
21 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Rediscovering Logarithmic Diameter Topologies for Low Latency Network-on-Chip-based applications / Condo, Carlo;
Martina, Maurizio; RUO ROCH, Massimo; Masera, Guido. - ELETTRONICO. - 1:(2014), pp. 418-423. (Intervento
presentato al convegno Euromicro International Conference on Parallel, Distributed and Network-Based Processing
tenutosi a Torino nel febbraio 2014) [10.1109/PDP.2014.85].

Original

Rediscovering Logarithmic Diameter Topologies for Low Latency Network-on-Chip-based applications

Publisher:

Published
DOI:10.1109/PDP.2014.85

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2542496 since:

IEEE / Institute of Electrical and Electronics Engineers

Rediscovering Logarithmic Diameter Topologies for
Low Latency Network-on-Chip-based applications

Carlo Condo, Maurizio Martina, Massimo Ruo Roch, Guido Masera
Electronics and Telecommunications Department

Politecnico di Torino
Torino, Italy

Email: carlo.condo(maurizio.martina, massimo.ruoroch, guido.masera)@polito.it

Abstract—Low-latency Network-on-Chip (NoC) applications
have tight constraints on the clock budget to perform communi-
cation among nodes. This is a critical aspect in NoC-based designs
where the number of clock cycles spent for communication
depends mainly on the topology and on the routing algorithm.
This work deals with logarithmic diameter topologies, that were
proposed for computer networks, and shows that an optimal
shortest-path routing algorithm can be efficiently implemented
on this kind of topologies by means of a very simple circuit. The
proposed circuit is then exploited to reduce the area and the
power consumption of a recently proposed NoC-based design.
Experimental results show that the proposed circuit allows
for a reduction of about 14% and 10% for area and power
consumption respectively, with respect to a shortest-path routing-
table-based design.

I. INTRODUCTION

Network-on-Chip (NoC) is a design paradigm that has been
proposed mainly to improve the flexibility and the scalability
of on-chip interconnection systems [1]–[4]. Several directions
have been investigated in the last years to improve the NoC
efficiency and reliability and to reduce NoC complexity and
power consumption (e.g. [5]–[7]), including wireless NoCs [8]
based on the Ultra-Wide-Band technology [9]. These figures
depend not only on application characteristics but also on
design parameters including NoC topology, Routing Algorithm
(RA) and scheduling policy [10]–[12]. As highlighted in many
works, 2D mesh and 2D mesh-like topologies are well suited
for tile-based ASIC implementation (e.g. [13], [14]). However,
recent works pointed out from different perspectives that
several cases of practical interest have tight throughput and
latency constraints. Significant examples are i) application-
specific NoCs [15], where the NoC used to interconnect
different IPs is tailored around the application, and ii) intra-
IP NoCs [16], where very low complexity NoC structures
are employed to interconnect processing elements inside an
IP. Minimizing the number of clock cycles spent to send a
message from the source node to the destination node is a
fundamental aspect. Thus, the maximum distance between two
nodes, i.e. the diameter of the topology, plays a significant
role in reducing the delivery time. Indeed, not only efficient
RAs but also logarithmic diameter topologies, such as de-
Bruijn [17] and Kautz [18] ones, have attracted the attention
of some researchers [19]–[24]. Moreover, in [25] an optimum
VLSI layout for de-Bruijn graphs is proposed to make VLSI

implementation feasible. Furthermore, de-Bruijn and Kautz
topologies have several interesting properties including self-
routing [26]. This property has been exploited in [27] to
derive a shortest-path RA to connect any pair of nodes. To
the best of our knowledge, the implementation of this RA
has not been addressed yet in the open literature. Besides,
in order to achieve scalable and reliable interconnection
networks, distributed routing must be employed. A flexible
solution to support most RAs and topologies relies on routing-
tables. Unfortunately, this approach does not scale in terms of
latency and area. To overcome this limitation Logic-Based-
Distributed-Routing (LBDR) [28] and its improved versions
[14], [29] were proposed for mesh-derived topologies1.

Inspired by the LBDR approach, this work shows that
the shortest-path RA described in [27] can be implemented
in a distributed fashion leading to lower complexity than
the routing-table-based approach. The proposed solution is
exploited to reduce the complexity of the intra-IP-NoC-based
architecture proposed in [31]. It is worth pointing out, for the
sake of clarity, that the RA proposed in [27] is optimal and that
this work is focused on the efficient hardware implementation
of the shortest-path RA.

The rest of the paper is organized as follows. Section
II presents logarithmic topologies and summarizes the main
characteristics that can be exploited in NoC design. In Section
III the optimal shortest-path RA presented in [27] is revised
and in Section IV a simple circuit to implement it is proposed.
The proposed circuit is exploited in Section V to reduce the
complexity of the intra-IP-NoC based architecture proposed in
[31]. Finally, in Section VI conclusions are drawn.

II. LOGARITHMIC DIAMETER TOPOLOGIES

De-Bruijn and Kautz topologies are obtained by building
directed graphs according to the following definitions.

Definition 1. A de-Bruijn sequence is an array of q elements,
where each element is taken from an alphabet A with l
symbols.

Thus, a de-Bruijn graph is made of nodes labeled with
de-Bruijn sequences. Let v = vq−1, . . . , v0 and w =
wq−1, . . . , w0 be the labels (expressed as de-Bruijn sequences)

1For a survey on LBDR the reader can refer to [30]

of two nodes v and w in a de-Bruijn graph, where v and w
are decimal numbers and vi, wi ∈ A with 0 ≤ i ≤ q − 1.
There is an arc from node v to node w if wi = vi−1 for
1 ≤ i ≤ q − 1, that is w is obtained by left-shifting v and
by placing in the rightmost position a symbol from A. As a
consequence, each node is connected to l nodes. Thus, the
graph is regular with degree D = l and the number of nodes
is P = lq (Fig. 1 (a)). Unfortunately, de-Bruijn graphs have
self-loops (one node connected to itself). Self loops can be
avoided using Kautz graphs.

Definition 2. A Kautz sequence is an array of q elements,
where each element is taken from an alphabet A with l
symbols avoiding sequences with equal symbols in consecutive
positions.

A Kautz graph is made of nodes labeled with Kautz
sequences and there is an arc from node v to node w if
wi = vi−1 for 1 ≤ i ≤ q − 1 (with w1 ̸= w0). In other
words there is an arc from node v to node w if w is obtained
by left-shifting v and by placing in the rightmost position a
symbol from A, subject to the constraint that the result is a
Kautz sequence. As a consequence, each node is connected to
l− 1 nodes so the graph is regular with degree D = l− 1 and
the number of nodes is P = l · (l − 1)q−1 (Fig. 1 (b)).

Thus, in general, de-Bruijn and Kautz graphs for given
P and D not always exist. To overcome this limitation
generalized de-Bruijn and generalized Kautz graph have been
proposed [32]–[34].

Definition 3. A generalized de-Bruijn graph has an arc from
node v to node w if (1) holds true:

w = (D · v + r) mod P (1)

with 0 ≤ v ≤ P − 1 and 0 ≤ r ≤ D − 1 (Fig. 1 (c)).

Definition 4. A generalized Kautz graph has an arc from node
v to node w if (2) holds true:

w = −(D · v + r) mod P (2)

with 0 ≤ v ≤ P − 1 and 1 ≤ r ≤ D, or equivalently

w = [(D · (P − 1− v) + r] mod P (3)

with 0 ≤ v ≤ P − 1 and 0 ≤ r ≤ D − 1 (Fig. 1 (d).

Unfortunately, both generalized de-Bruijn and generalized
Kautz graphs have self loops. However, as shown in [26]
the number of self loops s in generalized de-Bruijn and
generalized Kautz graphs are D ≤ s ≤ 2·D−2 and 0 ≤ s ≤ D
respectively. Besides, in generalized Kautz graphs s = 0 is
achieved when

P mod (D + 1) = 0, (4)

that is D + 1 is a divider of P [26]. Moreover, as detailed
in [33], [34], generalized de-Bruijn and generalized Kautz
graphs have logarithmic diameter. In particular, the diameter
of generalized de-Bruijn and generalized Kautz graphs are
⌈logD(P)⌉ and ⌈logD(P · (D− 1)+D)⌉− 1, where the latter

Algorithm 1 Optimal shortest-path RA for generalized Kautz
topologies

1: if v = w then
2: z ← 0
3: else
4: z ← 1
5: found← FALSE
6: while NOT found do
7: if z is odd then
8: g ← [w + (v + 1) ·Dz] mod P
9: else

10: g ← [w − v ·Dz] mod P
11: end if
12: if g < Dz then
13: found← TRUE
14: for n = 1 to z do
15: if n is odd then
16: tn ← D − 1− gn
17: else
18: tn ← gn
19: end if
20: end for
21: else
22: z = z + 1
23: end if
24: end while
25: end if

one is the lower bound for directed Moore graphs [35] and ⌈x⌉
is the minimum integer not smaller than x. As a consequence,
generalized Kautz graphs not only have less self-loops than
generalized de-Bruijn ones but they are optimal from the
diameter size point of view. According to [26] the number
of self-loops in generalized Kautz topologies is s = b · ⌊D/b⌋,
where b = gcd(P,D+1) and ⌊x⌋ is the maximum integer not
larger than x.

III. OPTIMAL SHORTEST PATH ROUTING FOR
GENERALIZED KAUTZ TOPOLOGIES

In [26], the authors proved that generalized de-Bruijn and
generalized Kautz graphs have self-routing property and that
there exist a path of length m = ⌈logD(P)⌉ that connects any
pair of nodes. This result has been extended in [27] where the
self-routing property is exploited to derive a shortest path RA
to connect any pair of nodes. For each pair of nodes the RA
computes a tag t that is used to build the shortest path. The
tag is then converted into an array of D-ary elements and the
number of elements in the array (z ≤ m) is the length of the
path. Algorithm 1 shows the steps to compute t, where v and
w are the source and the destination node respectively. Once
the tag has been computed it is used to derive the routing path
as follows:

yn−1 = [D · (P − 1− yn) + tn−1] mod P (5)

where n = 1, . . . , z and yz = v and y0 = w.

(d)

10 01

11 12

2002

2221

012

120

201

010 101

121

212

210

021

020

202102

100

000

001

010

011

101

110

111

(c)

101

110

001

010

011

000

100

111

00

(a) (b)

Fig. 1. Example of logarithmic diameter graphs: (a) q = 2, l = 3 (D = 3, P = 9) de-Bruijn graph, (b) q = 3, l = 3 (D = 2, P = 12) Kautz graph, (c)
D = 3, P = 8 generalized de-Bruijn graph, (d) D = 3, P = 8 generalized Kautz graph.

IV. DIGITAL CIRCUIT FOR DISTRIBUTED OPTIMAL
SHORTEST PATH ROUTING

As it can be inferred from the description in Section III,
the shortest path from node v to node w can be computed
resorting to the recurrence in (5). Since the recurrence order
is one, there is no need to keep trace of the previous steps. In
other words, when a packet comes to node yn, only w and yn
are required to compute yn−1. As a consequence, Algorithm
1 can be reused simply replacing v with yn and the for loop
at line 14 in Algorithm 1 reduces to the computation of tz−1.
Moreover, (5) can be rewritten as

yn−1 = (χn + tn−1) mod P (6)

where χn = [D ·(P −1−yn)] mod P is only a function of yn
and so it can be precalculated and stored into each node. On
the other hand, the term tn−1 depends on w and yn (Algorithm
1) so it can be implemented with some constants and few logic
as shown in Fig. 2 and detailed in the following paragraphs.

The proposed circuit to implement the shortest path routing
is made of two parts: the first one computes g, the second

one represents g as D-ary array, whose elements are gn,
and implements (6). The first part of the circuit is obtained
observing that the while loop at line 6 in Algorithm 1 is
devoted to find both z, i.e. the length of the shortest path
from node v to node w, and g, required to compute the tag t.
However, since z ≤ m = ⌈logD(P)⌉ the search of z can be
performed in parallel. Indeed, the proposed circuit computes
m candidates for g, where the i-th candidate (g(i)), according
to lines 8 and 10 of Algorithm 1, is

g(i) =

{ [
w + (v + 1) ·Di

]
mod P if i is odd[

w − v ·Di
]
mod P otherwise

(7)

Then, each candidate is compared to a threshold (Di) and a
priority encoder selects g = g(z) = mini{g(i) < Di}. As it
can be observed, (7) can be rewritten as g(i) = (w+ki) mod P
where ki = [(v + 1) · Di] mod P when i is odd and ki =
P − [(v · Di) mod P] otherwise. In both cases ki depends
only on v so it can be precalculated and stored in each node.
The mod P operation is implemented by a subtracter and a
multiplexer by checking the sign of w+ ki−P : if the sign is

priority
encoder

+−

10 10 10

+ +− −

−

+
+

− 0

1

1

0

w

k2 k
m

P

g(m)g(2)g(1)

< D < D2 < Dm

g

g
z−1 g0

D − 1 χ
n

P

y
n−1

k1

h

h0

t
n−1

Fig. 2. General architecture to implement the RA described in Algorithm 1

positive then g(i) = w + ki − P , otherwise g(i) = w + ki.
The second part of the circuit relies on representing g as an

array of at most m D-ary elements. The element at position
h = z−1, that is gz−1, is used to compute tz−1 as in lines 16
and 18 of Algorithm 1. The least significant bit of h, referred to
as h0, selects the correct value for tz−1, that is D−1−gz−1 if h
is odd, gz−1 otherwise. Finally, tz−1 is employed to obtain the
next node as in (6), namely it is added with χn and the mod P
operation is implemented by a subtracter and a multiplexer by
checking the sign of (χn + tn−1)− P : if the sign is positive
then yn−1 = (χn + tn−1)− P , otherwise yn−1 = χn + tn−1.

As it can be inferred from Algorithm 1 and Fig. 2, sig-
nificant complexity reduction can be achieved if both D and
P are powers of two. Indeed, all modulo P operations and
the generation of D-ary elements are implemented with no
hardware cost exploiting binary representation. On the other
hand, being both D and P powers of two (4) cannot be
satisfied and so some self-loops have to be tolerated. As an
example in Fig. 3 the architecture of the RA for D = 4 and
P = 64 is shown, where modulo P operations are obtained
by letting the data wrap (when an overflow occurs) and both
comparators and priority encoder are implemented with few
logic gates.

V. CASE OF STUDY: INTRA-IP NOC FOR A TURBO/LDPC
DECODER ARCHITECTURE

As summarized in the introduction, application specific and
intra-IP NoCs [15], [16] have tight throughput and latency con-
straints with low complexity requirements. Thus, logarithmic
diameter topologies and shortest-path RA are ideal candidates

66 6

6 6 6

priority
encoder

01 0010

+3
60

1

−

bit 5 4

bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

6

2

6

0100 10
2

bit 5 4 3 2

C1

< 16

h

C2

h0

C2

C1

C2

C1

h1 h0

g

g2 g1 g0

y
n−1

χ
n

t
n−1

w

k1 k2 k3

g(1) g(2) g(3)

f (1)

C1

f (2)

C2

< 4 < 16 < 64

< 4

Fig. 3. Architecture of the RA in Algorithm 1 when D = 4 and P = 64

for such applications. Significant examples are in the field of
multimedia signal processing [36], telecommunications [10]
and channel code decoding, such as turbo codes [37], Low-
Density-Parity-Check (LDPC) codes [19] or both [31]. It
is worth noting that application specific and intra-IP NoCs
also have particular traffic patterns and packet structures.
Tailoring the NoC topology around the specific characteristics
of the traffic patterns is a viable solution to both reduce the
NoC complexity and increase the NoC throughput. As an
example, irregular NoCs have been successfully used for video
processing applications [38], [39]. On the contrary, in turbo
and LDPC code decoders the traffic is almost uniform both in
time and space [40]. Thus, regular topologies able to minimize
the maximum distance between two nodes (as logarithmic
diameter topologies) are a natural choice. Moreover, in turbo
and LDPC code decoders the traffic is deterministic as it is im-
posed by the interleaver and parity check matrix respectively.
As a consequence, all the routing and scheduling information
can be precomputed by the means of a simulator, e.g. [41],
and so the sequence of commands for each routing element
can be precalculated as well and stored in memories. However,
this approach requires a large amount of memory becoming
almost impractical in some real cases [42]. Thus, routing and
scheduling information have to be computed on-the-fly with
limited complexity and delay. For this class of applications
a low complexity circuit for shortest-path routing, as the one
presented in Section IV, is a scalable alternative to routing-
tables. Also the structure of the packet is usually simple and
tailored around the application. As an example in [31] packets
are made of a header, containing the destination node, and a
payload containing one datum the memory location where the
datum will be stored at destination node. Thus, the packet is
moved in the network as a whole without resorting to flits.

The node architecture in these applications is made of
a Processing Element (PE), devoted to computation, and a
Routing Element (RE) to send and receive data. The RE
relies on a simple structure made of a (D + 1) × (D + 1)

crossbar, D + 1 input FIFOs and output registers, a RA and
a scheduler (see Fig. 4). As discussed in [41] shortest-path

crossbarread enable load
conf.

output
[0,D+1][0,D+1]

input

RA scheduler

Fig. 4. Architecture of a node for intra-IP NoCs

RAs coupled with Round-Robin (RR) and Longest-Queue-
First (LQF) scheduling policies are the most suited solutions
for channel code decoding applications. Let us take the intra-
IP NoC-based multi-mode turbo/LDPC decoder architecture
presented in [31] as a case of study. This architecture relies
on a D = 3, P = 22 nodes generalized Kautz topology where
the shortest-path RA is distributed and performed via routing
tables. In the following, the architecture presented in [31] is
extended to the case D = 4, P = 32 and it will be referred to
as Routing-Table-based NoC (RT-NoC) architecture. The RT-
NoC architecture is then modified replacing the routing tables
with the circuit-based RA described in Section IV. This new
architecture will be referred to as RA-NoC. Both architectures
have been described in VHDL and implemented on a CMOS
90 nm standard cell technology for a 200 MHz target clock
frequency [43]. As an example the post place and route layout
of the proposed intra-IP RA-NoC for D = 4, P = 32 is shown
in Fig. 5. Stemming from the design in [31], the FIFOs in
each node have been conservatively sized to eight locations to
prevent deadlock.

Post place and route area and switching-activity-based
power consumption are summarized for both architectures in
Table I. As it can be observed the proposed RA-NoC features
an area and a power consumption reduction of about 14% and
10% with respect to the RT-NoC.

Finally, in Fig. 6 the area of one routing-table-based RE
is compared with the area of one circuit-based RE as a
function of P in the same test conditions employed for the
full decoders. As it can be observed, as long as P increases
the advantage of the circuit-based RE becomes larger, e.g.
when P = 64 the area reduction is about 20% with respect to
one table-based RE.

VI. CONCLUSION

In this work a circuit to implement the optimal shortest-
path RA proposed in [27] for generalized Kautz topologies
is presented. The proposed circuit features lower complexity
and power consumption than routing-table-based shortest-path
RAs. Experimental results on the NoC-based design proposed

Fig. 5. Post place and route layout of the proposed intra-IP RA-NoC for
D = 4, P = 32

0 20 40 60 80 100 120 140
3000

3500

4000

4500

5000

5500

6000

P

A
re

a
[µ

m
2]

routing−table based
circuit based

Fig. 6. Area of one routing-table-based RE and one circuit-based RE as a
function of P .

TABLE I
AREA (A) AND POWER (POW) CONSUMPTION COMPARISON BETWEEN

RT-NOC AND RA-NOC. CMOS 90 NM STANDARD CELL TECHNOLOGY,
CLOCK FREQUENCY 200 MHZ, 8-ELEMENT FIFOS, P = 32, D = 4.

A Pow
[mm2] % reduction [mW] % reduction

RT-NoC 0.807 - 75.1 -
RA-NoC 0.691 -14.4% 67.2 -10.5%

in [31] show that the complexity of the NoC is reduced by
about 14% and the power consumption by about 10%.

ACKNOWLEDGMENT

This work has been partially funded by the Newcom#
project.

REFERENCES

[1] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-
switched interconnections,” in Design, Automation and Test in Europe
Conference and Exhibition, 2000, pp. 250–256.

[2] W. J. Dally and B. Towels, “Route packets, not wires: On-chip inter-
connection networks,” in Design Automation Conference, 2001, pp. 684–
689.

[3] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in IEEE Computer Society Annual Symposium on VLSI,
2002, pp. 105–112.

[4] L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, Jan 2002.

[5] S. V. Tota, M. R. Casu, M. R. Roch, L. Rostagno, and M. Zamboni,
“MEDEA: A hybrid shared-memory/message-passing multiprocessor
NoC-based architecture,” in Design, Automation and Test in Europe
Conference and Exhibition, 2010, pp. 45–50.

[6] W. Xiohang, M. Palesi, Y. Mei, J. Yingtao, M. C. Huang, and L. Peng,
“Low latency and energy efficient multicasting schemes for 3D NoC-
based SoCs,” in IEEE International Conference on VLSI and System-
on-Chip, 2011, pp. 337–342.

[7] M. Daneshtalab, M. Ebrahimi, J. Plosila, and H. Tenhunen, “CARS:
Congestion-aware request scheduler for network interfaces in NoC-based
manycore systems,” in Design, Automation & Test in Europe Conference
& Exhibition, 2013, pp. 1048–1051.

[8] D. Zhao and Y. Wang, “SD-MAC: design and synthesis of a hardware-
efficient collision-free QoS-aware MAC protocol for wireless Network-
on-Chip,” IEEE Transactions on Computers, vol. 57, no. 9, pp. 1230–
1245, Sep 2008.

[9] M. Crepaldi and D. Demarchi, “A 130-nm CMOS 0.007 mm2 ring-
oscillator-based self-calibrating IR-UWB transmitter using an asyn-
chronous logic duty-cycled PLL,” IEEE Transactions on Circuits and
Systems II, vol. 60, no. 5, pp. 237–241, May 2013.

[10] F. Clermidy, N. Cassiau, N. Coste, D. Dutoit, M. Fantini, D. Ktenas,
R. Lemaire, and L. Stefanizzi, “Reconfiguration of a 3GPP-LTE telecom-
munication application on a 22-core NoC-based system-on-chip,” in
IEEE/ACM International Symposium on Networks on Chip, 2011, pp.
261–262.

[11] K. Chen, S. Lin, H. Hung, and A. Wu, “Topology-aware adaptive routing
for nonstationary irregular mesh in throttled 3D NoC systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 10, pp.
2109–2120, Oct 2013.

[12] K. S. M. Li, “CusNoC: Fast full-chip custom NoC generation,” IEEE
Transactions on VLSI systems, vol. 21, no. 4, pp. 692–705, Apr 2013.

[13] S. Murali, D. Atienza, P. Meloni, S. Carta, L. Benini, G. D. Micheli, and
L. Raffo, “Synthesis of predictable networks-on-chip-based interconnect
architectures for chip multiprocessors,” IEEE Transactions on VLSI
systems, vol. 15, no. 8, pp. 869–880, Aug 2007.

[14] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho,
F. Silla, and J. Duato, “Cost-efficient on-chip routing implementations
for CMP and MPSoC systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, no. 4, pp. 534–547,
Apr 2011.

[15] L. Benini, “Application specific NoC design,” in Design, Automation
and Test in Europe Conference and Exhibition, 2006, pp. 1330–1335.

[16] F. Vacca, H. Moussa, A. Baghdadi, and G. Masera, “Flexible archi-
tectures for LDPC decoders based on network on chip paradigm,” in
Euromicro Conference on Digital System Design, 2009, pp. 582–589.

[17] N. G. de Bruijn, “A combinatorial problem,” Koninklijke Nederlandse
Akademie v. Wetenschappen, vol. 49, pp. 758–764, 1946.

[18] W. H. Kautz, “Design of optimal interconnection networks for
multiproces- sors,” Architecture and Design of Digital Computers, pp.
249–272, 1969.

[19] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de Bruijn on-
chip network for a flexible multiprocessor LDPC decoder,” in Design
Automation Conference, 2008, pp. 429–434.

[20] M. Hosseinabady, M. R. Kakoee, J. Mathew, and D. K. Pradhan, “Low
latency and energy efficient scalable architecture for massive NoCs
using generalized de Bruijn graph,” IEEE Transactions on VLSI systems,
vol. 19, no. 8, pp. 1469–1480, Aug 2011.

[21] R. Sabbaghi-Nadooshan, “Kautz mesh topology for on-chip networks,”
Journal of Computing, vol. 3, no. 3, pp. 33–40, Feb 2011.

[22] Y. Chen, J. Hu, X. Ling, and T. Huang, “A novel 3D NoC architecture
based on De Bruijn graph,” Elsevier Computers and Electrical Engi-
neering, vol. 38, no. 3, pp. 801–810, May 2012.

[23] C. Y. Tsai, Y. J. Lee, C. T. Chen, and L. G. Chen, “A 1.0TOPS/W
36-core neocortical computing processor with 2.3tb/s Kautz NoC for
universal visual recognition,” in IEEE International Solid-State Circuits
Conference, 2012, pp. 480–482.

[24] F. Stas, A. K. Lusala, J. D. Legat, and D. Bol, “Investigation of the
routing algorithm in a De Bruijn-based NoC for low-power applications,”
in IEEE Faible Tension Faible Consommation, 2013, pp. 1–4.

[25] M. R. Samatham and D. K. Pradhan, “The De Bruijn multiprocessor
network: A versatile parallel processing and sorting network for VLSI,”
IEEE Transactions on Computers, vol. 38, no. 4, pp. 567–581, Apr 1989.

[26] D. Z. Du and F. K. Hwang, “Generalized de Bruijn digraphs,” Networks,
vol. 18, pp. 27–38, 1988.

[27] G. Liu and K. Y. Lee, “Optimal routing algorithms for generalized de
Bruijn digraphs,” in International Conference on Parallel Processing,
1993, pp. 167–174.

[28] J. Flich and J. Duato, “Logic-based distributed routing for NoCs,” IEEE
Computer Architecture Letters, vol. 7, no. 1, pp. 13–16, Jan 2008.

[29] S. Rodrigo, S. Medardoni, J. Flich, D. Bertozzi, and J. Duato, “Effi-
cient implementation of distributed routing algorithms for NoCs,” IET
Computers and Digital Techniques, vol. 3, no. 5, pp. 460–475, Sep 2009.

[30] N. Choudhary and C. M. Samota, “A survey of logic based distributed
routing for on-chip interconnection networks,” International Journal of
Soft Computing and Engineering, vol. 3, no. 2, pp. 233–237, May 2013.

[31] C. Condo, M. Martina, and G. Masera, “VLSI implementation of a multi-
mode turbo/LDPC decoder architecture,” IEEE Transactions on Circuits
and Systems - I, vol. 60, no. 6, pp. 1441–1454, Jun 2013.

[32] S. M. Reddy, D. K. Pradhan, and J. G. Kuhl, “Direct graphs with
minimal and maximal connectivity,” School of Engineering, Oakland
University, Tech. Rep., 1980.

[33] M. Imase and M. Itoh, “Design to minimize diameter on building-block
network,” IEEE Transactions on Computers, vol. 30, no. 6, pp. 439–442,
Jun 1981.

[34] ——, “A design for directed graphs with minimum diameter,” IEEE
Transactions on Computers, vol. 32, no. 8, pp. 782–784, Aug 1983.

[35] W. G. Bridges, “On the impossibility of directed moore graphs,” Journal
of Combinatorial Theory, vol. 29, no. 3, pp. 339–341, 1980.

[36] S. Saponara and L. Fanucci, “Homogeneous and heterogeneous MPSoC
architectures with Network-On-Chip connectivity for low-power and
real-time multimedia signal processing,” VLSI Design, vol. 2012, 2012.

[37] G. Wang, Y. Sun, J. R. Cavallaro, and Y. Guo, “High-throughput
contention-free concurrent interleaver architecture for multi-standard
turbo decoder,” in IEEE International Conference on Application-
Specific Systems, Architectures and Processors, 2011, pp. 113–121.

[38] A. Jalabert, S. Murali, L. Benini, and G. D. Micheli, “xpipesCompiler: a
tool for instantiating application specific Networks on Chip,” in Design,
Automation and Test in Europe Conference and Exhibition, 2004, pp.
884–889.

[39] S. Saponara, M. Martina, M. Casula, L. Fanucci, and G. Masera,
“Motion estimation and CABAC VLSI co-processors for real-time
high-quality H.264/AVC video coding,” Elsevier Microprocessors and
Microsystems, vol. 34, no. 7-8, pp. 316–328, Nov 2010.

[40] C. Neeb, M. J. Thul, and N. Wehn, “Network-on-chip-centric approach
to interleaving in high throughput channel decoders,” in IEEE Interna-
tional Symposium on Circuits and Systems, 2005, pp. 1766–1769.

[41] M. Martina and G. Masera, “Turbo NOC: A framework for the design of
network-on-chip-based turbo decoder architectures,” IEEE Transactions
on Circuits and Systems - I, vol. 57, no. 10, pp. 2776–2789, Oct 2010.

[42] M. Martina, G. Masera, H. Moussa, and A. Baghdadi, “On chip
interconnects for multiprocessor turbo decoding architectures,” Elsevier
Microprocessors and Microsystems, vol. 35, no. 2, pp. 167–181, Mar
2011.

[43] A. Pulimeno, M. Graziano, and G. Piccinini, “UDSM trends comparison:
From technology roadmap to UltraSparc Niagara2,” IEEE Trans. on
VLSI, vol. 20, no. 7, pp. 1341–1346, Jul 10.1109/TVLSI.2011.2148183.

