))
∣

∣

∣
≤

F
∑

i=1

σoiσzi , (12)

whereσoi andσzi are the sorted singular values ofO(c) andZ(c),
respectively. SinceO(c) has to be orthogonal, its singular values
must be equal to 1. Thus, for any feasible solutionO(c), the objec-
tive function is bounded by:

tr(O(c)
Z

(c)) ≤

F
∑

i=1

σzi , (13)

which is maximized if we can find a matrixO(c) such that the equal-
ity holds. This condition is satisfied by the matrix:

O
(c) = VZU

∗
Z , (14)

whereVZ andUZ are the singular vectors of the Singular Value
Decomposition ofZ(c) = Π(c)QT(c)∗ = UZΣZV

∗
Z. It is worth

noting that this approach does not guarantee thatO(c) is a proper
rotation matrix. However, as long asZ(c) is not singular,det(O(c))

anddet(Z(c)) have the same sign. Thus, ifdet(O(c)) = −1, multi-
plying by−1 a column ofO(c) and the corresponding row ofΠ(c)

provides an equivalent solution withdet(O(c)) = 1, i.e.,O(c) be-
comes a proper rotation matrix. In practice, a proper rotation matrix
can always been obtained, by simply pre–multiplying by−1 one row
of matrixΠ(c), if necessary, so thatZ(c) has a positive determinant
before the optimization step.

5. APPROXIMATION OF THE O(c) MATRICES

In order to optimize the FSE objective function with respect to the
terms of the factorizations (8) we adopt a modified coordinate de-
scent strategy. In particular, we iteratively optimize the FSE objec-
tive function with respect to a single matrixAi orB(c)

i , while keep-
ing all the other terms fixed. For each of these matrices, the steps
are similar to the ones performed in Section 4.1 for optimizing the

matricesÕ
(c)

. We replaceO(c) by its approximationÕ
(c)

in the

original objective function, obtaining:

∑

c

ω(c)
∥

∥

∥
T

(c) − Õ
(c)

Π
(c)

Q

∥

∥

∥

2

. (15)

Since the matrices̃O
(c)

are orthogonal, the minimization of (15)
corresponds to the maximization of

∑

c

ωc tr
(

Õ
(c)

Z
(c)
)

=
∑

c

ωc tr
(

A0B
(c)
1 A1B

(c)
2 · · ·B

(c)
J AJZ

(c)
)

.

(16)
Using again the properties of the trace operator, the optimization of
(16) with respect to one shared matrixAj can be rewritten as:

max
Aj

∑

c

ωc tr

(

Aj

∏

i>j

(BiAi)Z
(c)
∏

i<j

(Ai−1Bi)

)

=

max
Aj

∑

c

ωc tr
(

AjP
(c)
j

)

, (17)

whereP(c)
j collects all the factors of the trace, exceptAj . Since

trace is a linear operator, (17) can be rewritten as:

max
Aj

∑

c

ωc tr
(

AjP
(c)
j

)

= max
Aj

tr

(

Aj

∑

c

ωcP
(c)
j

)

= max
Aj

tr (AjPj) . (18)

Since (18) has the same form of (11), the optimization ofAj can
be performed in analogy with the solution given by (14) for the op-
timization ofO(c). In order to optimize (16) with respect toB(c)

j ,
(16) can be rewritten as:

max
B

(c)
j

∑

c

ωc tr

(

B
(c)
j

∏

i>j

(Ai−1Bi)AJZ
(c)

A0

∏

i<j

(BiAi)

)

=

max
B

(c)
j

∑

c

tr
(

B
(c)
j P

(c)
j

)

, (19)

whereP(c)
j collects all the factors of the trace, exceptB

(c)
j .

Since each term in the sum involves a single componentc, every
matrixB(c)

j can be independently estimated as the maximizer of:

max
B

(c)
j

tr

(

B
(c)
j

∑

c

P
(c)
j

)

, (20)

butB(c)
j is a block–diagonal matrix, thus:

tr
(

B
(c)
j P

(c)
j

)

=

F/2
∑

i=1

tr
(

G
(c)
j,iP

(c)
j,i

)

, (21)

whereG(c)
j,i andP(c)

j,i are thei–th 2 × 2 blocks ofB(c)
j andP(c)

j ,
respectively. Each term of the sum, corresponding to the product of
2× 2 block–diagonal matrices, can be independently estimated as:

G
(c)
j,i = argmax

G
tr
(

GP
(c)
j,i

)

, (22)

which has again the same structure of (11). Therefore, it can be
solved using the same approach.

Although not interesting for memory reduction, it is worth not-



Table 1: Results of PLDA models for the common condition 5 of the NIST SRE2010 female extended tests in terms of % EER,
minDCF08×1000 and minDCF10×1000, memory occupation, and memory saving ratio, for standard i–vector extraction, FSE, and FSE
with approximatedO(c) matrices. Standard Fast and Slow refer to classical i–vector extraction with or without pre–computation of the terms
T(c)∗T(c), respectively. Label FSE–K refers to the FSE approach setting the dictionary dimension toK.

Method
Shared % min min Memory Saving Ratio Saving Ratio Average time

matrices EER DCF08 DCF10 (Mb) wrt Fast wrt FSE per utterance (ms)

Standard Fast - 3.5 167 547 767.2 - - 109
Standard Slow - 3.5 167 547 140.6 - - 1250

FSE–3.5K - 3.6 172 514 21.9 35.1 - 23
FSE–3.5K 15 3.8 180 545 8.9 86.5 2.5 78
FSE–3.5K 20 3.7 181 531 9.8 78.2 2.2 100

FSE–5K - 3.5 171 522 24.2 31.7 - 28
FSE–5K 15 3.6 178 537 11.2 68.7 2.2 83
FSE–5K 20 3.6 175 549 12.1 63.4 2.0 104

ing that by increasing the number of shared matrices it is possible
to obtain a perfect decomposition of any set of orthogonal matrix.
This claim is supported by the findings in [28, 29, 30], where Givens
reduction is used for QR factorization. From these works it follows
that anyn× n rotation matrix (n > 1) can be written as the product
of n(n−1)

2
elementary Givens rotations, which can be arranged as

a sequence of at most2n − 3 independent rotations (i.e., rotations
taking place on orthogonal rotation planes). Since each of such rota-
tions can be represented as a permutation of a direct sum of Givens
rotations, anyn × n orthogonal matrix can be represented as in (6)
where the matricesUj are fixed (and correspond to the permutations
of the independent Givens rotations), using at most2n− 3 factors.

6. EXPERIMENTS: SETTINGS AND RESULTS

A gender–independent i–vector extractor was trained based on a
2048–component diagonal covariance gender–independent UBM,
and on a gender-independentT matrix, both trained using NIST
SRE 04/05/06 datasets. The acoustic features are 45–dimensional
Mel frequency cepstral coefficients. In particular, we extracted,
every 10 ms, 18 MFCCs and the frame log–energy on a 25 ms
sliding Hamming window. This 19–dimensional feature vector was
subjected to short time mean and variance normalization using a 3 s
sliding window, and a 45-dimensional feature vector was obtained
by appending the delta and the first 7 double delta coefficients com-
puted on a 5 frame window. The i-vector dimension was fixed to
d = 400. Gender–dependent PLDA models were trained, with full–
rank channel factors, and 200 dimensions for the speaker factors,
using the NIST SRE datasets, and additionally the Switchboard II,
Phases 2 and 3, and Switchboard Cellular, Parts 1 and 2 datasets.
The i–vectors of the PLDA models were whitened andL2 normal-
ized after Within Class Covariance Normalization (WCCN) [31] has
been applied. The WCCN transformations were trained on the same
datasets used for training the PLDA models.

Our classifier for these experiments is based on Gaussian PLDA,
implemented according to the framework illustrated in [6]. The pre-
sented scores are not normalized. FSE was trained according to
the original procedure [24], and the approximations of the orthog-
onal matricesO(c) was introduced only in the last iteration. Table
1 summarizes the performance of the evaluated approaches on the
female part of the extended telephone condition (common condi-
tion 5) in the NIST 2010 evaluation. The recognition accuracy is

given in terms of percent Equal Error Rate (EER) and Minimum
Detection Cost Functions (×1000) defined by NIST for the 2008
(minDCF08) and 2010 (minDCF10) evaluations [32]. Table 1 also
shows the memory occupation, and memory saving ratio, for stan-
dard i–vectors, FSE with dictionary dimensionsK = 3500 and
K = 5000, and FSE with approximatedO(c) matrices. FSE, us-
ing the settingsF = 45, C = 2048, M = 400 andK = 3500
reduces the memory cost of i–vector extraction by approximately 35
times compared to the standard approach, with comparable accuracy.
The i–vectors, obtained by the Conjugate Gradient procedure illus-
trated in [24], are computed faster than the standard method. Increas-
ing the number of dictionary entries to5000 gives not statistically
significant improvement on these tests. As far as the approximated
O(c) approach is concerned, usingK = 3500 dictionary entries and
J = 15 shared matrices, we save about 2.5 times memory, with only
a small performance degradation (3–7% relative) with respect to the
corresponding FSE–3.5K models, whereas increasing the number of
shared matrices toJ = 20, reduces the performance degradation
to less than 5% relative, with a memory reduction of 2.3 times. In-

creasing the accuracy of the approximatedT̂
(c)

, by increasing the
number of dictionary entries toK = 5000 and the number of shared
matrices toK = 20, we get EER and DCF10 results that are simi-
lar to the ones of the standard i–vector extraction, and only a 4.5%
relative increase in DCF08, while the memory requirements are re-
duced 60 times with respect to the corresponding standard models.
The memory size of the models is extremely small, and thus suitable
for embedded systems. Using 20 shared matrices has of course a
computational overhead: the i–vector extraction time with respect to
plain FSE increases as shown in Table 1, but it remains of the order
of magnitude of the standard PLDA technique.

7. CONCLUSIONS

An approximation of the orthogonal matrices that most contribute to
the memory costs of the Factorized Sub-space Estimation approach
has been presented, based on a sequence of rotations performed on
a small set of shared planes. It has been shown that in spite of these
additional approximations, which allow a dramatic reduction of the
memory needed for i–vector extraction, the accuracy of the recog-
nizer is not harmed. Larger and more precise models can be thus
easily stored in low–memory devices. Future work will be devoted
to alternative approaches for the estimation of these approximations.
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