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Abstract: In the complex world of post-transcriptional regulation, miR-214 is known to control in vitro tumor cell move-
ment and survival to anoikis, as well as in vivo malignant cell extravasation from blood vessels and lung
metastasis formation. miR-214 has also been found to be highly expressed in human melanomas, and to
directly and indirectly regulate several genes involved in tumor progression and in the establishment of dis-
tant metastases (Penna et al., 2011). In this work, we exploit a computational pipeline integrating data from
multiple online data repositories to identify the presence of transcriptional or post-transcriptional regulatory
modules involving miR-214 and a set of 73 previously identified miR-214 regulated genes. We identified 27
putative regulatory modules involving miR-214, NFKB1, SREBPF2, miR-33a and 9 out of the 73 miR-214
modulated genes (ALCAM, POSTN, TFAP2A, ADAM9, NCAM1, SEMA3A, PVRL2, JAG1, EGFR1). As a pre-
liminary experimental validation we focused on 9 out of the 27 identified regulatory modules that involve two
main players, miR-33a and SREBF2. The results confirm the importance of the predictions obtained with the
presented computational approach.

1 INTRODUCTION

Aberrant expression of coding and non-coding genes,
such as microRNAs (miRNAs), occurs in melanomas,
one of the most aggressive human tumors. miRNAs
are 20 to 24 nucleotides long non-coding RNAs in-
volved in the post-transcriptional down-regulation of
protein-coding genes through imperfect base pairing
with their target mRNAs. miRNAs have been impli-
cated as possible key factors in several diseases be-
cause of their capability to affect the simultaneous
expression of multiple genes involved in the cell bi-
ology (Beezhold et al., 2010; Tu et al., 2009; Benso
et al., 2013; Di Carlo et al., 2013; Yuan et al., 2009).
Referring to melanomas, miRNAs such as let-7a/b,
miR-23a/b, miR-148, miR-155, miR-182, miR-200c,
miR-211, miR214 and miR-221/222 have been found
to be differentially expressed in benign melanocytes
versus melanoma cell lines or in benign melanocytic
lesions versus melanomas in human samples. Tar-
gets of some of the above listed miRNAs are well-

known melanoma-associated genes like the oncogene
NRAS, the microphthalmia-associated transcription
factor (MITF), the receptor tyrosine kinase c-KIT, or
the AP-2 transcription factor (TFAP2). We previously
showed that miR-214, the product of an intron of the
Dynamin-3 gene on human chromosome 1, coordi-
nates melanoma metastasis formation by modulating
the expression of over 70 different genes, including 2
activating protein transcription factors (TFAP2A and
TFAP2C) and the adhesion molecule ALCAM (Penna
et al., 2011; Penna et al., 2013). In fact, alterations
in the expression level of some of these genes leads
to downstream effects on a number of key processes
such as apoptosis, proliferation migration and inva-
sion. In order to elucidate the regulatory networks
mediated by miR-214 we designed a computational
pipeline able to search for different classes of regu-
latory modules between miR-214 and the set of 73
modulated proteins. In this analysis we focused on
the interplay between transcription factors (TFs) and



microRNAs (miRNAs) since several studies as (Zhao
et al., 2013) suggested its critical role in cellular reg-
ulation during tumorigenesis. Three different classes
of regulatory modules (see Figure 1) have been ana-
lyzed:

1. Type-0 (direct interactions), where miR-214 di-
rectly down-regulates one of the target proteins;

2. Type-1 (one-level indirect interactions), where
miR-214 down-regulates a Transcription Factor
which eventually regulates one of the targets;

3. Type-2 (two-level indirect interactions), where
miR-214 targets a Transcription Factor regulating
a gene which hosts another miRNA that down-
regulates one of the target proteins.

Although Type-0 and Type-1 interactions may be
quite straightforward to detect, Type-2 interactions
are not immediately evident and require a more com-
plex data integration process. Other types of inter-
actions may be similarly interesting (e.g. three-level
interactions like: miR-214 → TF1 → TF2 → Target
Protein) but have not been considered, at this stage,
because they are a lot more difficult to experimentally
validate. The search process for the three classes of
interactions was completely automated and based on
the integration of heterogeneous data extracted from
different public available repositories. The pipeline
highlighted no interactions of Type-0 and Type-1, and
27 possible Type-2 interactions. An experimental val-
idation of a subset of the identified interactions is
shown in the Results section.

2 Methods

2.1 Computational analysis

Searching for the three classes of interactions involv-
ing miR-214 presented in Figure 1 requires the inte-
gration of heterogeneous data sources. This section
introduces the selected public repositories used to re-
trieve the required information as well as the compu-
tational flow followed to integrate these sources and
to search for the chosen regulatory modules.

2.1.1 Data sources

The following public repositories represent the main
sources of information in our computational process:

• microRNA.org database (Betel et al., 2008) is
used to search for miRNA target genes. Mi-
croRNA.org uses the miRanda algorithm (John
et al., 2004) for target predictions. The algorithm

computes optimal sequence complementarity be-
tween a miRNA and an mRNA using a weighted
dynamic programming algorithm. The overall
database consists of 16,228,619 predicted miRNA
target sites in 34,911 distinct 3’UTR from iso-
forms of 19,898 human genes. Predictions are
associated to a mirSVR score, a machine learn-
ing method for ranking miRNA target sites by a
down-regulation score (Betel et al., 2010). The
mirSVR score is a real number that indicates the
prediction confidence (lower negative scores cor-
respond to better predictions). Data from mi-
croRNA.org are available for download in 4 dif-
ferent zipped packages: (1) Good mirSVR score,
Conserved miRNA, (2) Good mirSVR score,
Non-conserved miRNA, (3) Non-good mirSVR
score, Conserved miRNA, (4) Non-good mirSVR
score, Non-conserved miRNA. They are differen-
tiated in terms of mirSVR score (high or low) and
conservation (highly, low conserved). The four
archives have been unified in a single database,
keeping the information of the source archive in a
specific field as well as the related mirSVR score,
in order to be able to filter the retrieved targets and
to work with the most reliable predictions.
It is necessary to point out that the identification
of any regulatory module involving miRNA tar-
gets is always affected by the type-I and type-II
errors embedded in the miRNA target prediction
algorithms, and therefore an experimental valida-
tion, at least of the most promising results, is un-
avoidable.

• Transcription Factor Encyclopedia (Wasser-
man Lab, 2012) and Targetmine (The Mizuguchi
Laboratory, 2013; Chen et al., 2011) have been
used to identify genes Transcription Factors (TF).
TFE provides details of transcription factor bind-
ing sites in close collaboration with Pazar, a pub-
lic database of transcription factors and regula-
tory sequence information. Targetmine contains
only Upstream Transcription Factors. For each
gene, the database retrieves all upstream regula-
tory genes from the AMADEUS and ORegAnno
compiled TF-Target gene sets. Amadeus (Lin-
hart et al., 2013; Linhart et al., 2008) contains
TF and miRNA target sets in human, mouse, D.
Melanogaster, and C. Elegans, collected from the
literature. For each TF it is reported its set of tar-
gets, given as a list of Ensembl gene ids.

• Eutils programming utilities (NCBI, 2013) and
Mirbase.org (mirbase.org, 2013; Griffiths-Jones
et al., 2006) are used for retrieving coordinates
of precursor miRNAs and genes. miRBase is
a searchable database of published miRNA se-
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Figure 1: Three classes of regulatory modules involving miR-214 have been investigated in this paper: Type-0 - direct inter-
actions, Type-1 - one-level indirect interactions, and Type-2 - two-level indirect interactions)

quences and annotations. About 94.5% of the
available mature miRNA sequences considered in
this database have experimental evidence, thus
representing a reliable source of information.
Each miRNA entry in miRBase is correlated with
the related information on the location that is ex-
ploited to identify the host genes.

2.1.2 Computational flow

Figure 2 highlights the computational flow im-
plemented to search for miR-214 mediated inter-
actions. The full pipeline has been developed
in PHP language and coupled with a MySQL
database, which mirrors an optimized subset of
data coming from multiple online repositories. As
previously discussed, we focused our analysis on
the set of 73 protein-coding genes reported in Ta-
ble 1. These proteins, denoted as Target Proteins
in Figure 2, have been found to be modulated in a
direct or indirect manner by miR-214 in previous
microarray experiments presented in (Penna et al.,
2011).
The computational flow is organized into four
main data integrations steps that, starting from
miR-214, search for Type-0, Type-1 and Type-2
interactions.

Step 1 - detection of Type-0 interactions
Type-0 interactions require searching for target
genes that are directly regulated by miR-214.
We queried microRNA.org database to search for
miR-214 direct targets. Due to the computa-
tional approach used by microRNA.org to pre-
dict miRNA targets, false positives are in general
present in the query results. To limit these er-

Table 1: List of 73 miR-214 modulated genes. In green
and bold the set of proteins that result linked to miR-214
in the discovered regulatory modules. The sign indicates if
the gene was up regulated (+) or down regulated (-) in the
microarray experiments; in red, proteins that do not show
any connection  

 
 

+ADAM9 -JAM3 +THY1 CD44 ENG 
+ALCAM -LRP6 +TIMP3 CD9 EPCAM 
-BMPR1B +MET ADAM15 CDH1 ERBB2 
-CD40 +MMP2 ADAM8 CDH11 ERBB3 
+CD99 +NCAM1 APP CDH2 EREG 
+CEACAM1 -POSTN ARHGAP12 CDH4 F2 
-CEACAM5 +PVRL2 BCAM CDHR5 FCER2 
-EGFR -SEMA3A BSG CLU FLT1 
+HBEGF -TFAP2A CD36 CTSD HRG 
-JAG1 -TFAP2C CD40LG CX3CL1 ICAM2 
IL1R2 LCN2 TIMP1 IL8 LGALS3BP 
TIMP2 ITGA3 MITF VCAM1 ITGA6 
PAK2 ITGAV PODXL ITGB1 PODXL2 
ITGB3 PTEN JAM1 PVR JAM2 
SELE KDR TGFBI   

 

rors we restricted the query to the ”Good mirSVR
score, Conserved miRNA” and to the ”Good
mirSVR score, Non-conserved miRNA”, which
represent the most reliable subsets of computed
targets. Moreover, miRNA targets have been
further filtered according to their mirSVR score.
Such score is considered meaningful with a cut-
off of at most -0.1, based on the empirical distribu-
tion of the extent of target down-regulation (mea-
sured as log-fold change) that is expected given
a mirSVR score (Betel et al., 2010). For scores
closer to zero the probability of meaningful down-
regulation drops while the number of predictions
sharply rises (MicroRNA.org, 2013). In order to
work with high reliable predictions we selected
only those targets with mirSVR < -0.3.
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Figure 2: The pipeline four steps to investigate the presence of transcriptional or post-transcriptional regulatory pathways.

Then, in order to identify Type-0 interactions, the
full list of obtained miR-214 targets have been in-
tersected with the set of 73 Target Proteins.

Step 2 - detection of Type-1 interactions Start-
ing from the full list of miR-214 targets computed
during Step 1, the identification of Type-1 interac-
tions requires filtering out those targets that have
not been identified as Transcription Factors (TF)
for other genes.
Each miR-214 Target is searched both in Tran-
scription Factor Encyclopedia and in TargetMine

to check whether it represents a TF. For each iden-
tified TF the related target gene is then extracted.
This step allows us to build a list of TF Targets
that can be intersected with the list of 73 Target
proteins to identify Type-1 interactions.

Steps 3 and 4 - detection of Type-2 interactions
The last two steps of the proposed computational
flow are used to identify Type-2 interactions that
represent the most complex considered mecha-
nism.
For each TF Target identified during Step 2 we



searched for its candidate intragenic miRNAs
(Step 3). Intragenic miRNAs represent around
50% of the mammalian miRNAs. Most of these
intragenic miRNAs are located within introns of
protein coding genes (miRNA host genes) and are
referred to as intronic miRNAs, whereas the re-
maining miRNAs are overlapping with exons of
their host genes and are thus called exonic miR-
NAs. Moreover the majority of intragenic miR-
NAs are sense strand located, while only a very
small portion is anti-sense strand located. Our
analysis considers intronic and exonic miRNAs
both sense and anti-sense strand located. Intra-
genic miRNAs are retrieved from the miRBase
database. To identify intragenic miRNAs of a
given host gene we first searched for the genomic
coordinates of the gene using e-Utils; with the
gene coordinates we searched in the miRBase
database for all miRNAs with coordinates em-
braced in the ones of the gene.

Similarly to Step 1, for each detected Intragenic
miRNA we then searched microRNA.org for the
related Intragenic miRNA Targets (Step 4), and
finally we filtered out those targets that do not cor-
respond to any of the 73 target proteins. Each re-
sulting target protein then corresponds to a Type-
2 interaction. It is important to point out here
that the computational analysis cannot predict the
sign of the resulting differential expression (up or
down regulation). In fact, following the Type-2
regulatory chain, if miR-214 is silenced the ex-
pression of the target protein is very likely in-
hibited. If, instead, miR-214 is over expressed,
the regulatory module ”removes” the inhibition
and allows the target gene expression to possibly
change. The only realistic way to experimentally
verify the presence of the Type-2 regulatory mod-
ule is to correlate the over expression of miR-214
with the under expression of the cascade TF →
gene → miRNA that follows miR-214 (see Fig-
ure 1). This is obviously true unless the transcrip-
tion factor acts as a repressor of its own target,
which is statistically unlikely to happen. As for
now, since public repositories do not provide this
information we can only assume the TF to be an
enhancer of its target.

2.2 Biological methods

Computational predictions have been validated
against the following biological setup.

2.2.1 Cell culture

MA-2 cells were provided by R.O. Hynes (Xu
et al., 2008) and maintained as described in
(Penna et al., 2011).

2.2.2 Transient transfections of pre-miRs

To obtain transient miR-214 over expression, cells
were plated in 6-well plates at 30-50% confluency
and transfected 24h later using RNAiFect (QIA-
GEN, Stanford, CA) reagent, according to man-
ufacturers instructions, with 75 nM Pre-miR

TM

miRNA Precursor Molecules-Negative Control (a
non-specific sequence) or Pre-miR-214.

2.2.3 RNA isolation and qRT-PCR for
miRNA or mRNA detection

Total RNA was isolated from cells using
TRIzol R© Reagent (Invitrogen Life Technolo-
gies, Carlsbad, CA). qRT-PCRs for miR de-
tection were performed with TaqMan R© Mi-
croRNA Assays hsa-miR-33a assay ID 002306,
U6 snRNA assay ID001973 (all from Applied
Biosystems, Foster City, CA) on 10 ng total
RNA according to the manufacturer’s instruc-
tions. For mRNA detection, 1 ug of DNAse-
treated RNA (DNA-free

TM
kit, Ambion, Austin,

TX) was retrotranscribed with RETROscript
TM

reagents (Ambion, Austin, TX) and qRT-PCRs
were carried out using SREBPF2 gene-specific
primers (FW:gccctggaagtgacagagag, RV: tgctttc-
ccagggagtga) and the Probe #21 of the Universal
Probe Library (Roche, Mannheim, GmbH) using
a 7900HT Fast Real Time PCR System. Quantita-
tive normalization was performed on the expres-
sion of the U6 small nucleolar RNA or of 18S, for
miR or mRNA detection, respectively. The rela-
tive expression levels between samples were cal-
culated using the comparative delta CT (threshold
cycle number) method (2-DDCT) with a control
sample as the reference point (Bookout and Man-
gelsdorf, 2003).

3 Results and discussion

The computational pipeline presented in Sec-
tion 2.1 leaded to the identification of zero Type-0,
zero Type-1, and 27 Type-2 interactions. The fact that
no Type-0 and Type-1 interactions were found does
not mean that they do not exist, but that in the avail-
able databases there is no evidence of their presence.



The 27 Type-2 interactions target 22 out of the
73 considered miR-214 potential interacting proteins,
which have been marked in green in Table 1. The full
list of the 27 identified regulatory modules is shown
in Table 2.

From our predictions, miR-214 influences two
transcription factors: NFKB1 and TP53 (average
mirSVR = -0.4). Seven of the genes regulated by
these two TFs were identified as host genes for miR-
NAs targeting at least one of the 73 miR-214 modu-
lated proteins: APOLD1, BBC3, C11orf10, GDF15,
NFATC2, SREBF2, and SVIL. The hosted miRNAs
are: hsa-mir-33a, hsa-mir-604, hsa-mir-611, hsa-mir-
613, hsa-mir-3189, hsa-mir-3191, and hsa-mir-3194.
The average mirSVR score is significantly low (aver-
age mirSVR < -0.71). The high significance of the
mirSVR scores, resulting from interactions between
the intragenic miRNAs and their target proteins, is
particularly evident for TFAP2A, which outperforms
the others with a mirSVR score of -1.3043.

In this work, as a preliminary experimental vali-
dation, we focused our attention on the first 9 identi-
fied regulatory modules involving miR-214, NFKB1,
SREBF2, miR-33a and 9 of the 73 considered pro-
teins (ALCAM, POSTN, TFAP2A, ADAM9, NCAM1,
SEMA3A, PVRL2, JAG1 and EGFR1). We evaluated
miR-33a and SREBPF2 expression levels following
miR-214 over expression in MA-2 melanoma cells
and we observed a decrease in miR-33a and SREBF2
expression as shown in Figure 3.

Figure 3: miR-33a, and SREBPF2 expression modulations.
(A) miR-33a expression levels tested by qRT-PCR in the
MA-2 melanoma cell line following transfection with miR-
214 precursors or their negative controls (pre-miR-214 or
control). (B) SREBPF2 mRNA expression levels were eval-
uated in MA-2 cells by Real Time PCR analysis 72h fol-
lowing transient transfection with miR-214 precursors or
their negative controls (pre-miR-214 or control). Results
are shown as fold changes (meanSD of triplicates) relative
to controls, normalized on U6 RNA level and 18S, respec-
tively. All experiments performed in our work were tested
for miR-214 modulations; representative results are shown
here.

The observed co-regulation of miR-33a and
SREBPF2 is in agreement with literature data pub-
lished in (Najafi-Shoushtari et al., 2010), thus sup-

porting our computational predictions. The down-
regulation of miR-33a following miR-214 over ex-
pression could contribute to miR-214-mediated cell
invasion, in fact it has been demonstrated that an en-
forced expression of miR-33a inhibits the motility of
lung cancer cells (Rice et al., 2013).

This regulatory module resulted to be very inter-
esting also because SREBPF2 and miR-33a act in
concert to control cholesterol homeostasis (Najafi-
Shoushtari et al., 2010). In fact, SREBPF2 acts by
controlling the expression of many cholesterogenic
and lipogenic genes, such as low-density lipoprotein
(LDL) receptor, 3-hydroxy-3-methylglutaryl coen-
zyme A reductase, and fatty acid synthase. Instead,
miR-33a targets the adenosine triphosphate-binding
cassette A1 (ABCA1) cholesterol transporter, a key
mediator of intracellular cholesterol efflux from liver
to apolipoprotein A-I (apoA-I) to obtain high-density
lipoprotein (HDL). Considering that the lipogenic
pathway is a metabolic hallmark of cancer cells, these
preliminary data suggest a potential role of miR-214
in this aspect of cancer formation and progression.
Our hypothesis is further supported by experimental
results (not shown here), obtained from microarray
analysis in a context of miR-214 over expression.

To look for molecular and cellular functions as-
sociations within the almost 500 differentially ex-
pressed genes detected by microarray analysis com-
paring cells over expressing miR-214 versus con-
trols, we applied an Ingenuity Functional Anal-
ysis. The Ingenuity Pathways Knowledge Base
(http://www.ingenuity.com/) is currently the world
largest database of knowledge on biological networks,
with annotations performed by experts. The sig-
nificance value obtained with the Functional Analy-
sis for a dataset is a measure of the likelihood that
the association between a set of Functional Analy-
sis molecules in our experiment and a given process
or pathway is due to random chance. The p-value
is calculated using the right-tailed Fisher Exact Test
and it considers both the number of functional analy-
sis molecules that participate in that function and the
total number of molecules that are known to be as-
sociated with that function in the Ingenuity Knowl-
edge Base. In our case, the most significant func-
tions associated to our dataset resulted to be Cellu-
lar Assembly and Organization (7.08E-04 ÷ 3.95E-
02, 25 molecules) and Lipid Metabolism (9.54E-04
÷ 4.23E-02, 18 molecules).



Table 2: The 27 Type-2 regulatory modules related to miR-214 as obtained by the pipeline after data scraping. The set of final
targets (surface protein in the table) is limited to the 73 genes listed in Table 1. The first 9 modules have been experimentally
validated.

miR_214 mirSVR TF miRNA_Host Intragenic_miRNA Surface Protein mirSVR 

miR-214 -0.4056 NFKB1 SREBF2 hsa-mir-33a ALCAM -0.504 
miR-214 -0.4056 NFKB1 SREBF2 hsa-mir-33a POSTN -0.9944 
miR-214 -0.4056 NFKB1 SREBF2 hsa-mir-33a TFAP2A -1.3043 
miR-214 -0.4056 NFKB1 SREBF2 hsa-mir-33a ADAM9 -0.8819 
miR-214 -0.4056 NFKB1 SREBF2 hsa-mir-33a NCAM1 -1.1293 
miR-214 -0.4056 NFKB1 SREBF2 hsa-mir-33a SEMA3A -1.0884 
miR-214 -0.4056 NFKB1 SREBF2 hsa-mir-33a PVRL2 -0.3633 
miR-214 -0.4056 NFKB1 SREBF2 hsa-mir-33a JAG1 -0.7951 
miR-214 -0.4056 NFKB1 SREBF2 hsa-mir-33a EGFR -0.5771 
miR-214 -0.4056 NFKB1 SVIL hsa-mir-604 MMP2 -0.5526 
miR-214 -0.4056 NFKB1 SVIL hsa-mir-604 CEACAM5 -0.6373 
miR-214 -0.4056 NFKB1 C11orf10 hsa-mir-611 THY1 -0.3774 
miR-214 -0.4056 NFKB1 C11orf10 hsa-mir-611 NCAM1 -0.4402 
miR-214 -0.4056 NFKB1 APOLD1 hsa-mir-613 MET -0.8579 
miR-214 -0.4056 NFKB1 APOLD1 hsa-mir-613 ALCAM -0.5254 
miR-214 -0.4056 NFKB1 APOLD1 hsa-mir-613 TIMP3 -0.582 
miR-214 -0.4056 NFKB1 APOLD1 hsa-mir-613 CEACAM1 -0.9242 
miR-214 -0.4056 NFKB1 APOLD1 hsa-mir-613 BMPR1B -0.7156 
miR-214 -0.4056 NFKB1 APOLD1 hsa-mir-613 TFAP2C -0.6921 
miR-214 -0.4056 NFKB1 APOLD1 hsa-mir-613 JAG1 -0.4012 
miR-214 -0.4056 NFKB1 NFATC2 hsa-mir-3194 CD99 -0.8366 
miR-214 -0.4056 NFKB1 NFATC2 hsa-mir-3194 CD40 -0.7136 
miR-214 -0.3966 TP53 GDF15 hsa-mir-3189 JAM3 -0.8858 
miR-214 -0.3966 TP53 GDF15 hsa-mir-3189 PVRL2 -0.5146 
miR-214 -0.3966 TP53 GDF15 hsa-mir-3189 HBEGF -0.3806 
miR-214 -0.3966 TP53 GDF15 hsa-mir-3189 LRP6 -0.6945 
miR-214 -0.3966 TP53 BBC3 hsa-mir-3191 HBEGF -0.8502 

 
4 Conclusions

In this paper we presented the results of a com-
putational pipeline created for investigating possible
regulatory pathways between miR-214 and a set of 73
proteins previously identified as co-regulated with the
miRNA in melanomas. Thanks to this computational
flow, a set of 27 putative regulatory pathways has been
identified; a preliminary experimental validation per-
formed on 9 out of the 27 pathways provided interest-
ing insights about the regulatory mechanisms involv-
ing miR-214 in the considered disease. The analy-
sis suggests the involvement of miR-214 in metabolic
pathways that could control metastatization. More-
over, the study highlights the relevance of specific
miR-214 modulated genes, such as ALCAM, HBEGF,
JAG1, NCAM1, and PVRL2, that correspond to sur-
face proteins redundantly regulated by multiple path-
ways. Further laboratory experiments are under way
to complete the validations of the full set of identified
regulatory modules. Nevertheless, the preliminary re-
sults presented in this work already represent a signif-
icant achievement that seems to confirm the quality of
the predictions obtained with the proposed computa-
tional approach.
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Abate, S., De Pittà, C., et al. (2011). microrna-
214 contributes to melanoma tumour progression
through suppression of tfap2c. The EMBO journal,
30(10):1990–2007.

Penna, E., Orso, F., Cimino, D., Vercellino, I., Grassi, E.,
Quaglino, E., Turco, E., and Taverna, D. (2013). mir-
214 coordinates melanoma progression by upregulat-
ing alcam through tfap2 and mir-148b downmodula-
tion. Cancer research, 73(13):4098–4111.

Rice, S. J., Lai, S.-C., Wood, L. W., Helsley, K. R., Runkle,
E. A., Winslow, M. M., and Mu, D. (2013). Microrna-
33a mediates the regulation of high mobility group
at-hook 2 gene (hmga2) by thyroid transcription fac-
tor 1 (ttf-1/nkx2–1). Journal of Biological Chemistry,
288(23):16348–16360.

The Mizuguchi Laboratory (2013). Targetmine.
http://targetmine.nibio.go.jp/.

Tu, K., Yu, H., Hua, Y.-J., Li, Y.-Y., Liu, L., Xie, L., and Li,
Y.-X. (2009). Combinatorial network of primary and
secondary microrna-driven regulatory mechanisms.
Nucleic acids research, 37(18):5969–5980.

Wasserman Lab (2012). Transcription factor encyclopedia
(TFe). http://www.cisreg.ca/cgi-bin/tfe/home.pl.

Xu, L., Shen, S. S., Hoshida, Y., Subramanian, A., Ross,
K., Brunet, J.-P., Wagner, S. N., Ramaswamy, S.,
Mesirov, J. P., and Hynes, R. O. (2008). Gene expres-
sion changes in an animal melanoma model correlate
with aggressiveness of human melanoma metastases.
Molecular Cancer Research, 6(5):760–769.

Yuan, X., Liu, C., Yang, P., He, S., Liao, Q., Kang, S., and
Zhao, Y. (2009). Clustered micrornas’ coordination in
regulating protein-protein interaction network. BMC
systems biology, 3(65).

Zhao, M., Sun, J., and Zhao, Z. (2013). Synergetic regu-
latory networks mediated by oncogene-driven micror-
nas and transcription factors in serous ovarian cancer.
Molecular BioSystems, 9(12):3187–3198.


	Introduction
	Methods
	Computational analysis
	Data sources
	Computational flow

	Biological methods
	Cell culture
	Transient transfections of pre-miRs
	RNA isolation and qRT-PCR for miRNA or mRNA detection


	Results and discussion
	Conclusions
	Acknowledgments

