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Abstract

In the present work fluid flow and solute transport through porous media are described by solving

the governing equations at the pore-scale with finite-volume discretization. Instead of solving the

simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation

is used here. The realistic three-dimensional porous medium is created in this work by packing

together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed

on numerical issues related to mesh generation and spatial discretization, which play an important

role in determining the final accuracy of the finite-volume scheme, and are often overlooked. The

simulations performed are then analyzed in terms of velocity distributions and dispersion rates in

a wider range of operating conditions, when compared with other works carried out by solving the

Stokes equation. Results show that dispersion within the analyzed porous medium is adequately

described by classical power laws obtained by analytic homogenization [1]. Eventually the validity

of Fickian diffusion to treat dispersion in porous media is also assessed.

PACS numbers: 47.56.+r, 47.11.Df, 47.10.ad, 05.60.Cd

∗Electronic address: daniele.marchisio@polito.it
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I. INTRODUCTION

Flow and dispersion processes in porous media are found in many important industrial,

biological, and environmental applications and have been studied intensively since many

decades. At the microscopic scale (or pore-scale) these phenomena are governed by the

fundamental continuity equation, that for an incompressible fluid reads as follows [2]:

∇ · v = 0, (1)

the Navier-Stokes equation:

∂v

∂t
+ v · ∇v = −∇p

ρ
+ g + ν∇ ·

(
∇v +∇vT

)
, (2)

and the advection-diffusion equation:

∂c

∂t
+ v · ∇c = ∇ · (Dm∇c) , (3)

where v is the pore-scale velocity, p is the fluid pressure, ρ is the density, ν = µ/ρ is the

kinematic viscosity, µ is the dynamic viscosity, c is the solute concentration and Dm is the

molecular diffusion coefficient.

The description of this problem is traditionally approached from a macroscopic point of

view, by using continuum equations with parameters resulting from averaging procedures

carried out on the microscopic structures of the medium (e.g. permeability, porosity) or of

the flow (e.g. tortuosity, dispersivity) as explained by Whitaker [3], Berkowitz et al. [4] and

Nordbotten et al. [5], resulting in the following continuity equation:

∇ ·V = 0, (4)

in the momentum equation:

∂V

∂t
+ V · ∇V = −∇p

ρ
+ g − γV, (5)

and in the advection-dispersion equation:

∂(Cε)

∂t
+ V · ∇C = ∇ · (εD∇C) , (6)

where V is the Darcy velocity (or superficial velocity) and C is the macroscale solute con-

centration (mass, volume or number concentration of solute in the liquid or void phase).
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At low superficial velocities the friction coefficient is assumed to be constant: γ = µε/ρk,

where ε is the porous medium porosity and k is its permeability. In this case, if the time

derivative and the inertial terms of Eq. (5), are neglected and the momentum balance equa-

tion is applied to a simple one-dimensional problem, the original phenomenological (linear)

law developed by Darcy is retrieved. At higher superficial velocities, the Darcy-Forchheimer

law is generally used [6–8], and the friction coefficient is assumed to be function of the fluid

superficial velocity: γ = µε/ρα + β|V|, where now α and β are the two Darcy-Forchheimer

parameters. The application of the Darcy-Forchheimer law to a simple one-dimensional

problem, again neglecting the time derivative and the inertial terms, results in a quadratic

law, often written in the following form:

∆P

L
= 150

(1− ε)2

ε3
µV

d2
g

+ 1.75
ρV 2

dg

1− ε
ε3

, (7)

where ∆P are the pressure drops over the length L of the porous medium considered and V

is the superficial velocity along this direction. In Eq. (7) the Darcy-Forchheimer parameters,

α and β, are directly expressed in terms of the mean grain size characterizing the porous

medium, dg, and its porosity ε; the latter equation is known as the Ergun law.

The dispersion tensor D appearing in Eq. (6) is generally written as the summation of the

macroscopic effective molecular diffusion D0, and of the longitudinal, DL, and transversal,

DT, dispersion coefficients [9]. The first (D0) is the upscaled effect of the molecular diffusion

(i.e. it acts even when the fluid is at rest), while the last two are due to mechanical dispersion,

caused in turn by velocity inhomogeneities at the pore scale. It is important to notice that,

even if the molecular diffusion Dm is a scalar, the macroscopic effective molecular diffusion

D0 can become a tensor when the porous medium is not perfectly isotropic. The effect of

the system’s heterogeneity on particle transport and the importance of diffusive processes

occurring at the scale of the pores were noted in several works [10, 11]. In general all

these coefficients depend on the porosity of the porous medium, ε, on the tortuosity (i.e.

a coefficient, τ , or a tensor, τ , that takes into account the geometrical complexity of the

medium) and on the Peclét number of the flow (which will be defined later on). The

overall effect of diffusion and mechanical dispersion in the porous medium is also called

“hydrodynamic dispersion”.

Also for the hydrodynamic dispersion, as for the friction coefficient, laws are obtained

from experimental investigations and analytical methods and expressed in terms of the rel-
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evant dimensionless numbers, as well as the relevant parameters characterizing the porous

medium. However, the confidence with which these laws can be employed is not completely

clear, especially due to the non-linear dependence between the final macroscale parameters

and the initial characteristics of the medium and flow properties. Moreover, the experi-

mental determination of these parameters is often very complicated and affected by large

uncertainties.

These issues motivate our research efforts in the explicit simulation of microscale (i.e.

pore-scale) flow and hydrodynamic dispersion with the purpose of extracting macroscale

laws. In fact, pore-scale simulations can be used to confirm the theoretical and experimental

correlation laws and to explicitly compute the constant parameters, usually unknown, for

a specific pore geometry. Thanks to the increasing computing resources this analysis is

becoming an important area of investigation (see for example [12–22]), with applications

into contaminant transport in aquifer, reservoir simulation, CO2 storage, colloidal transport,

chromatographic separation and catalytic reaction engineering [23], recently reviewed by

Blunt et al. [24].

The objective of this work is twofold: (i) to analyze the flow and dispersion in a real-

istic three-dimensional geometry by solving the full Navier-Stokes equation (instead of the

often adopted simplified Stokes equation) and (ii) to develop and validate reliable compu-

tational tools for the efficient pore-scale simulation in complex geometries, accompanied by

the choice of adequate numerical methods and grid convergence tests, as currently done in

computational fluid dynamics (CFD). Particular attention is paid here to the well-known

mesh generation and spatial discretization issues encountered when Eqs. (1)-(3) are solved

with the finite-volume method (FVM). This work is moreover preparatory to the exten-

sion of the investigation of particle deposition in porous media from two-dimensional [25] to

three-dimensional geometries. Another novelty of this work, beyond the computational tools

and strategies adopted, is the usage of an “Eulerian” method to analyze solute dispersion

at the pore-scale. We will show that this approach, in contrast to the commonly used tracer

particle “Lagrangian” approach, has many computational and practical advantages.

The manuscript is organized as follows. First the macroscopic problem and its classical

formulation is briefly recalled and then computational tools developed to extract grain infor-

mation from real images, reconstruct realistic geometries and discretize the pore space are

described. Subsequently the numerical details about the pore-scale simulations are reported
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together with the results; simulation predictions are eventually processed to extract velocity

distributions and dispersion coefficients, as well as to assess the validity of the Fick law to

describe dispersion phenomena. Conclusions and possible next steps are discussed in the

last section.

II. RELATIONSHIP BETWEEN MICROSCALE AND MACROSCALE MODELS

The geometry considered in this work is a simple cube filled with grains or particles and

immersed in a Newtonian fluid. The fluid flow has one principal direction, indicated with

x, with fluid entering and exiting the domain from the faces orthogonal to the x direction

and null net fluid flow on the four faces orthogonal to the y and z axes. Starting from

the pore-scale velocity, v(x), and the pore-scale concentration, c(x), fields, by performing a

surface average over the y and z directions, the macroscopic (average) Darcy velocity in the

main flow direction:

Vx(x) =

∫ Ly

0

∫ Lz

0
vx(x)χ(x) dy dz

LyLz
, (8)

and the macroscopic (average) solute concentration:

C(x) =

∫ Ly

0

∫ Lz

0
c(x)χ(x) dy dz∫ Ly

0

∫ Lz

0
χ(x) dy dz

=

∫ Ly

0

∫ Lz

0
c(x)χ(x) dy dz

ε(x)LyLz
, (9)

are readily defined, where χ is the indicator function of void space, ε(x) is the porosity of the

sections, Lx,Ly,Lz are the extensions of the domain in the x, y and z directions respectively,

and vx is the x-component of v(x). The macroscopic continuity equation (Eq. (4)) becomes

the condition of constant macroscopic superficial velocity (or constant mass flux) along the

x direction [1, 26, 27]. Based on these definitions one can calculate the deviations of velocity,

v′x = vx − Vx/ε, and concentration, c′ = c − C, from their average values, and obtain the

following macroscopic equation:

∂(Cε)

∂t
+ Vx

∂C

∂x
=

∂

∂x

(
εD

∂C

∂x

)
, (10)

where the other advection terms are null due to the incompressibility condition and the

boundary conditions of zero net flux along the y and z directions employed in this work.

These boundary conditions also simplify the second-order dispersion tensor D of Eq. (6),

that results in a scalar equal to the summation of the already introduced effective molecular
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and longitudinal dispersion coefficients:(
εD0

∂C

∂x
− ε〈v′xc′〉

)
= εD

∂C

∂x
, with D = D0 +DL, (11)

where for the unclosed term 〈v′xc′〉 the standard Fick’s law was implicitly used:

〈v′xc′〉 =
1

εLyLz

∫ Ly

0

∫ Lz

0

v′xc
′ dy dz ≈ −DL

∂C

∂x
. (12)

For a detailed derivation of the effective molecular diffusion D0 and its relation to the

microscale molecular diffusion Dm, we refer to classical important works [1, 3, 28–30]. When

the porosity ε is not constant, one can rewrite Eq. (10) as follows:

∂C

∂t
+

(
Vx
ε
− ∂εD

∂x

)
∂C

∂x
=

∂

∂x

(
D
∂C

∂x

)
, (13)

where Veff =
(
Vx

ε
− ∂εD

∂x

)
takes the role of the effective velocity. The Fickian hypothesis of

Eq. (12) can be invalid for more complex porous structures characterized by low porosity,

fractures, multi-scale porosity [20, 31]. In these cases, many different models have been pro-

posed such as the fractional advection-diffusion-reaction (ADR) [32, 33] or the continuous-

time random walk (CTRW) [34]. Both are based on the generalization of Brownian motion,

considering Levy flight processes, while Tartakovsky et al. [35] proposed to introduce a

stochastic perturbation in the Darcy equation. For multi-scale porosity media, an extension

of Eq. (6) called multiple-rate mass transfer (MRMT) model [36], or the similar mobile-

immobile (or dual porosity) model [37] can be used. These models assume the existence

of an additional phase and an associated pore space with a different velocity and volume

fraction. We refer to the specialized literature cited for more details about these complex

models.

Different relationships can be used to estimate D as a function of the Peclét number:

Pe = Vxdg/εDm. For Pe tending to zero the following relationship holds [1]:

D

Dm

=
1

τ 2
, (14)

where τ is the tortuosity of the porous medium. Many definitions and formula have been

proposed and recent works [38–40] have demonstrated their effectiveness and the difference

between formulations. The most common definition involves the computations of streaklines

(i.e. Lagrangian trajectories) of the flow and the calculation of the ratio between their length
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and the porous medium size. Koponen et al. [38] and Duda et al. [40] proposed a simpler

way to compute τ as a volume integral

τ =

∫
|v| dx∫
vx dx

. (15)

A widely used correlation for the hydrodynamic dispersion at higher Pe numbers is:

D = αVx, where α is of the order of the mean grain size. van Milligen and Bons [41] derived

a single equation valid for different ranges of Pectlét numbers:

D

Dm

=
γ + β Pe2

Pec

1 + Pe
Pec

, (16)

where Pec is the critical Pe number, γ is the coefficient that scales the macroscale dispersion,

D, to the molecular diffusivity, Dm, for Pe � 1 whereas β is the linear coefficient between

D, Dm and Pe for Pe � 1. The three asymptotic regimes can be identified by defining

δ =
√

γ
β
:

D ≈


γDm when Pe� δ

√
Pec

βPe2/Pec when δ
√

Pec � Pe� Pec

βPe when Pe� Pec.

(17)

This simple relationship is not universally valid, in fact, it typically does not hold for more

complex porous media (where, for example, a non-linear relation can appear for high Peclét

number) and in the pre-asymptotic regime. Another common expression is the correlation

proposed by Bear [1]:
D

Dm

= γ +
αV

Dm

Pe

Pe + 2 + 4δ2
, (18)

where γ and δ have the same physical meaning of the coefficients appearing in Eq. (17).

III. THREE-DIMENSIONAL GRAIN PACKING AND MESH GENERATION

In this section the strategy employed to create the three-dimensional porous medium

used in this work and the mesh generation procedure for performing the finite-volume dis-

cretization are briefly described.
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FIG. 1: SEM image of the real sand sample used to extract grain size distribution and approximate

the grain shapes.

FIG. 2: Grain size distribution of the sand packing under study (black dashed line with triangles)

and approximation with Weibull distribution (continuous blue line with circles).
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FIG. 3: Mesh re-sampling, randomization and regularization. Original surface mesh (left) and

re-sampled mesh (right).

A. Grain packing generation

The first necessary step requires to build a representative microscopic model of a porous

medium sample in order to simulate fluid flow in these systems. There are many ways to

obtain such a model: the first choice is between real sand sample images, for example ex-

perimentally acquired by micro-computer tomography techniques, and realistic reconstruc-

tions by means of suitable algorithms [24]. Although the former provides representations

of the pore microstructure which are real, the extraction procedures (segmentation, surface

reconstruction, etc.) are usually quite complicated, expensive and with a high degree of

arbitrariness. Therefore, it was chosen to reconstruct a realistic porous medium with ad-hoc

algorithms. It has to be noted that when following this approach one has to make sure that

the characteristics and features of the generated porous medium (e.g. porosity, grain size

distribution and pore-throat structure) are representative of a real system. Notwithstanding

these difficulties, there are several advantages with this approach; it is possible, for example,

to test simple geometries (where real grains are modeled as spheres) that make it easier

to study multiple test cases (e.g. models with different grain diameter or porosity) in a

semi-automatic fashion [25].

A number of methods have been proposed to synthetically generate realistic packed
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geometries. Some of them are based on the idea of representing the medium with a

pore-network model, whereas some others “reconstruct” the entire structure of the porous

medium, down to the single grains, using different algorithms (i.e. random sequential ad-

sorption, gravitational deposition, collective arrangement, binary random fields) [42–47]. In

this work, two different methods of packing generation, both based on the open-source li-

brary Bullet Physics [48], were tested: SettleDyn [49] and Blender [50]. The tested methods

simulate the sedimentation of real three-dimensional grains, represented by convex polygo-

nal surface meshes, generating loose sand-like structures from given particle forms and grain

size distributions.

The first step is the definition of grain shape and grain size distribution, that in this work

were obtained respectively by two-dimensional scanning electron microscopy (SEM) scans

(see for example Fig. 1) and static-light scattering measurements carried out on standard

sand samples. For the case investigated in this work the final mean grain size d50 was equal

to 0.277 mm. The grain size distribution was then fitted with a Weibull distribution [7, 25],

resulting in a shape parameter equal to seven and was then randomly sampled when creating

the packing. Figure 2 compares the experimentally measured grain size distribution of the

sample with the reconstructed Weibull distribution.

Different confined packings of thousands of grains were then generated, by randomly

sampling the Weibull distribution, on a single core machine, with large quantity of memory

in a few hours. These tests highlighted, for the operating conditions investigated in this work,

a higher flexibility when using Blender, especially in terms of robustness and convergence.

One of these packings (created with Blender) with more than 3000 grains, was extensively

used in this work for most of the pore-scale simulations. The final optimized porous medium

is a cube domain of 2.1 mm length and is characterized by an average porosity of 0.35. By

splitting the geometry in ten sub-volumes along the x-axis, it was noted that the porosity

(in these sub-volumes) fluctuates around this value by approximately 1%, while the porosity

calculated on the surfaces varies between 0.31 and 0.39.

B. Mesh generation

After the generation of the grain packing, the geometric representation (made of polygonal

surface mesh) of the resulting grain packings was cleaned through mesh re-sampling, in order
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to remove intersections and artifacts. This was done with the marching cubes algorithm

[51, 52]. An example is reported in Fig. 3, that shows a surface mesh, obtained with the

algorithms previously described and grains characterized by very sharp edges, and the final

re-sampled mesh. After re-sampling the pore domain is ready to be discretized through

body-fitted meshes, as commonly done when the FVM is used.

As mentioned before, great care was put forward during the pre-processing phase of

this work in order to ensure the highest possible accuracy with respect to numerical and

computational issues. A careful analysis of the mesh generation process now follows, along

with the description of the steps taken to ascertain the validity of the final mesh thus

obtained.

The mesh utility snappyHexMesh, native to the open-source package OpenFOAM [53], was

used. Grid building was performed in two steps. First, a structured, cartesian mesh was

created in the fluid portion of the domain, in order to minimize average non-orthogonality

and skewness in the final mesh. The handling of the actual surface of the solid part in this

initial step is done in a way similar to how immersed boundary meshes are constructed,

resulting in a step-wise approximation of the grains. However, a precise reconstruction of

the actual grain geometry was deemed essential in this work, thus requiring a second step

in which the mesh was modified by means of relocating boundary vertices, resulting in a

body-fitted mesh. A visual aid for the description of this process is found in Fig. 4.

FIG. 4: Details of the mesh refinement process. Step-wise castellation (left), body-fitting via

vertices moving (center) and precise geometry reconstruction with subsequent mesh refinements

(right).

In addition to these two steps, one of the subsequent grid refinement steps is also visual-

ized. In fact, the most critical operation was the construction of a mesh of high quality to
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ensure grid independent results. To this end, a number of refinements were performed, and

two parameters monitored throughout in order to quantitatively assess the resulting mesh

suitability for use with the CFD code. Given the heavy computational resources required for

the CFD calculations (as described in the following sections), these tests were not performed

on the full domain used for the production runs, but rather on two smaller sub-volumes.

The linear dimensions of each of these volumes are smaller by a factor of four with respect

to the complete geometry, resulting in 500 µm × 500 µm × 500 µm cubes. This is shown

in Fig. 5.

FIG. 5: Complete geometry bounding box and location of the two sub-volumes chosen for the grid

independence analysis.

An outline of all the mesh modification steps, along with the calculated relevant param-

eters associated with each test (for one of the two sub-volums), is reported in Tab. I. As a

qualitative description of these cases, the first two represent the starting uniform mesh and a

uniform refining thereof, respectively. The following cases differ by representing progressive
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Case Mesh cells (thousands) ε , - d∗g , µm

U1 37 0,3025 203,0

U2 308 0,3088 207,8

B1 1.218 0,3102 217,4

B2-IC 2.284 0,3104 214,9

B2.5 3.539 0,3105 216,1

B3 5.053 0,3105 215,6

TABLE I: Number of mesh cells, porosity and effective grain diameter (µm) for each of the grid

refinement steps.

refinement of mesh cells size near the border of the grains, with this region being chosen in

order to increase the precision in the description of the momentum and particle concentra-

tion boundary layers, where the gradients of these properties will be stronger. The first of

the two properties of interest being monitored at this stage is the porosity: as it can be seen

from Tab. I its value changes (increasing slightly) with the increase in the number of cells.

This is due to the addition of more cells near the surface of the grains allowing not only for

a better numerical solution, but also for a more precise reconstruction of the actual porous

medium geometry. Again, Fig. 4 exemplifies this process. The fourth case (B2-IC) reaches

a satisfactory description in such respect. The other parameter needed to assess the grid

independence of the results for the flow field is the equivalent diameter d∗g. Following the

same methodology applied in a previous work (and described in details therein [25]), for each

level of grid refinement steady-state flow field simulations at different superficial velocities

were run, and the pressure drop results compared with the predictions of the Ergun law for

that system (see Eq. (7)). Treating the grain diameter as a fitting parameter, the effective

diameter d∗g reported in Tab. I results from the closest fitting of the obtained CFD results

with the theoretical predictions. Considering the variation of d∗g with increasing mesh cells

number, again the fourth case provides a good resolution of the momentum boundary layer,

as the heavy mesh refinements performed in the subsequent cases correspond to negligible

changes in effective grain diameter. Thus, the mesh for the complete geometry used in the

final runs, from which all the results presented in this work were obtained, was built in such

a way to result in the same features as those identified in the case B2-IC of Tab. I.
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IV. NUMERICAL DETAILS OF THE CFD SIMULATIONS

The flow field in the reconstructed geometry was simulated with the open-source code

OpenFOAM. The three-dimensional incompressible steady Navier-Stokes equations were solved

with the simpleFoam solver. As mentioned the equations were discretized with the FVM.

The numerical schemes used were chosen in order to minimize the numerical errors for

the different test cases characterized by a wide range of Reynolds numbers (see Table II).

A second-order central scheme with limiters to avoid oscillations was used for spatial dis-

cretization and the SIMPLEC scheme was used to overcome the pressure-velocity coupling

problem.

The whole cubic domain, extracted by the packing and reported in Figs. 3 and 5, was

studied with a fixed hydraulic head drop between inlet and outlet and with symmetric

conditions on the lateral boundaries. This means that the resulting main flow is directed

along the x-axis and there is no flow escaping from lateral boundaries (in the y and z

directions). The simulated domain length was Lx = Ly = Lz = 2 mm and it contained

about three thousands sand grains. For each value of hydraulic head drop, the mean flow

rate and Darcy fluxes Vx were calculated in sections of the porous medium orthogonal to the

mean flow field. A summary of the resulting Reynolds, Re = d50Vx/εν, and Peclét numbers,

Pe = d50Vx/εDm, is reported in Table II; both dimensionless numbers are evaluated by using

d50 = 0.270 mm as en estimation of the grain size dg. As it is seen, the flow fields obtained

at different Reynolds numbers were used to transport an Eulerian solute concentration field

with different molecular diffusion coefficients resulting in Peclét numbers ranging from 10−2

up to 106.

The simulations of the flow field were carried out in parallel on a Linux workstation with

12 Intel Xeon X6960 cores. The computational bottle-neck for these simulations turned out

to be the huge memory usage (100GB), rather than the convergence iterations (usually less

than 100). In our configuration this resulted in 12 hours of total CPU time for each flow

field computation.

The simulations of solute transport were carried out in OpenFOAM but with a unsteady

solver, up to the full saturation of the medium. A constant concentration (constant Dirichlet

boundary conditions with a fixed concentration equal to unity) was employed as boundary

condition at the inlet. A null concentration gradient was instead used as boundary condition
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on the grain surfaces (neglecting therefore particle deposition) and on the lateral and outlet

boundaries (approximating an infinite medium). These more computationally demanding

simulations were carried out in parallel on the Curie supercomputer, owned by GENCI and

operated by CEA, using 48 Intel Nehalem-EX X7560 cores. In our configuration this resulted

in 240 hours of total CPU time for each scalar transport computation. The domain was

decomposed by simple splitting the domain in each direction by powers of two. Scalability

tests were performed for the flow solver and for the scalar transport, showing that, even if

the three-dimensional mesh is highly irregular and unstructured, it is possible to reach an

almost linear speed-up up to 512 cores, excluding the I/O operations. Due to the high Peclét

number flows a second-order limited upwind space discretization with second-order Crank-

Nicholson time stepping was used to solve the solute concentration transport equation (i.e.

Eq. (3)).

Vx, m s−1 Re Pe

Dm = 5× 10−11, m2 s−1 Dm = 5× 10−10, m2 s−1 Dm = 5× 10−9, m2 s−1

1.2× 10−7 9.6× 10−5 1.9× 10−2 1.9× 10−1 1.9× 100

1.2× 10−6 9.6× 10−4 1.9× 10−1 1.9× 100 1.9× 101

1.2× 10−5 9.6× 10−3 1.9× 100 1.9× 101 1.9× 102

1.2× 10−4 9.6× 10−2 1.9× 101 1.9× 102 1.9× 103

1.2× 10−3 9.6× 10−1 1.9× 102 1.9× 103 1.9× 104

1.2× 10−2 9.2 1.8× 103 1.8× 104 1.8× 105

8.3× 10−2 66 1.3× 104 1.3× 105 1.3× 106

3.9× 10−1 314 6.1× 104 6.1× 105 6.1× 106

TABLE II: Superficial flow velocities, Vx, Reynolds numbers, Re, molecular diffusion coefficients,

Dm, and resulting Peclét numbers, Pe.

V. RESULTS AND DISCUSSION

In what follows the results of our simulations are presented, focusing first on the flow

field predictions, and subsequently on the solute transport predictions.
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A. Fluid flow

Figure 6 reports a typical example of the flow field inside the porous medium for a

Reynolds number of 9.6× 10−3. We begin our analysis by plotting the normalized pressure

drops, ∆p/ρV 2
x Lx, versus the normalized Darcy velocity, Vx/ν, resulting in the well known

behavior reported in Fig. 7. As expected two domains are identified, one at low Darcy flux

values corresponding to the region of validity of the Darcy law (and a linear behaviour in this

graph), and a second one at higher values of Darcy flux where this law is not valid anymore.

From the slope of the curve (in the first linear region) an intrinsic permeability of 4.0×10−8

cm2 can be obtained. By using Eq. (15), the tortuosity, τ , was estimated in our case to be

equal to 1.2 for low Re. However, for Reynolds numbers greater than ten it increases and

reaches the value of 1.7 for Re = 314. This is due to the different flow conditions in the pore

space arising at higher velocities, changing the trajectories of the moving fluid and thus τ .

Further analysis of the simulation data requires some upscaling, for which different

methodologies were proposed and we refer to the work of Cushman et al. [54] for an overview.

In the present work simulation results were analyzed by both volume-averaging on the whole

three-dimensional domain and by surface-averaging on ten equispaced sections orthogonal to

the main flow direction x. In addition to that these ten surfaces were also used to evaluate

how relevant properties are spatially distributed.

For example, by analyzing how the fluid velocity differs from point to point on these

ten surfaces, the data reported in Fig. 8 and Fig. 9 were obtained. These figures show

the velocity distributions for the x, y and z fluid velocity components, in three of the

ten sections investigated, for two superficial velocities, resulting in Reynolds numbers of

Re = 9.6 × 10−3 and of Re = 66, respectively. The histograms were computed with 1000

random samples on each surface and are reported in logarithmic scale. As it is possible to

see from Fig. 8, the velocity distribution for the x component has a maximum corresponding

to the superficial velocity, Vx, but highlights in the section regions where the fluid moves

with different velocities. Comparison of these distributions with the equivalent Gaussian

distributions (that share the first three moments) highlights a much higher frequency of

velocities close to the mean value and, at the same time, the existence of larger tails of

the distributions. Closer observation of the distributions in the y and z directions leads to

similar conclusions, with the only difference that now these distributions are centered on
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FIG. 6: Visualization of the flow field in the porous medium for Re = 9.6 × 10−3. Velocity

magnitude is computed in a central slice and some flow streamlines are shown.

zero (as there is no net flux in these directions) and exhibit a certain symmetry and a shape

slightly closer to that of a Gaussian distribution. When the superficial velocity is increased

the situation observed is very similar (see Fig. 9) to the previous one, as in this case the

distributions are simply characterized by larger variances.

B. Hydrodynamic dispersion

To quantify the effect of these distributions in generating dispersion phenomena in the

porous medium, let us analyze the results of the solution dispersion simulations. One typical

result is reported in Figure 10, where the normalized solute concentration at three instants
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FIG. 7: Normalized pressure drops, ∆p/ρV 2
x Lx, versus normalized superficial velocity, Vx/ν. The

slope of the first part of the curve represent the inverse of the permeability of the medium.

of the simulation is reported. As it is seen, as the solute moves downstream hydraulic

dispersion takes place and the concentration front becomes more and more smoothed out.

As already said, the three-dimensional results were surface-averaged on sections perpen-

dicular to the main flow direction, and, among other variables, the average solute con-

centration in these sections was tracked versus time. The resulting time-evolution curves

(known as breakthrough curves) were then used to characterize the dispersion dynamics in

the medium. Three typical results for different Re and Pe numbers are reported in Fig. 11,

for nine equidistant sections, from x = 0.15Lx to x = 0.95Lx (to avoid boundary effects).

The breakthrough curves reported in Fig. 11 with continuous lines correspond to three

different regimes. In the first one (top) molecular diffusion is prevailing over advective

transport, in the second and third ones (middle) the two effects are of the same order of

magnitude, while in the fourth one (bottom) molecular diffusion can be neglected with

respect to advection. Due to the small changes in porosity of the sections, some of the

curves of contiguous sections overlap.

The concentration transport at the macroscale (as sketched in Fig. 11) should obey to

the macroscopic advection-diffusion equation reported in its general form in Eq. (6) and for

19



FIG. 8: Velocity distributions for Re = 9.6 × 10−3 and for, from top to bottom, the x-, y-,

and z-components and for, from left to right, the first, fourth and tenth section. The histogram

corresponds to the actual distribution as calculated from the simulations, whereas the red curve is

the Gaussian distribution with identical first three moments.

the problem investigated in this work, Eq. (6) takes the one-dimensional form reported in

Eq. (13), whose coefficients are in turn unknown. Neglecting the presence of a possible stag-

nant phase or a retardation factor, the only actual unknown parameter is the hydrodynamic

dispersion. However, also the effective transport velocity (Veff) was included as a unknown

parameter, to check the validity of the transport equation. Since we are considering a vol-

ume comparable to the representative elementary volume, there are not enough data along

the x-direction, but temporal data can be indeed considered (for fixed spatial locations).

The two unknown parameters (i.e. Veff and D) were computed with two methods. The

first method is based on the inverse problem formulation. Given the breakthrough curves

(concentration over time), the effective parameters are estimated with non-linear least square
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FIG. 9: Velocity distributions for Re = 66 and for, from top to bottom, the x-, y-, and z-components

and for, from left to right, the first, fourth and tenth section. The histogram corresponds to the

actual distribution as calculated from the simulations, whereas the red curve is the Gaussian

distribution with identical first three moments.

FIG. 10: Contour plots of the solute concentration in the porous medium at three instants of the

simulation for Pe = 1.9× 103.
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FIG. 11: Comparison between breakthrough curves (normalized solute concentration, continuous

red line) over dimensionless time t′ = tε/Vx obtained by surface-averaging over equidistant sections

of the porous medium for different Peclét numbers (from top to bottom, Pe = 1.9 × 10−1, Pe =

1.9×101, Pe = 1.9×103, Pe = 1.3×105) with the analytic solutions of the semi-infinite advection-

diffusion equation with the fitted parameters (dashed blue line).
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minimization using standard optimization techniques. The second strategy is instead based

on the method of moments [55], where the unknown parameters are calculated from the first

three normalized centered temporal moments at the outlet of the computational domain:

M0 =

∫ ∞
0

g(x = Lx, t) dt; M1 =

∫ ∞
0

g(x = Lx, t)t
M0

dt; M2 =

∫ ∞
0

g(x = Lx, t)t2 dt

M0

−M2
1 ,

(19)

where g(x, t) is the Green function of Eq. (6) (i.e. the solution for a Dirac delta boundary

condition centered at x = 0 and t = 0). The effective velocity is then given by:

Veff =

(
εLx
M1

)
, (20)

whereas the dispersion coefficient is given by:

D =
M2

2Lx

(
Vx
ε

)3

. (21)

This method in general performs better for the estimations of porosity (or equivalently the

Darcy fluxes) and hydrodynamic dispersion in terms of computational time, accuracy and

stability. Since the two methods resulted, however, in very similar (if not almost identical)

results, only the parameters estimated with the method of moments will be shown and

discussed.

Figure 12 shows the estimation of the effective velocity (Veff) divided by the value of Vx

computed from the averaging for the different Peclét numbers. As it can be seen, the effect

of diffusive flux (see Eq. (13)) is important for low Peclét numbers when they can be order

of magnitudes larger than the advective fluxes. When this effect is no more visible (i.e. for

high Peclét numbers), the estimated velocity is always slightly lower than the theoretical

one. This is clearly explained by Eq. (13) where the gradient of porosity appears as an

additional convective flux (in our case in fact the porosity in the last sections used for the

fitting is about 3% lower than the initial one).

Figure 13 shows the estimated dispersion coefficients D divided by the molecular diffusion

coefficient Dm for the different Peclét numbers investigated. It should be observed that the

scaling of D/Dm with the Peclét number reproduces many recent computational results and

classical power laws (obtained in turn by experimental and theoretical studies [29, 31, 56]).

As it is seen a constant behavior is observed in the first region (very low Pe), followed by a

superlinear relationship (with an exponent of 1.2) in the central part, and a linear scaling

at very high Pe in the last part.
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FIG. 12: Effective transport velocity, as estimated by the method of moments.

FIG. 13: Dispersion coefficients for different Peclét numbers, as estimated by the method of mo-

ments (blue crosses) together with two fitted correlation laws; the continuous black line is Eq. (17)

whereas the dashed red line is Eq. (18).
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It is interesting to notice that in the constant part (Pe → 0) of the plot, the result of

Eq. (14), is confirmed. In fact, for this system the tortuosity was quantified to be about 1.2,

resulting in a ratio between D and Dm of about 0.69 (as observable in Fig. 13). Considering

the linear regime (high Peclét numbers) the already introduced expression: D = αVx, was

found to be an adequate description for our medium; the constant α was estimated to be

between 60 and 90 % of d50, depending on the Peclét number.

Eventually, if the data of D/Dm versus Pe are fitted with the laws reported in Eqs. (17)

and (18), the following results are obtained. The fitted parameters for Eq. (17) are: γ = 0.51,

β = 0.52 and Pec = 0.99, whereas for Eq. (18) are: γ = 0.59, α = 1.52× 10−4, and δ = 1.76.

It is interesting to highlight that the coefficient γ estimated with these two correlations are

in good agreement with each other and with the estimation of tortuosity given by Eqs. (14)

and (15). Both laws are reported (with these values of γ, α, β, δ and Pec) in Fig. 13 together

with our simulation results.

At last it is interesting to verify the validity of Fickian diffusion, that was used to close

Eq. (12). In order to perform this analysis the quantity 〈v′xc′〉, reported on the left-hand

side of Eq. (12), was calculated and compared with the quantity reported on the right-

hand side of Eq. (12) for ten different sections. This latter quantity is the product of the

dispersion coefficient and the gradient on the main flow direction (x) of the surface-averaged

concentration, C(x), or in other words the dispersive flux as approximated by Fick’s law, with

the value of DL calculated with the fitting performed with the method of moments. Typical

results of this analysis for two superficial velocities are reported together with the dispersive

fluxes at four different instants of the simulations in Fig. 14 and, as it is possible to see, the

two curves are very close at low superficial velocity (Re = 9.6 × 10−3). Larger deviations

from the theoretical Fickian behavior are noticeable for higher velocities (Re = 66), where

vorticity and wakes develop more extensively. However, for both cases the hypothesis of

Fickian behavior can be safely assumed.

VI. SUMMARY AND CONCLUSIONS

Pore-scale simulations of single phase flows and scalar transport have been carried out

by means of CFD with high-order numerical schemes and advanced meshing techniques.

Wide ranges of Reynolds (from 10−4 to 102) and scalar Peclét (from 10−2 to 106) numbers
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FIG. 14: Comparison of the dispersion flux 〈v′xc′〉 as calculated from the three-dimensional simu-

lations (dotted lines with symbols) and as approximated by Fick’s law (computed as the spatial

derivative of the analytic solution for semi-infinite media with the fitted parameters, continuous

line) for two different Reynolds numbers (top: Re = 9.6 × 10−3; bottom:Re = 66) and at two

instants (from left to right).

have been investigated, including non-linear regimes. Results from steady-state (for flow

field) and transient (for transport) simulations have been extracted on a hundred mesh

slices perpendicular to the x−axis. Permeability, mean tortuosity, and mean shear rate

have been calculated explicitly from the flow field results, while the dispersivity has been

estimated with post-processing tools based on the method of moments and on the least

square formulation of the inverse problem.

The results demonstrate the validity of the method, predicting the linear and non-linear

regimes of Darcy’s law with well-defined permeability and tortuosity constants in the first

regime, and three different regimes for hydrodynamic dispersion [57]: the first one is domi-

nated by the molecular dispersion (for low velocity and fine particles), then a region where
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the mechanical and molecular dispersion are of the same order of magnitude, and finally a

region where the dispersion depends linearly on the Peclét number, where the inertial effects

dominate. This correlation for the hydrodynamic dispersion in terms of Peclét number is

verified for the porous medium under study with the proposed simulation and upscaling

tools.

The asymptotic dispersion regime is quickly reached and dispersion is well approximated

by the Fickian hypothesis, even if the fluid velocity distributions are not Gaussian. Further

studies will include a more careful characterization of the influence of the porous structures

in terms of porosity and tortuosity and numerical upscaling of more complex macroscopic

models will also be considered.
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