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Stochastic Analysis of Switching Power Converters
via Deterministic SPICE Equivalents

Paolo Manfredi, Member, IEEE, Igor S. Stievano, Senior Member, IEEE, Flavio G. Canavero, Fellow, IEEE

Abstract—This letter addresses the stochastic analysis of non-
linear switching power converters via an augmented circuit equiv-
alent and a single deterministic SPICE simulation. The proposed
approach is based on the expansion of the constitutive relations
of the circuit elements in terms of orthonormal polynomials
within the well-established framework of polynomial chaos. The
feasibility and strength of the method are demonstrated on a
DC-DC boost converter described by either detailed nonlinear
components or via its averaged linear circuit. Excellent mod-
eling accuracy as well as remarkable speed-ups compared to
traditional sampling-based approaches are achieved.

Index Terms—Circuit simulation, polynomial chaos, SPICE,
stochastic circuits, switched mode power supplies.

I. INTRODUCTION

Switching power converters constitute a standard supply
configuration in many electrical and electronic applications.
In critical (e.g., biomedical or vehicular) equipment, serious
concerns are raised by stability and reliability under the
unavoidable presence of large uncertainty on power electrical
components [1]. Typical examples are provided by inductors
and electrolytic capacitors, that are affected by non-negligible
manufacturing tolerances, nonideal behavior or measurement
errors, as well as parasitics, source noise and operating tem-
perature and conditions [2].

Statistical analysis of power switching networks therefore
became a hot topic in the past decade [3]-[5]. The high
computational inefficiency that affects traditional techniques,
like the Monte Carlo (MC) method or possible enhanced
variations based e.g. on the design of experiments or similar
tools [6], paved the way to more efficient circuit simulation
approaches, such as those based on the polynomial chaos (PC)
framework (see, e.g., [5], [7], [8] and reference therein). The
underlying idea of PC is to represent circuit responses in terms
of basis expansions that carry fundamental statistical informa-
tion. Combination with statistical tests, e.g. the analysis of
variance (ANOVA), possibly allows a preliminary screening
and selection of the most relevant random parameters [9].

The present contribution extends the results of previously
published papers in this field (see [5], [7], [8]), providing
a framework for the circuit-level stochastic analysis of both
linear and nonlinear circuits via an augmented deterministic
equivalent. One of the main achievements is that the resulting
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equivalent circuit can be readily simulated in standard SPICE-
type simulators, thus allowing circuit designers to rely on
existing and well-consolidated tools, providing hundreds of de-
vice models, rather than requiring the creation of a customized
software and the re-development of pertinent library models.
A very general framework for the inclusion of nonlinear
components is also outlined, as such enabling the analysis not
only of linearized average models for power converters, but
also of their detailed nonlinear description.

II. EXAMPLE TEST CASE

For illustration purposes we focus this letter on the typical
DC-DC boost converter shown in Fig. 1. The above example,
belonging to a class of switching circuits widely spread in
power electronics, offers a representative test case of a closed-
loop system involving both linear and strongly nonlinear
circuit components, thus allowing to stress the benefits of the
proposed methodology and to demonstrate its feasibility and
strength.
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Fig. 1. Example test case: DC-DC boost converter with analog feedback
control. The gray box highlights a typical configuration for the nonlinear part
of boost circuits, consisting of a switching element, in turn composed by a
MOS device and a diode, and of an automatic control, here represented via
functional objects.

In Fig. 1, an analog voltage and current feedback control is
used. The circuit elements take the following values: £ =5V,
rp; =1mQ, L =Ly =5mH, rc =5mf), C = Cy = 10 uF,
whilst the switching frequency is f; = 45kHz. As to the
feedback network, the configuration in [3] is considered among
a number of existing alternative control strategies. The MOS
device is driven by a square wave with a suitable duty-cycle
D, that is provided by the feedback network as a function of
ve and ir. Specifically, the MOS gate control is the output
of a comparator, whose non-inverting input is fed by a saw-
tooth waveform, whereas its inverting input is defined as
d(ve,ir) = Viet — k1ir, — kave. The coefficients kq and ko
are designed to optimize the performance of the closed-loop
circuit and Vi is the desired output voltage. Here Vier = 12V,



k1 = —0.029Q, ky = 0.01. For additional details, the reader
should refer to [3].

When a fine detail of the switching response is not required,
the nonlinear part can be replaced by a linear equivalent,
which emulates the average behavior of the circuit: an accurate
description of the response fluctuation due to the switching
elements is lost, but the simulation is much faster. Without
loss of generality, the model proposed in [10] is here adopted.

As an example, Fig. 2 shows the time-domain response
of the output voltage v (t) computed by means of SPICE
for two models of the switching network: the curve labeled
“full” considers a detailed description of a power MOSFET
and a basic diode model; the curve labeled ‘“average” is
obtained by considering the linearized average model instead.
The simulation is carried out with null initial conditions for
the voltage across the capacitor and the current through the
inductor. Also, to highlight the effects of unavoidable changes
in the load current absorption, the load resistor R is varied
every 5 ms and takes the values 202, 402 and 30 2.
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Fig. 2. Transient SPICE simulation of the boost circuit in Fig. 1. Gray line:
detailed simulation; black line: simplified average simulation.

In order to illustrate and validate the benefits of the proposed
technique, a variability of the dynamical elements L and C
will be considered and parameterized as L = Lo(1 + 01&;)
and C = Cy(1 4 02&2), respectively, where & and & are
independent Gaussian random variables with zero mean and
unit variance, whereas oy and oy are the normalized standard
deviations. The next section discusses how the SPICE simula-
tion models can be suitably modified to account for the effects
of variability on linear and nonlinear circuit components.

III. POLYNOMIAL CHAOS-BASED SPICE EQUIVALENTS

This section summarizes the basic mathematical tools that
allow to create SPICE-compatible circuit models accounting
for the variability of network elements. For conciseness, the
discussion is based on one random variable only, parameter-
ized by the normalized variable £ = &;, being the extension
to the multivariate case straightforward and available in the
literature (e.g., see [8]). In presence of such a random quantity,
both the voltages and the currents in the network inherently
depend on &, thus becoming stochastic variables themselves.

The idea underlying the PC is the expansion of the above
electrical variables in terms of polynomials, e.g.

v(t,&) & Yo vr(t)en(§), (1)

where P is the number of terms defining the truncated series
and v (t) are deterministic coefficients to be determined for
the nodal or branch voltages. A similar reasoning applies
to the circuit currents i(¢). Finally, ) are the elements of
a polynomial basis orthonormal with respect to the inner
product:

(f.9) = /% F(€)g(E)w(€)de, @)

where w(§) is the probability distribution of £. According
to the Wiener-Askey scheme, for standard distributions, the
orthogonal polynomials are well-known and correspond to
Hermite polynomials for Gaussian random variables, Legendre
polynomials for uniform variables, etc. [?]. In order to preserve
symmetry and reciprocity in the models, such orthogonal poly-
nomials are normalized so that (pg, ;) = dx; (Kroneker’s
delta). For instance, the orthonormal Hermite polynomials are
wo=1, 01 =& and oy = %(52 — 1), etc.

The main advantage of the PC representation (1) is that,
once the unknown coefficients vy (t) are computed, the statis-
tical information of v(¢) (e.g., its mean or standard deviation)
can be effectively computed form (1) via analytical or numer-
ical techniques [7], [8].

The rationale of the proposed simulation approach is to
derive deterministic constitutive equations relating the voltage
and current coefficients for the circuit elements exhibiting vari-
ability. Such relationships are then implemented and simulated
in SPICE via equivalent circuits to retrieve the sought-for PC
variables. The remainder of this section illustrates the approach
by focusing on the derivation of the augmented constitutive
equations for two different types of lumped circuit elements:
linear and nonlinear.
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Fig. 3. Linear inductor and its corresponding augmented model.

The first example deals with a linear inductor connecting
nodes A and B, and whose characteristic is v (t) — vp(t) =
L4i(t), where v4(t) and vp(t) are the pertinent nodal volt-
ages and i(t) is the current flowing through the inductor (see
the left panel of Fig. 3). For conciseness, all the electrical
variables are expressed in terms of a two-term expansion,
leading to

(vao(t)po +vai(t)e1) — (vBo(t)po +vB1p1) =
= (Loo + L1p1) £ (io(t)po + i1(t)p1))

The projection of (3) onto the first polynomial ¢g via (2)
produces:

3)
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where the dependence on the time variable ¢ is neglected for
brevity of notation and the terms (-,-) reduce to mere real
numbers that can be analytically computed from (2).

The above equation, along with the projection of (3) onto
the second polynomial ¢, leads to the following constitutive
relations for the expansion coefficients of the stochastic induc-
tor:

{ ’UA()(t) — 'UBQ(t) = L()%io(t) + Llﬁil(t) (5)

UAl(t) — UBl(t) = L1 %io(t) + Loﬁil(t).

It is worthwhile noting that (5) are deterministic because
the dependence on the random variable ¢ has been suppressed
by the projection procedure. This suggests to represent the
inductor in terms of a new multi-terminal circuit element
involving the coefficients of the node voltages and branch
currents. According to (5), this turns out to be a mutual
inductor, as illustrated in Fig. 3. The above interpretation also
provides a clever way to implement this new element in any
SPICE-type simulator by means of standard circuit elements,
as follows:

.subckt Laugmented A0 BO Al Bl PLO=... PLl=...

L1 A0 BO PLO

L2 Al B1 PLO

K12 L1 L2 K='PL1/PLO’
.ends Laugmented

The approach is readily extended to expansions with a larger
number of terms as well as to the modeling of the stochastic
capacitor or other linear elements.

The second example involves a circuit element with non-
linear characteristic. For instance, the input-output charac-
teristic of the comparator of Fig. 1 can be expressed as
vp(t) = F(va(t)), with F(-) being a suitable (e.g., piece-
wise) nonlinear function, whereas v4 and vp are the input and
output (differential) voltages of the comparator, respectively.
Again, a second-order expansion of the electrical variables
leads to:

vBo(t)po +vB1(t)p1 = F(vao(t)po +vai(t)p1).  (6)

The projection of (6) onto the first orthonormal polynomial
o yields:

UBo(t)ZAF(UAo(t)SOo(f)JrUAl(t)%(f))wo(ﬁ)w(f)dﬁ- (7

The inner product integral on the right-hand side has been
made explicit to highlight that, due to the nonlinearity, no
closed-form expression is available. In order to arrive at a
deterministic and closed-form expression, the integral in (7)
is approximated by means of a quadrature rule, thus leading
to:

vpo(t) & Yy F (vao(8)po (&) + var (H)e1(Eg)) po(&g)w,.

(®)
In (8), @ is the number of quadrature points &, and w,
are the corresponding weights, depending on the adopted
quadrature rule. It is important to note that (8) is a deter-
ministic nonlinear function, since the terms ¢ (&,), ¥1(&q)
and w, become numerical coefficients. Moreover, a very
good modeling accuracy with a low number of points @

can be achieved by selecting the optimal Gaussian quadrature
rule according to the weighting function w(&) (e.g., Gauss-
Hermite, Gauss-Legendre, etc.). For Gaussian variability, a
Gauss-Hermite quadrature with @) = 3 yields for instance
& =1{-V3,0,+V3} and w, = {1/6,4/6,1/6}.

Repeating the procedure for the second polynomial ¢
provides the sought-for deterministic constitutive equations for
the coefficients of the electrical variables. Expressions like (8)
are implemented into SPICE by means of standard controlled
sources. Also, analogous steps can be readily applied to
elements described by a current-voltage characteristic, like
diodes, as well as to more complex, possibly multi-terminal,
subcircuits, like those modeling MOSFET devices. Fig. 4
provides an illustrative and graphical summary of the proposed
method for the general case of a nonlinear multi-terminal
device.

The above procedure is applied in an automated fashion to
all the linear and nonlinear circuit elements of the stochastic
network, and a new augmented circuit is built by suitably inter-
connecting the augmented counterparts of each element. What
is more important, a single deterministic SPICE simulation of
the created network allows to compute all the voltage and
current coefficients, and subsequently retrieve the statistical
information of the circuit response. The proposed procedure
does not require dedicated or customized tools for the circuit
simulation, thus relying on commercially available SPICE
simulators.

Fig. 4. Graphical interpretation of the expected augmented characteristic of a
generic multi-terminal circuit element represented as a subcircuit and possibly
representing the MOS device or the comparator in the circuit of Fig. 1.

IV. NUMERICAL RESULTS

This section collects the results of the stochastic simulation
of the example test case of Fig. 1. Fig. 5 shows the stochastic
simulation of the averaged circuit for the boost converter,
carried out with HSPICE by considering o1 = o2 = 5%.
The gray area results from the superposition of a limited
set of MC responses and provides a qualitative idea of the
response fluctuation due to circuit uncertainties. The black
lines are the average response and the 3¢ limits estimated
using 1000 MC samples. Finally, the markers indicate the same
statistical information achieved via the PC-based simulation of
the augmented circuit, constructed considering P = 5. From
the above comparison, a very good accuracy is established for
the proposed technique.

To validate the modeling of nonlinear components, a
stochastic simulation is performed also for the complete circuit
with the MOSFET switch, the diode and the feedback network.
In order to provide a thorough comparison on the detailed
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Fig. 5. Stochastic simulation of the averaged circuit. Gray area: fluctuation of
the response due to circuit uncertainties; black lines: mean and +3¢ bounds
estimated with 1000 MC samples; markers: mean (O) and +3c bounds (o)
obtained via the PC-based simulation.

switching response, three zoom-ins are shown in Fig. 6.
The plots refer to the three time windows indicated by the
vertical dashed lines on the averaged response in Fig. 5.
The axes and curve labels are the same as in Fig. 5. The
statistical information extracted from 1000 MC simulations of
the complete nonlinear network is here compared against the
PC-based simulation (again with P = 5) with the inclusion
of augmented nonlinear device models. Excellent accuracy
can be again appreciated. For this configuration, the 1000-run
MC analysis took 5 h and 19 min, whereas the PC approach
required 6 min and 7 s, thus yielding a remarkable speed-up
of 52x.
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Fig. 6. Stochastic simulation of the complete nonlinear network. The close-
ups for three time windows (indicated by vertical dashed lines in Fig. 5) are
shown in order to better appreciate the fine detail of the switching behavior.
Curve identification is as in the inset of Fig. 5.

Finally, Tab. I shows the relative difference ¢, between the
standard deviations of the output voltage at 2.1 ms (i.e., in
the middle of the first window in Fig. 6) estimated with PC
and MC, the latter using an increasing number of N = 10,
100 and 1000 simulation samples. The table indicates that
a large number of MC samples is required to approach the
PC accuracy. For further information on the convergence and
accuracy of both MC and PC, the reader is referred to [8]. It is
important to point out, however, that the proposed PC-based
method still provides an improvement over MC even when
smaller numbers of simulation samples are considered.

TABLE I
ACCURACY ASSESSMENT BETWEEN PC AND MC.

MC (N = 10)
€ 12.00%

MC (N = 100)
4.02%

MC (N = 1000)
1.53%

V. CONCLUSIONS

This letter addresses the stochastic circuit simulation of
nonlinear switching networks for power electronics by means
of deterministic SPICE equivalents. For a given network with
circuit elements defined by uncertain coefficients, the voltage
and current variables are expressed in terms of a truncated
series of orthonormal polynomials of random variables. The
coefficients of the above expansion carry fundamental statisti-
cal information and are interpreted as deterministic variables
of an equivalent augmented circuit. The polynomial chaos
tool, possibly combined with quadrature integration schemes,
provides a robust framework for the computation of the SPICE
equivalents to be used in the augmented network. A single
SPICE simulation of the resulting circuit allows to compute the
coefficients of the voltage and current variables and therefore
their statistical behavior. An example involving the statistical
analysis of a either fully nonlinear or averaged and linearized
DC-DC boost converter is used to demonstrate the benefits
of the proposed technique in terms of both accuracy and
efficiency.
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