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SUMMARY. In this paper, we present some advanced shell models for the analysis of multilayered
structures in which the mechanical and physical properties may change in the thickness direction.
The finite element method showed successful performances to approximate the solutions of the ad-
vanced structures. In this regard, two variational formulations are available to reach the stiffness
matrices, the principle of virtual displacement (PVD) and the Reissner mixed variational theorem
(RMVT). Here we introduce a strategy similar to MITC (Mixed Interpolated of Tensorial Compo-
nents) approach, in the RMVT formulation, in order to construct an advanced locking-free finite
element. Moreover, assuming the transverse stresses as independent variables, the continuity at the
interfaces between layers is easily imposed. We show that in the RMVT context, the element ex-
hibits both properties of convergence and robustness when comparing the numerical results with
benchmark solutions from literature.

1 INTRODUCTION
Multilayered structures are increasingly used in many fields. Examples of multilayered structures

are sandwich constructions, composite structures made of orthotropic laminae or layered structures
made of different isotropic layers (such as those employed for thermal protection). In most of the
applications, these structures mostly appear as flat (plates) or curved panels (shells). In this paper,
attention has been restricted to flat structures made of different isotropic layers, although the models
could be easily extended to other cases.
The analysis of multilayered structures is difficult when compared to one layered ones. A number of
complicating effects arise when their mechanical behavior as well as failure mechanisms have to be
correctly understood. This is due to the intrinsic discontinuity of the mechanical properties at each
layer–interface to which high shear and normal transverse deformabilty is associated. An accurate
description of the stress and strain fields of these structures requires theories that are able to satisfy
the so–called Interlaminar Continuity (IC) conditions for the transverse stresses (see Whitney [1],
and Pagano [2], as examples). Transverse anisotropy of multilayered structures make it difficult to
find closed form solutions and the use of approximated solutions is necessary. It can therefore be
concluded that the use of both refined two–dimensional theories and computational methods become
mandatory to solve practical problems related to multilayered structures.
Among the several available computational methods, the Finite Element Method (FEM) has played
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and continues to play a significant role. In this work, the Reissner’s Variational Mixed Theorem
(RMVT) is used to derive plate finite elements. As a main property, RMVT permits one to assume
two independent fields for diplacement and transverse stress variables. The resulting advanced finite
elements therefore describe a priori interlaminar continuous transverse stress fields.
For a complete and rigorous understanding of the foundations of RMVT, reference can be made to
the articles by Professor Reissner [3]-[5] and the review article by Carrera [6]. The first application
of RMVT to modeling of multilayered flat structures was performed by Murakami [7],[8]. He in-
troduced a first order displacement field in his papers, in conjunction with an independent parabolic
transverse stress LW field in each layer (transverse normal stress and strain were discarded). An ex-
tension to a higher order displacement field was proposed by Toledano and Murakami in [9]. While
in [10], they extended the RMVT to a layer-wise description of both displacement and transverse
stress fields. These papers [7]-[10] should be considered as the fundamental works in the appli-
cations of RMVT as a tool to model multilayered structures. Further discussions on RMVT were
provided by Soldatos [11]. A generalization, proposing a systematic use of RMVT as a tool to fur-
nish a class of two dimensional theories for multilayered plate analysis, was presented by Carrera
[12],[13]. The order of displacement fields in the layer was taken as a free parameter of the theories.
Applications of what is reported in [12],[13] have been given in several other papers [14]-[21], in
which closed-form solution are considered. Layer-wise mixed analyses were performed in [22] for
the static case. As a fundamental result, the numerical analysis demonstrated that RMVT furnishes
a quasi three-dimensional a priori description of transverse stresses, including transverse normal
components. Sandwich plates were also considered in [15]. Recently, Messina [23] has compared
RMVT results to PVD (Principle of Virtual Displacements) ones. Transverse normal stresses were,
however, discarded in this work.
In [24]-[26], Carrera and Demasi developed multilayered plate elements based on RMVT, that were
able to give a quasi–three-dimensional description of stress/strain fields. But in these works, they
still employ the selective reduced integration [27] to overcome the shear locking phenomenon.
Recently, authors adopted the Mixed Interpolation of Tensorial Components (MITC) to contrast the
locking. According to this technique, the strain components are not directly computed from the
displacements but they are interpolated within each element using a specific interpolation strategy
for each component. For more details about MITC, the readers can refer to the works [28]-[32]. In
[33] and [34], the authors formulated plate/shell elements based on displacement formulation that
showed good properties of convergence thanks to the use of the MITC. The idea of this work is to
interpolate the transverse stresses (that are modelled a-priori by the RMVT) using the same strategy
of the MITC. In this way, the RMVT permits both to satisfy IC conditions and to withstand the shear
locking.
The shell elements here proposed have nine nodes. The displacement field and transverse fields are
defined according to the Unified Formulation [35] introduced by Carrera. In particular, higher-order
layer-wise models are used for the analysis of multilayered structures. The shear stresses σxz and
σyz are interpolated in each element according to the MITC in order to contrast the shear locking.
Also the in-plane strains are re-interpolated in order to withstand the membrane locking. Compar-
isons with 3D solutions are provided and they demonstrate the efficiency of elements presented.
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2 THE MODEL
2.1 Reissner’s Mixed Variational Theorem

The stress vector σ = (σi), i = 1, ...6 can be written in terms of the in-plane and transverse
components as σ = [σp σn] with:

σp = [σαα σββ σαβ ]T , σn = [σαz σβz σzz]
T (1)

and analogously the strain vector ε = (εi), i = 1, ...6 can be written in terms of the in-plane and
transverse components as ε = [εp εn], with:

εp = [εαα εββ εαβ ]T , εn = [εαz εβz εzz]
T (2)

The PVD variational equation is written as:∫
V

(δεTpGσpH + δεTnGσnH)dV = δLe (3)

The subscript H means that the stresses are computed by Hooke’s law, while the subscript G
means that the strains are computed from geometrical relations. The superscript T stands for trans-
position operation, V represents the 3D multilayered body volume. δLe is the virtual variation of
the work.

In the RMVT formulation the transverse stresses are assumed as independent variables and de-
noted by σnM (M stands for Model). The transverse strains are evaluated by Hooke’s law and
denoted by εnH. They should be related to the geometrical strains εnG by the constraint equation:

εnH = εnG. (4)

By adding in (3) the compatibility condition (4) through a Lagrange multipliers field, which turn
out to be transverse stresses, one then obtain the RMVT formulation:∫

V

(δεTpGσpH + δεTnGσnM + δσTnM(εnG − εnH))dV

= δLe

(5)

The third ’mixed’ term variationally enforces the compatibility of the transverse strain components.

2.2 The constitutive equations and the geometrical relations
In this section we will explain in detail the construction of RMVT employing the Hooke’s law

and the geometrical relations (see for example [25],[26]).
Referring to the Hooke’s law for orthotropic material σi = C̃ijεj , i, j = 1, ...6 the constitutive

equations become:

σpH = C̃ppεpG + C̃pnεnG

σnH = C̃npεpG + C̃nnεnG
(6)

where the material matrices are:
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C̃pp =

 C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66

 C̃pn =

 0 0 C̃13

0 0 C̃23

0 0 C̃36



C̃np = C̃T
pn; C̃nn =

 C̃55 C̃45 0

C̃45 C̃44 0

0 0 C̃33


(7)

The weak form of Hooke’s law according to the RMVT is:

σpH = CppεpG + CpnσnM

εnH = CnpεpG + CnnσnM
(8)

where:

Cpp = [C̃pp − C̃pn(C̃nn)−1C̃np]

Cpn = C̃pn(C̃nn)−1

Cnp = −(C̃nn)−1C̃np

Cnn = (C̃nn)−1

(9)

and σnM are the independent variables of our mode.
By considering a shell with constant radii of curvature and naming the curvilinear reference

system as (α, β, z), the geometrical relations can be written in matrix form as:

εp =[εαα, εββ , εαβ ] = (Dp +Ap)u ,

εn =[εαz, εβz, εzz] = (Dnp +Dnz −An)u ,
(10)

where u = [u v w] and the differential operators are:

Dp =


∂α
Hα

0 0

0
∂β
Hβ

0
∂β
Hβ

∂α
Hα

0

 , Dnp =

0 0 ∂α
Hα

0 0
∂β
Hβ

0 0 0

 , Dnz =

∂z 0 0
0 ∂z 0
0 0 ∂z

 , (11)

Ap =

0 0 1
HαRα

0 0 1
HβRβ

0 0 0

 ,An =

 1
HαRα

0 0

0 1
HβRβ

0

0 0 0

 . (12)

In these arrays, the metric coefficients are:

Hα = (1 + z/Rα) , Hβ = (1 + z/Rβ) , Hz = 1 . (13)

where Rα and Rβ are the principal radii of curvature along the coordinates α and β, respectively.
In RMVT the compatibility condition of the transverse strains is enforced by equating the second

equation of (8) with second equation of (10).
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2.3 Mixed Interpolated Tensorial Components
According to the finite element method and considering a nine-nodes element, the displacement

components and their virtual variations are interpolated on the nodes of the element by means of the
classical Lagrangian shape functions Ni:

u = Niδqi with i = 1, ..., 9 (14)

where qj and δqi are the nodal displacements and their virtual variations.
Considering the local coordinate system (ξ, η) of the element, the MITC shell elements ([36],[37])
are formulated by using, instead of the strain components directly computed from the displacements,
an interpolation of these within each element using a specific interpolation strategy for each com-
ponent. The corresponding interpolation points, called tying points, are shown in figure 1 for a
nine-nodes element.
The interpolating functions are calculated by imposing that the function assumes the value 1 in the
corresponding tying point and 0 in the others. These are arranged in the following arrays:

N̄1 = [NA1, NB1, NC1, ND1, NE1, NF1]

N̄2 = [NA2, NB2, NC2, ND2, NE2, NF2]

N̄3 = [NP , NQ, NR, NS ]

(15)

Therefore, the in-plane strain components and the shear stresses are interpolated as follows:

εαα = N̄1mεααm ; εββ = N̄2mεββm ; εαβ = N̄3mεαβm (16)

σαz = N̄1mσαzm σβz = N̄2mσβzm (17)

with m = 1, . . . , 6, except εαβ for which m = 1, . . . , 4. The strain components εααm , εββm
and εαβm still depend on displacements (14) by means of geometrical relations (10) and the shape
functions Ni are evaluated in the tying points.
Note that the transverse normal stress σzz is excluded from this procedure because it doesn’t produce
locking and it is interpolated on the standard nodes of the element as the displacements:

σzz = Niσzzi with i = 1, . . . , 9 (18)

2.4 Unified Formulation
The main feature of the Unified Formulation by Carrera [35] (CUF) is the unified manner in

which the variables are handled. According to CUF, the displacement field and the transverse stress
field are written by means of approximating functions in the thickness direction as follows:
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uk(α, β, z) = Fτ (z)ukτ (α, β) ; σkn(α, β, z) = Fτ (z)σknτ (α, β) τ = 0, 1, ..., N (19)

where Fτ are the so-called thickness functions depending only on the coordinate z. uτ , σnτ
are the unknown variables depending on the in-plane coordinates α,β and they are approximated by
FEM. τ is a sum indexes andN is the order of expansion assumed in the thickness direction (usually
N = 1, ..., 4).

If one chooses to adopt a Layer-Wise (LW) approach, the variables are defined independently for
each layer k of the multilayer as follows:

uk = Ft u
k
t + Fb u

k
b + Fr u

k
r = Fτ u

k
τ , τ = t, b, r , r = 2, ..., N. (20)

σkn = Ft σ
k
nt + Fb σ

k
nb

+ Fr σ
k
nr = Fτ σ

k
nτ , τ = t, b, r , r = 2, ..., N. (21)

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2. (22)

in which Pj = Pj(ζk) is the Legendre polynomial of j-order defined in the ζk-domain: −1 6
ζk 6 1.
In this way, the top (t) and bottom (b) values of the displacements and stresses are used as unknown
variables and one can impose the following compatibility conditions:

ukt = uk+1
b , σknt = σk+1

nb
, k = 1, Nl − 1 (23)

From this point on, the models here presented will be indicated as LMN (L=layer-wise and
M=mixed), where N is the order of expansion assumed in the thickness direction.

3 NUMERICAL RESULTS
In order to present the performance of our element, we have considered two tests: a sandwich

plate with isotropic core and skins (see [38]) and a cylinder (see Figure 2) of the same material.
These structures are simply supported and they are loaded with a bisinusoidal distribution of trans-
verse pressure applied to the top surface of the multilayer:

p(α, β) = sin
(πα
a

)
sin

(
πβ

b

)
where L is used in place of a for the cylinder. The wave numbers are: m = n = 1 for the plate and
m = 1, n = 8 for the cylinder.
The elastic and geometrical properties are reported in Table 1, where a, b are the in-plane dimensions
of the plate and R is the radius of the mid-surface of the cylinder.

We compare the results obtained with our finite element models with the analytical solution
obtained with a LM4 model and the Navier method (see [38]). This can be considered a quasi-
3D solution. Furthermore to validate the improvement of the solution approximated by the mixed
models in respect to classical models, we present the comparison with First-order Shear Deformation
Theory model (FSDT) in some cases. A mesh 10 × 10 is used to perform the analysis of the plate,
while 10 × 20 (20 in the circumferential direction) elements are taken for the cylinder. This choice
ensures the convergence of the solution.
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The normalized transverse displacement w̄ is evaluated at z = 0 in correspondence of the maximum
of the load:

w̄ = w(z = 0)
100Ec
h( ah )4

For the cylinder, R/h is considered in place of a/h.
The results are provided in Table 2 and 3 for the plate and the cylinder, respectively. As expected,

the FSDT and the LMN models give the same results in the case of thin plate (a/h = 100), while
for the thick plate (a/h = 1) mixed models with high orders of expansion are necessary in order to
match the quasi-3D solution. The Table 2 shows also that the mixed models here presented lead to a
locking-free finite element to treat the multilayered plates. The normalized transverse displacement
confirms the performance and the robustness of the element even for very thin sandwich plates. The
same conclusion can be drawn from Table 3 for the cylinder.
In Figures 3 and 4, we report the distribution of shear stress σαz and the normal stress σzz along
the thickness of the plate and the cylinder, respectively. They are evaluated in the points of the
domain where they assume maximum values. It is evident the non-linear distribution of the shear and
normal stresses obtained by high-order mixed models. In particular, one can note that LMN models
permit to satisfy the interlaminar continuity conditions even if the plate/cylinder is very thick (a/h =
1, R/h = 4) and the mechanical properties between layers are very different (Eskin/Ecore = 50).

4 CONCLUSIONS
In this work an advanced locking-free finite element for the analysis of the multilayered struc-

tures has been presented. The problem is modelled by adopting the variational formulation based
on RMVT. Mixed theories with layerwise (LW) description of both the displacements and the trans-
verse stresses are formulated. Different orders of expansion of variables in the thickness directions
are considered. The continuity condition of the transverse stresses at the interfaces between layers
(IC) is easily imposed by assuming the stresses as independent variables. The in-plane approxima-
tion is performed by a strategy similar to MITC (Mixed Interpolated Tensorial Components) finite
element approach. Two tests of simply supported sandwich plate and cylinder with isotropic core
and skins are considered in order to validate both properties of convergence and robusteness of the
element. The comparison with the quasi-3D solution shows an improvement of the behaviour of the
solution as regards both the description of transverse displacement and the transverse stresses. The
analysis of the solutions, performed versus the thickness of the structure, confirms that the elements
presented are locking-free for very thin structures. Moreover, these advanced elements permit the
transverse stresses to be correctly described along the thickness even when the multilayered structure
is very thick and the properties between layers are very different. More results about the analysis of
multilayered shell composite structures will be provided in future companion works.
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Table 1: Elastic and geometrical properties of sandwich.

Properties Skins Core

E(GPa) 50 1
ν 0.25 0.25

G(GPa) 20 0.4
h(m) 0.1 0.8

b=3a(m) 3,300
R(m) 10

Table 2: Plate. Maximum normalized transversal displacement w̄.

w̄ a/t = 1 a/t = 100

quasi-3D [38] 15.05 0.3778
FSDT 2.486 0.3757
LM1 18.23 0.3768
LM2 15.30 0.3768
LM3 15.07 0.3759
LM4 15.04 0.3768

Tables

Table 3: Cylinder. Maximum normalized transversal displacement w̄.

w̄ R/h = 4 R/h = 100 R/h = 1000

quasi-3D 6.588 0.7389 0.0327
LM2 6.586 0.7388 0.0328
LM4 6.585 0.7388 0.0328
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Figure 1: Tying points for the MITC9 shell finite element.
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Figure 3: Distributions od transverse stresses along the thickness in the very thick plate (a/h = 1).
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Figure 4: Distributions od transverse stresses along the thickness in the very thick cylinder (R/h =
4).
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