
1

EMPIRICAL CHARACTERIZATION OF

SOFTWARE QUALITY

Dipartimento di Automatica e Informatica

Politecnico di Torino

Corso Duca degli Abruzzi, 24 - 10129 Torino,

ITALY

Ph.D. Dissertation of:

Syed Muhammad Ali Shah

Advisor:

 Prof. Maurizio Morisio

MARCH 2014

http://www.dauin.polito.it/

2

ABSTRACT

The research topic focuses on the characterization of software quality considering the main

software elements such as people, process and product. Many attributes (size, language, testing

techniques etc.) probably could have an effect on the quality of software. In this thesis we aim to

understand the impact of attributes of three P’s (people, product, process) on the quality of software

by empirical means. Software quality can be interpreted in many ways, such as customer satisfaction,

stability and defects etc. In this thesis we adopt ‘defect density’ as a quality measure. Therefore the

research focus on the empirical evidences of the impact of attributes of the three P’s on the software

defect density. For this reason empirical research methods (systematic literature reviews, case

studies, and interviews) are utilized to collect empirical evidence. Each of this research method helps

to extract the empirical evidences of the object under study and for data analysis statistical methods

are used. Considering the product attributes, we have studied the size, language, development mode,

age, complexity, module structure, module dependency, and module quality and their impact on

project quality. Considering the process attributes, we have studied the process maturity and

structure, and their impact on the project quality. Considering the people attributes, we have studied

the experience and capability, and their impact on the project quality. Moreover, in the process

category, we have studied the impact of one testing approach called ‘exploratory testing’ and its

impact on the quality of software. Exploratory testing is a widely used software-testing practice and

means simultaneous learning, test design, and test execution. We have analyzed the exploratory

testing weaknesses, and proposed a hybrid testing approach in an attempt to improve the quality.

Concerning the product attributes, we found that there exist a significant difference of quality

between open and close source projects, java and C projects, and large and small projects. Very small

and defect free modules have impact on the software quality. Different complexity metrics have

different impact on the software quality considering the size. Product complexity as defined in Table

53 has partial impact on the software quality. However software age and module dependencies are

not factor to characterize the software quality.

Concerning the people attributes, we found that platform experience, application experience and

language and tool experience have significant impact on the software quality. Regarding the

capability we found that programmer capability has partial impact on the software quality where as

analyst capability has no impact on the software quality.

Concerning process attributes we found that there is no difference of quality between the project

developed under CMMI and those that are not developed under CMMI. Regarding the CMMI levels

there is difference of software quality particularly between CMMI level 1 and CMMI level 3.

Comparing different process types we found that hybrid projects are of better quality than waterfall

projects. Process maturity defined by (SEI-CMM) has partial impact on the software quality.

Concerning exploratory testing, we found that exploratory testing weaknesses induce the testing

technical debt therefore a process is defined in conjunction with the scripted testing in an attempt to

reduce the associated technical debt of exploratory testing.

The findings are useful for both researchers and practitioners to evaluate their projects

3

ACKNOWLEDGMENTS

For this research thesis, I am fortunate to have Prof. Maurizio Morisio, who not only gave me the

opportunity to undertake the doctoral studies but also supervised me, without the invaluable

guidance, supervision and support this thesis would not have happened. Thank you very much Prof.

Maurizio Morisio. I still need your supervision and a lot to learn from you. I am thankful to Dr.

Marco Torchiano, who is always willing to discuss and guide me, his ideas has been very influential

in conducting this research.

I am thankful to my colleagues working at SoftEng for sharing their knowledge with me and

offering me to learn from them by discussing the ideas and problem-solution formation. I really

appreciate all my colleagues that took part in the internal review of my research work and giving me

positive feedback and suggestions to improve my research.

I am thankful to SoftEng body and specifically Prof. Maurizio Morisio who arranged funding for

my research work. I think without it, I was not able to perform this research.

I will remain beholden to my parents; they provided me great encouragement, confidence and

comfort to undertake my doctoral studies overseas. I thank my brother and sister for their support and

love they put during my stay overseas. I give special thanks to my nieces and nephews for providing

me ultimate joy in my life.

From every aspect I am thankful to my host country “ITALY”. The years I have spent here in this

beautiful city of beautiful country (Torino, Italy) for my studies make me feel it like home. I spent

my best time enjoying the great Italian hospitality.

4

Table of Contents
1. Introduction .. 9

1.1 Software elements ... 9

1.1.1 People .. 9
1.1.2 Process ... 9
1.1.3 Product... 10
1.1.4 Software quality .. 10
1.1.5 Empirical software engineering... 11

1.2 Software engineering data sets... 11

1.3 Research questions .. 13

1.4 Research methodology .. 15

1.5 Summary .. 15

2. Software defect density variants: A proposal ... 16

2.1 Introduction .. 16

2.2 Related work ... 17

2.3 Defect density variants .. 17
2.3.1 Standard defect density (sDD) ... 18
2.3.2 Differential defect density (dDD)... 18

2.4 Research design .. 18
2.4.1 Research questions ... 18
2.4.2 Studied projects .. 18
2.4.3 Analysis methods .. 19

2.5 Analysis .. 19
2.5.1 Project camel.. 19
2.5.2 Project lucene ... 20
2.5.3 Project whirr .. 22
2.5.4 Validity threats ... 22

2.6 Discussion and conclusion... 23

3. The Impact of Product attributes on Software Quality ... 24

3.1 Introduction .. 24

3.2 Related work ... 25

3.3 Data set: systematic literature review ... 27

3.3.1 Research design .. 27
3.3.2 Discussion .. 38
3.3.3 Threats to validity ... 39
3.3.4 Conclusions .. 40

3.4 Data set: promise repository 1, concerning modules structure: 40

3.4.1 Research design .. 40
3.4.2 Results .. 43
3.4.3 Threats to validity ... 47
3.4.4 Discussion and conclusion .. 47

3.5 Data set: promise repository 1, concerning complexity metrics: 48

3.5.1 Research design .. 48

5

3.5.2 Results .. 50
3.5.3 Conclusion ... 52

3.6 Data set: NASA 93 .. 52
3.6.1 Data collection ... 52
3.6.2 Product complexity (PC): .. 53
3.6.3 Data analysis method .. 53

4. The Impact of People attributes on Software Quality ... 55

4.1 Introduction .. 55

4.2 Independent variables .. 56
4.2.1 Analyst capability (AC) ... 56
4.2.2 Programmer capability (PC) ... 56
4.2.3 Application experience (AE) .. 56
4.2.4 Platform experience (PE) .. 56
4.2.5 Language and tool experience (LTE) ... 56
4.2.6 Correlation among the variables ... 57

4.3 Results .. 57

4.4 Discussion... 63

4.5 Conclusion .. 63

5. The Impact of Process attributes on Software Quality.. 64

5.1 Introduction to software process .. 64
5.1.1 Related work ... 65
5.1.2 Data set: Capers Jones & Associates LLC ... 66
5.1.2.1 Research design .. 66
5.1.2.2 Results .. 67
5.1.2.3 Discussion .. 72
5.1.2.4 Conclusion ... 73
5.1.3 Data Set: NASA 93: ... 73
5.1.3.1 Process maturity (PM) .. 73
5.1.3.2 Results .. 74

5.2 Introduction of exploratory testing... 75
5.2.1 Exploratory testing ... 75
5.2.2 Technical debt .. 76
5.2.3 Systematic literature review .. 76
5.2.4 ET as a source of testing technical debt ... 78
5.2.5 Tackling the exploratory testing debt ... 80
5.2.6 Summary .. 81

5.3 ET in conjunction with other testing approaches .. 82

5.3.1 Introduction .. 82
5.3.2 PHASE 1: Indentifying strengths and weaknesses of exploratory testing and scripted

testing 83
5.3.3 Summary of the systematic literature review and interview results 95
5.3.4 PHASE 2: Mapping exploratory testing and scripted testing in relation to strengths and

weaknesses .. 96
5.3.5 PHASE 3: Designing the hybrid testing process... 96
5.3.6 Threats to validity ... 103
5.3.7 Discussion and conclusions ... 104

6. Conclusion of the thesis .. 106

7. Future work .. 108

8. References .. 108

9. Appendix .. 114

6

List of Figures

Figure 1. The general idea of the research ... 11

Figure 2 Organization of research questions addressed by research paper in relevant

chapters .. 14

Figure 3 Defects and size in releases of a project .. 17

Figure 4 The sDD and dDD plot over Camel project lifetime .. 19

Figure 5 The sDD and dDD plot over Lucene project lifetime ... 21

Figure 6 The sDD and dDD plot over Whirr project lifetime ... 22

Figure 7 DD cumulative distribution ... 32

Figure 8 DD cumulative distribution for Close source and Open source projects 33

Figure 9 Box plot of Close Source vs. Open Source DD.. 33

Figure 10 DD cumulative distribution by programming language 34

Figure 11 Box plot of DD per programming language ... 35

Figure 12 DD vs. size of project in logarithm scale ... 36

Figure 13 DD for different Size clusters .. 37

Figure 14DD vs. age of projects.. 37

Figure 15 Percentage of Very Small modules in projects ... 43

Figure 16 Box plot of product complexity against the quality of software.......................... 54

Figure 17 Box plot of analyst capability against quality of software 58

Figure 18 Blox plot of analyst capability against quality of software 59

Figure 19 Box plot of application experience against software .. 60

Figure 20 Box plot of platform experience against software quality 61

Figure 21 Interval plot of language and tool experience against software quality 62

Figure 22 Box plot of DD of projects assessed under CMMI vs. projects not assessed under

CMMI. ... 68

Figure 23 DD cumulative distribution for CMMI assessed and CMMI not assessed projects

... 69

Figure 24 Box plot of DD of different CMMI levels ... 69

Figure 25 DD cumulative distribution for different CMMI levels 70

Figure 26 Box plot of DD of projects with and without structured process. 70

Figure 27 DD cumulative distribution for projects with and without structured process 71

Figure 28 Box plot of DD for different structured processes .. 72

Figure 29 DD cumulative distribution for structured processes .. 72

Figure 30 Interval plot of process maturity against quality of software 74

Figure 31 Induced TD by the implication of ET .. 80

Figure 32 Lines-of-argument synthesis strategy analysis example. 88

Figure 33 Process of hybrid testing. .. 102

7

List of Table

Table 1 the data set used in this thesis ... 12

Table 2 Camel Project Defect Density Figures .. 19

Table 3 Lucene Project Defect Density Figures ... 21

Table 4 Whirr Project Defect Density Figures ... 22

Table 5 Distribution of papers in phase 1 .. 28

Table 6 Distribution of papers in phase 2 .. 28

Table 7 List of selected studies for DD ... 28

Table 8 Descriptive statistics of DD of projects... 32

Table 9 Project clusters by size: descriptive statistics .. 36

Table 10 Contingency table for Size category and Type .. 38

Table 11Contingency table for Type and Language .. 38

Table 12. Research questions and hypothesis .. 40

Table 13 Categories of software’s in term of size .. 41

Table 14 DD of different categories of modules .. 42

Table 15 Distribution of very small modules and DD in large sized projects vs. small and

medium sized projects .. 43

Table 16 Distribution of defect free modules and percentage of code of defect free 44

Table 17 Projects Defect density Vs % defect free modules .. 45

Table 18 Projects module dependencies and DD ... 46

Table 19 Projects with higher DD vs. modules with higher DD ... 46

Table 20. The metrics used in the study .. 48

Table 21Categories of software’s in term of size ... 50

Table 22 Complexity metrics effective indicators of defects .. 50

Table 23 Complexity metrics untrustworthy indicators of defects 51

Table 24Complexity metrics not useful indicators of defects ... 51

Table 25 Project types .. 53

Table 26 Dependent variables descriptive statistics ... 53

Table 27 project categorization regarding complexity ... 53

Table 28 Descriptive statistics for product complexity .. 54

Table 29 Analyst / Programmer Capability levels ... 56

Table 30 Experience levels ... 57

Table 31 Independent variables categories .. 57

Table 32 Correlation among the variables ... 57

Table 33 Descriptive statistics for analyst capability ... 58

Table 34 Descriptive statistics for programmer capability ... 59

Table 35 Descriptive statistics for application experience .. 60

Table 36 Descriptive statistics for platform experience ... 61

Table 37 Descriptive statistics for language and tool experience 62

Table 38 Summary observation of Impact of independent variables on dependent variable 62

Table 39 Descriptive statistics of DD of projects ... 68

8

Table 40 Independent variables categories .. 73

Table 41 Descriptive statistics for process maturity ... 74

Table 42 Distribution of selected papers. .. 76

Table 43 Supporting evidence Vs practices impacted by ET .. 77

Table 44 Keywords: (A1 or A2 or A3 OR A4 or A5 or A6) and (B1 or B2 or B3 or B4 or

B5 or B6 or B7 or B8]. ... 84

Table 45 Included papers .. 85

Table 46 Data extraction form .. 87

Table 47 Strengths of ET .. 89

Table 48 Strengths of scripted testing .. 90

Table 49 Weaknesses of ET .. 91

Table 50 Weaknesses of scripted testing ... 92

Table 51 Mapping of the strengths of exploratory testing to the weaknesses of scripted

testing .. 96

Table 52 Mapping of the strengths of scripted testing to the weaknesses of exploratory

testing .. 97

Table 53 Product complexity criterion .. 114

9

Chapter 1

1. Introduction
The main goal of software engineering research is to provide the evidences that support the

practitioners and facilitate them to take correct decision during the software development [1]. These
decisions are always dependent on how the data is analyzed and which information is extracted from

the data after analysis. This information is used to support the investigation of different themes in this

thesis and provides assistance for decision taking. Software is an entity that is dependent on many

direct and indirect attributes used in its development. For example, process that is used to develop

software is one attribute that software is dependent on. However during the development of software

the most important aspect considered is the resultant quality. Consequently it is tried to consider only

those attributes that have a relatively better impact on the software quality. The common method to

reveal quality of any software is to know the number of defects in it.

1.1 Software elements
A conceptual model of software engineering consist of three elements that are often called

software elements and usually denoted by 3Ps i.e. people, process and product. People are involved

to carry out the engineering process to produce a software product.

1.1.1 People

People are the primary element and main force of software development. People are involved in

all phases of software development e.g. People gather requirements, people interview users (people),

people design software, and people write software for people. No people -- no software. The best

thing that can happen to any software project is to have people who know what they are doing and

have the experience and capability to do it [2]. Concerning people attributes such as experience and

capability should have significant impact on the quality.

1.1.2 Process

Process is how we go from the beginning to the end of a project. All projects use a process and
selection of process for the project depends on the projects context. Process can be assessed under

two dimensions level of maturity and type. Similarly process could be in either dimension level of

maturity or type. The level of maturity is expressed in software engineering Institute's Capability

Maturity Model (SEI- CMM) and Capability Maturity Model Integration (CMMI) levels and process

types are expressed in terms of Waterfall and Agile, etc. Considering these attributes of process, they

should have impact on the quality.

10

1.1.3 Product

The product is the result of a project. The desired product satisfies the customers and fulfills their

requirements. So what we are constructing using people and process is a ‘Product’. The more

emphasis on process and people sometimes causes us to forget the product. This results in a poor

product, no money, no more business, and no more need for people and process [2]. There are many

attributes of products that should be considered important in order to have a quality product. The
product attributes actually are the attributes of software itself e.g. development language, the size, the

complexity level of software etc. These attributes should have direct or indirect impact on the quality.

1.1.4 Software quality

Quality has many definitions and often it depends on the context. The most understood definitions

by some of the international organizations are as follows.

 The “German Industry Standards DIN 55350 Part 11” defines the quality as "Quality

comprises all characteristics and significant features of a product or an activity which

relate to the satisfying of given requirements".

 The quality defined by ‘ANSI Standard ANSI/ASQC A3/1978” is "Quality is the totality of

features and characteristics of a product or a service that bears on its ability to satisfy the

given needs".

 The IEEE Standard (IEEE Std 729-1983) defines the quality as:

o "The totality of features and characteristics of a software product that

bear on its ability to satisfy given needs: for example, conform to

specifications”

o “The degree to which software possesses a desired combination of

attributes”

o “The degree to which a customer or user perceives that software meets his

or her composite expectations”

o “The composite characteristics of software that determine the degree to

which the software in use will meet the expectations of the customer".

 The Pressman’s [3] defines the software quality in term of “Conformance to explicitly

stated functional and performance requirements, explicitly documented development

standards, and implicit characteristics that are expected of all professionally developed

software”

 IEEE Definition of Software Quality in term of customer satisfaction “The degree to which

a system, component, or process meets specified requirements”

 IEEE Definition of "Software Quality" in term of Requirements fulfillment “The degree to

which a system, component, or process meets customer or user needs or expectations”

There are many definitions regarding the quality, specifically software quality. Besides all the

definitions the quality, it is so often depends on the context in which it is required. Hence, in this

thesis we have used the quality measure Defect Density (DD) that is usually defined as the number of
defects found divided per size. Subsequently the main theme of this research is to understand the

impact of people, process and product attributes on the quality defined in term of defect density.

Figure 1 shows the general idea of the research conducted in this study. The more detail of the defect

density considering its variants and understandings it as an indicator of global quality view of a

project and local quality view indicator view is given in Chapter 2.

11

Software

Quality

Process

ProductPeople

Impact onImpact on

Impact on

Figure 1. The general idea of the research

1.1.5 Empirical software engineering

Empirical software engineering is a field of quantitative research methods for measuring,

assessing, predicting, controlling, and managing software development [4]. It focuses the research on

confirming theories e.g. “conventional wisdom”, Object Oriented is better or not., exploring

relationships e.g. relationship between quality and productivity, evaluating accuracy of models e.g.

project quality models and validating measures e.g. code complexity, size etc.

The practical purpose of empirical research is the assessment, evaluation management, prediction

and development of software project artifacts. The fundamental elements of empirical studies are

research design, measurements, and analysis. The empirical studies are classified into three modes,

descriptive, exploratory and confirmatory. The research method types are experiments, case studies

and statistical analysis. The level of analysis could vary from individual to team to project and to

organization.

The basic requirement for empirical studies is to formulate the hypothesis that should be

unambiguous, testable and quantifiable. The definition of dependent (effects) and independent

(causes), and the measurement of variables in an efficient, reliable and valid manner [4].

1.2 Software engineering data sets
The data sets are the basic building blocks of empirical studies on which the analysis are

performed and results are extracted. The data sets used in this thesis comes from industry or open

source. The data set collected and analyzed in this thesis has been used in some previous studies with

some other objectives and considered validated. For the industrial projects consultant companies are
contacted that helped in providing their data sets e.g. Capers Jones. For the open source projects we

collected the defects related data from the portal of apache issues and also we made use of some

research repositories such as PROMISE [5]. The important details of the used data sets are given in

detail in the chapters of this thesis. Table 1 shows the outline of data set used in this thesis.

In chapter 2 the data set is composed of number of defects and size of releases of three open

source projects.

In chapter 3 the data set is from different resources (Systematic Literature Review, Promise,

NASA 93) representing many of the product attributes against the defect density of projects.

In chapter 4 the data set is from the industry (NASA 93) comprising of the people attributes

against the defect density of projects.

12

In chapter 5 the data set is from the industry (Capers Jones, NASA 93) comprising of different

process attributes against the defects density of projects.

Table 1 the data set used in this thesis

CHAP Data set name / Description Sources Context

2 Camel, Lucene, Whirr Apache Software

Foundation

Large Open

Source Projects

3 Project A, Project B, Project C, Project D,

ACE, Ant (1.7.0), Apache web server 1.0,

Argo UML, Avaya telephony systems, camel,

CDK (1.0.1), Ckjm, CMI, Controller, DCF

Release 1, DCF Release 2, DCF Release 3,
Eclipse, Eclipse 2.0, Eclipse 2.1, Eclipse 3.0,

eXpert, FOP (0.94), Forrest, FreeBSD, Freenet

(0.7), IBM, Inventory, Ivy, jedit, JEF

framework, JEF framework, JEF framework,

Jetspeed2 (2.1.2), JM1, Jmol (11.2), KC1,

KC3, KC4, Large, Linux kernel Verison 2.4,

Linux kernel Version 2.6, log4j, lucene, MC1,

MC2, OsCache (2.4.1), pbean, PC2, PC3, PC4,

PCI, Pentaho (1.6.0), PL/I data base

application, poi, Project 12, Project 28,

Project 1, Project 10, Project 11, Project 13,
Project 14, Project 15, Project 16, Project 17,

Project 18, Project 19, Project 2, Project 20,

Project 21, Project 22, Project 23, Project 24,

Project 25, Project 26, Project 27, Project 29,

Project 3, Project 30, Project 31, Project 4,

Project 5, Project 6, Project 7, Project 8,

Project 9, Prop 1, Prop 2, Prop 3, Prop 4, Prop

5, Provisioning, Public, Reusable, Rhino,

synapse, System A, System A, System B,

System C, System C, System D, System E,

Tele comm. Sub system ,Telecom System of

Ericsson, Tomcat, TV-Browser (2.6), velocity,
Xalan, xerces

Electronic Data

Bases by

Performing

Literature Review

Open Source

and Industrial

projects

Ckjm, sybkofucha, e learning, kalkulator,

workflow, nieruchomosci, wspomaganiepi, Pdf

Translator, forrest0.8, Termoproject, sklebagd,

Serapion, interface, zuzel 1, Skarbonka,

pbean2, systemdata, velocity 1.6, arc, berek,

log4j 1.2, synapse 1.2, Redaktor , Ivy 2.0,

lucene 2.4, camel1.6, poi 3.0, xerces1.4,

jedit4.3, Ant 1.7, Tomcat 6.0.389418, xalan

2.7, Prop 1, Prop 2, Prop 3, Prop 4, Prop 5 and

Prop 6.

Promise Data Set Students, Open

Source and

Industrial

Projects.

Project 1 to Project 93 NASA 93 Data Set Industrial

Projects from
different

domains e.g.

avionics,

mission,

simulation,

monitoring etc.

4 Project 1 to Project 93 Nasa 93 Data Set Industrial

Projects from

different

domains e.g.

13

avionics,

mission,

simulation,

monitoring etc.

5 Project 1 to Project 60 Caper Jones

(industrial data set)

Large Industrial

Projects Large

Qualitative data about Exploratory Testing Interview,

questionnaires

Literature review,

Experience

based data

1.3 Research questions
The aim and goal of a research question is to draw the main attention behind the investigation [6].

Therefore in every research project the research focus is mostly highlighted by the use of particular

research questions [6].

The objective of this thesis is to understand and highlight the impact of different attributes of

three main elements of software engineering i.e. 3Ps (product, people, and process) on the projects

quality.

Figure 2 shows the research questions and how these research questions are addressed by research

papers in relevant chapters of this thesis.

Main Research Question: What is the impact of software elements on the software quality?

To answer the main research question, different chapters are formed and in which several research

questions are addressed to be answered explicitly.

RQ1: What is the suitable measure of quality in term of defect density?

The answer of RQ1 is to be found in Chapter 2. RQ1 is answered by performing the analysis of

different variants of DD. Two concrete variants of Defect Density (standard DD, differential DD) are

defined, and analyzed their trend over time on a number of projects, and understand which one is

more suitable as an indicator of the quality of software projects.

RQ2: What is the impact of product attributes on the quality?

The answer of RQ2 is given in the Chapter 3. Different research data sets have been used to

answer the RQ3 by mean of statistical hypothesis testing i.e. either the product attribute have impact

on the quality or not. The first step was to collect the data about different attributes of product;

thereafter the statistical analysis is performed to understand the influence of any attribute on the

quality.

RQ3: What is the impact of people attribute on the quality?

The answer of RQ3 is given in the Chapter 4 using the data set of ‘NASA 93’. To see the impact

of people attributes 93 projects from different center of NASA are analyzed to understand the impact

of “experience” and “capability” impact on the quality.

RQ4: What is the impact of process attributes on the quality?

Chapter 5 provides the answer of RQ 4. Two different data sets are used to analyze the impact of

different process attributes on the quality. The ‘NASA 93’ data set is used to understand the impact

of CMM on the quality and the data set that comes from the industrial partner ‘Capers Jones’ that are

60 large size projects are used to understand the impact of level of maturity (as measured by the

CMMI assessment model) and type (TSP, RUP and the like) on the process quality. In addition the

test approach Exploratory Testing (ET) is analyzed to understand its impact on the quality. We

14

analyzed the software testing approach through a systematic review of literature to understand the

consequences of ET on the quality. Afterwards we define a hybrid process in conjunction with

scripted and exploratory testing in an attempt to reduce the consequences of ET on quality.

 Syed Muhammad Ali Shah is the primary author of all papers.

 Prof. Maurizio Morisio, who is principal supervisor of this thesis, and is a co-author on all

the papers included in the thesis except paper 4 Chapter 5.

 Dr Marco Torchiano is a co author on the papers: paper 1 in Chapter 2, paper 1 and 3 in

Chapter 3, paper 1 in Chapter 4, and paper 1, 2 and 3 in Chapter 5.

Paper 3 in Chapter 5, is written with Dr. Antonio Vetro’ who contributed on the part of technical

debt.

Paper 4 in Chapter 5 is written together with Dr. Cigdem Gencel, Engr. Usman Sattar Alvi and

Dr. Kai Petersen, who are also involved in the main idea, in the formation of hybrid process

definition and in the static evaluation as well in discussion and writing of the paper.

What is the impact of software elements on the

software quality?

Software defect density variants:

A proposal, -- published in the

proceeding of 4th International

Workshop on Emerging Trends

in Software Metrics (WETSoM

2013)

RQ1: What is the

suitable measure of

quality in term of defect

density?

 RQ2: What is the

impact of product

attributes on the

quality?

 RQ3: What is the

impact of people

attributes on the

quality?

 RQ4: What is the

impact of process

attributes on the

quality?

Chapter 2

Chapter 3

Chapter 4 Chapter 5

An Overview of Software Defect

Density: A Scoping Study --

Published in the proceedings of

19th Asia-Pacific Software

Engineering Conference (APSEC,

2012).

The Impact of Module Attributes

on Project Defect Density --

Published in the Proceedings of the

International Conference on

Information Technology and

Software Engineering (ITSE 2012).

Complexity metrics significance for

defects: An empirical view --

Published in the Proceedings of the

International Conference on

Information Technology and

Software Engineering (ITSE 2012).

Towards the impact of People,

Process, and Product Attributes on

the Software Quality and

development Productivity – under

review Springer Software Quality

Journal (2014).

Towards the impact of People,

Process, and Product Attributes on

the Software Quality and

development Productivity – under

review Springer Software Quality

Journal (2014).

The impact of process maturity on

defect density -- Published

in Proceedings of the ACM-IEEE

international symposium on

Empirical software engineering and

measurement (ESEM '12). Software

Quality Journal (2014).

Towards the impact of People,

Process, and Product Attributes on

the Software Quality and

development Productivity – under

review Springer Software Quality

Journal (2014).

Exploratory testing as a source of

testing technical debt – published in

IEEE IT Professional Journal

(2013).

Towards a hybrid testing process

unifying exploratory testing and

scripted testing – Published in

Journal of Software Evolution and

Process (2013).

Figure 2 Organization of research questions addressed by research papers in relevant chapters

15

1.4 Research methodology
The research is defined as a study that goes beyond the influences of personal experience of an

individual and it is based on the utilization of some research methods and techniques. Creswell

describes three types of methods used for research i.e. Qualitative, Quantitative and Mixed research

[6].

The qualitative method of research is relayed on the theory of human perspectives [6] and has

different ways of interpretations [7]. Some of the strategies of the qualitative method of research are

grounded theory, case study, interviews and ethnography etc.

The quantitative method of research is mainly concerned with quantifying a relationship,

comparing two or more groups, use of measurements and observations, hypothesis testing and

investigating cause and effect relation [6]. Some of the strategies of the quantitative research are

experiments, surveys etc.

The mixed method of research contains both quantitative and qualitative methods in a single

study.

The research methodology used in this thesis is both quantitative and qualitative. The research

methods used in Chapter 2, 3, 4 are of quantitative nature. As in these chapters first the data is

extracted from different source and then statistical analysis is performed to quantify the relationship,

comparing groups, performing hypothesis testing and investigating cause and effect relation. In the

Chapter 5 the part related to process level of maturity and type is addressed by the quantitative

research method, however the exploratory testing related part is addressed by mixed method

approach.

1.5 Summary

In this introduction chapter we presented the outline of the research area that is conducted in this

thesis. In addition to that we discussed the concepts, research methods, research questions, the data

set used in the thesis.

16

Chapter 2

2. Software defect density variants: A proposal
(Understanding of appropriate software quality measure in term of defect density)

 Published at (WETSoM, 13)

Emerging Trends in Software Metrics

S. M. A. Shah, M. Morisio and M. Torchiano

2.1 Introduction
Defect density (DD) is one of the most established measures of software quality. Typically DD is

defined as the number of defects found divided by the size in a thousand lines of code. This

definition is mostly used among practitioners to calculate and evaluate the quality of their projects at

a certain phase of development. It is often used as an indicator of release readiness [8]. In addition

the DD is also used to compare subsequent releases of a product to track the impact of defect

reduction and quality improvement activities. Hence DD is a popular measure for comparing

products [9]. However if we consider a project over a set period of time, what happens to DD?

Usually, over subsequent releases code is added, and the same applies for defects. This paper

investigates the consequences of this on DD and whether it remains stable, increase or decreases. In

other cases code is deleted over releases. This leads us to examine the trend of DD in these cases and

whether it is more meaningful to consider all defects in a project, or only the new ones introduced

between two releases. The same for size is it better to consider the total size, or only delta between
two releases.

17

This chapter offers an in-depth analysis of different variants of DD, applying them to some

sample projects and trying to understand which DD variant is more suitable for the quality

evaluation of a project.

2.2 Related work
From literature we found different researchers using different definitions of DD. In the authors

recent overview study of defect density they used the cumulative defects of all releases and the size

of the last release to define the defect density [10]. They argument that in the meantime the code

base may undergo complex transformations e.g. code additions, changes, deletions. Therefore it is

difficult to match a defect to the corresponding code base.

In another recent study Zhu and Faller [8] assessed defect density in evolutionary product

development. They use aggregated churned LOC as a size measure for calculating the defect density.

They argue that for the same code repository, the number of defects of release Ri developed in time

period T can be approximated by defects reported in time period T, regardless if those defects come
from release Ri or Ri-1 or any previous one.

Westfall analyzed DD of the releases of a software project over time. For every release she has

used the total size of the release (reused code and new code) [9].

In addition Mohagheghi et al. studied a large distributed system by Ericsson. They compared the

DD of the system considering the re-used components and non reused components. They found that

reused components have lower DD than the non reused components [11].

Kim et al. studied the use of defect density on different phases and artifacts of a software project

for quality control activities. They used error defect density, document defect density and delivered

defect density for quality controlled activities [12]. In another study done by authors they used the

delivered defect density looking for a relationship between process structure and quality of the

product. To calculate DD they used the number of defects that are shipped with the product and the

total size of the project [13].

2.3 Defect density variants
Since many variants of DD can be used, we give here the precise definition of two of them.

Figure 3 shows the general trend of defects and size in the subsequent releases of a project. Most

often every release adds both size and defects. In Figure 3 SRi denotes the size of a project at the

time of release Ri, and DRi denotes the defects found until release Ri. Where ΔSRi and ΔDRi are

the size and defects added between Ri and Ri-1.

Figure 3 Defects and size in releases of a project

18

2.3.1 Standard defect density (sDD)

This variant corresponds to the usual and standard definition, that considers a project as a whole

at a certain time (release), as used in the study [10].

sDDi = DRi / SRi

To calculate the subsequent release defect density the cumulative defects of prior releases are

used with current release size. For example to calculate the DD of Ri+2, all defects from release Ri,

Ri+1 and Ri+2 are used, where the size is taken at the time of release Ri+2.

2.3.2 Differential defect density (dDD)

Standard DD does not distinguish defects belonging to different releases. To overcome this

problem we define differential DD. Differential DD considers each release as a new project and is

defined as follows:

dDDi = (DRi - DRi-1) / |SRi – SRi-1|

At the denominator we have the absolute value of the difference in size between two releases.

The absolute value is used in case the size decreases, since we are interested in the absolute variation

in size. And anyway a negative value of dDD is not acceptable since defects always increase. At the

numerator we have, ideally, the defects belonging only to the last release. This is not the case in

practice, because some defects will be found later in time, after the release is issued, and other

defects belong to previous releases. So as a proxy we have at the numerator DRi – DRi-1

Differential Defect Density at First Release: At the first release we compute dDD1 using DR1 and

SR1, as there is no delta defects and size for the first release.

2.4 Research design
In this section, we present the research questions, the projects examined and the analysis method.

2.4.1 Research questions

The research questions are:

RQ1: What is the trend of DD variants over a project? Is there any difference?

RQ2: What DD variant is more suitable as an indicator of software quality?

If the DD variants have the same trend and are highly correlated no variants of DD are needed.

However if we find a different trend of DD variants we would evaluate which DD variant is more

suitable as an indicator of quality.

2.4.2 Studied projects

To evaluate the RQs we need software projects with available size and defect data from the start.

Therefore we selected three open source software projects from the “Apache Software foundation”

for which we were able to find the total size and defects for every release.

Apache Camel is a versatile open-source integration framework based on known enterprise

integration patterns. We analyzed Camel project component ‘Camel-Core’ that includes forty

releases. The releases span over a time period of about five years.

Apache Lucene is a text search engine library written entirely in Java. We analyzed twenty four
releases of the Lucene project component ‘Lucene-Core’ starting from release R2.3.0 to R4.0.0 that

span over a time period of more than four years. The first release of Lucene was R1.9, we were

unable to find the size of Lucene releases from R1.9 to R2.2. There are total five releases (R1.9,

R1.9.1, R2.0.0, R2.1, R2.2) prior to the release R2.3.0, which is the first undertaken release for this

19

study. However to start and perform our analysis from release R2.3.0 we used the cumulative defects

prior to release R2.3.0.

Apache Whirr is a set of libraries for running cloud services. We analyzed nine releases of Whirr

project component ‘Whirr-Core’ that span over a period of approximately two years.

2.4.3 Analysis methods

For the data analysis we used graphical representation (DD values over time) as it gives the

immediate comparison. DD values are extremely skewed and required logarithm scale to have a

discernible representation.

2.5 Analysis
In this section we analyze the projects over their life time to understand the possible answer of

formulated research question for this study.

2.5.1 Project camel

In the Camel project (see Figure 4 and Table 2) we observed two versions v1 and v2. The

shifting of version v1 to version v2 is the results of some major changes in the program using the

same code base. The v1 consists of 11 releases where v2 consists of 29 releases. We observe the

increase of size of over eight times from the first release of v1 (17618 loc) to the last release (145516

loc) of v2. This means that in every release of Camel project there is a fair amount of addition of

lines of code.

The range of sDD span from 0.06 to 5.06 defects per thousand lines of code, where the dDD span

from 0.05-102.04 defects per thousand lines of code. The average sDD for forty releases is found to

be 3.43 where the average dDD of release is found to be 19.88 defects per thousand lines of code.
Figure 4 shows the sDD and dDD plot over the project lifetime.

We observe the increasing trend of the sDD over the releases in an entire Camel project lifetime.

However considering the dDD plot over the project lifetime, it has high variability, having defect

density of 0.06 to above 102.4 defects per thousand lines of code. The very high dDD values are due

to the smaller addition of lines of code at any release Ri to compose Ri+1 compared to high delta

defects.

In summary, for the project Camel we observe the continuous and stable trend of increase in sDD

over time. Where dDD has high variability over the project lifetime.

Figure 4 The sDD and dDD plot over Camel project lifetime

Table 2 Camel Project Defect Density Figures

Release Date Size Defects dDD sDD

1.0.0 7/2/2007 17618 1 0.06 0.06

1.1.0 8/18/2007 27155 4 0.42 0.18

1.2.0 10/19/2007 35689 5 0.59 0.28

20

1.3.0 4/7/2008 42547 35 5.10 1.06

1.4.0 7/22/2008 47570 46 9.16 1.91

1.5.0 10/31/2008 53523 41 6.89 2.47

1.6.0 2/16/2009 56170 29 10.96 2.87

2.0M1 3/16/2009 65021 38 4.29 3.06

1.6.1 4/18/2009 58014 17 9.22 3.07

2.0M2 6/15/2009 71367 28 4.41 3.18

2.0M3 7/23/2009 72870 14 9.31 3.31

2.0.0 8/22/2009 73678 9 11.14 3.39

1.6.2 11/24/2009 58246 9 38.79 3.21

2.1.0 12/4/2009 82206 43 5.04 3.56

2.2.0 2/14/2010 87313 18 3.52 3.56

2.3.0 5/26/2010 96403 26 2.86 3.50

1.6.3 6/3/2010 58497 5 19.92 3.28

2.4.0 7/15/2010 103585 22 3.06 3.47

2.5.0 10/28/2010 108778 32 6.16 3.59

1.6.4 12/16/2010 58527 2 66.67 3.79

2.6.0 1/29/2011 112028 28 8.62 3.74

2.7.0 3/21/2011 114825 12 4.29 3.75

2.7.1 4/12/2011 114830 0 0.00 3.75

2.7.2 6/3/2011 114830 0 0.00 3.75

2.7.3 7/19/2011 115244 20 48.31 3.91

2.8.0 7/23/2011 122934 35 4.55 3.95

2.8.1 9/16/2011 123251 12 37.85 4.04

2.7.4 10/24/2011 115268 2 83.33 3.93

2.8.2 10/24/2011 124906 17 10.27 4.12

2.8.3 11/21/2011 125261 11 30.99 4.20

2.9.0 12/31/2011 136618 59 5.20 4.28

2.7.5 1/15/2012 115317 5 102.04 3.97

2.8.4 1/29/2012 126201 13 13.83 4.27

2.9.1 3/5/2012 138060 36 24.97 4.50

2.9.2 4/17/2012 139107 17 16.24 4.59

2.8.5 4/27/2012 126768 19 33.51 4.40

2.8.6 6/9/2012 126831 5 79.37 4.44

2.10.0 7/1/2012 145047 85 14.31 4.98

2.9.3 8/28/2012 140192 35 32.26 4.80

2.10.1 8/28/2012 145516 13 27.72 5.06

2.5.2 Project lucene

In the Lucene project (see Figure 5 and Table 3) we observe three versions v2, v3 and v4, where

the version changes occur when the project undergoes some major updates. The v2 consist of 10

releases, v3 consists of 11 releases and v4 consists of 3 releases. We also observe the increase of

size but smaller than the Camel project. The size increases about two times from the first observed

release of v2 (53142 loc) to the last observed release of v4 (135441 loc). The sDD span from 1.016

to 10.96 defects per thousand lines of code. The average sDD of the Lucene project for twenty four

releases is found to be 5.4 defects per thousand lines of code. Where, the average dDD of Lucene

project is found to be 41.2 defects per thousand lines of code. Table 3 shows the Lucene project

releases defect density figures. Figure 5 shows the sDD and dDD plot over the project lifetime.

21

Similar to the Camel project we observe an increase of sDD over releases in the Lucene project,

where the high variability of dDD over the releases is found for Lucene project.

Figure 5 The sDD and dDD plot over Lucene project lifetime

Table 3 Lucene Project Defect Density Figures

Release Date Size Defects dDD sDD

2.3.0 1/21/2008 53142 54 1.0161 1.016

2.3.1 2/19/2008 53193 5 98.039 1.109

2.3.2 5/1/2008 53428 17 72.340 1.422

2.4.0 10/5/2008 66027 66 5.238 2.150

2.4.1 3/5/2009 66168 17 120.567 2.402

2.9.0 9/21/2009 88203 159 7.2157 3.605

2.9.1 11/3/2009 88611 17 41.666 3.780

3.0.0 11/22/2009 81290 24 3.278 4.416

2.9.2 2/22/2010 88931 18 56.25 4.239

3.0.1 2/22/2010 81611 21 65.420 4.876

2.9.3 6/6/2010 89407 20 42.016 4.675

3.0.2 6/11/2010 82111 18 36 5.309

2.9.4 11/28/2010 89669 36 137.40 5.263

3.0.3 11/28/2010 82366 34 133.33 6.143

3.1.0 3/26/2011 96222 136 9.8152 6.672

3.2.0 5/31/2011 99110 37 12.811 6.850

3.3.0 6/26/2011 104342 18 3.4403 6.679

3.4.0 9/9/2011 112175 28 3.574 6.463

3.5.0 11/22/2011 117453 38 7.199 6.496

3.6.0 4/6/2012 124809 69 9.380 6.666

4.0 A 7/3/2012 138203 525 39.196 9.818

3.6.1 7/22/2012 124975 13 78.313 10.96

4.0 B 8/13/2012 150344 35 2.8827 9.34

4.0.0 10/12/2012 135441 63 4.2273 10.8

22

2.5.3 Project whirr

In project Whirr (see Figure 6 and Table 4), we observe a six times increase in size of project

from the first release (1047 loc) to the last observed release (7832 loc). The sDD found to be in a

range of 3.4 – 11.6 where the dDD is found to be in a range of 1.15 - 70 defects per thousand lines

of code. The average sDD of eight releases of Whirr project is found to be 5.4 and average dDD is

found to be 12.9 defects per thousand lines of codes. Table 4 shows the Whirr project releases
defect density figures. Figure 6 shows the sDD and the dDD plot over the project lifetime. For the

sake of clarity the data point in row 9 has been considered an outlier and removed.

For the Whirr project we do not observe the continuous increasing trend of sDD over the time.

However it is also found that in Whirr project the differential defect density has high variability

over time too.

Figure 6 The sDD and dDD plot over Whirr project lifetime

Table 4 Whirr Project Defect Density Figures

Release Date Size Defects dDD sDD

0.1.0 9/20/2010 1047 4 3.820 3.820

0.2.0 11/15/2010 947 7 70 11.615

0.3.0 1/30/2011 2299 6 4.437 7.394

0.4.0 3/30/2011 3074 1 1.290 5.855

0.5.0 6/3/2011 4801 2 1.158 4.165

0.6.0 8/27/2011 5455 1 1.529 3.849

0.7.0 12/20/2011 6668 2 1.648 3.449

0.7.1 2/28/2012 6669 2

2000

(outlier) 3.748

0.8.0 8/24/2012 7832 12 10.318 4.724

2.5.4 Validity threats

In this section we discuss the validity threats using the classification proposed by [7]. As for

internal validity we do not have control over the exact line of code counting methods adopted by

different projects. For example out of the total lines of code how many are the comment lines, blank

lines and the physical source lines of code etc.

As for construct validity, we strictly relied on the exact definition of defects in which no

accumulation of issues, warnings and temporary problems are considered. The projects come from

the Apache Software Foundation, so we count on the strict policies defined by the Foundation,

among others for the log of defect data. For dDD, the numerator is a proxy of the defects belonging

23

to a release. For example in the Lucene release (2.3.0) only 51 new lines of code are added to

compose the release (2.3.1) but these additions of new 51 lines of code introduce 5 defects in release

2.3.1. Probably the 5 defects found come from releases before 2.3.0. This concern was also

highlighted in the study [8] that if delta loc is used, the defect density would be higher. As for

external validity we have used three projects, clearly a low number, so external validity is limited.

2.6 Discussion and conclusion
In this section we discuss the information gained from the analysis by providing answers to our

research questions.

RQ1. In all three projects we observe that sDD and dDD behave very differently. sDD has a

stable trend, while dDD is unstable and varies widely from release to release.

sDD has a steadily growing trend in two projects, while it has an unclear trend in the Whirr

project. However Camel and Lucene are larger and longer projects. So the finding indicated to be

further evaluated in other projects, is that sDD grows over time and is not steady.

dDD, as observed, is very unstable over time in all projects. However it seems to have

boundaries, the lower at 1 defects/Kloc, and the upper at 100 defects/Kloc. This trend should be

further analyzed in similar projects. It is evident that this behavior depends in part on the fact that

defects found between two releases may come from any previous release.

RQ2. sDD and dDD have different trends that clearly result from their definition. sDD is a global

project indicator, while dDD considers a time frame in a project, so it is a local indicator.

As for sDD, a reasonable assumption seems to be that low sDD means a higher quality project,

and vice versa. However, the steady growth of sDD (as discussed in RQ1, and if confirmed) means

either that the quality of a project decreases over time, or that sDD is not a reliable quality indicator.

As for dDD, its high variability could be either normal behavior, or an indicator of a project that

is not under control. In the latter case projects should try to reduce dDD as much as possible. It can

therefore be deduced that extremely low or high values of dDD could be seen as Technical Debt

indicators.

A low dDD could indicate that defects are left to be found in the future, while a high dDD could

indicate that debt is repaid finding defects from past releases.

In conclusion it can be observed that both sDD and dDD are useful variants of DD, the former

providing a global view of the qualityof project, the latter a local view.

However, further studies are needed to consider the following research questions:

Do the majority of projects show a growing sDD over time?

Is a growing sDD over time correlated with a lower external quality of the project? For instance

in term of reliability?

Is an unstable dDD is normal behavior for all projects? Is it related to the type of changes that

the project undergoes, Or to some other project characteristics? And can its variability be reduced?

24

Chapter 3

3. The Impact of Product attributes on Software Quality

Originally published at:

Proceedings of 19th Asia-Pacific

Software Engineering Conference

(APSEC, 2012). Proceedings of the

International Conference on

Information Technology and Software

Engineering (ITSE 2012). Under

Review at: Springer Software Quality

Journal (2014).

S. M. A. Shah, M. Morisio and M. Torchiano

3.1 Introduction
Quality of software projects is of concern to all stakeholders e.g. users, practitioners, researchers

etc. The very nature of software as a continuously evolving entity makes it possible for several

different attributes. The one set of attributes that are considered during the development of software

are the product attributes. The product attributes are the attributes of software itself.
There could be different types of product attributes e.g. the external characteristics of product like

age, size, development language, environment etc. are considered as external product attributes and

the internal structure characteristics are considered to be internal product attributes e.g. module

characteristics and the complexity etc. Obviously these attributes should influence either directly or

indirectly the quality of the software.

25

Therefore, many internal properties are used to predict quality e.g. module characteristics and

complexity. Considering the module characteristics (size, quality and dependency) should have

impact on the software quality. Typically a module is intended at the physical level (a file as part of a

project), its size measured in LOC, its quality measured in defects or defect density (DD defined as

defects/size). In research studies [14][15], it is found that smaller modules have higher DD compared

to the larger modules. Many researchers have made their efforts to highlight different relationship

between the size and DD of the modules. For example, in studies [16][17] it is found that the

modules DD increases with the increase in the size of the modules. In studies [14][15] it is found that

the DD decrease with the increase in the size of the modules. However the studies [18][19] show no
significant relation of DD with the size of the modules. In summary the studies show the increase or

decrease of DD with size. Although at project level, the consequences of these observations that are

proven at module level are not well known. For example if a project is constructed with larger sized

modules or small sized modules then what should be the resultant DD of the project. This allows us

to devise our research to study the module attributes that have influence on project DD. This paper

studies the modules attributes and their effect at project level.

 Considering complexity as an internal product attribute can be measured using different

techniques applied to source code and design [20][21]. The common understanding about the

complexity is its positive correlation with the defects. Although the relation is not always linear, it

has significant impact. For the complexity measurement, different complexity metrics have been

devised in past years [20][21][22][23][24]. Studies showed that the majority of defects is caused by a

small portion of the modules [25]. These modules can be identified before time by examining the

complexity to reduce the post release and maintainability work. However it is not straightforward, for

the complexity we have different complexity metrics. The selection of appropriate complexity

metrics that best relate and indicate with the defects is of concern and requires minimal empirical

evaluation for the selection.

The other type of product attributes are the internal attributes of the product e.g. the module

characteristics (size, quality and dependency). The relationship between size and quality in software

projects is highly debated, both at project and module level. In recent works many researchers

characterize the DD of software modules based on different factors like size, complexity etc.

[26][27]. While such contributions are very important to understand the internal quality behavior of

software, we believe they only tell one part of the story: the perspective of the whole software

product instead of individual modules.

The objective of this chapter is to characterize the software projects DD based on different

product attributes. The study has a twofold outcome, first it aggregate and analyze DD figures of

software projects to answer very simple question, both from researchers and practitioners point of

view, such as ‘what is the typical defect density in a project regarding an attribute’? Second it

answers the question, ‘what are the attributes to characterize the defect density in a project’?

3.2 Related work
What is the typical defect density of a project, the earliest study conducted by Akiyama’s [28]

reports that a 1 KLoC seems to have approximately 23 defects. McConnell [29] reports 1 to 25

defects per thousand lines. Chulani [30] reports it to be 12 defects per thousand lines.

Considering the external attributes to characterize DD, Fenton and Ohlsson study shows that size

is a good attribute to characterize defects and DD at module level [27]. Many other studies reports

size as a factor to characterize the defects and defect proneness at module level with different

implications for open and close source software’s [26][31][32]. Raghunathan et al. compared the

quality aspects of both open source and close source software’s and they found no difference of

quality of open source and close source software’s [33]. Phipps found that a typical C++ programs

had two to three times as many defects per line of code as a typical Java programs [34]. Graves et al.

stated that we can characterize the faults based on number of modifications, the size of the

modifications and on the age of a file [35]. Zvegintzov stated that the quality of software also

increases with the age of software [36]. Cotroneo et al. highlighted the significant correlation of

defects with the software aging [37].

26

Considering the internal attributes to characterize DD, many studies have analyzed modules

within a single project. Withrow [16] showed her work by examining the 362 modules of the ADA.

She divided the modules into 8 groups based on the module size. She showed that after a certain

range of module size (161-250 lines of code) the defects start increasing with the module size. This

result also supports the Banker and Kemerer hypothesis [17] where they proposed the optimal

module size. The minor size of the module has positive impacts and for greater size, the negative

impact starts. Moller and Paulish highlighted that for the module of size smaller than 70 lines of code

DD increases significantly and modules that have size greater than the 70 lines of code have similar

trends toward DD [38]. Hatton [39] studied ‘NASA Goddard’ project along with Withrow’s data set.

He classifies the modules in two categories. For size up to 200 LOC, he suggested that the DD grows

logarithmically with the module size and for modules larger than 200 LoC, he observed a quadratic

model. Rosenberg [40] has commented on Hatton [39] argument that the observed decrease in DD

with rising module sizes is misleading. Shen et al. [14], worked on three separate releases of an IBM

software project by studying 108 modules. They highlighted 24 software modules with size

exceeding 500 LOC. They affirm that increases in size did not influence the DD. For the remaining

84 modules, they showed that DD declines as size grows. A study done by Basili and Perricone [15]

showed the division of 370 modules into 5 groups based on the module size with increment of 50.

They observed the trend of having lower DD of larger module. Fenton and Ohlsson [18] have studied

the modules of large telecommunication projects. They selected the modules randomly for the study

but did not observe significant dependence of module size with DD. In addition many studies

analyzed modules from more than one project. Andersson and Runeson [19] replicated the Fenton

and Ohlsson [18] study using the data of three telecommunication projects. They were also not so

much successful in finding the significance relation between the number of defects and LOC

compared to the original study. El Emam et al. studied three software projects written in C++ and

Java. They highlighted that there is a continuous relationship between the class size and faults [41].

Koru et al. [42], studied four large open source projects: Mozilla, Cn3d, JBoss, and Eclipse. They

observed that smaller classes are more problematic than larger ones. In particular, for open source

software the theory of Relative Defect Proneness (RDP) [32] is postulated about the size defect

relationship, stating that “smaller modules are less but proportionally more defects prone compared

to larger modules”.

Considering complexity as internal product attribute many studies show an acceptable correlation

between complexity metrics and software defect proneness [43][44][45][46]. English et al,

highlighted the usefulness of the CK metrics for identifying the fault-prone classes [47]. Gyimothy et

al. studied the object oriented metrics given by CK for the detection of fault prone source code of

open source Web and e-mail suite called Mozilla. They found that CBO metric seems to be the best

in predicting the fault-proneness of classes and DIT metric is untrustworthy, and NOC cannot be

used at all for fault-proneness prediction [46]. Yu et al. examined the relationship between the

different complexity metrics and the fault proneness. They used univariate analysis and found that

WMC, LOC, CBOout, RFCout LCOM and NOC have a significant relationship with defects but

CBOin, RFCin and DIT have no significant relationship [48]. Subramanyam and Krishnan examined

the effect of the size along with the WMC, CBO and DIT values on the faults by using multivariate

regression analysis for Java and C ++ classes. They conclude that size was a good predictor of

defects in both languages, but WMC and CBO could be validated only for C++ [45]. Olague et al.

studied three OO metrics suites for their ability to predict software quality in terms of fault-

proneness: the Chidamber and Kemerer (CK) metrics, Abreu’s Metrics for Object-Oriented Design

(MOOD), and Bansiya and Davis’ Quality Metrics for Object-Oriented Design (QMOOD). They

concluded that CK and QMOOD suites contain similar components and produce statistical models

that are effective in detecting error-prone classes. They also conclude that class components in the

MOOD metrics suite are not good class fault-proneness predictors [49]. However, Nagappan et al.

stated that there is no single set of complexity metrics that could act as a universally best defect

predictor [50].

27

In most of the related work, the product attributes are used to characterize the defects or defect

proneness without considering DD. If in some cases DD was used, it was used considering less

number of projects. This makes serious concern for the need of a study which characterized product

attributes based on DD.

3.3 Data set: systematic literature review

3.3.1 Research design

We followed the framework of Arksey and O’Malley [51] for conducting our scoping study.

There are five stages in the adopted framework. We present the stages of the study in the current

section (in subsection 3.3.1.1, 3.3.1.2, 3.3.1.3, 3.3.1.4, and 3.3.1.5, respectively).

3.3.1.1 Stage 1: research questions definition
The present paper aims at answering the impact of some important product factors concerning

DD.

RQ1: What are the typical figures of DD in software projects?

Such figures provide quality managers and project managers benchmarks to define quality goals

upfront, to evaluate the quality of a project during development, and to assess the quality of a project

post mortem.

RQ2: Is there a difference in DD between open and closed source project?

Since often the context, motivation, and development process differ between open source and

proprietary projects, as the anecdotal story goes one would expect a different quality of products. We

aim at finding some evidence, at least in terms of DD.

RQ3: Is there a difference in DD among programming languages?

Different programming languages encompass e.g. varying styles, expressive power and

abstraction level. Such differences are likely to influence the DD of projects.

In general (RQ2) & (RQ3) provide project managers evidence on the influence of programming

language (RQ3) and reuse of OSS components (RQ2) on project quality.

RQ4: What is the relationship between DD and project size?

A lot of analysis has been conducted on the relationship between module size and DD, but we

could not find any on project size and DD. RQ4 provide researchers the evidence of a relationship

between project size and DD.

RQ5: What is the relationship of DD and project age?

A reasonable expectation is that the longer a project is released, more defects are found and

therefore the higher the defect density. In addition it also provides researchers the evidence of

evolution of reliability over time, not only on failure happening (traditional reliability definition) but

also on DD.

3.3.1.2 Stage 2: relevant studies identification
We identified the relevant studies by following a three phase search strategy.

Phase 1: The first phase is exploratory and considers papers published in top software engineering

journals from 2000 to 2011. The search string is “Defect Density” OR “Fault Density” OR

“Reliability”. Fault density was used as a possible synonym of defect density, while reliability was

used because related papers often present defect data. The search was applied through ‘Science

direct’, ‘Springer link’, ‘IEEE explorer’ and ‘ACM digital library’. The web site search function

“search in all fields” including full text was used for every journal.

The journals considered are:

28

 System and Software

 IEEE Transaction on Software Engineering

 ACM Transaction on Software Engineering and Measurement

 IEEE Software

 Empirical Software Engineering

 Information and Software Technology

Inclusion and exclusion criteria are explained in 3.3.1.3. The results of Phase 1 are shown in

Table 5.

Table 5 Distribution of papers in phase 1

Source Scanned Included

Systems and Software 654 1

IEEE Transaction on Software Engineering 83 0

IEEE Software 55 0

ACM Transaction on Software Engineering and Measurement 6 1

Empirical Software Engineering 173 4

Information and Software Technology 412 2

Phase 2: We search using two publication databases, IEEE explorer and ACM digital library. The

search keywords are “Software Defect Density” and “Software Fault Density”. We had to add

“Software” to filter out excessive non relevant hits. The word ‘Reliability’ was dropped to narrow

down the focus of search as it did not select any relevant paper in phase 1.

Same inclusion and exclusion criteria explained in 3.3.1.3 are used. The result of Phase 2 is

shown in Table 6. The table does not consider papers already found in Phase 1.

Table 6 Distribution of papers in phase 2

Source Scanned Included

IEEE explorer 184 8

ACM digital library 2206 2

Phase 3: Phase 1 and phase 2 selected 18 papers. In Phase 3 we followed the references of

selected 18 papers to identify other relevant studies. But we did not find any new relevant paper. In

addition we particularly searched the Promise proceedings and found one study that indicates the

availability of required data set at promise data repository.

This led to a selection of 19 papers in total, out of 3774: 8 from Phase 1 + 10 from Phase 2 + 1

from Phase 3. In total the 19 papers contain DD data about 110 projects. For space constraints the list

of projects and their characteristics are not included in the paper but can be found as an electronic

resource at: http://softeng.polito.it/syed/AppendixA.pdf. Table 7 reports the selected studies for the

analysis.

Table 7 List of selected studies for DD

ID Publications

S1 J.-H. Lo and C.-Y. Huang, “An integration of fault detection and correction processes in

software reliability analysis,” Journal of Systems and Software, vol. 79, no. 9, pp. 1312-

1323, Sep. 2006.

S2 A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open source software

http://softeng.polito.it/syed/AppendixA.pdf

29

development: Apache and Mozilla,” ACM Trans. Softw. Eng. Methodol., vol. 11, no. 3, pp.

309-346, 2002

S3 E. Weyuker, T. Ostrand, and R. Bell, “Comparing the effectiveness of several modeling

methods for fault prediction,” Empirical Software Engineering, vol. 15, no. 3, pp. 277-295-
295, Jun. 2010.

S4 S. Kpodjedo, F. Ricca, P. Galinier, Y.-G. Guéhéneuc, and G. Antoniol, “Design evolution

metrics for defect prediction in object oriented systems,” Empirical Software Engineering,

vol. 16, no. 1, pp. 141-175-175, Feb. 2011.

S5 E. Weyuker, T. Ostrand, and R. Bell, “Do too many cooks spoil the broth? Using the

number of developers to enhance defect prediction models,” Empirical Software

Engineering, vol. 13, no. 5, pp. 539-559-559, Oct. 2008

S6 G. Koru, H. Liu, D. Zhang, and K. El Emam, “Testing the theory of relative defect

proneness for closed-source software,” Empirical Software Engineering, vol. 15, no. 6, pp.

577-598-598, Dec. 2010

S7 T. Illes-Seifert and B. Paech, “Exploring the relationship of a file’s history and its fault-

proneness: An empirical method and its application to open source programs,” Information

and Software Technology, vol. 52, no. 5, pp. 539-558, May 2010

S8 M. F. Ahmed and S. S. Gokhale, “Linux bugs: Life cycle, resolution and architectural

analysis,” Information and Software Technology, vol. 51, no. 11, pp. 1618-1627, Nov. 2009

S9 P. Abrahamsson and J. Koskela, “Extreme programming: a survey of empirical data from a

controlled case study,” in Empirical Software Engineering, 2004. ISESE ’04. Proceedings.

2004 International Symposium on, 2004, pp. 73-82

S10 P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz, “An empirical study of software

reuse vs. defect-density and stability,” in Software Engineering, 2004. ICSE 2004.

Proceedings. 26th International Conference on, 2004, pp. 282-291.

S11 A. Mockus and D. Weiss, “Interval Quality: Relating Customer-Perceived Quality to

Process Quality,” in Software Engineering, 2008. ICSE ’08. ACM/IEEE 30th International

Conference on, 2008, pp. 723-732.

S12 A. Gupta, O. P. N. Slyngstad, R. Conradi, P. Mohagheghi, H. Ronneberg, and E. Landre,

“A Case Study of Defect-Density and Change-Density and their Progress over Time,” in

Software Maintenance and Reengineering, 2007. CSMR ’07. 11th European Conference

on, 2007, pp. 7-16

S13 M. Cartwright and M. Shepperd, “An empirical investigation of an object-oriented software

system,” Software Engineering, IEEE Transactions on, vol. 26, no. 8, pp. 786-796, 2000

S14 Hongyu Zhang, “An investigation of the relationships between lines of code and defects,”

in Software Maintenance, 2009. ICSM 2009. IEEE International Conference on, 2009, pp.

274-283.

S15 T. Dinh-Trong and J. M. Bieman, “Open source software development: a case study of

FreeBSD,” in Software Metrics, 2004. Proceedings. 10th International Symposium on,

2004, pp. 96-105

S16 N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, and P. Krause, “Project Data

Incorporating Qualitative Facts for Improved Software Defect Prediction,” in Predictor

Models in Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007.

International Workshop on, 2007, p. 2.

S17 S. Wu, Q. Wang, and Y. Yang, “Quantitative analysis of faults and failures with multiple

releases of softpm,” in Proceedings of the Second ACM-IEEE international symposium on

Empirical software engineering and measurement, Kaiserslautern, Germany, 2008, pp. 198-

205.

S18 P. Mohagheghi, R. Conradi, and J. A. Borretzen, “Revisiting the problem of using problem
reports for quality assessment,” in Proceedings of the 2006 international workshop on

Software quality, Shanghai, China, 2006, pp. 45-50.

S19 M. Jureczko and L. Madeyski, “Towards identifying software project clusters with regard to

30

defect prediction,” in Proceedings of the 6th International Conference on Predictive Models

in Software Engineering, Timi\şoara, Romania, 2010, pp. 1–10.

3.3.1.3 Stage 3: study selection
The inclusion and exclusion criteria employed in stage 2 are defined below.

Inclusion criteria
The inclusion criteria were applied at three subsequent levels. First we read the papers titles to

select those relevant to our study. Then we read the abstracts of previously selected papers and kept

the relevant papers only. As a third step we thoroughly read the papers and included only those

studies which satisfied the following criteria:

 Are related to software engineering

 Are related to software projects

 Contain directly figures of DD, or contain data that allows to compute DD indirectly (such

as number of post release defects and size in LOC)

 Mention that DD was computed after the particular release or the project (operation phase,

post release phase, etc).

Exclusion criteria
The studies that did not satisfy the inclusion criteria were excluded.

3.3.1.4 Stage 4: charting the data
DD is the key object of this study we only reported DD in LoCs on post release phase, but despite

its apparent simplicity it can take slightly different forms.

Typically DD can be sampled at different times during the evolution of a project; in the meantime

the code base may undergo complex transformations, e.g. code additions, changes, deletions.

Therefore it is difficult to match a defect to corresponding code base. In this work we consider DD as

a cumulative measure, i.e. we count defects since the first release; such a definition considers only

post-release defects, therefore temporary problems happening before release should be filtered out.

Moreover the data available in the articles is often not as accurate as desired. Such considerations led

us to adopt as a reference the definition of defect density as a cumulative metric:

DD
CNDD

Size

Where CNDD is the cumulative number of post release defects in the observed period, and Size is

measured at the end of the observed period in thousands of lines of code (KLoC). On the basis of the

above referenced construct we performed a data extraction using either DD figures provided directly

in the papers or values computed from the data available in the papers. In addition to the main

dependent variable DD, we collected also some context variables:

 Type: whether the project was developed as open or closed source,

 Language: the main programming language used,

 Size: the size of the project in KLoC,

 Age: is the calendar time between first and last release on which DD is computed

Data analysis and hypotheses
To answer the research questions we report descriptive statistics, in particular distribution

information, and when applicable we also statistically test some hypothesis. To represent the

distribution of DD for the projects we use both cumulative distribution diagrams and box plots. The

former report on the horizontal axis the DD values sorted in ascending orders and on the vertical axis

the proportion of values not greater than the corresponding DD.

31

Research questions RQ2 and RQ3 lend themselves to be answered by means of hypothesis

testing. The respective null and alternative hypotheses can be formulated as follows.

Concerning RQ2:

H20: There is no significant difference in term of DD between open source and close source

projects.

H2a: There is a significant difference in term of DD between open source and close source

projects.

Concerning RQ3:

H3.10: There is no significant difference in terms of DD among projects adopting different

languages.

H3.1a: There is a significant difference in terms of DD among projects adopting different

languages.

If the above null hypothesis can be rejected we can conduct a post-hoc investigation of the pair-

wise differences; in this case the Bonferroni correction for multiple tests shall be applied. For any

pair of languages L1 and L2 we can formulate the hypotheses as:

H3.20: Projects developed in L1 have not lower defect density as those developed in L2

H3.2a: Projects developed in L1 have lower defect density as those developed in L2

From preliminary analysis we found that the data is not normally distributed, therefore we adopt

non-parametric tests. According to the recommendations in [7] we use the Kruskal-Wallis test for

differences between three or more groups and the Mann-Whitney test for pair-wise differences.

When comparing different groups we will also evaluate the difference from a practical point of view.

For this purpose we use the standardized effect size, measured as Cohen’s d.

As far as RQ4 and RQ5 are concerned we will conduct a regression analysis. Such analysis helps

to determine to which extent the dependent variable varies as a function of one or more independent

variables. We will consider both the statistical significance of the model and the practical

significance that is expressed by the R2 statistic.

Since the size of a project may have a huge variability, focusing a pure linear correlation may

yield no result. Therefore for RQ4, we perform an additional analysis focusing on size categories and

their effect on DD. In order to avoid arbitrary thresholds we identify the classes by means of a

clustering algorithm. In particular we use the K-means method to identify k=3 cluster corresponding

to small, medium, and large projects.

Finally we analyze the correlation among the context variables. As far as project size is concerned

we consider the size categories identified through clustering. In particular, since we deal with

categorical or ordinal variables, we build the contingency tables and apply the 2 test to detect

statistically significant correlations.

In the statistical testing, the significance level is checked by the given p-value. For rejecting or

accepting the null hypothesis we used the significance values of =5%.

3.3.1.5 Results
In performing the data extraction on the paper, we were able to use directly provided figures for

46% of the projects, in another 45% of the cases we computed it starting from a number of defects

and code size, and in the remaining 9% of cases we had to extrapolate the values from average

values.

We carried on a preliminary analysis to identify possible outliers. As a consequence we discarded

a project having DD 120 defects per KLoC.

32

RQ 1: What are the typical figures of DD in software projects?

Figure 7 presents the cumulative distribution diagram for the defect density of the surveyed

projects. The DD is reported on a logarithmic scale, we observe that it spans nearly three orders of

magnitudes, from 0.05 to close to 50.0. Table 8, in its first row, reports the central tendency of DD

(mean 7.47, median 4.3, standard deviation 7.99). While industry experience is about 1 to 25 errors

per 1000 lines of code for delivered projects according to [29], in our data set 89 out of 109 projects

are located in that range. The figure also reports, in gray line, the fitted normal distribution. Also

based on the results of the Shapiro-Wilk test (p<0.001) we confirm that the DD data is not normally

distributed.

Table 8 Descriptive statistics of DD of projects

Group N Mean Median Std Dev

All 109 7.47 4.3 7.99

Type
Closed source 77 8.6 5.4 8.49

Open source 32 4.66 2.75 5.84

Language

C 43 10.0 7.9 7.98

Java 45 5.9 3.5 6.22

C++ 11 8.73 1.3 13.17

Other 10 1.89 1.1 2.83

Figure 7 DD cumulative distribution

RQ2: Is there a difference in DD between open and closed source project?

Our data set contains 77 closed source projects, and 32 open source projects. Figure 8 shows the

cumulative distribution by type (i.e. open vs. closed source).

In addition Figure 9 contains the box plot. The summary descriptive statistics are reported in

Table 8 divided by type. To answer RQ2 we test the hypothesis H20. The Mann-Whitney test reports

a p-value = 0.004, which is below the threshold, therefore we can reject the null hypothesis. Open

33

source projects in our sample have a DD that is on average 4 Defects/KLoC smaller than closed

source ones. In practical terms the difference can be considered of medium size (Cohen’s d = 0.5).

Figure 8 DD cumulative distribution for Close source and Open source projects

Such a result is confirmed by looking at the Figure 9 which shows close source having more DD

and suggests a larger variation for closed source projects than open source ones.

Figure 9 Box plot of Close Source vs. Open Source DD

RQ3: Is there a difference in DD among programming languages?

Our data set contains 43 C projects, 45 Java projects and 11 C++ projects. We excluded from the

analysis 10 projects that were coded in other languages (i.e. Perl) or for which it was not possible to

34

identify a clear major language. Figure 10 presents the cumulative distribution diagram for the three

languages under study; Figure 11 shows the box plots. Descriptive statistics are in Table 8, rows 2

and 3. In this case visual analysis does not give clear suggestions.

The first hypothesis concerning RQ3, H3.10 can be tested using the Kruskal-Wallis test. The

returned p-value is 0.009, therefore the null hypothesis can be rejected.

Given the above result we proceed with the pair-wise comparisons. In particular we test the

H3.20 for the three possible pairs of languages, by means of the Mann-Whitney test. In assessing this

test we adopt an divided by 3 according to the Bonferroni rule.

For the pair (Java, C) we obtained a p-value of 0.003, therefore we can reject the null hypothesis.

For the pairs (Java, C++) and (C++, C) we obtained the p-values 0.375 and 0.119, respectively,

therefore we cannot reject the corresponding null hypotheses.

The significant difference can be considered of medium size (Cohen’s d = 0.5), C projects have a

DD that is an average 4.1 defect per KLoC higher than Java ones. In summary, as regards

programming languages, there is evidence that the defect density in Java is lower than in C.

Figure 10 DD cumulative distribution by programming language

35

Figure 11 Box plot of DD per programming language

RQ4: What is the relationship between DD and project size?

In our data set, the size is reported for 108 projects. Figure 12 plots DD vs. size of projects in

KLoCs. We used a logarithmic scale for both axes to be able to discern the individual points, which

would appear flattened against the lower and left borders if a linear scale were used. We performed

the regression analysis to find the relation between DD and size of project. The regression equation

is:

DD = 8.03 - 0.000002 Size

The p-value of the regression is 0.013 and the corresponding adjusted R2 is 5.5%. There is a

negative correlation but it has a limited practical impact.

Since both the DD and size distributions are extremely skewed – actually requiring a dual log

scale to have a discernible representation – we also conducted a regression analysis on the log of DD

and Size. In this case the regression equation is:

log(DD) = 5.12 - 0.341 log(Size)

The regression’s p-value is smaller than 0.001 and the corresponding adjusted R2 is 22%. The

negative correlation, for the log-values has a higher, though still small practical relevance.

36

Figure 12 DD vs. size of project in logarithm scale

Finally we investigated a possible relationship between defect density and the category of projects

(e.g. small, medium, large). To explore this possibility we identify project clusters by size using the

K-means cluster analysis algorithm. The analysis identified 3 clusters that are described in Table 9.

The ranges of DD for each Size category are plotted in Figure 13. Visual analysis shows a significant

difference among the three groups. We conducted a Kruskal-Wallis test and we obtained a p-value of

0.0002, indicating a significant difference. A pair-wise comparison was then conducted, by means of

Mann-Whitney tests and adopting a divided by 3 according to the Bonferroni rule.

Table 9 Project clusters by size: descriptive statistics

 Defect Density

Size range N Mean Median Std Dev

0 to 400K LoC 88 8.63 5.3 8.4

400K to 2M LoC 15 3.3 2.8 2.72

Above 2M LoC 5 0.38 0.40 0.28

For all pairs (Small, Medium), (Medium, Large) and (Small, Large) we obtained a p-value of

0.0146, 0.003 and 0.0006 respectively, which can be considered significant. The significant

differences can be considered large, Cohen’s d is being 0.83, -1.5 and -1.3 respectively. In summary

we cannot find a statistical meaningful direct relationship between DD and size. However, by

clustering projects we find evidence that the larger the projects, the lower the defect density. In

particular we find statistically significant evidence that large projects have a lower defect density

than medium and small projects.

37

Figure 13 DD for different Size clusters

RQ5: What is the relationship between DD and Age?

In our data set the age (defined as number of years from the first release to the evaluation date

mentioned in research studies or the number of years from the first release to the next release) is

available for 47 projects. Figure 14 contains the plot of DD vs Age.

Figure 14DD vs. age of projects

We performed the regression analysis to find the relation between DD and Age of project. The

regression equation is:

DD = 1.86 + 0.59 Age

38

The p-value of the regression is 0.011 and the corresponding adjusted R2 is 13.8%. There is a

positive correlation but it has a limited practical impact.

Context variables correlation

We test the presence of correlations among context variable by means of pair-wise contingency

tables between: Size category, Type, and Language. Table 10 reports the contingency table for Size

category and Type. We can notice how closed source projects are significantly more skewed towards

the small projects w.r.t. open source ones (2 test p-value < 0.001).

Table 10 Contingency table for Size category and Type

Size \ Type Closed Open

Small 63 82% 25 78%

Medium 12 15% 4 12%

Large 2 3% 3 10%

 77 100% 32 100%

As far as programming language and size are concerned we found no statistically significant

correlation (2 test p-value > 0.05). Finally,

Table 11 reports the contingency table for Type and Language. We observe a significant

difference, in our sample, between the languages used in open vs. closed source projects (2 test p-

value < 0.05).

Table 11Contingency table for Type and Language

Lang

Type\
C C++ Java Other

Closed 39 91% 11 100% 20 44% 7 70%

Open 4 9% 0 0% 25 56% 3 30%

 43 100% 11 100% 45 100% 10 100%

3.3.2 Discussion

The extraction of DD data from systematically selected articles in the literature allowed us to

publish a summary of DD data available. The essential descriptive statistics are presented in Table 8.

This is a result per-se, which can be of use to both researchers and practitioners.

In addition we asked ourselves a few research questions whose answers can be summarized for

our particular sample of projects with the following pieces of evidence:

 There exists a statistically significant medium sized difference between open and closed

source projects: the former have a DD that is 4 defects per KLoC lower than the latter.

 Java projects exhibit a significantly lower DD than C projects, 4.1 defects per KLoC on

average

 In general the Size appears to be negatively correlated to DD: the larger the project the

lower the DD. In particular, large projects are 10 times less defective than medium ones.

We can offer a few explanations for the above differences, although they are just speculative

hypotheses that ought to be verified with further investigations.

The surprising, though not large, the difference between open and closed source projects can be

explained by an heavy bias in our sample (see Table 10): the proportion of small projects studied in

the literature is larger among closed source projects (82%) than for open source ones (78%).

39

As far as programming languages are concerned, the difference between C and Java could be

explained by the different level of detail and expressive power between the two languages. Moreover

the unbalanced use of languages between open and closed source projects (see Table 11) may have

some influence.

Finally, the statement that “size is negatively correlated with defect density” is in (only) apparent

contrast with several previous studies, e.g. [27] ignoring other additional factors. But we should keep

in mind that most of previous studies referred to size and defect density of modules within a project

and not of whole projects. Our result can be explained considering that large projects typically need

to put a relevant effort on testing while small ones often neglect that phase, the result is a

significantly lower post-release DD.

3.3.3 Threats to validity

We discuss in this section validity threat using the classification proposed by [7]. As for internal

validity, the key issue is about the soundness in applying the scoping study approach. In this regard

we have used known and reliable databases and journals, and repeatable search strings. We believe

that inclusion and exclusion of papers in this case is easily repeatable since in the end it consists of

checking that a defect density figure is available or not. This may give an impression that the

reported data to calculate DD would be “survivorship bias”. The selection of DD figures from

important software engineering journals and electronic databases assure that nothing relevant has

missed However we stress the main goal of our work is to provide an overview from data collected in

real projects, as in any overview the composition is subject of debate [52], and actually we

acknowledge that this is not the definitive: it is deemed to evolve indefinitely.

 On the other hand we may have missed papers that report defect density data but calling it by

another name. To increase reliability, the authors have cross checked all major steps in data

collection and analysis.

As for construct validity, we have little concern about attributes programming language and

development mode (open or closed source), that are hardly subject to ambiguities. On the contrary

size, defect density and age are easily subject to ambiguities. It is well known that measuring size in

lines of code is subject to variations due to programming language and modes of measuring (with or

without comments, with or without blank lines, including libraries or not, etc). In nearly all selected

papers the authors do not provide any information on how size was measured, so this poses a threat,

of course on the values of size, and indirectly on the values of defect density. Defect density also

depends on the measure of the number of defects. Here too there may be differences in the precision

of measurement processes used, and on the definition of a defect used. This lack of precision of

defect data may give estimates with larger error but following [52] we believe that this is better than

having no data at all and relying on intuition. And again the authors of papers hardly describe the

measurement process used. A procedural feature in measuring defects is the criterion according to

which classify an issue as a defect. Unfortunately there is not a single technique adopted throughout

the literature, when a procedure is described at all, therefore we have no way of estimating or

balancing the issue, we can but accept it as an additional source of error. Another problem is when in

the development process the defect number is computed. We have set as inclusion criterion papers

that publish defect density in post release phase. Also at this regard we have no way of double

checking whether the authors of papers all use the same meaning for it. The same applies to the

attribute age.

As for external validity we underline two problems. On one hand published papers may be subject

to publication bias that probably skews data toward projects with lower defect density, reducing the

representativeness of the sample. On the other hand the sample is clearly smaller. 109 projects is not

a negligible number, but is a very limited percentage of the number of projects released overall.

40

3.3.4 Conclusions

This study has mined the literature for DD figures that had not been gathered and analyzed before.

On 109 software projects the mean DD is 7.47 defects per KLOC with the dispersion (standard

deviation) of 7.99. These values are useful for overview purposes.

Besides we have analyzed if size, age, programming language and development mode of project

(close vs. open) could be factors for DD. We found that development mode is a factor (open source

projects in our sample have a lower defect density), and programming language is sometimes a factor

(Java projects have lower DD than C projects, but C++ and Java, C and C++ projects have a similar

DD). In addition we found that projects size is relevant (large projects have lower DD figures), while

Age is not a factor.

3.4 Data set: promise repository 1, concerning modules structure:
We selected the last releases of 55 software projects from the “Promise data repository [5].”

3.4.1 Research design

In this section, we present the research questions and the selected projects on which the analysis

is performed. The research questions are formalized from the related work, considering the mostly

studied attributes (size, quality, dependencies) at modules level. The overall goal of this work is to

understand the effect of module attributes on projects DD and how much it is different for different

type of projects. Table 12 summarizes the formulated research questions and corresponding

hypothesis of the study. We selected the last releases of 38 software projects from the “Promise data

repository” [5]. The projects inclusion criterion was the availability of the required metrics (defect

per module, no of line of code (LoC) of modules, module dependency metrics) to answer our

research questions. The projects did not satisfy the inclusion criteria were excluded. The data set

contains 23 close source projects, 15 open source software projects and 17 are academic projects that

were developed by the students.

Table 12. Research questions and hypothesis

RQ 1: What is the distribution of modules on size in projects?

The goal here is to characterize the modules on size of different projects, and then check the

following hypothesis.

RQ 2: What is the distribution of defect free modules in a project?

The aim here is to find the difference in DD of projects by defect free modules, checking the

following hypothesis

 H2.1: Projects have the same distribution of defect free modules.

 H2.2: Projects with lower DD have a larger percentage of defect free modules.

RQ 3: How modules dependencies affect the projects DD?

The goal here is to find the influence of modules dependencies on the projects DD, checking the

following hypothesis

 H3.1: Projects having higher dependencies of modules have higher DD.

 H3.2: Projects having lower dependencies of modules have lower DD.

RQ 4: How defect density of modules affects the defect density of projects?

The goal here is to find the difference in DD of projects by modules DD, checking the following

41

hypothesis.

 H4.1: Projects with more DD have a larger percentage of modules with higher DD.

Notion of Defects: In this work, we consider only post release defects, therefore temporary

problems, non defect items like issues, warnings; temporary problems and further enhancements are

not included. We believe on the authenticity and reliability of post release defects of the projects

available at Promise repository as the data set is publicly available and used in many prior research

studies.

Notion of Modules: In this work, the module is assumed to be a smallest unit of functionality i.e.

set of declarations and subroutines usually belonging to one file.

Notion of Defect Density: DD is the key object of this study the DD is reported in LoCs on

defects. For each project we successively extract and add all the defects related to each module, to

obtain the total number of defects in a project. In a similar way (addition of all modules LoC) we

calculated the total size of the project in LoC. To obtain the DD per thousand lines of code, we

multiply it by 1000.

For the data analysis we used both graphical representation and the mathematical calculation

“percentage”. The former gives us the immediate comparison and the later shows weight and the

influence to characterize. Where applicable we also used the statistical methods for data analysis.

Concerning RQ1, we carried out the preliminary analysis of three types of projects (student, open

source and close source) to categorize the projects in small, medium and large category using the k

mean clustering algorithm. Afterward we find the percentage of distribution of very small modules in

all categories of projects then we compare the percentage of modules and DD of projects. To find the

statistical significant difference between the two groups we used the non parametric test Mann

Whitney. For projects type student, we found 7 small projects, 7 medium and 3 large projects. For

projects type open source, we found 6 small, 5 medium and 4 large projects. In projects type close

source, we found 14 small, 3 medium and 6 large projects. Table 13 shows the three categories of

software projects i.e. small, medium and large it shows that the large projects in term of size have

lower DD in all types. We clustered the modules of each type of projects into 5 categories (very

small, small, medium, large, and very large) based on size using the k mean clustering algorithm. We

observed that the mean DD of very large modules is less than the DD of other categories of modules.

Table 13 Categories of software’s in term of size

Type Category No of Projects Avg size in LoC Avg DD [KLOC]

Student

Small 7 4350 4.55

Medium 7 12079 1.4

Large 3 40984 1.2

Open Source

Small 6 28639 6.15

Medium 5 114838 5.27

Large 4 285061 1.22

 Small 14 12240 4.67

42

Close Source Medium 3 70784 2.38

Large 6 437029 1.6

Table 14 reports the DD of very small, small, medium, large and very large modules of each type

of project. The preliminary observation shows that in all types of projects there is a smaller

percentage of very large modules.

Concerning RQ 2: We first extract those modules that are defect free and then find out their

percentage in the projects. For the second hypothesis we used a k mean clustering algorithm to

cluster the projects based on DD and then performed the analysis observing the DD and percentage

of defect free modules.

Concerning RQ 3: To find the module dependencies we used two metrics suggested by Martin
1

 to

calculate the module dependencies. The metrics we used are:

 Afferent Coupling (AC): The number of modules that depend on M.

 Efferent Coupling (EC): The number of modules that M depends upon.

We first extracted the dependencies of each module using the above defined two metrics.

Afterwards we average the module dependencies of each project to find average module

dependencies of a project. Then we performed the analysis observing, how DD of projects is affected

by the module dependencies using a statistical measure regression analysis.

Table 14 DD of different categories of modules

Type Category Range in Loc No of Module Avg DD % of Module

Student

V Small 1 – 205 640 7.22 67.4

Small 206 – 565 204 1.6 21.4

Medium 575 – 1250 78 1.15 8.2

Large 1347 – 2781 22 0.77 2.3

V Large 3211- 5924 5 1.48 0.5

Open

Source

V Small 1-283 4732 33.2 73.6

Small 284 – 850 1207 2.86 18.7

Medium 853 – 1902 329 2.06 5.1

Large 1940 – 4114 122 1.38 1.9

V Large 4202- 3175 32 0.6 0.5

V Small 1-132 30179 5.6 82

Small 133-465 5209 1.39 14.2

1 http://www.objectmentor.com/resources/articles/oodmetrc.pdf

http://www.objectmentor.com/resources/articles/oodmetrc.pdf

43

Close

Source

Medium 466-1263 1065 0.77 2.9

Large 1266-2927 222 0.66 0.6

V Large 2928 – 9878 40 0.61 0.1

Concerning RQ4: For the analysis we consider only top five projects with higher DD. Consequently

we observe the distribution of percentage of modules in these projects that have higher DD.

3.4.2 Results

RQ 1: What is the distribution of modules on size in projects?

From Table 14 we found that in all three categories of projects the distribution of modules on size

is very different. Hence the distribution of modules on size is very different in all categories of

projects; we can reject our hypothesis H1.1, that the projects have not same distribution of modules

on size. Considering hypothesis H1.2, we found that very large module have very small percentage in

all types of projects. For projects (student, open source) it counts 0.5%, and for close source projects

the percentage is 0.1%. Hence we can reject our hypothesis H1.2, that the projects have not more

percentage of large modules. The secondary observation we obtain is the higher percentage of very

small modules in all types of projects. It is above 60%. Figure 15 shows the box plots of categories of

very small modules in all categories of projects. In all categories of projects, we found the

distribution of very small modules of large sized project less than the small and medium sized

projects. We notice that there is more variation of percentage of very small module in student

projects as compared to open and close source projects.

Close (M&S)Close (L)Open(M&S)Open (L) VS Student (M&S)Student (L)

100

90

80

70

60

50

40

30

P
e

rc
e

n
ta

g
e

 o
f

V
e

ry
 S

m
a

ll
m

o
d

d
u

le
s

Figure 15 Percentage of Very Small modules in projects

Afterward we compare the distribution of very small modules and DD of large sized projects,

with the distribution of very small modules and DD of small and medium sized projects. Table 15

reports the distribution of very small modules and DD of large sized projects compared to small and

medium sized projects. It shows that there is a smaller percentage of very small modules in the larger

sized projects compared to the small and medium sized projects of all types.

Table 15 Distribution of very small modules and DD in large sized projects vs. small and medium

sized projects

Type % of VS modules

on Large Projects

DD of Large

Projects

% of VS modules in

Small & Medium Projects

DD of Small &

Medium Projects

44

Student 57 1.23 67 2.98

Open

Source

66 1.22 77.6 5.7

Close

Source

74.3 1.6 91.2 4.27

We used Mann Whitney test to see the significant difference of percentage of very small modules

between large sized projects with small and medium sized projects. We obtained p value = 0.0068

which is below the significant value 0.05. This confirms that the distribution of very small modules

in large projects is different compared to small and medium size project in all types. Recalling Table

14 we had observed that large projects have lower DD and hereinafter we found that projects having

more percentage of very small modules have higher DD. In particular, when we looked for a

comparison between the large sized projects with small and medium sized projects, we found that

large projects have a smaller percentage of very small modules and their corresponding DD is also

lower than small and medium size projects. Similarly if the projects are constructed by the higher

percentage of very small modules then the overall DD of the project is higher. Based on the empirical

evidence one might be able to state that large projects have a smaller percentage of very small

modules that would result in lower DD of large projects. However there could be many other factors

affecting the DD of larger projects e.g. the larger project is normally taken more seriously, have

rigorous testing etc.

RQ 2: What is the distribution of defect free modules in a project?

We found that the distribution of defect free modules in different types and categories of projects

is very different. The difference of distribution allows us to reject our formulated hypothesis H2.1.

Table 16 reports the distribution of defect free modules in each category of projects by type.

Comparing overall by category, it shows that the large projects of all types have a higher number of

defect free modules compared to medium and small category of projects and they make a larger

percentage of code size as well. Similarly comparing the defect free modules by type, we found that

close source projects have more percentage of defect free modules than open source and student

projects. The defect free modules found in close source, open source and student projects are 81%,

59% and 69.3% respectively. Thus it shows that there is more quality attention given to the units of

large projects compared to the medium and small sized projects. In addition the close source projects

have more percentage of defect free modules compared to open source and student projects. This

shows that close source projects have better construction quality.

Table 16 Distribution of defect free modules and percentage of code of defect free

Type Category % of Defect Free Modules % of code of Defect free modules

Student

Small 59 38.1

Medium 70.4 41.1

Large 78.5 56

Open

Source

Small 56 39.7

Medium 54 35.4

Large 67 53.7

 Small 81.4 70.7

45

Close

Source

Medium 75.3 55.7

Large 87.6 75.3

Concerning hypothesis H2.2, we performed the regression analysis to understand the relationship

of defect free modules with the projects DD. For student and open source projects we obtain the R2 =

38.4% and 54.7% respectively having a partial impact. However for close source projects we obtain

R2 = 5.9% having a very limited impact. To test our hypothesis H2.2 we cluster the projects based

on the DD using k means clustering algorithm for all types of projects. Table 17 reports the DD and

percentage of defect free modules in projects. In all types of projects we found that the projects

having a higher percentage of defect free modules have lower DD compared to projects having a

smaller percentage of defect free modules. Thus we accept our hypothesis H2.2 that project with

lower DD have a larger percentage of the defect free modules.

Table 17 Projects Defect density Vs % defect free modules

Type No of Projects Defect

Density

% of Defect

Free

Student

4 5.8 41.2

5 2.3 61

8 1.2 84

Open Source

6 8.8 22.2

5 4.54 58.2

4 0.5 92.7

Close

Source

13 4.3 82.3

3 4.0 56.3

7 1.93 93.28

RQ 3: How modules dependencies affect the projects DD?

In our data set the module dependency metrics are reported for 36 projects. We answer RQ3

considering those 36 projects, in which there are 17 students, 14 open source and 5 close source

projects. Table 18 reports the average module dependencies of each category of project along with

the DD. Observing the Table 18 we can’t find any difference of module dependencies and the

projects DD in different categories of projects. This makes us to perform our analysis only on the

project types, to understand the impact of module dependencies on the projects DD.

Student projects: The obtained R2 value is found to be 27.7%. There is a positive correlation but it

has a limited practical impact. The regression equation is:

DD = 3.11 - 1.10AC + 0.825EC

Open source projects: The obtained R2 value is found to be 10.6% having limited practical

impact. The regression equation is:

46

DD = 10.9 - 0.582 AC - 0.564 EC

Close source projects: The obtained R2 value is found to be 60.5% having a significant practical

impact. The regression equation is:

DD = - 1.52 + 0.889AC + 0.012EC

Table 18 Projects module dependencies and DD

Type Category Project Afferent

coupling

Efferent

coupling

Defect

Density

Student

Small 7 2.5 4.0 4.55

Medium 7 4.2 3.8 1.4

Large 3 4.7 6.1 1.2

Open Source

Small 6 3.4 6.0 6.15

Medium 5 5.3 5.0 5.27

Large 3 6.6 6.56 4.24

Close Source Large 5 2.6 12.2 1.01

Considering all the observation, we do not find any significant impact of modules dependencies

on the projects DD in our sample of data. The relationship of module dependencies and DD of

projects in type (student, open source) is found to be limited, however considering close source

projects there is some practical impact. Thus we cannot accept or reject our formulated hypothesis

H3.1 and H3.2.

RQ 4: How defect density of modules affects the defect density of projects?

To answer the RQ4, we selected top 5 projects from each type that have higher DD. Table 19

reports the projects having higher DD in each type. For projects (student, open source) the average

percentage of module with higher DD is 51% and 59 % respectively. On the contrary for the close

source projects the average percentage of module with higher DD is only 19.6%. Thus our

formulated hypothesis is accepted for the students and open source projects that the projects with

more DD have the more percentage of modules with higher DD; however the hypothesis H4.1 was

not found true in the close source projects.

Table 19 Projects with higher DD vs. modules with higher DD

Type Projects Avg

DD

Projects

DD

% of modules with

higher DD

Avg % of module with

higher DD

Student

5.53

11.5 56

51

5.1 66.6

4.8 51.2

3.4 45.5

47

2.7 35.7

Open

Source

10.11

15.6 50

59 13.0 91.7

11.3 74.3

6.1 60

4.4 20

Close

Source

6.69

8.0 35.2

19.6 7.2 14.7

6.2 21.6

6.0 12.7

6.0 14

3.4.3 Threats to validity

We discuss in this section validity threat using the classification proposed by [7].

Internal validity: In this study we only focus our observation towards some basic module

attributes like size, quality, dependencies etc., to find their impact on projects DD. However there are

many other module attributes that should have an influence on projects DD e.g. testing effort, testers

experience and testing techniques etc. We acknowledge all other module attributes but for this study

we only focus on the studied ones. Construct validity: In this research, we are dependent on the data

logs provided by the Promise data repository. Surely, some potential concerns can be raised about

the given data set e.g. how many modules may be left, how many defects may be raised and fixed

before data collection and how many defects may not be recorded in logs etc. We consider this

threat, but as the data set is publicly available and has been used in many previous studies, we

believe its authenticity. External validity: In this study our findings are based on a small set of

projects i.e. 54 software projects of different nature considering the impact of only a few attributes.

Although this number is small but not negligible, this adds to the confidence by presenting some

module attributes and their impact on projects DD.

3.4.4 Discussion and conclusion

This study has two folded outcomes, first how different the internal structural properties of three

types (student, opens source, close source) of projects, secondly how module attributes affects the

quality (in term of DD) of projects. The results show that the module attributes have some impact on

projects DD. We found that the projects have not the same distribution of modules on size. In all

types of projects there is a very small percentage of very large modules. The percentages of very

small modules are less in large projects compared to medium and small sized projects. The empirical

evidence shows that DD of the project increases with more percentage of very small modules (RQ1).

The quality of the module has significant impact on the project quality (RQ2). We found that the

module dependencies have not significant influence on the projects DD for student and open source

projects; however module dependencies have some impact on close source projects DD. Having only

5 close source projects for the analysis does not add much confidence in the results (RQ3). We found

that it is not always true that modules with higher DD would result in higher DD of projects as it is

found true for student and open source projects but not for close source projects (RQ 4). The projects

48

DD can be predicted by using the modules attributes (percentage of very small and defect free

modules) as the significant relationship between projects DD and attributes is found (RQ5). Authors

want to give some suggestions to practitioners aimed to assess their projects based on our empirical

findings.

(1) More percentage of very small modules affect negatively to the projects DD.

(2) Module compositions have not much effect on projects DD.

(3) Modules DD may not always be significant to predict the projects DD.

(4) The module attributes (% of very small modules, % of defect free modules) can be used to

access the projects DD.

These are based on the validated data set of projects that have been used previously and available

for research purposes at Promise Repository. The artifacts of this study also give direction to the

researchers that different types of projects have different internal structure and their characteristics

are quite different from each other. In addition it also shows the importance regarding the previously

conducted studies (where mostly the relationship of different module attributes has been shown) but

their impact on overall project was unknown. Therefore, we recommend researcher to study more

module attributes and their impact on projects. We think that the main limitation of this study is the

very few projects and module attributes under study. More attributes like (testing efforts,

development process, testing techniques, experience of the team) should be studied to find their

impact on the projects DD.

3.5 Data set: promise repository 1, concerning complexity metrics:

3.5.1 Research design

In this section, we present the research question and the data set. One research question is

formulated for this research.

RQ1: Do complexity metrics have an effect on defects?

We selected the last releases of 38 software projects constituting 27,734 modules from the

“Promise data repository” having the required metrics freely available for research evaluation

purposes [5]. The data set contains 6 proprietary software projects, 15 open source software projects

and 17 are academic software projects that were developed by the students. We downloaded the CVS

files and found 18 complexity metrics defined in Table 20. The values of complexity metrics were

available against the defects for every module. Table 20 shows the metrics used in the study.

Table 20. The metrics used in the study

The metrics suggested by Chidamber and Kemerer [21] are.

Weighted Methods per class (WMC): WMC is the number of methods defined in each class.

Depth of Inheritance Tree (DIT): It is the measure of the number of ancestors of a class.

Number of Children (NOC): It is the measure of a number of direct descendants of the class.

Coupling between Objects (CBO): It is the number of classes coupled to a given class.

Response for a Class (RFC): It is the measure of different methods that can be executed when an

object of that class receives a message.

Lack of Cohesion in Methods (LCOM): It is the number of pairs of member functions without

shared instance variables, minus the number of pairs of member functions with shared instance

49

variables.

Henderson Sellers defined one complexity metric [23].

Lack of cohesion in methods (LCOM3): According to study [23] LCOM3 is defined as.

m - number of methods in a class; a - number of attributes in a class; μ(A) - number of methods

that access the attribute A.

Bansiya and Davis [22] suggested the following quality metrics suite.

Number of Public Methods (NPM): It counts all methods in a class that are declared as public.

This metric is also known as Class Interface Size (CIS).

Data Access Metric (DAM): It is the measure of the ratio of the number of private (protected)

attributes to the total number of attributes declared in the class.

Measure of Aggregation (MOA): It is the count of the number of class fields whose types are

user defined classes.

Measure of Functional Abstraction (MFA): It is the ratio of the number of methods inherited

by a class to the total number of methods accessible by the member methods of the class.

Cohesion among Methods of Class (CAM): It computes the relatedness among methods of a

class based upon the parameter list of the methods.

Data Access Metric (DAM): It is the measure of the ratio of the number of private (protected)

attributes to the total number of attributes declared in the class.

Measure of Aggregation (MOA): It is the count of the number of class fields whose types are

user defined classes.

Measure of Functional Abstraction (MFA): It is the ratio of the number of methods inherited

by a class to the total number of methods accessible by the member methods of the class.

Cohesion among Methods of Class (CAM): It computes the relatedness among methods of a

class based upon the parameter list of the methods.

Tang et al [53] extended the Chidamber & Kemrer metrics suite focusing on the quality.

Inheritance Coupling (IC): It provides the number of parent classes to which a given class is

coupled.

Coupling Between Methods (CBM): It measures the number of new/redefined methods to which

all the inherited methods are coupled.

Average Methods Complexity (AMC): It measures the average method size for each class.

Following two metrics were suggested by Martin [24].

50

Afferent Coupling (Ca): It is the number of classes that depend upon the measured class.

Efferent coupling (Ce): It presents the number of classes that the measured class is depended

upon.

The one metric was suggested by McCabe [20].

McCabe’s Cyclomatic Complexity (CC). It is equal to the number of different paths in a method

(function) plus one. It is defined as CC = E-N+P; where E is the number of edges in the graph, N

is the number of nodes of the graph; P is the number of connected components. It is only suitable

for the methods; therefore it is converted to the class size metrics, by calculating the arithmetic

mean of the CC value in the investigated class.

3.5.2 Results

We carried out the preliminary analysis to identify the three categories of software projects small,

medium and large using the K mean clustering algorithm. We found 24 software projects in the small

category, 7 software projects in medium and 7 software projects in the large category. The average

defects found in the small category of software projects are 52.5, for the medium category of

software projects it is 519.14 and 508.2 defects for a large category of software projects. Table 21

shows the three categories of software projects i.e. small, medium and large.

Table 21Categories of software’s in term of size

Category No Avg defects Avg size

Small [1-60KLoC] 24 52.5 17241 LoC

Medium [60–300 KLoC] 7 519.14 140743 LoC

Large [above 300KLoC] 7 508.2 427354 LoC

RQ 1: Do complexity metrics have an effect on defects?

We attempted to find the linear correlation between the complexity metrics and defects. We

selected Pearson correlation coefficient which best suited to find the linear relation between the two

variables. In no case we found the strong correlation among complexity metrics and defects. To study

any possible relationship of defects with complexity metrics, we cluster the modules into three

categories based on the values, using the K mean clustering algorithm. In order to understand the

clusters behavior, we performed the preliminary analysis of the identified clusters for each

complexity metric based on the project category. We found three types of behaviors of complexity

metrics and grade them as effective, untrustworthy and not useful indicators of defects.

Effective indicators:

We extract those complexity metrics where higher values result in higher defects. We called these

complexity metrics effective indicators of defects and these metrics exhibit the below phenomenon.

Table 22 reports the complexity metrics, effective indicators of defects in small, medium and large

projects.

High Complexity High Defect

Table 22 Complexity metrics effective indicators of defects

Project type Complexity metrics

51

Small LCOM

Medium WMC, CBO, RFC, CA, CE, NPM, DAM, MOA, IC, Avg CC

Large WMC, CBO, RFC, CA, NPM, AMC

Untrustworthy indicators:

We classify those complexity metrics that have no fixed criterion of increase in defect with the

increase in complexity metric value. We called these complexity metrics untrustworthy indicators of

defects. Table 23 reports the complexity metric untrustworthy indicator of defects in small, medium

and large category of projects. For the untrustworthy indicators we observe two different behaviors

of complexity metrics. (a) Medium complexity value resulted in high defects: Medium Complexity

 High Defects. (b) High complexity values resulted in high defects but corresponding medium

cluster value resulted in lower defects: High Complexity High Defects, AND Medium Complexity

 Low Defects.

Table 23 Complexity metrics untrustworthy indicators of defects

Project type Complexity metrics

Small WMC, NOC, CBO,RFC, CE, Avg CC

Medium DIT, NOC, LCOM, CBM, AMC

Large DIT, NOC, LCOM, CE, LCOM3, DAM, MOA, MFA, CAM,

IC, Avg CC

Not useful indicators:

We classify those complexity metrics where smaller values resulted in high defects, as not useful

indicators of defects. Table 24 reports the complexity metrics not useful indicator of defects in small,

medium and large projects. These complexity metrics exhibit the phenomenon: Low Complexity

High Defects

Table 24Complexity metrics not useful indicators of defects

Project type Complexity metrics

Small WMC, DIT, CA, NPM, LCOM3, DAM, MOA, CAM, IC, CBM, AMC

Medium LCOM3, MFA, CAM

Large CBM

Hypothesis testing

For hypothesis testing, we only consider the effective indicator of complexity to verify that the

distribution of defects among high, medium and low complexity. We did not perform the analysis on

the untrustworthy and not useful indicators because it does not seem to be very meaningful. We take

support of statistical hypothesis testing to confirm the difference of defect in three categories of

complexity metrics values i.e. high, medium and low. Using statistical techniques, we will test the

null hypothesis H0. We will accept and reject it based on the favor of the alternative hypothesis.

 H0: There is no significant difference of defects among high, medium and low complexity of

effective indicators.

 H1: There is a significant difference of defects among high, medium and low complexity of

effective indicators.

52

Selection of statistical test

We first examined the distribution of the samples to choose the appropriate statistical test for the

analysis. We applied the Ryan-Joiner test for the normality check and found that for every sample (p

- value <0.01). The results showed that none of the sample under study has a normal distribution of

data. This made us to select the non parametric test for the hypothesis testing. According to the

recommendation for not normal samples, we chose non parametric test Kruskal-Wallis test for

differences between three or more samples. We compare the defects of high, medium and low

complexity cluster of each effective metric. In each category of projects the obtained p value was

found less than 0.05 meaning there is a significant difference of defects among high, medium and

low complexity value of effective indicators.

Threats to validity

This section discusses the validity threat as classified and proposed by the study [7]. As for

construct validity, we collected the CVS logs from the Promise research data repository. Although

we have much confidence in the correctness and accuracy of the provided data but still we have no

control to decide that up to which level the data is authentic e.g. how many module's data may be left

to record, correctness of the measurement of complexity metric values etc. As for external validity,

our findings are based on the large data set of modules i.e. 27,734 of 38 software projects. Although

this number is not small but still there can raise some concerns on the generalization of the findings

when the projects are categorized into small, medium and large. We have 24 projects from small, 7

projects are from medium and 7 projects are from large category which is fairly small samples.

3.5.3 Conclusion

The findings have important implications as they are based on the complete set of complexity metrics

belonging to one particular project. Similarly 38 such projects were selected which have all the

complexity metrics available and then combined to perform the analysis collectively. The artifact of

this study is very vital and beneficial for both researchers and practitioners. The primary contribution

of this research is the identification of having no linear relation of any complexity metrics with

defects. However based on the complexity metrics high, medium and small value clusters we find

that there are some complexity metrics which higher values resulted in a higher number of defects.

These complexity metrics are called effective indicators of defects. Consequently the complexity has

an effect on defects but not as large as one might expect. The researchers can use the effective

complexity metrics for the predicting and estimating of defects and can use in predictive models. The

statistical analysis adds confidence that there is a quite significant difference among the defects of

effective complexity metrics high, medium and low values. The practitioners can assess their

projects' quality based on the effective complexity metrics. The categorization of projects is quite

useful as it gives practitioners a view to select the appropriate effective complexity metric when

assessing their project based on size.

3.6 Data set: NASA 93
For the study we used the software projects from the data set NASA-93 that has been used in

many previous studies. The data set includes 93 software projects from different centers of NASA.

3.6.1 Data collection

For the study we used the software projects from the data set NASA-93 that has been used in

many previous studies. The data set includes 93 software projects from different centers of NASA

and Table 25 shows the types and number of projects. The mean project size was approximately 94

Kloc and projects are developed using C programming language. The data set is publicly available

under the Promise Software Engineering Repository [5]. The data set was primary organized for the

cost estimation of software projects.

53

Table 25 Project types

Project Type Number of Projects

Avionics Monitoring 30

Mission Planning 20

Avionics 11

Monitor and Control 8

Operating System 4

Simulation 4

Real Data Processing 3

Data Capture 3

Application ground 2

Batch Processing 2

Science 2

Utility 2

Launch Processing 1

Communication 1

3.6.2 Product complexity (PC):

Product Complexity is assessed by considering the five areas: control operations, computational

operations, device-dependent operations, data management operations, and user interface

management operations [54]. The product complexity rating was done by subjective weighted

average of these areas. Table 53 shows that how complexity rating is characterized.

3.6.3 Data analysis method

For the data analysis we report the descriptive statistics and where applicable we also used the

statistical techniques. We used interval plots that illustrate both measure of central tendency and

variability of the data to present the data distribution. In the interval plots on the y-axis the defect

density figures are reported for the software quality graphs and lines of code developed per month

are reported on the y-axis for the development productivity graphs. The average software quality is

found to be 41.42 defects per thousand lines of code as provided in Table 26 shows the descriptive

statistics of the software quality in term of defect density. Table 27 shows the categorization of

product regarding the product complexity.

Table 26 Dependent variables descriptive statistics

Dependent Variable N Mean Std

Deviation

Minimum Maximum

Software Quality

(defects per thousand lines of code)

93 41.42 12.55 24.42 93.25

Table 27 project categorization regarding complexity

Product Complexity (PrC) Extreme High 5

Very High 17

High 58

Medium 10

Low 3

Impact of Product Complexity (PrC) on Quality of software

The data set contain 5 projects having extreme high complexity, 17 projects having very high

complexity, 58 projects having high complexity, 10 projects having medium complexity and 3

54

projects having low complexity. The summary descriptive statistics are reported in Table 28 divided

by type. Figure 16 shows that there is a high variation of software quality in the projects having very

high PrC, Considering the Figure 16 we can visually analyze the following trends.

 Extreme High PrC Lower than average software quality

 Very High PrC Lower than average software quality

 High PrC Higher than average software quality

 Medium PrC Higher than average software quality

 Low PrC Higher than average software quality

LowMediumHighVHighEHigh

100

90

80

70

60

50

40

30

20

D
e

fe
ct

 D
e

n
si

ty

Product Complexity

Figure 16 Box plot of product complexity against the quality of software

Table 28 Descriptive statistics for product complexity

Product Complexity No Quality Std Deviation

Extreme High 5 42.62 8.45

Very High 17 50.84 18.57

High 58 39.71 10.43

Medium 10 36.38 6.32

Low 3 35.90 6.59

We performed Mann-Whitney test for the pair wise comparison between two neighboring pairs of

product complexity to find the significant difference of software quality and development

productivity between them. Concerning software quality and development productivity we made four

pair’s (EHigh, VHigh), (VHigh, High), (High, Medium) and (Medium Low).

Concerning software quality for every pair except (VHigh, High) we obtained the p-value above

the threshold. Similarly concerning development productivity for every pair except (VHigh, High)

we obtained the p-value above the threshold. For the pair (VHigh, High) we obtained the p-values

below the threshold. Therefore the only significant difference of software quality and development

productivity is found in the pair (VHigh, High).

Product complexity has partial impact on the software quality. The partial impact of product

complexity (only at higher level) shows that product complexity start influencing software quality

and development productivity after some complexity threshold.

55

Chapter 4

4. The Impact of People attributes on Software Quality

Towards the Impact of

People, Process and Product
Attributes on the Software Quality

and Development Productivity, Under

Review at: Springer Software Quality

Journal (2014).

S. M. A. Shah, M. Morisio and M. Torchiano

4.1 Introduction
 Many researchers studied the impact of people related attributes like experience, skills and

capability and their impact on software quality. Humphrey found that the average defect injection

rate for the developers is 120 defects per KLOC, or one defect in every eight lines of code. He

observed the high variation of injection of defects among the developer where 10% of the developers

injected 29 defects/KLOC and the top 1% injected 11defects/KLOC” [55]. Acuna et al. analyzed the

relationships between personality, team processes, task characteristics, product quality and

satisfaction in software development teams. They found that the teams exhibit a significant positive

correlation between the personality factor extraversion and software product quality [56]. Hazzan and

Hadar found evidence that human aspects are the source of the majority of problems associated with

software development projects [57]. Gorla and Lin surveyed 112 Information systems project

managers and found that organizational attributes are more important than technical attributes

impacting software quality in IS projects [58].

Krishnan et al. examined the relationship of product size, personnel capability, software process,

usage of tools, and higher front-end investments on productivity and conformance quality. The study

identified several quality drivers in software products e.g. higher personnel capability, deployment of

http://dl.acm.org/author_page.cfm?id=81100273269&coll=DL&dl=ACM&trk=0&cfid=220454851&cftoken=84782498

56

resources in initial stages of product development (especially design) and improvements in software

development process factors are associated with higher quality products [59]. Shendil and Madhavji

identified that the individual developers productivity could be improved as a consequence of (i) a

growing stock of knowledge and experience gained by repeatedly doing the same task (ii) due to

technological and training programs supported by the organization [60].

4.2 Independent variables
We studied 5 independent variables (Analyst Capability, Programmer Capability, Application

Experience, Platform Experience, Language and Tool Experience) and their impact on the dependent

variables “software quality”.

4.2.1 Analyst capability (AC)

Analysts are the persons responsible for working on requirements, high level design and detail

design. To consider the analysts capability, major attributes like analysis and design ability,

thoroughness and efficiency, and the ability to communicate and cooperate are assessed for the

rating. Table 29 shows the analysts capability in ordinal scale, the analysts that fall in the 15th

percentile are rated very low and those that fall in the 95th percentile are rated as very high [54].

Table 29 Analyst / Programmer Capability levels

 Very Low Low Medium High Very High

Analyst | Programmer

Capability

15th

percentile

35th

percentile

55th

percentile

75th

percentile

90th

percentile

4.2.2 Programmer capability (PC)

The programmer capability is evaluated as a team rather than as individuals. The attributes

considered in the rating are ability, thoroughness and efficiency, and the ability to communicate and

cooperate. The criteria rating for the programmer capability was same as adopted for the analyst’s

capability as shown in Table 29. Programmers that fall in the 15th percentile are rated very low and

those that fall in the 95th percentile are rated as very high [54].

4.2.3 Application experience (AE)

Application experience rating is dependent on the level the project team developing the system.

Table 30 shows the rating of application experience in ordinal scale. The experience of 2 month is

characterized as very low where the experience of 6 years is characterized as very high as shown in

Table 30.

4.2.4 Platform experience (PE)

The platform experience is the rating of working with powerful platforms, including database,

networking, graphical user interface, and distributed middle ware capabilities. Same procedure of

rating is followed; 2 month is characterized as very low where the experience of 6 years is

characterized as very high as shown in Table 30.

4.2.5 Language and tool experience (LTE)

The language and tool experience is the rating of working with programming languages and the

assistive tools for the developing a software system. This rating is important as experience in

programming with a specific language and supporting tools also affect the quality. Same procedure

of rating is followed 2 month is characterized as very low where the experience of 6 years is

characterized as very high as shown in Table 30.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shendil,%20K..QT.&newsearch=true

57

Table 30 Experience levels

 Very Low Low Medium High Very High

Application | Platform | Language

and Tool Experience
2 months 6 months 1 year 3 years 6 years

The categories and number of projects on each category is given in Table 31.

Table 31 Independent variables categories

Independent Variables Categories N

Analyst Capability (AC) Very High 10

High 51

Medium 32

Programmer Capability (PC) Very High 10

High 39

Medium 44

Application Experience (AE) Very High 12

High 46

Medium 34

Low 1

Platform Experience (PE) High 22

Medium 14

Low 53

Very Low 4

Language and tool Experience

(LTE)

High 69

Medium 14

Low 6

Very low 4

4.2.6 Correlation among the variables

To find the relationship and possible interaction between the independent variables we used the

Kendall's rank coefficient tau–b. Kendall's rank coefficient tau–b provides a distribution free test of

independence and a measure of the strength of dependence between two ordinal variables. It can be

seen in Table 32 that there is only one correlation near 60% (0.595), which is between PC and AE.

Table 32 Correlation among the variables

Attributes AC PC AE PE LTE

AC 1 0.40 0.53 0.02 0.24

PC 1 0.59 0.14 0.16

AE 1 -0.01 0.11

PE 1 0.39

LTE 1

4.3 Results

Impact of Analyst Capability on software Quality

The data set contain 10 projects developed by analyst having very high capability, 51 projects

developed by analyst having high capability and 32 projects developed by analyst having medium

capability. The summary descriptive statistics are reported in Table 33 divided by type. Figure 17

58

shows that there is a high variation of software quality of projects developed by analyst having

medium capability. Considering the Figure 17 we can visually analyze the following trends.

 Very High AC Lower than average software quality

 High AC Higher than average software quality

 Medium AC Lower than average software quality

MediumHighVHigh

100

90

80

70

60

50

40

30

20

D
e

fe
ct

 D
e

n
si

ty

Analyst Capability

Figure 17 Box plot of analyst capability against quality of software

Table 33 Descriptive statistics for analyst capability

Analyst Capability No Quality Std Deviation

Very High 10 42.79 9.89

High 51 40.24 9.27

Medium 32 42.86 17.18

We performed Mann-Whitney test for the pair wise comparison between two neighboring pairs of

analyst capability to find the significant difference of software quality and development productivity

between them.

Concerning software quality we made the two pairs (VHigh, High) and (High, Medium). For

every pair considering software quality we obtained the p-value above the threshold, indicating

that there is no significant difference of software quality between the pairs.

Impact of Programmer Capability on software Quality

The data set contain 10 projects developed by programmer having very high capability, 39

projects developed by programmer having high capability and 44 projects developed by programmer

having medium capability. The summary descriptive statistics are reported in Table 34 divided by

type. Figure 18 shows that there is a high variation of software quality in projects developed by

programmers having medium capability. Considering the Figure 18 we can visually analyze the

following trends.

 Very High PC Higher than average quality

 High PC approx average quality

 Medium PC Lower than average quality

59

MediumHighVHigh

100

90

80

70

60

50

40

30

20

D
e

fe
ct

 D
e

n
s
it

y

Programmer Capability

Figure 18 Blox plot of analyst capability against quality of software

Table 34 Descriptive statistics for programmer capability

Programmer Capability No Quality Std Deviation

Very High 10 33.15 7.06

High 39 40.97 9.45

Medium 44 43.69 15.04

We performed Mann-Whitney test for the pair wise comparison between two neighboring pairs of

programmer capability to find the significant difference of software quality between them.

Concerning software quality we made the two pair (VHigh, High) and (High, Medium).

Concerning software quality only the pair (VHigh, High) we obtained the p-value below the

threshold. Therefore there is only a significant difference of software quality between the pair

(VHigh, High).

Impact of Application Experience on software Quality

The data set contain 12 projects developed considering very high level of application experience,

46 projects developed considering high level of application experience, 34 projects developed by

considering medium level of application experience and 1 project is developed considering low level

of application experience. For the analysis we do not take the one data point of project developed

considering low application experience. The summary descriptive statistics are reported in Table 35

divided by type. Figure 19 shows that, there is a high variation of software quality in projects

considering medium level of application experience. Considering the Figure 19 we can visually

analyze the following trends.

 Very High AE Higher than average software quality

 High AE Lower than average software quality

 Medium AE Average software quality

 Low AE Lower than average software quality

60

LowMediumHighVHigh

100

90

80

70

60

50

40

30

20

D
e

fe
ct

 D
e

n
si

ty

Applictaion Experience

Figure 19 Box plot of application experience against software

Table 35 Descriptive statistics for application experience

Application Experience No Quality Std Deviation

Very High 12 33.97 7.64

High 46 43.20 8.96

Medium 34 41.20 16.75

Low 1 56.00 *

We performed the pair wise comparison by mean of Mann-Whitney test between two neighboring

pairs of application experience to find the significant difference of software quality between them.

Concerning software quality we made two pairs (VHigh, High) and (High, Medium).

Concerning software quality for both pairs we obtained the p-value below the threshold.

Therefore we can indicate that there is a significant difference of software quality between the pair

(VHigh, High) and (High, Medium).

Impact of Platform Experience on software Quality

The data set contain 22 projects developed considering high level of platform experience, 53

projects developed considering medium level of platform experience, 14 projects developed by

considering low level of application experience and 4 projects are developed considering very low

level of application experience. The summary descriptive statistics are reported in Table 36 divided

by type. Figure 20 shows that there is a high variation of software quality in projects considering low

platform experience. Considering the Figure 20 we can visually analyze the following trends.

 High PE = Approx average software quality

 Medium PE = Higher than average software quality

 Low PE = Lower than average software quality

 Very Low PE = Lower than average software quality

61

VLowLowMediumHigh

100

90

80

70

60

50

40

30

20

D
e

fe
ct

 D
e

n
si

ty

Platform Experience

Figure 20 Box plot of platform experience against software quality

Table 36 Descriptive statistics for platform experience

Platform Experience No Quality Std Deviation

High 22 40.84 6.59

Medium 53 37.31 9.86

Low 14 56.45 17.78

Very Low 4 46.44 8.88

We performed the pair wise comparison by mean of Mann-Whitney test between two neighboring

pairs of platform experience to find the significant difference of software quality between them.

Concerning software quality we made three pairs (High, Medium), (Medium, Low) and (Low,

VLow).

Concerning software quality for all pairs except (Low, VLow) we obtained the p-value below the

 threshold. Therefore we can indicate that there is a significant difference of software quality

between the pair (High, Medium) and (Medium, Low).

Impact of Language and Tool Experience on software Quality

The data set contain 69 projects developed considering high level of language and tool

experience, 14 projects developed considering medium level of language and tool experience, 6

projects developed by considering low level of language and tool experience and 4 projects are

developed considering very low level of language and tool experience. The summary descriptive

statistics are reported in Table 37 divided by type. Figure 21 shows that there is a high variation of

software quality of projects considering low language and tool experience. Considering the Figure 21

we can visually analyze the following trends.

 High LTE = Higher than average software quality

 Medium LTE = Lower than average software quality

 Low LTE = Lower than average software quality

 Very low LTE = Lower than average software quality

62

VLowLowMediumHigh

100

90

80

70

60

50

40

30

20

D
e

fe
c
t

D
e

n
s
it

y

Language and Tool Experience

Figure 21 Interval plot of language and tool experience against software quality

Table 37 Descriptive statistics for language and tool experience

Language and tool Experience No Quality Std Deviation

High 69 38.20 253.0

Medium 14 44.28 51.2

Low 6 70.07 206.9

Very Low 4 43.88 194.3

We performed the pair wise comparison by mean of Mann-Whitney test between two neighboring

pairs of language and tool experience to find the significant difference of software quality between

them. Concerning software quality we made three pairs (High, Medium), (Medium, Low) and (Low,

VLow).

Concerning software quality for all pairs we obtained the p-value below the threshold.

Therefore we can indicate that there is a significant difference of software quality between the pair

(High, Medium), (Medium, Low) and (Low, VLow).

Table 38 reported the summary of impact of independent variables on the dependent variables.

Here in Table 38 the “partial impact” means at least some levels of independent variable have

statistical significant impact on the dependent variables. The “significant impact” means all levels of

independent variables have statistical significant impact on the dependent variables. The “No impact”

means that levels of independent variables have no statistical significant impact on the dependent

variables.

 Table 38 Summary observation of Impact of independent variables on dependent variable

Variables Software Quality

Analyst Capability No impact

Programmer Capability Partial impact

Application Experience Significant Impact

Platform Experience Significant Impact

Language and tool Experience Significant Impact

63

4.4 Discussion
Summary of Results: The analysis of 93 projects allows us to understand the impact of different

attributes on the software quality. The results are important for both researchers and practitioners.

The practitioners can use the results to understand the impact of any attribute on the software quality.

In order to attain increase of software quality in their projects; they must put sufficient attention to

the identified influencing attributes. The researchers can use the results in order to find the reasons

that why one particular attribute has an impact on the software quality or not. We can summarize the

following evidence that we found after analyzing the particular data set.

 Analyst capability has no significant impact on the software quality.

 Programmer capability has partial impact on software quality.

 Application experience has significant impact on software quality

 Platform experience and language and tool experience has significant impact on the

software quality

Analyst capability has no impact on the software quality. Typically there are about 85% of defects

originates from the requirements [61]. Having this high percentage of defect introduction does not

able to classify the impact of analyst capability on the software quality.. Hence the impact of

analyst’s capability on software quality is further subject to investigation.

Programmer’s being the main workforce of software development, and software quality highly

dependent on them. Though, in this study we found partial impact of programmer’s capability on the

software.

4.5 Conclusion
This study analyzed the attributes that are related to people, and their impact on the software quality

using the statistical significant evidences. The evidences show that there are some attributes that have

significant impact on the software quality. Therefore practitioners can benefit from the findings to

attain increase in software quality by selecting influencing attributes.

64

Chapter 5

5. The Impact of Process attributes on Software Quality

Published in Proceedings of

the ACM-IEEE international

symposium on Empirical

software engineering and

measurement (ESEM '12).*

Towards the Impact of

People, Process and Product

Attributes on the Software Quality

and Development Productivity, Under

Review at: Springer Software Quality

Journal (2014).*

Published in IEEE IT
Professional Journal (2013).**

Published in Journal of

Software Evolution and Process

(2013)***

(S. M. A. Shah, M. Morisio, and M. Torchiano)*

(S. M. A. Shah, M. Torchiano, A. Vetro, and M. Morisio)**

(S. M. A. Shah, C. Gencel, U. S. Alvi, and K. Petersen)***

5.1 Introduction to software process
The relationship between quality of the product and quality of the process is a key issue in all the

engineering disciplines. In software engineering the attention to process started to be widespread

65

from the 90’s thanks to the work of Watts Humphrey, who applied to software engineering process

concepts developed in other disciplines [62]. The CMMI [63], main result of this work, proposes a

capability assessment model and an improvement path for organizations.

On a parallel track, a large variety of software processes have been proposed over the years,

starting from the Waterfall model [64] up to the PSP [65], TSP [66], RUP [67], MSF [68] and Agile

[69]. Behind many of these proposals stands the assumption that more sophisticated processes will

lead to higher quality products. This view has been later challenged by the agile movement that

insists more on low ceremony approaches. Our research is focused on finding empirical evidence of

the effect of process choices on product quality. Product quality can be measured in several ways:

reliability at function or system level, user satisfaction, defect density. In this study we take the

pragmatic, view of quality in terms of defect density. Defect density (DD) is defined as the total

number of found defects divided by the size of the software [70].

5.1.1 Related work

The Capability Maturity Model Integration (CMMI) has been widely adopted as a guideline to

improve the overall software quality. There is research evidence that a higher CMMI level is linked

to better quality [71][72][73][74]. Li et al, highlighted the experience of Neusoft Group, where defect

density decreased from 0.85 defects per KLoC in 2000 to 0.1 defects per KLoC in 2005 as a result of

CMMI adoption [75]. According to Jones [76] the CMMI 1 to CMMI 5 levels has 0.75, 0.44, 0.27,

0.14, and 0.05 delivered defects per KLoC.

To date, there are various software development processes and an even larger numbers of hybrids

in use. Software development process research literature contains different claims for the quality

[77][78][79][80][81]. As reported in [82], if a well structured TSP is used, it has a positive impact

decreasing the DD, in particular, and increasing the software quality in general. Abrahamsson and

Koskela obtained the system defect density of 1.43 defects per KloC from a controlled case study on

extreme programming in Agile setting [83].

The study [84] reported the IBM experience of the Agile software process that reduced the DD

and increased the overall quality. The survey conducted by Ramasubbua and Balan [85] on 112

projects showed that the combination of CMMI 5 with Agile had a significant and mostly positive

impact on the project DD. Mohan et al. suggested the use of RUP to achieve increased reliability

with higher productivity and lower defect density [86]. Bhat and Nagappan observed a significant

increase in quality of two Microsoft projects developed using TDD (Test Driven Development)

compared to same projects developed in a non-TDD fashion [87]. In one review study, Mitchell and

Seaman [88] performed a systematic review comparing Waterfall vs. Iterative and Incremental

development but the data set did not demonstrate any difference in quality.

Jones et al. [89] classify CMMI not assessed, CMMI level 1 and Waterfall projects under the low

quality category. For average quality, they classify CMMI 1, 2 and Agile projects. For high quality,

they classify CMMI level 3, 4, 5, Hybrid process, TSP and RUP projects. Li et al, highlighted the

experience of Neusoft Group, where defect density decreased from 0.85 defects per thousand lines of

code (kloc) in 2000 to 0.1 defects per kloc in 2005 as a result of CMMI adoption [75]. Jones et al.

classify CMMI not assessed, CMMI level 1 and Waterfall projects under the low quality category.

For average quality, they classify CMMI 1, 2 and Agile projects. For high quality, they classify

CMMI level 3, 4, 5, Hybrid process, TSP and RUP projects [89]. Subramanian et al. showed that

CMM levels do associate with IS implementation strategies and higher CMM levels relate to higher

software quality and project performance. [90]. Tufail and Malik observed that the adoption of an

agile process improved the quality of the software produced by the software house by reducing the

percentage of serious errors and defects and by increasing the ratio of passed to failed test cases [91].

Li et al. compared software quality assurance processes and software defects of the project between a

17- month phases with a plan-driven process, followed by a 20-month phase with Scrum. The results

of the study did not show a significant reduction of defect densities or changes of defect profiles after

Scrum was used. [92].

66

Rubin studied the impact of improvement in the software process on software engineering

productivity and quality in 300 organizations and found that those that had embarked on significant

process improvement efforts were substantially gained in productivity and quality [93]. Sussy et al.

presented a case study that describes introduction of team software process to proved that training in

team software process had a positive impact on getting better estimations, reducing costs, improving

productivity, and decreasing defect density [82]. Sison compared the programs (small, large)

developed by students using pair programming technique. The results suggested that pair

programming increase software quality without decreasing productivity [94]. Rafique and Misic

performed a systematic meta-analysis of 27 studies that investigate the impact of Test-Driven

Development (TDD) on external code quality and productivity. The results indicate that, in general,

TDD has a small positive effect on quality but little to no discernible effect on productivity [95].

5.1.2 Data set: Capers Jones & Associates LLC

We selected 61 software projects having available required metrics for our analysis. Data on these

projects was kindly provided by Capers Jones & Associates LLC (http://www.namcook.com/) in

October 2011. The company uses these projects metrics as a reference for quality prediction and

benchmarking.

5.1.2.1 Research design

In this section, we present the research questions, the data set and the metrics used.

Research questions
Two primary research questions were formulated for this research.

RQ1: Do different CMMI levels affect defect density?

The goal here is to first characterize the defect density for different CMMI levels, and then check

if these levels are significantly different.

RQ2: Do structured software processes affect defect density?

The goal is to characterize the effect of a structured software process on defect density.

Metrics
The CMMI levels are expressed on an ordinal scale 1 to 5. However, the dataset contains also

companies that were not assessed. These appear as having level 0. In practice we have two merged

scales: a nominal scale (assessed, not assessed) and an ordinal scale 1 to 5, only for assessed

companies.

The software process is expressed as a nominal scale, first by (structure and without structure)

and then by structured types (TSP, PSP, etc).

Defect density is calculated by dividing the number of found defects, by the code size in LOCs.

When size is expressed in terms of function points as defined by the International Function Point

Users Group (IFPUG), it is converted to KLoCs using the logical code statements by using the

proprietary method of conversion [96].

Analysis method
To answer our research questions we adopted both visual and statistical analysis of the data and

hypothesis testing.

For the purpose of visual representation, we use both probability distribution diagrams and box

plots: the former allow a fine grained appraisal of the distribution, while the latter allow for a more

immediate comparison. In the probability distribution diagrams we reported the DD values in

ascending order on the horizontal axis and the cumulative frequency on the vertical axis.

The research questions are addressed by means of statistical hypothesis testing; therefore we

formulated null and alternative hypotheses as follows.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sison,%20R..QT.&searchWithin=p_Author_Ids:37284479800&newsearch=true
http://www.namcook.com/

67

Concerning RQ1

H00: There is no significant difference in terms of DD between projects assessed under CMMI

and projects not assessed under CMMI.

H0a: There is significant difference in terms of DD among projects assessed under CMMI and

projects not assessed under CMMI.

H10: There is no significant difference in terms of DD among projects developed under different

CMMI levels.

H1a: There is a significant difference in terms of DD among projects developed under different

CMMI levels.

If the above null hypothesis H10 can be rejected, we can conduct a post-hoc investigation of the

pair-wise differences; in this case, the Bonferroni correction for multiple tests shall be applied. For

any pair of CMMI levels (L1, L2) we can formulate the hypotheses as:

H1.10: DDL1 = DDL2 (Projects developed in L1 have the same defect density as those developed in

L2)

H1.1a: DDL1 ≠ DDL2 (Projects developed in L1 have not the same defect density as those developed

in L2)

Concerning RQ2

H20: There is no significant difference in terms of DD among projects developed with and

without structured software processes.

H2a: There is a significant difference in terms of DD among projects developed with and without

structured software processes.

H30: There is no significant difference in terms of DD among projects adopting different

structured software processes.

H3a: There is a significant difference in terms of DD among projects adopting different structured

software processes.

If the above null hypothesis H30 can be rejected, we can conduct a post-hoc investigation of the

pair wise differences; in this case, the Bonferroni correction for multiple tests shall be applied. For

any pair of structured software processes (P1, P2) we can formulate the hypotheses as:

H3.10: DDP1 = DDP2 (Projects developed in P1 have the same defect density as those developed in

P2)

H3.1a: DDP1 ≠ DDP2 (Projects developed in P1 have not the same defect density as those developed

in P2)

 According to the recommendations in [7] we use the Kruskal-Wallis test for differences between

three or more groups and the Mann-Whitney test for pair wise differences. To evaluate the practical

difference comparing different groups, we use the standardized effect size measure like Cohen’s d.

In the statistical testing, the significance level is checked by the given p-value. For rejecting or

accepting the null hypothesis, we used the significance value =5% / number of tests (Bonferroni

correction).

5.1.2.2 Results

RQ1 Do different CMMI levels affect defect density?

68

The data set contains 32 projects from companies that are assessed under CMMI and 29 projects

from companies that are not assessed under CMMI. Figure 22 contains the box plot of DD vs.

projects (CMMI assessed, CMMI not assessed). It shows that projects assessed under CMMI have

higher variance of DD. Figure 23 shows the cumulative distribution of the two project groups. Table

39 in its first section, reports the descriptive statistics of DD of projects (CMMI assessed, CMMI not

assessed).

CMMI not AssessedCMMI Assessed

18

16

14

12

10

8

D
D

 [
D

e
fe

c
ts

 p
e

r
K

L
o

C
]

Figure 22 Box plot of DD of projects assessed under CMMI vs. projects not assessed under CMMI.

Table 39 Descriptive statistics of DD of projects

Group N Mean Median Std Dev

CMMI
Assessed 32 12.5 13.5 1.86

Not Assessed 29 13.5 13.1 1.44

Maturity

Level’s

CMMI1 9 13.9 13.9 0.25

CMMI 3 14 12.1 13.1 2.2

CMMI 5 9 11.69 11.5 1.42

Software

Process

With Structure 57 12.9 13.15 1.75

Without Structure 4 14.5 14.7 0.78

Structured

Software

Process

Water Fall 12 13.8 13.8 0.24

Agile 7 13.43 13.35 2.8

Rational Unified Process 7 13.01 12.8 0.45

Microsoft Solution Frame work. 2 12.89 12.89 0.29

Hybrid Process 5 12.1 11.5 1.06

Team Software Process 4 11.51 11.9 2.19

V Model 3 11.22 11.41 2.45

69

18161412108

1.0

0.8

0.6

0.4

0.2

0.0

DD [Defects per KLoC]
P

(D
D

<
x
)

CMMI not Assessed

CMMI Assessed

Figure 23 DD cumulative distribution for CMMI assessed and CMMI not assessed projects

For RQ1, observing the box plots in Figure 22 it appears that they overlap, but CMMI assessed

projects are more skewed towards lower DD. We then test the hypothesis H00 with Mann-Whitney

test for differences. The test reports a p-value = 0.745 which is above the threshold. Therefore, we

cannot reject the null hypothesis, indicating that there is no significant difference of DD between the

projects assessed under CMMI and projects that are not assessed under CMMI.

As a next step, we focus our attention on projects with CMMI assessment. The data set contains 9

CMMI 1 projects, 14 CMMI 3 projects, and 9 CMMI 5 projects. Figure 24 contains the box plot of

DD vs. CMMI levels. It shows that higher levels of CMMI seem to have a lower DD, but higher

variance.

Figure 25 reports the cumulative distribution DD for different CMMI levels. Table 39 in its

second section reports the corresponding descriptive statistics. To test H10 we select Kruskal-

Wallis's test to see the significant difference of DD in different CMMI levels. The test reports a p-

value = 0.0009, which is below the threshold. Therefore, we can reject the null hypothesis.

CMMI level 5CMMI level 3CMMI level 1

15

14

13

12

11

10

9

8

D
D

 [
D

e
fe

c
t

p
e

r
K

L
o

C
]

Figure 24 Box plot of DD of different CMMI levels

70

15141312111098

1.0

0.8

0.6

0.4

0.2

0.0

DD [Defects per KLoC]
P

(D
D

<
x
)

CMM 1

CMM 3

CMM 5

Figure 25 DD cumulative distribution for different CMMI levels

Given the above result we proceed with the pair wise comparisons. In particular, we test the H1.10

for the two possible adjacent pairs of CMMI levels, i.e. (CMMI 1, CMMI 3), (CMMI 3, CMMI 5) by

means of the Mann-Whitney test. In assessing the test results, we adopt an divided by 2 according

to the Bonferroni rule.

For the pair (CMMI 3, CMMI 5) we obtained the p-value 0.3, which is larger than 0.025,

therefore we cannot reject the corresponding null hypotheses.

For the pair (CMMI 1, CMMI 3) we obtained a p-value of 0.0021, therefore we can reject the null

hypothesis. The significant difference can be considered of medium size (Cohen’s d = 0.75), CMMI

3 projects have a DD that is on average 1.8 defects per KLoC lower than CMMI 1.

In summary, concerning CMMI levels, there is evidence that the defect density of CMMI 3

projects is lower than CMMI 1 projects.

RQ2 Do structured software processes affect defect density?

The data set contains 57 projects developed with structured software processes and 4 projects

developed without structured software process. The third section of Table 39 reports the descriptive

statistics of DD of projects developed with and without structured software process.

Figure 26 reports the box plot of DD vs software process structuredness. It shows that projects

developed with structured process seem to have lower DD. Figure 27 presents the cumulative

distribution of DD figures of projects developed with and without structured software process.

Without Structured ProcessWith Structured Process

18

16

14

12

10

8

D
D

 [
D

e
fe

c
ts

 p
e

r
K

L
o

C
]

Figure 26 Box plot of DD of projects with and without structured process.

71

18161412108

1.0

0.8

0.6

0.4

0.2

0.0

DD [Defects per KLoC]
P

(D
D

<
x
)

With Structured Process

Without Structured Process

Figure 27 DD cumulative distribution for projects with and without structured process

Concerning hypothesis H20, we select the non-parametric Mann-Whitney. The test reports a p-

value = 0.013, which is below the threshold. Therefore, we can reject the null hypothesis. The

significant difference can be considered of large size (Cohen’s d = 1.18), projects developed with

structured process have a DD that is on average 1.6 defects per KLoC lower than the projects

developed without structured process.

Considering the projects developed with structured software process, the data set contains 12

projects using Waterfall, 7 Agile projects, 7 projects adopting RUP, 2 projects using MSF, 5 Hybrid

projects, 4 projects using TSP, and 3 projects using the V model. Figure 28 contains the box plot of

DD vs. process type. It shows that V model, TSP and Hybrid process have lower DD, but higher

variance.

Figure 29 reports the cumulative distribution DD of different structured software process. The

fourth section of Table 39 reports the relative descriptive. To test H30 we selected Kruskal Wallis'

test. The test reports a p-value = 0.004, which is below the threshold. Therefore, we can reject the

null hypothesis.

Given the above result, we precede with the pair wise comparisons. In particular, we test the

H3.10 for all possible pairs of structured software processes i.e. (Waterfall, Agile), (Waterfall, RUP),

(Waterfall, MSF), (Waterfall, Hybrid), (Waterfall, TSP), (Waterfall, V model), (Agile, RUP), (Agile,

MSF), (Agile, Hybrid), (Agile, TSP), (Agile, V model), (RUP, MSF), (RUP, Hybrid), (RUP, TSP),

(RUP, V model), (MSF, Hybrid), (MSF, TSP), (MSF, V model), (Hybrid, TSP), (Hybrid, V model)

and (TSP, V model) by means of the Mann-Whitney test. In assessing this test, we adopted an

divided by 21 according to the Bonferroni rule.

V modelTSPHybridMSFRUPAgileWaterfall

18

16

14

12

10

8

D
D

 [
D

e
fe

c
ts

 p
e

r
K

L
o

C
]

72

Figure 28 Box plot of DD for different structured processes

18161412108

1.0

0.8

0.6

0.4

0.2

0.0

DD[Defects per KLoC]

P
(D

D
<

x
)

Waterfall

Agile

RUP

MSF

Hybrid

TSP

V model

Figure 29 DD cumulative distribution for structured processes

For all pairs except (Waterfall, RUP) we obtained p-values > 0.002 therefore we cannot reject the

corresponding null hypotheses. For (Waterfall, RUP) we obtained p–value < 0.002 therefore we can

reject the corresponding null hypothesis indicating that they have statistical different DD. The

significant difference can be considered of large size (Cohen’s d = 3.7), Waterfall projects have a DD

that is on average 0.7 defects per KLoC higher than RUP.

5.1.2.3 Discussion

The extraction of DD figures from industrial projects allowed us to publish a summary of DD

data available. Table 39 presented the essential descriptive statistics. These results can be of useful to

both researchers and practitioners. In addition, we can summarize the following pieces of evidence:

 There exists no statistically significant difference of DD between the projects assessed under

CMMI and the projects not assessed under CMMI. However, visual analysis of the box

plots Figure 22suggests that CMMI assessed projects tend to be on the low DD side.

 There exists a statistically significant medium sized difference of DD between CMMI 1 and

CMMI 3 based projects: the former have a DD that is 1.8 defects per KLoC higher than the

latter.

 There exists a statistically significant large sized difference of DD between the projects

developed with vs. without structured software process: the former has a DD that is 1.6

defects per KLoC lower than the latter.

 There exists no statistical significant difference of DD between different structured

processes except (Waterfall, RUP). Waterfall projects have DD that is on average 0.7

defects per KLoC higher than RUP.

Overall these results confirm that having a process (as suggested by CMMI, RQ1, or any

structured process, RQ2) has a positive effect on quality measured in terms of DD. Higher CMMI

levels have an effect on quality, but probably smaller than one might expect, especially considering

that we couldn’t find any difference between levels 3 and 5. Also adopting a specific process

(Waterfall, Agile, TSP....) does not produce specific effects on quality. With this respect the most

surprising comparison is Waterfall vs Agile, where again there seem to be no difference in product

quality.

So the key factor for quality (evaluated in terms of DD) seems to be having or not a process. Of

course we acknowledge that our analysis is partial: a process may have an effect on other properties

73

(cost, time to market, customer satisfaction, etc). Further studies should be dedicated to analyze the

effect of processes on those qualities.

Threats to validity
We discuss in this section validity threats using the classification proposed by [7].

As for internal validity, there could be two level of indirection and sources of error. First we rely

on a data set collected by others, who in their turn rely on how companies have collected the data.

Unfortunately, as any secondary study, we have no control on these aspects.

As for construct validity, there are concerns about the conformance of projects classified

according to CMMI levels or as adopting Structured Processes. For structured process we group all

procedural software development processes (V model, TSP, Hybrid Process (RUP + TSP + Agile),

MSF (Microsoft solution framework), RUP, Agile and Waterfall etc) into structured category. The

structured processes sometime are customized for particular project needs and this trend is also

observed for some projects. On the contrary DD have low conformance, collection and

transformation of size from function points to LoC can subject to ambiguities.

As for external validity we face the problem of generalizing the results. The study samples 61

projects, which are are not a negligible absolute number but may offer a limited representation of

industrial projects in general.

5.1.2.4 Conclusion

This study performed a statistical analysis of the product DD along two dimensions of process

quality - i.e. level of maturity and type - in 61 industrial projects.

The DD values are useful as a proxy of the quality of the products and are widely used for

benchmarking and evaluation purpose.

Our results could not completely confirm some previous studies [62] [75] that reported a steady

quality increase with process assessment levels. Our results partially support the observed increase in

quality, by moving to the higher levels of maturity e.g. CMMI 1 to CMMI 3. However, corroborates

the findings from previous studies [82][84][85] where increase of quality is observed with the

adoption of increasingly more structured software processes.

5.1.3 Data Set: NASA 93:

5.1.3.1 Process maturity (PM)

The process maturity is determined by the procedure organized by the Software Engineering

Institute Capability Maturity Model (SEI-CMM). The process maturity can be assessed in two ways

[54]. The first is based on the results of the evaluation of the CMM. The second is the assessment

based on the 18 key process areas (KPAs) in the SEI–CMM. The process maturity determining is

decided by the percentage of compliance for each of the KPAs.

Table 40 Independent variables categories

Independent Variables Categories N

Process Maturity (PM) High 43

Medium 30

Low 20

74

5.1.3.2 Results

Impact of Process Maturity (PM) on software quality

The data set contain 43 projects developed under high PM, 30 projects are developed under

medium PM and 20 projects are developed under low PM. The summary descriptive statistics are

reported in Table 41 divided by type. Figure 30 shows that there is a high variation of software

quality in the projects developed under low PM. In addition high variation is also observed for the

software quality in the projects developed under medium PM. Considering the Figure 30 we can

visually analyze the following trends.

 High PM Higher than average software quality

 Medium PM Lower than average software quality

 Low PM Lower than average software quality

LowMediumHigh

100

90

80

70

60

50

40

30

20

D
e

fe
ct

 D
e

n
si

ty

Process Maturity

Figure 30 Interval plot of process maturity against quality of software

Table 41 Descriptive statistics for process maturity

Process Maturity No Quality Std Deviation

High 43 36.26 6.96

Medium 30 43.18 17.53

Low 20 49.86 6.80

We performed the pair wise comparison between two neighboring pairs of process maturity to

find the significant difference of software quality between them. Concerning software quality we

made two pair’s (High Vs Medium) and (Medium Vs Low).

We performed the Mann-Whitney test for the pair wise comparison. Concerning software quality

we found the p-value above the threshold for the pair (High, Medium) and below the threshold

for the pair (Medium, Low).

Therefore we can indicate that there is a significant difference of software quality between the

pair (Medium, Low).

The partial impact of process maturity on the software quality and development productivity

shows that there is an impact but smaller than one might except which also confirms the findings of

Caper Jones data set.

75

5.2 Introduction of exploratory testing
The cost of software testing is believed to range between 40 and 80% of the total cost of

development with safety critical systems closer to the high end [97]. According to NIST [98]

inadequate software testing infrastructure is estimated to cost US society about 59.5 billion USD

annually.

Among the several attempts to reduce such costs, automated software testing deserves a special

mention [99]. Automated software testing provides quick verification and reduces the testing

execution effort but it requires a significant upfront investment to set up the infrastructure. The

alternative, i.e. manual testing, is very labor intensive and requires human testers to execute the tests,

e.g. test case based testing and exploratory testing. Despite the potentially higher costs, the latter

approach is more common in industry compared to the former [100].

The different types of manual testing approaches are typically selected based on the context; for

instance structured and prescriptive techniques such as Test case based testing are adopted when a

system undergoes the acceptance testing [101].

In general, any technique typically leads to specific advantages, while it brings some drawbacks

which often are not immediately apparent but tend to surface later. A testing approach introduces

testing induced Technical Debt (TD) whose value is not known at the time of testing and appears in

later phases of the life cycle.

We analyzed the software testing approach “Exploratory Testing (ET)” through a systematic

review of literature to understand the consequences of ET as Technical debt. The evidence shows

that ET is used as an alternative to any structured software testing approach to speed up the testing

tasks and proved to be cost effective at the time of testing. Nevertheless ET also has many

weaknesses that are not apparent at the time of testing but prompt up in later phases of system life

cycle. These weaknesses incur increased rework and cost, and hence are considered to be the sources

of TD. In addition we propose the possible solutions to embark upon these weaknesses that indeed

help to reduce the testing technical debt of ET.

5.2.1 Exploratory testing

Exploratory testing (ET) is an approach that does not rely on the formal test case definition. In

fact, the tester, instead of designing test cases, runs and evaluates the software behavior basing tests
on his intuition and knowledge. The formal definition of ET was proposed by James Bach as [102]:

 “Exploratory testing is simultaneous learning, test design, and test execution”

Given its widespread adoption in industrial practices to speed up verification activities of newly

developed functionalities, several researchers have begun to focus their studies on ET. ET is
considered as a cost effective practice due to the lack of test case documentation and planning.

Moreover it also has good defect detection ability and is a very flexible process [103].

Practitioners tend to consider ET as a valid alternative to systematic testing approaches when not

enough time is available [102]. In such context it is not possible to define plans and write test cases

on the basis of requirement and design specification, and later abide. Then, adopting ET, testers

utilize their own intuition and experience without the need of any documented guideline, testing only

particular scenarios or functionalities. Such an unconstrained and creative approach makes ET

attractive for testers. In addition, as a consequence ET provides rapid feedback, simultaneous

learning and diversity in testing [102].

The benefits listed above makes ET very attractive. The one example of ET adoption is the testing

of whole web site testing carried out in just two days [104]. Such a practice makes very serious

concerns about the overall effectiveness of the testing approach. This may probably introduce

increased work, problems and cost in the future, when the complexity of the application will need to

be managed in a more structured way also in testing.

76

On the other hand ET cannot be applied to some applications, e.g. safety critical systems, where

the testing procedure must strictly adhere to well defined procedure to document the testing done, in

order to conform to given requirements, e.g. safety integrity level.

5.2.2 Technical debt

The term Technical Debt refers to an increased cost of changing or maintaining a system in the

future due to expedient shortcuts taken during development [105]. In other words, Technical Debt is

a techno-financial instrument that makes quick development affordable at present time, at the cost of

compound interests to be paid later [106]. Technical debt can be related to different activities:
architecture, design, documentation, testing, and so on. We focus on Testing Technical Debt. We

define one source of testing technical debt in the following way:

“Feature testing to attain one aspect while simultaneously ignoring -- either knowingly or not --

other aspects that may prompt up later with increased rework and cost”

There are different ways to deal with technical debt, Buschman [106] proposes three main

categories of approaches:

● Pay the interests: we suffer the consequences of the debt and to cope with it we incur in

repeated additional costs, e.g. in absence of automated tests we keep on carrying on

expensive manual regression tests.

● Repay the debt: we get rid of the origin of the debt at the cost of significant extra rework

effort, e.g. a structural limitation in the program is removed through an additional

reengineering activity.
● Convert the debt: we replace the source of technical debt with another solution still

implying some debt, though typically smaller, e.g. a flexible though hard-to-maintain run-

time customization module is replaced with a rigid development-time one.

While the above definition may seem negative, contracting debt is not necessarily a bad thing. As

in real-life situations a number of readers would not own a house without a mortgage, so most

projects could not be successful.

5.2.3 Systematic literature review

In order to collect evidence about the effects of ET on technical debt we conducted a systematic

literature review. The goal we set for the SLR was to assess the potential negative effects of applying

the ET technique.

We followed a simple procedure: (i) first we searched in the most important publication databases

--- IEEE explorer, ACM digital library, Springer link and Science Direct -- with selection limited to

software/computer science studies. The search was done using the keyword “Exploratory Testing”

and the option “search in all fields” was used. At this stage we obtained 95 articles. Then we

screened out the irrelevant paper first looking at the title and then reading the abstracts; at this stage

we had 32 articles left. Eventually we read through the remaining papers and decided whether to

include them on the basis of the actual content; as a result we included 8 papers. The number of

articles retained at each stage and grouped by source database is reported in Table 42. The selection

criteria we used in the above filtering were: (i) the paper deals with Exploratory Testing, (ii) it

contains empirical evidence base on a valid study, (iii) the evidence concerns potential drawbacks

induced by ET.

Table 42 Distribution of selected papers.

Source Found Scanned Included

IEEE

explorer
7 7 5

ACM digital 47 8 2

77

library

Springer

Link
39 15 1

Science
direct

2 2 0

While examining the articles we had a twofold objective: first, identify which are the areas of

potential negative impact of ET and, second, verify the existence of empirical evidence supporting

such a link. Table 43 summarizes the practices impacted by ET and the relative supporting evidence
as revealed in the surveyed articles.

Table 43 Supporting evidence Vs practices impacted by ET

Empirical

Evidence

Weaknesses

Test

Planning

Test case

Definition

Test result

Assessment

Human

Dependence

Documentation

Controlled

Experiments

E1 E1 E1

 E2

 E3

 E4

 E5

Interviews I1 I1 I1 I1

Case Study CS1 CS1 CS1

Action Research AR1

Surveyed publications

E1 J. Itkonen, M. V. Mantyla, and C. Lassenius, “Defect Detection Efficiency: Test Case Based vs.

Exploratory Testing,” in Empirical Software Engineering and Measurement, 2007. ESEM 2007. First
International Symposium on, 2007, pp. 61–70.

E2 L. Shoaib, A. Nadeem, and A. Akbar, “An empirical evaluation of the influence of human personality on

exploratory software testing,” in Multitopic Conference, 2009. INMIC 2009. IEEE 13th International,

2009, pp. 1–6.

E3 T. D. Hellmann and F. Maurer, “Rule-Based Exploratory Testing of Graphical User Interfaces,” in AGILE

Conference (AGILE), 2011, 2011, pp. 107–116.

E4 S. Al-Azzani and R. Bahsoon, “Using implied scenarios in security testing,” in Proceedings of the 2010

ICSE Workshop on Software Engineering for Secure Systems, Cape Town, South Africa, 2010, pp. 15–21.

E5 L. H. O. do Nascimento and P. D. L. Machado, “An experimental evaluation of approaches to feature

testing in the mobile phone applications domain,” in Workshop on Domain specific approaches to
software test automation: in conjunction with the 6th ESEC/FSE joint meeting, Dubrovnik, Croatia, 2007,
pp. 27–33.

I1 J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case study,” in Empirical Software

Engineering, 2005. 2005 International Symposium on, 2005, p. 10 pp.

78

CS1 J. Itkonen, M. V. Mantyla, and C. Lassenius, “How do testers do it? An exploratory study on manual

testing practices,” in Empirical Software Engineering and Measurement, 2009. ESEM 2009. 3rd
International Symposium on, 2009, pp. 494–497.

AR8 J. Tuomikoski and I. Tervonen, Absorbing Software Testing into the Scrum Method, 2009. Lecture Notes

in Business Information Processing, 2009, Volume 32, Part 4, 199-215.

5.2.4 ET as a source of testing technical debt

Does ET represent an archetypal example of technical debt inducing practice? Shall it be repaid

later in the application life cycle?

To answer these questions we conducted a systematic literature review concerning ET (see side

box) and collected evidence about its weaknesses. We examined eight articles reporting empirical

evidence: five controlled experiments (sources: E1 to E5), one case study (source: CS1), one

interview (source: I1), and one action research study (source: AR1). We were particularly interested

in those aspects that in the short term represent a cost saving but might imply a debt whose accrued

interests ought to be repaid later. In order to understand how these weaknesses may induce technical

debt we need to:

● identify the different aspects of testing that are affected by ET in a potentially negative way,

● understand the effects of ET on those aspects, and

● evaluate them in terms of technical debt.

We categorized the different type of debt in which testers might occur when practicing ET and,

after we identified its general weaknesses, we mapped them to the technical debt instances.

Hereinafter, we list the weaknesses of ET identified as a source of technical debt. We will discuss

later on how to tackle the debt.

5.2.4.1 Test Planning
Typically test planning defines all those aspects related to testing strategy, resource utilization,

responsibilities, risks, testing priorities, budget, and timeline [107]. Moreover planning is the

prerequisite for monitoring and tracking the test activities, enabling awareness and visibility of the

process.

ET effects: Different type of evidence is available in the literature (sources: E1, I1, AR8) on the lack

of any planning of ET activities, given the vocation to personal freedom and creativity of this

practice. ET lack of test planning results into having no control over the testing and increases the

likelihood of double testing or overlooking important tests. Moreover the lack of plans makes the

coverage of system functionalities unknown, therefore it is not possible to accurately estimate the

overall quality of the system and make accurate plans for effort maintenance. In addition, due to the

lack of planned responsibilities the tester’s progress is difficult to track and responsibilities remain

undefined. For example if the defects appear in a tested application during operations no one has the

responsibility for that test.

TD implications: According to established approaches testing without a test plan cannot be managed

in an effective way: for example, overruns of one or two hundred percent have been reported and test

managers have difficulty understanding and monitoring testing as well [107]. Therefore, the higher

cost of tests execution is the first type of debt introduced by ET. Yet another consequence of the lack

of planning is the higher number of residual defects due to unmanaged functionality coverage and to

the inappropriate handling of defects.

5.2.4.2 Test cases definition
A test case defines how the implementation of a given specification can be validated and typically

includes preconditions, test steps, input data, and expected output. The documentation of test case

provides a structure, guidance and traceability to the testing tasks [107].

http://www.springerlink.com/content/?Author=Janne+Tuomikoski
http://www.springerlink.com/content/?Author=Ilkka+Tervonen
http://www.springerlink.com/content/1865-1348/
http://www.springerlink.com/content/1865-1348/

79

ET effects: On ET, testing is based on simultaneous design and execution utilizing human intuitions;

therefore it is performed without neither defining nor documenting the test cases. If we consider that

we often need to re-execute the tests [108] (e.g., to verify that a modification did not introduce new

errors), the absence of documented test cases will make the re-execution quite hard or even

impossible where tests were traced/recorded. Moreover, we found evidence that the lack of test cases

implies that ET cannot assure 100% testing of all functionalities. There are evidences where

functionalities remained without going under the course of testing. (sources: E1, I1).

TD implications: In ET, re-execution of tests (regression testing) is quite hard and expensive due to

the absence of test cases. In addition to that, considering that some functionalities are not tested,
residual defects could prompt in later phases like in production and maintenance, not only causing

the malfunctioning of the system but also higher cost of defect removal.

5.2.4.3 Test result assessment
The outcome of a test is assessed in order to verify the correctness of functionality. A test oracle

is required to determine whether the results of a program execution in a test are correct or not; an

oracle can be just the expected result or a criterion to take a formal decision.

ET effects: In ET a formal oracle is absent and it is replaced by the tester’s own judgment, therefore

the evidence suggests that it is not possible to judge formally the correctness of an output (sources:

E1, CS1). The main effect is the high probability of judging the incorrect behavior of an application

as a correct one or vice versa. The evidence indicates [109] that these sorts of oracle mistakes are

responsible for possible residual defects.

TD implications: The test result assessment based on the missing oracle in ET would result in

additional rework due to more residual defects directly affecting the maintenance costs.

5.2.4.4 Human dependence
Testing as many software development activities is a human intensive activity. Naturally the

outcome of any task depends on individual feature, e.g. skill, but too much variability may represent

a problem. In particular we found evidence that ET is highly human dependent specifically on two

factors. A first factor is experience: different studies (sources: I1, CS1, E4) reported that ET is highly

dependent on the experience of the tester. A second factor is personality extraversion: testers that

possess an extrovert personality achieve the highest ET effectiveness (source: E2). Though, this is a

trait that is not apparent and noticeable at the time of testing and selection of exploratory tester.

ET effects: Experience has positive effects on various parameters such as domain knowledge, speed

of completing tasks, ability to identify meaningful patterns, superior recall [110]. Further,

experienced testers identify more potential categories of defects [111]. This makes ET more a form

of test for experienced staff. Therefore ET could be suboptimal if it is performed by some junior

testers and possibly re-work or re-tests might be necessary.

TD implications: The major consequences of being ET highly human dependent might be the

accumulation of residual defects due to a sub-optimal tester fitness and in general a non uniform test

accuracy over the whole system. Thus the probability of rework to fix defects not found in testing is

high and dependent on the difficulty of the fix task.

5.2.4.5 Documentation
The documentation covers all the required information related to system development; it includes

typically preparation -- e.g. planning, requirements, and design -- and final documents -- logs and
reports --. Not only insufficient but also unmaintained documentation may introduce weaknesses that

are identified as a source of error [112].

80

ET effects: In ET, there is typically not much available documentation. No test guidance is available

and other testing artifacts are not produced; usually only failed tests are reported. ET limited

documentation can provoke problems in the testing phase particularly because in following up a

failure report is difficult to understand what has been tested and what has not (sources: I1, CS1) and

in the maintenance phase too, where having no comprehensive documentation might slow down the

activities. Since ET test cases are born out of intuition and experience in tester’s mind and there

remain confined without any documented trace, other testers will not be able to reproduce them due

to the lack of documentation and identifying the root cause of problems may result extremely

difficult. Such problems are even more pressing when a tester leaves the test team and new resources

have to repeat tests or to perform regression testing: the lack of documentation makes knowledge

transfer within the company very difficult or even impossible. Moreover, insufficient or missing

documentation might lead to difficulty in estimating the effort required in maintenance phase (or in

allocating the proper time for testing) because no or inconsistent logs of past activities are available.

TD implications: The main consequence of lack of documentation in ET is increased and repeated

costs in the maintenance phase. In addition, lack of documentation jeopardizes knowledge

management in the company with additional costs for new testers. On top of those costs there might

also be estimation errors in effort planning due to the lack of proper logs of the past testing activities.

5.2.5 Tackling the exploratory testing debt

Figure 31 summarizes how exploratory testing influences the testing activities and what is the

result in terms of technical debt on the basis of the SLR conducted.

Figure 31 Induced TD by the implication of ET

81

In presence of technical debt, either induced by ET or other practices, the management ought to

cope with it: that is paying the interests, retiring the debt, or converting it [2].
The first possible choice is to simply accept the very nature of the technical debt: trade smaller

cost at present for larger costs in the future; that means paying the debt and the interests. The

installments may take different forms that, based on the evidence discussed above, appear to be

mainly: a larger amount of rework needed for defect removal, the allocation of unanticipated and

thus more expensive tasks, additional difficulties in performing regression testing. Another

immediate consequence of ET is represented by a higher number of residual defects, which also

causes bad advertisement with the customers; this may represent a significant cost.
The possible alternative is represented by debt conversion that is transforming some part of the

approach that brings immediate advantages but induces debt into a different one that implies more

immediate costs but less debt. To achieve debt conversion, a basic transformation consists in

providing ET with a semi-formalized structure that overcomes or partially reduces the weaknesses.

We can see alternative for structuring the ET:

“Use ET in conjunction with other testing approaches where ET is unified by other

approaches in formal software testing process”

We will explain the solutions with a scenario: unifying ET with Requirement Based Testing [113]

as a solution.

Requirements Based Testing generates test cases from a set of requirements [113] that may be

used to structure ET in such a way that it would be documented and executed to test the basic

requirements first. Afterwards ET would be performed in the usual fashion utilizing the human

intuition and giving freedom to the testers to design their test based on the experience and on the fly,

to identify more focused defects. This combination might lower the risk of having residual defects on

the most used part of the systems (i.e. the basic requirements) but at the same time leaves the testers

free to explore unusual scenarios based on their creativity. Moreover, the presence of a plan to test

the basic requirements might drive down the debt associated to the lack of planning: it would help

controlling the status of the testing process, the chance of double testing and overlooking of

important test would be reduced and performing the regression testing should be much easier. It also

helps to assess the test results based on requirements and the functionality coverage of testing will be
computed as percentage of requirements tested.

5.2.5.1 Considerations
 The key issue is the understanding of exploratory testing as an approach for testing. We

emphasized only on the free exploratory testing which is most widely used as industrial

practice [103]. So we enforce that using free ET could lead to such implications of TD.

However using other styles of ET or ET conducted through session based management

system might not have such implications but subject to the further direction of research.

 We emphasize our findings based on the academic literature supported by empirical

evidences published in electronic databases. There is also much literature available online in

forms of test blogs, wiki’s and consultant websites. We didn’t consider such gray literatures

which are not supported through empirical evidences.

 We emphasize that the outcome of this study is just the hypothetical understanding based on

the evidences from the literature. However we state that these hypothesis are ought to be
verified further with empirical evidences.

5.2.6 Summary

Exploratory testing is widely used in the industry; practitioners view ET as a cost effective

substitute for their daily testing activities where they are not bound to follow the structured and
systematic way of testing. However, empirical evidence reported in the literature provides a more

comprehensive picture of ET that takes in consideration also the technical debt implication of this

technique. While ET has some manifest and immediate positive aspects and benefits, evidence

suggests that it also brings some deferred drawbacks that might consist in a technical debt burden.

Such a picture allows practitioners to take an informed decision about ET adoption: therefore

when planning to adopt ET, in addition to the specific benefits, testers and managers should be aware

of the future TD that are packaged with the benefits of ET. Since, most of us need a mortgage to own

82

a house, so most projects could not be successful without any compromises i.e. contracting some

technical debt.

Any solution is a point in a continuum, at one end of the spectrum there is pure Exploratory

Testing, cheaper in the short term, with no upfront costs, but bearing a significant debt, while at the

other end is a structured and possibly automated testing approach, more expensive, with important

upfront costs, and with a limited debt. The difficult work of the project manager is to find the right

compromise that best suits the context of the project.

5.3 ET in conjunction with other testing approaches

5.3.1 Introduction
Software testing aims to verify whether software behaves as intended and identifies potential

problems. A recent survey [114] indicates that testing is the main approach being used in industry to

identify defects. Hence, there is a need to understand how to improve the efficiency and effectiveness

of testing approaches. Two widely used testing processes in industry are scripted testing (ST) (also

referred to as prescriptive or test case based testing in International Organization for

Standardization/International Electro technical Commission [ISO/IEC] 29119 Software Testing

Standard) and exploratory testing (ET) [115].
Scripted testing follows a prescriptive process, in which test cases are designed prior to test

execution to structure and to guide the testing tasks. Many of the existing studies on ST have a focus

on automated test case design, generation and prioritization, or testing technique selection

[116][117][118] [119]. In a sense, ST is a plan-driven process for testing.
On the other hand, in ET, the tests are not defined in advance in an established test plan but are

dynamically designed, executed, and modified [9]. Exploratory testing is also referred to as ad hoc

testing [120] as it relies on the implicit and informal understanding of the testers. Because the literal

meaning of ad hoc may correspond to sloppy and careless work, the term ‘exploratory’ was

introduced by a group of experts instead of ‘ad hoc’ [102]. As the testers can freely explore an

application by utilizing human intuition and experience [102] [121], and it is not explicit how they

make this exploration, the tasks are performed manually rather than with an automation support.
Scripted testing and ET provide various benefits and weaknesses. A few studies [117] [115][103]

mentioned that ET makes better use of testers’ creativity and skills to discover the bugs that

prescriptive testing may not uncover because of its mechanical nature. Agruss and Johnson [120] and

Bach [122] claimed that software testing might benefit through using these approaches in

combination. In general, there is a general interest in industry for a hybrid testing (HT) approach

unifying the two approaches, which is, for example, visible in lively discussions in industry oriented

blogs (see e.g., [123]).
In this study, our aim is to address the need for a systematic and repeatable investigation of such a

hybrid process. To this end, we first explored the weaknesses and strengths of ST and ET by

reviewing the literature and getting feedback from industry. Then, based on the signified findings by

comparing the two approaches, we propose an HT process that unifies ET and ST in a way that some

major weaknesses of ET and ST are minimized in a compromise form.
With these objectives, we formulated the research questions (RQs) for this study as follows:

• RQ1: What are the strengths of ST and ET?
• RQ2: What are the weaknesses of ST and ET?
• RQ3: What are the improvement opportunities for testing process by addressing some major

weaknesses of ST and ET through unifying their processes in a hybrid form?

It is important to point out that this paper does not focus on individual testing techniques that can

be used within the testing process. For example, common testing techniques in ST for black-box

testing include, boundary value analysis [124], equivalence partitioning [124], and decision tables

[125]. For ST, the commonly used white-box testing techniques include decision coverage [126],

path coverage [126], multiple condition/decision coverage (MC/DC) [127], and data flow coverage

[128]. One example of a technique in ET is smoke testing [103]. However, instead, our focus here is

on the overall ‘testing process’ that fulfills the characteristics of ST and ET mentioned previously.
In order to answer our RQs, we used systematic literature review (SLR) ([129]) and interviews as

the main research methods. Our research process is shown in Figure 1 and was inspired by the

83

technology transfer model proposed by Gorschek et al. [130].
Our work starts off with the clear contrast between ET and ST. Consequently, companies could

make conscious decisions on which process to choose based on evidence. This implies understanding

the strengths and weaknesses of the approaches that are reported in the literature.
Hence, the first phase of this exploratory research was investigating the strengths and weaknesses

of ST and ET. Furthermore, we interviewed practitioners with extensive experience of ET and ST in

order to identify their perspective on strengths and weaknesses and then compared the outcomes of

the interviews to those of the literature review. Through interviews, we also could identify the

connections between the strengths and weaknesses of ST and ET that later on helped in identifying

the improvement opportunities for an HT process.
After having identified strengths and weaknesses, we mapped the strengths of one process to the

weaknesses of the other and vice versa. Practitioners with extensive experience in both HT and ST

were involved in this mapping. They also reviewed the final mapping to improve the reliability of the

results. The outcome of P1 and P2 provided two major results that are helpful in working towards an

HT: (i) clearly establishing the need for an HT; and (ii) knowing how the strengths and weaknesses

of ET and ST relate to each others’ help in (i) connecting them to the activities of the HT process to

check whether weaknesses are addressed and strengths are supported; and in (ii) providing input to

questions to be asked when evaluating an HT. The details of this step are given in Section 3.

With the input of the previous phase, we designed the HT process in the third phase. We

identified the process fragments and high-level structure of the process as suggested in [131]. The

initial design was created by mapping the activities of ET and ST to the strengths and weaknesses

identified. Having designed an initial version of the solution (HT process), we iteratively improved

the design of the process with the practitioners’ input. Code signing the HT process with very

experienced practitioners in both HT and ET improves the credibility of the solution proposed.
As the outcome towards a practically applicable and useful HT process, we provide valuable

directions based on making strengths and weaknesses between the two processes as well as how they

relate to each other explicit. Furthermore, the HT process proposed was designed with practitioner

input. In future work, the process should be further evolved in controlled experiments, case studies,

and action research.

5.3.2 PHASE 1: Indentifying strengths and weaknesses of exploratory testing

and scripted testing

In order to answer our RQs (RQ1: What are the strengths of ST and ET? and RQ2: What are the

weaknesses of ST and ET?), we first performed an SLR (see [129] for guidelines of how to conduct

systematic reviews). Then, we made semi-structured interviews with practitioners to investigate

further the strengths and weaknesses of ST and ET in practice. This provides the input for comparing

the two processes.

5.3.2.1 Systematic literature review
Systematic literature review has several advantages over regular reviews where the research

design of the literature is often not presented in sufficient detail. In particular, systematic reviews

have the following advantages: (i) reduction of bias due to well-defined criteria for selecting studies;

(ii) availability of guidelines of how to aggregate evidence from primary studies; (iii) rigor and

documentation of design decisions make the review repeatable and extendable; and (iv) the

documentation of every step of the review allows for replication (cf. [129] [132]).
In the succeeding texts, we present the details of the search, data extraction, and data synthesis

processes of this SLR.

Search process
The basic steps we followed during the search process were as follows:

• Develop the review protocol.
• Perform the search.
• Review search results using the selection and quality assessment criteria.
• Select the primary studies and finalize the review.

84

In the succeeding texts, we first present the search strings, the selection criteria and procedure, the

quality assessment checklist, and the data sources used for the search process. Then, we provide the

results of the search and the selected primary studies. Finally, we discuss the data extraction and data

synthesis processes, which led to the conclusions of the SLR.
Search strings: We formulated the keywords and the search strings according to our RQs. We

used the synonyms and alternative terms for the keywords referring to linguistic dictionaries while

limiting them within the context of software engineering. When deciding on the keywords, we also

checked the general terminology used in the testing field (e.g., ISO/IEC 29119 and some key

publications such as [115]) not to miss any important keyword. Furthermore, we asked an expert in

the area to recap the design of the literature review as well as the list of included papers after the

review to make sure that no important study is missed. We did not include keywords for specific

testing techniques, as here, our focus was on the studies about test processes of ST and ET. To form

the search strings, Boolean operators ‘AND’ and ‘OR’ were used to intersect or incorporate the

search results for different keywords (Table 44). In [129], it is proposed that pilot searches should be

carried out in order to identify primary studies by using the defined search strings as defined in

review protocol. The search strings were verified by conducting trail searches, and a preliminary

search is carried out in order to identify the relevant literature by the help of the Blekinge Institute of

Technology (Sweden) (BTH) librarians. We chose the start year of the search from 2000 when ET

was introduced (hence, we assumed that significant work should have been published afterwards)

and the end date as January 2010.

Table 44 Keywords: (A1 or A2 or A3 OR A4 or A5 or A6) and (B1 or B2 or B3 or B4 or B5 or B6 or

B7 or B8].

ID Keyword

A1 Exploratory testing
A2 ET
A3 Ad hoc testing
A4 Test case based testing
A5 TCBT
A6 Scripted testing
B1 Weakness
B2 Complexity
B3 Shortcoming
B4 Problem
B5 Issue
B6 Strength
B7 Efficiency

B8 Benefit

Data sources
Search for the primary studies was carried out by using the following electronic resources: IEEE

Xplorer, Association for Computing Machinery Digital Library, Engineering Village, Google

Scholar, and Institute for Scientific Information (ISI), Scopus, and Springer Link. ‘Zotero’ reference

management tool [133] was used to manage and keep the track of the primary studies.

Selection procedure and criteria
The selection of the primary studies included two consecutive steps. The inclusion and exclusion

criteria were applied to titles and abstracts. After having identified the potentially relevant studies,

the full text of the studies was read. In this step, further studies were excluded as it was not clear

from the title and the abstract that they were irrelevant.

Our inclusion criteria when selecting the primary studies were the following:

• Studies provide full text and available for access.
• Studies peer-reviewed by other researchers (journal/conference/workshop papers and thesis).
• Studies published as a book or a book chapter.
• Technical reports (including work in progress) and research theses, for example, PhD (gray literature).

85

• Studies using the research methods: literature review, experiment, case study, field observation,

survey, interviews, experience reports, and expert opinion.
• Studies that provide discussion on the strengths and/or weaknesses for ST and ET processes.

Our criteria to exclude the studies were the following:

• Studies not published in English language.
• Studies that were the duplicates of already included studies.
• Reports on blogs and private Web pages.
• Studies without any evaluation, comparative analysis, or relation to practical experience.

For the articles meeting our inclusion/exclusion criteria, we further applied the following quality

assessment criteria:

• Research methodology: Is the research methodology mentioned and described (including

research goal, data collection, analysis, etc.)?
• Results: Does the study report on the strengths and weaknesses of ST and ET processes based on

a sound research process?
• Validity: Does the study discuss validity threats/limitations to the study?

Search Conduct

We performed the search using the data sources and the search strings. We review the search

results and by manually going through the titles and abstracts applying the inclusion and exclusion

criteria, which at the end left us with 100 studies for further review. After reading the full-text of the

articles, 19 studies remained. The list of studies was cross-checked among the two reviewers, and the

final list was agreed upon after discussion. We also consulted an external expert for reviewing the list

of identified list of primary studies. He mentioned three more studies of relevance. We reviewed

these studies and decided to include them in the primary studies list, which led to a final list of 21

studies to be input to the data extraction and analysis step. The selected primary studies are given in

Table 45. The primary studies included 10 conference papers, 3 journal papers, 4 books, 2 technical

reports, 1 licentiate thesis, and 1 book chapter. Fifteen of the studies were published after 2004. In

year 2009, five studies were published that shows an increasing trend in discussing either the

strengths or weaknesses of ST and ET.

Data extraction
Two authors (Syed Muhammad Ali Shah and Usman Sattar Alvi) were the review team

implementing the systematic review process. They designed the data extraction form (Table 46) to

obtain the required information from the primary studies in order to be able to answer RQ1 and RQ2.

One of the other authors, who was not in the review team, reviewed the designed form to check

relevancy of the data to be extracted and any missing information that needs to be captured. Then, the

forms were slightly revised afterwards to include categories of relevant area of study that helped in

uniformity of coding.

Table 45 Included papers

 Published
Scripted testing Exploratory
testing

Scripted testing/

 Exploratory

No. testing venue Title Method S W S W

S1 Conference Itkonen J, Mantyla M, Lassenius C, Controlled √ √

 (2007) Defect Detection Efficiency: experiment

 Test Case Based vs. Exploratory

 Testing. First Intern. Symposium

 on Empirical Software Engineering

 and Measurement. 20–21 September,

 Madrid. pp. 61–70.

√ √

S2 Conference Itkonen J, Mantyla M, Lassenius C, Field

 (2009) How do testers do it? An observation

 exploratory study on manual testing

 practices. 3rd Intern. Symposium on

86

 Empirical Software Engineering and

 Measurement. ESEM 2009.

 pp. 494–497

√ √

S3 Technical Agruss C, Johnson B, (2000) Ad Hoc Expert

 Report Software Testing, A perspective on opinion

 exploration and improvisation, Florida

 Institute of Technology, USA, pp. 68–69.

√ √

S4 Conference Itkonen J, Rautiainen K, (2005) Case

 Exploratory testing: a multiple study

 case study. Intern. Symposium

 on Empirical Software Engineering.

 17–18 November, pp. 10.

√ √

S5 Journal Ahonen J J., Junttila T, and Sakkinen Case

 M, (2004) Impacts of the study

 Organizational Model on esting: Three

 Industrial Cases. Empirical Software

 Engineering. Springer, Netherlands,

 vol. 9, pp 275–296.

√

S6 Conference Andersson C, Runeson P, (2002) Survey

 Verification and Validation in Industry:

 A Qualitative Survey on the State of

 Practice. Proc. of the Intern.

 Symposium on Empirical Software

 Engineering, IEEE Computer Society.

 3–4 October, Washington, DC, pp. 37.

√ √ √ √

S7 Thesis Itkonen J, (2008) Do test cases really Controlled

 matter? An experiment comparing test experiment

 case based and exploratory testing.

 Licentiate Thesis. Helsinki University

 of Technology, Finland.

√

S8 Book Kaner, (1988) Testing Computer Software. Experience

 TAB Professional & Reference Books. report
√

S9 Book Bach J, (2004) Exploratory Testing. In: Experience

 Chapter Smith J (ed) The Testing Practitioner, report

 E. van Veenendaal, edn. UTN

 Publishers, Den Bosch, pp 253–265.

√

S10 Book Kaner C, Bach J, Pettichord B, Controlled

 (2002) Lessons Learned in Software experiment

 Testing, John Wiley & Sons, Inc,

 New York.

√

S11 Conference Shoaib L, Nadeem A, Akbar A, (2009) Controlled

 An empirical evaluation of the influence experiment

 of human personality on exploratory

 software testing. IEEE 13th Intern. Conf.

 on Multitopic. 15 January,

 Islamabad, Pakistan. pp. 1–6.

S12 Technical report Bourque and Dupuis, (2004) Guide Experience √

 to the Software Engineering Body report

 of Knowledge (SWEBOK), IEEE

 Computer Society, Los Alamitos,

 California.

√

S13 Book Tinkham A, Kaner C, (2003) Learning Expert

 Styles and Exploratory Testing. opinion

 Portland. Oregon. USA.

√

S14 Book Ryber T, (2007) Essential Software Expert

 Test Design, Fearless Consulting. opinion
√

S15 Conference Fraser G, Gargantini A, (2009) Controlled

 Experiments on the test case experiment

 length in specification based

 test case generation. ICSE

 Workshop on Automation of

 Software Test, 18–19 May,

 Vancouver, Canada, pp 18–26.

√ √

S16 Conference Grechanik M, Qing Xie, Chen Fu, Case study

 (2009a) Maintaining and evolving

 GUI-directed test scripts. IEEE 31st

87

 Intern. Conf. on Software Engineering.

 16–24 May, Vancouver, Canada, pp.

 408–418.

√

S17 Conference Grechanik M, Qing Xie, Chen Fu, Controlled

 (2009b) Experimental assessment experiment

 of manual versus tool-based

 maintenance of GUI-directed test

 scripts. IEEE Intern. Conf. on Software

 Maintenance. 20–26 September,

 Edmonton, Canada, pp. 9–18
√ √

S18 Conference Ng S, Murnane R T K, Grant D, Survey

 Chen T, (2004) A preliminary

 survey on software testing practices

 in Australia. Australian Software

 Engineering Conference. 27 September

 Hawthorn, Australia, pp 116–125.

√ √

S19 Journal Yamaura, (1998) How to design Case

 practical test cases, Software, Study

 IEEE, vol.15, 1998, pp. 30–36.

√

S20 Conference Taipale O, Smolander K, Survey

 Kalviainen H, (2006) Factors

 affecting software testing time

 schedule. Proc. of the Australian

 Software Engineering Conference.

 18–21 April, Australia, pp.9.

√

S21 Conference Do H, Rothermel G, (2006) An Controlled

 empirical study of regression testing experiment

 techniques incorporating context

 and lifetime factors and improved

 cost-benefit models. In: Proc. of the

 14th ACM SIGSOFT Intern. Symp.

 On Foundations of Software

 Engineering. 5–11 November,

 New York, pp. 141–151.

√

S22 Journal Houdek F, Schwinn T, Ernst D, Controlled

 (2002) Defect detection for experiment

executable specifications – an
experiment. International Journal of
Software Engineering and Knowledge

Engineering, vol. 12,(6): pp.637-655

ST, scripted testing; ET, exploratory testing; S, Strength; W, Weakness.

Table 46 Data extraction form

General information
Title of the article
Name of the author(s)
Date of publication
Venue of publication
Data source used to retrieve the research article
Specific information
Study environment: industry/academia/consultancy
Empirical methods used: experiment, case study, survey, field observation, interview, and literature review
Type of study participants: researchers, industry professionals, students
Relevant area of research study with details: ET, ST, weaknesses of ET, strengths of ET, strengths of ST,
weaknesses of ST, and comparison of ST and ET

ST, scripted testing; ET, exploratory testing.

Data analysis and results

For data analysis and synthesis, we used Noblit and Hare’s meta-ethnography method [134],

which includes a set of techniques for synthesizing qualitative studies. In particular, we used the

lines-of-argument synthesis strategy that involves building a general interpretation grounded in the

findings of the primary studies [135]. It is essentially interpretive and seeks to reveal similarities and

88

discrepancies among accounts of a particular phenomenon [136].
In lines-of-argument synthesis strategy, we first identified the ‘first order constructs’ and the

‘second order constructs’, and then we came up with the third order interpretations [137][135]. The

first order constructs refer to free codes from primary studies (i.e., each individual strength and

weakness as stated in primary studies). From these free codes, we identified the ‘second order

constructs’ that refer to descriptive themes in software engineering (e.g., less bogus defects and

defect detection effectiveness). We then further interpreted these to develop third order (or synthetic)

constructs. Thereby, four main categories were identified for the strengths and weaknesses: (i) testing

quality; (ii) nature of the process (structuredness /flexibility); (iii) cost-effectiveness; and (iv)

customer satisfaction. The two reviewers worked together during the analysis phase and made

decisions for each construct after joint discussion. An example of how first, second, and third order

constructs relate is shown in Figure 32.
The third order constructs and their links to second order constructs arising directly from the

literature are presented in the following tables (Table 47- Table 50).
We further made a quantitative analysis to provide some quantitative information regarding the

percentage of studies with respect to specific types of strengths and weaknesses in addition to types

of empirical methods used in those studies.

Figure 32 Lines-of-argument synthesis strategy analysis example.

The strengths of ET with respect to the main categories are shown in Table 47. In total, we
identified 11 references that discuss the strengths of ET (Table 45).

Analyzing the studies found for the strengths, we identified that 82% of the references (cf. S1 , S2,

S4, S7, S8, S9, S10, S13, and S22) highlight the strengths of ET related to testing quality (defect

detection effectiveness/functionality coverage). The research methods used include controlled

experiments, case studies, field observations, and personal experiences and opinions. Of the

references, 36% (cf. S9, S2, S13, and S22) identifies various strengths of ET related to cost-

effectiveness by conducting controlled experiments, field observations, and personal experiences and

opinions. Of the references, 36% (cf. S9, S11, S3, and S4) states strengths related to the flexibility of

ET in test analysis. The research methods used in these studies are case studies, controlled

experiments, and personal experiences and opinions.
Table 48 shows the identified strengths of ST. We found eight references discussing the strengths

of ST (Table 45).
The research methods used in the identified studies for the strengths of ST include case studies,

surveys, controlled experiments, and personal experiences and opinions. Of the references, 38% (cf.

S1, S7, and S14) highlights the strengths related to testing quality (defect detection

effectiveness/functionality coverage). Of the references, 75% (cf. S1, S14, S15, S16, S18, and S19)

mentions strengths of ST related to process flexibility. Of the references, 38% (cf. S7, S14, and S18)

89

poses ST as good for customer satisfaction especially when there is a need to fulfill legal

requirements.
Table 49 shows the identified weaknesses of ET. We found four references that discuss the

weaknesses of ET based on case studies, controlled experiments, field observations, and personal

experiences and opinions (Table 45). Among the identified four references, 75% states issues related

to testing quality (cf. S2, S3, and S7). Of the cited references, 100% (cf. S2, S3, S4, and S7)

highlights various weaknesses particularly related to process flexibility. Moreover, some issues

related to customer satisfaction are reported by 50% of references (cf. S3 and S4).
Table 50 presents the identified weaknesses of ST. In total, 10 references were identified for the

weaknesses of ST (Table 45). The research methods used in the identified studies are controlled

experiments, surveys, personal experiences, and case studies. Of the references, 70% (cf. S12, S7,

S16, S19, S5, S21, and S6) states that main problems reside in the quality of the design of the test

cases. Of the references, 30% (cf. S7, S18, and S17) highlights issues related to cost-effectiveness.

Of the references, 10% (cf. S7) mentions the issues related to process flexibility.

Table 47 Strengths of ET

Main category Strengths of exploratory testing

Testing quality (defect

detection effectiveness /

functional coverage)

Less bogus defects (reduced number of false-positives) (cf.

[S1, S2, S4, S7])

 Identification of critical bugs in the system in shorter time

(cf. [S1, S2, S4, S22])

 High defect detection efficiency (cf. [S1, S4])

 Investigation and isolation of defects becomes easier as

tester directly observes system behavior (cf. [S4, S8, S9,

S10, S13])

 Better regression testing (only if test steps are
recorded and can later be replayed) (cf. [S1,
S4, S8, S10]) recorded and can later be
replayed) (cf. [S1, S4, S8, S10])
Cost-effectiveness

 Rapid feedback on a new product or a feature
as testing can be started immediately without
extensive planning and coding of test suites
(cf. [S9, S13])

 Quick learning of a new product by the tester
who is exploring the system (cf. [S2, S9])

 Low reliance on comprehensive
documentation as no documentation is needed,
the experience of the tester guides the session
(cf. [S9, S13])

 Easy maintenance as there is no need to
maintain large test suites including a vast
amount of test code (cf. [S9])

 More time allocation in actual testing of the
product given that no comprehensive
documentation/test code needs to be produced
(cf. [S9, S22])

Nature of process (flexibility)

 Simultaneous learning and testing as the tester is
exploring the system’s functionality while testing
(cf. [S4, S9])

 Free exploration as the tester can freely explore the
system (e.g., conduct unusual test scenarios) (cf.
[S4, S9])

 Improvising on scripted tests as scripted tests are not
blindly followed, testers can improvise and explore
freely (cf. [S9])

90

 Interpreting vague test instructions is possible in ET
as the tester can complement with own experience
(written automated test scripts based on oracles
often require precise instructions) (cf. [S3])

 Diversification in testing as the freedom in writing
tests leads to dissimilar results (cf. [S9])

 Utilization of testers’ skills as the tester is not
restricted by pre-defined rules of how to create test
cases (cf. [S3, S11])

 Better product analysis as the product is explored
from a usage perspective (cf. [S3])

 Improving existing tests as ET can be used to
planning additions and improvements to already
existing automated test suits (cf. [S4])

 Identifying missing tests that are overlooked by
following a ST approach (additional tests can be
found through ET) (cf. [S4])

 Cross-checking the work of another tester (ET
should be used complementary to other test
activities and can serve as a cross-check to ST test
output) (cf. [S3, S9])

 Investigating a particular risk in order to plan a
prescriptive test (cf. [S3])

ST, scripted testing; ET, exploratory testing.

5.3.2.2 Interviews
We conducted semi-structured interviews with practitioners in industry to further investigate the

experiences and opinions of the domain experts for the weaknesses and strengths for ET and ST as a

complementary to what we identified in the literature performing an SLR. In the succeeding texts, we

discuss the details of the data collection and the analysis phases of the systematic review.

Data collection:
Four data collection instruments were designed by the two authors of this paper, who also

performed the SLR. We first designed the questionnaires with open-ended questions based on the

weaknesses and strengths of ET and ST as identified in the literature. In order to assure the quality of

the instruments, first, another author of this paper cross-checked the questionnaire. Then, to check
whether we need to add more relevant and follow up questions, we piloted the questionnaire with two

industry practitioners having the knowledge on both ET and ST. Afterwards, we finalized the

instruments.

Table 48 Strengths of scripted testing

Main category Strengths of scripted testing

Testing quality (defect detection ● Higher testing functionality coverage by making
effectiveness/functional coverage) conscious/planned coverage decisions (cf. [S1,S7])
 ● Complex relationships of a function to be tested
 identified, cf. [S1,S7]
 ● Most of the test conditions captured (e.g., all decisions
 are covered, all combinations of valid and invalid input
 samples of different valid and invalid classes) (cf. [S14])
 ● Test cases depict the overall picture of the perceived
 quality (cf. [S14])
Nature of process (structured/
guided) ● Oracles availability for the validation of the expected

output against the actual value obtained from the test (cf. [S14,
S19])

 ● Detailed information and guidance available for the
 tester for test execution (e.g., through testing techniques

91

 giving concrete guides of how to achieve specified coverage
 criteria) (cf. [S1, S18, S19])
 ● Resource independence in execution as tests can be run
 automatically when scripted (cf. [S15, S16])

● Repeatability of the same tests (e.g., for regression testing)
(cf. [S1])

 ● Reusability of the test cases (cf. [S1])
 ● Better risk management (cf. [S14])
 ● Better analysis of the system specification from diverse
 angles as problems in the specification become visible when
 deriving tests from it (cf. [S15, S18, S19])
 ● Quality of the test cases can be validated (e.g., through
 test case reviews) (cf. [S14])
 ● Better tracking of progress (e.g., completed x% of the
 implemented test cases in the regression test suit) (cf. [S19])

● Early quality prediction based on test case metrics (cf. [S14,
S19])

Customer satisfaction ● Required when legal and regulatory requirements are
 to be addressed (cf. [S7, S14])
 ● Better serves in acceptance testing (cf. [S14, S18])
 ● Better serves in release testing (cf. [S7, S14])

ST, scripted testing; ET, exploratory testing.

Table 49 Weaknesses of ET

Main category Weaknesses of exploratory testing

Testing quality (defect detection

● Hard to assess whether all new

functionalities
effectiveness/functional coverage) and features are tested (cf. [S2, S3])

 ● The quality of testing not known because of

the dependency on the skills of the testers (cf.
[S3])

 ● Unavailability of oracles (cf. [S7])
Nature of process (unstructured/ ad
hoc) ● Difficulty in prioritizing and selecting the
 appropriate tests (cf. [S2])
 ● Difficulty in reevaluating the test (cf. [S7])

● Difficulty in monitoring and keeping track
of

 the progress (cf. [S7, S4])
 ● Lack of effective risk management (cf. [S7])

● Repeatability of the tests is challenging
because

 there is no documentation (cf. [S3])

● Investigating and isolating the actual cause
of the

 problem taking longer time (cf. [S7])
Customer satisfaction ● Not suitable for acceptance, performance,
 and release testing (cf. [S3])

● Less accountability and audit ability (cf. [S3,

S4])

ST, scripted testing; ET, exploratory testing.

92

Table 50 Weaknesses of scripted testing

Main category Weaknesses of scripted testing

Testing quality (defect detection ● Defect detection effectiveness and functionality

effectiveness/functional coverage)
coverage rely on the quality of the test case design (cf.
[S7])

 ● Dependency on testers’ skills, experience, and
 domain knowledge for test case design (cf. [S7])
 ● Test cases being prone to human error (e.g., coding
 mistakes in written test cases) (cf. [S5, S12, S19])
 ● Quality of the test cases not known until their
 execution (cf. [S6, S19])
 ● The possibility of redesigning the test cases
 under time constraints to cause low quality design
 (cf. [S16, S20, S21])
 ● Not suitable for regression testing when test
 cases are not well maintained/updated (erosion of
 regression test suit) (cf. [S21])
Cost-effectiveness ● Exhaustive and protracted (cf. [S7])
 ● Designing and documenting require considerable
 effort (cf. [S18])

● Often overruns the assigned budget and time (cf. [S7,
S18])

 ● Test cases not sufficient for the entire system life
cycle (cf. [S18])
● Durability of the test cases not known (cf. [S7])
● Reusability and maintenance of test cases
can be quite expensive (cf. [S17])
● Redesign or revision due to poor quality of the test
cases increase the cost more (cf. [S17])

Nature of process (inflexibility) ● Prescriptive process does not give
freedom to the testers (even in cases where
the test cases quality is not good) (cf. [S7])
● The testers skills not utilized during test
execution (cf. [S7])
● Difficulty in prioritizing the test cases (cf. [S7])

We conducted interviews with five persons having worked as software testers, test managers,

practitioners, or consultants. Our sampling of the interviewees was purposeful as we focused on

practitioners with a very high level of experience in both types of processes (minimum 10 years), that

is, ET and ST processes. In order to make this research more authentic and reliable, we selected

interviewees who hold a senior position in reputable organizations. The experience adhered by such

professionals was of great essence as they are also involved in interacting with stakeholders. By

conducting interview of such people, it gave us broader insights of the problem domain from

multiple perspectives. Given that a high requirement was put on the experience, the number of people

to ask was limited, and it was a challenge to identify a high number of them. Hence, we focused on

senior testers and also on people known in the testing domain with respect to their knowledge on ST

and ET (two interviewees were, e.g., identified through keynotes they gave on the topic). The people

interviewed fulfilled our criteria, but their number was limited given the previously mentioned

requirements. Some diversity was achieved by interviewing people from different companies.
Interviewee 1 has been working as a test manager in Logica AB (Sweden) for the last 2 years. In

the past, he worked for a number of companies including Microsoft and UIQ Technologies.

Interviewee 2 has been working as a consultant for Telenor AB (Sweden) for the last 2 years.

Interviewee 3 is the owner of DevelopSense (Canada) and has been providing consultancy, training,

coaching, and other services in software testing. Interviewee 4 has been working for Maquet Critical

Care AB (Sweden) as a test manager for the last 6 years. Interviewee 5 is the founder of Satisfice Inc.

93

(USA), which is dedicated to teaching and consulting in software testing and quality assurance. Most

of his experience is with market-driven software companies such as Apple Computer and Borland.
Four of the interviews were conducted face-to-face and one online through Skype because of

geographical distance. We presented the interviewees the aims of this research before the interviews.

The duration of each interview was between 60 and 90 min. We took notes and recorded the

interviews using a digital recorder. The data collected from the interviews were transcribed* in order

to eliminate any irrelevant information.

 Data analysis and results

The transcribed outputs of the interviews were qualitatively analyzed by applying the notice,

collect, and think technique [138]. This is a nonlinear qualitative analysis model and consists of three

phases: noticing, collecting, and thinking phases. These phases are iterative, recursive, and

holographic in nature.
First, the two authors who also performed the SLR analyzed the interviews. Then, another author

of this paper made an independent analysis. The results were cross-checked, and then after a

discussion, the codes, the main categories, and the connections in between the main strengths and

weaknesses were agreed upon solving very few disagreements also by consulting the interviewees.
In the noticing phase, all the relevant information highlighted by the interviewees regarding the

strengths and weaknesses were noted using a heuristic coding approach. For example, during the

noticing phase, for ET, we captured the following codes from the interviewees: ‘less time’, ‘less

documentation’, ‘more focused documentation’, ‘more time on actual testing’, ‘better resource

utilization’, and ‘rapid feedback and quick learning of the product’. As for ST, we identified the

codes as ‘time consuming’, ‘exhaustive’, ‘too much documentation’, taking time’, ‘less costly if test

cases can be automatically generated’, and ‘time depends on the quality desired.’
Then, during the collecting phase, we sorted the weaknesses and strengths and categorized them

under main categories based on the similarities and differences between them. Thereby, we identified

‘cost-effectiveness’ as a main category.
In the thinking phase, both the codes and the main categories were reexamined. Here, we observed

that some of the strengths and weaknesses have connections. For example, one of the interviewees

mentioned that even though ST takes more time because of too much documentation (hence, less

cost-effective), ST was required especially in cases where there was a need to have documented

proof of testing where legal and regulatory requirements were to be met. This was a good example

showing why one approach should not replace the other, but rather a hybrid process, which optimizes

the strengths and minimizes the weaknesses of both approaches, is required. Thereby, we used these

insights for identifying improvement opportunities for an HT process as a complementary to what

has been captured from the SLR.
In the succeeding texts, we summarize the results of the analysis for the strengths and weaknesses

of ET and ST as experienced in industry. However, this time we preferred reporting the strengths and

weaknesses in a narrative form instead of reporting them only independently as we did for the SLR

(Table VIII shows the additional categories identified in comparison to SLR findings). This is

because of that, through interviews, we also could capture the totality of philosophy as expressed by

the interviewees for the strengths and weaknesses of ST and ET that might help in identifying the

improvement opportunities for a hybrid process.

Strengths and weaknesses of ET: The interviewees were of the opinion that unstructured and

flexible process in ET could provide either strengths or weaknesses depending on the conditions. As

for the strengths, they mentioned that a tester could freely explore different areas of the product and

that ET was a process of simultaneous learning and testing. The interviewees had an agreement on

the cost-effectiveness of ET because of less time spent on documentation (i.e., focused

documentation for only logs, test notes, and videos after the execution), better resource utilization,

rapid feedback, and quick learning of the product. Related to this, three of the interviewees

mentioned that defect detection efficiency was likely to be high in ET as more time was spent on

actual testing rather than on test design and comprehensive documentation.
Moreover, three interviewees were of the opinion that ET could achieve better regression testing

and help in identifying most of the critical bugs. Three interviewees stated that ET was handy in

investigating more risky parts of the software. Two interviewees claimed that customers were more

94

satisfied as more bugs and also critical ones could be identified. All five interviewees highlighted one

key strength of ET as a better utilization of the testers’ skills. The reason was stated as testers to

become more responsible, engaged, motivated, and creative, while they were given freedom. On the

other hand, the interviewees also emphasized that this strength could also become a major weakness

in some situations as the quality of testing became dependent on only testers’ skills and the domain

knowledge. According to three interviewees, the availability of an oracle becomes an issue when the

application is too complex, the skills and the domain knowledge of the testers are insufficient, and if

the time is running out, and functional specifications have not been updated. Moreover, they

mentioned that the flexibility in the process caused significant difficulties in terms of managing,

prioritizing, and tracking the tests. Four interviewees were of the opinion that managers and

organizations were reluctant to implement ET because they thought they might lose control over

testing. Two interviewees added that automation support was not possible for ET.

All four interviewees agreed on the fact that using ET alone is not suitable in some cases, and it

should be used as a complementary approach to prescriptive approaches. One of the interviewees

stated that conducting only ET on complex application alone was not suitable and should be

combined with other test approaches in order to ensure testing of critical functionality of complex

and real time applications. One of the interviewees emphasized that ET was an approach and not a

technique and, therefore, it was already being used with prescriptive techniques as ST. Two of the

interviewees raised the need to have a more structured process for ET for better management. They

also mentioned that ET could serve well in terms of testing quality if used together with a

prescriptive approach such as ST.

Strengths and weaknesses of ST: Similar to ET, all interviewees stated that the structured and formal

process in ST could provide either strengths or weaknesses depending on the conditions. As for one major

strength, three of the interviewees mentioned that ST was required especially in cases where there was a

need to have documented proof of testing where legal and regulatory requirements were to be met.

Furthermore, one interviewee added that ST also served well for the acceptance testing. All interviewees

were of the opinion that ST provided better test guidance to testers on specifying desired outputs in

test oracles and also could support testers in creative testing. All interviewees mentioned that quality

of testing (functionality coverage and defect detection efficiency) was depended on test case design

quality. Moreover, two interviewees said that test case design quality was dependent on skills,

experience, and domain knowledge of the designer, as well as on previously produced documents,

such as software requirements specification or test plan. They stated that the test quality would be

high if the design quality was high. Another benefit, pointed out by an interviewee, was early quality

assurance with respect to requirements specifications. He stated that bugs could be found before

testing starts when designing test cases from requirements specifications. On the other hand, two of

the interviewees stressed the fact that the quality of the test case design could not be known before

testing. Three interviewees mentioned that a tester was not free to make decisions even if the test

cases were not designed properly.
Three of the interviewees stated that most of the time, they experienced good functionality

coverage in their companies when using ST. They added that this was because of documenting the

test cases in correspondence with the requirement specification provided better functionality

coverage. One stated that he experienced low defect detection efficiency. Two of the interviewees

mentioned that finding defects by ST was difficult as it might be impossible to follow each and every

step of the test case. About increasing testing quality, all interviewees were of the opinion that the

quality of testing would increase if ET were used as a complementary approach to ST.
Low cost-effectiveness and difficulty in managing large number of test cases were stated as two

major weaknesses of ST. All interviewees were of the opinion that designing, documenting, and

executing test cases were too much time consuming and costly. One interviewee mentioned the need

that the test cases should be updated continuously in the software development life cycle as the

requirements change. Moreover, two interviewees added that the test cases required revision and/or

redesign in cases of low quality design. These last two requirements bring more management

overhead and thus cost.

95

5.3.3 Summary of the systematic literature review and interview results

We performed qualitative comparative analysis [139] to identify commonalities and diversities

between the results obtained from the SLR and the industrial interviews.
The results of industrial interviews showed that most of the weaknesses and strengths identified

from literature have also been experienced in industry. Therefore, we also distinguish findings

reported both in the literature and by the interviewees from the new findings identified during the

interviews. Furthermore, in the following paragraphs, we also discuss the new and more insights that

we captured from the interviews providing a bigger picture with connections between the strengths

and weaknesses in addition to what has been reported as individual strengths and weaknesses in the

literature.
The weaknesses of ET were attributed to ET being an unstructured and ad hoc process (which

causes difficulties in planning, managing, and tracking the testing process) or related to dependency

of testing quality on the skills, experience, and domain knowledge of the testers.
For ST, many weaknesses were reported to be related to cost-effectiveness and dependency of

testing quality on test case design quality. As for the strengths, many strengths for ET were reported

as being related to cost-effectiveness, process flexibility, and testing quality; whereas for ST having a

defined and repeatable process, testing quality, and being independent from the skills of testers

during the test execution.
During the interviews, we identified some more aspects, which have not been reported in

literature. For example, focused documentation was found to be strength for ET. As for ST, another

strength identified is early quality assurance. One of the interviewees stated that bugs could be found

before testing starts when designing test cases from requirement specifications.
On the other hand, one weakness identified for ET is the reluctance of managers in organizations to

implement ET because of having the fear to lose control over testing. Another weakness of ET is the

difficulty in interpreting the test results because these are generated based on the testers’ own experience

and intuition. We also found that the interviewees do not believe that automation support is possible in ET.
Furthermore, from the interview results, we also could identify the conditions for when strength of one

approach could become a weakness and vice versa. For example, one significant conclusion is that quality

of testing in ET and ST depends on some conditions. A few studies in literature reported ST to perform

well for functionality coverage but poor for defect detection efficiency in comparison to ET.
However, the interviews revealed that quality of testing in ST depends on the test case design, which

depends on the skills, experience, and domain knowledge of the test designers as well as the previous

documents from which the product requirements are inherited. On the other hand, the quality of the testing

in ET depends on skills, experience, and domain knowledge of the testers who execute the tests.
Therefore, when the testers lack some of these attributes, for example, domain knowledge and

experience, it would be better to use either ST alone or ET as a support for ST. Or, if there is a doubt about

the quality of previous documents (such as requirements specification) from which the test cases are to be

derived, then ET might work better if the testers have domain knowledge and experience.
Another significant conclusion from the interviews is that all interviewees emphasized using ET as

a complementary approach to ST as they all believe that this would bring many benefits and help in

overcoming major weaknesses. Hence, we identified the following improvement opportunities for

designing an HT process:

• Utilizing the skills and the domain knowledge of the testers during both design and test

execution. In ST, the quality of testing depends on the ‘test case design’, and the test case design

quality depends on the test case designer skills, experience, and the domain knowledge as well

as the previous documents from which the product requirements are inherited. In ET, the testing

quality depends on the skills, experience, and domain knowledge of the testers who execute the

tests. Therefore, there is a need to increase the utilization of all available test skills and expertise

both in design and execution.
• Defining a structured process with some level of flexibility. This is required to enable better

management and increased motivation of the testers by incorporating the creativity and skills of them

as well as overcoming the risk of not being able to take an action when they encounter poor test case

design. The defined process should also require more focused and less documentation in order to

increase cost-effectiveness.

96

In the next section, we present the mapping of strengths of one approach to the weaknesses of the

other to identify how to design the HT process by incorporating different aspects of ST and ET to

overcome the weaknesses in the compromise form.

5.3.4 PHASE 2: Mapping exploratory testing and scripted testing in relation to

strengths and weaknesses

A mapping process is a method of identifying problems and their solutions in a structured way. In

this investigation, we used mapping process [139] [27] as an important feature of research technique

evaluation method, which helps to develop the mechanisms that support to find the solution of one

testing approach weaknesses considering other approach strengths. For this, we list down one

approach weaknesses against the other approach respective strengths.
Table 51 shows the mapping of the identified strengths of ET as candidate solutions to the

weaknesses of ST. Table 52 shows the mapping of the identified strengths of ST as candidate

solutions to the weaknesses of ET. Observe that the benefits and weaknesses were previously

categorized into testing quality, cost-effectiveness, nature of process, and customer satisfaction. The

categories were used to match related benefits and strengths to each other. As an example, the ST

issue of ‘Prescriptive process does not give freedom to the testers’ under the category of the nature of

process is addressed in ET through ‘free exploration’.
Overall, the intention is to leverage on the benefits listed on the right column of Table 51 and

Table 52 by defining a structured prescriptive process, which at the same time gives flexibility to

testers to conduct ET. In other words, by having both aspects in one compromise process would aid

in overcoming some weaknesses of ST and ET, whereas the strengths of both processes are utilized.

In the following section, describing the phase3 of this research, the hybrid process incorporating

ST and ET is presented. We provide rationales on how the different activities map to the strengths

and weaknesses identified earlier.

5.3.5 PHASE 3: Designing the hybrid testing process

We designed the process iteratively. Our design started out with creating an initial version of the

process based on the results of phase1 and phase 2. We start by presenting the design rationales for

our initial process.

Table 51 Mapping of the strengths of exploratory testing to the weaknesses of scripted testing

Weaknesses of Strengths of exploratory

scripted testing testing as Candidate Solutions

Testing quality Testing quality
● Defect detection effectiveness ● Less bogus defects (reduced number of false-positives)

and functionality coverage rely

on the quality of the test case design

● Test case design depends on ● Identification of critical bugs in the system in shorter time
the skill, experience, and domain

knowledge of the testers

● Test cases are prone to ● High defect detection efficiency
human mistakes

● Quality of the test cases not ● Investigation and isolation of defects become easier
known until their execution as tester directly observes system behavior

● Redesigning the test cases under ● Better regression testing (only if test steps are recorded
time constraints may cause low and can later be replayed)
quality design

● Not suitable for regression testing when
test cases are not well maintained/
updated (erosion of regression test suit)

Cost-effectiveness Cost-effectiveness
● Exhaustive and protracted ● Rapid feedback on a new product or a feature
● Designing and documenting ● Quick learning of a new product by the tester

require considerable effort who is exploring the system
● Often overruns the assigned ● Low reliance on comprehensive documentation

budget and time
● Test cases are not sufficient ● Easy maintenance as there is no need to maintain large test suites

97

for the entire system life cycle
● Durability of the test cases ● More time allocation in actual testing of the product

are not known
● Reusability and maintenance ● Focused documentation

of test cases can be quite expensive
● Difficulty in prioritizing the test cases
● Redesign or revision due to

poor quality of the test cases
increase the cost more

Process (inflexible) Process (flexible)
● Prescriptive process does not ● Free exploration

give freedom to the testers
● The testers skills not utilized ● Simultaneous learning and testing

during test execution
● Difficulty in prioritizing the test cases ● Improvising on scripted tests as scripted tests are not blindly
followed

● Interpreting vague test instructions is possible in exploratory
testing
● Diversification in testing
● Better utilization of the skills of testers
● Better product analysis
● Improving existing tests
● Identifying missing tests that are overlooked by following a
scripted testing approach
● Cross-checking the work of another tester
● Investigating a particular risk in order to plan
a prescriptive test

5.3.5.1 Method engineering for initial hybrid testing process
Design goals: In order to identify the candidate solution, we take into consideration all the

weaknesses and strengths of both approaches identified through SLR and from interviews. If one

approach lack in providing some of the aspects in a candidate solution, it is taken from other

approach and so forth. In other words, by having both aspects in one compromise process would aid

in overcoming some weaknesses of ST and ET, whereas the strengths of both processes are utilized.

From the comparative analysis, we showed that weaknesses in one approach are potentially improved

through strengths in the other process.

Table 52 Mapping of the strengths of scripted testing to the weaknesses of exploratory testing

Weaknesses of Strengths of scripted testing

exploratory testing as Candidate Solutions

Testing quality Testing quality
● Hard to assess whether all new ● Higher testing adequacy by making

functionalities and features are tested conscious/planned coverage decisions (functionality coverage)
● The quality of testing not known ● Complex relationships of a function to be tested identified

because of the dependency on the skills

of the testers

● Unavailability of oracles ● Most of the test conditions captured
 (e.g., all decisions are covered, all combinations
 of valid and invalid input samples of different
 valid and invalid classes)
● Difficulty in interpreting the test results ● Test cases depict the overall picture
 of the perceived quality
 ● Early quality assurance
Process (ad hoc and unstructured) Process (structured and guided)
● Difficulty in prioritizing and selecting ● Oracles availability for the validation

the appropriate tests of the expected output against the actual
● Difficulty in reevaluating the test ● Detailed information and guidance available
 for the tester for test execution
● Difficulty in monitoring and keeping ● Resource independence in execution

track of the progress

● Lack of effective risk management ● Repeatability of the same tests
● Repeatability of the tests is challenging ● Reusability of the test cases

98

because there is no documentation

● Investigating and isolating the actual ● Better risk management
cause of the problem taking longer time

● Fear to lose control over testing ● Better analysis of the system specification
 from diverse angles
● Automation support not possible ● Quality of the test cases can be validated
 ● Better tracking of progress
 ● Early quality prediction based on test case metrics
Customer satisfaction Customer satisfaction
● Not suitable for acceptance, ● Required when legal and regulatory

performance, and release testing requirements are to be addressed
● Less accountability and audit ability ● Better serves in acceptance testing
 ● Better serves in release testing

5.3.5.2 Process definition
We based the HT process on ISO/IEC 29119 (2009), which is a software testing standard aiming

to provide one definitive standard that captures vocabulary, processes, documentation, and
techniques for the entire software testing lifecycle. The testing processes in this standard include
organizational, management, and fundamental test processes.

When defining the HT process, we considered only the management and fundamental processes

as given below. Organizational processes were not in the scope of the HT process definition, as these

processes include definition of organizational test policy and test strategy that are outside of the main

research focus of this paper.

• Management processes:

– Test planning
– Test monitoring and control
– Test completion

• Fundamental processes:
– Test design and implementation
– Test environment setup
– Test execution
– Test incident reporting

In order to incorporate ET concepts into HT process definition, we used the session-based test

management process defined by Bach [140]. The reason for choosing this process definition was that

during our interviews, we identified that it is a well known approach in industry. In session-based test

management, a test session is the basic testing work unit. This session is an uninterrupted block of

reviewable and chartered test effort, that is, each session is associated with a test mission. Every test

session is debriefed after execution. The debriefing occurs as soon as possible after the session. The

test outcomes, issues, bugs, and related information are stored on the ‘session sheets’.
As we previously reviewed the strengths and weaknesses with respect to testing quality, cost-

effectiveness, structuredness of testing process, and customer satisfaction, we discuss how these four

attributes were incorporated in the HT process design (also referred to as fragment selection in

method engineering [131]). Hereafter, this reasoning has been taken into the collaborative design

activity with the practitioners
The bullets listed showed the initial idea of the process, in which it is tried on how to incorporate

these four main attributes in the HT process. Hereafter, this is presented to the interviewees to obtain

the feedback:

• Testing quality: Following Sections 5.3.2, we found out that testing quality (defect detection

effectiveness and functionality coverage) depends on a couple of conditions for both ST and ET.

For example, testing quality for ST depends on the test case design quality, which depends on

the test designer skills. As for ET, the quality depends on the skills and the domain knowledge

of the testers. Considering different quality aspects of each approach, in HT process, we need to

adopt these aspects of both processes. For this, we unify the subsection’s ‘test design’ and ‘test

execution’ of both approaches in a formal manner. The idea is to achieve better coverage by

defining requirement-based test cases (RBTC) [141] and test missions. For example, through the

99

requirements, one can check whether all highly prioritized requirements have been tested. In

order to achieve the defect detection effectiveness, we allow the testers to explore the product

under testing freely and to utilize their intuitions and experience in identifying defects. In

addition, HT also allows testers to execute the designed RBTC and test missions. Following the

proposed HT process, our proposition is that the strengths of both the approaches are aligned,

and the testing performed would be planned, and effective with the focus on complex function

and having ability to identify critical defects.

• Cost-effectiveness: Following Sections 5.3.2 , we found that ST is not a cost-effective approach

where ET is cost-effective. Scripted testing highly relied on the test design phase where ET is

meant to be simultaneous test design and execution. The HT process is meant to have cost-

effectiveness by adopting both ST and ET attributes. For this, we tried to lessen the contribution

of test design phase by introducing RBTC [141] and test missions in the HT process. The

consideration of high-level test cases such as RBTC and test missions lessen the dependability

on the formal test case design, which includes each aspect of conditions in the code, input data,

and GUI under test. Thus, our design proposition is that the use of high-level test cases in the

form of RBTC and test mission took less time

in design, without much compromising on the benefits of the test design phase of ST. In

complement to RBTC and test missions, we introduce a step of free exploration that could allow

more time being spent on the actual testing task, rather than designing the test. Subsequently,

the time saved in the test design phase should make the HT process more cost-effective in

comparison to ST, and the introduction of free exploration may help to attain better quality in a

form of defect detection efficiency (as is evident from our literature review).

• Unstructured process: Following the findings shown in Table 49, ET has no process structure, it

is meant to be free exploration only, whereas ST has a structured process. This had negative

consequences, such as difficulty to prioritize tests, reevaluating tests, monitoring progress, and
so on. The attempt is to design HT in a way of not having a strict process but a semi-structured

process that adopts strengths of both the approaches. Thus, considering the structure of ISO/IEC

29119 in conjunction of ET strength-free exploration, we aimed to provide HT a semi-structured

process that would have a formal structure with free exploration being a part it. We also achieve
this by allowing flexibility in work flows. The process is also designed so that practitioners are

able to decide which activities are emphasized, depending on testing outcomes, type of systems,

and type of tests. Further, the process is iterative in nature.
• Customer satisfaction From Sections 5.3.2 , we observe that customers are very reluctant with

ET, while they are satisfied with ST. The primary reason of customers not being satisfied with

ET is the lack of a formal test design phase, on which they can evaluate their product, and which

can be used for to document the fulfillment of contractual requirements. In the HT process

definition, the attention is given to make such a process, which could satisfy the customers.

Therefore, we include the definition of test design phase that could allow overcoming the

reluctance of customers. This may help the HT process to be useful for legal requirements and

acceptance/release testing. In addition, it also allows test managers to have control of their

testing activities.

5.3.5.3 Collaborative design
We co designed the HT process with the help of practitioner feedback. The practitioner feedback

was collected by conducting semi-structured interviews with testing experts. We conducted four

face-to-face semi-structured interviews to receive feedback on the mapping of the strengths and
weaknesses of ST and ET, and also for the proposed HT process. Here, we should mention that the

development and refinement of the HT process was an iterative process considering the feedback of

the interviewees.
Two of the interviewees are working for Logica AB (Sweden) as a test manager and a project

manager. The other two interviewees work as test managers for Maquet Critical Care AB (Sweden)

and Toolaware (Sweden). Three interviewees being involved in the collaborative design have also

participated in the interviews.
A data collection instrument was designed to receive feedback and suggestions for the proposed

100

HT process. To assure the quality of the instrument, all the questions were cross-checked by the

authors of this paper. All the interviews were presented with the RQs before the interviews. A

number of scenarios were shown in order to validate or grasp the improvement opportunities in the

HT process. Approximate duration of each interview was between 30 and 45 min. The data were

collected manually by taking notes and also by recording with the consents of the interviewees. The

data collected were transcribed, and the irrelevant materials were omitted (i.e., the key points of the

interview were separated from the general discussion).
The feedback given by the practitioners, as well as how it has been utilized in the process

definition is presented in the following:

Feedback of interviewee 1: Interviewee 1 suggested that the strengths and weaknesses of both test

approaches were concise and detailed. Her concern was how in reality the strengths of each testing

approach will work out on real projects and provide benefits. She added that the weaknesses of ET

and ST were generic, and that in practice, there could be many ways to deal with such issues by other

means. However, she affirmed providing a solution inferred from strengths of both test approaches

and found attempting to resolve the weaknesses in this way as quite innovative. She also had some

reservations on the debriefing session because she considered that managing the test team might even

take more time because of having debriefing session. She recommended involving test leaders in HT

process. Reflection on feedback: the debriefing session was not removed based on the feedback by

the practitioner, the reason being that Interviewee 4 provided use-ful suggestions of how to utilize the

debriefing session better. Overall, the practitioner agreed with the main idea of formation of HT

process keeping the previously mentioned context as no further changes were suggested. We

highlight that when executing the process, the suggestion of the practitioner should be followed to

involve test leaders.

Feedback of interviewee 2: Interviewee 2 said that mapping the strengths of both testing approaches to

the weaknesses was a good way to compare both testing approaches. He mentioned that mapping was an

ideal way of presenting the solution based on theoretical constructs, but practically, this mapping might

not provide with 100% solution. He stated that it was a high-level presentation of strengths to weaknesses,

but still all strengths of both test approach might have several weaknesses that may be associated with

other indirect measures. He said that RBTC should only be used complementary, specifically where GUI

testing was required, and test cases were hard to codify. Reflection on feedback: given our design, RBTC

is complementary and can always be combined with free exploration, which indicates that our design

addresses the practitioner’s concerns. As the practitioner highlights, different emphasis might be given

depending on the type of testing conducted (e.g., GUI testing).
Feedback of interviewee 3: Interviewee 3 highlighted that mapping strengths to weaknesses was

an appropriate way of defining a compromise process based on ET and ST. He evaluated the

mapping process and mentioned that the approach was quite elaborative. When we presented him

with the initial process flow description, he added that he was not fond of flow boxes connected to

each other telling him what to do, and he was of the opinion that the context should decide which box

should be used in a specific situation. He also recommended the introduction of free exploration in

order to learn about the application, that is, before, after, or during the execution of RBTC. He added

that free exploration would provide an edge to the testers as they would be able to immediately look

for any major abnormality in a very short span of time. Reflection on feedback: the flow boxes were

retained for the purpose of presenting the process in this paper. It is important, however, to illustrate

the flexibility of the flow through the process, which makes it semi-structured as pointed out earlier.

Hence, formal descriptions (flow boxes or activity diagrams) might not be suited to represent the

process to practitioners. Rather, a narrative form should be preferred. Free exploration has been

emphasized in our process more based on this interviewee’s feedback.
Feedback of interviewee 4: Interviewee 4 was of the opinion that there should be more flexibility

in using any sort of test cases, not only RBTC. He also suggested that these RBTC should be made

more generalized, and one should not limit to RBTC only. He said that it should be up to the testers

or managers to decide upon what they need and require out of testing. And, he highlighted that

performing ET at the beginning of testing life cycle could provide many benefits, and therefore, it

should also be incorporated in the HT process. He pointed out that exit criteria should be explicitly

discussed. He also recommended that upon the conclusion of every debriefing session, more test

missions should be drafted based on the testers report and intuitions and that these newly devised test

missions should become the input for further session executions. Reflection on feedback: The

101

flexibility of the process is illustrated by showing different alternative paths through the process.

Furthermore, the debriefing session is retained for the purpose specified by the interviewee.
After evaluating the mapping and the HT process, the HT process was refined based on the

feedback received.

5.3.5.4 Defined hybrid testing process
Considering the design rationales, as well as the feedback by the practitioners, the brief

descriptions of each sub process in HT (Figure 33) are given in the following paragraphs:

Test planning: The purpose of test planning in HT process is to plan, document, and communicate

all the necessary and required information to all the stakeholders about what is going to happen

regarding testing. HT test planning is inherited from the ST process. In order to have an improved

planning process, the strengths of ET planning are also incorporated. These include specification of

the scope and time, allocation of resources, risk planning for risk management, and mitigation.

Test mission design and implementation: HT test design, introducing the RBTC [141] and test

missions would help in enabling high functionality coverage and defect detection effectiveness in

addition to cost-effectiveness through reducing the test bed size. The RBTC specify those test cases

that are defined only from the requirement specification. The ‘test mission’ is a concrete instruction

for testing and the problem being looked for.

Test environment setup: For HT, there is a freedom for the selection of test environment. Based

on the test case design and implementation, the test environment in which the test will be executed is

established and maintained.

Test execution: Both RBTC and the test missions are executed, which were designed in test

design phase. First, a tester has given the freedom to freely explore the application in order to learn
and obtain knowledge about it. After that, RBTC and then the test missions are executed, and the

execution artifacts are recorded. A session is a particular time slot assigned to a specific test mission
in which test mission has to be executed. A session time is an uninterrupted block of test time. A

session time may last from 30 to 90 min.

Test incident reporting: The purpose of test incident reporting in HT is to report the issues

identified in the test execution to the relevant stakeholders in order to conduct further actions on the

reported problems. The session sheet taken from the ET is used to report all incidents happened

during the testing, and it has information about tested area, test notes, issues, faults, bugs, failures

relevant information, or any other ambiguities related to the functionality. This provides focused

documentation related to the testing with all relevant information.

Debriefing: The purpose of debriefing session in HT is to obtain the input of a tester on the test

mission, which was assigned to him, and to discuss about his observations. A debriefing session

should also provide coaching to the tester regarding further test activities that needed to be

performed. If required, a debriefing session can lead to the derivation of many test missions. After

the completion of session, a debriefing session is set up between the tester and a test lead.

Test completion: The purpose of test completion criteria is to make sure that the useful test assets such

as test plans, test cases, and session sheets are made available, and all the results are documented,

recorded, and communicated to the relevant stakeholders. Test completion criteria are met when an

agreement has been reached that the testing being performed and managed is complete.

Test monitoring and control: The purpose of HT monitoring and control is to ensure whether all the

activities as specified in test plan are aligned with the actual execution of those activities. Hybrid testing

monitoring and control provides assurance of whether or not the testing being performed is in line with

the defined test plan. All the processes within the HT process, that is, tests design, test execution, test

incident reporting, and test completion are being monitored and controlled.

102

Figure 33 Process of hybrid testing.

The flow of the process is designed to be flexible and iterative (Figure 33). In the beginning of the

process, test planning influences monitoring and control (e.g., which test targets should be

monitored), while defining the targets test planning can be influenced and refined.
After having specified the plan and how to monitor and control, test design and implementation are

conducted, and both RBTC design and test mission design are executed. With these activities completed,

the outcome can be monitored and controlled, and eventually updates are made in the designs.
Thereafter, the test environment is set up. This is the prerequisite to conduct test execution. The test

execution part is highly flexible. One can, for instance, start with an exploratory session, followed by test

mission execution and RBTC. Another scenario is to only do free exploration. How much effort is spent

and how many executions of the particular activities are conducted are not pre-specified and might vary

103

with the testing context (e.g., type of testing performed or the type of system to be tested).
After having completed the test execution, test incidents are reported, and debriefing is conducted. At

any point, one can return to the monitoring and control activity and, depending on the outcome, decide on

how to continue in the process. That is, it is possible to continue at any point in the process after

completing monitoring and control. We have not illustrated this in the Figure to sustain its readability.

5.3.6 Threats to validity
Because the HT process definition is based on the results of the SLR and interviews, the validity

threats for each indirectly influence the validity of the proposed HT process. The internal and external

validity threats for the SLR, the interviews, and the experiment are discussed in the following paragraphs.

5.3.6.1 Systematic literature review

For the SLR, one of the validity threats was associated with the possibility of missing any important

publication. In order to eliminate this threat, when designing the search strings, we used the synonyms and

alternative terms for the keywords referring to linguistic dictionaries while limiting them within the

context of software engineering. When deciding on the keywords, we also checked the general

terminology used in the testing field (e.g., testing standards such as ISO/IEC 29119 and key publications)

not to miss any important keyword. The search strings were verified by conducting trail searches, and a

preliminary search was carried out in order to identify the relevant literature by the help of the BTH
(Sweden) librarians. Furthermore, we asked an expert in the area to review the design of the literature review as

well as the list of included papers after the review to make sure that no important study is missed.
The quality of the data extraction form was checked by one of the other authors of this paper, who

was not in the review team. The reviewer checked, in particular, the relevancy of the data to be

extracted as well as whether any important information that needs to be captured is missing. Then,

the forms were slightly revised after the pilot searches to include categories of relevant areas to study

that helped in the uniformity of the coding.
To avoid selection bias during the selection process of the primary studies, two reviewers worked

together to decide on the inclusion and exclusion of the studies. In addition to this, we also asked an

external reviewer to check the final list of primary studies included in the SLR. As for the analysis

phase, one threat could have been an individual bias when identifying the codes and the main

categories for the strengths and weaknesses. In order to reduce this threat, a pair of reviewers worked

together and identified the constructs after joint discussion.

5.3.6.2 Industrial interviews
For the interviews, the possibility of missing any important question in the questionnaires was

one of the potential validity threats. In order to avoid this, we designed the questionnaires based on

the findings of the SLR. Furthermore, we also included open-ended questions to identify additional

strengths and weaknesses by letting the interviewees discuss their experiences.
Another threat could be the misinterpretation of the question and answers during the interviews. This

threat was minimized by reviewing of the questionnaire. A number of senior software engineering students

studying at BTH (Sweden) were asked to review the questions for ensuring the clarity of the meaning

before conducting the actual interviews. A recording device was used to record the interviews, and the

transcribed interviews were shared with the interviewees to avoid any misunderstanding.
Another threat was related to the fact that the data were gathered in the form of qualitative

information during the interviews. A risk of misinterpretation of qualitative data exists because of the

possibility of multiple interpretations. This risk was reduced by cross-checking the findings and also

by getting feedback on our interpretations from the interviewees (member checking).
During the analysis phase, the two authors who also performed the SLR analyzed the interviews.

To avoid researcher bias, another author of this paper made an independent analysis. The results were

cross-checked, and then after a discussion, the codes, the main categories, and the connections in

between the main strengths and weaknesses were agreed upon, solving very few disagreements also

by consulting the interviewees.
There is also a threat to external validity because of a low number of interviewees. It was essential

to involve practitioners with a vast amount of experience in ST and ET, as this provides the greatest

potential to obtain additional experience-based insights complementing the results of the literature

104

review. This constraint limited the number of persons we could involve in the research process.

Overall, it was a trade-off between the levels of experience of practitioners versus the number of

practitioners involved. It is important to highlight that for P1 and P2, both the literature review and

the practitioners, complement each other. Having only one source would increase the risk of losing

valuable information. Using source triangulation reduces the threat related to the number of

responses. We required detailed and qualitative insights to design our HT process; therefore, we

chose a qualitative data collection instrument (interview) over a sampling-based instrument

(questionnaire). In S3, the HT process was co designed with the practitioners, also involving both

sources (practitioners and literature). The practitioners only had one contradiction in opinion of how

to design the actual process (i.e., whether to have a debriefing session or not). Other suggestions

were valuable complements to our suggested process (e.g., what to emphasize in GUI testing).

5.3.7 Discussion and conclusions

The conclusion is divided into two parts. The first part summarizes the results, and the second

part presents the implications for practitioners and researchers.

5.3.7.1 Summary of findings

This study has mainly two contributions. First, the strengths and weaknesses of ST and ET were

identified. Second, by bringing into light the improvement opportunities for a new testing process

through unification of ST and ET in a compromise form, an HT process was defined in collaboration

with practitioners.
What are the strengths of ST and ET?: The identified strengths and weaknesses were recognized

under four main categories: (i) testing quality (defect detection effectiveness/functionality coverage);

(ii) nature of the process (structure/flexibility); (iii) cost-effectiveness; and (iv) customer satisfaction.

Major strength categories for ST were found to be related to the nature of the process, testing quality,

and customer satisfaction. The structured and guided process of ST provides benefits such as

repeatability of the tests, reusability of the test cases, early quality assurance, oracles availability for

validating the testing quality, better risk management, independency from the testers’ skills, and

automation of the testing process. Moreover, good functionality coverage and increased customer

satisfaction during product acceptance are two other identified strengths. As for ET, cost-

effectiveness, the nature of the process, and testing quality were the main strength categories

recognized. Exploratory testing was stated to be cost-effective because of less time being spent on

documentation (i.e., focused documentation for only logs, test notes, and videos after the execution),

better resource utilization, rapid feedback, and quick learning of the product. As for the testing

quality, better defect detection effectiveness, better regression testing, and more critical bug detection

were found to be the major strengths. Because the process of ET is flexible, the skills of testers are

better utilized as they can freely explore the defects; and thus, the testers become more responsible,

engaged, motivated, and creative, while they are performing the tests. Tables V and IV provide an

explanation of the strengths.
What are the weaknesses of ST and ET?: For ST, major weaknesses were found to fall under

testing quality, nature of the process, and cost-effectiveness categories. One of the major weaknesses

was identified as the dependency of testing quality on the test case design, which depends on the

skills, experience, and the domain knowledge of the designer as well as the previously produced

documents. Testers, being not free to make decisions even if they see the problem about the test

cases, were another weakness attributed to inflexibility of the test process. As for the cost-

effectiveness, ST found to be time consuming and costly as it requires designing, documenting,

executing, and managing large numbers of test cases, which should also be updated continuously in

the software development life cycle as the requirements change. Moreover, the cost increases if test

cases require revision and/or redesign in cases of low quality design.
On the other hand, major weaknesses of ET were identified as related to the nature of the process,

testing quality, and customer satisfaction categories. The unstructured and ad hoc processes are found

to cause difficulties in managing the testing process and risk, in prioritizing and selecting the

appropriate tests, and in repeating the tests. Moreover, these also, in turn, create the fear of losing

control over testing. As for testing quality, the dependency on the skills, experience, and domain

105

knowledge of the testers are among the major weaknesses identified. These become more significant

especially when the application to be tested is too complex. In addition, ET found to be not suitable

for acceptance, performance, and release testing, which in turn lowers the accountability and hence

customer satisfaction. Table 49 and Table 50 provide an explanation of the weaknesses.
What are the improvement opportunities for testing processes by addressing some major

weaknesses of ST and ET through unifying their processes in a hybrid form?: The second
contribution of this study is the identification of the improvement opportunities for the testing
process through unification of ST and ET into a resultant HT approach. We defined the HT process
considering ISO/IEC 29119, which is an upcoming software testing standard. The industrial
evaluation of the proposed HT process was performed through interviews in industry. The
practitioners stated that the HT process has merits to resolve some major issues of ST and ET test
approaches and invited us to their companies for dynamically validating the HT process. The details
of the identification of improvement opportunities through mapping ET and ST strengths and
weaknesses to each other are provided in Table 51and Table 52.

 Our study contributes to highlight the importance of experience. In order to further understand
the merits of HT, we recommend taking the following actions. First, experiments have to be designed
and the performance of testers with different experience levels for the different testing approaches
has to be compared. Second, experience shall not be treated as a variable stating total experience in
years. Instead, experience should be broken down in different kinds of experiences (e.g.,
programming, testing, and methodologies) relevant to testing to understand its impact on ET and HT
processes. Furthermore, we plan to evaluate the hybrid testing process in further trials through action
research.

5.3.7.2 Implications for research and practice
We discuss the implications for research and practice the findings from two perspectives,

practitioners and researchers.

• Practitioners: Given the analysis of strengths and weaknesses of ST and ET (P1 and P2), a clear
need has been established for hybrid processes. This leads to the proposition that practitioners

can benefit from using a hybrid development process, hence, utilizing the strengths of both types

of processes and addressing the weaknesses. The hybrid process presented in this paper is
flexible baseline (indicated by different paths one can take through the process) of an HT

process. The process has been co designed with very experienced practitioners knowing both,

ET and ST. This study makes their experience, as well as the experience reported in literature,

accessible to other practitioners. Practitioners are now in need to adopt and refine the process in
practice, as this is the prerequisite to extend and mature it. In particular, empirical evidence

provided on the potential and usefulness of a hybrid process could speed up the technology

transfer of HT processes. In particular, we found that there is an increasing trend of publications
related to ST and ET studies discussing strengths and weaknesses, indicating that with evidence,

the interest in adoption and evaluations increases.

• Researchers: We presented an approach that uses systematic review and practitioner input to

design a new solution (HT process), the approach being based on the technology transfer model
by Gorschek et al. [18]. Researchers might find the approach valuable in designing solutions

combining evidence-based methods (here systematic review) and practitioner input in an

exploratory way. The HT process needs further evaluation. Researchers hence should focus on

conducting empirical studies with industry practitioners putting the process into action. In

particular, researchers should evaluate the variances of the test process (e.g., testing with and

without debriefing), how the activities and the flow through the process should differ for

different types of testing (e.g., which activity in test execution is emphasized in terms of effort

spent and number of executions depending on the type of testing, such as GUI testing versus unit

testing), and what the longitudinal effects are of using an HT process. For these future activities,

our research laid the foundations to continue such research.

106

6. Conclusion of the thesis
The collection of data related to different attributes of three elements of software allows us to

perform the analysis to understand the impact of these attributes on the quality. Therefore first we

selected an appropriate measure that should be suitable indicator of quality in term of defect density

(see Section 2) and then asked ourselves few research questions regarding the impact of attributes of

elements on the quality whose answer can be summarized for the particular sample of projects. In

general the thesis answers the main research question that “What is the impact of software elements

on the software quality” and then answers the sub questions very explicitly.

Concerning the product attributes, the question we asked ourselves was that “What is the impact of

product attributes on the quality?”

The concrete answers we found for this research question is given below.

 There exists a statistically significant medium sized difference of quality between open and

closed source projects: the former have a DD that is 4 defects per KLoC lower than the

latter.

 Java projects exhibit a significantly lower DD than C projects, 4.1 defects per KLoC on

average

 In general the Size appears to be negatively correlated to DD: the larger the project the

lower the DD.

 In particular, large projects are 10 times less defective than medium ones.

 Age is not a factor to characterize the quality

 Very small modules on size have significant impact on the projects quality. The more

percentage of very small modules resulted in lower quality.

 Defect free modules have significant impact on the projects DD. The more percentage

resulted in higher project quality.

 The attribute module dependencies have no significant impact on the projects DD.

 In small projects we found LCOM as effective indicator for the quality

 In the medium category of project we found WMC, CBO, RFC, CA, CE, NPM, DAM,

MOA, IC, and Avg CC as effective indicators of quality.

 In the large category of projects we found WMC, CBO, RFC, CA, NPM, AMC and Avg CC

as effective indicators of quality.

 Product Complexity (PrC) as defined in Table 53 has partial impact on the software quality.

107

Concerning the product attributes, the question we asked ourselves was that “What is the impact of

people attributes on the quality?”

The concrete answers we found for this research question is given below.

 Analyst Capability (AC) as defined in Table 29 has no impact on the software quality.

 Programmer Capability (PC) as defined in Table 29 has partial impact on the software

quality

 Platform Experience (PE) as defined in Table 30 has significant impact on the software

quality.

 Application Experience (AE) as defined in Table 30 has significant impact on the software

quality

 Language and Tool Experience as defined in (LTE) Table 30 has significant impact on the

software quality

Concerning the process attributes, the question we asked ourselves was that “What is the impact of

process attributes on the quality?”

The concrete answers we found for this research question is given below.

 We found statistically not significant difference of quality between the projects developed

under CMMI and those that are not developed under CMMI.

 Considering the CMMI levels, the pair (CMMI 1, CMMI 3) is characterized by a

statistically significant different quality. CMMI 1 exhibiting lower quality than CMMI 3

 By comparing different software processes with each other we found that Hybrid process

exhibits statistically significant higher quality than Waterfall.

 Process Maturity (PM) defined by Software Engineering Institute Capability Maturity

Model (SEI-CMM) has partial impact on the software quality.

Concerning exploratory testing:

 ET also has many weaknesses that are not apparent at the time of testing but prompt up in

later phases of system life cycle.

 These weaknesses incur increased rework and cost, and hence are considered to be the

sources of TD.

 We propose the possible solutions to embark upon these weaknesses that indeed help to

reduce the testing technical debt of ET in a form of hybrid process.

 We found that both ST and ET provide strengths and weaknesses and these depend on some

particular conditions, which prevents preference of one approach to another.

 The mapping showed that it is possible to address the weaknesses in one process by the

strengths of the other in a hybrid form.

108

 With the input from literature and industry experts a flexible and iterative hybrid process

was designed.

This study has performed a statistical analysis on different attributes of process, product and

people considering different data set. Overall the results in this thesis indicate the impact of attributes

of elements on the software quality. The results show that there are some attributes that have

significant impact on the quality where other has partial and no impact on the software quality. The

empirical findings in this thesis about the impact of attributes of elements on software quality are

useful for both practitioners and researchers to evaluate their projects.

The organizational managers who tend to increase the quality of their software should utilize

these findings and select only those attributes that have impact on the software quality. The

researchers can use the results in order to device more hypothesis in order to find the reasons that

why one particular attribute has lower impact on the software quality and other have higher impact.

Concerning the hybrid process, practitioners can clearly benefit from using a hybrid process given

the mapping of advantages and disadvantages of both test approaches and would get exploratory

testing advantages without the induction of technical debt.

7. Future work
After a look at the literature we believe that empirical research on process characterization is

limited. There is a need of further empirical evidence with precise methodology to give managers a

broad perspective in making appropriate decisions when selecting software processes.

We would like to continue our future studies with the same attention considering more numbers

of attributes that are not covered in this thesis e.g. testing efforts, quality effort, code churn and code

history that should probably have impact on the quality.

Concerning the exploratory testing in future, we highlight the importance to evaluate the HT
process first in controlled experiments and in industrial environments.

An experimental setup should focus on comparing ET, ST, as well as HT in relation to testing

effectiveness (ability to identify critical defects) and efficiency (time needed for test design and

execution).
Industrially focused studies need to focus on practitioners executing the process and learning how

the process is tailored based on the context (e.g., different organizational test policies, types of

system, and so forth). Earlier, we mentioned two types of tailoring, namely process structure

(activities to be executed) and process flow (order of activities and relative effort spent on them).

8. References

[1] N. E. Fenton, Software Metrics: A Rigorous and Practical Approach. International Thomson

Computer Press, 1996.
[2] Dwayne Phillips, “PEOPLE, PROCESS, AND PRODUCT,”

http://dwaynephillips.net/CutterPapers/ppp/ppp.htm, 2013. .

[3] R. S. Pressman, Software Engineering: A Practitioner’s Approach. USA: McGraw-Hill,

2005.

[4] Yves Le Traon and Lionel Briand, “Empirical Software Engineering Quantitative methods

for measuring, assessing, predicting, controlling, and managing software development,”

http://www.irisa.fr/triskell/perso_pro/yletraon/cours/CoursEmpirirical%20Software%20Engi

neering/IntroTypeExperimentsYvesCours2.pdf, 2013. .

[5] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, “The PROMISE

Repository of empirical software engineering data,” West Virginia University, Department of

Computer Science. .

[6] J. W. Creswell, Research design – Qualitative, quantitative and mixed method approaches,
Second edition. United Kingdom/India: Sage Publications, 2003.

109

[7] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslen,

Experimentation in software engineering: an introduction. Norwell, Massachusetts. USA:

Kluwer Academic Publishers, 2000.

[8] Y. Zhu and D. Faller, “Defect density assessment in an evolutionary product development

environment: a case study in medical imaging,” Softw. IEEE, vol. PP, no. 99, pp. 1–1, 2012.

[9] L. Westfall, “Defect Density,” http://www.westfallteam.com/Papers/defect_density.pdf, Mar-

2013. .

[10] S. M. A. Shah, M. Morisio, and M. Torchiano, “An Overview of Software Defect Density: A

Scoping Study,” Softw. Eng. Conf. APSEC 2012 19th Asia-Pac., vol. 1, pp. 406–415, 4.
[11] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz, “An empirical study of software

reuse vs. defect-density and stability,” in Software Engineering, 2004. ICSE 2004.

Proceedings. 26th International Conference on, 2004, pp. 282–291.

[12] C. J. Kim, S.-M. Kim, and K.-W. Song, “Measurement of Level of Quality Control Activities

in Software Development [Quality Control Scorecards],” Converg. Hybrid Inf. Technol. 2008

ICHIT 08 Int. Conf. On, pp. 763–770, 28.

[13] S. M. A. Shah, M. Morisio, and M. Torchiano, “The impact of process maturity on defect

density,” in Proceedings of the ACM-IEEE international symposium on Empirical software

engineering and measurement, Lund, Sweden, 2012, pp. 315–318.

[14] V. Y. Shen, Tze-jie Yu, S. M. Thebaut, and L. R. Paulsen, “Identifying Error-Prone

Software—An Empirical Study,” Softw. Eng. IEEE Trans. On, vol. SE-11, no. 4, pp. 317–

324, 1985.
[15] V. R. Basili and B. T. Perricone, “Software errors and complexity: an empirical

investigation0,” Commun ACM, vol. 27, no. 1, pp. 42–52, 1984.

[16] C. Withrow, “Error density and size in Ada software,” Softw. IEEE, vol. 7, no. 1, pp. 26–30,

1990.

[17] R. D. Banker and C. F. Kemerer, “Scale Economies in New Software Development,” Softw.

Eng. IEEE Trans. On, vol. 15, no. 10, pp. 1199–1205, 1989.

[18] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex

software system,” Softw. Eng. IEEE Trans. On, vol. 26, no. 8, pp. 797–814, 2000.

[19] C. Andersson and P. Runeson, “A Replicated Quantitative Analysis of Fault Distributions in

Complex Software Systems,” Softw. Eng. IEEE Trans. On, vol. 33, no. 5, pp. 273–286, 2007.

[20] T. J. McCabe, “A Complexity Measure,” Softw. Eng. IEEE Trans. On, vol. SE-2, no. 4, pp.
308–320, 1976.

[21] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” Softw. Eng.

IEEE Trans. On, vol. 20, no. 6, pp. 476–493, 1994.

[22] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality

assessment,” Softw. Eng. IEEE Trans. On, vol. 28, no. 1, pp. 4–17, 2002.

[23] B. Henderson-Sellers, Object-Oriented Metrics, measures of Complexity. Prentice Hall, 1996.

[24] R. Martin, “OO Design Quality Metrics - An Analysis of Dependencies,” presented at the

Workshop Pragmatic and Theoretical Directions in Object-Oriented Software Metrics,

OOPSLA’94.

[25] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex

software system,” Softw. Eng. IEEE Trans. On, vol. 26, no. 8, pp. 797–814, 2000.
[26] A. G. Koru, Dongsong Zhang, and Hongfang Liu, “Modeling the Effect of Size on Defect

Proneness for Open-Source Software,” in Predictor Models in Software Engineering, 2007.

PROMISE’07: ICSE Workshops 2007. International Workshop on, 2007, p. 10.

[27] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex

software system,” Softw. Eng. IEEE Trans. On, vol. 26, no. 8, pp. 797–814, 2000.

[28] F. Akiyama, “An Example of Software System Debugging,” Inf. Process., vol. 71, pp. 353–

379, 1971.

[29] S. McConnell, Code Complete, 2nd ed. Washington: Microsoft Press, 2004.

[30] S. Chulani, “Constructive Quality Modeling for Defect Density Prediction: COQUALMO.”

IBM Research, Center for Software Engineering.

[31] G. Koru, H. Liu, D. Zhang, and K. El Emam, “Testing the theory of relative defect proneness

for closed-source software,” Empir. Softw. Eng., vol. 15, no. 6, pp. 577–598–598, Dec. 2010.
[32] A. Koru, K. E. Emam, D. Zhang, H. Liu, and D. Mathew, “Theory of relative defect

proneness,” Empir. Softw Engg, vol. 13, no. 5, pp. 473–498, 2008.

110

[33] S. Raghunathan, A. Prasad, B. K. Mishra, and Hsihui Chang, “Open source versus closed

source: software quality in monopoly and competitive markets,” Syst. Man Cybern. Part Syst.

Hum. IEEE Trans. On, vol. 35, no. 6, pp. 903– 918, 2005.

[34] G. Phipps, “Comparing observed bug and productivity rates for Java and C++,” Softw Pr.

Exper, vol. 29, no. 4, pp. 345–358, 1999.

[35] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault incidence using software

change history,” Softw. Eng. IEEE Trans. On, vol. 26, no. 7, pp. 653–661, 2000.

[36] N. Zvegintzov, “Software should live longer,” Softw. IEEE, vol. 15, no. 4, pp. 19, 21, 1998.

[37] D. Cotroneo, R. Natella, and R. Pietrantuono, “Is software aging related to software
metrics?,” in Software Aging and Rejuvenation (WoSAR), 2010 IEEE Second International

Workshop on, 2010, pp. 1–6.

[38] K.-H. Moller and D. J. Paulish, “An empirical investigation of software fault distribution,” in

Software Metrics Symposium, 1993. Proceedings., First International, 1993, pp. 82–90.

[39] L. Hatton, “Reexamining the fault density component size connection,” Softw. IEEE, vol. 14,

no. 2, pp. 89–97, 1997.

[40] J. Rosenberg, “Some misconceptions about lines of code,” in Software Metrics Symposium,

1997. Proceedings., Fourth International, 1997, pp. 137–142.

[41] K. El Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis, and S. N. Rai, “The optimal class

size for object-oriented software,” Softw. Eng. IEEE Trans. On, vol. 28, no. 5, pp. 494–509,

2002.

[42] A. G. Koru, Dongsong Zhang, K. El Emam, and Hongfang Liu, “An Investigation into the
Functional Form of the Size-Defect Relationship for Software Modules,” Softw. Eng. IEEE

Trans. On, vol. 35, no. 2, pp. 293–304, 2009.

[43] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial use of metrics for object-

oriented software: an exploratory analysis,” Softw. Eng. IEEE Trans. On, vol. 24, no. 8, pp.

629–639, 1998.

[44] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented design metrics as

quality indicators,” Softw. Eng. IEEE Trans. On, vol. 22, no. 10, pp. 751–761, 1996.

[45] R. Subramanyam and M. S. Krishnan, “Empirical analysis of CK metrics for object-oriented

design complexity: implications for software defects,” Softw. Eng. IEEE Trans. On, vol. 29,

no. 4, pp. 297–310, 2003.

[46] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented metrics on
open source software for fault prediction,” Softw. Eng. IEEE Trans. On, vol. 31, no. 10, pp.

897–910, 2005.

[47] M. English, C. Exton, I. Rigon, and B. Cleary, “Fault detection and prediction in an open-

source software project,” in Proceedings of the 5th International Conference on Predictor

Models in Software Engineering, Vancouver, British Columbia, Canada, 2009, pp. 1–11.

[48] Ping Yu, T. Systa, and H. Muller, “Predicting fault-proneness using OO metrics. An

industrial case study,” in Software Maintenance and Reengineering, 2002. Proceedings. Sixth

European Conference on, 2002, pp. 99–107.

[49] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, “Empirical Validation of

Three Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes

Developed Using Highly Iterative or Agile Software Development Processes,” Softw. Eng.
IEEE Trans. On, vol. 33, no. 6, pp. 402–419, 2007.

[50] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component failures,” in

Proceedings of the 28th international conference on Software engineering, Shanghai, China,

2006, pp. 452–461.

[51] H. Arksey and L. O’Malle, “Scoping studies: towards a methodological framework,” Int. J.

Soc. Res. Methodol., vol. 8, no. 1, pp. 19–32, 2005.

[52] W. F. Tichy, “Should computer scientists experiment more?,” Computer, vol. 31, no. 5, pp.

32–40, 1998.

[53] Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen, “An empirical study on object-

oriented metrics,” in Software Metrics Symposium, 1999. Proceedings. Sixth International,

1999, pp. 242–249.

[54] “COCOMO® II Cost Driver and Scale Driver Help,”
http://sunset.usc.edu/research/COCOMOII/expert_cocomo/drivers.html, Feb-2013. .

[55] W. S. Humphrey, “The Quality Attitude,” Mar-2004. .

111

[56] S. T. Acuna, M. Gomez, and N. Juristo, “How do personality, team processes and task

characteristics relate to job satisfaction and software quality?,” Inf Softw Technol, vol. 51, no.

3, pp. 627–639, 2009.

[57] O. Hazzan and I. Hadar, “Controversy Corner: Why and how can human-related measures

support software development processes?,” J Syst Softw, vol. 81, no. 7, pp. 1248–1252, 2008.

[58] N. Gorla and S.-C. Lin, “Determinants of software quality: A survey of information systems

project managers,” Inf Softw Technol, vol. 52, no. 6, pp. 602–610, 2010.

[59] M. S. Krishnan, C. H. Kriebel, S. Kekre, and T. Mukhopadhyay, “An Empirical Analysis of

Productivity and Quality in Software Products,” Manage Sci, vol. 46, no. 6, pp. 745–759,
2000.

[60] K. Shendil and N. H. Madhavji, “Personal `progress functions’ in the software process,”

Softw. Process Workshop 1994 Proc. Ninth Int., pp. 117–121, 5.

[61] I. Hooks and K. Farry, “Customer-centered products: Creating successful products through

smart requirements management,” American Management Association, New York, 2001.

[62] W. S. Humphrey, Managing the Software Process, Addison-Wesley Professional. 1989.

[63] D. M. Ahern, A. Clouse, and R. Turner, CMMI Distilled: A Practical Introduction to

Integrated Process Improvement, 3rd ed. Addison-Wesley, 2008.

[64] W. W. Royce, “Managing the development of large software systems: concepts and

techniques,” in Proceedings of the 9th international conference on Software Engineering,

Monterey, California, United States, 1987, pp. 328–338.

[65] W. S. Humphrey, Introduction to the Personal Software Process. Addison-Wesley, 1997.
[66] W. S. Humphrey, Introduction to the Team Software Process. Addison-Wesley, 1999.

[67] P. Kruchten, The Rational Unified Process: An Introduction, 2nd ed. Boston MA USA:

Addison-Wesley, 2000.

[68] M. Turner, Microsoft® solutions framework essentials: building successful technology

solutions. Redmond WA USA: Microsoft Press, 2006.

[69] R. C. Martin, Agile Software Development, Principles, Patterns, and Practices. Prentice Hall,

2003.

[70] P. D. Ronald and B. Finkbine, “Metrics and Models in Software Quality Engineering,”

SIGSOFT Softw Eng Notes, vol. 21, no. 1, p. 89, 1999.

[71] M. M. Hinkle, “Software Quality, Metrics, Process Improvement, and CMMI: An Interview

with Dick Fairley,” IT Prof., vol. 9, no. 3, pp. 47–51, 2007.
[72] I. Sommerville, Software Engineering, 8th ed. Pearson Education, 2007.

[73] P. Miller, “An SEI Process Improvement Path to Software Quality,” in Quality of

Information and Communications Technology, 2007. QUATIC 2007. 6th International

Conference on the, 2007, pp. 12–20.

[74] P. Monteiro, R. J. Machado, and R. Kazman, “Inception of Software Validation and

Verification Practices within CMMI Level 2,” in Software Engineering Advances, 2009.

ICSEA ’09. Fourth International Conference on, 2009, pp. 536–541.

[75] Meng Li, He Xiaoyuan, and A. Sontakke, “Defect Prevention: A General Framework and Its

Application,” in Quality Software, 2006. QSIC 2006. Sixth International Conference on,

2006, pp. 281–286.

[76] C. Jones, “The Pragmatics of Software Process Improvements,” Softw. Eng. Tech. Counc.
Newsl. Tech. Counc. Softw. Eng IEEE Comput. Soc., vol. 14, no. 2, 1996.

[77] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New directions on agile

methods: a comparative analysis,” in Proceedings of the 25th International Conference on

Software Engineering, Portland, Oregon, 2003, pp. 244–254.

[78] P. J. Agerfalk and B. Fitzgerald, “Flexible and distributed software processes: old petunias in

new bowls?: Introduction,” Commun. ACM, vol. 49, pp. 26–34, 2006.

[79] B. Boehm, “Get ready for agile methods, with care,” Computer, vol. 35, no. 1, pp. 64–69,

2002.

[80] D. H. Kitson and S. M. Masters, “An analysis of SEI software process assessment results:

1987-1991,” in Software Engineering, 1993. Proceedings., 15th International Conference on,

1993, pp. 68–77.

[81] M. C. Paulk, “Extreme programming from a CMM perspective,” Softw. IEEE, vol. 18, no. 6,
pp. 19–26, 2001.

[82] B. O. Sussy, J. A. Calvo-Manzano, C. Gonzalo, and S. F. Tomas, “Teaching Team Software

Process in Graduate Courses to Increase Productivity and Improve Software Quality,” in

112

Computer Software and Applications, 2008. COMPSAC ’08. 32nd Annual IEEE

International, 2008, pp. 440–446.

[83] P. Abrahamsson and J. Koskela, “Extreme programming: a survey of empirical data from a

controlled case study,” in Empirical Software Engineering, 2004. ISESE ’04. Proceedings.

2004 International Symposium on, 2004, pp. 73–82.

[84] J. C. Sanchez, L. Williams, and E. M. Maximilien, “On the Sustained Use of a Test-Driven

Development Practice at IBM,” in AGILE 2007, 2007, pp. 5–14.

[85] N. Ramasubbu and R. K. Balan, “The impact of process choice in high maturity

environments: An empirical analysis,” in Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on, 2009, pp. 529–539.

[86] K. K. Mohan, A. K. Verma, A. Srividya, G. V. Rao, and R. K. Gedela, “Early Quantitative

Software Reliability Prediction Using Petri-nets,” in Industrial and Information Systems,

2008. ICIIS 2008. IEEE Region 10 and the Third international Conference on, 2008, pp. 1–6.

[87] T. Bhat and N. Nagappan, “Evaluating the efficacy of test-driven development: industrial

case studies,” in Proceedings of the 2006 ACM/IEEE international symposium on Empirical

software engineering, Rio de Janeiro, Brazil, 2006, pp. 356–363.

[88] S. M. Mitchell and C. B. Seaman, “A comparison of software cost, duration, and quality for

waterfall vs. iterative and incremental development: A systematic review,” in Empirical

Software Engineering and Measurement, 2009. ESEM 2009. 3rd International Symposium

on, 2009, pp. 511–515.

[89] C. Jones, J. Subramanyam, and O. Bonsignour, The Economics of Software Quality,
Addison-Wesley Professional. 2011.

[90] G. H. Subramanian, J. J. Jiang, and G. Klein, “Software quality and IS project performance

improvements from software development process maturity and IS implementation

strategies,” J Syst Softw, vol. 80, no. 4, pp. 616–627, 2007.

[91] R. Tufail and A. A. Malik, “A Case Study Analyzing the Impact of Software Process

Adoption on Software Quality,” Front. Inf. Technol. FIT 2012 10th Int. Conf. On, pp. 254–

256, 17.

[92] J. Li, N. B. Moe, and T. Dybå, “Transition from a plan-driven process to Scrum: a

longitudinal case study on software quality,” in Proceedings of the 2010 ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement, Bolzano-

Bozen, Italy, 2010, pp. 1–10.
[93] H. A. Rubin, “Software process maturity: measuring its impact on productivity and quality,”

Softw. Eng. 1993 Proc. 15th Int. Conf. On, pp. 468–476, 17.

[94] R. Sison, “Investigating the Effect of Pair Programming and Software Size on Software

Quality and Programmer Productivity,” Softw. Eng. Conf. 2009 APSEC 09 Asia-Pac., pp.

187–193, 1.

[95] Y. Rafique and V. B. Mišić, “The Effects of Test-Driven Development on External Quality

and Productivity: A Meta-Analysis,” Softw. Eng. IEEE Trans. On, vol. 39, no. 6, pp. 835–

856, Jun. 2013.

[96] C. Jones, Patterns of Software Systems Failure and Success. International Thompson

Computer Press, 1995.

[97] S. Eldh, H. Hansson, Sasikumar Punnekkat, A. Pettersson, and D. Sundmark, “A Framework
for Comparing Efficiency, Effectiveness and Applicability of Software Testing Techniques,”

in Testing: Academic and Industrial Conference - Practice And Research Techniques, 2006.

TAIC PART 2006. Proceedings, 2006, pp. 159–170.

[98] NIST-Final Report, “The Economic Impacts of Inadequate Infrastructure for Software

Testing,” Table 8-1, National Institute of Standards and Technology, 2002.

[99] F. Ricca, M. Torchiano, M. D. Penta, M. Ceccato, and P. Tonella, “Using acceptance tests as

a support for clarifying requirements: A series of experiments,” Inf. Softw. Technol., vol. 51,

no. 2, pp. 270–283, 2009.

[100] C. Andersson and P. Runeson, “Verification and validation in industry - a qualitative survey

on the state of practice,” in Empirical Software Engineering, 2002. Proceedings. 2002

International Symposium n, 2002, pp. 37– 47.

[101] J. Itkonen, “Do test cases really matter? an experiment comparing test case based and
exploratory testing,” Ph.D thesis, Helsinki University of Technology, Finland (2008).

[102] J. Bach, “Exploratory Testing”, in The Testing Practitioner, Second ed., E. van Veenendaal

Ed. Den Bosch: UTN Publishers, 2004.

113

[103] J. Itkonen, M. V. Mantyla, and C. Lassenius, “How do testers do it? An exploratory study on

manual testing practices,” in Empirical Software Engineering and Measurement, 2009.

ESEM 2009. 3rd International Symposium on, 2009, pp. 494–497.

[104] J. Vaga and S. Amland, “Managing high-speed web testing,” in Software quality and

software testing in internet times, Springer-Verlag New York, Inc., 2002, pp. 23–30.

[105] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise perspective on technical

debt,” in Proceedings of the 2nd Workshop on Managing Technical Debt, Waikiki, Honolulu,

HI, USA, 2011, pp. 35–38.

[106] F. Buschmann, “To Pay or Not to Pay Technical Debt,” IEEE Softw, vol. 28, no. 6, pp. 29–
31, 2011.

[107] “IEEE Guide for Software Verification and Validation Plans.” 1994.

[108] M. J. Arafeen and Hyunsook Do, “Adaptive Regression Testing Strategy: An Empirical

Study,” in Software Reliability Engineering (ISSRE), 2011 IEEE 22nd International

Symposium on, 2011, pp. 130–139.

[109] A. Memon, I. Banerjee, and A. Nagarajan, “What test oracle should I use for effective GUI

testing?,” in Automated Software Engineering, 2003. Proceedings. 18th IEEE International

Conference on, 2003, pp. 164– 173.

[110] S. . Sim, S. Ratanotayanon, O. Aiyelokun, and E. Morris, “An Initial Study to Develop an

Empirical Test for Software Engineering Expertise,” Institute for Software Research,

University of California, Irvine, CA, USA, UCI-ISR-06-6, 2006.

[111] P.-L. Poon, T. H. Tse, S.-F. Tang, and F.-C. Kuo, “Contributions of tester experience and a
checklist guideline to the identification of categories and choices for software testing,” Softw.

Qual. Control, vol. 19, no. 1, pp. 141–163, 2011.

[112] B. Muranko and R. Drechsler, “Technical Documentation of Software and Hardware in

Embedded Systems,” in Very Large Scale Integration, 2006 IFIP International Conference

on, 2006, pp. 261–266.

[113] C. Pecheur, F. Raimondi, and G. Brat, “A formal analysis of requirements-based testing,” in

Proceedings of the eighteenth international symposium on Software testing and analysis,

Chicago, IL, USA, 2009, pp. 47–56.

[114] G. Scanniello, F. Fasano, A. Lucia, and G. Tortora, “Does software error/defect identification

matter in the Italian industry?,” IET Softw., vol. 7(2), pp. 76–84, 2013.

[115] J. Itkonen, M. V. Mantyla, and C. Lassenius, “Defect Detection Efficiency: Test Case Based
vs. Exploratory Testing,” in Empirical Software Engineering and Measurement, 2007. ESEM

2007. First International Symposium on, 2007, pp. 61–70.

[116] A. Bertolino, “Software Testing Research: Achievements, Challenges, Dreams,” in Future of

Software Engineering, 2007. FOSE ’07, 2007, pp. 85–103.

[117] L. Copeland, A Practitioner’s Guide to Software Test Design. Boston: Artech House

Publishers, 2004.

[118] N. Juzgado, A. Moreno, and S. Vegas, “Reviewing 25 years of testing technique

experiments.,” presented at the Empirical Software Engineering, 2004, vol. 9(1–2), pp. 7–44.

[119] S. Vegas, N. Juristo, and V. R. Basili, “Identifying Relevant Information for Testing

Technique Selection: An Instantiated Characterization Scheme. .,” Springer Heidelb.,

Germany 2003.
[120] C. Agruss and B. Johnson, “Ad hoc software testing, a perspective on exploration and

improvisation,” Florida Institute of Technology, USA, Techical report, 2000.

[121] L. Shoaib, A. Nadeem, and A. Akbar, “An empirical evaluation of the influence of human

personality on exploratory software testing,” in Multitopic Conference, 2009. INMIC 2009.

IEEE 13th International, 2009, pp. 1–6.

[122] J. Bach, Exploratory testing. In Veenendal EV (eds.), 2005.

[123] Thomson A., “How to choose between exploratory and scripted testing,” .

[124] T. Murnane, K. Reed K, and R. Hall R, “On the learnability of two representations of

equivalence partitioning and boundary value analysis.,” presented at the Australian Software

Engineering Conference (ASWEC 2007), 2007, vol. 274–283.

[125] M. S. C. . Sharma, “Automatic generation of test suites fromdecision table – theory and

implementation.,” pp. 459–464.
[126] P. Ammann and J. Offutt, Introduction to Software Testing. : Cambridge University Press,

2008.

114

[127] A. Dupuy and N. Leveson, “An empirical evaluation of the mc/dc coverage criterion on the

hete-2 satellite software.,” 2000.

[128] L. C. Briand, Y. Labiche, and Q. Lin, “Improving the coverage criteria of uml state machines

using data flow analysis.,” 2010, pp. 177–207.

[129] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature Reviews in

Software Engineering,” Software Engineering Group, School of Computer Science and

Mathematics, Keele University, Keele,, UK, Vol 2.3 EBSE Technical Report, EBSE-2007-

01, 2007.

[130] T. Gorschek, C. Wohlin, and S. Larsson, “, C. Wohlin, P. Carre, and S. Larsson, ‘A Model
for Technology Transfer in Practice,’ Software, IEEE, vol. 23, no. 6, pp. 88-95, 2006.,” IEEE

Softw., vol. 23, no. 6, pp. 88–95, 2006.

[131] B. Henderson-Sellers, C. Gonzalo, and J. Ralyte, “Comparison of method chunks and method

fragments for situational method engineering.,” presented at the Australian Conference on

Software Engineering (ASWEC 2008), 2008, pp. 479–488.

[132] K. Petersen, “Measuring and predicting software productivity: a systematic map and

review.,” Inf. Softw. Technol., pp. 317–343, 2011.

[133] Zotero., “A reference management tool, project of Roy Rosenzweig Center for History and

New Media, funded by the Andrew W. Mellon Foundation, the Institute of Museum and

Library Services, and the Alfred P. Sloan Foundation.” .

[134] G. W. Noblit and R. D. Hare, Meta-Ethnography: Synthesizing Qualitative Studies. London:

Sage, 1998.
[135] Dixon-Woods M, Agarwal S, Jones D, Young B, and Sutton A, “Synthesising qualitative and

quantitative evidence: a review of possible methods.,” J. Health Serv. Res. Policy, no. 10(1),

pp. 45–53B, 2005.

[136] Barnett-Page E and Thomas J, “Methods for the synthesis of qualitative research: a critical

review.,” BMC Med. Res. Methodol., vol. 9(1), no. 59, 2009.

[137] Britten N,, Campbell R,, Pope C,, Donovan J,, Morgan M,, and Pill R., “Using meta

ethnography to synthesise qualitative research: a worked example.,” J. Health Serv. Res.

Policy, no. 7(4), pp. 209–215, 2002.

[138] Seidel JV., “Qualitative data analysis.,” Qualis Res. Colo. Springs Colo., 1998.

[139] Given LM., The Sage Encyclopedia of Qualitative Research Methods. SAGE: Los Angeles,

2008.
[140] J. Bach, “Session-based test management,” Software Testing Quality Engineering magazine,

vol. 2, no. 6, 2000.

[141] Tahat L H, Bader A, Vaysburg B, and Korel B, “Requirement-based automated black-box

test generation.,” presented at the 25th International Computer Software and Applications

Conference (COMPSAC 2001), 2001, pp. 489–495.

9. Appendix

Table 53 Product complexity criterion

Control

Operations
Computational

Operations

Device-

dependent

Operations

Data

Management

Operations

User

Interface

Managemen

t Operations

Very

Low

Straight-line

code with a few

non-nested

structured

programming

operators: DOs,

CASEs,

IFTHENELSEs

. Simple
module

Evaluation of

simple expressions:

e.g.,A=B+C*(D-E)

Simple read,

write

statements

with simple

formats.

Simple arrays

in main

memory.

Simple COTS-

DB queries,

updates.

Simple input

forms, report

generators.

115

composition via

procedure calls

or simple

scripts.

Low

Straightforward

nesting of

structured

programming
operators.

Mostly simple

predicates

Evaluation of

moderate-level

expressions:
e.g., D=SQRT(B**2

-4.*A*C)

No

cognizance

needed of

particular

processor or

I/O device
characteristic

s. I/O done at

GET/PUT

level.

Single file sub

setting with no

data structure

changes, no

edits, no

intermediate

files.
Moderately

complex

COTS-DB

queries,

updates.

Use of

simple

graphic user

interface
(GUI)

builders.

Medium

Mostly simple

nesting. Some

intermodule

control.

Decision tables.

Simple

callbacks or
message

passing,

including

middleware-

supported

distributed

processing

Use of standard

math and statistical

routines. Basic
matrix/vector

operations.

I/O

processing

includes

device

selection,
status

checking and

error

processing.

Multi-file

input and

single file

output. Simple

structural

changes,
simple edits.

Complex

COTS-DB

queries,

updates.

Simple use

of widget
set.

High

Highly nested

structured

programming

operators with

many

compound
predicates. ueue

and stack

control.

Homogeneous,

distributed

processing.

Single

processor soft

real-time

control.

Basic numerical

analysis:
multivariate

interpolation,

ordinary differential

equations. Basic

truncation, roundoff

concerns.

Operations at

physical I/O

level
(physical

storage

address

translations;

seeks, reads,

etc.).

Optimized

I/O overlap.

Simple triggers
activated by

data stream

contents.

Complex data

restructuring.

Widget set
development

and

extension.

Simple voice

I/O,

multimedia.

Very

High

Reentrant and

recursive
coding. Fixed-

priority

interrupt

handling. Task

synchronization

, complex

callbacks,

heterogeneous

distributed

processing.

Difficult but

structured numerical

analysis: near-

singular matrix

equations, partial

differential

equations. Simple

parallelization.

Routines for

interrupt
diagnosis,

servicing,

masking.

Communicati

on line

handling.

Performance-

intensive

embedded

systems.

Distributed

database

coordination.

Complex

triggers.

Search

optimization.

Moderately

complex

2D/3D,

dynamic

graphics,

multimedia.

116

Single-

processor hard

real-time

control.

Extra

High

Multiple

resource

scheduling with

dynamically

changing

priorities.

Microcode-
level control.

Distributed

hard real-time

control.

Difficult and

unstructured

numerical analysis:

highly accurate

analysis of noisy,
stochastic data.

Complex

parallelization.

Device

timing-

dependent

coding,

micro-

programmed

operations.
Performance-

critical

embedded

systems.

Highly

coupled,

dynamic

relational and

object

structures.
Natural

language data

management.

Complex

multimedia,

virtual
reality.

