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Wideband Fast Kernel-

Independent Modeling of

Large Multiscale Structures via Nested
Equivalent Source Approximation

Mengmeng Li, Matteo Alessandro Francavillember, IEEE, Rushan Chenylember, |EEE,
and Giuseppe Vecchkellow, IEEE

Abstract—We propose a wideband fast kernel-independent
modeling of large multiscale structures; we employ a nested
equivalent source approximation (NESA) to compress the dese
system matrix. The NESA was introduced by these authors for
low and moderate frequency problems (smaller than a few wave
lengths); here we introduce a high-frequency NESA algoritim,
and propose a hybrid version with extreme wideband propertes.
The equivalent sources of the wideband NESA (WNESA) are
obtained by an inverse-source process, enforcing equivalee of
radiated fields on suitably defined testing surfaces. In theow
frequency region, the NESA is used unmodified, with a complex
ity of O(N). In the high frequency region, in order to obtain
a fixed rank matrix compression, we hierarchically divide the
far coupling space into pyramids with angles related to the per
coupling group size, and the NESA testing surfaces are defide
as the boundaries of the pyramids. This results in a directinal
nested low rank (fixed rank) approximation with O(N log N)
computational complexity that is kernel independent; oveall,
the approach yields wideband fast solver for the modeling of
large structures that inherits the efficiency and accuracy 6low-
frequency NESA for multiscale problems. Numerical resultsand
discussions demonstrate the validity of the proposed work.

Index Terms—Integral equations, fast solvers, wideband meth-
ods, low-rank approximation, multiscale.

I. INTRODUCTION

Many fast factorization schemes have been proposed in
literature to reduce the cost of MVP in iterative solutioRast
solvers can be grouped into two large classes: kernel-based
compression schemes (based on some suitable expansion of
the underlying integral kernel), and algebraic compressio
schemes, which only require knowledge of a subset of matrix
entries. The latter, sometimes also known as rank based
methods [1]-[7], are typically quite efficient for low fregcy
problems, while they progressively lose efficiency with the
increasing electrical size of the simulation domain. Cosely,
kernel-based factorizations such as FFT based methods [8]—
[10] or the multilevel fast multipole algorithm (MLFMA) [111
[12], are more efficient, reducing memory requirements and
MVP time to O(N!'5log N) and O(N log N), respectively.
Another fast method is the MultiLevel Matrix Decomposition
Algorithm (MLMDA) [13], that has been widely adopted
because of its excellent efficiency-vs-complicacy ratg(e
[14]).

However, the above mentioned fast IE solvers require
special attention for wideband simulations: as well known,
MLFMA is not stable at low frequency (e.g. when group
size of the geometrical clustering is belew0.3)\), requiring
substantial modifications to the algorithm in the low fre-

N recent years there has been a strong interest in widebajugncy regime [15]-[17]. A different solution, vastly adeg
electromagnetic algorithms for the full-wave simulation oin literature, consists in combining standard low frequenc

realistic multiscale structures. The peculiar feature afjé

solvers (e.g., Accelerated Cartesian Expansion (ACE)-{18]

multiscale problems is the coexistence of dense meshes[20], FFT interpolation [21], and MultiLevel Matrix Compse
capture the geometric details (as in low frequency probjemsion Method (MLMCM) [22]) with MLFMA to account for
and of large scale interactions (typical of high frequendgrge scale couplings.

problems). The difficulties associated to this scale vdiigb

On the other hand, interest in algebraic decompositions has

are enhanced in analyses requiring a large frequency rang@wn recently: interpolation methods [4], [23], equivale
often with the requirement to change as little as possitde thource densities [24], randomized QR decompositions [25],

mesh over the frequency range of interest.
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[26], only to cite a few. Their main appeal lies in the simjtjic

to adapt to different kernels (EFIE and MFIE [26], peneteabl
bodies, wire-patch junctions [27], and layered media prob-
lems).

In this work, we limit our focus to rank based methods.
Traditional rank based methods [1]-[7] suffer from perfor-
mance degradation when frequency increases: 1) the rank of
the far coupling sub-matrices increases very fast, due éo th
oscillatory nature of the kernel, leading to a complexityietth
can scale as poorly a®(N?) and O(N?) for memory and
CPU time, respectively [5]; 2) even when using a multilevel
algorithm, the low rank approximations need be explicitly
computed and stored at each level, which in turn worseng setu



time and storage requirements [1]-[7]. TABLE |

Recently, we proposed a Nested Equivalent Source Approx- PARAMETER NOTATION IN WNESA
imation (NESA [28]), in which the low rank approximation a S=T | The equivalent sphere of radiust, for groupy
each level is expressed recursively in terms of its chilelev S'4 | Thetesting pyramid surface for group in direction d
and eventually in terms of the low rank approximation at leaf 7; | RWG basis functions on equivalent sphere surface of géoyip
level. The resulting algorithm has prové{N) complexity for | % .RV\(’f - f‘jl”C“O”S on testing pyramid surface of graup
static to moderate frequency problems; in this work we prese z, ;nublrnﬁ;t'r?; between groupsand j
an extension which allows to handle large scale couplings.I; | Current density coefficients for basis function in graup
When combined with the algorithm [28] for low frequenq E; Pl_’ojec_tion of the el(_ectric field onto test functions in graup

. . . . . d Directions number igl

couplings, it results in a wideband fast solver with complex _; | opposite direction of directionl
ity bounded byO(N log N). Our method shares the sameé L | Total number of levels in the Octree
motivations of other well-known wideband solvers [15]J22| Ni | Number of non-zero directions at levél
however, our efforts aim at providing a kemel-independeit 2L 9"uP size (edge of a cube) at level
wideband algorithm. The nested approximation was inspired
by [29], [30]; differently from the mentioned works, which o o ) ) )
employ ACA [3], [5] to obtain the low rank approximation, weterms of ra_dlatlc_)n and receiving _matrlces of |_ts_ child greup
introduce equivalent sources on automatically definechsesf, and recursively in terms of radiation and receiving masiae
thanks to an inverse-source process [24], [31] that enfordgaf level, extending the nested approximation of [28] tghhi
equivalence of radiated fields on (properly defined) testifgpauency couplings. As mentioned in section | and detailed
surfaces, within a prescribed accuracy. A similar ideaiappl in the following, sub-blocks of the system matrix represent

to Volume Integral Equations (VIE) was exploited in [32]nteractions between two clustered groups of “well segarat
to reduce the number of unknowns, by mapping volunf@sis functions are rank deficient. Nevertheless, the rdnk o

unknowns onto surfaces recursively. these blocks increases very fast with group size if one tijrec

The key point exploited here to compress high frequen&p€s the admi;sibility condition employgd iq traditionalv|
couplings consists in partitioning the interactionglirections; fank compression schemes [1]-[7], which in turn leads to
the Green’s function is indeed smooth, and thus compressip{nacceptable computational costs for large 3D problems [1]
when observation is limited to a specific (narrow enoughyl- In order to bound high frequency ranks, the key point
direction [25]. In each direction, the rank is independeht §ONSists in “limiting” the direction of observation within
the group size. narrow apgles, thg number of directions dependmg on the

Differently from fast directional multilevel algorithmg§], OPservation scale (i.e., on the Octree level); followingitteas
[26], [33], which use randomized QR decomposition to arp_resented in [:_30], we express the nested approximation from
proximate the Green’s function in each direction, we us¥OUPSt ands in directionsd and —d to their parent groups
NESA [28] to directly compress matrix entries, yielding 4° @nds” in directionsd” and —d” as:
kernel independent fast solver. Finally, our new proposed
method is employed to simulate large real-life high-figelit Ul = yltlodg et —dt )
multiscale structures, to address the important issueabflgy
and efficiency. Lar D) Pt

The remainder of the paper is organized as follows: in Vi = i dtyet 3)
Section 1l, we describe the proposed algorithm; numerical
results and discussions in Section Il demonstrate theliali MatricesB(¢:/—1):—4" and C(—1.1.4" gre called “transfer ma-
of the proposed method. Finally, a brief conclusion is givemices” (see Table | for the meaning of parameters); eq(32)-

in Section 1V. allow to express the radiation/receiving matrix at leveh
terms of the radiation/receiving matrices of its child leve
Il. WIDEBAND NESTEDEQUIVALENT SOURCE (I + 1). If we denote with D; the group size (the edge
APPROXIMATION of an Octree cube) at levél the low rank approximation

) ) ) ] ) of eq. (2)-(3) can be specialized to three different cases,
In this section we first define some parameters as in Tabl%lapending on group size:

Starting from an Octree clustering of the basis functiong.(e _ _ _ _
RWG [34]), if groupss andt satisfy the far coupling admissi- 1) High frequency couplings level i and its childl + 1

bility condition (which will be discussed in the followingfe belong to the high frequency regint®;, Di.1) > Do,
low rank approximation of the resulting sub-matrix of MoM 2) Interface couplings level l and its child/ + 1 belong to
[34] Z,, can be expressed as: the high frequency and low frequency regimes, respec-
tively D; > Dy, D41 < Dy;
Zs1=UsD;,Vy (1)  3) Low frequency couplings level I and its childl + 1

where matrixU, only relates to group and is labeled “receiv- belong to the low frequency regin(@;, Di.1) < Do.

ing matrix”, V, only relates to groupand is labeled “radiation Dy is the threshold group size to discriminate high frequency
matrix”, andD; ; is the “translation matrix” [28]. The aim of from low frequency couplings; in the following), will be
this work is to express radiation and receiving matrices set to Dy = A, unless otherwise specified.
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R, =(D)’ i groupst satisfying the admissibility condition (5), subject

b to their parentss? and t? not satisfying (5). For simplicity

Fig. 1. Distribution of the equivalent and testing basisctions of a group for of implementation, du_e to geometrical conS|derat|ons_|raJ|s
high frequency coupling in 3D view on the equivalence swrféoner sphere), from an Octree clustering of the unknowns (clustered in sube
EEZ t:SltJiR/g I:z[fasci (iesreatréy:ﬁg\idsr;vri;?dg?g@/ 1(9]5),)3“% rthifl d}:S;?chfe;rgm rather then spheres), it is convenient to define directigrtba
regior?. In the corrjner details th%ythree independerln RWGskf%ﬂbtio%s at)a/l volumes enclosed by square pyram|d§, with bases descnb?d
point, arrows represent normal to defining edges. by the faces of Octree cubes. One important advantage in
employing square pyramids is the fact that they allow to
define “hierarchical directions”, i.e. each direction of ragp
A. Admissibility Conditions and Equivalent Source Distribu- IS completely enclosed by the directions of its child groups
tions [25]. This in turn guarantees that, if two groups satisfy the
admissibility condition of eq. (5), then also their childre
In this subsection, we will first describe the admissibilitgatisfy the admissibility condition: this is a key point tefithe
conditions, and then introduce the “equivalent sourcetridis a nested directional approximation, as detailed in thefahg
butions. For the admissibility conditions, we follow thernk® Sec. II-B and Sec. II-C.
in [23], [25], [26], [30], although our nested approximattits In this work, rather than selecting “dominant basis func-
constructed in a different way. When considering the cawgpli tions” via ACA as in [29], [30], we design proper equivalent
between groupss and ¢, if D; < D, we define it as and testing surface to obtain the equivalent basis funstion
a low frequency coupling, and the admissibility conditionAlthough the complexity scaling would be unaffected if ACA
for compressibility is the same as in traditional rank baseths employed to select dominant sources, the algorithmadvoul
algorithms [1]-[7]: groug is in the far interaction list of group lead to a time consuming low rank approximation. Besides,
s if groupst and s are not neighbours, i.e. if their definingACA does not allow exploiting symmetries when building
cubes do not share any vertex. the approximation, resulting in a higher memory demanding
approximation. It is well known that, in the low frequency
regime, the number of equivalent soura@s(i.e., the rank)
R(s,t) = 2D, (4) is independent of the group size [1]-[7], [28]. In the high
frequency regime, the rank) can be made independent
whereR(s, t) is the center-to-center distance between group$ the group size too, exploiting the directional low rank
s and ¢t. Low frequency couplings are computed using thproperty. Even more important, the introduced equivaleit a
algorithm [28]. testing surfaces lead to an intrinsically multiscale fgnof
Conversely, whenD; > D,, the existence of a separateciuxiliary sources, improving field representation in naaiéile
representation of the kernel is guaranteed by directional problems, which in turn leads to a significant improvement in
low rank property [25], [33]: given a source group with convergence speed [28].
radiusr, interactions through Helmholtz kernel with groups
which are at a distancM > (1)2, and within a cone B. High Frequency \Mdeband Nested Equivalent Source Ap-
spanning an angle/r and centered in the center of grouProXimation via Inverse-source Process in Directions
s, admit a separable low rank representation (within a pre-Fig. 2 shows a schematic representation of the process
scribed accuracy), with rank independent-ofigh frequency to evaluate couplings between groupsnd s at peer level,
couplings are then computed via a directional algorithrmghen in the high frequency regime. The equivalent source
the admissibility condition for compression of interaaso distributions, located on surfacé:*, are shown in red; the

between groups andi is defined by: testing functions where field equivalence is enforced datgid
with Etg’id, are shown in green. For the sake of simplicity,
R(s,1) D, 2 ac_tugl sources are not shown in Fig_. 2_. B_y convention, if grou
AN (5) s is in directiond of group¢, we will indicate the opposite

direction as—d, i.e. groupt is in direction—d of group s.
Equalent sources; are obtained by enforcing (in a weak
sense) equivalence of fields radiatedsyand actual sources,
cones spanning an ang[é( ). The peer far coupling region o, the faces of the wedge enclosing directioihis procedure

of groups andt at levell of hlgh frequency regime is defined(indicated with 1 in Fig. 2) clearly involves a forward ratitm

Then, the directional low rank property is invoked to defin



Fig. 2. Coupling between two groupsand s at peer level using equivalent RWG basis functions and seepurce equivalence in high frequency region.

Equivalent source distributions are sought on inner sphérend X3, by enforcing testing radiation field on the boundary of tlymmidsZZd in direction

d and EZ _4 In direction —d, respectively. The inverse-source determination profmsgroupt is symbolized by 1 (contains forward and backward radiation

processes), this leads to assembly of the radiation m&tfixin direction d for groupss; likewise, 3 symbolize the process to compute the receivivadrix
U~ in direction —d of groupt. The inter-group translation matrix construction is syiizea by 2.
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Fig. 3. lllustration of the radiation process of parent graéi with the radiation matrices of its child group The inverse-source determination process,

by testing the field radiated by equivalent source surfaéeand E’;’; on testing surfac@fdp in direction d?, the process is symbolized by 4? is the
direction of parent group?, it is contained in direction of the child groupt.

operator (to evaluate fields radiated by actual sources), dfinally, after defining atranslation matrix D, collecting
an inverse problem, to reconstruct equivalent soutgesom couplings between equivalent souregsand r as:
fields on¥? ;. Formally, we can write the equivalence of fields

as: Dt =Zs, -, (11)
Z,i I, =7, 1d 7y Wwe can express fields in groupdue to sources in group
7t geTe T from eq. (9), (10), and (11)
Then, we can solve faF¢,, collecting the coefficients of equiv- E;"=7,.1,=17, U,dzT DI
alent sources;, which radiate the same field as actual sources ; o T‘; ’
in the region delimited by the wedge enclosing directibn =2, .02 aDsiZ,a Lol (12)
-7 7.1 (®) Eqg. (12) is the single level WNESA approximation Bf ;:
Tt Tod o Topst
‘ Zoy=2,,0Z DL, T,
. 1. i L . e Tsy,0s O Tt to
where ()" denotes pseudo-inverse; in this work we compute — U;D,, V¢ (13)

pseudo-inverses by means of a truncated SVD. By reciprocity
if fields E;d tested onx? are known (where the dependencevhereU; 7 = Z, deZT _, is thereceiving matrix of group
on direction—d has been made explicit), we can find coeffi- PR

ontsT  equivalent "3 o s Siating the. > in direction —d, and V¢ = Z', Z,g, is the radiation
— . . . ! Ut 3Tt t

cients,, o_dequa ent sources on X3} _, radiating the o6 0ronn in directiond.

same fieldE_.":

Ed_ 7. (9) C- Multilevel WNESA

—d
TS TS 70-5 O-S

Differently from traditional rank based methods [1]-[7],
By solving eq. (9) forI®_,, the field tested on actual testingin WNESA we express radiation and receiving matrices at

o—dy

functions of groups reads as: the generic level # L recursively in terms of radiation and

receiving matrices at leaf level; this is done by introdgcin

Egd =7 _JZ LJEZ% (10) propertransfer matrices which allow to ascend/descend the

5,05 Ts,0s



tree, as mentioned in Sec. Il. Fig. 3 illustrates the maia iofe be computed, whereV!, is the number of non-empty
a two level nested approximation for radiation matrix intig directions at level.

frequency regime: the testing surfaﬁgpdp in directiond? of  2) For each directiom, each group has at most 8 children:
groupt? (parent group of) is enclosed by the testing surface no more thar8N!, transfer matrices need be computed

Egd in direction d of group ¢. Accordingly, the radiation and stored for 3D problems.
matrix in directiond of groupt¢ can be used to approximate 3) The number ofpotential translators isN}, = (8D; +
couplings of group? in directiond?, since the conditions of 1)3—(2D;+1)3; however, considering that the number of

the directional low rank property are satisfied. With thephel groups per level grows al@l‘2 (unknowns are distributed
of Fig. 3, in analogy with eq. (7) and (8) we can obtain the on surfaces only), and that the cardinality of far field

coefﬂmentsIdp of equivalent sources;» at parent level by interaction lists scales aB? (as detailed later, see Sec.
enforcing equwalence of fields radiated by, andr; on the II-E, eq. (23)), if one computes and stores only the
surfacezfrdp, indicated with 4 in Fig. 3. Formally: necessary translators, the number of stored translators pe
I & _ gt z I 1 level is .actually ponstant. Besides, it can be verified that

T Hodt rpHoly e Tea (14) translation matrices are not full rank: they are further

compressed through ACA [28].

At the top levels of the tree, corresponding to the high

frequency regime, the number of translation matridés

E;d — 7wz, E- ip- (15) can be very Iqrge; a single level nested cross_approxima—
: T Tsp s tion [29], [30] is used to compress the translation matrix:

Analogous derivations allow expressing fieIEs?Sd on X2 in 4)
terms of E.%" on ¥%:

TsP,0_p

]I(:mally, after defining the translation matrix at parentelev D, — U;dﬁsﬂgi (20)
rom 7g» to T¢p AS
For each direction/, only one pair of matrice®J¢ and

V¢ need be computed and stored; although matrices

the two-level high frequency WNESA approximation is D, need be computed and stored, their size is smaller
straight forward: than the size oD, ,, yielding huge memory savings and

MVP time reduction. A similar acceleration technique,

DsP,tP = ZTSP,TtP (16)

_ dp—d? dP d
Zovr = U, "B, o Dor v G, Vi (17) based on QR decomposition, is employed in [23].
where we have introduced the transfer matri((ég’yt = From (1) to (4), it is evident that WNESA approximation
A/ - from child directiond to parent directioni?, time and storage requirements, as wells as MVP time, are
Tep T o related to the maximum number of non-empty directions at
and B @ = z , ,de —ar from parent direction—dP bY

each level; therefore, it is expected that the algorithm dsem
to child direction—d. Eq. (17) can be easily extended to @fficient for elongated structures such as cylinders, agive

generic number of levelsas: missile-like geometries [25]. Conversely, it can be vedifieat
zZL, _ylb—d"gL.L-1),(=d"—a""h) a spherical geometry represents the worst case scenathe as
> ° S A number of non-empty directions is maximum. However, the
Bgl“’”’(_d —d )Dlsthgl’lH)’(d SR (18)  number of non-empty directions does not affect the asyritptot
CELfl,L),(dL’l,dL)VtL,dL gompllﬁxéty of the algorithm, as analyzed in Sec. II-E and
ec. llI-B.

As mentioned at the beginning of this section, when computin Finally, we briefly address the issue of scalability in par-
couplings at the bottom of the tree the directional low ranglel environments. Parallelization of the matrix comgies
approximation is not invoked, and couplings are evaluatd @etup phase) is quite straightforward, both in shared ngmo
in [28]. If we denote ag;, the level at the interface betweerenvironments (e.g., OpenMP [35]) and distributed memory en
low and high frequency regions, we can generalize eq. (18)wdonments (e.g., MPI [36]): levels are processed seqakiyti
a mixed frequency scenario as in eq. (19). and each task is assigned a different group (low frequency
Note that, when WNESA is applied to an EFIE problenregime) or direction (high frequency regime). Parallelza
radiation and receiving matrices in a specified directiom apf the MVP is less trivial though, especially in distributed
linked by a transpose operation; we then need to compute ahdmory environments, and presents challenges very similar
store only one of the two. The above WNESA algorithm iso MLFMA.
schematically summarized in Algorithm 1 in Appendix.

o _ o E. Matrix-Vector Product and Complexity Analysis
D. Further Acceleration in Evaluating WNESA Approximation In order to discuss the complexity analysis of the algorithm

As discussed in [28], symmetry considerations suggest @ first report in Algorithm 2 in Appendix a pseudocode of
introduce some strategies to further accelerate the #goir the algorithm to compute MVRy = ZI. The parameters
and increase memory savings. At each level in Algorithm 2 and following are defined in Table Il. The

1) The relative locations of RWGs on the equivalent ancbmplexity of the low frequency regime is proven to@éenN)

testing spheres are the same within a certain level: oriB8], [29]; without loss of generality, in the following wenty
N! pseudo-inverses appearing in eq. (8) and (14) nefatus on the high frequency regime interactions.



low frequency interface high frequency

L— int1lin),d”"in ) (—d' T —d! Li+1),(d!
leyt:UngL,L D BUn+Lln)d™m gD, (=d T d)DlstCi(t )s( )

(Lin,bin+1) dlin (L-1,L)x 7L o 7 B (19)
Ct mybin k) L. Ct k) Vt
interface low frequency
TABLE Il to verify that the cost of receiving process (lines 29 to 48) i
PARAMETER NOTATION IN THE MVP AND FOLLOWING the same as the cost of radiation process.
3 Non-empty source group at level] For what concerns storage requirements, it i_s _clet_:lr that
th Non-empty observation groupat levell radiation patterndv; have a linear cost both for fill-in time
{idl Subvector ofI restricted to basis functions in group and memory (see eq. (21a)). On the other hand, exploiting
Vi | Radiation matrix for group at level  in direction d' symmetry as detailed in [28], on/N), transfer matrices need
l,d - . . . .
B; | Transfer matrix for group at levell in direction d! be computed and stored at ledeland memory for transfer
¢b4 | Temporary vector in MVP in the radiation process matrices can be bounded as:
of groupi at levell in direction d*
Dﬁ J Translation matrix between groupsand j at levell o o S 2 )
7[ _ max
gﬁ’d Temporary vector in MVP in the translation procesg o (8Dl Q ) =0 ( 9l+1 ) Q (22)
of groupi at levell in direction d
1
é’dl Receiving matrix for group at levell in direction d! Lo/g 9
Ci’dl Transfer matrix for group at levell in direction d* It is then easy to compute the partial suE ( 2'[;“1"8 =
i’d Temporary vector in MVP in the receiving process O(N). t that for t f =1 i h l
receiving of groupi at levell in direction d! (N), o prove that memory for transfer matrices has linear
y Result of the MVPy = ZT complexity.
ch(i) iEt’S'riﬁti:g”g?é‘L:‘;b;rrgggf directioncontained in Finally, we focus on the translation process: as discussed i
N; | Number of basis functions in group S_ec. [I-A, the far interaction list at Ievéli_ncludes groups at a
M; Number of non-empty groups at levél distance smaller tha(®D;)?, where2D, is parent group size
Q | Number of equivalent sources at level(I—1). Then, starting from the admissibility condition

of eq. (5), a few manipulations allow to derive an upper bound

) ) ) ) for the cardinality of the far interaction list at levidfor surface
For a generic 3D case, if a surface integral equation prom%blems as

is formulated, it is well known that the number of unknowns
scales asV = O(S2,,..), whereS,, ... is the maximum electri- D\ 2 D,

cal size of the object, i.e. the size of the object normalizi¢d Niprp, = 60 (T) +28 (T) +3=0(Df) (23
respect to wavelength. Before studying the complexity ef th

algorithm, we recall the scaling of three important quésdit Then, for a number of non-empty groups growing as

« at level [, the number of nonempty groups scales &9 ((Smax/Dl)Q), the cost of the translation process at level
O((S'rna;c/Dl)Q); ) lis
« at levell, the maximum number of directions @(D;) ol(s D2 D202 = O (N o4
(see Sec. II-A); (( maz/Dt)” D7 Q ) () (24)
* 2;&?::;& :2 Sgﬁ;;.::e(zt;oemsge IT;Tber of equivalent Summing overL = O (log N) levels, the total cost of the
' ' translation process i® (N log N).
With the above in mind, and assuming that the average number
of unknownsK per group at leaf level is constant (i.e., it does

not depend on thé,,,.) it is easy to verify that the cost of 1. NUMERICAL RESULTS AND DISCUSSIONS
the radiation process (lines 3 to 20 in Algorithm 2) at lelvel ) ) ]
can be bounded by: In this section different test cases are presented to show

the effectiveness of the proposed solver. We first discuss
2 19 some parameters which are fixed for all simulations: the
© ( (Smaa/D1) DLKQ) =0\) I=L Octree clustering is always stopped when the average number
(21a) of basis functions at the finest level is 50. We indicate
M average mesh edge length by and wavelength by. In all
O((Smaa:/Dl) Di@ > =0NN) I=1...(L-1) numerical experiments, a flexible-GMRES iterative sohii®
(21b) sought, with a maximum number of iterations for the inner
solver equal to 10. All simulations have been carried out
Noting that the number of levels grows &s= O (log Siaz), Single threaded on a 64-bits Dell Precision T7400 worksitati
the overall cost of the radiation process in MVP isntel Xeon CPU E5440 @ 2.88GHz, 96GB of RAM; double
O (52,42 108 Smaz) = O (Nlog N). By reciprocity, it is easy precision computation is always used.

max



60 T T T T T T T
—Mie
===WNESA

3

< 50 |§§§2‘3

S 59.75
~ 66.876
= 74
3 [
] 40 Se7
g I:102 51
8 a -109.63
= o

3 % 30

g &

g ﬁvA'A‘A'Av-v‘v
£ 20+

b

o

-

2
<< 10+

10’12 i i i 1 0 1 1 i i i 1
50 100 150 200 250 0 20 40 60 80 100 120 140 160 180

Q (number of equivalent sources) Theta(degree)

Fig. 4. The approximation error of WNESA for Green's funatiatrix  Fig. 6. Validation: RCS of a 16\ sphere, inset is the surface current, the
G(r,,ry), Wherer, andr; are 500 random distributed points in groups direction of the direction of incident plane wave &+ 0°, ¢ = 0°).
and¢ satisfying the far coupling admission condition, the graige is 1),
2\, 4, and 8).
sources is fixed, accuracy increases with group size, diftér
from existing rank based methods [1]-[7], [13], [14].
, ©-WNESA Next, we test the/> norm when approximating the EFIE
. : —Standard MoM, rule = (3,7) impedance matrix. Without loss of generality, we chose two
v ' : groups containing 636 and 527 RWG basis functions, re-
N0 : ~ spectively, and with size 1\, extracted from the Octree
clustering of a cylinder with diametetA and height8),

S0y
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N

=)

y
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A
S,
A
:
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discretized with 13168 unknowns. As a reference result we
use a standard (unapproximated) MoM with a very accurate
guadrature rule, with 61 Gaussian points on triangles. Fig.

> shows the approximation error as a function of the number of
equivalent source®: a number of equivalent sourcés= 50
yields the accuracy labeled as “Standard MoM, rule = (3,7)" i
figure, which represents a “goal” accuracy, i.e. the acgurac
achievable by a standard MoM with quadrature rule with 7
Gaussian points on the internal integral and 3 Gaussiarioin

Fig. 5. The approximation error of WNESA for EFIE impedancatmx for on the external |_ntegral (a _typlcal ac_curacy of MoM codes).
two group with group size A, and with 636 and 527 RWG basis functionsin all the following numerical experiments the number of
respectively, are from a g:ylinder (diameter \. _height 8 A) with 13168 equivalent sources is fixed &%= 50.
;’unlg‘f’,v";’tﬂséf Zeagz';ei;i”giift 2 standard MoM with a very aceufaadrature g5y, we validate the accuracy by simulating the RCS of
a sphere with diameter 26 under a plane wave illumination
from the direction § = 0°,¢o = 0°); the surface of the
sphere is discretized with 275463 unknowns. Here we use the
i combined field integral equation (CFIE), a four-level WNESA
In Pfder to validate the accuracy of the proposgd V\_/NES o levels of low frequency algorithm and two levels of
we first test the, accuracy of WNESA approxmanon Othe directional algorithm) is employed to compress the CFIE
the scalgr Gre_ens function; 500 source pom_gs and 500 impedance matrix directly; excellent agreement is founth wi
obs_erv_atlon po_mtsn are randomly d_|s_tf|buted |_n_ tWO_C”beSrespect to Mie series as shown in Fig. 6.
satisfying the high frequency admissibility condition deised
in Sec. lI-A. For each paifr,,r;), we evaluate the scalar _ _
Green's functionG (r,,r;) = eJkolrs=rd /|p, — |, an- B. Computational Complexity
alytically and approximated with eq. (13). We define the In order to numerically assess the computational cost of
approximation error of WNESA asG — G|,/ |Gl,,  WNESA analyzed in Sec. II-E, we test a series of spheres with
where G and G, are two column vectors collecting thediameters equal to 8, 16, 32, and k4We fix the discretization
scalar Green'’s function between all pairs of source/olagenvy as 2/\ = 0.15, which yields a number of unknowns equal
points, evaluated unapproximated and with WNESA, respeio- 17808, 71232, 284928, and 1139712, respectively. Four-
tively; |x|, indicates the/? norm of vectorz. Fig. 4 shows , four-, five-, and five-level WNESA is employed, with two
plots of the approximation error when group size varies frofavels of low frequency algorithm in all cases. It should be
one to 8A: it is found that, once the numbé€r of equivalent noted here that the corresponding number of Octree levels is

Error in €2 on the EFIE matrix

iy
=)
)

-7 1 1 1 i i 1 1
40 50 60 70 80 90 100 110 120
Q (number of equivalent sources)

A. Accuracy



3 ) (see Sec. II-D). Consequently, if the number of WNESA

a Near memary}. - 10 levels is constant, this cost remains constant too, as prove
, | =—Far memory PRt . in fig. 7; the small increase in cost is a linear term due to
" ey o i the cost of radiation/receiving patterns at leaf level. @e t
ot 00 ,,,,,,,,,,,,,, R 073 1 other hand, the cost of MVP grows &N l_og N), dug Fo
3 T L M:‘r’—‘--a-«ra 10 E the fact thqt each translator/transfer matrix is multigblie
gmm m________.#:":;:f—'i 37"/ 8 number of times ciorrespondlng _to the number of non-empty
2 A /E/ e 10 = groups at the considered level. Finally we also show theshctu
=2 el MVP time, i.e. MVP time when only translators in non-empty
10" "8"53’&‘%:@3* 10" directions are considered: although it seems to scale ‘&tors
, = » == 9e-7 NiogN than O(N log N), its upper bound is the MVP time when all
1074 i Upnpinet T, - possible directions are taken into account, which has prove
10 P 10 O(N log N)) complexity. This proves that MVP time has a cost

bounded byO(N log N).

Fig. 7. Complexity scaling of WNES_A forgsgries_ of_spheremwiiameters We next test the wideband performance of WNESA: the
equal to 8, 16, 32, and 64; mesh discretization is fixed ds/A = 0.15, i f . f el ical si f
corresponding to a number of unknowns equal to 17808, 71282928, and SCaliNg curves as a tunction of electrical size, for cortstan

1139712, number of unknowns, are shown in Fig. 8. We test CPU

(*): Least Upper Bound (LUB) for MVP, obtained by employing possible ~ time and memory requirements for a series of spheres with
directions at each level (not only directions in which atstea non-empty

group is present); actual MVP time is always smaller than LUB electrical size equal to 0'625’ 1.25, 2.5, 5, 10, and A?O
and number of unknowns fixed W=366672, corresponding

to /A equal to 3.125e-3, 6.25e-3, 0.0125, 0.025, 0.05, and

10’ e e——— : T 10’ 0.1, respectively. It is Wo_rth stressing here that, becahee
~-Farmemory | L | MVP time number of unknownsN is kept constant, the number of
. P ' . . Octree levels is constant too. Similarly, we also keep the
RGPS o i L) : : .
llllllll ()_’ number of equivalent sourcgg constant. The first region,
10" Pt @it Qe L il R O 7 up to R/A < 1.25, has constant CPU time and memory
= : = : : o I requirements for increasing electrical size; this coroes|s
= 18 to the low frequency regime, where only one direction is
g R e - necessary to achieve the required precision [28]. Beyoisd th
2100 a%-@- PR T 4 g low frequency regime, CPU time and memory requirements
F : v -I_O_—:_v,.;«",‘ ] increase because of the increasing number of directigfis
‘‘‘‘‘‘‘‘‘‘‘‘ A S e required to achieve the required precision; this confirna th
N A i T R R T AR the number of directions depends only on electrical group
: . . W . ! } size, and not on the number of unknowns This can be
o 0° P explained by considerations similar to classical MLFMATJ37
Rit high frequency asymptotic scaling assumes constant sagnpli

of the surface (normalized w.r.t. wavelength), with a canst

Fig. 8. Wideband performance: complexity as a function etceical size in front of Nlog N ndin n meshin iz n
with constant number of unknowns. Time and memory requirgnfer a ont o O( 08 ) depe d g0 a) eshing size a d

series of spheres with electrical siz& 2\ 0.625, 1.25, 2.5, 5, 10, and 20, D)Minimum group size. Nevertheless, Fig. 8 exemplifies how
R is the radius; the number of unknowns is kept constariV&866672, and the algorithm adaptively transitions from low frequency to
h/X varies accordingly as indicated. The graph shows that itramsfrom high frequency problems, with negligible time and memory

low to high frequency regimes starts @\ = 1.25; a detailed description . . .
of this bgha\,io? is reﬁortged in sec. ”,_B_’( PN increase (about a factor 3 in the case considered here).

4, 5, 6, and 7: however, the admissibility condition of th&. Multiscale Benchmarking

high frequency algorithm yields a smaller number of levéls o | this section, we simulate a series Ehbch snowflakes,
WNESA (top levels of the Octree have an empty far interactiqq planar prefractal geometry where the number of different
list). As a worst case scenario, we force the code to consid@gles can be controlled by the iteratibmel of the fractal

all possible directiongl (not only directions including non- generator. We first analyze a 4-level snowflake at the freqyuen
empty groups): this yields an upper bound to the actual cogt. 3 GHz; the dimensions of the snowflake in x and y
Fig. 7 summarizes the scaling: it is found that MVP cosigirections are 1.0m and 1.15m, respectively, correspayiin
O(N log N), while setup time and storage requirements havejg and 11.5\. It has been meshed with 3633 unknowns, with
smaller cost, as explained above. It can be noticed that Memy / \ ranging from 9.9e-2 to 5.3e-1, and illuminated by a plane
and factorization time for the two spheres with diameter 8yye impinging from normal directiord{ = 0°,¢" = 0°).

and 16\ is almost constant (the same happens for spheres wiify 9 shows the surface current simulated by a two-level

diameter 32 and 64\): this is due to the fact that symmetry\wyNESA and full MoM: the error in thé> norm is 0.008.
considerations allow to build and store the required opesat

(transfer/translation) for a single group at each WNESZAelev ‘thttp://en.wikipedia.org/wiki/Kochsnowflake



TABLE Il
MEMORY AND TIME CONSUMPTION FOR THE SERIES OF SNOWFLAKES WITARACTAL LEVEL VARYING FROM 4 TO 8 (THE EDGE OF THE GENERATING
TRIANGLE IS 1M); FREQUENCY VARIES FROMLGHz TO 16 GHz, WITH CORRESPONDING ELECTRICAL SIZES EQUAL T3.8, 7.7, 15.4, 30.85ND 61.6\.
HERE WE FIX THE MESH SIZEh AS 0.12\, WITH A CORRESPONDING NUMBER OF UNKNOWNS EQUAL T@8102, 14340, 62415, 27479AND 1083372,
RESPECTIVELY

Frequency| Fractal | number of | number of low/high Near/Far Far field approxi- | Iteration MVP
(GHz) level unknowns frequency levels | field Memory | mation time[mm: ss]| number | time[ss]
1 4 3102 2/0 23/33 [MB] 00: 06 5 0.04
2 5 14340 2/2 56/198 [MB] 00: 23 4 0.8
4 6 62415 2/2 0.4/0.5 [GB] 02: 03 4 4
8 7 274791 2/3 2.7/11.7 [GB] 7: 54 5 17
16 8 1083372 2/3 16.5/5.6 [GB] 24: 02 5 66

TABLE IV
MEMORY AND TIME CONSUMPTION FOR THE SERIES OF SNOWFLAKES WITkwvel = 8, WITH 1083372UNKNOWNS, AT 1, 2, 4, 8,AND 16 GHz; THE
CORRESPONDING ELECTRICAL SIZES ARB.8,7.7,15.4, 30.8,ND 61.6\, RESPECTIVELY

Frequency| number of low/high| Near/Far field Far field approxi- | Iteration MVP
(GHz) frequency levels | Memory[GB] | mation time[mm: ss]| number | time[ss]
1 710 30.5/5.0 17: 00 11 12
2 5/2 30.5/5.2 17: 27 11 12
4 4/2 16.5/5.4 22: 10 27 35
8 2/3 16.5/5.5 22: 48 6 38
16 2/3 16.5/5.6 24: 02 5 66

73.424

(b)

Fig. 9. Surface current (dBA/m) of the snowflake withel = 4; the number gnd accelerate convergence of the iterative solver, we pre-

of unknowns is 3633, the direction of the incident plane wia ¢ = 0°, ¢ =

0°), the £2 norm of the current simulated with WNESA with respect to full

MoM is 0.008, (a) Full MoM (b) Two-level WNESA.

equal to 1m), at the same time increasing the frequency from
1GHz to 16GHz. The corresponding electrical sizes are 3.8,
7.7, 15.4, 30.8, and 61.4. Average mesh size is fixed as
h = 0.12), yielding a number of unknowns equal to 3102,
14340, 62415, 274791, and 1083372, respectively. We stress
the fact that the same algorithm is employed at all frequemnci
the solver automatically selects the Octree levels coomrdp

ing to low and high frequency regimes (at low frequencies,
WNESA simply degenerates to the algorithm described in
[28]). The surface current density on the snowflakes at 8 and
16 GHz is shown in Fig. 10. To stabilize the ill-conditioning

condition the system with MR-ILU [27], [38] preconditioner
Memory and time consumptions are summarized in Table lll,
which shows that our multiscale wideband algorithm keeps it
effectiveness for high frequencies and increasing geacaétr
complexity.

We finally investigate the wideband performance of
WNESA, by testing the 8-level snowflake at 1, 2, 4, 8, and 16
GHz, respectively, corresponding to growing electricakesi
3.8, 7.7, 15.4, 30.8, and 616 The system is preconditioned

g l%j??i (B with MR-ILU [27], [38], and with the application of MR as
foe b detailed in [39] at the lowest frequencies (1-2 GHz), where
= ] low frequency (dense mesh) behavior is dominant. Simuiatio

(a) f = 8GHz

(b) f = 16GHz

Fig. 10. Surface current (dBA/m) of the snowflake withvel = 7 and level

level = 8, at the frequencies of 8 and 16 GHz (the number of unknowns
is 274791 and 1083372, respectively, with correspondiegtetal sizes of

30.8\ and 61.8\). The direction of the incident plane wave &+ 0°,¢ =

0°).

We then run a series of tests by increasing the numberd}f
iterations of the pre-fractal generator together with theher

statistics are summarized in Table IV.

D. Validation by Modeling a Real Aircraft

In order to demonstrate the capability of WNESA to model
high definition multiscale structures, a morphed P180 air-
craff, shown in Fig. 11(a), has been analyzed. The aircraft
is 12.1m long, and its wingspan is 13.8m, corresponding
to, respectively, 27.6 and 31.5 at the analysis frequency

686 MHz. All internal details, such as passenger seats,
antenna array and the instruments board are considered in th

of unknowns; we consider a series of snowflakes with fractal
level ranging from 4 to 8 (the generating triangle has edgehttp://www.piaggioaero.corn#/en/products/p180-avanti-ii/overview
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Fig. 12. Surface current (dBA/m) of the 80satellite model with 1,096,225
unknowns, the left-down corner is the details of its body.e Tihcident
direction of the plane wave is from the bottom of the satllit

instruments board in the nose, respectively.

E. Validation by Modeling a Complex Satellite

Finally, we simulate a large and realistic model of the
satellite object shown in Fig. 12. The largest dimension of
the satellite is 20 meters, corresponding to.8@t 1.2 GHz.
Many details installed on the model have been considered
' in the model, yielding a high-fidelity model discretized hvit

-32.239

i 1096225 unknowns, antl/A ranges from 3.5e-3 to 1.9e-1.

. -66.469

f o The satellite is illuminated by a plane wave impinging from

| the bottom, with the electric field polarized aloAg A six-

e level WNESA (two levels at low frequency and four levels
© of the directional algorithm) is used to compress the EFIE

Fig. 11. Simulation of a 32 long morphed P180 aircraft model, discretizedMP€dance matrix, and the MR-ILU [27], [38] preconditioner
with 1,086,083 unknowns, the incident direction of the plarave is along the is employed. Far field approximation time and memory are

+g direction of the aircraft (a) mesh model, the green part ésitistruments ; . ; ; ; ;
board in the nose, and the blue part is the body (b) detaileeotockpit and 32 mins and 10.6 GB; a flexible GMRES iterative solution

nose, with instruments board (c) details of the surfaceecurdBA/m) of the IS €mMployed, with 10 inner iterations, with convergence to a

cockpit and nose. residual of 1e-3 reached in 76 iterations. The MVP time is 119
seconds, and overall solution time of the matrix equatian fo
the satellite is 25.1 hours. Finally, Fig. 12 shows the aurre

model. The aircraft is illuminated by a plane wave impingin€NnSity on the surface of the satellite.

along +y directions as in Fig. 11 (a), with the electric field

polarized alongz. The model employs 1086083 unknowns, IV.- CONCLUSION

with discretization/\ ranging from 2.3e-3 to 8.0e-2; a five- In this work, we propose a wideband kernel-independent
level WNESA (two levels at low frequency and three levelfast solver based on a nested equivalent source approrimati
of the directional algorithm) is used to compress the EFIE®VNESA). The wideband nested approximation from child
impedance matrix, and the MR-ILU [27], [38] preconditionedevel to parent level is defined with an inverse-source pece
is employed. Factorization time and memory required aom the equivalent and testing surfaces. In order to obtain a
1.8 hour and 9.1 GB; a flexible GMRES iterative solutioffixed rank approximation method, we define different testing
is employed, with 10 inner iterations, with convergence to surfaces for coupling in low and high frequency regionshin t
residual of 1e-3 reached in 100 iterations. The MVP time lgh frequency regime, the far coupling space is partitione
28 seconds, and overall solution time of the matrix equatiomo directions spanning an angl2(\/D;). An O (N log N)
amounts to 7.8 hours. Fig. 11 (b) and (c) shows the meablymptotic complexity for both CPU time and memory re-
model and surface current in [dBA/m] of the details of thquirements is derived and numerically proven. Besides, the



wideband solver presents excellent properties for theyaisal
of large and multiscale structures; numerical simulatiohs
high-fidelity realistic problems prove the validity of theop
posed WNESA.

APPENDIX

Algorithm 1 WNESA Low Rank Approximation

1:

Initialize an Octree and directions

2:.forl=L:1:—-1do

3: fore:l:NClldO

4 if [ =L then

5: V©Ld©  radiation matrices with eq. (8)
6: UL « receiving matrices with eq. (10)
7: else

8: ChL?" « transfer matrices with eq. (14)
9: B4 « transfer matrices with eq. (15)
10: end if

11:  end for

12: D! « translation matrices with eq. (11) and (16)
13: end for

ACKNOWLEDGMENT
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Algorithm 2 WNESA Matvecy = ZI1

1: Procedure WNESA Matvec(1,y)
22fori=L:1,—1do

3: % Radiation Process

4: if [ =L then

5: if 1 >1;, then

6: ¢k« ¢h + VLI, % low frequency

7: eIseL o L L

8: ¢2" «¢2% +V,;2" I,.% high frequency
9: end if

10: else

11: if 1 >1;, then

12: Chi < ¢l + CLCHEL % low frequency

13: end if

14: if 1 :Lli" thenl l

1s: ¢t bt 4+ el ¢l v interface

16: end if

17: if 1 <le thenl l l

18: ¢ht e ¢l D) o4 high frequency
19: end if

20: end if

The authors would like to acknowledge Piaggio and ID$1. 9 Trangdation Process
for providing the model of the morphed P180 aircraft, and,. if | > ,,, then
the European Space Agency (ESA) for providing the satellitg;. el + Dsl,tldz % low frequency
model (Emerald).
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