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Abstract

Input-queued (IQ) switches are one of the reference architectures for the design
of high-speed packet switches. Classical results in this field refer to the scenario
in which the whole switch transfers the packets in a synchronous fashion, in
phase with a sequence of fixed-size timeslots, tailored to transport a minimum-
size packet. However, for switches with large number of ports and high band-
width, maintaining an accurate global synchronization and transferring all the
packets in a synchronous fashion is becoming more and more challenging. Fur-
thermore, variable size packets (as in the traffic present in the Internet) require
rather complex segmentation and reassembly processes and some switching ca-
pacity is wasted due to partial filling of timeslots.

Thus, we consider a switch able to natively transfer packets in an asyn-
chronous fashion thanks to a simple and distributed packet scheduler. We in-
vestigate the performance of asynchronous IQ switches with different queueing
architectures (one queue per input and one queue for input-output pairs) and
show that, despite their simplicity, their performance is comparable or even bet-
ter than those of synchronous switches. We highlight the peculiar role of the
variation coefficient of the packet length. Finally, for synchronous switches we
evaluate the actual bandwidth overhead due to packet segmentation, by consid-
ering a large set of traffic traces covering the period 2008-2013. We show that an
impressive amount of bandwidth (up to 30%) can be lost due to segmentation,
even if the internal cell size is optimally chosen.

These results demonstrate the potential interest of the asynchronous ap-
proach in the design of high-performance switches.

1. Introduction

A vast technical literature exists on input-queued (IQ) switches, which are
considered as the reference architectures to achieve high-end performance due
to their limited technological requirements. Basically, IQ switches trade a lower
internal data transfer capacity (i.e., very limited speedup of the switching fabric)
for a larger complexity in switch control and scheduling algorithms. Classical
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results in this field mostly refer to a synchronous slotted operation of the entire
switch; as a consequence, incoming variable-size Ethernet or IP packets must
be segmented at switch inputs in fixed-size data units (denoted as cells), which
are transferred to outputs, where they are re-assembled as variable-size pack-
ets. Beyond the efficiency costs of this segmentation/reassembly process, the
real implementation of a fully synchronous large packet switch is not a trivial
task due to the need of introducing complex segmentation/reassembly engines.
Furthermore, the difficulty in keeping under control the alignment of the clock
reference signals in different parts of the (often multi-rack) switch, and the dif-
ferent propagation delays in boards, backplanes and interconnection ribbons
(often in presence of high-parallelism buses), forced several manufacturers to
have independent clocking domains in different subsystems of the switch, lead-
ing to an asynchronous operation. Consider that on a 1 Gbps line, each bit lasts
1 ns, corresponding to 20 cm in space on the line. Hence, the time alignment is
lost for two bits traveling over paths differing more than 20 cm in length.

In this paper1 we provide the following contributions. In Sec. 3 we ana-
lytically evaluate the maximum throughput for asynchronous IQ switches with
one queue for each input, as a function of the packet size distribution. Theo-
rem 1 extends the well known “58% throughout” result obtained by Karol et al.
in [2] for synchronous switches and Bernoulli i.i.d. arrivals. Sec. 4 compares the
throughput for synchronous and asynchronous IQ switches with Virtual Out-
put Queueing, i.e. with one queue for each input-output pair. In Sec. 5 we
investigate the overhead due the packet segmentation in synchronous switches.
By considering a large set of real traffic traces, we show that the overhead for
synchronous operations can be responsible for performance losses around 5% on
average, with a maximum close to 30% in some cases.

In summary, we show that the asynchronous switch operation does not intro-
duce significant performance detriment and, even if the architecture is simpler
to implement, it may lead to higher throughput in some scenarios or to com-
parable performance with much simpler schedulers with respect to synchronous
operation. When the asynchronous operation leads to performance losses, these
losses are limited, and are smaller than the losses due to the above-mentioned
segmentation/reassembly overheads.

2. System model

We assume that packets are switched across a N×N bufferless non-blocking
switching fabric, e.g. a crossbar. Furthermore, no speedup is available, i.e. the
transfer rate at the inputs and at the outputs of the switching fabric is the
external switch rate. Packets arrive at switch input ports where they are stored
and processed. Since no speedup is available, input queues are needed to cope
with output contentions, i.e., when several packets from different inputs are
directed to the same output. Queues at the outputs are not needed, unless for

1A preliminary version of this work appeared in [1].
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(a) (b)

Figure 1: Input queued switching architectures: (a) with a single FIFO per input, (b) with
Virtual Output Queuing (VOQ)

reassembly purposes. A scheduler solves output contention between head-of-line
(HoL) packets by choosing a set of packets that can be transferred satisfying
two constraints: at most one packet can be transferred i) from each input and
ii) to each output at the same time. A feasible configuration of the switching
fabric is referred to as a “matching” in the bipartite graph whose left-side nodes
correspond to the inputs and the right-side nodes correspond to the outputs.
We assume that packets have variable size. In Sec. 2.3 we will describe in details
the traffic models adopted in our work.

We consider two queueing architectures, depicted in Fig. 1. The first one
corresponds to an input-queued (IQ) switch with a single FIFO queue per input
and a total of N queues. The scheduling decision is relatively simple and can be
taken independently at each output. Its main drawback is that it suffers from the
HoL blocking problem [2] that limits the maximum achievable throughput. The
second architecture is an IQ switches with VOQ (Virtual Output Queueing), i.e.
with one FIFO queue for each input-output pair. This architecture avoids the
throughput degradation due to HoL blocking, even if at the cost of managing
N2 queues. To obtain high throughput, the scheduler must coordinate the
packet transfers between inputs and outputs to avoid conflicts, thus increasing
scheduler complexity.

2.1. Synchronous (SYN) switching

In SYN switches, all data transfers across the switching fabric occur at the
same time and last exactly one “timeslot”. The timeslot duration is equal to the
(fixed size) packet transmission time on the fastest link. In the case of variable-
size packets, as in the Internet, packets are chopped into fixed sized packets
(named cells). Cells are individually switched across the switching fabric and
then reassembled at the outputs to obtain the original packet, ready to be sent
to the output interface. The timeslot duration (or, equivalently, the cell size)
requires careful design to minimize the throughput loss due to cell granularity,
as discussed in Sec. 5.

Schedulers for SYN switches can work in either “cell mode” or “packet
mode” [3]. A cell-mode (CM) scheduler takes independent decisions at each
time slot, without considering the packet each cell belongs to. Thus, at the
output of the switching fabric packet interleaving may occur and some reassem-
bly queues are needed at the outputs. Furthermore, partial losses of the packet
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content may occur. On the contrary, packet-mode (PM) schedulers [3] take
into account that the cells may be originated by a packet segmentation process.
Indeed, PM schedulers force the transfer of all the cells belonging to the same
packet in consecutive timeslots. As a consequence, no packet interleaving occurs
at the outputs.

2.2. Asynchronous (ASY) switching

In ASY switches, packet transfer through the switching fabric occurs asyn-
chronously and packet interleaving is not allowed at the output, similarly to
PM scheduling for SYN switches. The ASY model well captures the behavior
of asynchronous and variable-length optical packet switching systems [4, 5] be-
cause in the optical domain packet alignment may be difficult to achieve [6].
Furthermore, the ASY model approximates electronic packet switching when
the minimum unit at which the transfer and the control occurs is much smaller
(e.g., word or byte) than the packet/cell. For simplicity, we consider an abstract
“pure” ASY model, in which the minimum transfer unit tends to zero. Thus,
we assume that the size of each packet is a continuous random variable. At a
given time, at most one packet can finish its transmission across the switching
fabric or can arrive to an empty port.

The asynchronous behavior limits the degree of freedoms in choosing the
matching, which evolves “slowly” with the time. Hence, some queues can suffer
from temporary starvation, which may increase the average delay experienced
by packets. It is possible to bound the speed at which the matching evolves as
follows:

Property 1. In an ASY switch, at any time the maximum number of newly
added edges in a new matching is two.

Proof. Assume that the transmission of a packet from input i to output j ends
at time t−. This event happens asynchronously with respect to any other event
at any input/output, because of the continuous support of the packet size dis-
tribution.

Let partition the inputs and the outputs depending on their matching con-
dition. Define IU the set of unmatched inputs at time t and OU the set of
unmatched outputs at time t. Define as indices i ∈ IU and j ∈ OU . The set
of candidate edges that can be added to the current matching is a subset of set
Ωij defined as

Ωij = {i→ j} ∪ {k → j for any k ∈ IU} ∪ {i→ k for any k ∈ OU}

since the queues corresponding to the edges in Ωij may be empty. Fig. 2 shows
an example of such sets. Note that the edges between unmatched inputs and
outputs (except for the edge i→ j), i.e. the edges between any input in IU \ {i}
and any output in OU \ {j}, cannot exist, otherwise they would have been
already matched just before t. Now the new matching computed by the outputs
on Ωij can include only 0, 1 or 2 edges.
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Figure 2: Bipartite graph representing an ASY switch, in which the inputs 1,2 are currently
matched to outputs 1,2 respectively, and transmission of a packet from 3 to 3 has just ended.
The dashed edges show the set Ω33 of all possible candidate edges for a new matching.

However, even if the matching evolves “slowly” according to the previous
property, we will see in Sec. 4.3 that the matching is able to adapt very quickly
to the queues state, being anyhow optimal most of the time.

2.3. Methodology and traffic models

We will discuss in the following sections the performance of the two pre-
sented switching architectures. The theoretical models will be validated by
event-driven simulations implemented through OMNeT++ [7]. To better high-
light the impact of the traffic and of the scheduling decisions, in the following
results for SYN switches we do not consider the throughput degradation due to
segmentation, i.e. we assume that no bandwidth is wasted due to partial cell
filling and to additional overhead. Since we neglect segmentation, throughput
evaluated in SYN switches will be an upper bound on the actual achievable
throughput. Note that the effect of segmentation depends completely from the
specific packet size distribution and it is cannot evaluated a priori; in Sec. 5 we
will evaluate this effect a posteriori for some specific traffic traces observed in
the Internet and show that it is not negligible at all.

In our simulations we evaluated both average delays and throughput. We
run the simulations until delay statistics (after removing the transient period)
reached a relative error less than 3%, measured for a 95% confidence interval,
regardless the accuracy of the throughput statistics. The estimation of the
confidence interval width was obtained with the batch means approach [8]. At
the end of each simulation run, we evaluated also the accuracy of the throughput
statistics. In all the reported throughput results, we observed a relative error
less than 0.4%, lower than the one achieved by the average delays. In the graphs,
we will not report the confidence intervals because they are at most the size of
the symbol used for the points of the curves.

In our studies, packet arrivals and lengths are described by renewal processes,
in the discrete-time domain for SYN switches and in the continuous-time do-
main for ASY switches. Both traffic models have been chosen for their analytical
tractability. Specifically, both the packet durations and the inter-arrival times
between consecutive packets are assumed to be i.i.d. random variables. Inter-
arrival times are geometrically distributed for SYN switches and (analogously)
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exponentially distributed for ASY switches, and their average is set as to ob-
tain the required input load. These choices allow a fair comparison between the
two time domains. Regarding the packet duration, let L be a random variable
corresponding to the packet length, measured in bit/packet. Let mL be the
average packet length E[L] = mL, and α be the variation coefficient of L, i.e.
α =

√
Var(L)/mL. The packet length distribution for the ASY (SYN) switch is

assumed to be exponential (geometric) for α = 1, hypo-exponential i.e. gamma
(hypo-geometric) for α < 1 and hyper-exponential (hyper-geometric) for α > 1.

Finally, let λ̂ij be the packet arrival rate from input i to output j measured
in packets/s. If µ is the link capacity, measured in bit/s, the corresponding

normalized arrival rate is λij = λ̂ijmL/µ; we define the corresponding traffic
matrix as Λ = [λij ]. The traffic is said to be admissible if neither an input nor
an output is overloaded and the following conditions hold:

N∑
i=1

λij < 1

N∑
j=1

λij < 1

If we define the normalized load ρ ≥ 0 as

ρ = max
k=1,...,N

{ N∑
i=1

λik,

N∑
j=1

λkj

}
then matrix Λ is admissible if ρ < 1. The traffic is said to be uniform if
λij = ρ/N , for any i and j.

Finally, the switch is said to be in saturation when all the queues are always
non-empty. This scenario can be obtained under uniform traffic and fully loaded
input queues: λij = 1/N , which implies ρ = 1.

2.4. Realistic values for the variation coefficient of the packet length

In the next sections we will highlight the crucial role of α in the switch per-
formance. We start by answering to some preliminary questions that naturally
arise on α: i) what is the possible range of values, ii) what are the typical val-
ues in realistic networks, iii) is it possible to highlight any predictable temporal
trend that could be exploited in the switch design phase?

To answer the first question, since any real distribution of packet size is
always discrete, with a minimum byte granularity, by using standard probability
theory it can be shown [9] that:

Property 2. Assume that the packet size is arbitrarily distributed between a
minimum lmin and maximum lmax. The corresponding variation coefficient α is
always bounded by

0 ≤ α ≤ lmax − lmin

2
√
lminlmax

(1)

Note that Property 2 holds independently of the specific distribution and
permits to bound any realistic α by considering the minimum and the maximum
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Link location Number of Period Number of Measured
traces IP packets α

FastWeb POP1 1 09/2006 31 · 106 0.48
FastWeb POP2 1 07/2006 7 · 106 1.35
Chicago OC192 A 42 04/2008-07/2013 22 · 109

Chicago OC192 B 44 03/2008-07/2013 112 · 109 0.993
San Jose OC192 A 65 07/2008-07/2013 137 · 109 (average)
San Jose OC192 B 67 07/2008-07/2013 109 · 109

Table 1: Overview of the traces considered to measure the variation coefficient of the packet
size
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SanJose-B

Figure 3: Temporal evolution of α observed in Chicago and San Jose OC192 links

transmission unit (MTU) allowed in the network. In the case of networks based
on standard Ethernet, lmin = 64 and lmax = 1518 bytes, thus α < 2.34. In
the case of jumbo frames adopted in Gigabit Ethernet, lmax = 9018 bytes and
α < 5.9.

Note that the bound provided in (1) corresponds to a worst-case distribution
very unlikely to happen in reality. Indeed, the actual values of α that can be
observed in a real network are usually smaller, as shown in our experimental
analysis.

To derive values of α from real networks, we start from two Internet traffic
traces captured on high-speed core routers located in two POPs in FastWeb
network [10, 11], one of the largest Italian ISP. The two traces are quite different:
the first one consists mainly of multicast IP-TV traffic distributed to the users,
whereas the second one of data and VoIP traffic generated by the users. Through
the analysis of the two Internet traffic traces, we obtained α = 0.48 and α = 1.35
respectively. The smallest value, α = 0.48, is due to traffic mainly comprising
IP-TV multicast packets, with many packets of the same size.

For a more comprehensive investigation of the values for α observed in real
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Figure 4: Temporal evolution of the average packet size mL observed in Chicago and San Jose
OC192 links

networks, we consider the publicly available statistics, provided by Caida [12]
and obtained by passive measurements, for 4 OC192 links located in Chicago
and San Jose (USA). These statistics, described in Table 1, refer to hour-long
traces recorded once every month, during a period of 5 years, and to almost
400 billions packets, most of them IPv4. Among all the 218 traces captured in
Chicago and San Jose links, we computed an average α equal to 0.993, with the
corresponding 95% confidence interval equal to [0.967, 1.020]. Fig. 3 shows that
the temporal evolution of α for the 5 years does not highlight any predictable
temporal trend. In conclusion, in these OC192 links the observed values of α
are very close to 1 most of the time, with (rare) maximum values close to the
upper bounds computed above. Note that the volume of statistical data in
this scenario is much larger than the one considered in the two FastWeb POPs.
Unfortunately, we were unable to recover the kind of transported traffic, due to
the lack of details on packet-level traces.

Surprisingly, despite the natural intuition that packet sizes should observe
some temporal patterns, due to the popularity of particular applications, Fig. 4
shows that also the packet size does not show any particular trend. All these
observations corroborate our final claim that α is not easily predictable.

3. Input-queued switches with single FIFO queue

We consider a switch with a single FIFO queue per input, with no internal
speedup, controlled by a scheduler performing random choices at outputs.

In a SYN switch, at each timeslot each output chooses one cell at random
among the cells at the head of the queues (referred as head-of-line (HoL) cells)
directed to it. It is well know [2] that the maximum throughput, under uniform
traffic and Bernoulli i.i.d. arrivals, is limited to 2 −

√
2 ≈ 58% due to the HoL

blocking problem. For correlated arrivals (bursts) of fixed size cells, [13] showed
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that the throughput varies between 0.5 and 0.58, depending on the degree of
burstyness in the traffic.

In an ASY switch, when an output finishes to serve a packet, the output
scheduler chooses one packet at random among the HoL packets directed to it.
If no packet is available, the output scheduler waits for the first HoL packet
directed to it. We prove that:

Theorem 1. Under uniform ON-OFF traffic, a single-FIFO ASY switch
achieves a maximum throughput TASY equal to 0.5 for α = 1. For α 6= 1

TASY =

√
2α2 + 2− 2

α2 − 1
(2)

Proof. The maximum throughput can be estimated in saturation conditions
(ρ = 1) by considering a system of fictitious queues fed only by to the N HoL
packets, waiting or being in service in one of the physical input queues. In such
fictitious system, we neglect all the packets that are enqueued in the physical
queues but not at HoL. There exist N fictitious queues, one for each output. Let
Xj(t) be the size of fictitious queue j at time t, corresponding to the number of
HoL packets directed to output j. By construction, Xj(t) ∈ {0, 1, . . . , N} and

N∑
j=1

Xj(t) = N (3)

for any time t, since the HoL packets are always N . Note that Xj(t) does
not represent the occupancy of any physical queue. Whenever input i ends
the transmission across the switching fabric of a packet directed to output j,
fictitious queue j finishes to serve a HoL packet. Then, since the switch is in
saturation, a new packet reaches the HoL of input i queue, and a new HoL packet
arrives at the fictitious queue corresponding to the packet destination output.
Note that the queueing network of the fictitious queues is closed, because at each
service corresponds a new arrival. In summary, the arrival and departure events
in the fictitious system correspond to the end of transmissions in the physical
queues of the IQ switch. The service duration of a HoL packet in the fictitious
system corresponds only to its transmission time, and does not comprise any
other constant contribution.

Since the traffic is uniform and the scheduler operates randomly, we can
consider a generic output. Let X(t) be the corresponding fictitious queue size
(equivalently, the number of HoL packets directed to such output). Thanks
to (3), E[X(t)] = 1. The dynamics of X(t) can be described by the queue
occupancy of a continuous time M/G/1 queue in which the service time is
equal to the packet length L, which is a random variable. Thanks to the given
assumptions, the arrivals at the M/G/1 queue are given by the superposition
of N independent and identically distributed renewal processes, each with rate
λ/N . Now, thanks to the superposition limit theorem [14], for N → ∞, the
arrival process becomes Poisson at rate λ. Note that, very similarly to our
scenario, [2] showed that in a SYN switch the occupancy of the fictitious queues
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follows the dynamics of a discrete time M/D/1 queue where the number of HoL
packets arriving during a generic timeslot follows a Poisson distribution, given
that N →∞.

Now we can exploit the well known result for the M/G/1 queue:

E[X(t)] = ρ+
λ2E[L2]

2(1− ρ)
= ρ+

ρ2(1 + α2)

2(1− ρ)

Since E[X(t)] = 1, we obtain:

(α2 − 1)ρ2 + 4ρ− 2 = 0 (4)

By solving (4), for α = 1, the maximum throughput is ρ = 0.5. For α 6= 1, we
get (2).

3.1. Related work on ASY switches

The throughput of single-FIFO ASY switches was also studied in [15, 16],
in the case of Poisson or long-range-dependent arrivals process, for exponen-
tial packet lengths and under a generic traffic matrix. All these results assume
exponentially distributed packet sizes and can be seen as a special case of The-
orem 1 when α = 1, which instead holds for a generic packet length distribu-
tion. Notably, [17] has extended the results in [2] to a combined input-output
queued switch with backpressure, running asynchronously and fed by fixed-size
cells. For the particular case in which the output queues are not available, the
considered architecture degenerates into an IQ with single FIFO queues. [17]
showed that an ASY switch achieves the same throughput of a SYN switch,
with negligible differences in terms of delays. This result is coherent with our
findings, for the specific case α = 0. The methodology adopted in [17] holds for
a generic packet size distribution (even if it was applied only to the fixed-size
case). However, differently from Theorem 1, [17] does not show the explicit
relation between α and the throughput.

3.2. Simulation results

Fig. 5 compares the maximum throughput for ASY and SYN switches as a
function of the variation coefficient of packet size. In the case of ASY switches,
we report the results obtained by considering a random output scheduler (ASY-
RND) and the theoretical curve obtained by (2), which appears to be very
accurate. In the case of SYN switches, we considered two random schedulers
(SYN-RND-CM, SYN-RND-PM) operating in CM and PM respectively.

When α → 0, i.e. fixed packet sizes, the maximum throughput for an ASY
switch is

√
2− 2 ≈ 58% as in a SYN architecture, coherently with [17]. Even if

the arrivals in an ASY switch are time-continuous, this result is not surprising,
because in overload: (1) the queues mask the effect of the exact packet arrival
times, and (2) during any busy period for an output, the packets are served
periodically exactly every packet transmission time, mimicking a synchronous
service process. When α → ∞, the maximum throughput goes to zero. This
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Figure 5: Maximum throughput for single-FIFO ASY and SYN switches under uniform traffic
for a 100 × 100 switch. In Ethernet networks, α < 2.34 but measured values vary between
0.48 and 1.35 according to Table 1.

theoretical result shows that the throughput degradation due to ASY mode
can be very large, as expected. However, this happens only when α is very
large: only for α > 2, the throughput remains smaller than 30%. Recalling
from Sec. 2.3 that in standard Ethernet networks α < 2.34 and thanks to (2),
the throughput for ASY switch would be always larger than 0.358. For the
measured values of α considered in the traces of Table 1, the throughput will
be 0.56 (for α = 0.48), 0.50 (for α = 0.993) and 0.46 (for α = 1.35).

Performance of SYN switch with CM scheduler are almost constant with α.
On the other hand, ASY-RND and SYN-RND-PM behave similarly, presenting
the same throughput degradation as α increases. When comparing ASY switch
with SYN-RND-CM, in the worst case the throughput reduction is 13% in
realistic cases (for α = 1.35).

In summary, these results show that i) the results from our analytical for-
mula (2) are accurate, ii) depending on the traffic conditions and on the sched-
uler, an ASY switch can perform better or worse than a SYN switch. For
realistic values of α, the throughput degradation due to the ASY behavior, if
any, is marginal.

4. Input-queued switch with VOQ

We now consider an input-queued (IQ) switch with no speedup and Vir-
tual Output Queueing (VOQ) architecture, i.e. one FIFO queue for each input-
output pair (see (b) in Fig. 1). In a SYN switch, the scheduler transfers a
non-conflicting set of HoL cells by computing a matching between the inputs
and the outputs.

We will provide a simulation study to compare the performance of scheduling
algorithms for SYN switches and ASY switches.
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4.1. Related work

Assume that each VOQ is associated with a weight equal to the number
of enqueued cells. The maximum weight matching (MWM) algorithm chooses,
among all possible matchings, the one with the maximum weight. It is well
known [18] that MWM is able to achieve 100% throughput under any admissible
Bernoulli i.i.d. traffic. This result has been notably extended to any admissible
traffic process in which the cumulative number of cells arrived follows the strong
law of large numbers. This means that MWM is optimal also when the traffic
is correlated, as in the case of cell arrivals due to the segmentation process.

Many extensions/variations of the MWM have been proposed to achieve the
maximum throughput in a SYN switch operating in CM [19, 20]. In summary,
[3] showed that: i) the MWM operating in PM (PM-MWM) achieves 100%
throughput under Bernoulli i.i.d. packet generation; ii) the delay performance of
PM can be better or worse than cell-based schedulers depending on the variation
coefficient α of the packet size distribution (this result is in contrast with the
intuitive idea that PM can only increase delays due to packet starvation); iii)
non-optimal PM schedulers behave very closely to optimal schedulers (since less
degrees of freedom in the matching choice require less iterations). These results
were generalized in [21], where it was shown that, under regenerative traffic,
PM-MWM is throughput optimal.

Furthermore, [21] showed that, when the traffic is non-regenerative, PM-
MWM may not be optimal from the throughput point of view. Indeed, it is
possible to devise counterexamples in which the traffic, even if admissible, al-
ways forces the selection of the same matching, preventing all the other queues
from being served. These counterexamples require a strong correlation among
the arrivals at different inputs and, even if not realistic, show the limitations
of PM schedulers. To deal with non-regenerative traffic, [21] proposes to freeze
the matching after a fixed number sf of timeslots and wait until one of the cor-
responding queues empties. After this event, the scheduler computes again the
matching on the whole set of queues. This process introduces some throughput
loss: Given the maximum packet size lmax in timeslots, then the period in which
the matching is kept frozen is lmax−1 and the maximum bandwidth loss is equal
to (lmax−1)/(sf+lmax−1). It is sufficient to set sf = d(1− ε)lmax/ε− 1/εe+1, to
experience a bandwidth loss ε that can be compensated by a switching speedup
equal to (1 + ε) [21]. Finally, [22] discusses in details the asynchronous imple-
mentation of the classical iSLIP [23] scheduling algorithm. It highlights also
some malicious traffic patterns, non-regenerative according to the definitions
in [21], that may cause starvation problems.

In general, an input queued switch can be modeled as a special case of a
generic constrained queueing network with asynchronous behavior. In [24] the
optimal policy in terms of throughput in generic networks under Poisson arrivals
and random packet size has been defined. For the ASY switch, the optimal
policy proposed in [24] degenerates in computing the MWM at time tn (when
the weight of the MWM is wn) and keeping such matching for a time equal to
wr

n, for some r < 1. Then the policy waits until all the outputs end their current
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Figure 6: Average packet delay under uniform traffic for a trimodal packet size distribution

packet transmissions, and then recomputes the MWM, very similarly to what
has been proposed in [21]. A wide generalization of the asynchronous queueing
scenario considered by [24] are the stochastic processing networks, for which an
extension of the MWM (called, maximum pressure policy) has been shown to
be throughput optimal [25].

Recently, [26] has proposed a distributed randomized policy, based on the
knowledge of the input queues occupancies, able to achieve the maximum
throughput under Poisson arrivals, in an ASY switch. Note that, differently
from our work, [26] does not consider the effect on performance of the variance
of the packet size.

4.2. Traffic scenarios

While comparing the performance of ASY and SYN switches, we have used
the following traffic scenarios:

• Uniform (UNI) traffic: λij = ρ/N , for all i, j; this is the most classic
traffic scenario in the literature used as basic benchmark;

• Bidiagonal (BID) traffic: λii = 2ρ/3, λi|i+1|N = ρ/3, for any 0 ≤ i ≤ N−1,
being |x|N equal to x modulus N ; this traffic is well known in the literature
for SYN switches, since it highlights performance losses due to non-optimal
scheduling algorithms.

• Logdiagonal (LOG) traffic: λij = 2|j−i|N /c, for any 0 ≤ i, j ≤ N − 1,
being c an appropriate normalization constant; also this traffic highlights
performance losses due to non-optimal scheduling algorithms.

Packet sizes were chosen according to the following distributions:
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Figure 7: Average packet delay under uniform traffic for large packets (l1 = 1500 bytes)

• Fixed packet size: L = l1, being l1 a constant value. For small packets, we
chose l1 = 40 bytes corresponding to the minimum IP packet size, after
removing the MAC header. For large packets, we chose l1 = 1500 bytes
corresponding to the maximum packet size seen on a Ethernet network.

• Trimodal packet size: P{L = li} = pi for i = 1, 2, 3, being {li} the set of
packet sizes and {pi} the corresponding probabilities. We approximated
the distribution observed in the FastWeb POP2 trace with the following
parameters: {li} = {40, 576, 1500} bytes and {pi} = {0.62, 0.22, 0.16},
to match both the variation coefficient (α = 1.35) and the three peaks
present in the empirical distribution.

4.3. Simulation results

In the case of SYN switches, we considered iSLIP [23] and MWM, both
running in cell-mode (CM) and in packet-mode (PM). These algorithms are
denoted as SYN-iSLIP-CM, SYN-iSLIP-PM, SYN-MWM-CM and SYN-MWM-
PM. In the case of ASY switches, we considered the following algorithms running
at each output: round-robin (ASY-RR), random (ASY-RND) and longest queue
first (ASY-LQF). Note that ASY-LQF is similar to SYN-MWM-PM.

We report the results for a 16 × 16 switch; for larger switches we observed
similar results. Port rate is set equal to 10 Gbit/s. In the case of SYN switches,
the timeslot is equal to the minimum packet size, 40 bytes (32 ns). The queue
size is equal to 400,000 bytes. The investigated performance metrics are the
average throughput and the average packet delay, versus the offered load in
Gbps. Note that a load equal to 10 Gbps corresponds to a fully loaded switch
for which the average delay is bounded by the finite queue size.

Fig. 6 shows the average packet delay under uniform traffic and trimodal
packet size distribution. All the algorithms behave similarly, achieving the max-
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Figure 8: Average packet delay under bidiagonal traffic for the trimodal packet size distribu-
tion with N = 16.
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Figure 9: Average packet delay under bidiagonal traffic for large packets (l1 = 1500 bytes)

imum throughput. In SYN switches, CM shows slightly larger delays due to the
packet interleaving at each output, as discussed in [3]. To highlight the effect
of packet interleaving, in Fig. 7 we show the delays obtained with a traffic sce-
nario with only large packets. In CM, the queue length metrics adopted by
MWM tends to interleave packets more than the simple round robin of iSLIP.
Indeed, assuming equal size packets, in the case of round robin a packet can be
interleaved with at most 2(N − 1) other packets, whereas for a longest queue
this value is unbounded. For small packet size, CM and PM schedulers behave
similarly under uniform traffic, because the packet interleaving is negligible with
respect to the packet delay.

Fig. 8 shows the performance achieved under bidiagonal traffic and trimodal
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Table 2: Maximum throughput achieved by SYN and ASY switches with greedy schedulers
for normalized input load ρ = 0.99

System SYN ASY
Scheduler iSLIP-CM iSLIP-PM LQF RR
Uniform traffic 0.99 0.99 0.99 0.99
Bidiagonal traffic 0.88 0.89 0.99 0.99
Logdiagonal traffic 0.84 0.87 0.99 0.98

packet size distribution. This traffic scenario is very critical to be scheduled be-
cause of the limited degrees of freedoms in choosing the matchings. To achieve
the maximum throughput, the scheduler must cycle among only two complete
matchings M1 and M2, corresponding to the two non-empty diagonals of the
traffic matrix. Whenever the scheduler chooses a matching different from M1

and M2, the matching size is smaller than N , and a throughput loss is ex-
perienced. The greedy choice of all algorithms, except for SYN-MWM-CM
and SYN-MWM-PM, lead to matchings that “mix” M1 with M2, leading to
a throughput degradation. For this reason, this traffic pattern is considered
a challenging scenario to assess the performance of non-optimal algorithms for
SYN switches.

According to Fig. 8, for SYN switches, MWM achieves 100% throughput and
outperforms iSLIP, which achieves a throughput less than 0.9 in CM and PM,
as shown in Table 2. Note that we omitted all the points for load larger than 9
Gbps due to the large packet losses. On the contrary, ASY-LQF and ASY-RR
are able to achieve 100% throughput, even if at the cost of large delays due to
temporary starvation, but outperforming the heuristic scheduling algorithms in
SYN switches. Similar performances are observed when packets have a fixed

16



 0.1

 1

 10

 100

 1000

 1  2  3  4  5  6  7  8  9  10

A
v
er

ag
e 

d
el

ay
 [

µ
s]

Load [Gbps]

SYN-iSLIP-PM
SYN-MWM-PM
SYN-iSLIP-CM

SYN-MWM-CM
ASY-LQF

ASY-RR

Figure 11: Average packet delay under logdiagonal traffic for the trimodal packet size distri-
bution

size. For example, Fig. 9 shows the delays for large packets.
The good performance of ASY-LQF and ASY-RR can be explained in details

as follows. Fig. 10 shows the total number of edges in the matching M (i.e.,
the instantaneous overall throughput), and the corresponding number of edges
shared with M1 (i.e. |M ∩M1|) and with M2 (i.e. |M ∩M2|). We know that to
achieve 100% throughput the matching size should be N , and this can happen
only when the number of edges belonging either to M1 or to M2 is also N . This
must always occur, except for a negligible time during which the matching can
be an hybrid between M1 and M2. As shown in Fig. 10, most of the time the
switch is configured according to one of the two optimal maximum matchings,
and transitions between matchings are fast, even if transition speed is limited
by Property 1, shown in Sec. 2.2. Indeed, under bidiagonal traffic, the output
has a very limited degree of freedom in choosing the input to be matched to.
In ASY switches the output tends to serve a queue exhaustively, since it is able
to change the input to which it is matched only when another output becomes
free. Now all the queues served by the current matching tend to become empty,
whereas the ones served by the other one tends to grow. This fact induces a
“chain” reaction among the ports that permit to change quickly the matching
from M1 to M2.

Fig. 11 shows the delays under logdiagonal traffic. The qualitative behavior
is similar to the one of bidiagonal traffic: iSLIP still only achieves 0.84 and 0.87
throughput in CM and PM respectively, as shown in Tab. 2, whereas ASY-LQF
and ASY-RR achieve almost the maximum throughput.

Fig. 12 investigates the effect of the variation coefficient of packet size α
under bidiagonal traffic. We considered the RND and RR schedulers in ASY
switches and the corresponding schedulers in SYN switches, in both CM and
PM versions. ASY switching always outperform SYN switching, for any α ≤ 5.
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It is also worth to note that ASY, for fixed sized packets (α = 0), achieves
almost the maximum throughput. The small throughput loss is, in any case,
smaller than the average 10% loss due to packet segmentation (see Sect. 2.1).
Looking at the detailed behaviors of the different algorithms, consistently with
Fig. 5 obtained with a single FIFO per input, throughput decreases for larger
α.

Finally, in Fig. 13 we investigate the behavior of ASY switches as a function
of their number of ports N , in the case of a very large packet-length variance
(α = 5). This value is taken more than twice than the maximum observable
in standard Ethernet networks, according to Property 2, to highlight extreme
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starvation problems. The throughput reduction is still limited (less than 5-8%)
and is more relevant for larger switches, since the temporary starvation due to
long packet can delay the transfer of packets from the other N − 1 ports.

5. Segmentation overhead in synchronous switching

In SYN switches, when packets are segmented into fixed-size cells, some
bandwidth is wasted mainly due to two effects: i) unfilled cells, ii) additional
control information needed on each cell. Regarding the first effect, the last cell
of a packet may be only partially filled due to rounding effects. In the worst
case, a packet slightly larger than a cell generates two cells. As a consequence,
almost 50% of the bandwidth can be “wasted” due to the segmentation pro-
cess. Furthermore, each cell should carry some control information to correctly
reassemble the packet at the outputs. Examples of such information are: the
sequence number, the last-cell flag, the packet identifier, or the payload size.
Each cell could carry also some control information to correctly route the cell
inside the switching fabric, such as the router port or interface. On the con-
trary, in ASY switches, when transferring a packet across the switching fabric,
the packet simply carries control information to route the packet.

To evaluate the bandwidth overhead due to segmentation, we can assume
that breas is the amount of control information added for each cell to correctly
reassemble the packet at the outputs, and broute be the amount of control infor-
mation for each cell devoted to the routing process. A packet of size p generates
a number of cells equal to dp/ce, where dxe is the smallest integer ≥ x and c
is the cell payload size. The total amount of data DSY N transferred across the
switching fabric to switch a packet of size p is

DSY N =
⌈p
c

⌉
(c+ broute + breas) (5)

The bandwidth fraction due to the segmentation overhead for a packet of size
p is then

OSY N =
DSY N − p
DSY N

= 1− p

DSY N

Fig. 14 reports the bandwidth overhead OSY N for p ∈ [20, 1500] bytes corre-
sponding to the range of IP packets occurring in standard IP/Ethernet networks.
We have neglected the control information in each cell (i.e., broute = breass = 0)
to highlight the bandwidth waste due to partial cell filling. Even in this opti-
mistic scenario, the bandwidth overhead can be very high, especially for small
packets.

In an ASY switch, we need only some control information broute to route
the packet across the switching fabric. A lower amount of control information
than SYN switches is required, because it is not needed to add information for
the reassembly process. Hence, when a packet of size p is transferred, the total
amount of information DASY transferred across the switching fabric is simply

DASY = p+ broute (6)
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Table 3: Segmentation overhead, evaluated on 218 traces for Chicago and San Jose OC192
links during the period 2008-2013. For the SYN case, the cell size has been optimally adapted
at each month.

Scenario Bandwidth segmentation overhead
Minimum Average Maximum

ASY OASY 0.09% 0.15% 0.73%
SYN OSY N 2.7% 3.9% 7.8%

Obviously, DSY N > DASY and the overall bandwidth overhead is simply:

OASY =
DASY − p
DASY

=
broute
DASY

which monotonically decreases as p increases.

5.1. Optimal cell size

The curves in Fig. 14 suggests that it is possible to minimize the impact of the
segmentation by choosing a proper cell size c. However, given the non-monotonic
behavior of the curves, finding the optimal value of c is not immediate. To
maximize the data throughput, c must be chosen as to minimize the average
bandwidth overhead. If we know the distribution F (p) of the packet sizes, the
optimal payload cell size can be found by solving:

c? = arg min
c

∑
p

DSY N (p, c)F (p) (7)

To evaluate the practical impact of segmentation, we numerically solved (7)
and found the optimal c? for the traffic transferred on four OC192 links (two

20



 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 2008  2009  2010  2011  2012  2013

O
p
ti

m
al

 c
el

l 
si

ze
 [

b
y
te

s]

Time [years]

Chicago-A
Chicago-B
SanJose-A
SanJose-B

Figure 15: Temporal evolution of the optimal value of payload cell size c? evaluated for
Chicago and San Jose OC192 links

Table 4: Segmentation overhead for SYN switches, evaluated for Chicago and San Jose OC192
links during the period 2008-2013

Adopted Num. of traces Bandwidth segmentation overhead
payload cell such that OSY N

c [bytes] optimal c? = c Minimum Average Maximum
26 1 4.3% 5.0% 7.9%
42 3 4.0% 4.8% 12.7%
52 92 2.9% 4.0% 17.6%
56 2 2.9% 4.4% 20.3%
60 118 2.7% 4.1% 23.0%
75 2 3.0% 4.9% 25.9%

in Chicago and two in San Jose) during the last 5 years, exploiting the traces
described in Sec. 2.4. We assume one byte of additional control information
only for both SYN and ASY switches (i.e., broute = 1 byte and breass = 0 byte),
even if this scenario is slightly optimistic for SYN switches. Fig. 15 reports the
temporal evolution of the optimal cell size for the four links. Clearly, it is not
possible to observe any trend in the values of the optimal c?, which implies the
difficulty in predicting future values of c?. The only possible deduction is that
52 and 60 bytes are the most common optimal values since 2008 till 2013. In
the case c? is chosen on the whole 5 years traces, the optimal cell size would
be 60 bytes. As second observation, there are some months which appear as
“outliers”, since their optimal cell sizes is quite different from 52-60.

In Tab. 3 we investigate the bandwidth overhead due to segmentation for
the optimal choice of c?. We report the statistics for both ASY and SYN
switches evaluated on all 218 traces of the period 2008-13. In ASY switches,
such overhead is very limited, being equal to 1/p̂, where p̂ is the average packet
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size in bytes. In the worst case (just one trace), p̂ = 136 bytes and we get
OASY = 7.3 10−3, a negligible overhead. For SYN switches, in Table 3, we
solved (7) in each month and evaluated the segmentation overhead (OSY N )
when using the optimal cell size c? for the corresponding month. The actual
values of OSY N are very large: up to 7.8% of the bandwidth is “wasted” even
if the cell size is adapted every month to the traffic. This is mainly due to the
partial filling of cells. Recall that, in the worst case p = c + 1, DSY N = 2c
and OSY N = 1− c/(2c) ≈ 50%. Note that the results computed in Table 3 for
SYN switches are very optimistic, since i) the cell size is adapted with the time
(which is usually unfeasible) and ii) the optimal value c? is chosen in advance,
at the beginning of each month, based on the distribution of the future arrivals
during the month (which is impossible).

To better estimate the overhead due to partial cell filling in more practical
cases, we considered another scenario in which we optimized the cell size based
on a single trace, and observed the effects on all the other traces. This is
meaningful for the realistic case in which the optimal cell size has been chosen
according to some past measurements and we wish to evaluate the segmentation
overhead for the future. Table 4 reports, for each chosen cell size c, the total
number of traces in which c was optimal (i.e., c = c?) during the period 2008-
13, coherently also with Fig. 15. The last three columns report the statistics
regarding the bandwidth segmentation overhead (OSY N ), evaluated for all 218
traces. Note that the actual bandwidth loss due to segmentation is on average
(OSY N ≈ 4%) similar to the values reported in Table 3. But, in the worst case,
the loss is much higher, reaching also impressive values of 26%. To understand
the reason for such large values, consider the case in which the cell size has been
chosen to be the best choice for all the five years: c? = 60 bytes. In the worst
case, OSY N = 23% occurred for a single trace, i.e., during the hour in which
the trace was collected, around 23% of the bandwidth would have been lost
due to the segmentation overhead. The reason is that more than 2.2 billions of
packets (i.e, around 50%) were 76 bytes packets long and most of the packets
were quite small (the average packet size was p̂ = 136). For any of these 76 bytes
packets, the bandwidth overhead (due to the incomplete filling) is very large:
1− 76/(2× 61) = 37%.

As a general conclusion, even if the cell size has been optimized based on
past measurements, we can expect that the loss due to segmentation process
can become very large.

The non-negligible segmentation overhead for SYN switches puts a new per-
spective in the performance comparison between ASY and SYN switches seen so
far. All the throughput results for SYN switches shown in Sec. 3 and 4 should be
reduced by the segmentation overhead to provide a fair comparison with ASY
switches. For the specific traces considered in this paper, this implies that in
many scenarios where we showed SYN switches outperforming ASY switches,
actually ASY switches are outperforming SYN switches. Since the segmentation
overhead depends on the actual packet length distribution, we preferred to keep
the results of the previous sections independent of the specific traffic pattern,
even if this implies that the throughput results for SYN are rather optimistic.
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6. Conclusions

We compared the performance of synchronous and asynchronous switches
for variable-size packet arrivals, considering IQ switches with a single FIFO
queue per input and IQ switches with Virtual Output Queueing. We show that
asynchronous switches experience either a small performance degradation or
better performance with respect to synchronous switches, when neglecting the
segmentation overhead peculiar of synchronous switches. Furthermore, we also
highlighted that one of the key traffic parameters affecting the performance of
asynchronous switches is the variation coefficient of the packet size, which is
usually small in realistic scenarios. Finally, thanks to an extensive study of real
traffic in the Internet, we showed that the bandwidth overhead due to the seg-
mentation mat be very large in synchronous switches. Because of i) the reduced
complexity of the schedulers for asynchronous switches, ii) their simple architec-
ture which avoids the need of complex segmentation and reassembly machines
and simplify clock alignment circuits and iii) their negligible segmentation over-
heads, we expect that asynchronous architectures will lead to simpler and more
efficient switching architectures in the near future.
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