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An automated approach to the segmentation of HEp-2 cells for the indirect

immunofluorescence ANA test

Simone Tonti, Santa Di Cataldo, Andrea Bottino, Elisa Ficarra

Dept. of Computer and Control Engineering, Politecnico di Torino, Cso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

The automatization of the analysis of Indirect Immunofluorescence (IIF) images is of paramount importance for the
diagnosis of autoimmune diseases. This paper proposes a solution to one of the most challenging steps of this process, the
segmentation of HEp-2 cells, through an adaptive marker-controlled watershed approach. Our algorithm automatically
conforms the marker selection pipeline to the peculiar characteristics of the input image, hence it is able to cope with
different fluorescent intensities and staining patterns without any a priori knowledge. Furthermore, it shows a reduced
sensitivity to over-segmentation errors and uneven illumination, that are typical issues of IIF imaging.

Keywords: HEp-2 cell segmentation, Cell pattern analysis, Indirect immunofluorescence, ANA testing, Microscope
image processing
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1. Introduction

Pattern recognition techniques are at the basis of com-
puter aided diagnosis (CAD) systems in a large number
of medical applications. Such systems support and facili-
tate the decision of the physicians, help reducing diagnosis
errors and enable massive screening at a moderate cost,
with tremendous positive impact on health care quality
and economy [1]. This motivates an ever growing interest
of the research community in providing solutions to the
most challenging medical problems.

Recently, the analysis of indirect immunofluorescence
(IIF) images has received increasing attention, with special
regards to the development of systems for the computer-
aided diagnosis of connective tissue diseases (CTDs). CTD
refers to a broad category of autoimmune disorders that
affect a remarkable percentage of the population, such as
lupus, rheumatoid arthritis and scleroderma. These au-
toimmune disorders are usually diagnosed by means of a
blood exam called the Antinuclear Antibody (ANA) test.
This test leverages on the analysis of IIF images to re-
veal the presence in the blood serum of antibodies that
are responsible for CTDs, typically using HEp-2 (Human
epithelial type 2) cells as a substrate for the microscope
slides. Different antibodies generate distinct patterns of
fluorescence on the HEp-2 cells (see Figure 1), allowing
differential diagnosis.
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While the ANA test has gained a wide recognition for
its diagnostic capabilities and has now become a routine
exam, the visual analysis of IIF images remains a very
challenging task for the physicians, who need to inspect
a massive amount of images. Moreover, several studies
confirm that the reliability of the diagnosis is critically
affected by the subjectivity and variability of the human
evaluation [2, 3], thus demanding for the automatization
of the diagnostic process.

In the last few years, many researchers have applied
pattern recognition techniques to this problem, and sev-
eral automated tools have been proposed to support all
the major steps of the IIF analysis procedure, including
methods to automatize image acquisition and enhance im-
age quality [4, 5], image segmentation techniques [6, 7, 8,
9, 10], methods to improve IIF image representation and
color conversion [11] as well as classification paradigms ap-
plied either to the quantification of the fluorescence inten-
sity [12, 13, 14], to the recognition of the mitotic cells [15,
16] or to the categorization of the fluorescent patterns [17,
18, 19, 20, 21, 22].

Among the other tasks, image segmentation is one of
the most critical and challenging in a computer-aided diag-
nosis system applied to IIF images. It is critical, because
the accuracy of segmentation of the HEp-2 cells heavily af-
fects the following steps of the analysis, such as the recog-
nition of mitotic cells and the categorization of fluores-
cent patterns (details in Section 2.1). Besides that, HEp-2
cell segmentation is challenging because IIF images are in-
trinsically subject to tremendous variability. The major
sources of this variability are: (i) the wide range of stain-
ing patterns (Figure 1) and intensity levels (Figure 2) that
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Figure 1: IIF images with different staining patterns (from left to right: homogeneous, coarse speckled, fine speckled, centromere, nucleolar
and cytoplasmic).

characterize the cells, (ii) the presence of mitotic cells (i.e.
cells undergoing division, Figure 3), and (iii) the possi-
ble generation of artifacts due to uneven illumination and
photo-bleaching effect. This is a very difficult problem
that is far from being solved.

Figure 2: IIF images with same fluorescent pattern and different
intensity level (left: positive intensity, right: intermediate intensity).

In this work, we propose a fully-automated segmen-
tation of Hep-2 cells in IIF images, without any a priori
knowledge of their fluorescence intensity or staining pat-
tern. Our method is designed as a multi-step pipeline.
Both the segmentation approach and its parameters are
adapted to the identified characteristics of the input im-
age. As such, our pipeline is able to segment HEp-2 cells
(including mitotic ones) with different intensity levels and
with six different fluorescent patterns (see Figure 1). Fur-
thermore, we assessed the accuracy of our proposed tech-
nique on a publicly available dataset of IIF images, which
allows a direct comparison with the most significant works
in this area.

This paper is organized as follows. After a short overview
of the medical context (Section 2.1) and of the most rele-
vant literature on IIF segmentation (Section 2.2), we char-
acterize the image dataset (Section 3), we describe our
proposed technique (Section 4) and the parameters’ set-
up (Section 5) and we discuss our experimental results
(Section 6). Finally, Section 7 concludes the paper and
presents future works.

2. Background

2.1. ANA test with Indirect Immunofluorescence Imaging

The ANA test used in conjunction with indirect im-
munofluorescence is able to detect in the blood serum the
presence of autoantibodies responsible for CTDs. The
serum is first diluted and then incubated on a microscope
slide coated with HEp-2 cells, whose antigens selectively

bind to the serum autoantibodies. This bond can be visu-
alized under the microscope by adding a green fluorescent
tag on the slide. The intensity of the fluorescence signal
provides information about the level of the autoantibod-
ies. When using the recommended serum dilution of 1:80,
these levels can be grouped into three categories: nega-
tive (no fluorescence at all), intermediate or positive [2].
Depending on the antibody type, the HEp-2 cells (specif-
ically, only the ones with intermediate or positive level)
will be characterized by distinct patterns of fluorescence.
The ones that are mainly reported in literature are six:
homogeneous, coarse speckled, fine speckled, centromere,
nucleolar and cytoplasmic (Figure 1).

The physicians analyze the microscope slide in three
phases. First, they detect the mitotic cells, i.e. cells under-
going division, whose presence guarantees the good quality
of the slide. Such cells have very distinct textural char-
acteristics compared to the other cells of the image (Fig-
ure 3). Second, they classify the fluorescence intensity level
into negative, intermediate or positive (Figure 2). Third,
only for the intermediate and positive levels, they catego-
rize each of the non-mitotic cells of the slide (namely, the
interphase cells) into one of the six staining patterns of
Figure 1. This ultimately provides information about the
type of CTD affecting the patient.

Most of the techniques for automated mitosis recog-
nition or fluorescent patterns classification, such as those
cited in Section 1, rely on cell segmentation as a prelim-
inary step, even though they do not explicitly propose a
method for such task. Hence, in the context of an au-
tomatization of the IIF ANA test, the accuracy of cell
segmentation heavily affects the whole processing chain.

Figure 3: Examples of mitotic cells.

2.2. IIF cells segmentation: related works

In this paper we focus solely on the automated segmen-
tation of the HEp-2 cells. For more details about other IIF
analysis tasks, the interested reader can refer to the pub-
lications cited in Section 1.
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The available approaches to HEp-2 cell segmentation
can be grouped into three broad categories. A first group
includes the simplest procedures based on thresholding fol-
lowed by morphological operations [23, 24]. This approach
is generally less accurate in the detection of cells charac-
terized by irregular intensity patterns (e.g. the ones where
very dark and very bright areas coexist in the same cell).

A second group of approaches try to overcome this lim-
itation by splitting the segmentation process into two or
more branches according to the characteristics of the re-
gions obtained by either thresholding the images [6, 7, 8,
25] or applying the watershed algorithm [9]. Most of these
approaches have many dataset-dependent parameters, and
do not tackle the segmentation of complex patterns such as
the centromere (present only in [6]) and the cytoplasmic.

Finally, a third approach proposed in [10] is based on
machine learning methods. Specifically, it performs a first
rough segmentation to label the highest and lowest in-
tensity pixels as foreground or background, respectively.
Then, the final classification of the unlabeled pixels (i.e.
the pixels with medium intensity) is obtained with a clas-
sifier trained on the labeled ones.

HEp-2 cell segmentation methods are often tested on
IIF images with different characteristics in terms of reso-
lution, contrast, noise level and fluorescent pattern, which
makes a direct comparison impossible. A rigorous assess-
ment of the most significant techniques in literature has
been performed in [10] on a public benchmark of IIF im-
ages (the same used in this work). As confirmed by their
results, the accurate segmentation of HEp-2 cells with dif-
ferent fluorescence patterns and intensity levels is still chal-
lenging, and most of the proposed techniques are sensitive
to either over-segmentation (e.g. watershed technique) or
under-segmentation problems (e.g. machine learning ap-
proaches). This motivates further research in this field.

3. Material

In our experiments we used a public dataset, firstly
adopted in [10] as a benchmark for IIF CAD systems and
available online at http://mivia.unisa.it. It consists
of 28 IIF images acquired with a fluorescence microscope
(40-fold magnification) coupled with a 50W mercury va-
por lamp and a digital camera with CCD squared pixel of
6.45 µm. The 24 bit colour images have a resolution of
1388×1038 pixels and were manually segmented by med-
ical specialists. The dataset contains a similar amount
of positive and intermediate intensity images and a total
number of 1582 objects, 70 of which are mitotic cells (Fig-
ure 3). The remaining objects are interphase cells of all
the six fluorescent patterns shown in Figure 1. A detailed
characterization of the dataset can be seen in Table 1.

4. Proposed method

The objective of our work is to design a segmentation
algorithm which is robust to the high variance of the IIF

Table 1: HEp-2 cell dataset.

Pattern # of images # of cells # of mitosis
Homogeneous 5 345 11
Fine speckled 4 225 11
Coarse speckled 5 239 14
Centromere 6 388 21
Nucleolar 4 257 5
Cytoplasmic 4 128 8
tot. 28 1582 70

image characteristics. To this end, in this paper we pro-
pose an adaptive marker-controlled watershed technique.

Watershed algorithm is a very popular and versatile ap-
proach for cell segmentation [26]. The marker-controlled
version of this technique leverages on a set of markers
defining the position of the cells in the image in order to re-
duce over-segmentation errors (a well-known limitation of
watershed) and it has already been applied, in many vari-
ants, to other contexts of computer vision and biological
imaging problems [27, 28]. Nevertheless, the automatic
extraction of “good” markers is very challenging, espe-
cially in images with very high variabilities. Hence, previ-
ous attempts to perform IIF image segmentation with this
method (e.g. [9]) had limited success [10]. The implemen-
tation of a marker selection technique which self-adapts to
the characteristics of the input image, as the one proposed
in this work, is a possible solution to this problem.

Before detailing the contributions of our method, we
summarize the two main findings of previous works on
HEp-2 cell segmentation (Section 2.2) that were inherited
by our technique.

(i) One single segmentation approach tackling all the
HEp-2 patterns is generally not feasible. A rough pre-
classification of the images into two or more categories of
textures helps softening this problem [6, 8, 25].

(ii) A HEp-2 image can be generally divided into three
main intensity bands. The highest intensity band con-
tains cell pixels and the lowest intensity band contains
background pixels. The medium intensity band contains
pixels whose label (either cell or background) depends on
the fluorescent pattern [10].

In order to provide a more general technique capable of
tackling the widest range of HEp-2 images possible, in our
work we designed a novel strategy for watershed marker
extraction that exploits both these ideas.

In addition to this, the main contributions of our work
are the following:

(i) a preventive image normalization step, where a mor-
phological processing, self-adapted to the characteristics of
the input image, helps softening variabilities due to differ-
ent fluorescent levels and patterns;

(ii) the use of an adaptive technique for foreground
object detection based on fuzzy c-means clustering, aimed
at reducing the sensitivity to uneven illumination;

(iii) an improved technique for the selective separation
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of touching cells, which leverages on Randomized Hough
Transform.

These aspects of our approach are aimed at strength-
ening the accuracy and robustness of the segmentation.

As an additional contribution, we propose a simple au-
tomated procedure to set the values of the algorithm pa-
rameters. These parameters are robust to variations in
fluorescent intensity and staining pattern, hence they do
not need to be adjusted image-by-image.

The main steps of our proposed technique are summa-
rized in Figure 4 and detailed in the following sections.

4.1. Image enhancement

A preliminary preprocessing step consists in (i) con-
verting the original RGB image into grayscale, by selecting
its green channel, and (ii) performing a rough background
subtraction to enhance the cell bodies. The latter process
is obtained by subtracting from the image a simple model
of its background, computed applying a smoothing average
filter with a large kernel size K (details about parameter
set-up in Section 5).

4.2. Image classification

As anticipated in Section 4, structure and parameters
of the processing pipeline automatically adapt to the char-
acteristic of the input image. IIF images can be divided
into two broad categories that show different textural char-
acteristics and, hence, demand specific processing strate-
gies:

Smooth textured images, characterized by a preponder-
ance of high intensity pixels within the cell bodies and
dark pixels in the background (e.g. the first three images
of Figure 1).

Rough textured images, where remarkable portions of
the cells are as dark as the background (e.g. the last three
images of Figure 1).

It must be noted that there is no direct relation be-
tween the fluorescent pattern of the image and the textu-
ral categories that we defined. That is to say, two images
expressing the same fluorescent pattern may have different
textural characteristics and hence fall into different cate-
gories.

To label the incoming images as smooth or rough tex-
tured, we first binarize them with Otsu’s thresholding al-
gorithm, as proposed by [25]. Then, we compute the av-
erage area of the connected regions of the foreground and
we compare it with a threshold T, roughly equivalent to
the area of a HEp-2 cell (details about parameter set-up in
Section 5). The rationale of this method is that in rough
textured images each high-intensity region is a small por-
tion of a HEp-2 cell. Hence, the average area of all the
high-intensity regions in the image is likely to be smaller
than the threshold. Viceversa, in smooth textured images
this value is equal to or greater than the threshold.

The following steps of the algorithm are then tuned to
the specific image category.

4.3. Image normalization

Image normalization is aimed at easing the marker ex-
traction process by reducing the variabilities due to differ-
ent intensity levels and fluorescent patterns. As mentioned
before, different processing steps are applied to smooth
and rough textured images.

Smooth textures. In order to normalize the character-
istics of images with different intensity levels (Figure 2),
we first perform a global contrast enhancement through
histogram equalization. Then, a gray-scale morphological
opening is applied to remove residual noise (i.e. spurious
dark pixels within the cell).

Rough textures. As in the previous case, we apply his-
togram equalization to normalize the contrast of interme-
diate and positive intensity level images. Before doing
that, in order to limit the influence of the dark areas in-
side the cells, we enhance the intensity of the cell bodies
with respect to the background. This is obtained by a com-
bination of Top-Hat filtering and morphological greyscale
reconstruction. First, white Top-Hat filtering is applied
in order to reduce uneven illumination. Such operation
subtracts to the original image its morphological opening,
computed using a disk-shaped structuring element. Next,
we apply morphological greyscale reconstruction as defined
in [29], which consists in repeated dilations of a marker im-
age until its contours fit a so-called mask image. In our
technique, the morphological dilation of the original image
is used as marker and the erosion as mask, respectively.

4.4. Marker extraction

The automatic marker selection consists of several steps.
First, we apply an adaptive fuzzy c-means clustering ap-
proach to roughly separate the foreground regions from
the background taking uneven image illumination into ac-
count. Then, we locate the cell clusters (i.e. the regions
including two or more touching cells) and apply a Random-
ized Hough Transform to split them into separate objects.
At the end of this procedure, we obtain a collection of in-
ternal markers defining the position of the individual cells
in the image, which, in turns, allows to extract a set of
external markers defining the position of the background.

4.4.1. Adaptive identification of foreground regions

As anticipated at the beginning of this Section, pixel
intensities in IIF images can be roughly grouped into three
bands: low, medium and high intensity. While we can as-
sign with some degree of certainty low and high intensity
pixels to, respectively, background and foreground, label-
ing pixels in the medium intensity band depends on the
image category. In the smooth textured images, the fore-
ground pixels are mostly gathered in the highest band of
the intensity histogram, hence both the medium and low
bands can be reliably attributed to the background. This
does not hold for rough textured images, since in this case
the medium intensity band contains both background and
foreground pixels.
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Figure 4: Scheme of the proposed approach.

Taking this observation into account, we implemented
an adaptive fuzzy c-means clustering technique to identify
the foreground regions. In order to decrease the probabil-
ity of segmentation errors due to uneven illumination, this
technique is implemented with a sliding window approach,
where each image pixel is labelled as foreground or back-
ground according to a local threshold on the pixel value,
which is computed as follows. First, we center a square
window of size W on a pixel p (details about parameter
set-up in Section 5) and we partition the intensity val-
ues within such window into three clusters (low, medium
and high-intensity) by means of a fuzzy c-means cluster-
ing algorithm, FCM [30]. FCM assigns to each pixel in
the window a [0,1] degree of membership to each of the
three clusters. These values are summarized by the mem-
bership functions in Figure 5, which represent the fuzzy
behavior of the algorithm. Then, if the image was labelled
as smooth textured, the threshold for pixel p is calculated
as the intersection of the high and medium membership
functions (value th2 in Figure 5); otherwise, for images la-
belled as rough textured, the threshold is calculated as the
barycenter of the medium intensity cluster’s membership
function (value th1 in Figure 5).

Figure 5: Determination of the intensity thresholds based on FCM
membership functions.

Finally, binary morphological operations (i.e. holes fill-
ing, opening) are applied to regularize the foreground re-
gions and eliminate spurious pixels.

4.4.2. Identification and separation of clustered cells

The foreground regions identified in the previous step
may either contain one individual cell or multiple touching
cells. In the latter case, a unique marker must be assigned
to each of their composing elements.

Individual cells are more elliptical than cell clusters,
which are usually characterized by a very irregular shape.
Thus, in order to tell the cell clusters apart from the indi-
vidual cells, we impose a threshold on the ellipticity value
of each foreground region, which is computed as the ra-
tio between the area of a connected component and the

area of its best-fitted ellipse. The threshold is estimated
by calculating the average ellipticity of all the foreground
objects in the image.

Each candidate cell cluster is then divided into a num-
ber of elliptical sub-regions through a geometric approach
based on the Randomized Hough Transform, RHT [31].
RHT is a probabilistic variant of the classical Hough trans-
form that is commonly used to detect curves. The ap-
proach is characterized by an iterative random sampling
of three points on the object contour, which are then used
to construct the best fitting ellipse. A voting procedure
on the ellipse parameters allows to select the ones that
are the most representative of the given contour. The re-
sulting ellipses are a very rough approximation of the cell
boundaries, and may partially overlap with each other (see
Figure 6). However, their centers indicate the most likely
position of the individual cells within the cell clusters.

Figure 6: Separation of a cell cluster: (1) detail of the original image;
(2) output of adaptive FCM clustering; (3) internal markers obtained
with RHT (red dots); (4) final segmentation after marker-controlled
watershed.

Summarizing, we obtain a set of internal markers in-
cluding the following collections of points: (i) the pixels of
the foreground regions labelled as individual cells and (ii)
the centers of the ellipses obtained after the RHT-based
decomposition of the candidate clusters. The set of exter-
nal markers is then obtained by picking the edge points
of a Voronoi diagram built using the internal markers as
seeds.

4.5. Marker-controlled watershed

The final cell segmentation is obtained applying amarker-
controlled watershed on the gradient of the normalized im-
age (Section 4.3). As it is widely known, watershed algo-
rithm treats the gradient image as a 3D topography sur-
face, starting a region growing from its regional minima.
Here, we modify the gradient image so that the regional
minima occur at the locations specified by the internal and
external markers.
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5. Parameters set-up

As discussed in Section 2.2, a frequent limitation of
previous HEp-2 segmentation techniques is their depen-
dency on a large number of parameters that need to be
manually adjusted by the user. In our work, the segmen-
tation pipeline depends on three parameters only, whose
values are strictly related to the dimension of the objects
to be segmented. These parameters are the following:

K - kernel size of the averaging filter (Section 4.1),
T - threshold to separate smooth and rough textured

images (Section 4.2),
W - window size of the adaptive FCM clustering (Sec-

tion 4.4.1).
In our experiments, K, T and W were set as follows:
(i) we randomly picked six sample images (one per pat-

tern) and performed a binarization by Otsu thresholding
as described in Section 4.2;

(ii) we evaluated the average diameter dAV G and the
average area AAVG of all the connected regions obtained
from (i);

(iii) we set K, T and W as, respectively, 3 × dAV G,
AAV G and dAV G.

It must be noted that K, T and W are reasonably
robust to variations of fluorescent intensity and pattern.
Provided that all the images have been acquired with the
same magnification, objects with the same pattern exhibit
small size differences, compared to the large variation of
size displayed by objects with different patterns. Indeed,
picking one sample image per pattern allows taking both
these variations into account. Hence, the value of the pa-
rameters will ultimately be influenced by image resolution
only. This is very convenient for the clinical practice, as
the parameters can be fixed once-for-all for datasets ac-
quired with the same magnification.

The robustness of the proposed technique is confirmed
by our preliminary experiments, where extensive permuta-
tions of the images used as samples translated into a very
low variation of the estimated parameters values (less than
4%). At the same time, manually changing the automat-
ically set values by up to 30% for K, 20% for T and 50%
for W had no effect on segmentation quality.

6. Experimental Results and Discussion

The described segmentation pipeline was applied to the
dataset of IIF images introduced in Section 3. In order
to avoid any bias in the validation, the segmentation pa-
rameters of each image were calculated using six randomly
picked samples (one per pattern, as explained in Section 5)
which did not include the tested one. In Figure 7 we show
six examples of final segmentations, one per each fluores-
cent pattern.

Based on the qualitative visual assessment of an expert,
who was asked to provide a binary evaluation (correct / not
correct) of the automated segmentations, our algorithm
was able to correctly identify about 80% of the cells in the

dataset and more than 60% of the mitotic cells. Clustered
cells were successfully separated (i.e. with individual cells
correctly identified) in the 83% of the cases. Details of
this qualitative assessment in each of the six fluorescent
patterns are reported in Table 2.

Table 2: Results of the qualitative visual assessment.

# of correct # of cell clusters
Pattern segmentations (%) correctly split (%)
Homogeneous 90.5 94.0
Fine speckled 80.1 82.0
Coarse speckled 85.5 83.0
Centromere 81.3 54.0
Nucleolar 76.1 75.0
Cytoplasmic 57.3 89.0

Besides visual assessment, we performed a thorough
quantitative evaluation of the accuracy of our technique,
based on a pixel-wise comparison between the ground truth
and the corresponding automated segmentation. The fol-
lowing metrics were used:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

f − index =
2 · Precision · Recall

Precision+Recall
(3)

where, for consistency with the previous works, the
values of TP (number of true positives), FP (number of
false positives) and FN (number of false negatives) were
computed according to the extended cell-level definitions
proposed in [10].

Back to the evaluation metrics, the precision is a mea-
sure of how exact the system is in assigning pixels to the
cells, while the recall (also known as sensitivity) is a mea-
sure of its ability to identify cell pixels among the others.
These two metrics are meaningful only when considered
jointly. In general, under-segmentation leads to high val-
ues of precision and low recall, while over-segmentation
leads to high recall and low precision. For example, a
system that assigns all the pixels of the image to the cells
and none to the background would obtain a recall of 100%!
Thus, a “good” segmentation translates into a good com-
promise between precision and recall, which, in turns, re-
flects into higher f-index values.

Overall, our results show a precision of 89.0%, a recall
of 63.9% and an f-index value of 74.4%.

In order to assess these numbers, we performed a com-
parison with the values obtained on the same IIF images
by some of the most representative methods from litera-
ture (data from [10]).

Other methods mentioned in Section 2.2, such as the
one reported in [25], were not included in this evaluation,
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Table 3: Precision, recall and f-index values (%) grouped by pattern. The proposed method is compared with the previous work that obtained
the best performance in terms of f-index for each specific pattern.

Previous works Proposed method
Pattern Best method Prec. Rec. f-ind. Prec. Rec. f-ind.
Homogeneous Otsu [23] 89.3 67.2 75.0 94.6 72.2 81.9
Fine speckled Auto-learning. MLP [10] 91.9 52.5 66.5 89.2 76.0 82.1
Coarse speckled Auto-learning, MLP [10] 92.8 54.2 68.3 85.2 71.0 77.4
Centromere Watershed [9] 41.6 88.7 56.2 90.4 57.4 70.3
Nucleolar Auto-learning, MLP [10] 82.8 44.0 57.3 88.2 59.8 71.3
Cytoplasmic Auto-learning, MLP [10] 55.3 26.9 35.9 73.6 37.0 49.3
Mitotic cells n.a. n.a. n.a. n.a. 65.5 64.4 65.0

Figure 7: Segmentations obtained with our proposed method in the six different staining patterns. Left to right: homogeneous, fine speckled,
coarse speckled, centromere, nucleolar, cytoplasmic. The arrows point at examples of mitotic cells.

because they address private databases of IIF images with
different characteristics in terms of intensity levels and flu-
orescent patterns. Furthermore, some of them rely on a
large number of dataset-dependent parameters. Hence, in
absence of a clearly defined method to adjust these pa-
rameters to different types of images, a direct comparison
with our technique would not be fair.

The graph in Figure 8 reports the performance of our
proposed technique and of the other methods, named with
the same nomenclature used in [10]. Such performances
are depicted as points in a 2D space, where the x coor-
dinate is the value of precision and the y coordinate the
recall. The f-index value is represented by the color, where
darker zones of the graph are associated to lower f-index
values and brighter ones to higher f-index values, i.e. to
better segmentation performance. The ideal segmentation,
where all the performance metrics are equal to 1, is repre-
sented in this space by the upper right corner of the graph.

As shown in Figure 8, our method outperforms the
other techniques in terms of precision and of f-index, the

overall figure of merit. There is only one method obtaining
a recall higher than ours, namely the one referred to as
Watershed [9]. Nevertheless, its lower precision (33.5%)
suggests over-segmentation problems. The Auto-learning
classification-based approach proposed in [10], methods (5)
and (6) in the graph, obtained precisions similar to our
technique (around 85%) but much lower recalls (around
45%), which indicates higher under-segmentation errors.

Similar considerations can be made analyzing the in-
dividual results of the six fluorescent patterns. In the
first six rows of Table 3 we compare the values of pre-
cision, recall and f-index of our technique with the pre-
vious work that obtained the best f-index performance in
each specific pattern (data from [10]). Again, in all cases
we obtained the highest f-index score, higher precision (ex-
cept for fine speckled pattern) and higher recall (exception
made for centromere pattern). Overall, the performance
of our method was good in all the patterns (f-index higher
than 70%) with the only exception of the cytoplasmic class,
where we obtained a f-index of 49%, still higher than the
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Figure 8: Comparison between the proposed technique and other
methods: (1) Otsu [23]. (2) Multistage [8]. (3) Watershed [9]. (4)
Image reconstruction [10]. (5) Auto-learning, MLP [10]. (6) Auto-
learning, NN [10]. The star-shaped marker represents the perfor-
mance of the proposed technique on the segmentation of the mitotic
cells.

other techniques by more than 13%. Indeed, cytoplasmic
images have a very different pattern compared to all the
others, due to the fact that the fluorescent signal generates
from the cytoplasm rather than the nucleus of the cell (as
the name Antinuclear Antibody would suggest). Hence,
even though the cytoplasmic antibodies are often included
with the ANAs in the clinical practice, these images would
benefit from the implementation of ad-hoc segmentation
strategies to cope with their specific criticalites. More-
over, as clarified in [22], in the IIF dataset different types
of cytoplasmic antibodies are grouped together in the same
category, which contains only four images in total. This
translates into even higher variability of this pattern com-
pared to the others.

Finally, the last row of Table 3 shows the performance
of our algorithm on the segmentation of the mitotic cells,
which is a necessary preventive step of mitosis recognition
(see Section 2.1). This is a type of evaluation that was
never reported before in the literature. Despite not ex-
cellent values of sensitivity and recall (65.5% and 64.5%,
respectively), their good balance translates into an inter-
esting f-index of 65% (see the star-shaped marker in Fig-
ure 8).

7. Conclusions and Future Works

In this paper we described a procedure for the auto-
mated segmentation of HEp-2 cells, which is one of the
most critical and challenging steps in a CAD system ap-
plied to IIF images.

Our proposed solution is an adaptive marker-controlled
watershed approach, aimed at improving the automatic
extraction of markers and, ultimately, the segmentation
accuracy. The main features of our algorithm are:

(i) the adaptiveness of both the preprocessing and the
marker selection strategy to the peculiar characteristics of
the input image;

(ii) an improved pipeline for the watershed marker se-
lection, which takes advantage of domain-specific knowl-
edge about the textural and geometrical characteristics of
the HEp-2 cells to reduce the sensitivity to uneven illumi-
nation and over-segmentation errors.

Our experiments show that our solution helps soften-
ing the main limitations of the previous techniques in ap-
proaching datasets with high variations of image charac-
teristics. As such, our algorithm is able to provide seg-
mentation of IIF images with different intensity levels and
fluorescent patterns without requiring any a priori knowl-
edge of the image type and with a good level of accuracy
and robustness.

In the future, we will investigate further improvements
of our work, with special regards to the design of seg-
mentation strategies ad-hoc for the cytoplasmic images.
This would require to extend our dataset first. Finally, we
plan to integrate our segmentation technique into a com-
plete solution for the automated IIF analysis, including
the quantification of fluorescent intensity, the recognition
of mitotic cells and the classification of fluorescent pat-
terns.
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