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Introduction
RNA regulation is key to understanding the rules that govern 
gene expression regulation and epigenetic changes. RNA 
regulation occurs through a variety of mechanisms such as 
alternative splicing, alternative transcription initiation, and 
polyadenylation.1,2 The systemic action of several RNA-
binding proteins (RBPs) is one of the principal mechanisms 
of post-transcriptional gene regulation. Moreover, post-
transcriptional regulation has an effect on cell function and 
dysfunction.3 In fact, the correct action of each RBP and asso-
ciated expression level has an impact on important processes 
for cell function such as cell development. At the same time 
RBPs’ dysfunction or loss of function is associated to diseases 
like neurological disorders4,5 and cancer.6,7

Although, the RBP role and importance are clear, and 
thousands of RBPs are present in eukaryotes, the mechanism 

of action has only been studied precisely for a few RBPs. In 
order to understand the RBPs’ mechanism of action, it is 
important to identify the RBP binding sites, and from these 
sites the common motif. However, in humans, motifs are 
only known for 15% of candidate RBPs,8 and this percentage 
is even lower for other organisms. Although, this field is of 
remarkable importance, it remains almost unexplored.

The first experimental techniques used to determine 
RBPs binding sites were SELEX,9 RIP-chip,10 and CLIP11 
(UV crosslinking and immunoprecipitation). However, these 
experimental techniques require a significant investment in 
terms of work, effort, and time. Only recently, genome-wide 
methods have been adapted to study RBPs’ mechanism of 
action. In particular, CLIP-seq protocols combine the action 
of CLIP and next-generation sequencing (NGS) to derive 
a transcriptome-wide set of RBP binding sites.12 There are 
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different CLIP-seq protocols; each one introduces experimen-
tal variations to improve the signal to noise ratio.

Computational methods are relevant for CLIP-seq data 
processing for the following reasons: CLIP-seq dataset size is 
significant, it is important to exploit all the information pres-
ent in the experimental data, and in some cases, it is necessary 
to integrate other sources of information to process CLIP-seq 
data. Moreover, a quantitative tool to process entirely CLIP-
seq data has not been developed. Instead, tools are designed to  
face specific CLIP-seq data processing steps. In addition, the 
number of CLIP-seq datasets is growing (Fig. 1). For all these 
reasons, computational approaches, designed specifically to 
deal with CLIP-seq data, are important in this field. In par-
ticular, computational methods are a key to process CLIP-seq 
data, facilitate the analysis, and unveil the RBP-specific roles.

This review presents the current status in computational 
methods designed for CLIP-seq data. Our intention is to help 
the reader find the most adapted tools and to motivate the 
readers to work on current challenges and necessities. In par-
ticular, we provide the reader with the basic background, and 
we present a brief overview on CLIP-seq experimental pro-
tocols and databases that contain CLIP-seq data. Moreover, 
we present a general computational pipeline to process CLIP-
seq data and available methods at each step of the pipeline. 
Finally, we present future directions and current challenges.

background
Even though research on RBPs started in the 1970s, the inter-
est in RBPs is concentrated mainly in the last two decades 

(Supplementary Fig. S1). Reviews on different topics regard-
ing RBPs are present in the literature. We found several 
reviews regarding the current understanding of RNA regu-
lation13–17 and the RBPs role in post-transcriptional regula-
tion.18–20 In addition, interesting reviews are also available 
on the RBPs role on different organisms21–23 and compara-
tive studies of RBPs functionality and presence on different  
organisms.8,24

It is worth noting the reviews on the effect of RBPs on 
biological processes and diseases. In particular, RBP gain of 
function and loss of function are associated to important dis-
eases,6,25 like neurological diseases4 and cancer.7 The above 
mentioned reviews highlight the importance of RBP action 
on gene expression regulation.

Nevertheless, major advances in RBP research are marked by 
developments of experimental and computational techniques.26,27 
In fact, we found several reviews concerning advances in the 
experimental field.28,29 In Refs. 12 and 30, the authors address the 
importance of in vivo data and the differences between in vitro 
and in vivo data. In Refs. 31 and 32, the authors present CLIP, 
crosslinking, and immunoprecipitation based approaches, and 
thus, the integration of high-throughput sequencing to in vivo 
experimental techniques.

On the other hand, reviews on computational approaches 
for RBP are mainly focused on structure prediction of 
Protein–RNA interactions,33,34 as structure is key in this  
type of interactions.35–39 Nonetheless, two recent reviews bring 
the attention to the necessity of bioinformatic approaches 
to process data provided by CLIP-seq protocols.40,41  
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figure 1. timeline for computational research on rna-binding proteins (rBPs). We present three indicators: red, the number of structures reported in 
the protein data bank; green, the number of publications of computational approaches for rBPs; and blue, the number of cliP-seq data sets in gEo 
database.
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In, Ref. 40 the authors present bioinformatic approaches 
designed for transcription factors that are frequently used to 
process RBP data.40 Instead in Ref. 41, the authors empha-
size the importance of modeling RNA secondary structure to 
recover RBP, and they conclude that RBP motif recovery is a 
rapidly expanding field but still in its infancy.

Considering the above, we use three indicators and asso-
ciated timelines (Fig. 1) to present the focus of computational 
methods for RBPs. We divided the timeline into two periods, 
before and after the introduction of CLIP-seq protocols. In 
the first period, we observe a similarity between the first and 
second indicators trends. Instead, during the second period, 
we observe a similarity between the second and third indica-
tors trends. We note that during the second period, computa-
tional proposals are essential to handle and process CLIP-seq 
data. Computational proposals, designed for RBPs, face two 
main challenges: (1) to provide insights into the RBP–RNA 
interaction structure and (2) to enable and facilitate CLIP-seq 
data processing. This review presents the computational meth-
ods designed specifically for the second challenge.

Several reviews regarding experimental advances, in par-
ticular reviews regarding CLIP-seq protocols, are currently 
available. On the other hand, reviews regarding computa-
tional approaches for RBPs are focused on structural predic-
tion. However, there are no reviews focusing on computational 
proposals designed for CLIP-seq data, even though this is a 
rapidly evolving field. For these reasons, we present a review 
on the current status of computational proposals used and 
designed for CLIP-seq data. The intention of this review is to 
present current status, and also to motivate the readers to work 
on current challenges and necessities.

cLIP-based experimental data
A major step to understand the RBP role is to identify the RBP 
targets by locating the regions where the protein binds (also 
known as RNA recognition elements, RRE). The experimen-
tal field has achieved notable advances. In particular, experi-
mental techniques used to derive RBP–RNA interactions  
in vivo are integrated with NGS technologies. As a result, it is 
possible to derive interaction sites on a large scale. Currently, 
two experimental approaches, RIP-seq and CLIP-seq, per-
form such integration.

RIP-seq is the combined action of RNA immunoprecipi-
tation (RIP)42 and RNA-seq. RIP-seq is used to recover inter-
action sites between RNA and specific RBPs.32 Even though 
RIP-seq is simple, false positives are a major drawback. On the 
other hand, CLIP-seq approaches combine UV crosslinking 
and immunoprecipitation with NGS technologies to recover 
the interaction sites between RBP and RNAs. The use of UV 
crosslinking makes it possible to obtain reliable sites with a 
higher level of resolution compared to RIP-seq results.32,41

Considering the focus of this paper, we present CLIP-
based approaches in greater detail. CLIP has been widely 
used to identify the RBP–RNA interaction regions, but this 

technique alone yields a reduced set of sequences containing 
the binding regions.43 In practice, CLIP techniques use UV 
irradiation to covalent crosslink the RBP–RNA interaction; 
consequently the investigated protein is immunoprecipitated to 
isolate the complex, and partial RNase digestion of the bound 
transcript is used to select a short region of RNA attached to 
the protein. Nevertheless, only the joint action of CLIP with 
NGS makes it possible to obtain a transcriptome-wide set of 
interaction regions.44 However, there is limited understanding 
of the crosslinking specificity at a physical level.1 In order to 
overcome this limitation, ie, to identify in detail the crosslink-
ing site and to improve the signal to noise ratio, several pro-
tocols have been proposed to determine the crosslinking sites: 
iCLIP,45 PAR-CLIP46 and HITS-CLIP.47–49 In particular, 
the reverse transcription frequently stops at the crosslink-
ing site in the iCLIP protocol. In HITS-CLIP, a nucleotide 
deletion is frequently found at the exact crosslinked amino-
acid.47 Alternatively, the PAR-CLIP protocol introduces an 
experimental variation at the beginning of the procedure, in 
order to facilitate the recognition of the interaction sites.50 The 
nascent transcripts are labeled with a photo-reactive nucleo-
side (4-thiouridine) to print signatures inside and in the vicin-
ity of the crosslinking site. In PAR-CLIP, the thymidine (T) 
to cytidine (C) transition (if nucleoside used is 4-thiouridine) 
near the crosslinking site is frequently found.

However, CLIP-seq experimental data need to be pro-
cessed for further analysis. Therefore, computational methods 
for CLIP-seq data processing are necessary.

databases with cLIP-based data. We present CLIP-
seq data repositories that are publicly and freely available. 
This information is helpful to check whether there is another 
CLIP-seq dataset for the same protein under study or pro-
tein family. In addition, this information is quite valuable to 
design, test and validate new computational proposals.

Data sets obtained with CLIP-based protocols are fre-
quently uploaded to public databases such as the Gene Expres-
sion Omnibus (GEO from NCBI)54 and ArrayExpress (from 
EBI).51 The authors of CLIP-based studies upload experi-
mental data sets to share obtained results. In particular, the 
uploaded data often contain raw and processed data and a brief 
description of the data set. GEO and ArrayExpress are inter-
national public repositories that store high-throughput data 
obtained by the research community; the data sets uploaded in 
these two databases are publicly and freely available.

Recently, three databases have been developed specifi-
cally to store CLIP-based data: CLIPZ,52 doRiNA,53 and 
starbase v2.0.55 These databases store CLIP-seq data, either 
uploaded directly by researchers or data sets available in the 
repositories previously mentioned. The data sets stored are 
carefully revised and processed. In addition, these databases 
provide additional useful functionalities for researchers in the 
field. In Table 1, we present the principal characteristics asso-
ciated with the three databases. In particular, we present the 
data stored, the total number of data sets, and a graph with 
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the organisms present and the protocols used. Moreover, we 
provide a summary of the main advantages associated to each 
database, the website link, and reference.

CLIPZ is the first database published, specifically 
designed for CLIP-based data.52 The database contains data 
sets published from 2010 to 2013. Most of the data available 
are CLIP-seq data, however, the database contains RNA-seq 
data from the same samples and Ribo-some profiling data. The 
CLIPZ database provides details for further processing such 
as the crosslinked nucleotide, the adapter, and the sequencing 
technology. In addition, the database provides statistical sum-
maries, such as region preference, annotation summary, muta-
tion plots, read quality, and read clusters length. The statistical 
summaries are presented for each data set or simultaneously 
for several selected data sets, which is particularly useful to 
make comparisons among several datasets.

doRiNA53 is the second database published. This data-
base contains data from 2010 to 2012, mainly CLIP-based 
data, but it also contains a few RIP-CHIP data sets. doRiNA 

has a local copy of the UCSC genome browser, which makes 
possible to have access to UCSC tracks. It is worth noting that 
doRiNA gives a post-transcriptional regulation view from the 
target or the regulator (miRNAs or RBP) point of view.

The third database is starbase v2.0.55 This database con-
tains data from 2010 to 2013. Initially, starbase was designed 
for microRNAs but the new version contains CLIP-seq data 
for a variety of RBPs. The database provides annotations for 
RBP sites, in particular lnc-RNA, mRNA, pseudogenes, and 
sncRNA. Moreover, it shows RBPs possible associations to 
cancer, which are statistically significant.

These freely available databases provide access to CLIP-
based datasets. However, it is necessary to process the avail-
able data.

computational Pipeline to Process cLIP-seq data
Even though there is great room for further improvements 
in CLIP-seq data computational processing, several bioin-
formatic approaches have been proposed so far. The current 

table 1. databases with cliP-seq data and associated characteristics.

O
rganism

O
rganism

O
rganism

doRINACLIPZ

D
atabase

D
atasets

W
ebsite

A
dvantages

R
eference

StarBase V2.0

P
rotocol

P
rotocol

P
rotocol

0

Human Mouse

20 40 60 80

0
Human MouseC.elegans

10 20 30 40
0

Human MouseC.elegans
20 40 60 80 100

0

PAR-CLIPPAR-CLIP

91 datasets 45 datasets from 17 independent studies 108 datasets from 37 independent studies

(1) Annotations
(1) A copy of the UCSC genome browser in local

(1) Details of crosslinked nucleotide, adapter,
sequencing technology

(2) Predicts targets for a set or regulators
(miRNA or RBP)(2) Statistical summaries for RBP sites including

annotations

http://www.clipz.unibas.ch http://dorina.mdc-berlin.de/rbp_browser/dorina.html http://starbase.sysu.edu.cn/index.php

(3) Post-transcriptional regulation from the
target or regulator point of view(3) Cluster can be visualized at the transcript

and genome level.

(2) Associations to cancer statistically assessed
(3) Frequently updated

[55][53][52]

PAR-CLIP iPAR-CLIPCLASHiCLIP iCLIPRIP-CLIP HITS-CLIP HITS-CLIPHITS-CLIP RNAseq Ribosome profiling

20 40 60 80 0 10 20 30 40
0 20 40 60 80 100

http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39


Computational methods for CLIP-seq data processing

203Bioinformatics and Biology insights 2014:8

proposals address several steps in CLIP-seq data processing. 
In Figure 2, we present a pipeline with the most important 
steps in CLIP-seq data processing, and we associate computa-
tional tools designed for each step.

Here, we summarize these computational approaches 
for processing CLIP-seq data. We divided the computational 
approaches into categories depending on the scope. Moreover, 
in Table 2, we present additional characteristics for computa-
tional approaches specifically designed for CLIP-seq data.

read mapping and cluster detection. The first step 
in CLIP-seq data processing is to map all the reads to the 
genome and transcriptome. During this step, at least one 
mismatch should be allowed because the experimental proto-
cols induce nucleotide transitions (also known as mutations). 
Usually, the most frequently used algorithms to perform this 
step are Bowtie,56 RMAP,57 and Novoalign.58 However, 
TopHat59,60 is commonly used at this step, to identify exon–
exon junctions.

Once the sequence reads are aligned to the genome and 
transcriptome, the following step is cluster detection. A cluster 
of reads is a group of reads, where a read belongs to a cluster 
if it overlaps at least one nucleotide to another read from the 
cluster. Several restrictions can be used to filter noise at this 
step. Usually, only reads with a length higher than a deter-
mined threshold are considered. In addition, clusters with a 
minimum number of unique reads are selected for binding site 
detection.

binding site detection. After the cluster detection, the 
following step is reliable binding site detection. The main 
challenge at this step is to improve the signal to noise ratio, 
hence to remove background and false positives. The most 
common strategy to face this challenge is to analyze clusters 

distribution profiles. Computational approaches that use this 
strategy are WavClusteR,61 PARalyzer,62 Piranha,63 PIPE-
CLIP,64 and dCLIP.65 However, considering RNA structural 
features is also a good strategy that is present in GraphProt.66 
In this section, we briefly describe the above-mentioned com-
putational proposals and present specific advantages.

It is worth noting that at this step it is definitely a plus to 
consider the number of sequences aligned to a specific cluster 
because this number strongly depends on the transcript abun-
dance and cluster length.63,65

•	 PARalyzer62 is the first computational approach designed 
for RBP site detection. This tool uses a non-parametric 
kernel density estimate and a classifier; it identifies the 
RBP sites based on a combination of T to C mutations 
and read density. PARalyzer can improve binding site 
recognition in data sets published.

•	 WavClusteR61 is a computational tool proposed to 
overcome two problems in PAR-CLIP data process-
ing. The first problem is the number of false positives, 
and the second is to improve cluster detection. Muta-
tions present in experimental data are experimentally 
induced and also non-experimentally induced. In fact, 
nucleotide mutations are induced by the experimental 
protocol but in addition, several other factors cause 
mutations as well, such as sequencing errors, contami-
nation with external RNA, and single-nucleotide poly-
morphisms (SNPs). WavClusteR uses a non-parametric 
two-component mixture model to distinguish experi-
mentally from non-experimentally induced mutations, 
thus reducing the presence of false positives. In addi-
tion, the second part of wavClusteR exploits geometric 

• Bowtie
• RMAP
• Novoalign
• TopHat

• WavCluster
Binding site detection

• Piranha

• Piranha

• PIPE-CLIP

• mCART

• PIPE-CLIP
• PARalyzer
• GraphProt

• GraphProt
Global

prediction

Motif
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Peak
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Noise and

Read
mapping and

Cluster
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false
positives
reduction

• MEME, cERMIT, GLAM2,
  MatrixREDUCE
• MEMEris, Phylogibbs,
  RNAcontext, RNAmotifs

• WavCluster

figure 2. steps for cliP-seq data processing.
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properties of the coverage function to identify reliable 
binding sites.

•	 Piranha63 is a computational tool designed for site iden-
tification (peak calling), in CLIP-seq (HITS-CLIP, 
PAR-CLIP, iCLIP) and RIP-seq data. Piranha deals 
with three key challenges on computational site iden-
tification: (1) presence of noise and false positives,  
(2) resultant reads depend on transcript abundance, and 
(3) it is important to integrate different sources of infor-
mation to improve peak calling. Piranha63 uses a zero-
truncated negative binomial distribution to model read 
counts, when additional information is available (cova-
riates such as the transcript abundance), Piranha uses a 
zero-truncated negative binomial regression model. In 
addition, Piranha can compare CLIP-seq data from dif-
ferent samples because it corrects the reads dependence 
on transcript abundance.

•	 PIPE-CLIP64 is a pipeline to identify binding regions. In 
PIPE-CLIP, the data are pre-processed to remove noise 
such as the PCR duplicates. Consequently, PIPE-CLIP 
identifies enriched clusters (considering cluster length 
effect on the number of reads) and reliable mutations. 
Each enriched cluster with at least one reliable mutation 
is selected as an RBP binding site.

•	 dCLIP65 is a computational approach designed for quan-
titative CLIP-seq comparative analysis. dCLIP has two 
parts: normalization and RBP sites detection for com-
parison. The normalization step is necessary for an unbi-
ased comparison. The second part is necessary to detect 
common or different sites for different CLIP-seq samples 
in order to perform a comparison.

•	 GraphProt66 is a machine learning approach designed 
to identify RBP binding sites. This approach uses a 
training set to learn RBP binding preferences from 
high-throughput experimental data such as CLIP-seq 
and RNAcompete.67 It uses a graph-kernel strategy 
to obtain a large set of features from the training set 
and any input data set. It should be noted that the fea-
tures concern RNA sequence and also structure char-
acteristics. GraphProt uses a support vector machine 
(SVM) to identify RBP sites using the set of features 
extracted. Moreover, when affinity data are available, 
GraphProt uses a support vector regression (SVR) to 
estimate affinities.

Motif recovery. The next step is to search the specific 
motif recognized by the RBP, among reliable binding sites. 
So far, two strategies are used for this purpose. The first one 
consists in using tools developed to detect motifs in DNA that 
consider only sequence information. The most frequently used 
tools for this strategy are MEME,68 cERMIT,69 GLAM2,70 
and MatrixREDUCE.71 The second strategy consists in using 
motif recognition algorithms that integrate additional infor-
mation to guide the motif search. Examples from the second 

strategy are MEMEris,72,73 PhyloGibbs,74,75 RNAcontext,76,77 
and RNAmotifs.78

It is worth noting that the second strategy permits to 
consider RNA-specific characteristics. In fact, MEMEris72 
uses RNA secondary structure to guide the motif search 
toward single-stranded regions, and PhyloGibbs74 integrates 
conservation information. Moreover, RNAcontext77 works 
on large-scale RNA-binding affinity datasets and provides 
the RNA motif in terms of sequence and structure. Finally, 
RNA motifs78 identifies multivalent regulatory motifs.

Global prediction. Once the RBP has a defined motif, 
we can use the motif to predict binding sites in a determined 
species. For this purpose, we should analyze motif occurrence 
characteristics79 and predict candidate RBP binding sites. 
mCarts80 and GraphProt66 are two approaches proposed for 
this purpose.

In particular, mCarts is an algorithm based on a hidden 
Markov model that predicts functional RBP binding sites 
based on the number and spacing of motif sites, accessibility 
(RNA secondary structure) and conservation information. On 
the other hand, GraphProt is a machine learning approach 
that predicts candidate RBP binding sites within the same 
organism (training set data). In Table 2, we present additional 
characteristics such as availability.

considerations to reduce false positives. In this sec-
tion, we present two studies on CLIP-seq data, the results can 
be added to computational tools to reduce the false positives 
and improve the performance.

As already mentioned, in CLIP-based protocols covalent 
bonds are induced through UV crosslinking, only the RNA 
sites with strong bonds are selected through stringent washes. 
A study on PAR-CLIP background is presented in Ref. 81. 
This study presents possible sources of false positives such as 
RNAs bound to proteins different from the RBP of interest or 
false crosslinking events. Moreover, it shows that quantifying 
and taking into consideration possible sources of false positives 
are important to improve the recognition of the site specificity. 
As a result of the study, a set of background binding events in 
PAR-CLIP data is publicly available in GEO (GSE50989).

In addition, CapR is a tool designed to obtain a structural 
profile, which has been applied to CLIP-seq data. CapR82 
obtains a probability for each RNA base position, which 
reflects the location at determined structural contexts (CapR 
defines six contexts). Using these probabilities is possible to 
obtain a structural profile for an RNA sequence. Researchers 
can apply CapR on CLIP-seq data, so far, the obtained results 
are encouraging.

Further considerations
As indicated above, computational approaches are key to pro-
cess CLIP-seq data and this field is expanding. In the RBP-
RNA action, not only the sequence is important but also the 
RNA secondary structure. RBPs recognize the motif sequence 
content as well as the motif secondary structure. Even though 
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RNA secondary structure is considered in a few tools, it is a 
must and not just a plus.

Moreover, additional improvements can be achieved by 
integrating information about RBP domains, such as the one 
present in RBPDB database.83

In addition, advances on experimental field have provided 
techniques such as RNAcompete.67 RNAcompete provides an 
affinity measure, independent on transcript abundance, it is 
an in vitro method. However, there is not a computational 
proposal that integrates information from both CLIP-seq and 
RNAcompete data, simultaneously.

Finally, an additional step can be added to the pipeline in 
Figure 2. After global prediction, integrative approaches for 
network inference can be used. This step is necessary to have a 
complete understanding of the specific role of RBPs.
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