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Abstract

Biochip-integrable sorting and separation of micron-sized particles have an

increasing importance in biomedical diagnostics, biochemical analyses, food

and chemical processing, and environmental assessment. By employing the

unique characteristics of microscale flow phenomena, various techniques

have been established for fast and accurate separation, and to sort cells

or particles in a continuous manner. As in classical separation procedures,

the biochip-integrable size-fractionation of particles or cells could be real-

ized by passive or active way. Passive procedures, which do not require

external force-field, utilize the interaction between particles-particle, flow-

particle, and the channel structure-particle to separate different-sized par-

ticles. Meanwhile, the active separation techniques make use of external

force-field in various forms.

This doctoral thesis provides a novel biochip-integrable pathogen detection

device (Flow Through Nematode Filter, FTNF), and a novel application

of an asymmetric column structure, which called deterministic lateral dis-

placement (DLD) device. The working principles are explained in detail,

and performances of the devices are discussed with the results of the mea-

surements.

The main target of this represented work is applications in medicine and

biomedical research but we are also open for other application areas. The

use of these simple microfluidic devices will make it possible to extend the

use of cell-sorting to the point of care, closer to the patient at the clinic or

in the field.

Keywords: Biochip-integrable fractionation procedures · Pathogen

enrichment from blood · Blood fractionation · Microvesicle sepa-

ration from serological samples
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Chapter 1

Introduction

Microfluidics concerns design, fabrication, and experiments of miniaturized fluidic sys-

tems, which has undergone rapid developments during the last decade [1]. As an in-

terdisciplinary area, this rapidly growing field of technology has numerous applications

in biomedical diagnostics, chemical analysis, automotive, and electronics industries [2].

One of the pivotal applications of microfluidics is the development of lab-on-a-chip

(LOC) devices as point-of-care (POC) diagnostic tools. A typical LOC device includes

various functional modules: sample transportation, sample preparation, separation,

detection, and analysis module [3, 4]. The label-free size separation of particles or

cells is vital to many of the analytical and preparative techniques used in the fields of

chemical, biochemical, and clinical analysis, which led to ground breaking advances in

terms of the speed of analyses, the resolution of separations, and the automation of

procedures [5]. Additionally, microfluidic separator devices can form a part of portable

systems for point-of-care or in-the-field detection [6].

Several variations of microfluidic cell sorters, which implement different sorting

mechanisms, have been designed and fabricated [7, 8]. The chosen method of particle

handling is generally based on the nature of the application, which strongly depends on

the composition of the sample and the final goal of the analysis also should be under

consideration. Several strategies exist for this purpose based on specific cell/particle

characteristics including manipulation of particles in fluids or removal of particulate

matter from fluids [9]. The particles may act or interact with the analyte, in which

case they need to be removed from the sample [10].
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1.1 Traditional Fractionation Techniques of Biological Suspensions

1.1 Traditional Fractionation Techniques of Biological Sus-

pensions

In traditional cell isolation processes, size separation is commonly used to separate

mixtures of cells or particles before subsequent analysis or culture [10]. Cells exhibit

variations in their hydrodynamic radii stemming from changes in volume, shape or

mechanical properties, dependent on their state of health [11]. The existing cell sepa-

ration methodologies can be classified into two main groups to enrich selected subpop-

ulations [8]. The first group is based on physical criteria like size, shape, and density

differences and includes filtration and centrifugation techniques, which are commonly

used for debulking heterogeneous samples [12, 13]. The second group comprises affin-

ity methods such as capture on affinity solid matrix (beads, plates, fibers) [14–16],

fluorescence-activated cell sorting (FACS) [17, 18] and magnetic cell sorting [19, 20],

which are based upon biochemical cell surface characteristics and biophysical crite-

ria [8].

Traditional fractionation instruments ranging in size from desktop to room sized

models are standard pieces of equipment at most large hospitals and are used to analyse

and separate cells and other biological particles [21]. Another drawbacks of the existing,

traditional flow cytometers are that these devices are expensive, require an extensive

infrastructure such as facilities, personnel and reagents, does not suited to integration

with other analysis steps, and time is needed to process the signal data limits the rate

at which cells can be detected. Much work is therefore being done to develop methods

that will not only be cheaper, and therefore more easily available, but also more effective

and possibly able to probe particle properties not currently accessible [21].

In clinical diagnostic sense, cell sorting and counting devices are examples of tech-

nological solutions that have been designed and optimized for use in centralized labora-

tories, much like the very first computers. Also nowadays the biological samples (blood,

urine, other biological liquids) are collected from patients at the hospitals, at home or in

special environments and sent to these centralised diagnostic laboratories where analy-

sis takes place. However the transportation of samples also takes money and time, and

the quality of samples be decayed or modified due to the natural biological reactions.
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1.2 Novel Separation Technologies Integrated into Biochips

1.2 Novel Separation Technologies Integrated into Biochips

The trend in life science research to miniaturize analytical processes using biochips,

first proposed in the late eighties, is ongoing [1]. The benefits of miniaturization and

integration are many including increased automation, parallelization, speed, resolution

and portability as described in reviews by Mosadegh [22], Craighead [23], Mark [24],

Erickson [25], Franke [26] and Dittrich [27]. The idea of integrating sampling, sample

handling, reactions, separations and detection into one automated device containing

interconnected microchannel networks led to the introduction in the literature of the

term micro-total-analysis-system (µTAS) in 1990 by Manz et al. who was performed

first on-chip separation implementing capillary electrophoresis fractionation of fluores-

cent molecules [28, 29]. Since that time, applications of µTAS has developed over the

past two decades exponentially, meanwhile scientific journals, conferences, and com-

panies specializing in LOC technologies are evidence of how interest in this field has

grown.

In sense of cell isolation, the efficiency of fractionation takes into consideration the

available sample volume for analysis, the characteristic/feature that distinguishes the

cell types, the required purity of the separated population with desired characteristics,

the total number of cells lost during the process of separation, the viability of cells after

separation and the physical stress endured by the cells. Finally, choosing an efficient

sample handling procedure, the taken time for the complete cell separation process and

the cost-effectiveness of the technique are also not negligible.

The integration of particle separation techniques into lab-on-a-chip devices is advan-

tageous, as described by Pamme [30], that these label-free processes are continuous, the

separation can be monitored continuously and the sample components are displaced lat-

erally thus each fraction could be collected independently. Based on the applied forces

the fractionation could be tangential or perpendicular to the flow direction and can

be realised as batch or continuous loading procedures (Fig. 1.1). In batch separation

techniques, the particles particles follow the same paths but at different rates which

appears fractionation in time only thus these procedures requires precise injection of

a very small amount of sample into the separation channel. At the other case, the

applied forces have perpendicular components to the flow direction thus the particles

are displaced laterally and become separated in space.

3



1.2 Novel Separation Technologies Integrated into Biochips

Figure 1.1: Batch separation procedure entails the injection of finite volumes parallel with

the flow direction into a separation column. The separated sample fractions pass through

a detector at different times, often followed by repeats to optimise separation parameters.

Collection of the separated fractions can only be achieved with a flow switching mechanism

that redirects different components to different outlets. Continuous procedure separate

perpendicularly to the flow direction. The sample is injected continuously together with a

carrier liquid, meanwhile the separation efficiency can be monitored in real-time. (adapted

from Ref. [30])

A range of field flow fractionation (FFF) techniques have been reported for sepa-

ration of particles in lab-on-a-chip based microfluidic systems [30] since FFF method

was pioneered by Giddings in 1960s [31]. The continuous-loaded single-phase field flow

fractionation requires external forces or uses only inertial shear forces.

Large variety of methods have been developed to date that operate by external

forces but in each case, the special cell properties and attributes have to be taken

into consideration. Table 1.1 gives an overview of the different continuous particle

separation methods which are based on external perpendicular forces to the direction

of flow and focuses on the utilised external forces and the basis of separation. These

separation methods can be classified by the applied external forces into acoustophoresis,

dielectrophoresis, magnetophoresis, usage of mechanical forces and optophoresis.

The requirement of external forces increases the complexity of the device and may

limit the application for some specific reagents such as biological samples. Conse-

quently, researchers have been paying attention to the development of novel physical
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1.2 Novel Separation Technologies Integrated into Biochips

Method Separation induced by Separation based on References

Acoustophoresis Acoustic pressure Size, density,

compressibility

[32–37]

Dielectrophoresis Inhomogeneous electric

field

Size, polarisability [38–45]

Magnetophoresis Inhomogeneous mag-

netic field

Size, magnetisation [46–51]

Mechanical forces Gravity, centrifugation Size, density [52–55]

Optophoresis Optical force Size, refractive index [56–58]

Table 1.1: Listing of continuous flow separation methods using external forces with details

of the forces utilised and the basis of separation were taken from the selected references.

methods (Table 1.2), which based on varying only the geometry of microchannels mod-

ifying the flow profile and influencing the local flow properties such as bifurcation

channels, deterministic cell rolling (DCR), deterministic lateral displacement (DLD),

pinched-flow fraction (PFF) devices, or applying Dean effect or using flow-through

filters/membranes.

Hydrophoretic techniques Separation based on References

Bifurcation channels Zweifack-Fung effect [59–67]

Dean flow Dean effect [68–76]

Deterministic cell rolling

(DCR)

Shear-induced and wall-induced lift [77–82]

Deterministic lateral displace-

ment (DLD)

Shear-induced and wall-induced lift [83–101]

Flow-through filters (FTF) Pressure field gradient [102–108]

Pinched flow fractionation

(PFF)

Shear-induced and wall-induced lift [109–124]

Table 1.2: Listing of continuous flow separation methods using inertial forces with details

of the basis of separation were taken from the selected references.

Comparison of performance of integrable sample fractionation methods is not always

straightforward. Plenty of approaches offer high throughput, meanwhile others offer

high resolution. Several of the microfluidic devices are simple in terms of operation,

whilst other techniques might require a specialist. A number of separation principles

5



1.3 Scope of the Thesis

require labelling of sample components, whereas some processes are based on intrinsic

sample properties. As always, the optimum method will depend on the sample and the

analytical task at hand.

1.3 Scope of the Thesis

Chapter 2 discusses the main physical property of serological samples, which gives a

brave discussion of hemodynamic principles is beyond the scope of this thesis but in this

chapter, an overview of basic principles is presented that are helpful in understanding

the physical background.

Chapter 3 discusses a novel biochip to observe uncovered parasitosis from serologi-

cal samples. This chapter is based on work published in Springer - BioNanoScience [125]

and presented in international conferences, which starts with a brave introduction, rep-

resents the physical principles, and shows the results of computational fluid dynamic

simulations, and the experimental tests.

Chapter 4 discusses a novel application of the deterministic lateral displacement

device. This chapter starts with the description of the physical principles, continues

with computational fluid dynamics results and concludes with the representation of the

experimental results using our own developed DLD structure to separate microvesicles

from serological samples. The material presented in Chapter 4 excluding the discussion

on the description of principles was also published in Springer - BioNanoScience [126].

6



Chapter 2

Hematology, Hemorheology, and

Hemodynamics

2.1 Hematology

Blood (sanguis), perhaps the most important biological fluid, performs many funda-

mental functions to maintain homeostasis; from transporting nutrients and oxygen to

tissues and organs to regulating pH and temperature. It also provides an efficient

transit system through the vascular network for transport of immune cells for defense

against foreign microbes and wound healing. As blood contains a myriad of information

about the functioning of the human body, complete blood analysis has been a primary

diagnostic test in our healthcare system.

The total body fluid is distributed mainly between two compartments: the extra-

cellular fluid and the intracellular fluid. The extracellular fluid is divided into the

interstitial fluid and the blood plasma. In the average 70-kilogram adult human, the

total body water is about 60 % of the body weight, or about 42 liters [127]. This per-

centage can change, depending on age, gender, and degree of obesity. About 28 of the

42 liters of fluid in the body are inside the 75 trillion cells and are collectively called

the intracellular fluid, which is almost the 40 % of the the total body weight [127].

All the fluids outside the cells are collectively called the extracellular fluid. Together

these fluids account for about 20 % of the body weight, which is about 14 liters [127].

The two largest compartments of the extracellular fluid are the interstitial fluid, which

makes up more than three fourths of the extracellular fluid, and the plasma, which

7



2.1 Hematology

makes up almost one fourth of the extracellular fluid, or about 3 liters.

Blood contains both extracellular fluid (the fluid in plasma) and intracellular fluid

(the fluid in the red blood cells). The average blood volume of adults is about 7 % of

body weight, or about 5 liters [127]. The composition of the blood are cells and plasma

(Table 2.1), which mostly comprises water and contains glucose, proteins, hormones,

mineral ions, gases. The cells of blood (Table 2.2) presents are red blood cells (called

RBCs or erythrocytes) white blood cells (called WBCs or leukocytes) and platelets

(PLT, thrombocytes).

Name Mass concentration Name Mass concentration

[mg/dl] [mg/dl]

Sodium 340 Calcium 10.6

Cloride 340 Lactic acid 10

Phospholipids 280 Phosphate 4.5

Cholesterol 150 Magnesium 2.3

Bicarbonate 140 Uric acid 3

Neutral fat 125 Creatinine 1.5

Glucose 100 Bilirubin 0.5

Potassium 20 Bile salts 0.5

Urea 15 Else 4.9

Table 2.1: Average mass concentration of human blood plasma [127]

Name Average cell Approximate Percentage of

concentration normal range volume

[cells/ml] [cells/ml] [%]

Erythrocytes 4.8 · 106 4.5− 6.2 · 106 91

Leukocytes 9.0 · 103 4.1− 10 · 103 5

Neutrophils 5.4 · 103 3.0− 6.0 · 103

Eosinophils 2.7 · 102 1.5− 3.0 · 102

Basophils 6.0 · 101 0− 1.0 · 101

Lymphocytes 2.7 · 103 1.5− 4.0 · 103

Monocytes 5.4 · 102 3.0− 6.0 · 103

Thrombocytes 3.0 · 105 1.5− 4.0 · 105 4

Table 2.2: The size, percentage and the concentration of the main blood components [128]

8



2.1 Hematology

The red blood cells are without nucleus, biconcave, disc-shaped bodies. From upper

the shape is circle, an average diameter of the cell is 7.5 µm. Theirs number is around

4.5 − 6.2 · 109 particles/dl [129]. The red blood cells are perfectly plastic structures,

flexibly deformable, thus they can pass thought much smaller capillaries than their

diameter. The shape of the red blood cells is sensitive to the osmotic variance. In

hypotonic space (where the concentration of the salt is lower than 0.9 %) the shape of

the cells change to spherical shape and after that the cells bursts and the hemoglobin

flows out. In this case we get a hemolyzed solution with the hemoglobin and the

membranes of the red blood cells.

The average cell concentration of leukocytes is around 4.1 − 10 · 106 particles/dl

[129]. The white blood cells are divided into several subclasses, for example basophils,

eosinophils, lymphocytes, monocytes and neutrophils. These cells have a great wealth

of form and functional character.

The platelets are ovoid, round, flat disc-shaped structures. These cell fragments

haven’t got nucleus, because they break away from the cytoplasm. The diameter of the

platelets is 2-4 micrometers and the number of them is around 1.4−4.2·108 particles/dl

[129]. The platelets are responsible for blood clotting (coagulation), by converting

fibrinogen into fibrin. This creates a mesh onto which red blood cells adhere and clot,

which then stops more blood from leaving the body and also helps to prevent bacteria

from entering the body.

Blood performs many important functions. First of all it transports oxygen to tis-

sues. Blood supplies the cells with nutrients such as glucose, amino acids, and fatty

acids, removes the waste (carbon dioxide, urea, and lactic acid). It has a messenger

transport function with hormones and the signaling of tissue damage. The blood is

supporting the body’s self-repair mechanism with the coagulation functionality. The

white blood cells make immunological detection functions of foreign material by anti-

bodies. The blood makes the regulation of body pH (the normal pH of blood is in the

range of 7.35 - 7.45). Also, it helps in the regulation of core body temperature.

9



2.2 Hemorheology and Hemodynamics

2.2 Hemorheology and Hemodynamics

Hemodynamics is concerned with the mechanical and physiologic properties describing

motion and equilibrium of blood flow under the action of external forces. Instead

hemorheology describes the rheological properties of blood and its elements, such as

morphology of blood cells and blood viscoelasticity. A full discussion of hemodynamic

and hemorheology principles is beyond the scope of this thesis but in this chapter, an

overview of basic principles is presented that are helpful in understanding the physical

background.

2.2.1 Velocity and Pressure Profile of Blood Flow

The sample flow in microchannels has often been associated with negligible inertia that

is, fluid flow in microfluidic channels is assumed to occur at low Reynolds number,

where Reynolds number is a dimensionless parameter describing the ratio between

inertial and viscous forces in a flow. The liquid flow is in streamline that is considered

to consist of a series of thin laminae slipping over one another, meanwhile in turbulent

case the blood moves in irregular varying paths continuously mixing within channels.

The change of stream type form laminar to turbulent, which was introduced by Stokes,

but measured by Reynolds, is described as:

Re =
ρDHv

µ
, (2.1)

which is also called Reynolds number, where ρ is the density of mass, DH is the charac-

teristic hydraulic diameter, v is the mean velocity of the object relative to the fluid, and

µ is the dynamic viscosity. In a Stokes flow regime, where Re → 0, the inertia of the

fluid is ignored in most microfluidic platforms and contributions of fluid momentum are

omitted from the NavierStokes equations resulting in linear, and thus time-reversible,

equations of motion for Newtonian fluids. Practically achievable and useful flows in

microfluidic systems could operate also in intermediate range flow (∼ 1 <Re<∼ 100)

in which nonlinear and irreversible motions are observed for fluid and particles. The

intermediate range flow regime, in which both the inertia and the viscosity of the fluid

are finite, still lies within the realm of laminar flow which provides a deterministic na-

ture and thus controllability of fluid and particles within. In the consideration of our

10



2.2 Hemorheology and Hemodynamics

Figure 2.1: The Reynolds number of blood flow (ρ = 1060 kg/m3 and µ = 3.53·10−3 Pas)

is calculated at different velocities (1 mm/s, 5 mm/s, and 10 mm/s)

application for blood with density of 1060 kg/m3, shear viscosity of 3.53 · 10−3 Pas,

the range of Reynolds number is shown in Fig. 2.1.

For case of low Reynolds number, neglecting inertia by using a Stokes flow approxi-

mation can lead to incorrect results. To determine the velocity and the pressure profile

exactly in a microfluidic channel, the incompressible Navier-Stokes equation is applied

assuming a constant viscosity (µ). The Navier-Stokes equation is derived from the basic

assumptions of conservation of mass, momentum and energy in the following way:

δ−→v
δt

+−→v · ∇−→v = −∇P + ν∇2−→v + F, (2.2)

where −→v is the velocity vector, P is the pressure and F is the sum of external body

forces (gravity, electrophoretic forces, magnetophoretic forces, mechanical forces (i.e.

ultrasound) and optophoretic forces).

2.2.2 Energy Conservation

Assuming no friction inside the flow, Bernoulli’s equation can be developed from the

Navier-Stokes equation (Eq. 2.2). Bernoulli’s principle (conservation of energy) states

that for an inviscid flow, an increase in the speed of the fluid occurs proportionately

11



2.2 Hemorheology and Hemodynamics

with an increase in both its dynamic pressure and kinetic energy, and a decrease in its

static pressure and potential energy, which can be described by the following way:

∆P

ρ
+
v2

2
+ agravh = 0, (2.3)

where ∆P is the pressure drop, agrav is the acceleration due to gravity and h is height

of fluid. This states that, in a steady flow, the sum of all forms of mechanical energy in

a fluid along a streamline is the same at all points on that streamline, thus this requires

that the sum of kinetic energy and potential energy remain constant.

2.2.3 Volumetric Flow Rate and Hydrodynamic Resistivity of Blood

Flow

One of the properties of a fluid is that it will flow from a region of higher pressure toward

a region of lower pressure. The primary parameter used in lab-on-a-chip devices to

describe blood flow is the flow rate, which is the total volume of blood pumped through

the channels per in a time interval. The relationship between blood flow, resistance,

and pressure in cylindric channels can be determined using the Hagen-Poiseuille law:

Q =
∆Pπr4

8µL
, (2.4)

where Q is the flow rate, ∆P is the pressure gradient, r is the radius of channel, µ is

the viscosity of fluid (in our case: blood), L is the length of channel. Due to the blood

is not a Newtonian fluid, the energy (and pressure) is lost as flowing blood overcomes

resistance. The flow resistance can be considered in the following representation:

R =
µL

8πDH
4 , (2.5)

where DH is the hydraulic diameter. Generally the length of microfluidic channels are

few-millimeter long while the hydraulic diameter, which is a commonly used term when

handling flow in noncircular tubes or channels, is defined by:

DH =
4A

B
, (2.6)

where A is the cross sectional area and B is the wetted perimeter of cross-section

area. In microfabrication generally used microfluidic channels obtains rectangular cross-

section shape, in this case the hydraulic diameter (DH) can be considered the following

way:

DH =
2wh

w + h
, (2.7)

12



2.2 Hemorheology and Hemodynamics

where w is the width (w ≈ 100µm) and h is the height (h ≈ 20µm) of channel thus the

typical value of the hydraulic diameter is around 33µm. According to Eq. 2.4 the flow

rate Q, which is determined by the pressure gradient, radius of channel, viscosity of

fluid and length of the channel, is inversely proportional to the fluid resistance (Eq. 2.5)

and it can be delivered such as:

Q =
∆P

R
. (2.8)

In this case Eq. 2.4 can be considered analogous to the Ohm’s law, hence the flow rate

is inversely proportional to the resistance. The walls of the microfluidic channels are

considered as rigid thus the Hagen-Poiseuille law is applicable. In the consideration of

a 1 mm long straight microchannel with 20 µm depth and the width from 10 µm up

to 300 µm the order of magnitude of flow resistance of blood flow is between 1010 −
1012 Pas/m3, meanwhile the total pressure drop is in the range from few kPa up to

the 100 kPa.

2.2.4 Kinematic Properties of the Blood Flow

In microfluidic channels, the flow is usually smooth and orderly because the fluid sep-

arates into an infinite number of concentric layers with different velocities. When a

fluid (in our case: blood) flows past a solid surface, a thin layer develops adjacent to

the surface where frictional forces retard the motion of the fluid. There is a gradient of

frictional resistance between fluid in contact with the solid surface and fluid in the cen-

ter of the stream. If the fluid particles travel along well-ordered nonintersecting layers,

this is termed laminar flow. In a small Reynolds number case, the flouting particles are

moved by the fluid through a viscous Stokes drag and their trajectories Xp(t) [130]:

dXp

dt
= Vp, (2.9)

dVp
dt

= − 1

τp
[Vp − v(Xp, t)] + g, (2.10)

where g is the acceleration of gravity, τp is the relaxation time of the particle, which is:

τp =
2ρpr

2
particle

9µ
, (2.11)

where ρp is the mass density of the particle and rparticle is the radius of the particle.

The fluid velocity at the location of the particles is evaluated by linear interpolation.

The particle inertia becomes dominant in higher velocity or mass.
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2.2 Hemorheology and Hemodynamics

Physical property Blood Water [131] Parameter

Density (ρ) 1.06 · 103 [132] 1.0 · 103 [kg/m3]

Shear viscosity (µ) 3.53 · 10−3 [133] 1.0 · 10−3 [Pas]

Kinematic viscosity (ν) 3.33 · 10−6 [134] 1.0 · 10−6 [m2/s]

Surface tension (in air) (γ) 5.8 · 10−2 [135] 7.3 · 10−2 [kg/s2]

PH 7.35-7.45 [136] 7

hematocrit 45.7 [137] [%]

Table 2.3: Physical properties of the human blood (at 37◦C) and water (at 20◦C) at

1 atm pressure

There are dimensionless numbers that gives information from the qualitative behav-

ior of solute particles in a continuous single-phase liquid flow. The Reynolds number

(Re) determines the inertial effect of fluid flow (turbulency), and the Péclet number

(Pe) describes the mass transport contribution of molecules or particles (dispersion).

The particle Reynolds number (Rep) shows the inertial effect on a particle within a fluid

flow, and the Stokes number (St) is useful to study the trajectory mismatch between

the particle and fluid, and the size-based separation effect.

The particle Reynolds number (Rep) can be defined as [138] and represented in

Fig. 2.2:

Rep =
ρvmaxd

2
particle

µDH
= Re

d2
particle

D2
H

, (2.12)

where Re is the Reynolds number, dparticle is the particle diameter, vmax is the maxi-

mum flow velocity and µ is the shear viscosity (in our case, blood at 3.53 · 10−03 Pas).

In the consideration of mass transport, the particle motion can be estimated by the

Péclet number:

Pe =
vmaenDH

D
, (2.13)

where vmean is the mean velocity of the fluid (in our case, v ≈ 1.0 · 10−2 m/s) and

D is the diffusion coefficient of particles. The diffusion coefficient of the particles is

described by the Stokes-Einstein equation:

D =
kBT

6πµrparticle
, (2.14)

where kB is Boltzmann’s constant (1.38 · 10−23 J/K), T is the absolute temperature

(in our case: 298 K), and rparticle is the radius of the spherical particle. If Pe>1 the
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2.2 Hemorheology and Hemodynamics

Figure 2.2: Particle Reynolds number of different size particles (1 µm, 5 µm, and 8 µm)

at 1 mm/s flow rate within the blood (ρ = 1060 kg/m3 and µ = 3.53 · 10−3 Pas).

advection rate is bigger than the diffusion rate between rows of posts thus the particles

are basically confined to streamlines. When a particle encounters an accelerating flow

in a nonlinear channel, the Stokes number estimates the particle behavior as the ratio

of the relaxation time of the particle (τp) (eq. 2.11) to the characteristic time of the

flow (τf ):

St =
τp
τf

=
2ρpr

2
particle/9µ

DH/vmax
=

ρp
18ρ

Rep, (2.15)

where vmax is the maximum fluid velocity well away from the obstacle, Dpost is the

characteristic diameter of the obstacle, ρp and ρ are the particle density and fluid

density.

If St>1, a particle will continue in its original moving direction instead of following

the fluid streamline when the flow turns suddenly by the channel geometry. The Péclet

and the Stokes number of the main blood components at 0.001 mm/s flow rates are

demonstrated in Fig. 2.3 and in Fig. 2.4.

2.2.5 Viscoelasticity of the Blood

Because blood is a non-Newtonian fluid, its rheological properties depend on shear rate

and the dimensions and geometry of the conduit through which it flows. The cellular
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2.2 Hemorheology and Hemodynamics

Figure 2.3: Péclet number of different size particles (1 µm, 5 µm, and 8 µm) at 1 mm/s

flow rate within the blood (ρ = 1060 kg/m3 and µ = 3.53 · 10−3 Pas).

Figure 2.4: Stokes number of different size particles (1 µm, 5 µm, and 8 µm) at 1 mm/s

flow rate within the blood (ρ = 1060 kg/m3 and µ = 3.53 · 10−3 Pas).

components are suspended in blood plasma, an aqueous solution that generally follows

Newtonian dynamics. However, the two-phase nature of blood and the interactions

between blood cells result in non-Newtonian dynamics, especially in the microchannels
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2.2 Hemorheology and Hemodynamics

where geometry dimensions become comparable to cell diameters. Because flow resis-

tance is affected in many pathological conditions, quantitative approaches have been

proposed to characterize the complex rheological properties of blood. A blood cells of

flowing plasma will suffer forces from the surrounding fluid and walls, including viscous

stress tensor (τ) that causes it to gradually deforms over time, which expresses how

the element’s deformation is changing with time. The rate of shear, also called velocity

gradient, is caused by laminar flows along a channel that slip on one other and move in

different speeds in a perpendicular direction to the wall of tube. If the ration between

shearing stress and rate of shearing strain is linear the fluid is considered as Newtonian

fluid. For an incompressible and isotropic Newtonian fluid, the viscous stress is related

to the strain rate by the simpler equation:

τ = µ
δv

δy
, (2.16)

where δv/δy is the derivative of the velocity component that is parallel to the direc-

tion of shear, relative to displacement in the perpendicular direction. In respect of

our application the liquid flow, which is vertebrate blood, is composed of blood cells

suspended in blood plasma. The plasma, which constitutes 55 % of blood fluid, is

an aqueous solution containing 92 % water, blood plasma proteins, dissolved nutrients

(amino acids, fatty acids and glucose), waste products (carbon dioxide, urea, lactic

acid) and other important component such as serum albumin, blood-clotting factors,

immunoglobulins, lipoprotein particles, etc. [129]. In point of viscosity the intravenous

blood cannot be considered such as a perfect Newtonian liquid due to floating blood

cells, but the plasma. Viscoelasticity is a property of human blood that is primarily

due to the elastic energy that is stored in the deformation of red blood cells as the

heart pumps the blood through the body. The energy transferred to the blood by the

pressure-driven flow is partially stored in the elastic structure, another part is dissipated

by viscosity, and the remaining energy is stored in the kinetic motion of the blood. If

the pressure pulsation is not significant of the pressure-driven flow is developed the

elastic effect could be neglectable.

In Poiseuille flow, blood cells and plasma do not travel at the same average veloc-

ity. This results in differences in microchannels and discharge hematocrits. Although

Eq. 2.4 is only valid for Newtonian fluids, fitting experimental data to this equation

(Q =
∆Pπr4

tube
8µeL

) provides a convenient method of characterizing flow resistance by the
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2.2 Hemorheology and Hemodynamics

effective viscosity (µe), which depends on the fluid being tested, the capillary diame-

ter, and the flow rate (or pressure drop) [139]. At high shear rate blood cells occupy

the central axis of microfluidic channel leaving cell-free zone of plasma periphery. A

decrease in haematocrit tends to increase shear stress due to the decreased effective

viscosity (µe). The normal value of hematocrit is 40 − 45 % for the man, meanwhile

35 − 40 % for the women, which is approximately three times more that of water.

F̊ahræus-Lindquist effect [140] describes the relation between effective viscosity (µe)

and the radius of capillary tubes (rtube). According to experimental observation of

F̊ahræus et al. the relative viscosity of blood decreases inverse proportion to the diam-

eter of channels due to the erythrocytes move over the center of the channel, leaving

plasma at the wall of the microchannels and the hematocrit in the channel was always

less than the hematocrit in the original sample. The ratio of these two hematocrits,

the tube relative hematocrit (HR):

HR =
hematocritchannel
hematocritsample

, (2.17)

where hematocritchannel is defined as the ratio of blood cells volume within the channel

to the total volume of the sample.
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Chapter 3

Flow Through Nematodes Filter

3.1 Filtration of Nematodes Using an Integrated Micro-

capillary System

The filarial nematodes are a group of arthropod-borne worms that reside in the subcu-

taneous tissues, deep connective tissues, lymphatic system, or body cavities of humans.

Some adult filarial worms can survive in the human host for many years, causing a num-

ber of chronic and debilitating symptoms, including inflammatory reactions [141]. The

female worms produce large numbers of larvae called microfilariae, which are highly

motile, threadlike prelarvae that in some species maintain the egg membrane as a

sheath; these are called sheathed forms, while those that rupture the egg membrane

are called unsheathed forms. Once released by the female worm, microfilariae can be

detected in the peripheral blood or cutaneous tissues, depending on the species. The

microfilariae, which may survive for 1 to 2 years, are not infective for other vertebrate

hosts, nor do they undergo any further development in the vertebrate host [141]. The

infections are transmitted to humans by the bites of obligate blood-sucking arthropods

that had become infected through ingesting larvae (microfilariae) contained in a blood

meal obtained from a mammalian host. The most speared filarial species in which the

human is the definitive host is summed in Tab. 3.1.

Disease-specific immunodiagnostic and molecular testing markets increase world-

wide. The genus Dirofilaria, which includes etiologic agents such as Dirofilaria immitis

and Dirofilaria repens, is responsible for the increased occurrence of zoonotic dirofilar-

iosis in vertebrates worldwide. Human infections by these parasites may also occur,
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3.1 Filtration of Nematodes Using an Integrated Microcapillary System

Species Distribution Vector Location

Wuchereria

bancrofti

Tropics and subtropics

worldwide; mainly India,

China, Indonesia, Eastern

Pacific

Mosquito Lymphatic

Brugia malayi Southeast Asia, Indone-

sia, India, Indonesia,

Southeast Asia

Mosquito Lymphatic

Brugia timori Islands of Timor and

Lesser Sunda in Indonesia

Mosquito Lymphatic

Loa loa Africa Deerfly Subcutaneous

Mansonella

perstans

South and Central

America, Africa

Biting midge Body cavities,

mesentery,

perirenal

Mansonella

ozzardi

South and Central

America, Caribbean

Biting midge,

blackfly

Subcutaneous,

body cavities

Mansonella

streptocerca

West and Central Africa Biting midge Subcutaneous

Onchocerca

volvulus

South and Central

America, Africa

Blackfly Subcutaneous

Dirofilaria

immitis

Japan, Australia, United

States, Europe

Mosquito Pulmonary

nodules

Dirofilaria

repens

United States, Africa,

Asia, Europe, and South

America

Mosquito Subcutaneous

Table 3.1: Listing of human filariasis by Gracia et al. [141]

and 1782 cases have been reported in over 37 countries in Europe, North America,

Southeast Asia, and Africa [142–144], 372 of which were pulmonary and 1410 of which

were subcutaneous/ocular cases over the last decade [145]. Increased -travel, pesticide

-restrictions, and the introduction of the Asian tiger mosquito, which take a blood -meal

that is twice as large as the common mosquito species, have contributed to the spread

of cardiopulmonary and subcutaneous dirofilariosis in final host carnivores [146].

The life cycle of species of Dirofilaria genus consists of larval stages (L1-L3) in

arthropod intermediate host as vector (mosquito), developing stages (L3-L5) and adult
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3.1 Filtration of Nematodes Using an Integrated Microcapillary System

stage in natural host (Fig. 3.1). The development period of the microfilariae mostly

depends on the temperature inside the species of intermediate host (from 10 to 21 days

at around 25◦C). In infective stage, the larvae (L3) migrate to the Malpighian tubule

lumen of the mosquito, while during subsequent nutrition of the intermediate host the

larvae enter to subcutaneous connective tissue of definitive host. In this stage (L3),

the infective larvae of these filarioidea invade a variety of human or animal tissues

and elicit little or no discernible response from the host during the course of their

development unless they enter exquisitely sensitive tissues such as the conjunctivae. The

D. immitis and D. repens, which are responsible in human, persist for months without a

detectable host response. In their natural hosts, filarioids are typically long-lived, living

often several years or more [147]. D. immitis infective larvae (L3s), commonly called

”heartworm”, cause a chronic infection in the right heart/inferior vena cava, and the

pulmonary vein where uncontrolled parasite development may result in serious disease

for the natural host but in humans do not survive their migration in subcutaneous

tissue [148]. D. repens causes chronic infection where parasite development is limited

within the eye, subcutaneous tissues, abdominal cavities, and urinary bladder. Species

of Dirofilaria affect mostly dogs and other carnivores such as cats, wolves, and foxes.

Humans may become infected as aberrant hosts, the worms fail to reach adult stage

while residing in a human body.

The late stage (L4-L5) differential diagnosis of human pulmonary dirofilariosis costs

$80,000 or more per patient in the USA [160]. In addition, in the case of D. immitis, it

exposes the patient to unnecessary surgery which carries a risk of mortality. Therefore,

the early-stage (L3) diagnostic techniques reduce risk of complications and also save

health care costs. Large scale screening for dirofilariosis involves the use of the serolog-

ically based antigen or antibody lateral flow devices which are commercially available

for this purpose: VetScan Canine Heartworm Rapid Test Kit (Abaxis, Union City, CA,

USA), Heartworm IC (Argolabo S.p.A., Scarmagno, TO, Italy), Solo Step CH Canine

Heartworm Antigen Test (Heska, Loveland, CO, USA), FASTest HW Antigen (Megacor

Diagnostik GmbH, Hoerbranz, Austria), CH9705/FX Immunochromatographic device

(Multimage S.r.l., Cavaria, VA, Italy), Woodley InSight Heartworm Rapid Diagnostic

Test (Woodley Equipment Company Ltd, Horwich, UK), and Canine Heartworm Anti-

gen Test (SA Scientific, San Antonio, TX, USA). These antigen or antibody lateral
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3.1 Filtration of Nematodes Using an Integrated Microcapillary System

Figure 3.1: The life cycle of Dirofilaria immitis which consists of three stages (L1-L3) in

arthropod (mosquito) intermediate vector and other two stages (L4 and L5) in vertebrate

host. During the blood meal, an infected mosquito introduces L3 filarioid larvae of D.

immitis into the skin of the definitive host. The L3 nematodes invade the tissues of

natural host undergoing themselves two more molts into adults. Adult heartworms reside

in pulmonary arteries and are occasionally found in the right ventricle of the heart. Adult

females are usually 250 − 310 mm long by 1 mm wide; males are usually 120 − 200 mm

long by 0.7 − 0.9 mm wide. Adults can live for 5 − 10 years. In the heart, the female

worms are capable of producing microfilariae over their lifespan, which are 290 − 330 µm

long and 5− 7 µm wide [149]. The microfilariae are found in peripheral blood, which can

be ingested by another mosquito during its blood meal.

flow devices require at least three adult female heartworms and do not exist for detec-

tion of D. repens. The antigen presence of dirofilariosis does not occur in each case

thus in diagnostics several seroepidemiological methods have been developed to explore

the existence of intravenous nematodes or to determine its volumetric population from

blood samples. The gold standard in diagnosis depends upon microscopical detection

of microfilariae in blood but classical microbiological test is also used. This is very

difficult in dirofilariosis where the parasitemia is frequently below 100 nematodes per

milliliter of blood. Given the low abundance of parasites in the blood, methods have

been developed to raise the efficiency of detection rising the cost and the required time
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3.1 Filtration of Nematodes Using an Integrated Microcapillary System

Figure 3.2: A) Blood smear test. Starts with pipetting a drop of serological sample on

a glass slide, then hemolysing with deionized water and finally counting the number of

nematodes within the all volume of sample. B) The modified Knott′s test. Anticoagulant

blood sample is dissolved 2% formalin in a conical centrifuge tube. After the 5 minutes

centrifugation at 1500 rpm, the sediment is mixed by one drop of methylene blue stain

coloring the cuticle of nematodes. Finally, the number of nematodes is counted optically.

C) Flow-through nematode filter (FTNF). Concentrates the nematodes in the center of the

device before the hemolysis from few ml of blood offering an instantaneous readout.

of diagnosis. The following enumeration, which is also summarized in Table 3.2, repre-

sents a scale of executive complexity in inverse proportion of currently used diagnostic

methods [146]: serologic methods (fresh blood smear and histochemical stain based

tests), concentration methods (Knott’s test, hematocrit method, filter test), enzyme-

linked immunosorbent assays (ELISAs), multiplex real-time PCR amplification. When

dirofilariosis is diagnosed, the erratic progression of many infections and the lack of

microfilariae in most cases necessitate the use of combined diagnostic techniques. The
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Method Limit of detection Volume

requirement

Duration References

Serologic methods

(fresh blood smear,

histochemical stain

based tests)

1-2 nematodes 0.5-1 ml 10-30

min

[146,150]

Concentration

methods (Knott’s

test, hematocrit

method, filter test)

1-2 nematodes 2-3 ml 20-40

min

[151,152]

Enzyme-linked

immunosorbent

assays (ELISAs)

22-43 kDa

antigens

200-400 µl 2-4 h [153–156]

PCR amplification 2-3 DNS 10-100 µl 3-5 h [142,157–159]

Table 3.2: Laboratory diagnostics of blood-borne parasitic diseases

evaluation of serological methods and the concentration procedures are based on opti-

cal detection while the enzyme-linked immunosorbent assays (ELISAs) and RT-PCR

amplification requires further costs (instruments, higher skilled labor). Each diagnostic

technique is multiplexable and combinable with other methods. The most simplest

and speared technique is the smear test, which is shown in Fig. 3.2.A and starts with

pipetting serological sample onto a glass slide after the hemolysis, the nematodes are

counted. The modified Knott’s test, which concentrates nematodes by centrifuge and

mark specific species by Giemsa stain and shown in Fig. 3.2.B. First, the anticoagulant

blood sample is dissolved 2% formalin in a conical centrifuge tube. After the 5 minutes

centrifugation at 1500 rpm, the sediment is mixed by one drop of methylene blue stain

coloring the cuticle of nematodes to distinguish better the different nematode spices.

Finally, the number of nematodes is counted as the previous method. The advantage of

the concentration method versus the basic serologic methods is raised detection limit

from a bigger sample volume. The presented microfluidic device (flow-through nema-

tode filter, FTNF), which is shown in Fig. 3.2.C uses an integrated filtering technique

providing the ability to detect much smaller concentration of nematodes from speci-

mens, determine them more accurately and specifically without any external devices

reducing the price of the measurement approximately at same efficiency.
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The our developed diagnostic device integrates a flow-through nematode filter (FTNF)

to concentrate circulating parasites from serological sample. The overall mechanism

and the novelty of the developed device is shown and highlighted in Fig. 3.2.B. The

designed biochip contains a microfluidics-based particle separation technique which is

easy to implement in cheap disposable plastic chips, that we believe is well suited for

the task of removing parasites from few ml of blood in order to aid the instantaneous

detection. The mechanism of separation by FTNF is based on the interaction of nema-

todes suspended in whole blood with an ordered array of microcapillaries that the fluid

is forced to flow through under low Reynolds number conditions, while the detectable

larvae are trapped.

The required filtration range of the designed device for nematode filtration comes

from parasitology. These nematodes are ovoviviparous and the evolving unsheathed

embryo (microfilariae) live in the bloodstream. The length of D. immitis is 330−380 µm

and their width is 5−7 µm [149]. The microfilariae of D. repens is bigger, 300−360 µm

long and 6− 8 µm wide [149]. In this matter the developed structure has to be robust,

efficiently filter out the desired nematodes and reduces the risk of coagulation.

Figure 3.3: The overall mechanism of the flow through nematode filter (FTNF) device.

Parasite-infected serological sample is forced through the capillary system, meanwhile the

mayor part of them are remained trapped.

Here, a continuous hydrophoretic filtration technique of nematodes which does not

require auxiliary liquid control, can be fabricated using a monolithic polydimethylsilox-

ane (PDMS)-glass technique and solve the described purpose, has been presented to

construct 12 parallel microfluidic systems changing microcapillary width from 6.1 µm

up to 15.4 µm. The developed flow-through nematode filter (FTNF), which represented
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3.1 Filtration of Nematodes Using an Integrated Microcapillary System

in Fig. 3.3 is is based on a common microfluidics-based particle filtration technique,

easy to implement in cheap disposable plastic chips, that we believe is well suited for

the task of removing parasites from blood in order to aid detection. The mechanism of

separation by FTNF is based on the interaction of nematodes suspended in whole blood

with an ordered array of microcapillaries that the fluid is forced to flow through under

low Reynolds number conditions, while the detectable larvae are trapped. The fabrica-

tion of constructed devices are based on soft-lithography techniques using monolithic

polydimethylsiloxane (PDMS).
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3.2 Device Principles

Figure 3.4 demonstrates the geometry of the developed microfluidic filter for this men-

tioned veterinarian purpose. Each microfluidic structures has one 400 µm wide and

20 µm high inlet and one outlet. 12 capillary structures have been implemented, which

are uniform within the central region of one device but the widths of microcapillaries

(Wcapillary) varies from 6.1 µm up to 15.4 µm. The active zone, where parasites remain

trapped is surrounded by these rectangular cross-section microcapillaries, which are on

a radius (r) of 1 mm from the center and its repetition angle (α) is from 3.38◦ up

to 3.91◦. The width of obstacles/pillars (Wpillar = 52.8 µm) and the angle without

capillary connection (β = 75◦) are the same in each structure.

Figure 3.4: Schematic of the developed flow-through nematode filter. The α angle is the

structural repetition of the microcapillaries, r is the radius of the active zone, Wpillar is

the width of the pillars, Wcapillary is the width of the capillary channel and β is the angle

without capillary connection.

The following trigonometrical equations describe the relationship between α and
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the capillary width (Wcapillary):

sin
α

2
=
Wpillar +Wcapillary

2r
(3.1)

Wcapillary = 2r sin
α

2
−Wpillar (3.2)

Those rigid particles which have greater diameter than Wcapillary, will be filtered

out from the liquid flow. The total cross section of microcapillaries is described by the

following equation:

Scapillaries =
βh

α
(2r sin

α

2
−Wpillar) (3.3)

where h is the height of channel and 360◦−β is that angle where the capillaries connect

to the active zone along.

Generally, the microfluidic filters are described by the pressure drops (∆P ) at dif-

ferent flow velocities and the total flow resistance (Rtot).

∆P = RtotQ (3.4)

The pressure drop is the function of the flow rate (Q) and the total flow resistance

Rtot which is defined as:

1

Rtot
=

n∑
i=1

1

Ri
=

1

R1
+

1

R2
+ ...+

1

Rn
(3.5)

where n is the number of capillaries within one device (n = (360◦ − β)/α). Ri is the

flow resistance of one capillary channel

Ri =
8µL

πr4
H

(3.6)

where µ is the dynamic viscosity, L is the length of the microcapillary and the nominal

hydrodynamic diameter (rH) is

rH =
hWcapillary

h+Wcapillary
(3.7)

Integrate Eq. 3.5, Eq. 3.6 and Eq. 3.7 into Eq. 3.4 we get the pressure drop of cylindric-

shape capillary structure

∆P =
8µLQα(h4 +W 4

capillary)

πβh4W 4
capillary

(3.8)

The calculated results are shown in Fig. 3.6.
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3.3 Computational Fluid Dynamic Simulations

In order to provide efficiency of filtration, computational fluid dynamics simulations

were calculated to predict the velocity and pressure profiles of the developed structure

by COMSOL Multiphysics 4.3 (COMSOL Inc., Burlington, MA, USA). The pressure

drop has a significant meaning in the point of flow through filtering. 12 similar mi-

crofluidic devices were designed by increasing capillary width (Wcapillary) from 6.1 µm

up to 15.4 µm and the flow velocity and pressure profile was calculated at 0.25 ml/h,

0.5 ml/h, and 1 ml/h flow rates with the initial and boundary condition and shown in

Fig. 3.5.

The initial parameters were set to the average blood properties thus the viscosity

was around 3.53·10−3 Pas, the density was 1060 kg/m3 in the all domain of microfluidic

device. On the walls were set non slipping condition, on the outlet to zero-pressure and

on the inlet laminar inflow condition at 0.25ml/h, 0.5ml/h, and 1 ml/h volumetric flow

rates. To investigate the efficiency of filtration the pressure drop has a important effect.

If the pressure drop is significant the trapped elastic particles, which are larger than

the capillary width (Wcapillary) can be squeezed through the microcapillary structure

while using an abnormal pressure the filter can be also destroyed [161].

For each geometry the flow velocity and pressure profiles have been calculated and

the maximum pressure differences within the devices are shown in Fig. 3.6. The pressure

field has a maximum value on the sidewall of inlet and the smallest value appears on

the sidewall of outlet. Within one device the pressure drop raises in a laminar way in

the function of flow rate and reduced by the capillary width at the same boundary and

initial conditions. The equidistant microcapillaries from the geometric center develop

a quasi-homogeneous pressure field within the active zone, which is the central field

of the microfluidic device, where the nematodes remain trapped, aiding the filtration

of the larvae but blood cells. Based on computational flow dynamics simulations the

approximation of the pressure drop can describe with the following equation with R2 =

0.9939:

Decreasing the capillary width (Wcapillary) increases the flow resistance quasi expo-

nentially and in the same time the pressure drop at a fixed flow rate which is represented

29



3.4 Device Design and Fabrication

Figure 3.5: Flow velocity and pressure profiles at 1 ml/h. A) Flow velocity profile of

the thinnest (Wcapillary = 6.1 µm) capillary structure at 1 ml/h. B) Flow velocity profile

of the thickest (Wcapillary = 15.4 µm) capillary structure at 1 ml/h. C) Pressure profile

of the thinnest capillary structure at 1 ml/h. D) Pressure profile of the thickest capillary

structure at 1 ml/h.

in Fig. 3.6.

3.4 Device Design and Fabrication

Channel layouts were designed by using AutoCAD 2013 (Autodesk Inc., San Rafael,

CA, USA) and devices were fabricated in polydimethylsiloxane polymer (PDMS, Syl-

gard 184, Dow Corning, USA) using a standard microfabrication soft-lithographic tech-

niques [161]. The microfabrication procedure starts with making a master for replica

molding. SU-8 (MicroChem, Newton, MA, USA) photoresist was spin coated onto 4”

silicon wafer to a thickness of 20 µm and patterned using UV light in contact mask
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Figure 3.6: Pressure drop within each device calculated by computational fluid dynamics

simulations at 0.25 ml/h, 0.5 ml/h, and 1 ml/h flow rates.

Figure 3.7: Flow resistivity within each device calculated by computational fluid dynam-

ics simulations.

aligner through a chrome mask. PDMS monomer and curing agent (Sylgard 184, Dow

Corning, Midland, MI, USA) were mixed to a ratio of 10 : 1 (v/v), degassed and poured

over the master and set aside at 70◦C for 2 h for polymerization. The liquid PDMS pre-
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polymer conforms to the shape of the master and replicates the features of the master.

After the polymerization the solid PDMS replica was lifted off from the mold surface

and access holes were punched through the patterned PDMS slab using a 1 mm hollow

pin vise. The patterned PDMS slab was bonded to microscope glass slide following

surface treatment by Plasma-preen II 863 (Plasmatic Systems Inc. North Brunswick,

NJ, USA). Finally, teflon tubes were inserted into the access holes for fluidic contacts.

3.5 Experimental Setup

Figure 3.8 illustrates the schematic diagram of our nematode detection platform. Pressure-

driven flow was created using syringe pumps (NE-4000, New Era Pumping System Inc,

Farmingdale, NY, USA) attached to the inlet via Teflon tubes, which made it possible to

hydrodynamically focus the sample into a stream of 20 µm in width. Typical flow rates

were used between 0.1 ml/h and 2 ml/h, controlled by the syringe pump. Imaging

was performed on an inverted Olympus IX71 microscope (Olympus, Tokyo, Japan).

Image recording was through a USB color CCD camera (uEye UI-222x series, IDS

Imaging Development Systems GmbH, Obersulm, Germany). All videos were captured

at a speed of 50 frames/second and captured videos were analyzed by using Matlab

(The MathWorks Inc., Novi, MI, USA). For parasitological experiments, blood-borne

infected, anticoagulant, canine blood has been used, where D. repens parasites were

determined previously by Knott’s method obtaining their concentration in serological

samples.

3.6 Experimental Results

The single layer microfluidic design allows the easy loading, immediate detection and

analysis of nematodes, eliminating the need of other sample preparation instruments

such as centrifuge or devices. Before each experiment, these microfluidic structures

were optically checked, purified and dried avoiding unnecessary particles (dust), which

can cause clogging. The developed structure were tested at at 0.25 ml/h, 0.5 ml/h,

and 1 ml/h volumetric flow rates by 15 different blood-borne infected, anticoagulant,

canine blood samples. The type and the severity of dirofilariosis was determined and

classified into three classes (-, +, ++).
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Figure 3.8: Schematic image from the developed parasite detection platform. The mi-

crofluidic devices are mounted on an inverted phase contrast microscope. The syringe

pump system with the CCD camera unit are controlled via a common platform.

Figure 3.9 shows the developed procedure of nematode detection, which contains the

following steps. Firstly, the serological sample is forced through the microfluidic device

at a constant volumetric flow rate meanwhile the major part of the nematodes remained

trapped in the isobaric central region (Fig. 3.9.A). Changing the medium to deionized

water, air bubble is pushed thought the capillary structure additionally (Fig. 3.9.B).

Due to the deionized water induces hemolysis by osmotic shock the attached and ag-

gregated cells as thrombocytes and lymphocytes are lysed and flushed away from the

detection area, meanwhile nematodes are resistant to osmotic shock thanks to its cu-

ticulae which increases the visibility is increased by rising the contrast (Fig. 3.9.C).

Finally trapped nematodes are counted optically in the central region (Fig. 3.9.D).

The experiments indicates that the number of trapped nematodes correlates with the

applied volumetric flow rate and the applied microcapillary width.

Blood-borne infected, anticoagulant blood samples were pushed through the biochips

and the major population of nematodes remain captured in the quasi-isobaric central

region (Fig. 3.4.A). The population of the nematodes in the original blood samples (σpre

and in the waste products (σpost) were analyzed by basic serologic methods (tick blood
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Figure 3.9: Developed procedure of nematode detection. A) serological sample is forced

through the microfluidic device B) the medium is changed to air then deionized water C)

haemolysis and increment of visibility D) counting the nematodes optically

smears) to determine the efficiency of the device at different flow rates (0.25 ml/h,

0.5 ml/h, and 1 ml/h). The filtration efficiency (η), which represented on Fig. 3.4.A,

has been calculated by taking the ratio of the trapped nematodes (σcaptured) and the

initial volumetric concentration of larvae (σpre) in the native serological sample. The

number of trapped nematodes (σcaptured) has been counted optically within the active

zone. Obtaining a homogenous sample the following equations were reached:

σpre = σcaptured + σpost (3.9)

In the sense of sample volume is fixed and concentration is homogeneous the effi-

ciency (η) can be defined by the following way:
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η =
σcaptured

σpost + σcaptured
(3.10)

Due to the sedimentation of the heavier particles (nematodes), inhomogeneity (IH)

of the serological sample can be occurred at low flow rates, which can cause false

prediction of the nematodes population in the original sample. The inhomogeneity of

the samples was defined by the following equation:

IH =
|σpre − σcaptured + σpost|

σpre
(3.11)

The efficiencies of the different microfluidic channels, which is presented in Fig. 3.10,

have been calculated at constant volumetric flow rates (0.25 ml/h, 0.5 ml/h, and

1 ml/h) by the previously described procedure. During each measurement, one exam-

ined sample (+ or ++) was chosen and forced through 12 different FTNF structures

with microcapillary width from 6.1 µm up to 15.4 µm separately at constant flow rate

five times binning efficiency (η) for histograms. The average population of the ne-

matodes in the original blood samples (σpre) was obtained from 5 intermediate control

tests at each measurement. The volumetric nematode concentration (σpre) was between

0.65 · 103 and 3.06 · 103 nematodes/ml). The flow velocity on the inlet determines the

pressure drop though the microcapillary structure. Rising the flow rate, the pressure

drop forces more nematodes through the filter decreasing the efficiency of the filtration.

In the other hand, decreasing flow rate has an influence on the inhomogeneity of the

samples. Optimizing the applied flow rate for the described purpose, the inhomogeneity

was also measured and binned for histograms. The standard deviations of the mean

values of filtration efficiency and sample inhomogeneity were counted and displayed

on Fig. 3.10 with trendlines and theirs R-squared values. The robustness analysis of

the procedure was considered by trend estimation of mean efficiencies of different de-

vices (Wcapillary from 6.1 µm up to 15.4 µm) and its R-squared values (R2 = 0.8996

at 0.25 ml/h, R2 = 0.9829 at 0.5 ml/h and R2 = 0.7506 at 1 ml/h). The highest

mean efficiency of filtration was obtained at 0.5 ml/h flow velocity with the best trend

fit. Based on the measurements, we found that increasing flow rate increases the level

and the stability of homogeneity. Decreasing capillary width (Wcapillary) the filtration

efficiency rises but applying a higher volumetric velocity the nematodes can be forced

through the capillary structure due to the raised pressure drop and the properties
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Figure 3.10: The efficiency and the inhomogeneity of each microfluidic structure

(Wcapillary from 6.1 µm up to 15.4 µm) at different flow rates (0.25 ml/h, 0.5 ml/h,

and 1 ml/h). The error bars of each histogram shows the standard deviations from the

mean values. The R-squared values of each trendlines are displayed.

of non-rigid particles. Finally, we found that the best setup was using 6.1 µm wide

capillary at 0.5 ml/h flow rate.

The classical veterinarian procedures includes sedimentation or centrifugation just

for sample preparation and the total procedure time takes 30− 45 mins without guar-
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antee the homogeneity of concentration of nematodes [146]. The pushed-through of

0.01 ml of samples through the developed biochips at 0.25 ml/h volumetric flow rate

takes 58 mins, at 0.5 ml/h takes 29 mins and at 1 ml/h takes 15 mins which is

comparable with the widely used nematode diagnostic procedures (Table 3.2). The

parallelization of the measurement reduces the procedure time guaranteeing the same

filtration efficiency.

3.7 Results with the Flow Through Nematode Filter

I have successfully shown how microfilariae circulating in the blood stream can be

detected using the developed flow-through nematode filter (FTNF). This developed

biochip provides a new diagnostic method for parasitic detection from native blood

samples. Pressure and velocity profiles have been calculated to predict the pressure

drop to secure the efficiency of the developed device. A range of microcapillary struc-

tures within different microfluidic devices have been designed, fabricated and tested to

uncover dirofilarioses from blood samples. Our results show that this passive filtration

device can be used to speed up current diagnostic processes. A parasite detection plat-

form has been constructed to automate the procedure decreasing diagnostic costs and

time. The obtained structure is able to use for detection of other specific parasites.

Due to the applied materials, the FTNF device also can be loaded by the degas-driven

flow avoiding the usage of external syringe pumps to create a laboratory-independent

construction. Finally, the developed FTNF biochip could be useful to monitor the

presence of nematode during the time course of a treatment targeting nematodes and

analyse the efficiency of the treatment.
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Chapter 4

Deterministic Lateral

Displacement Based

Fractionation

4.1 Separation of Microvesicle from Serological Samples

As it was discussed in Chapter 2, the blood can be considered as a diagnostic tool for

monitoring the body condition of the patient. The blood contains inestimable informa-

tion reaching that from the condition of the cells but also the composition of plasma.

The extracellular space of multicellular organisms contains solutions of metabolites,

ions, proteins and polysaccharides and a large number of mobile membrane-bounded

vesicles, called extracellular vesicles such as exosomes (Exs), microvesicles (MVs) and

apoptotic bodies (ABs) [162]. The size ranges of major blood components is represented

in Fig. 4.1.

Recent advances in the study of tumor-derived microvesicles reveal new insights

into the cellular basis of disease progression and the potential to translate this knowl-

edge into innovative approaches for cancer diagnostics and personalized therapy [163].

A key step in cancer diagnostics and molecular biological observations is to separate

cells, functionalized microbeads, extracellular vesicles, or other particles from a solu-

tion which may contain other undesirable elements [30]. Even though a number of mi-

crofluidic techniques have been developed to enhance on-chip blood fractionation [11],

classification of membrane vesicles, protocols of their isolation and detection, molecu-
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4.1 Separation of Microvesicle from Serological Samples

Figure 4.1: Size ranges of major blood components. While exosomes share size distribu-

tion with viruses, microvesicles overlap in size with bacteria and protein aggregates (e.g.

immune complexes), apoptotic bodies and thrombocytes fall into the size range of 1−5 µm,

the diameter of red blood cells is around 6 − 8 µm and the size of lymphocytes is from

7 µm up to 12 µm.

lar details of vesicular release, clearance and biological functions are still under intense

investigation. The most frequently used methods to purify microvesicles and exosomes

from cell culture supernatants or body fluids involve a series of centrifugation and fil-

tration steps to remove cells, apoptotic bodies and other cellular contaminants by a

final high-speed ultracentrifugation to pellet small extracellular vesicles [164]. These

procedures require long preparation time, ultracentrifuge equipment and yield a rela-

tively low amount of extracellular vesicles [165], making it difficult for application in

clinical practice.

Due to the importance of the isolation of extracellular vesicles, several microflu-

idic devices have been developed for such purpose but these techniques mostly work

in batch separation mode [166]. In the developed device, a continuous and label-free

separation of microvesicles across functional laminar streamlines in pressure-driven mi-

crofluidic flow has been implemented using an asymmetric micropost array. By flowing

serological samples through the functional streamlines, different-sized components can

be fractionated for further biomedical diagnostic processes using the developed device.

A continuous-flow, label-free separation procedure reported by Huang et al. [88],

known as deterministic lateral displacement (DLD), and shown in Fig. 4.2 is able to

separate micrometer-sized particles enhancing on-chip blood fractionation with an un-

certainty of 10 nm. The DLD technique is a size-based particle fractionation proce-
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4.1 Separation of Microvesicle from Serological Samples

Figure 4.2: Overview image from the deterministic lateral displacement device. The

serological sample (INsample) is focused by the lateral shear buffer solutions (INSB1 and

INSB1). The different-sized particles are fractionated along the column structure (leuko-

cytes (blue), erythrocytes (red), and microvesicles (green)).

Application Critical diameter (Dc) Post shape References

Leukocytes From 3 µm to 23 µm Circular [86,91,96,167]

Erythrocytes From 3 µm to 9 µm Circular,

square,

I-shape

[168,169]

Thrombocytes From 2.3 µm to 5.3 µm Circular [97]

Plasma From 1 µm to 4 µm Circular [91]

Circulating tumor

cells

From 5 µm to 7 µm Circular,

triangular

[84,100,170]

Nematodes,

infections,

pathogens

From 1.2 µm to 15 µm Circular,

I-shape

[83, 88, 90, 92, 95,

98,168]

Table 4.1: Serological applications of the deterministic lateral displacement [171]. The

critical diameter (Dc) determines the size of separated particles.

dure which has shown extremely high size selectivity, adaptability to sorting multiple

particle sizes, and a broad range of operating conditions, sorting particles from sub-

micrometer scale up to millimeter scale [87–89,91,92,101,172–178] with even a resolu-

tion of down to 10 nm [88]. This technique which shows a marked improvement over

existing methods [171], has been shown capable of separating erythrocytes (RBCs),

white blood cells (WBCs), thrombocytes, plasma, circulating tumor cells and nema-

todes/infections/pathogens from whole blood based on their size and summed into

Table 4.1. Being a continuous separation method, DLD has all the advantages that

such methods have to offer.
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4.2 Device Design and Fabrication

4.2 Device Design and Fabrication

Channel layouts were designed using AutoCAD 2013 (Autodesk Inc., San Rafael, CA,

USA) and devices were produced using standard microfabrication soft-lithographic

techniques [161,179] by casting polydimethylsiloxane (PDMS, Sylgard 184, Dow Corn-

ing, USA) on a SU-8 (MicroChem, Newton, MA, USA) positive relief patterned mold

on a 4” silicon wafer produced by photolithography. PDMS monomer and curing agent

were mixed to a ratio of 10 : 1 (v/v), degassed and poured over the master and set aside

at 70◦C for 2 h for crosslinking. The liquid PDMS pre-polymer conforms to the shape

of the master and replicates the features of the master. The crosslinked PDMS was

removed from the mold and 0.75 mm inlet and outlet ports were fabricated through the

PDMS slab using a Harris Uni-Core biopsy punch (Ted Pella). The patterned PDMS

slab was bonded to microscope glass slide following surface treatment by Plasma-preen

II 863 (Plasmatic Systems Inc. North Brunswick, NJ, USA). Finally, Teflon tubes

were inserted into the access holes for fluidic contacts. The depth of all channels used

was 20 µm. As it was mentioned previously , the deterministic lateral displacement

cascade consists of 15 different regions with different gap sizes. Figure 4.2) provides a

schematic image of the layout of our microfluidic device, which shows how the biolog-

ical sample enters on center inlet (INsample) and hydrodynamically focused by shield

buffers (INsb1, INsb2) and pushed through the array structure. The 7560 µm-long DLD

array terminates in an observation section in which the laterally displaced distance and

the occurred dispersion could be measured optically in the termination set of parallel

channels. These channels facilitate counting and binning of the cells for the histograms.

4.3 Sample Preparation

The isolation of red bood cells (RBCs) and white blood cell (WBCs) was based

on Ficoll - PaqueTM process. Venous human blood was collected from a male healthy

adult volunteer and diluted by buffer solution (PBS with 2 mM EDTA) at ratio of 1:1

(v/v). 35 mL of diluted blood was carefully layered over 15 mL of Ficoll-Paque (Ficoll-

Paque PLUS, GE Healthcare Europe GmbH, Freiburg, Germany) in a 50 mL conical

tube. The sample was centrifuged at 400 g for 20 minutes at 20◦C in a swinging-

bucket rotor without brake. The isolated mononuclear cell layer (lymphocytes and

monocytes) was carefully aspirated and transferred to a new conical tube. The conical
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tube was filled by buffer (PBS with 2 mM EDTA), and the cells were resuspended and

centrifuged at 300 g for 7 minutes at 20◦C. The supernatant was removed and the

cell pellet, which contained WBCs, was resuspended in basic media (RPMI-1640 with

10% FBS) (sample A). RBCs were harvested from the first 50 mL conical tube from

the pellet, and resuspended in basic media (RPMI-1640 with 10% FBS) (sample B).

For isolation of microvesicles we used a purification procedure as described pre-

viously by Turiák, Misják et al. [180]. The first steps are designed to eliminate cells and

large extracellular vesicles by successive centrifugations at increasing speeds at each of

these steps, the pellet was discarded and the supernatant was used for the following

step. Firstly, the conditioned medium, which mainly contains microvesicles (MVs) and

exosomes (Exs) but also contained some apoptotic bodies (ABs) from BV-2 cell cul-

ture (mouse, C57BL/6, brain, microglial cells), was centrifuged at 300 g for 20 minutes

at 17◦C. The pellet consisting of cells was discarded and the supernatant was trans-

ferred to conical tubes. Next, apoptotic bodies were removed from the supernatant

by centrifuging it at 2000 g for 20 minutes at 17◦C. The supernatant was submitted

for further centrifugation. Finally the supernatant (enriched in microvesicles and exo-

somes) was centrifuged at 20000 g for 40 minutes at 4◦C, and the microvesicle pellet

was resuspended in 0.5 ml PBS. This microvesicle preparation was added to cell- and

platelet-depleted blood plasma (sample C).

4.4 Experimental Setup

Pressure-driven flow was created using syringe pumps (NE-4000, New Era Pumping

System Inc, Farmingdale, NY, USA) attached to the inlet via Teflon tubes, which

made it possible to hydrodynamically focus the sample into a stream of 20 µm in

width. Typical flow rates were used between 0.01 ml/h and 0.1 ml/h, controlled by

the syringe pump. Imaging was performed on an inverted Olympus IX71 microscope

(Olympus, Tokyo, Japan). Image recording was through a EyeRIS camera system

(Eye-RIS Vision System-on-Chip, Anafocus, Spain).
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Figure 4.3: Schematic view of our experimental setup. The platform consists of computer-

controlled syringe pump system, a microfluidic device on an inverted microscope, and USB

color CCD camera.

4.5 Experimental Results

Extracellular vesicles provide a means for cells to interact with each other and appear

to play an important role in cancer research and in a wide variety of physiological and

pathological processes. In this study, on-chip microvesicle fractionation from biologi-

cally complex samples, such as human blood and conditioned medium from cultured

cells was achieved for the first time using a deterministic lateral displacement array

structure. Compared to the current standard protocols for isolating microvesicles, our

deterministic lateral displacement device is faster, cheaper, label-free and its efficiency

is comparable with clinical laboratory procedures.

A composition of the purified blood components (sample D = sample A + sample B

+ sample C, w/w 1:1:1), such as RBCs, WBCs and microvesicles, were loaded into the

center inlet (INSample) whereas the sheathed buffer (PBS) was introduced at the from

ports on the left (INsb1) and right (INsb2) sides of the specimen port focusing samples to

the desired width (Fig. 4.2). The concentration of RBCs (sample A) was around 5 ·106

per µL, WBCs (sample B) were around 7·103 per µL and microvesicles (sample C) were
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around 8 · 104 per µL. Thrombocytes and apoptotic bodies have been extracted from

the sample helping further optical classifications. During the measurements negligible

population of the WBCs has been attached to the surface of the obstacles thus the

purity and the loesses of applied process could be conserved.

Figure 4.4: The efficiency of the cell separation using our developed DLD device (white

blood cells (WBCs, blue), red blood cells (RBCs, red), and microvesicles (MVs, green)).

A) The dispersion of the cell components in the initial section (n = 1). B) The lateral

displacement of the cell components in the final section (n = 15). The error bar displays

the standard deviations.

To optically detect the blood elements, the biological sample (sample D) is driven

through the device at 0.001 ml/h flow rate which provides a suitable rate of cells for

counting and a suitable residence time in front of the camera to be imaged. We record

the lateral position of particles from the center of the inlet at two different positions

along the device (n = 1 and n = 15) in the DLD array and bin the results of 10 different

measurements into histograms which are shown in Fig. 4.4. Around 1.47·105 of particles

has been optically distinguished and classified into WBCs, RBCs and microvesicles by

an own developed algorithm.

The microvesicles, which are below any critical hydrodynamic diameter Dc,n, are

able to follow a given stream through the array in zigzagging mode whereas RBCs

and WBCs become laterally displaced by every interaction with posts. The further

displacement of WBCs comes, when the diameter of RBCs becomes equal with the

actual critical diameterand RBCs enter in zigzagging mode meanwhile WBCs are forced

to adopt orientations that give them a greater displacement along the device.

Shear forces, which result from gradients in the fluid velocity around a particle may
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induce complex motions including rotation, tumbling and shape change [169]. RBCs

and WBCs can be considered as deformable and non-spherical particles, which suggests

that such blood cells appear to modify their shape and diameter as they pass through

the DLD device which can lead to lower separation efficiency. The behavior of blood

components in the developed DLD array results in smooth histograms (Fig. 4.4). The

displacement of RBCs, WBCs and microvesicles are observed at the terminal section

by CCD camera-based image recording system.

The overview of our DLD structure is shown in Fig. ??. The displacement of the

different particles are bin for the histograms at the initial section (Fig. 4.4.A)and the

end of our DLD array (Fig. 4.4.B). The position of microvesiclesremains mainly at the

initial along the device due to the dimensionless numbers of fluid dynamics (Rep<1,

Pe>1 and St<1). The lateral displacement of RBCs from the center of the inlet is

around 100−120 µm from the initial and to the terminal section. Although the WBCs

are displaced by 140 − 160 µm from the initial position. The obtained and reported

efficiency of fractionation can be increased by a longer device and the throughput by

parallelized microfluidic devices.

4.6 Image processing algorithm for cell counting applica-

tions

A CNN-based algorithm has been developed, which is able to count particles in contin-

uous liquid flow using these image processing steps. The used EyeRIS camera contains

a Qeye SIS (Smart Image Sensor) and FPP (Focal Plane Processor) system. These

Qeye SIS includes signal processors with local connections. On the other hand, the

main advantages of the FPP system are the image recording and the image processing

capabilities in the same architectural unit in real-time. The flow analyzer algorithm is

executed on a 144x176 pixel resolution processor network and each pixel can be con-

sidered as a CNN cell unit. The image processing functions are supported by 7 Local

Analogical Memories (LAM) and 4 Local Digital Memories (LDM). The fist type of

memory can store the image in greyscale, while the digital one as a binary image. The

image recording time of the binary images can be as high as 10000 frames per second.

The camera is able to record in HDR (High Dynamic Range) also in 80 dB scale. The

EyeRIS camera contains not only the sensor system, but also other hardware. The
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NIOS II processor is the most important element after the sensor network, which is

based on FPGA technology. This component makes the connection with the PC, and

communicates with the other devices. The camera also contains serial flash memory.

To help and accelerate the digital image processing functions a DICop (Digital Image

CoProcessor) is also integrated, which is able to execute geometric transformations and

PtP (Pixel-to-Pixel) transformations. A cell counting algorithm also has been devel-

oped on a fast-camera system (Eye-RIS Vision System) for cell counting applications

in the observation outlets of the DLD device. The image processing is a commonly

used method to analyze and record movements. The main difficulty of these processes

is the object-background segmentation, which are not simple methods to discriminate.

In general, the static object detection is insufficient because of the high variance of the

background.

First of all, the recorded image contains noises form the sensor and external cases.

The elimination of these errors need correction, especially if the diameter of the objects

are just few pixels. After the image filtration, which can help to eliminate this prob-

lem, the main goal is to determine the shape of objectives from the background. The

developed algorithm is the next: image recognition, Gaussian filter, global threshold,

morphologic erosion, morphologic dilatation, morphologic centering, and cell/object

counting. The proposed algorithm works with grey-scale and binary images and con-

tains four main parts. First of all, it starts with the image recognition, continues the

preprocessing part with filtration. Thirdly, the algorithm performs the binary image

processing steps, which start with the threshold measurements, and terminate with one

pixel in the middle of recognized cells. Finally, the cells/particles are counted from the

result images.

4.6.1 Image recognition

This algorithm sequence performs the optical image acquisition that represents in

the field of view of the Eye-RIS Vision System. During the measurement the in-

tegration time (also called exposure time) is highly correlated to the light intensity

(expT ime = 0.7 ms). The observation output channels of the DLD structure is mon-

itored (SensedImg N, showed in Fig. 4.5.A). The camera has a limited 144x176 res-

olution, the work field is around 190 µm x 230 µm and the RBCs are around 5-6

pixels.
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4.6.2 Preprocessing

The sensed image (SensedImg N, Fig. 4.5.A) could be infected with different noises by

the sensor or external causes. The proposed algorithm starts with a Gaussian filter to

reduce the one pixel noise (GaussianImg N, Fig. 4.5.B). In our case, this preprocessing

function implements a low-pass filter that emulates a Gaussian filter using the resistive

grid module available in the SIS Q-Eye. The resistive grid module is extremely efficient

in both speed and power consumption. The spatial bandwidth of the filter is specified

as the sigma parameter of the equivalent Gaussian filter (sigmaV alue = 0.4).

4.6.3 Image processing algorithm

The conversion from gray-scale (GaussianImg N ) to binary image (ThreshImg N,

Fig. 4.5.C) is made by the global threshold value (GTV). The histogram of the gray-

scale image is not flattened, the values of the pixels are between 100 and 145, but anyway

we can consider a stable microfluidic system with fixed illumination (TresholdV alue =

115). During this step the algorithm uses only one function, thus it is optimal in time,

but not in quality. The fluctuation of the light can cause significant errors, if the noise

size exceeds 2-3 pixels.

The erosion function on a binary image (ErosionImg N, Fig. 4.5.D) eliminates or

reduces the noise. Before this step the image is inverted because the following functions

work with white objects on black background. Two main methods exist for image

erosion. The first is to use a predefined constant that allows to select between 4-

neighbor connection and 8-neighbor connection or use a 3x3 pattern that completely

defines the structuring element. Our algorithm is based on the first method with the

4-neighbor connection case and erases 1 pixels to open morphologically the objects and

eliminate the one pixel errors.

The erosion function erases not only the noise and mistakes, but also consumes

pixels from the objects, which is compensated by the algorithm in the next step. The

dilatation is complementary to the morphological closing, it dilates a binary image in

which objects are white and the background is black. After the dilatation function

the cells have the same diameter on the result image (DilatationImg N, Fig. 4.5.E)

like before the erosion. The second importance of dilatation is colligated to the next

function.
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Figure 4.5: Cell detection algorithm. A) Grey-scale sensed image from the cell flow

(SensedImg N ). B) Gaussian filtering on the SensedImg N (GaussianImg N ). C) Binary

image is the result of use of threshold (ThreshImg N ). D) The erosion function elimi-

nates the noise from the image (ErosionImg N ). E) Dilatation fills the holes on the cells

(DilatationImg N ).

The last step of the image precessing is the centering. This function gets the centroid

positions of the objects (CentroidImg N ). The morphological centroid peels the image

one pixel off as many times as indicated in an input parameter. In our case, it iterates

until no change occurs between iterations.
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4.6.4 Counting Particles

The termination part of the algorithm counts the cells/particles inside the Region-Of-

Interest (ROI), which is determined by a predefined binary mask (MaskImg). The result

image (ResultImg N ) is generated from a logical AND function of the CentroidImg N

and the MaskImg. The number of the white pixels in the ResultImg N Images describes

the number of the cells in the focused liquid flow. The efficiency of this algorithm was

more than 90 percent.

4.7 Conclusion and outlook

Based on these experiments, the DLD array could be considered as a powerful tool

for particle separation and manipulation. We could show the evidence that label-free

fractionation of micron-scale particles can be delivered by using a deterministic lateral

displacement array. This suggests that our DLD device may be able to provide rapid

diagnostic information about the haemostatic condition of a blood sample, to explore

cell-to-cell communication or to fractionate blood sample efficiently for clinical tests

without the use of an activation specific label or marker. This chapter begins with

a brave discussion about label-free separation techniques and the exact biomedical

case has been introduced, which we worked on. We identified that the mechanism of

separation is based on an inertial-based motion behaviour of the particles along the

DLD structure. This causes that the inertial-based separation of particles, which was

characterized by computational fluid dynamics simulation, shows correlations with our

experimental measurements and results. Based on the theoretical works, we could

develop an own designed DLD structure, which was useful to solve the initial challenge.

The main objective of this chapter was to produce cell-free plasma contacting ex-

tracellular vesicles from serological samples, which was archived successfully. In this

version of developed device, we would like to understand better experimentally the

functionality of the DLD structure, determine the position of outlets to raise the ef-

ficiency of separation; thus we designed this biochip with an observation part, which

torrents into just one outlet. The cost of these aims was that we have no choice for any

analysis of the output products, but only optically using an inverse light-microscopy.

The efficiency of separation could be raised more by correcting the errors made in the

design, that resulted in the dispersion of the particles and the clogging of the inertial
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section during a long-term measurement. The main design errors were failing to ac-

count for providing inlets with a lower flow resistivity than the DLD column structure,

designing inlets without pre-filters, the unequal-length of each section, and keeping the

flow throughput without any interest. These errors could solved easily in the further

design rising the efficiency of the separation significantly.

As it was mentioned ahead, the DLD can be used as a diagnostic tool for disease

severity, assess the efficacy of different treatment strategies and possibly determine

the eventual location of metastatic invasions for possible treatment. The DLD struc-

ture could be designed for sever purposes as biomedical sample preparation, chemical

analysis or other industrial applications.

In biomedical sense, the DLD array system could be a useful analytic tool for further

haemorheology. The human erythrocyte adopts a distinctive biconcave disc form in

vivo. Any change or variety of theirs structure could highlight uncovered diseases as

sicklemia, infection of malaria, or other blood-borne pathogens.

Another important field of application is the uncovering of circulating tumor cells

(CTCs) and circulating clusters of cancer and stromal cells, which could be identified

in the blood of patients by the presence of malignant cancer. CTCs constitute seeds for

subsequent growth of additional tumors (metastasis) in vital distant organs, triggering

a mechanism that is responsible for the vast majority of cancer-related deaths. The

continuous observation or filtration of CTCs using DLD-based biochips could give us

invaluable information.

Water is essential to life, but many people do not have access to clean and safe

drinking water and many die of waterborne bacterial infections thus nowadays other

challenging field, where the DLD structure could apply, is the observation of water-born

pathogens from drinking water. The most important bacterial diseases transmitted

through watercholera, typhoid fever and bacillary dysenteryis presented. Using the

DLD structure with high throughput could be useful also to detect these water-borne

pathogens.

Finally, I would like to mentioned, changing the separation range close or under

micron-range could also have a fundamental interest in biomedical detection field as

the fractionation of different-sized extracellular vesicles.
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