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Abstrat

In reent years the fous on eletroni integration shifted from high perfor-

mane miroproessors, whose integration trend is ditated by the famous

Moore law, to System on Chip (SoC) and System in Pakage (SiP) for mo-

bile and embedded appliations. The most ommon example of SoC an

be found in smartphones and tablets: multiore CPU (Central Proessing

Unit) and GPU (Graphis Proessing Unit), memory and Radio Frequeny

(RF) transeivers are often integrated in the same die or pakage leading to

tremendous redution in size and power onsumption of the devie. There-

fore SoCs/SiPs are by de�nition heterogeneous eletrial systems, in the sense

that analog and digital omponents for RF and Base Band (BB) appliations

are losely tied together.

To blend suh a variety of omponents in the same eletroni pakage

engineers fae new di�ulties both in design and veri�ation phases. Signal

and Power integrity need to be arefully addressed in onjuntion with noise

levels to address devies onstraints. In the ontext of Analog Mixed Signal

(AMS) validation, analog bloks are still the simulation time bottleneks.

The main issues are: the huge omplexity of the parasiti networks extrated

from omponents layouts and interonnets, the need of parametri models

for non-linear omponents for what-if analyses, the need of redued order

models for devies having huge ports ount like Power Delivery Networks

(PDNs) and pakages and the lak of low omplexity noise omplaint syn-

thesis methods for linear maromodels. Although tremendous steps forward

were ahieved in the last deades in the areas of system identi�ation and

model order redution there are still hanes for improvement.

In this thesis the state of the art from system identi�ation of Linear Time

Invariant (LTI) systems is revised and improved tailoring the needs of AMS

simulations for SoC/SiP appliations: a new system identi�ation algorithm

to ope with linear omponents having huge dynamial order and ports ount

(more than two order of magnitudes) is proposed and passivity onstraints

are veri�ed and imposed by means of parallel algorithms. The identi�a-

tion of parametri linear models is extended to parameterized small-signal

models for non-linear devies. Finally a low-omplexity noise ompliant syn-

thesis algorithm is introdued in order to export the maromodels in standard

SPICE-based solvers. The main ontributions of this work are: redution of

simulation time for the veri�ation of modern SoCs/SiPs, introdution of

parameterized small-signal models for non-linear RF omponents enabling a

simpli�ed assessment of di�erent projet senarios supporting the widespread



Intelletual Property (IP) reuse pattern, optimization and simpli�ation of

the veri�ation �ow based on the provision of multi-purpose IP bloks in the

form of noise ompliant networks.

We are faing the rise of a new era for onsumer eletroni, and time-

to-market is a key feature in the development of new produts. Therefore

the availability of e�etive Analog Mixed Signal methodologies beomes a

sustainable ompetitive advantage for ompanies that are willing to lead

these new market segments. The novel algorithms proposed in this work

were proved to be of pratial relevane in that sense.

Most part of the material presented in this work is based on a researh

ativity arried out at the Munih site of Intel Mobile Communiation. As a

onsequene the methodologies proposed here, arising from pratial needs,

were tested on several ommerial benhmarks demonstrating the importane

of melting researh ativities with industries requirements.
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Chapter 1

System on Chip for mobile

appliations

Businesses fail either beause they leave their ustomers or beause their

ustomers leave them! [1℄

Andrew S. Grove, Intel orporation senior advisor

1.1 History and market perspetives

System on Chip (SoC) de�nes a highly integrated design pattern for Inte-

grated Ciruits (IC). Sundry levels of integration are grouped by the SoC

de�nition: starting from a simple hip to memory interonnetion up to the

integration of a omplete transeiver

1

hain for ellphones appliations. The

SoC paradigm raised naturally in the last deade to meet the requirements

of a new fast-growing market segment, i.e. the so alled mobile market.

Only a few years ago Personal Computer (PC) users were always demand-

ing for an inrease of the omputational power. Central Proessing Unit

(CPU) evolution was well predited by the famous Moore's law [2℄ and the

outome nowadays are very omplex devies delivering huge omputing a-

pabilities. The �rst step towards mobility was the introdution of Laptops.

Thereupon new design onstraints appeared: power onsumption and form

fator.

Teleommuniation systems pro�ted from the eletroni evolution as well:

internet and the world wide web inreased in usage and popularity, ellphones

evolved delivering a wide range of appliations exploiting the potentiality of

a fast growing network infrastruture. The standards for mobile ommunia-

1

Transeiver: devie omprising both a transmitter and a reeiver whih are ombined

and share ommon iruitry or a single housing.

1
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Figure 1.1: The most ommon system integration tehnologies are grouped

in the �gure above as a funtion of form fator and iruit-to-iruit inter-

onnet density [3, 4℄.

tion from the third generation (3G) on pushed toward an optimized usage of

the ommuniation hannel in order to allow the transmission of onsiderable

amounts of data.

In order to ombine laptop features with ellphones portability, SiP (Sys-

tem in Pakage) and SoC are nowadays the integration paradigm for smart-

phones, tablets and phablets. A nie overview of the most ommon system

integration

2

tehnologies as a funtion of form fator and iruit-to-iruit

density [3, 4℄ is depited in Figure 1.1. Planar integration tehnologies are

beoming more hallenging as transistor hannel lengths hit the range 20-30

nm. In order to meet the requirements of the market, 3D staking tehniques

are emerging as a promising workaround to planar integration limitations [5℄.

1.2 Design hallenges

Compared with the design of nowadays lassi ICs, Radio Frequeny (RF)

SoC design is more involved due to the melt of heterogeneous eletroni

systems in a small pakage [6℄. Moreover, for RF and mobile appliations,

Analog Mixed Signal (AMS) methodologies are a must sine Digital Signal

2

System integration is de�ned as the ombination of iruits and Intelletual Property

(IP) bloks on the same die.
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Figure 1.2: Fabriation apital versus test apital based on Semiondutor

Industry Assoiation (SIA) and International Tehnology Roadmap for Semi-

ondutors (ITRS), soure [12℄.

Proessing (DSP) bloks are in lose onnetion with analog and RF ompo-

nents [7℄ thus inreasing the overall design omplexity.

The main issues arising in RF SoC appliations an be divided in two

maro groups.

1. Die and pakage: At this level the growth in transistor ount and op-

erating frequeny has a diret impat on design omplexity leading to

• poor manufaturability: as the miniaturization proess gets loser

to the theoretial limits of CMOS (Complementary Metal-Oxide-

Semiondutor) tehnology [8℄ the design beomes very sensitive

to proess variation. This a�ets the throughput yield

3

, reliability

and testability. In 1999 the Semiondutor Industry Assoiation

(SIA) proposed an International Tehnology Roadmap for Semi-

ondutors (ITRS) showing how the ost of test is going to surpass

the ost of silion manufaturing as depited in Figure 1.2. As a

onsequene there is an inreasing interest in automati testing

methodologies [10℄ and adaptive design tehniques [11℄ to stem

the drawbaks related with proess toleranes;

• power onsumption: four are the main soures of power dissipation

in CMOS tehnology [13℄. Pdyn: dynami swithing power due to

the harging and disharging of iruit apaitanes. Pleak: due

to the leakage urrent from the reverse-biased diodes and sub-

threshold ondution. Pshort: due to the �nite signal rise/fall

times. Pbias: stati biasing power. Those issues are addressed

by supply power saling tehniques and Low Power (LP) CMOS

tehnologies [14℄;

3

The de�nition of Yield in the ontext of Integrated Ciruits is: the ratio of the number

of funtional hips to that of the total hips manufatured[9℄
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• power delivery issues: low-power onsumption onstraints trans-

formed the design of Power Delivery Networks (PDNs) into a very

hallenging task in omparison with previous IC tehnologies [15,

16℄. Multi-layer pakages and grids are ommon to supply lean

power to the integrated iruits. Two are the �gures of merit

for PDNs: the target impedane

4

[18℄ and the voltage IR drop.

Both aount for two di�erent phenomena: the stati IR voltage

drop

5

whih is introdued by the resistive nature of the PDN on-

dutors, and the indutive di/dt voltage drop whih derives from

loalized power demand and swithing patterns [19℄. Moreover,

large voltage drops in on-hip PDN due to large di/dt may lead

to Eletro-migration

6

(EM) that is one of the most ritial inter-

onnet failure mehanism in ICs [17℄. Besides Power Integrity

(PI) onsiderations, PDN should be also designed to a�ord dy-

nami power management methodologies meant for power saving

modes driven by the ontrol �rmware [21℄;

• heat dissipation: the typial range of operating juntion temper-

ature for modern VLSI designs is between 80◦ and 120◦ on the

silion substrate [22℄. Suh boundaries are easily exeeded due

to the umulative power dissipation of the transistors leading to

the generation of extreme amounts of heat in a relatively small

area. High thermal density has a negative impat on iruit per-

formanes by inreasing the gate delay and shortening the life of

the devie. Therefore the pakages are arefully designed to re-

move the heat from the IC substrate;

• on-hip rosstalk: this is mainly introdued by the inter-wire ou-

pling apaitane between adjaent signal lines in on-hip buses [23℄.

Both hardware (shielding via grounded ondutors or partiular

layout fabris [24℄) and oding signal tehniques (rosstalk avoid-

ane odes, CACs [25℄) are available to ope with this problem;

• noise: the e�et of thermal/white noise due to the inrease of

temperature beomes always more relevant and needs to be are-

fully addressed. The �iker (1/f) noise is tightly related with the

4

The target impedane is alulated from: power supply tolerane, urrent and swith-

ing ativity and has to be satis�ed by the PDN from DC to at least the �rst harmoni of

the lok frequeny [17℄.

5

Stati IR Voltage drop: is the redution of the nominal referene voltage for transistors

due to the transition of urrent (I) in the resistive (R) power delivery network.

6

Eletro-migration: �ow of metal atoms under the in�uene of high urrent densities.

May be the ause for inreased resistane and reliability problems [20℄.
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CMOS tehnology and beomes relevant only below a spei� or-

ner frequeny [13℄.

2. System and omponents: onsidering that portable devies are meant

to support di�erent ommuniation standards like: Bluetooth (IEEE

802.15.1), Wi-Fi (IEEE 802.11), GSM, GPRS, UMTS and many more,

it is sensible that the same transeiver has to be used for all the om-

muniations standards to meet the form-fator onstraints of a portable

devie. As a onsequene transeivers and ommuniations systems be-

ome more omplex due to the advent of new standards and the need

to preserve retro-ompatibility leading to

• interonnet delay: for o�-hip buses the main bottlenek is rep-

resented by the pakage. Data rate limits are related with the

quality of the pakage. Beause of that the performane of the

pakage are ruial for the assessment of Signal and Power In-

tegrity (SI,PI) analysis;

• o�-hip rosstalk: this is mainly due to inter-symbol interferene

(ISI) and indutive rosstalk [26℄. Eye diagram analysis [27℄ is

usually adopted to study suh kind of problems.

Exploiting Silion On Insulator (SOI) tehnology [28℄ the future of IC inte-

gration goes in the diretion of 3D staking [29℄. Integration density, power

onsumption and form-fator an be e�etively addressed by 3D SoC design

methodologies[30℄ while Through Silion Via (TSV) and Network on Chip

(NoC) are the emerging interonnet paradigms [31℄.

All the design hallenges and methodologies desribed in this setion are

faed relying on advaned modelling tehniques and a well established design

�ow. Next setions will outline the state of the art on maromodeling and

design �ow for RF SoC.

1.3 Maromodeling and Design �ow

Computer Aided Design (CAD) tehniques are well established and widespread

in the eletroni industries sine deades. The introdution of Eletroni De-

sign Automation (EDA) dates bak to 1980 when it beame lear that the

gap advanes in engineering produtivity (P1) ompared with the inrease in

silion omplexity (P2) was widening, as depited in Figure 1.3. This trend,

know as produtivity gap [32℄, beame more relevant due to the advent of

SoC designs and stringent time-to-market onstraints. The lassi design

�ow, depited in a simpli�ed version in Figure 1.4, is no longer e�etive in
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Figure 1.3: The bordeaux line represents the inrease for the number of

transistors per hip as a funtion of years (P2) while the green line indiates

the advanes in engineering (P1), soure [32℄.

oping with the produtivity gap in the ontext of SoC for mobile applia-

tions. The following requirements should be met by an e�etive SoC design

�ow:

• rapid development to satisfy time-to-market pressures;

• quality of results: performane, form-fator and power onsumption;

• simple veri�ation of omplex hips;

• simple to use for teams with di�erent levels and areas of expertise.

To satisfy the onstraints listed above modern design �ows are heavily re-

lying on the onept of IP (Intelletual Property) reuse [33℄: eah step in

the design �ow depited in Figure 1.4 is now enhaned and supported by

well established IP bloks. In a similar fashion to the ode reuse pattern

widely used in Information Tehnology appliations, the main idea behind

the IP reuse strategy relies upon the onstrution of a library of omponents

(generally alled IP bloks or maros) to be used in several di�erent projets.

More details on this topi are provided in the next setion.

Together with IP reuse, as ICs and design �ows beome more involved,

maromodels and related tools must improve and aomplish new features.

A maromodel is a high-level mathematial desription of the system under

analysis that aurately represents its behaviour. The pre�x maro empha-

sizes that only the input/output response is desribed, while no information

is retained on the internal struture of the physial system. Besides the typi-

al requirements of auray, numerial robustness, physial onsisteny and

e�ieny, a few new onstraints must be taken into aount for maromodels
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Figure 1.4: The mains steps involved in the design �ow of mobile devies

are skethed. Starting from spei�ations and standards the onept of the

devie is built. A model prototype is reated using a peuliar tehnology in a

CAD environment. Several EDA software are used in the pre-tape-out phase

to address: funtional spei�ations, manufaturability and physial onsis-

teny of the prototype model. In the tape-out phase funtional spei�ations

are heked on physial designs. In ase of issues the model prototype is used

as a test benh. Of ourse, to redue prodution osts, the minimum number

of tape-outs should be used to meet all the spei�ations.

• parameterization: in order to speed up what-if analysis and optimiza-

tion proedures maromodels should admit some of the most ommon

design parameters (temperature, Vdd and geometry) as input variables.

With suh a feature there is no need to build a new maromodel in ase

of variations of design parameters;

• usability: maromodels should be available in a standard format, like

Spie netlist or HDL (Hardware Desrition Language). The same model

must be e�etive for di�erent type of analyses (time/frequeny domain,

noise). Inputs, parameters and options must enlose a simple and lear

desription together with appliability bounds. Thereby independently

of user's expertise the model an be used e�etively, in a short time

and in several di�erent ontexts;

• salability: it is well known that SoCs omplexity, intended as dy-

namial order and elements/interonnetions ount, grows really fast

with time. Modelling tehniques must ope with this trend, providing

aurate models with low omplexity in a short time.

Design omplexity and produtivity gap will further inrease with the advent

of 3D integration tehnologies; therefore the availability of aurate models
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providing low omplexity is the orner stone for a modern design �ow in-

tended to meet tight time-to-market onstraints. Maromodels assoiated to

the sub-bloks of a omplex system an be ombined to mimi the behaviour

of the whole system leading to a tremendous simpli�ation in the analysis

of omplex devies. In the following setions the main features of IP reuse

and how to deliver adequate maromodels for this new design paradigm is

disussed.

1.3.1 IP reuse

Design tehniques based on IP reuse were born in the beginning of the 1990's

[33℄. Two major events are onsidered as the starting points for the IP reuse

di�usion:

• Establishment of the Virtual Soket Interfae Alliane (VSIA): in 1996

this ross-industry organization, foused on IP reuse for SoC design,

was founded to help foster this new design pattern by ombining the

skills and knowledge of semiondutor ompanies, system ompanies

and EDA industry;

• Register Transfer Level (RTL) IP reuse: in 1997 teams from Mentor

Graphis and Synopsis proposed the so alled Reuse Methodology for

soft IP. The ditates of this design pattern are olleted in the widely

known Reuse Methodology Manual [34℄.

The ore idea behind IP-oriented SoC design relies upon the availability

of reusable IP bloks that support plug-and-play integration in a pre-de�ned

�ow. As suh IP bloks are the highest level building bloks of an SoC, they

are olleted in libraries with various timing, area and power on�gurations

providing to designers simple to use IP maros.

The form of a reusable IP ore an vary depending on the IP devel-

oper/vendor; as a high level lassi�ation, three are the following main at-

egories of IP bloks [34℄:

• soft IP: bloks de�ned using RTL or higher level desriptions. They are

typially used for digital ores relying on a proess-independent hard-

ware desription language (HDL) that an be synthesized to gate level.

Advantages: �exibility, portability and reusability; while the drawbaks

are: lak of timing and power harateristis beause performanes are

tightly related with the tehnology used to synthesize the HDL. Those

maros an be enrypted to hide IP details and prevent the introdu-

tion of unreliable features; as a drawbak enrypted bloks an not be

adapted to �t new design senarios;
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Figure 1.5: The seletion of the most suitable form to deliver and IP blok

should take into aount the trade-o� depited in this plot [35℄.

• hard IP: usually de�ned by means of faithful layouts tailored for a

spei� appliation based on a given tehnology. For those bloks,

performanes are preditable but the onsequent drawbak is the lak

of portability;

• �rm IP: in the middle between hard and soft bloks, �rm IP is delivered

as parametrized analog iruit meant to be tailored by designers for a

spei� appliation. Blok's features an be trimmed leveraging on the

available parameters while retaining preditable performanes.

As a onsequene, seleting the most suited IP form for eah blok is of

paramount importane in order to build an e�etive and reliable design �ow

for SoC appliations. To drive suh an important deision, the plot depited

in Figure 1.5 is suggested as a referene map in [35℄.

When the IP reuse strategy is applied to the AMS design for RF SoC, one

problem arises [36℄, i.e. the seletion of the IP form most suited for an AMS

blok. Compared to digital design, for whih a ommon design methodology

is available [37℄, AMS design usually relies on spei� design proess. This

issue an be addressed using an e�etive mixed-signal SoC �ow [38, 39℄ based

on the AMS IP bloks in [40, 41, 42℄.

Currently, due to the omplexity of AMS designs, the soft and hard IP

forms are used for analog-mixed signal appliations [40, 41, 42℄. Of ourse,

this hoie restrits the sope of appliations reduing the overall SoC de-

sign �ow e�ieny [36℄. The migration of hard AMS IP bloks to the �rm

form alls for new features on the maromodels used to derive netlists and

shematis. Indeed, as stated in Setion 1.3, parametrizability and sala-

bility are the new features required on the maromodel side. Moreover, in
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order to provide a high level of usability for suh models (onsequently for

the �rm AMS IP bloks) a lear and simple taxonomy is needed; next setion

introdues suh a lassi�ation for maromodels.

1.3.2 Maromodels taxonomy

A simple and lear taxonomy for maromodels is needed in order to meet

the usability onstraints imposed by the IP reuse paradigm detailed in Se-

tion 1.3.1. Considering that the main bottlenek in the design of analog-

mixed-signal omponents is represented by the analog bloks, two will be the

main riteria behind the proposed taxonomy: all the omponents are analog

(indeed also digital bloks are synthesized via analog elements), and their

level of non-linearity is the base for lassi�ation. As a onsequene of this

oarse lassi�ation the proposed taxonomy is �orthogonal� to �ne tehnolog-

ial details attaining the degree of portability required by IP bloks meant

to the �rm IP form.

In the following for eah level of lassi�ation the state of the art on

maromodeling and system identi�ation will be brie�y outlined together

with a list of AMS omponents belonging to eah level of the proposed tax-

onomy.

Linear Time Invariant (LTI) systems

There are several omponents that an be aurately modelled as Linear

Time Invariant systems: pakages [43℄, buses and interonnets [44℄, Printed

Ciruit Boards (PCB) [45℄, Power Distribution Networks (PDNs) [46℄ and

Through Silion Via (TSV) for 3D SoC [47℄. The onstrution of LTI models

for those omponents is usually based on the work �ow depited in Figure 1.6

from [43℄: Sattering parameters are extrated from the layout or 3D model

of the omponent under analysis using a full wave solver. Thus the LTI

model an be extrated using the time or frequeny raw data leading to a

state-spae [48℄ or desriptor representation. Several well assessed tehniques

are available to onstrut LTI models from tabulated data:

• Nevanlinna-Pik interpolation [49, 50℄ is a well known result of om-

plex analysis. Two matrix versions exist for this problem: the ma-

trix Nevanlinna-Pik problem [51℄ and the tangential Nevanlinna-Pik

problem [52℄. This method was adopted for the �rst time in the system

identi�ation ontext by [53℄ and more reent appliation an be found

in [54℄. A omprehensive desription of the Nevanlinna-Pik problem,

its extensions and variations an be found in [55℄. Despite this method
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Figure 1.6: The typial work �ow used for the reation of LTI models from

pakages, PCB, TSV and related omponents is presented. Starting from the

layout or the 3D model a full wave solver is applied in order to extrat the

Sattering parameters. From S-parameters the LTI model is identi�ed via

the standard tehniques summarized in Setion 1.3.2. One the LTI model is

available it an be synthesized as a Spie network and the results from Spie

are validated with the results from the 3D full wave solver, soure [43℄.
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is theoretially attrative it is seldom used in pratie due to ompu-

tational omplexity and numerial stability reasons;

• Löwner interpolation dates bak to the work of Löwner for the interpo-

lation of given data on a full ar of the unit irle in the omplex plane

[56℄. It was introdued in the ontext of ontrol theory and system

identi�ation by Kalman and Belevith [57℄. More reent appliations

of this method an be found in [58, 59℄;

• The Sanathanan-Koerner iteration was originally proposed in [60℄ and

it is based on the omplex urve �tting proposed by Levy in [61℄. This

is a general strategy to reast a non-linear interpolation problem to

the solution of a sequene of linear overdetermined systems. The most

popular evolution of the Sanathanan-Koerner iteration is the Vetor

Fitting (VF) algorithm [62, 63℄. Nowadays this is the de fato standard

for the identi�ation of linear systems in the EDA ontext. Despite

VF has no guarantees of onvergene when dealing with noisy data

[64℄, it o�ers the best trade-o� between omputational omplexity and

robustness [65℄. As a onsequene the Sanathanan-Koerner iteration

and VF are used in this work and are presented in more details in

Setion 2.2;

• Padé approximation, originally proposed by the mathematiian Henri

Padé [66℄, addresses the best approximation of a funtion under a spe-

i� norm by a rational funtion of a given order. It was introdued

in ontrol theory to model exponential delays [67℄. Reent appliations

an be found in system identi�ation literature [68℄. This method was

quite popular before the introdution of VF and an be still onsidered

a good alternative to the Sanathanan-Koerner iteration for low-order

systems [69, 70℄;

• subspae methods [71℄ are all omposed by three steps: estimation of

the preditable subspae from raw data, extration of the state vari-

able from the preditable subspae and �tting the estimated states to a

state spae model. Several algorithms are available both for ontinuous

[72℄ and disrete [73℄ time models identi�ation. Those tehniques are

numerially stable and e�ient [74℄. The lak of a priori physial prop-

erties impositions, like stability and passivity, prevents the systemati

appliation of those methods on analog iruits.

It is worth noting that the tehniques listed above are meant for eletroni

devies whose behaviour an be e�etively approximated via lumped element
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networks, i.e. the propagation delay of the signal an be negleted, otherwise

di�erent tehniques should be used, like [75, 76℄.

Parameterized LTI (P-LTI) systems

Although LTI models are helpful and their usage is widespread, the main

drawbak of the LTI approah lies in the lak of �exibility. Indeed several

omponents like: PCBs, interonnets, pakages, RF indutors and TSVs

are designed and tested onsidering di�erent geometrial on�gurations and

working temperatures. As a onsequene, a onsiderable e�ort was spent in

the last years to extend the identi�ation algorithms introdued in Setion

1.3.2 to obtain Parameterized-LTI models:

• parameterized Nevanlinna-Pik interpolation was �rst proposed in [77℄

but found only few appliations in robust ontrol appliations [78℄;

• parameterized Löwner interpolation was introdued by [79℄. Due to the

major memory onsumption this method is not used in pratie;

• parameterized Sanathanan-Koerner (SK) iteration was �rst proposed

by Triverio in [80℄ and then extended by the same author to aount

for stability [81℄ and passivity [82℄. In a similar fashion VF was used

by Ferranti for the P-LTI identi�ation [83℄ and then with passivity

onstraints [84℄. Currently those are the most di�used tehniques for

the identi�ation of P-LTI models. Some appliations and advanes

are presented in Setion 3.2;

• parameterized Padé approximation an be found in [85℄. Being a om-

petitive alternative to VF and SK iteration it found several appliations

[86, 87℄;

• parameterized subspae methods were addressed reently [88℄. Those

methods su�er from a urse of dimensionality leading to an ill-posed

parameter estimation problem; a reent attempt to overome suh a

limitation an be found in [89℄.

Despite the theoretial e�ort, up to now none of the tehniques listed above

for the identi�ation of P-LTI systems has the robustness and the e�ieny

to beome part of a user-friendly EDA tool.

Small-Signal P-LTI

Using a proper Diret Current (DC) orretion strategy [90℄, presented in

Setion 3.1, P-LTI models an be also applied to mimi the behaviour of
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non-linear devies that behave almost linearly in the neighbourhood of one

equilibrium point

7

. This is a ommon senario in RF appliations, indeed

omponents like: Low Dropout (LDO) regulators, Operational Ampli�ers

(Op Amp), Low Noise Ampli�ers (LNA), bu�ers and ative �lters are de-

signed to behave almost linearly under spei� working onditions. In the

ontext of RF appliations, linear behaviour means that the devie does not

generate spurious harmonis or that the spurious harmonis are strongly at-

tenuated and thus negligible. For AMS high integration tehnologies, like

in SoC and SiP, the suppression of spurious harmonis is relevant to ontrol

oupling noise and undesired mixing e�ets.

Pieewise linear P-LTI

The P-LTI method an be extended to model strong non-linear devies like

drivers, mixers and Phase-Loked-Loops (PLLs) using a pieewise linear in-

teronnetion of P-LTI models. The �rst work dealing with piee wise linear

(PWL) networks dates bak to Stern in 1956 [92℄. A more rigorous study on

PWL models for non-linear devies is due to Chua [93℄, while several PWL

tehniques are ompared in [94℄. The idea to use state-spae models with

PWL states is quite reent and found several appliations for the modelling

of non-linear devies [87℄. In the ontext of AMS iruits PWL tehniques an

be found in: formal veri�ation of analog iruits [95℄, behavioural modelling

of nonlinear power ampli�ers [96℄ and mixed-signal iruits [97℄.

1.4 Proposed advanes

Despite the researh e�ort spent in the development of EDA tools and al-

gorithms, design and veri�ation of AMS SoC is still an open issue, whih

osts to mobile ommuniations ompanies huge resoures [32℄. Therefore

the main objetive of this dotoral work onsists in the development of new

methodologies to ope with the hallenges posed by SoC integration high-

lighted in Setion 1.2. The proposed solutions, while advaning the state of

the art for maromodeling of eletroni devies, arise from industrial on-

straints and real design test ases, providing an immediate ontribution to

pratial needs.

Chapter 2 deals with the identi�ation of linear maromodels belonging

to the LTI taxonomy lass presented in Setion 1.3.2. State-spae models

7

In this work by equilibrium or �xed point the Lyapunov de�nition of loal stability is

onsidered [91℄.
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representation and basi identi�ation tools are summarized in Setion 2.1

and 2.2. The main ontributions of Chapter 2 are:

• a ompressed maromodeling algorithm is introdued in Setion 2.3 to

overome the limitations of VF when dealing with omponents having

huge ports ount, from tens to hundreds. As disussed in Setion 1.2,

at system level the main bottlenek for interonnetions is represented

by the pakage, while at hip level 3D tehnologies like TSV and NoC

are meant to inrease the onnetivity. The original version of VF [62℄

and also the more reent advanes like [98, 99℄ are not suited to address

suh devies beause of the exessive memory onsumption or due to

ill-onditioning. The proposed ompressed maromodeling algorithm

overomes those issues relying on a lever redution of the data set used

for the identi�ation of the model. Auray and physial properties

like ausality and passivity an be imposed diretly on the ompressed

maromodel, as presented in Setion 2.3.4, leading to a tremendous

speedup on the overall identi�ation proedure (see Setion 2.4.4) in

omparison with state of the art tehniques [100℄;

• a parallel algorithm to verify the passivity of linear maromodels is

introdued in Setion 2.5. Sine the most ommon algorithms for sys-

tem identi�ation (VF and SK) do not guarantee the generation of

passive models, passivity needs to be addressed independently [101℄.

Moreover, passivity haraterization is of ourse the �rst step for the

passivity enforement [102℄, and needs to be repeated several times.

Several algorithms are available for the passivity haraterization [101,

103, 104℄. Some of them are already available for parallel arhitetures

[105℄. The algorithm proposed in Setion 2.5 is an e�ient parallel

implementation of [104℄;

Chapter 3 disusses the identi�ation of parameterized LTI (P-LTI) mod-

els. The availability of parameterized models is the ornerstone for the devel-

opment of a modern and e�etive design and veri�ation �ow. Considering

that several methodologies for the identi�ation of P-LTI models are available

as disussed in Setion 1.3.2, the main ontributions of Chapter 3 are

• a Diret Current (DC) orretion strategy for small-signal models of

non-linear iruits, presented in Setion 3.1. This simple but e�etive

idea is the link between linear and small-signal models for non-linear

devies. RF devies like LDO and OpAmp are designed to behave al-

most linearly under appropriate biasing. The so alled small-signal LTI

models of those devies are aurate around a spei�ed operating point
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but fail to reprodue the DC response of the real non-linear devie.

The proposed DC orretion an be used to overome this issue;

• parameterized small-signal models are proposed in Setion 3.2. A-

ording to the taxonomy proposed in Setion 1.3.2 models are sorted

depending on the level of non-linearity. The ombination of P-LTI

models with a parameterized DC orretion strategy makes it possible

to model fairly non-linear devies using a smooth ombination of linear

models parameterized by the operating point. The e�etiveness of this

strategy is demonstrated in Setion 3.3 by analysing some test ases of

pratial relevane.

Chapter 4 presents the synthesis of State-Spae models as linear lumped net-

works. As already noted in Setion 1.3.1, the �rst step for the migration of

AMS IP bloks towards the IP �rm desription relies on the availability of

�exible and e�ient implementations of the maromodels. Therefore anoni-

al synthesis

8

algorithm in Spie ompatible format are desribed. The main

ontributions of Chapter 4 are:

• modern presentation of anonial synthesis methods for stati and dy-

nami networks disussed in Setion 4.2 and 4.3. For eah synthesis

method: omplexity of the network and pratial relevane are de-

tailed. In partiular: stability, auray and noise analysis ompliane

are onsidered. Statial network synthesis tehniques are onsidered in

their own beause of pratial relevane for onnetivity, stati IR drop

[106℄ and power distribution analysis;

• a new synthesis method for dynami networks, based on Darlington

resistane extration framework, is presented in Setion 4.3.4. Eah

step of this new algorithm is desribed fousing on numerial robustness

and noise ompliane of the resulting Spie netlist.

Finally, onlusions are summarized in the last Chapter, highlighting both

theoretial and pratial relevane of results and methodologies disussed in

this work.

8

As explained in Chapter 4, a network synthesis is de�ned as anonial when it requires

the theoretial minimum number of primitive network elements.



Chapter 2

Linear Time Invariant

maromodels

Maromodeling tehniques have beome a standard pratie in system design

and veri�ation �ows. Suh methods allow to onvert external harateriza-

tions of linear and time-invariant strutures suh as passive devies and ele-

trial interonnets into ompat losed-form mathematial expressions or

iruit equivalents. This onversion is needed to allow system-level transient

simulations and veri�ations starting from a native haraterization that is

typially available in the frequeny domain in form of tabulated sattering

responses, the latter being determined from diret measurements or full-wave

numerial solutions.

This Chapter introdues some advanes to the state of the art of Linear

Time Invariants (LTI) maromodeling tehniques. The neessary bakground

on state-spae models and system identi�ation is disussed in Setion 2.1,

while two of the most popular algorithms for linear systems identi�ation

are desribed in Setion 2.2, i.e. the Sanathanan-Koerner iteration and Ve-

tor Fitting. Extensions and improvements for those identi�ation methods

are the main ontributions of this Chapter. In Setion 2.3, the Compressed

maromodeling algorithm is introdued as a lever system identi�ation pro-

edure based on Vetor Fitting for systems having a large port ount. In

Setion 2.5, a highly e�ient parallel passivity veri�ation method is pre-

sented.

2.1 State-spae maromodels

The state-spae representation was introdued in ontrol engineering and

iruit theory by Bashkow [48℄ and nowadays is the most ommon desrip-

17
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tion for dynamial systems. State-spae equations onstitute a mathematial

model of the physial system under analysis as a set of input, output and

internal state variables related by oupled �rst-order di�erential equations.

Dealing with linear time-invariant systems the assoiated state-spae equa-

tions read

ẋ(t) = Ax(t) +Bu(t), (2.1)

y(t) = Cx(t) +Du(t). (2.2)

with A ∈ RN×N
, B ∈ RN×P

, C ∈ RP×N
and D ∈ RP×P

onstant matries.

Inputs are olleted in vetor u, outputs in vetor y while the internal states

are in vetor x. Two features are of paramount importane for a state-spae

system

• observability: de�ned as the ability to always reonstrut the initial

state x(0) observing the outputs of the system for t ≥ 0 provided that

also the input evolution is known for t ≥ 0;

• ontrollability: de�ned as the possibility to always design an input

sequene that steers the system to a desired �nal state.

Both onditions are guaranteed when the model (2.1)-(2.2) has minimal dy-

nami order, de�ned as the MMillan degree of the system [107℄. If the

state-spae is not minimal, it an be onverted to a minimal one by means

of standard tehniques [108℄.

Taking now the Laplae transform of (2.1) and (2.2) and assuming x(0) =
0, it follows

sX(s) = AX(s) +BU(s), (2.3)

Y(s) = CX(s) +DU(s), (2.4)

whih leads to the transfer funtion matrix relating U(s) and Y(s)

H(s) = D+C(sI−A)−1B. (2.5)

The transfer funtion (2.5) is rational. In ase of poles (eigenvalues of A)

with unit multipliity, H(s) an also be written in the so alled pole-residue

form, i.e.

H(s) = D+
N∑

n=1

Rn

s− pn
, (2.6)

where pn are the simple poles, Rn are the assoiated residue matries, and D

is the diret oupling term. Please note that the three desriptions (2.1)-(2.5)
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Figure 2.1: Inident ai and re�eted bi power waves for a two-port network.

and (2.6) assoiated to the minimal state-spae (2.1) system are equivalent

to eah other and one is preferred to the others depending on the appliation

ontext.

The identi�ation work �ow desribed in Setion 1.3 (Figure 1.4) heavily

relies on the availability of aurate models in the form of (2.1). Suh mod-

els an be onverted to linear lumped networks to be solved using SPICE

based solvers using the synthesis tehniques disussed in Chapter 4. In or-

der to extrat aurate state-spae models using the raw data obtained from

measurement or full-wave solvers an identi�ation algorithm must be used.

In the following the raw data used for the identi�ation are supposed to be

Sattering (S)-parameters [109℄. Reall that the S-parameters for a 2-port

(the extension to P -port is straightforward) linear time-invariant network, as

depited in Figure 2.1, are de�ned as

[
b1
b2

]
=

[
S11 S12

S21 S22

] [
a1
a2

]
→ b = Sa , (2.7)

where Z0 is a presribed real referene impedane and the travelling waves

ai and bi are de�ned as

a1 =
V1 + Z0I1

2
√
Z0

, a2 =
V2 + Z0I2

2
√
Z0

, (2.8)

b1 =
V1 − Z0I1

2
√
Z0

, b2 =
V2 − Z0I2

2
√
Z0

. (2.9)

The main onstraint ommon to all identi�ation proedures onsists in the

minimization of the di�erene between the linear identi�ed model response

and the referene raw data-set. Working with S-parameters (2.7) the raw

data for an LTI network is omposed of matries Sl = S(sl) ∈ RP×P
, with

l = 1, . . . , L number of disrete frequeny samples sl = ωl. In this ontext

the identi�ation problem an be formulated as: �nd a state-spae model

S(s) suh that

min

∑

l

‖S(sl)− Sl‖2 (2.10)
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for a given norm.

Among all the identi�ation algorithms, listed in Setion 1.3.2 of Chap-

ter 1, for the extration of aurate state-spae models starting from raw

data the two most used in pratie are the Sanathanan-Koerner iteration

and the Vetor Fitting proedure. Those two methods are presented in the

following setion.

2.2 Sanathanan-Koerner and Vetor Fitting

The minimization onstraint (2.10) assoiated to the identi�ation problem

was addressed by Sanathanan and Koerner in [60℄, the resulting Sanathanan-

Koerner (SK) Iteration is brie�y summarized in this setion together with

his most popular extension, i.e. the Vetor Fitting (VF) algorithm [62℄.

The identi�ation of a salar transfer funtion h(s) is onsidered, instead
of the matrix ase (2.10), in order to simplify and fous the presentation on

the algorithm. The extension to multi-port devies is straightforward [60℄. In

the basi SK Iteration framework a set of frequeny-domain samples (sl, hl)
for l = 1, . . . , L is used to identify a rational model of the form

h(s;x) =
n(s;x)

d(s;x)
=

a0 + a1s+ · · ·+ ams
m

b0 + b1s+ · · ·+ bn−1sn−1 + sn
(2.11)

where n(s;x) and d(s;x) are respetively numerator and denominator poly-

nomials of degree m and n. The unknown oe�ients are olleted in the

vetor

x = (a0, a1, . . . , am, b0, b1, . . . , bn−1)
T . (2.12)

The general identi�ation problem requires to �nd oe�ients x whih min-

imize in some norm the residual error r(x), whose omponents are

rl(x) = hl −
n(sl;x)

d(sl;x)
. (2.13)

To avoid the solution of a non-linear interpolation problem the strategy pro-

posed by Levy in [61℄ an be used, i.e. instead of minimizing the non-linear

residual (2.13), the following modi�ed residual is minimised

el(x) = d(sl;x)rl(x) = d(sl;x)hl − n(sl;x) (2.14)

by solving the linear least square problem

Fx ≃ g (2.15)
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where gl = hls
n
l , F = (Vm+1,−H̃Vn) with H̃ = diag(hi), i = 1, . . . , L and

Vn Vandermonde matrix [110℄

Vn =




1 s1 s21 . . . sn1
1 s2 s22 . . . sn2
.

.

.

.

.

.

.

.

.

.

.

.

1 sL s2L . . . snL


 (2.16)

based on the available frequeny points sl with n + 1 olumns. Minimizing

‖e(x)‖ or ‖r(x)‖ is not equivalent due to the weight d(sl;x), therefore the SK
iteration [60℄ tries to overome this limitation using an iteration-dependent

residual, de�ned as

rνl (xν) =
d(sl;xν)hl − n(sl;xν)

d(sl;xν−1)
(2.17)

where the normalization weight d(sl;xν−1) is known from the previous itera-

tion ν−1. The iteration-dependent vetor xν whih minimizes the iteration-

dependent residual (2.17) an be found solving the overdetermined linear

system

Mν−1Fxν ≃Mν−1g (2.18)

where Mν−1 = diag(m
(ν−1)
i ) with i = 1, . . . , L and m

(ν−1)
i = d−1(si;xν−1).

In ase of onvergene, as ν → ∞ the minimization of (2.17) is equiva-

lent to minimizing (2.13). In pratie some numerial issues arise: it is

well known that Vandermonde matries and their ompositions are very ill-

onditioned [111℄, moreover raw input data an be a�eted by noise thus

making the identi�ation problem more di�ult.

In order to avoid those issues a general basis expansion an be used for

the numerator and denominator in (2.11), i.e.

h(s;x) =
n(s;x)

d(s;x)
=

m∑
j=0

cjφj(s)

n∑
j=0

djφj(s)
(2.19)

with x olleting the unknown oe�ients cj, dj leading to the so-alled

Generalized-SK iteration [112℄. A typial hoie is to use partial fration

basis funtions assoiated to a set of presribed poles qj, j = 1, . . . , n, i.e.

φ0(s) = 1, and φj(s) =
1

s− qj
, j = 1, . . . , n. (2.20)
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Substituting (2.20) into (2.19) leads to

h(s;x) =
n(s;x)

d(s;x)
=

c0 +
n∑

j=1

cj
s−qj

1 +
n∑

j=1

dj
s−qj

(2.21)

whih is equivalent to the model in (2.11). Indeed supposing that cj, dj and
the basis poles qj are known, (2.21) an be onverted in a standard rational

form with the zeros of the numerator zj, and the zeros of the denominator

pj suh that

h(s;x) =
n(s;x)

d(s;x)
= c0

n∏
j=1

s−zj
s−qj

n∏
j=1

s−pj
s−qj

= c0

n∏
j=1

(s− zj)

n∏
j=1

(s− pj)
(2.22)

where it is lear that the poles qj anel out being ommon to both numer-

ator and denominator. The GSK iteration is thus obtained by replaing the

monomials sjl in (2.16) with φj(sl).
A simple update on the basis poles and funtions of eah iteration leads

to the VF algorithm: starting from an arbitrary guess of the model poles

used to de�ne the basis funtions (2.20), the non-linear problem (2.13) is

solved using one GSK; then the initial basis poles are improved by using,

at the seond iteration, the set pj de�ned in (2.22) to onstrut the partial

fration basis funtions. The proess is then iterated until onvergene. A

more detailed desription of VF algorithm an be found in Appendix B or

in [62℄. No more details are provided here sine in the following VF is used as

an identi�ation engine, the main fous will be in preproessing of the data

and post-proessing of the model.

One drawbak of VF appears when dealing with devies with large ports

ounts like TSV, pakages and PDNs. Sine the omplexity of VF in the

most advaned formulation [98℄ sales as O (P 2LN2) per iteration, the iden-
ti�ation of devies having more than one hundred ports (P ) and requir-

ing several frequeny samples (L) for an aurate haraterization will run

out-of-memory on ommodity hardware, and will take a long time on high

performane servers. Therefore a lever reformulation of the identi�ation

problem aimed at reduing the impat of ports (P ) ount and number of sam-

ples (L) on the overall omplexity of Vetor Fitting (VF) is of great interest.

Next setion introdues an innovative tehnique, the so alled ompressed

maromodeling. This new methodology allows to perform the identi�ation
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of large ports ount devies, aurately sampled in frequeny, on ommodity

hardware (laptop) and in a short time ompared to standard identi�ation

proedures.

2.3 Compressed maromodeling

In this Setion an approah for improving the e�ieny of rational �tting and

passivity enforement for medium and large-sale strutures is presented.

Problems haraterized by possibly hundreds of ports and requiring thou-

sands of internal states for their models are addressed. Requirements for

problems of suh omplexity arise, as disussed in Setion 1.2, in power bus

modeling and optimization, hip-pakage o-design, TSV and NoC interon-

nets for 3D pakages and mixed-signal system design.

The basi idea behind the proposed strategy an be easily understood

onsidering a generi P -port eletrial interonnet struture haraterized

through tabulated sattering frequeny samples Sl ∈ CP×P
at frequenies ωl,

with l = 1, . . . , L. This raw data is usually available from �eld simulations or

diret measurements. The VF algorithm from Setion 2.2 is routinely used

to �t these data samples with a rational model

S(s) = S∞ +

N∑

n=1

Rn

s− pn
, (2.23)

where pn are the poles of the maromodel, Rn are the assoiated residue ma-

tries, and S∞ is the diret oupling term. Standard formulations of the VF

algorithm [62℄ minimize the global model error (2.10) through an iterative

sequene of linear least squares solutions. Sine the ompression strategy

presented here is omplementary to the VF implementation, a detailed de-

sription of VF algorithm is not reported here, more details an be found

in Appendix B or [62℄.

The main idea of the ompression sheme is presented through an exam-

ple. Figure 2.2 depits several sattering responses of a high-speed onnetor.

As it an be seen the various responses that are depited look very similar,

with only marginal di�erenes. Of ourse, these di�erenes may be impor-

tant, so they should be preserved in the �nal maromodel. However, it is

oneivable that all these responses an be represented as a linear superposi-

tion of seleted �representative� responses or, more formally, �basis funtions�.

Therefore expansions of the form

Sij(s) ≃
ρ∑

q=1

α(i,j)
q wq(s), (2.24)



CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 24

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

Frequency [GHz]

M
a
g
n
it
u
d
e
, 
d
B

Scattering matrix entries, magnitude (dB)

 

 

Figure 2.2: Various sattering responses of a high-speed onnetor (top

urves: re�etion oe�ients, bottom urves: rosstalks).

with onstant oe�ients α
(i,j)
q and frequeny-dependent �basis funtions�

wq(s), are suited for a lever redution of the dataset. It is lear that if

the number of required basis funtions wq(s) is muh smaller than the total

number of responses, ρ≪ P 2
, it is possible to ahieve a signi�ant omputa-

tional ost redution by applying VF to the few funtions wq(s), rather than
to the omplete set of P 2

raw sattering responses. This idea is developed

in the following Subsetion 2.3.1, relying on the well known Singular Values

Deomposition [110℄.

2.3.1 SVD-based ompression

Consider the set of raw sattering samples Sl, ∀l. For eah seleted frequeny

ωl, all elements of the sattering matrix are staked into a single row-vetor

xl ∈ CP 2

, onstruted as xl = vec(Sl)
T
. The vec() operator staks all

olumns of its matrix element into a single olumn vetor. More preisely,

element (Sl)ij with 1 ≤ i, j ≤ P orresponds to element (xl)k for 1 ≤ k ≤ P 2

through

k = i+ (j − 1)P
i = 1 +mod(k − 1, P )
j = ⌈k/P ⌉

(2.25)

where mod(a, b) returns the remainder of the integer division a/b and ⌈c⌉
is the eil operator that returns the smallest integer not less than c. The

mapping (i, j)↔ k in (2.25) will be used onsistently during the presentation.
All the vetors xl orresponding to di�erent frequenies ωl are now olleted
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as rows in a matrix X ∈ CL×P 2

, i.e.

X =



←− x1 −→
.

.

.

.

.

.

.

.

.

←− xL −→


 =



↑ · · · ↑
z1 · · · zP 2

↓ · · · ↓


 . (2.26)

Eah row xl of this matrix orresponds to a single frequeny ωl, while

eah olumn zk ollets all frequeny samples of a single sattering response

(zk)l = Sij(ωl).
Assume that the P 2

sattering responses an be represented as an ap-

proximate sum of few basis funtions. This implies that the olumn span of

matrix X an be safely approximated by projetion onto a subspae W hav-

ing a dimension ρ ≪ P 2
. Several alternatives are available for onstruting

this subspae. In this work, the Singular Value Deomposition (SVD) is used

sine it provides a full ontrol over the approximation error [113℄.

A diret appliation of SVD to matrix X leads to

X = ŨΣ̃Ṽ
H
= W̃Ṽ

H
(2.27)

where Ũ and Ṽ are omplex unitary matries olleting the left and right

singular vetors and Σ̃ ollets the sorted real and positive singular values

σ̃q on its main diagonal. Matrix W̃ = ŨΣ̃ is orthogonal with eah olumn

w̃q saled by the orresponding singular value, ‖w̃q‖ = σ̃q. The k-th olumn

of X is thus represented, using (2.27), as

zk =
∑

q

ṽ∗kqw̃q . (2.28)

This expression is exat, with no approximation error, if all singular val-

ues/vetors are onsidered in the expansion. Eah sampled sattering re-

sponse is thus represented as a superposition of �basis vetors� w̃q, whose

norm dereases uniformly with inreasing q.
The oe�ients ṽ∗kq are omplex-valued onstants. Sine a real expansion

oe�ient is needed in order to guarantee the ausality and the realness

of eah element in the expansion (2.24), the SVD is slightly modi�ed by

splitting real and imaginary parts X = X′ + X′′
where X′,X′′ ∈ RL×P 2

, or

equivalently

X =
[
IL IL

] [X′

X′′

]
(2.29)

where IL is the identity matrix of size L. Then, a trunated SVD deompo-

sition is performed, based on the optimized implementation for large matri-

es [114℄, where only the �rst ρ singular values are retained

[
X′

X′′

]
= UΣVT ≃ ŪΣ̄V̄

T
, (2.30)
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where Ū ∈ R2L×ρ
, Σ̄ ∈ Rρ×ρ

, V̄ ∈ RP 2×ρ
with ρ≪ r = min{2L, P 2} , and V̄

is orthonormal, V̄
T
V̄ = I. De�ning now

W̄ =
[
IL IL

]
ŪΣ̄ (2.31)

leads the low-rank approximation

X ≃ X̄ = W̄V̄
T
. (2.32)

Equivalently,

zk ≃
ρ∑

q=1

vkqw̄q , (2.33)

whih is similar to (2.28) but has guaranteed real oe�ients vkq. The q-
th olumn w̄q ∈ CL

of W̄, ollets all frequeny samples that de�ne the

q-th basis funtion. Sharp bounds, in di�erent norms, an be provided for

the error between the original matrix X olleting all sattering data and its

low-rank approximation X̄. Using the spetral norm, de�ned in Appendix A,

leads to

E2 =
∥∥X̄−X

∥∥
2
=
∥∥∥
[
IL IL

] [
ŪΣ̄V̄

T −UΣVT
]∥∥∥

2

≤
∥∥[IL IL

]∥∥
2

∥∥∥ŪΣ̄V̄
T −UΣVT

∥∥∥
2

≤
√
2σρ+1 , (2.34)

where the last row follows from standard properties of the SVD deomposi-

tion. It follows that the auray of the approximation is fully ontrolled by

the �rst negleted singular value σρ+1. Using the Frobenius norm the error

bound beomes

EF =
∥∥X̄−X

∥∥
F
≤
√
2L

√√√√
r∑

n=ρ+1

σ2
n , (2.35)

in terms of the umulative energy of the negleted singular values in (2.30).

The auray of the proposed ompression strategy is demonstrated in Fig-

ure 2.3: The top panel depits two sattering responses of the same onnetor

already onsidered in Figure 2.2, together with the orresponding low-rank

approximation. The di�erene is hardly visible; while the bottom panel re-

ports the �rst three basis vetors w̄q in the orresponding expansion (2.33).

2.3.2 Fitting the basis funtions

One expansion (2.33) is available, a rational approximation of eah basis

vetor w̄q is performed. Consider a row-vetor of salar funtions of frequeny

w(s) =
(
w1(s) w2(s) . . . wρ(s)

)
, (2.36)
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Figure 2.3: Top: raw sattering responses of a high-speed onnetor before

ompression (red dashed line), its ompressed (ρ = 30) approximation (blue

dashed line), and its low-rank rational approximation omputed by VF (blak

line). Bottom: �rst three vetors w̄q (blue dashed lines) in expansion (2.33)

and orresponding VF approximation (blak line).
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with eah element assumed in rational form

wq(s) = wq,∞ +
Nw∑

n=1

rq,n
s− pn

. (2.37)

The unknown poles pn, residues rq,n and diret oupling onstants wq,∞ are

omputed by applying a standard VF run. Sine only ρ independent re-

sponses are onurrently �tted instead ot P 2
, it is expeted that the runtime

of the VF proess is drastially redued. This is indeed the ase, as it is shown

in Setion 2.3.3. Note that a set of ommon poles pn for all basis funtions

is used in w(s), sine these will be used to reonstrut the original satter-

ing matrix through (2.33), thus obtaining a global rational maromodel in

form (2.23).

A suessful �tting proess with stable poles is guaranteed by the realness

of the expansion oe�ients in (2.33). In fat, post-multiplying (2.32) by V̄,

sine V̄
T
V̄ = I, it follows

w̄q ≃
P 2∑

k=1

vkqzk , (2.38)

whih shows that eah basis vetor an be represented as a linear ombination

of the raw sattering responses with real oe�ients. This is su�ient to

onlude that if the original responses are ausal, eah of the basis funtions

will be ausal. Therefore, the rational approximation (2.37) is guaranteed to

have stable poles pn, see [115℄.
A state-spae realization an be onstruted from (2.37) using standard

tehniques. For later onveniene, this realization is onstruted for the trans-

pose system, whih has a Single-Input Multiple-Output struture, as

w(s)T ↔
(

Aw Bw

Cw Dw

)
(2.39)

with Aw ∈ RNw×Nw
, Bw ∈ RNw×1

, Cw ∈ Rρ×Nw
, Dw ∈ Rρ×1

. A reshaped

global rational maromodel is de�ned aording to the expansion (2.32), as

XT (s) = V̄wT (s) =

= V̄Dw + V̄Cw(sINw
−Aw)

−1Bw ,
(2.40)

where XT (s) is a olumn vetor of P 2
rational responses. Finally, a global

rational maromodel for the original sattering representation is obtained

with a simple reshape operation

S(s) = mat(XT (s)) , (2.41)
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where the mat(·) operator reonstruts a P × P matrix starting from the

orresponding P 2 × 1 vetor vec(S). It is easy to show that a state-spae

realization of S(s) an be obtained as

S(s)↔
(

A B

C D

)
(2.42)

with

A = IP ⊗Aw , B = IP ⊗Bw ,
C = Ψ(IP ⊗Cw) , D = Ψ(IP ⊗Dw) ,

(2.43)

where ⊗ denotes the Kroneker matrix produt [116℄ and

Ψ =
(
V̄1 V̄2 · · · V̄P

)
(2.44)

with V̄j ∈ RP×ρ
olleting the P rows {j(P − 1) + 1, . . . , jP} of matrix V̄

V̄ =



V̄1
.

.

.

V̄P


 (2.45)

In (2.43) the size of the various matries is A ∈ RN×N
, B ∈ RN×P

, C ∈
RP×N

, D ∈ RP×P
, where N = NwP denotes the global dynami order of the

realization. The transfer matrix of the ompressed maromodel assoiated

to (2.43) reads

S(s) = C(sI−A)−1B+D . (2.46)

One the rational approximation (2.37) is available,w(s) is evaluated at eah

raw frequeny point ωl and the results are olleted as rows in matrix Ŵ ∈
CL×ρ

, whih in turn is used to reonstrut the samples of the global rational

maromodel, olleted in matrix X̂ = ŴV̄
T
. Due to the orthonormality of

the olumns of V̄ it follows∥∥∥X̄− X̂

∥∥∥
2
=
∥∥∥W̄V̄

T − ŴV̄
T
∥∥∥
2
=
∥∥∥W̄ − Ŵ

∥∥∥
2
. (2.47)

This implies that the onstrution of a global rational model starting from

the rational basis funtions is well-behaved, sine it results in a �tting error

that is idential to the �tting error ahieved in the onstrution of the low-

rank system w(s). The global approximation error between raw sattering

samples and global rational maromodel an thus be haraterized as

δ2 =
∥∥∥X− X̂

∥∥∥
2
≤
∥∥X− X̄

∥∥
2
+
∥∥∥X̄− X̂

∥∥∥
2

≤
√
2σρ+1 +

∥∥∥W̄ − Ŵ

∥∥∥
2
,

(2.48)

where the individual ontributions of SVD trunation and VF approximation

are expliit.
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Table 2.1: Benhmark strutures: L is the number of raw frequeny samples,

P the number of ports, ρ the number of basis funtions; Nx and Nw denote

the number of poles used for full and ompressed �tting, respetively.

Case L P P 2 ρ Nw Nx

1 471 12 144 17 20 22

2 690 48 2304 24 27 28

3 1001 56 3136 30 30 30

4 572 25 625 5 5 5

5 71 92 8464 22 22 23

6 570 34 1156 40 57 58

7 1001 24 576 13 12 12

8 1228 83 6889 31 30 31

9 100 8 64 6 29 29

10 197 245 60025 14 45 29

11 13 52 2704 3 3 3

12 40 800 640000 8 8 8

13 572 41 1681 10 11 11

14 141 542 293764 16 21 -

15 1000 34 1156 10 10 15

16 501 28 784 9 12 16

17 364 20 400 40 58 59

18 367 181 32761 6 24 39

2.3.3 Compressed �tting examples

Here are introdued some benhmark ases of pratial interest. Table 2.1

lists a total of 18 interonnet strutures, haraterized by di�erent number

of ports P and raw frequeny samples L. These strutures inlude high-speed
onnetors (ases 2, 3, 7), PCB interonnets (ases 9, 17), pakage inter-

onnets (ases 5, 8, 13, 15, 16), power or mixed signal/power distribution

networks (ases 1, 4, 6, 10, 11, 14, 18), and Through Silion Via (TSV) �elds

(ase 12). All raw frequeny samples were obtained from 2D or 3D �eld

haraterizations.

The last olumn in Table 2.1 shows the number of poles Nx that were

required by Vetor Fitting to �t the full set of responses with a global model-

vs-data deviation ‖δX‖2 = δ2 de�ned in (2.48). The publily available VF

ode [117℄ was used for these tests, by iteratively inreasing the number of

poles until the above auray ondition was met.

In this subsetion, the performane of standard and ompressed VF are
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Figure 2.4: Two sample sattering responses for ase 6 before (dash-dotted

lines) and after (dashed lines) ompression, ompared to the ompressed

rational �tted model responses (solid lines).

ompared. To this end, the ompression error E2, de�ned in (2.34), and VF

approximation error are �xed to a onstant value de�ned later (usually lose

to 0.1). This hoie results in a number of basis funtions ρ and in a number

of poles for the basis funtions Nw, also reported in Table 2.1. These results

show olletively that

• the number of basis funtions always results ρ ≪ P 2
, therefore the

omputational omplexity of the ompressed VF run always results

muh less than the standard full VF;

• the number of poles required for the ompressed and the full maro-

models is omparable,Nw ≃ Nx, showing that the ompression strategy

does not reate spurious or arti�ial omponents in the basis funtions

that would require an exessive number of poles for their �tting.

Figure 2.4 ompares the results of full and ompressed maromodels to

the raw sattering responses for benhmark ase 6, showing that an exellent

auray is obtained using both tehniques. Figure 2.5 shows some of the

orresponding basis funtions together with their rational �tted models.

Table 2.2 reports the exeution time in seonds that was required for om-

pression, denoted as TSVD (based on [114℄), for �tting the ρ basis funtions

and onstruting the ompressed maromodel, denoted as TVFW, and for ap-

plying standard VF to the full set of raw responses, denoted as TVFX. The
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Figure 2.5: First three basis funtions for ase 6. Original frequeny samples

w̄q (dashed lines) and rational model wq(s) (solid lines).

Table 2.2: CPU time in seonds required for data ompression (TSVD), based

on the SVD optimized implementation for large matries [114℄, and om-

pressed �tting (TVFW) ompared to full �tting (TVFX).

Case TSVD [s℄ TVFW [s℄ TVFX [s℄ Speedup

1 0.03 0.66 4.2 6.03

2 0.8 1.7 183.5 70.5

3 1.3 3.7 419.7 82.4

4 0.28 0.02 1.42 4.6

5 0.7 0.23 59.4 63

6 0.33 10.6 355.2 32.1

7 0.37 0.28 11.6 17.8

8 3.2 4.6 1273 160

9 0.004 0.2 0.94 4.44

10 2.4 1.2 1609 437.1

11 0.01 0.006 0.2 12

12 12.8 0.04 592 45.8

13 1.7 0.3 17.8 8.8

14 9.2 0.8 - -

15 4.8 1.5 39 6.1

16 0.3 0.154 12 24.2

17 0.15 8.05 77.3 9.4

18 2.2 0.4 2074 760.4
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overall speedup reported in the last olumn demonstrates how e�etive an

the ompressed maromodeling approah be for those ases that are hara-

terized by a large port ount or a large number of frequeny samples. For

ase 14, standard VF ould not even be applied due to an exessive memory

requirement.

2.3.4 Passivity of ompressed maromodels

There is no guarantee that the global maromodel (2.46) with state-spae

matries (2.43) is passive. It is however possible to expliitly enfore model

(asymptoti) stability by onstraining the poles pn to have a stritly negative
real part, a standard pratie in VF appliations [62℄. The fundamental

ondition under whih a sattering transfer matrix S(s) (2.102) represents
a passive maromodel is bounded realness [118, 119, 120, 115℄. A transfer

matrix S(s) is Bounded Real (BR) if

• eah element of S(s) is de�ned and analyti in Re{s} > 0;

• S∗(s) = S(s∗);

• Θ(s) = I− S(s)HS(s) � 0 for Re{s} > 0.

The �rst two onditions are guaranteed if the state-spae realizations (2.102)

is real-valued and asymptotially stable [115℄. Under these assumptions the

ondition on Θ(s) an be relaxed and heked only on the imaginary axis

s = ω
Θ(ω) � 0 , ∀ω , (2.49)

whih in turn is equivalent to requiring that all singular values of S(ω) must
be uniformly bounded by one at any frequeny

σi ≤ 1 , ∀σi ∈ σ(S(ω)) , ∀ω . (2.50)

Considering that σi =
√
1− λi, where λ ∈ λ(Θ(ω)) are the eigenvalues of

Θ(ω), it follows that (2.49) is equivalent to

λi ≥ 0 , ∀λi ∈ λ(Θ(ω)) , ∀ω. (2.51)

The passivity ondition (2.51), whih an be heked either via adaptive

frequeny sampling [104℄, see Setion 2.5, or through identi�ation of imagi-

nary eigenvalues of the assoiated Hamiltonian matrix [121℄, an be violated

over �nite or in�nite frequeny bands. In partiular, this seond ase ours

if the model is not asymptotially passive, i.e. minλ{Θ(∞)} < 0. In this

situation, asymptoti passivity an be reovered by perturbing just the diret
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oupling matrix D; this is the subjet of Setion 2.3.5. Then, in Setion 2.4

a global passivity enforement sheme for enforing (2.51) at all frequenies

ω ∈ R is presented.

2.3.5 Asymptoti passivity enforement

The maromodel (2.46) is asymptotially (stritly) passive if

‖D‖2 ≤ δp < 1 , (2.52)

where δp is some desired passivity threshold. In ase (2.52) is not veri�ed,

matrix D is modi�ed so that this ondition is met. Of ourse it is more

e�ient to operate diretly on the ompressed maromodel (2.42), therefore

a perturbation vetor ∆w is added to the orresponding diret oupling vetor

dw, preserving the projetion oe�ients in matrixΨ. The perturbed matrix

results

Dp = Ψ[IP ⊗ (dw +∆w)] , (2.53)

with

Dp −D = Ψ(IP ⊗∆w) . (2.54)

The minimal perturbation of (2.54), in the standard 2-norm, should be used

to ahieve asymptoti passivity. This leads to the following formulation

min
∆w

‖Ψ(IP ⊗∆w)‖2 s.t. ‖Dp‖2 ≤ δp . (2.55)

The solution of (2.55) is now addressed using various di�erent approahes,

with results presented and ompared in Setion 2.3.6.

One a solution ∆w of (2.55) is available, an asymptotially passive

maromodel is onstruted by

1. onstruting the vetor dp = dw +∆w;

2. subtrating the q-th omponent dp,q of this vetor from the frequeny

samples of the q-th basis funtion w̄q by rede�ning

w̄q ← w̄q − dp,q (2.56)

3. �tting the resulting frequeny samples with a stritly proper rational

funtion

wq(s) =

Nw∑

n=1

rq,n
s− pn

, (2.57)

where the poles pn are kept �xed to the poles of the original unper-

turbed maromodel (2.37);
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4. de�ning the state-spae realization of the ompressed maromodel as

in (2.42), but with dw replaed by dp.

The following methods an be used to identify the perturbation vetor ∆w

and the orresponding w̄q.

Diret saling

The easiest way to enfore the asymptoti passivity is through the diret

resaling

dp = dw
δp
‖D‖2

, Dp = Ψ(IP ⊗ dp) . (2.58)

This de�nition imposes asymptoti passivity by onstrution, but does not

guarantee that the asymptoti model perturbation ‖Ψ(IP ⊗∆w)‖2 is mini-

mized, as required by (2.55). However, sine the ompressed maromodel will

be re-generated via a new onstrained vetor �tting run (2.57), the asymp-

toti perturbation will have a signi�ant e�et only at high frequenies, re-

sulting in a quite aeptable auray within the modeling band. These

statements will be validated through numerial examples in 2.3.6. There-

fore, this saling method is atually quite ompetitive due to its simpliity

with respet to the more preise approahes that follow.

Linearization

The method desribed in this setion is based on two simpli�ations of (2.55).

First, the norm of ∆w is minimized instead of the norm of Dp −D. Seond,

the onstraint ‖Dp‖2 ≤ δp is replaed by an approximate onstraint on ∆w

based on a linearization proess. These two onditions lead to a problem of

smaller size with respet to (2.55), whih should require less omputational

e�ort for its solution.

Start with a SVD deomposition of D = LΣDR
T
. Denoting the singular

values as ςi, i = 1, . . . , P with the assoiated left and right singular vetors

li and ri it follows

ςi = lTi Dri . (2.59)

Apply now the same projetion to the perturbed diret oupling matrix Dp

obtaining

lTi Dpri = ςi + lTi Ψ(IP ⊗∆w)ri . (2.60)

Note that this quantity is not equal to the i-th singular value ςp,i of Dp, but

it provides only a �rst-order approximation. Thus, ondition

lTi Dpri ≤ δp (2.61)
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orresponds to a linearised projetion of onstraint ‖Dp‖2 ≤ δp. Using (2.60),
after some straightforward algebrai manipulations leads to

(rT
i ⊗ lTi )V̄∆w ≤ δp − ςi . (2.62)

Colleting the various onstraints (2.62) for all i leads to the linear under-

determined system

M∆w = b , (2.63)

where the number of rows in M de�nes the number of singular values of D

being perturbed. Among all vetors ∆w satisfying (2.63), the minimum-norm

solution is needed, whih is available in losed form as

∆w = M†b , (2.64)

with M†
denoting the Moore-Penrose pseudoinverse of M.

Due to the approximate nature of (2.62), the solution (2.64) of (2.63) does

not guarantee that ‖Dp‖2 ≤ δp. Therefore, the proess an be iterated until

this ondition is ahieved. At eah iteration, two slightly di�erent onstraints

an be used, leading to di�erent numerial shemes

1. system (2.63) si formed by olleting all P singular values, setting at

the right hand side

bi =

{
δp − ςi ςi > δp ,
0 ςi ≤ δp .

(2.65)

This hoie tries to expliitly preserve those singular values that are

already below the threshold δp.

2. only onstraints with ςi > δp are formed, so that only the singular value

terms exeeding the threshold δp are expliitly perturbed.

Linear Matrix Inequalities

The problem stated in (2.55) an be ast as a Linear Matrix Inequality

(LMI) [122, 123℄. In fat, introduing the slak variable γ, minimization

of the objetive funtion in (2.55) an be restated as

min γ s.t.

[
γIP Ψ(IP ⊗∆w)

(IP ⊗∆T
w)Ψ

T γIP

]
≻ 0 , (2.66)

whereas the asymptoti passivity onstraint is equivalent to

[
δpIP D +Ψ(IP ⊗∆w)

DT + (IP ⊗∆T
w)Ψ

T δpIP

]
≻ 0 . (2.67)
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Expressions (2.66) and (2.67) form a system of LMI's. This formulation is

based on onvex onstraints with a onvex objetive funtion. Therefore, its

solution an be ahieved numerially within arbitrary preision and with a �-

nite number of steps using some speialized software. All results doumented

in the following were obtained with the SeDuMi pakage [124℄.

2.3.6 Numerial Results

Table 2.3 ompares the asymptoti passivity enforement results obtained

by the various shemes presented in Setions 2.3.5 for those ases that re-

sulted non-asymptotially passive after the ompressed �tting stage. The

maximum singular value ‖D‖2 of the diret oupling matrix is reported for

onveniene in the seond olumn. The four shemes are ompared in terms

of diret oupling perturbation amount∆ = Dp−Dmeasured in the spetral

norm, number of iterations (when appliable), and total runtime. The latter

inludes not only the diret oupling perturbation, but also the omputa-

tion of the perturbed residues and the onstrution of the global state-spae

realization, as desribed in Se. 2.3.5.

The diret saling method requires no iterations. Only the omputation

of the norm ‖D‖2 is required. Saling requires negligible time, so that the

total runtime is pratially used for reomputing the updated residue matri-

es. The linarization and the LMI methods instead require several iterations

and require signi�antly larger runtime. These three methods fail for the

largest ases 12 and 14 due to exessive memory oupation (LMI) or lak

of onvergene (linearisation) within a maximum number of 600 iterations.

If onverging, the linearization methods are faster than the LMI approah.

However, the linearisation methods are not guaranteed to attain the optimal

solution, as does the LMI approah. This is on�rmed by the amount of

perturbation, whih is smallest for the LMI ase among all other methods.

It is worth noting that the simplisti diret saling approah provides �nal

perturbation errors that are omparable with the LMI sheme. Due to its

e�ieny, the diret saling approah appears as the most ompetitive. Of

ourse, in ase the resulting perturbation is exessive, one an resort to the

LMI sheme, whih is guaranteed to be optimal though slow.

2.4 Global passivity enforement

This setion addresses the enforement of global passivity for the maromodel

(2.46) haraterized by the state-spae realization (2.43), assumed to be

asymptotially stable and asymptotially passive. It is assumed that (2.51)
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Figure 2.6: Singular value plot before passivity enforement for the S-

parameter state-spae model of a PCB. Passivity violations are highlighted

near 10GHz by a small red irle.

is violated at some frequenies ω ∈ Ω, where Ω is the union of �nite-width

frequeny bands like in Figure 2.6, whih refers to the state-spae model of

a PCB.

In order to enfore passivity, one of the standard perturbation approahes

an be followed [121, 104℄. Passivity violations an be identi�ed via standard

tehniques [104℄ or using the parallel algorithm presented later in Setion 2.5.

The main di�erene in the present framework with respet to published re-

sults is that the system perturbation should not be arbitrary but strutured,

aording to the form of (2.43). In the following only the state-to-output

map is perturbed, i.e.

Cp = C+∆C , (2.68)

where the perturbation term ∆C is de�ned as

∆C = Ψ(IP ⊗∆Cw
) . (2.69)

As for the asymptoti passivity enforement of Se. 2.3.5, the expansion oef-

�ients in matrixΨ are preserved and only the lower-dimensional ompressed

maromodel (2.42) is perturbed.

2.4.1 Passivity enforement

Consider a single frequeny ω0 at whih ondition (2.51) is violated by some

negative eigenvalue λi < 0, and let the orresponding eigenvetor of Θ(ω0)
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(de�ned in Setion 2.3.4) be ζi, normalized suh that ‖ζi‖2 = 1. Ap-

plying (2.68) leads to a �rst-order approximation of the perturbed eigen-

value [125℄

λp,i ≃ λi + ζH
i ∆Θζi , (2.70)

where

∆Θ ≃ −KH
0 ∆CS0 − SH

0 ∆
T
CK0 (2.71)

and

S0 = D+CK0 , K0 = (ω0I−A)−1B . (2.72)

Standard manipulations lead to

λp,i ≃ λi + ti vec(∆C) , (2.73)

where the row-vetor ti is de�ned as

ti = −2Re{(K0ζi)
T ⊗ (S0ζi)

H} . (2.74)

Enforing now λp,i > 0 leads to the following linear inequality onstraint

ti vec(∆C) > −λi . (2.75)

Also an additional onstraint is inluded, i.e.

ti vec(∆C) 6 1− λi (2.76)

to guarantee that the perturbed eigenvalue remains in [0,1℄, as required by

the assumed sattering representation. The above onstraints are built for

all M eigenvalues λi to be perturbed, possibly at multiple frequenies, and

formulated as 



min θ

‖vec(∆C)‖22 < θ
T vec(∆C) > b

(2.77)

where θ is a slak variable. The last row ollets in a ompat form all

onstraints (2.75)-(2.76).

Now the perturbation struture (2.69) is imposed. Using (2.44), it is easy

to show that

∆C =
(
V̄1∆Cw

, . . . , V̄P∆Cw

)
. (2.78)

Applying the vec(·) operator to the i-th olumn blok in (2.78) leads to

vec(V̄i∆Cw
) = (INw

⊗ V̄i) vec(∆Cw
) , (2.79)

so that (2.78) an be written in �vetorized� form as

vec(∆C) = Π vec(∆Cw
) , (2.80)
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where Π ∈ RPN×ρNw
is de�ned as

Π =



INw
⊗ V̄1
.

.

.

INw
⊗ V̄P


 (2.81)

Finally, de�ning Tw ∈ R2M×ρNw
as

Tw = TΠ , (2.82)

the strutured and ompressed passivity enforement problem reads





min θ

‖vec(∆Cw
)‖22 < θ

Tw vec(∆Cw
) > b

(2.83)

Note that matrix Π is never onstruted in pratie, sine all onstraints

in (2.83) and in partiular matrix Tw an be built diretly using optimized

ode.

Comparing the standard formulation (2.77) with the ompressed and

strutured formulation (2.83), it is evident that the latter is muh more

onvenient, sine the number of deision variables is redued by a fator

#{∆Cw
}

#{∆C}
=

ρNw

PN
=

ρ

P 2
≪ 1 . (2.84)

This makes the ost for the solution of (2.83) pratially negligible with

respet to all other maromodeling steps. Note that the onverse is typially

the ase in standard maromodeling, sine passivity enforement is usually

the most demanding part of state of the art shemes. This big advantage is

due to the partiular state-spae struture in (2.43).

2.4.2 Auray ontrol

The formulations in (2.77) and (2.83) aim at �nding the minimum norm of

the perturbation terms ∆C or ∆Cw
that are ompatible with the passivity

onstraints. This ondition however does not ensure that the energy (squared

L 2
-norm) of the transfer matrix perturbation is minimized. To this end, the

minimum of

‖∆S‖2L 2 =
1

2π

∫ ∞

−∞
tr{∆S(ω)∆

H
S
(ω)}dω (2.85)

should be found. However, it is well known [126℄ that this norm an be

haraterized as

‖∆S‖2L 2 = tr{∆CPC∆
T
C} (2.86)
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where PC is the ontrollability Gramian assoiated to (2.43), found as the

unique symmetri and positive de�nite solution of the Lyapunov equation

APC +PCA
T = −BBT . (2.87)

Computing the Cholesky fatorization PC = QT
CQC and de�ning

Ξ = ∆CQ
T
C , ξ = vec(Ξ) = (QC ⊗ IP ) vec(∆C) , (2.88)

it follows

‖∆S‖2L 2 = tr{ΞΞT} = ‖ξ‖22 . (2.89)

Therefore, problem (2.77) an be ast as a minimum L 2
-norm formulation

by performing the hange of variable (2.88), obtaining





min θ

‖ξ‖22 < θ
Γξ > b

(2.90)

where Γ = T(Q−1
C ⊗ IP ) .

Apply now the same proedure to (2.83). The ontrollability Gramian

assoiated to the ompressed state-spae realization (2.42) reads

AwPCw
+PCw

AT
w = −BwB

T
w , (2.91)

together with its Cholesky fatorization PCw
= QT

Cw
QCw

. Note that the

numerial solution of (2.42) requires onlyO (Nw) operations due to the sparse
(diagonal or tridiagonal) realization of w(s)T . This ost is negligible with

respet to all other maromodeling steps in the proposed framework. De�ning

Ξw = ∆Cw
QT

Cw
,

ξw = vec(Ξw) = (QCw
⊗ Iρ) vec(∆Cw

) ,
(2.92)

and denoting as ∆
w

T (s) the indued perturbation on the ompressed maro-

model, it follows

‖∆
w

T ‖2
L 2 = ‖ξw‖22 , (2.93)

so that substitution into (2.83) leads to





min θ

‖ξw‖22 < θ
Γwξw > b

(2.94)

where Γw = Tw(Q
−1
Cw
⊗Iρ). The solution of (2.94) thus provides the minimum

L 2
-norm perturbation of the ompressed maromodel wT (s).
It follows that



CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 43

Lemma 1. De�ne PC and PCw
as in (2.87) and (2.91). Then

PC = IP ⊗PCw
. (2.95)

Proof. Suppose that PCw
is the solution of (2.91), then PC de�ned in (2.95)

is a solution of (2.87) by diret substitution. Using (2.43),

APC +PCA
T

= (IP ⊗Aw)(IP ⊗PCw
) + (IP ⊗PCw

)(IP ⊗AT
w)

= IP ⊗ (AwPCw
+PCw

AT
w)

= IP ⊗ (−BwB
T
w)

= −(IP ⊗Bw)(IP ⊗BT
w)

= −BBT .

Sine both A and Aw are stritly negative de�nite, PC and PCw
are the

unique solutions of Lyapunov equations (2.87) and (2.91), whih implies (2.95).

It is now possible to state an important result.

Theorem 1. De�ning the ompressed maromodel perturbation

∆
w

T ↔
(

Aw Bw

∆Cw
0

)
(2.96)

and the orresponding global maromodel perturbation

∆S ↔
(

A B

∆C 0

)
, (2.97)

with state-spae matries onstruted as in (2.43), if follows

‖∆S‖2L 2 = ‖∆w
T ‖2

L 2 (2.98)

Proof. As a preliminary result, onsider matrix V̄ in (2.30). Using (2.45), the

orthogonality ondition V̄
T
V̄ = I an be rewritten in terms of its onstituent

bloks V̄i as

P∑

i=1

P∑

m=1

(V̄i)mℓ(V̄i)mn = δnℓ , n, ℓ = 1, . . . , ρ , (2.99)

where δnℓ = 1 if n = ℓ and 0 otherwise. Considering now (2.78) and us-

ing (2.95), a straightforward algebrai manipulation leads to

∆CPC∆
T
C =

P∑

i=1

V̄iΥwV̄
T
i , (2.100)
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where Υw = ∆Cw
PCw

∆T
Cw
. The L 2

-norm of the global maromodel pertur-

bation is haraterized as

‖∆S‖2L 2 = tr{∆CPC∆
T
C}

=

P∑

m=1

(
P∑

i=1

V̄iΥwV̄
T
i

)

mm

=
P∑

m=1

P∑

i=1

ρ∑

n=1

ρ∑

ℓ=1

(V̄i)mℓ(Υw)ℓn(V̄i)mn

=

ρ∑

n=1

ρ∑

ℓ=1

(Υw)ℓn

P∑

m=1

P∑

i=1

(V̄i)mℓ(V̄i)mn

=

ρ∑

ℓ=1

(Υw)ℓℓ

= ‖∆
w

T ‖2
L 2 ,

whih ompletes the proof.

The pratial relevane of this theorem is that the solution of the small-

size optimization problem (2.94), in addition to providing the minimum-

energy perturbation of the ompressed maromodel, will also provide as a by-

produt the minimum-energy solution of the full-size passivity enforement

problem, whih is the main objetive. Global passivity enforement is thus

ahieved with optimal auray and negligible ost through (2.94).

2.4.3 Passivity enforement examples

In this subsetion, the performane of the passivity enforement shemes (2.90)

and (2.94) are ompared for eah of the benhmark ases of Table 2.1. The

results are summarized in Table 2.4, where the total exeution time and

number of iterations for both shemes are grouped in olumns 2 and 3 for

onveniene. It an be seen that the number of iterations for the ompressed

sheme is pratially always less than for the full sheme. This implies that,

independent on the runtime required for a single iteration, the ompressed

sheme performs generally better. This onsideration should be taken into

aount when interpreting the total runtime, reported in the seond olumn.

Note that a dramati redution is ahieved by the ompressed sheme, whih

is able to omplete the passivity enforement also for those large ases (12,

14, and 18) for whih the full sheme requires exessive memory.

Two di�erent speedup fators are reported in the fourth olumn of Ta-

ble 2.4. The �rst is the overall speedup fator, obtained as the ratio of the
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Table 2.4: Comparison of full and ompressed passivity enforement shemes

in terms of number of iterations ♯ it, runtime, and auray ‖δX‖2. Last

two olumns report the overall speedup (SU) and the speedup per iteration

(SUit).

Full / Compressed

Case ♯ it Time [s℄ ‖δX‖2 SU SUit

1 6 / 7 2.42 / 1.52 0.22 / 0.26 1.6 1.8

2 2 / 1 9.63 / 1.85 0.22 / 0.11 5.2 2.6

3 12 / 7 255 / 3.87 2.61 / 2.61 66.1 38.5

4 2 / 1 3.7 / 0.36 0.04 / 0.04 10.2 5.1

5 12 / 9 687.5 / 22.6 0.16 / 0.21 30.4 22.8

6 50 / 30 324.3 / 12.1 0.53 / 0.41 26.8 16.1

7 2 / 2 1.45 / 0.36 0.05 / 0.06 4.1 4.1

8 28 / 10 510 / 15.9 1.43 / 1.26 32.1 11.4

9 2 / 26 5.83 / 1.64 4.15 / 4.21 3.5 3.1

10 9 / 8 3865 / 145 3.31 / 3.32 26.6 23.6

11 2 / 4 9.34 / 1.81 0.04 / 0.05 5.2 10.4

12 - / 32 -.- / 17344 -.- / 1.21 -.- -.-

13 8 / 7 24.7 / 4.86 0.16 / 0.21 5.1 4.2

14 - / 13 -.- / 5049 -.- / 1.21 -.- -.-

15 1 / 2 5.85 / 3.17 0.08 / 0.08 1.8 3.6

16 10 / 8 13.1 / 1.95 0.21 / 0.25 6.8 5.4

17 10 / 6 13.7 / 1.26 0.51 / 0.51 11.4 6.8

18 - / 5 -.- / 1621 -.- / 6.79 -.- -.-
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Figure 2.7: Singular value plot before and after passivity enforement for

ase 17.

total runtime required by the full and ompressed shemes. The seond is

the average runtime per iteration, whih provides a more preise metri for

assessing the enhanement in e�ieny that an be ahieved with proposed

approah. In any ase, both speedup per iteration and overall speedup are

between 1 and 2 orders of magnitude for the most hallenging ases, exept

for the largest ases for whih only the ompressed sheme ould ahieve its

goal.

Finally, the last olumn of Table 2.4 reports the deviation of the obtained

passive models with respet to the original raw data, showing that the a-

uraies of both full and ompressed shemes are omparable. Figure 2.7

reports as an example the singular value plot for ase 17, showing all singu-

lar values before and after ompressed passivity enforement. As expeted,

the singular values of the passive model are uniformly unitary bounded.

2.4.4 A summary of numerial results

The main results for all benhmark ases are now summarized. Table 2.5

provides a detailed report on the auray of all intermediate steps of the

proposed ompressed passive maromodeling approah. The seond olumn

reports the thresholds ǫSVD and ǫVF that were used, respetively, to bound

the approximation error for SVD trunation and ompressed VF. Note that

these thresholds are used to bound the spetral 2-norm of error matries

‖δX‖2 olleting all responses at all frequenies. Sine the relationship of
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Table 2.5: Auray with respet to raw data of ompressed data (δXSVD)

and ompressed maromodel before (δXVF) and after (δXPAS) passivity en-

forement.

ǫ δXSVD δXVF δXPAS

Case svd / vf ‖·‖2 / ‖·‖max ‖·‖2 / ‖·‖max ‖·‖2 / ‖·‖max

1 0.1 / 0.1 0.07 / 0.0039 0.09 / 0.006 0.26 / 0.014

2 0.1 / 0.1 0.06 / 0.0045 0.09 / 0.007 0.11 / 0.007

3 0.1 / 0.1 0.06 / 0.0029 0.08 / 0.003 2.61 / 0.064

4 0.1 / 0.1 0.04 / 0.0015 0.04 / 0.002 0.04 / 0.002

5 0.1 / 0.1 0.06 / 0.0105 0.09 / 0.051 0.23 / 0.057

6 0.1 / 0.1 0.07 / 0.0041 0.09 / 0.006 0.42 / 0.015

7 0.1 / 0.1 0.01 / 0.0005 0.04 / 0.001 0.06 / 0.002

8 0.1 / 0.5 0.08 / 0.0027 0.48 / 0.016 1.05 / 0.014

9 0.1 / 0.1 0.05 / 0.0084 0.05 / 0.008 4.12 / 0.632

10 0.1 / 3.0 0.07 / 0.0061 2.21 / 0.048 2.53 / 0.048

11 0.1 / 0.1 0.01 / 0.0012 0.01 / 0.001 0.18 / 0.016

12 0.1 / 0.1 0.02 / 0.0002 0.05 / 0.001 1.22 / 0.011

13 0.1 / 0.1 0.04 / 0.0046 0.05 / 0.011 0.21 / 0.011

14 0.1 / 0.1 0.07 / 0.0213 0.08 / 0.021 1.26 / 0.031

15 0.1 / 0.1 0.06 / 0.0018 0.08 / 0.002 0.08 / 0.002

16 0.1 / 0.1 0.04 / 0.0147 0.08 / 0.015 0.25 / 0.015

17 0.1 / 0.4 0.07 / 0.0241 0.39 / 0.315 0.43 / 0.315

18 0.1 / 6.8 0.07 / 0.0055 6.79 / 0.212 6.91 / 0.218
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these thresholds to the atual deviation that is ahieved at a given frequeny

for a given response is not obvious, the results in terms of the worst-ase

norm, de�ned as

‖δX‖max = max
ℓk
|(δX)ℓk| . (2.101)

are also reported.

The last three olumns of Table 2.5 report the spetral and worst-ase

auraies (with respet to raw data) of ompressed data δXSVD, ompressed

�tted model δXVF, and �nal model after ompressed passivity enforement

δXPAS, respetively. The table learly shows that auray is well preserved

through all modeling steps. For illustration, in Figures 2.8 and 2.9, respe-

tively, the responses haraterized by the worst-ase absolute error an be

found for ase 17, and the responses haraterized by the worst-ase relative

error for ase 2. Similar results were obtained for all other ases and are not

reported here.

2.5 Parallel passivity hek

In order to use the passivity enforement sheme previously introdued in

Setion 2.4.1, passivity violations of the state-spae model

H(s) = D+C(sI−A)−1B (2.102)

must be properly identi�ed. While ausality and stability are guaranteed

by the unique ondition that all model poles should have negative real part,

passivity is more di�ult to guarantee sine a speial set of onstraints are

neessary aording to Setion 2.3.4. It is important to note that ondi-

tion (2.51) must be heked for eah frequeny ω ∈ R. The �rst idea is

then to use a frequeny sampling proess to extrat a signi�ant set of fre-

queny points ωl and to hek ondition (2.51) on these samples only. Of

ourse for the sake of reliability the set of samples ωl must be determined

adaptively aording to the dynami features of the maromodel. As a on-

sequene, dealing with models having large port ount and high dynamial

order makes this strategy omputationally expensive. Therefore the main

objetive of this setion is to introdue an highly e�ient parallel implemen-

tation of the available adaptive sampling sheme proposed in [104℄. The ore

idea of the adaptive sampling sheme is presented in the rest of this se-

tion and in Setion 2.5.1, while the new parallel implementation strategy is

detailed in Setions 2.5.2, 2.5.3 and 2.5.4.

The main objetive of the proposed Parallel Adaptive Sampling (PAS)

sheme is to determine a partition of the frequeny axis Ω = [0,∞) into
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Figure 2.8: A sattering response of a PCB interonnet (ase 17) before

(red dashed line) and after (blue dashed line) ompression. The blak line

represents the response of the passive ompressed maromodel.
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Figure 2.9: As in Figure 2.8, but for a high-speed onnetor (ase 2).
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sampling. See text for details.
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disjoint sub-bands

Ω =

Q⋃

q=1

Ωq , Ωq = [ωq−1, ωq) (2.103)

with ω0 = 0 and ωQ = +∞. De�ning the interior of eah sub-band as

Ω̌q = (ωq−1, ωq) = Ωq − {ωq−1} , (2.104)

the partition (2.103) is determined suh that one of the following onditions

will hold for eah sub-band Ω̌q

• maxi σi(ω) > 1, ∀ω ∈ Ω̌q: in this ase, passivity ondition (2.49) is

violated at any point within the sub-band, whih is thus �agged as

�non-passive� with the supersript

np
.

• maxi σi(ω) < 1, ∀ω ∈ Ω̌q: in this ase, (2.49) holds at any point within

the sub-band, whih is thus �agged as �passive� with the supersript

p
.

• maxi σi(ω) ≈ 1, ∀ω ∈ Ω̌q: in this ase, the maximum singular value

will be too lose to the threshold γ = 1 in order to qualify the system

as loally passive or non-passive in Ω̌q. It should be guaranteed that

this last ase is suh that |Ωq| = ωq−ωq−1 is small. This undetermined

ase will be �agged with the supersript

?
.

Passive, non-passive, and undetermined bands will be olleted as

Ωnp =
⋃

q Ωq : maxi σi(ω) > 1, ∀ω ∈ Ω̌q

Ωp =
⋃

q Ωq : maxi σi(ω) < 1, ∀ω ∈ Ω̌q

Ω? =
⋃

q Ωq : Ωq * Ωnp ∪ Ωp

(2.105)

In addition, for eah non-passive sub-band Ωq ⊆ Ωnp
, all loal maxima σ̂l

and the orresponding frequenies ω̂l at whih these maxima are attained

are needed. See Figure 2.10 for a graphial illustration.

2.5.1 Auray-ontrolled sampling via eigenvetor trak-

ing

Reall that, when Sattering models are used the state-spae matrix A has

no purely imaginary poles, as a onsequene of VF implementation [117, 62℄,

thus the singular values σi(ω) are ontinuous and di�erentiable funtions of

frequeny [125℄. However, when omputing these singular values numerially

over a presribed disrete set of frequenies {ωl}, there is no guarantee that
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eah σi(ωl) for �xed i ollets samples from the same singular value traje-

tory. The omputation at eah frequeny ωl is in fat independent, and the

adopted singular value or eigenvalue solver may return its results with an

order that may di�er from one sample to the next.

The �rst objetive is thus to dynamially determine a set of frequenies

{ωl} that is su�ient to trak the individual smooth singular value traje-

tories by a suitable reordering. This reordering an be ahieved by a mode

traking sheme [127℄, suh as the one presented in [104℄. Given two avail-

able (adjaent) frequeny samples ωm and ωm+1, the eigendeomposition of

Θ(ωm) and Θ(ωm+1) is omputed, then the eigenvalues are olleted into

matries Λm and Λm+1 while the (orthogonal and unit-normalized) eigen-

vetors are stored into matries Vm and Vm+1. Note that these matries

oinide with the right singular vetors of S(ω). Then, all possible mutual
salar produts among all these eigenvetors are omputed as

p̃m,m+1 = VH
mVm+1 . (2.106)

If the two frequenies are su�iently lose so that the diretion of the eigen-

vetors undergoes a small hange from ωm to ωm+1, then p̃m,m+1 will have

approximately the struture of a permutation matrix, with one single element

per row and olumn with magnitude lose to 1, and with all other elements

nearly 0. If this is true, the permutation matrix pm,m+1 that reorders the

eigenvetors and eigenvalues from sample m to sample m+ 1 is obtained by

rounding the magnitude of eah element of p̃m,m+1 towards 0 or 1. A numer-

ial test whether this traking/permutation is suessful an be obtained by

heking

max
i,i′

{∣∣(|pT
m,m+1p̃m,m+1| − I

)∣∣
i,i′

}
< ε (2.107)

for a suitable threshold ε ≪ 1. Refer to [104℄ for more details. If ondi-

tion (2.107) is ful�lled, it follows that the behaviour of the system transfer

funtion and its singular values is well resolved within [ωm, ωm+1]. Otherwise,
a new sample ωm+1/2 = (ωm+ωm+1)/2 is added and the hek is applied again
to the two subintervals [ωm, ωm+1/2] and [ωm+1/2, ωm+1]. Binary subdivision

of eah pair of adjaent samples drawn from an initial distribution is applied

reursively until (2.107) is met everywhere.

2.5.2 Parallel Adaptive Sampling

Consider in more details the above desribed adaptive re�nement sheme.

Formally, the re�nement hek is expressed as

ν = R(ωm, ωm+1) , (2.108)
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Figure 2.11: Adaptive frequeny sampling via loal re�nement (serial imple-

mentation). Eah row from top to bottom orresponds to one appliation of

the R hek (2.108). White dots denote samples still to be proessed. Blak

dots denote samples being used by urrent R hek. Blak squares denote

samples that do not need any more proessing. A thik line highlights a

frequeny band that is �nalized and whih does not need further re�nement.

where the input arguments de�ne the loal band to be heked, and the

output ν an be either ωm+1/2 or the empty set ∅, in whih ase no further

re�nement is required. Evaluation of (2.108) requires the omputation of

transfer matrix S(ω) at the two frequenies ωm, ωm+1, together with its

right singular vetor matries Vm and Vm+1. As part of the R hek, the

following omputations are inluded: if ν is empty, the resulting permutation

matrix Pm,m+1 is immediately applied to reorder the singular values at ωm+1;

otherwise, the new sample ωm+1/2 is omputed together with its assoiated

transfer matrix S(ωm+1/2) and singular vetor matrix Vm+1/2, whih are

stored for the next hek.

Iterative appliation of (2.108) determines a binary subdivision tree of

the frequeny axis, where eah node in the tree denotes a frequeny sample.

Figure 2.11 illustrates the order in whih the R hek is applied in a serial

implementation, where it is assumed that the leftmost loal sub-band that

is still to be re�ned is proessed �rst. Figure 2.11 shows that the sub-bands

are �nalized starting from the left edge of the initial frequeny interval. This

onsideration leads to a simple strategy for the parallelization of this re�ne-

ment sheme using T onurrent threads, based on the following steps and

rules.
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Startup

At startup, a set of initial frequeny samples S0
is determined. Here, this

set is onstruted as the union of samples obtained independently through

di�erent strategies:

• an upper frequeny Ωmax is determined following the proedure in [102℄,

with the guarantee that no passivity violations our for ω > Ωmax;

therefore, only the interval [0,Ωmax] needs to be heked instead of the

full imaginary axis;

• a set Slin of llin uniformly spaed samples are determined in [0,Ωmax],
inluding edges;

• a set Slog of logarithmially spaed samples with ld samples per deade

are omputed from ωmin to ωmax, where ld, ωmin and ωmax depend on

the partiular appliation and struture of interest;

• a set Sp of samples is obtained as in [104℄ from the model poles pi =
αi ± βi by sampling uniformly with 2R + 1 points the phase of the

assoiated resonane urve, as

Sp =
⋃

i,r

{
ωi,r = βi + αi tan

rπ

2(R + 1)

}
(2.109)

with r = −R, . . . , R.

As a result, the set of initial samples that will be subjet to the R iteration

is de�ned as

S0 = Slin ∪ Slog ∪ Sp , (2.110)

with all samples reordered for inreasing values.

Initial workload alloation

Supposing that T onurrent threads are available, the set of initial samples

is partitioned as

S0 =

T⋃

t=1

S0
t , (2.111)

where the number of elements of eah subset is #{S0
t } = ⌊#{S0}/T ⌋ for

t = 0, . . . , T −1. The remaining samples are assigned to S0
T . The subdivision

is ordered, suh that for t1 < t2,

∀ωi ∈ S0
t1

and ∀ωj ∈ S0
t2
⇒ ωi ≤ ωj , (2.112)
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Figure 2.12: Parallel adaptive frequeny sampling via loal re�nement using

T = 2 threads. Samples assigned to thread t = 1 (t = 2) are depited with

irles (triangles). Arrows indiate start points (leftmost sample) for the two

threads. White �ll denotes samples still to be proessed, whereas blak �ll

denotes samples used by urrent iteration. Blak squares denote samples

that do not need any more proessing. A thik line highlights a frequeny

band that is �nalized and whih does not need further re�nement.

with eah pair of adjaent sub-bands S0
ti
and S0

ti+1
sharing the single sample

ω̃i = maxS0
ti
= minS0

ti+1
. (2.113)

Eah subset S0
t is alloated statially to thread t, whih iteratively applies

theR re�nement hek until the entire sub-band is overed, as in Figure 2.11.

This initial alloation ensures that, if no re�nement is required, approxi-

mately the same amount of work is alloated for eah thread. Figure 2.12

illustrates this proess, showing the evolution of eah subset of samples Sν
t

at few iterations ν. In the following, the iteration ount ν will be dropped.

Dynami thread realloation

As the iterative re�nement hek proeeds and eah sub-band is proessed

independently by eah thread, it may happen that some bands require more

adaptive re�nement steps than others. Therefore, it may happen that one

thread tj ompletes its re�nement task when the other threads are still work-

ing. In this ase, the thread should not be left inative, sine this would

ompromise parallel e�ieny. In order to �nd some work to do for the idle

thread tj , the remaining threads ti are sanned for i 6= j and the number of

sample pairs in set Sti that at urrent iteration are still to be proessed is



CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 56

ut ut ut

ut ut

ut ut rs rs

rs ut ut ut rs rs

rs rs ut ut rs rs

rs rs rs rs rs rs rs rs

Figure 2.13: Parallel adaptive frequeny sampling via loal re�nement using

T = 2 threads and dynami resheduling (same notation as in Figure 2.12).

Note that thread t = 2 is restarted at the third iteration after ompleting its

initially assigned workload.

found by the R hek. Although it is not guaranteed that the work for these

threads will oinide with the orresponding number of unheked sub-bands,

the number of expeted R iterations will not ertainly be smaller. There-

fore, the thread tℓ that requires the largest amount of estimated R heks is

identi�ed and thread tj is restarted by assigning to it one half of the samples

still to be proessed by tℓ. More preisely

Sℓ → Ŝtℓ ∪ Ŝtj (2.114)

is divided with the onstraint

∀ωi ∈ Ŝtℓ and ∀ωl ∈ Ŝtj ⇒ ωi ≤ ωl , (2.115)

with the two sets Ŝtℓ , Ŝtj sharing only one sample. This strategy guaran-

tees an initially equal subdivision of the workload between tj and tℓ. Fig-

ure 2.13 provides a graphial illustration of this thread realloation. Then,

the thread realloation proess is repeated any time some thread beomes

idle, by resheduling it to help the most busy thread at that time.

End of re�nement pass

The above desribed multi-thread adaptive re�nement proess stops when all

threads have ompleted their tasks. Due to the proposed optimized dynami

sheduling, the algorithm is automatially load balaned, exept for the last

iteration during whih a group of threads might remain idle while the other

threads are ompleting their last task. The maximum total duration of this

last step is the time required for a single R iteration.
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In addition to the natural stopping ondition for the R iteration, whih

ours when ∅ is returned by (2.108) and in whih ase all singular value

trajetories are traked based on their singular vetor perturbation, an ad-

ditional stopping ondition is added in terms of the maximum number of

nested re�nements Imax. This parameter intervenes when traking is not

possible, e.g., in the ase of singular values with higher multipliity, whose

singular vetors annot be de�ned uniquely. In all numerial tests in this

paper Imax = 6 was used, providing a good ompromise between auray

and e�ieny.

2.5.3 Loal passivity hek

The �nal result of the above re�nement sheme is a set of frequeny samples

ωl and a reordered sequene (through the above-de�ned permutation matri-

es pm,m+1) of singular values samples. For �xed i, the reordered samples

σi(ωl) an thus be onsidered to be drawn from a ontinuous and di�er-

entiable trajetory σi(ω). Exploitation of this smoothness leads to various

straightforward ways of heking passivity between eah pair of adjaent fre-

quenies. One an de�ne a worst-ase linear predition error at sample ωm

based on a �rst-order eigenvalue perturbation from the adjaent left and right

samples [104℄

∆±
m = max

i

{∣∣(vH
m±1 Θmvm±1

)
ii
− (Λm)ii

∣∣} , (2.116)

and infer that the model is loally passive in a neighbourhood of ωm if

max
i

σi(ωm) + βmax{∆−
m,∆

+
m} < 1 , (2.117)

where β > 1 is a parameter used to ompensate for the missing higher or-

der terms in the linear predition. This loal hek at ωm an be formally

expressed as

ϑm = C(ωm−1, ωm, ωm+1) , (2.118)

where ϑm is either 0 (�agging loally non-passive samples) or 1 (loally pas-

sive samples), sine a symmetri hek is performed using both samples at

the left and right of urrent sample. The only exeption is when the hek is

performed at the edge of the bandwidth of interest, in whih ase only two

samples are used to onstrut a one-sided linear predition error ∆−
m or ∆+

m.

Performing this loal passivity hek using T omputational threads is

straightforward, sine a diret stati sheduling is su�ient. In fat, sine

the C hek is performed on a presribed set of samples whih remains �xed
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and does not grow through iterations, the stati work alloation disussed in

Se 2.5.2 is already optimal. Therefore, this aspet is not further disussed.

As a result from above proedure, the model is onluded to be passive in

(ωm, ωm+1) if (2.117) is satis�ed at both ωm and ωm+1. Conversely, the model

is onluded to be non-passive in (ωm, ωm+1), or at least in some portion of

it, if any of the maximum singular values at sample m and m + 1 is larger

than one,

max
i

σi(ωm) > 1 or max
i

σi(ωm+1) > 1 . (2.119)

For all other ases in whih

max
i

σi(ωm) ≤ 1 and max
i

σi(ωm+1) ≤ 1 , (2.120)

but (2.117) is not satis�ed at ωm and ωm+1, the sub-band is �agged as unde-

termined sine the singular value trajetories are too lose to the threshold.

One all sub-bands are �agged, adjaent passive (non-passive or unde-

termined) bands are merged to form the subdivision (2.103). Finally, the

loal maxima (ω̂l, σ̂l) of the singular value trajetories for eah non-passive

sub-band are determined by onstruting a loal quadrati polynomial that

interpolates three adjaent samples and by taking its peak value. All these

operations require negligible time and are performed as a serial post proess-

ing in the atual implementation.

2.5.4 Optimizations

The loal passivity hek C as desribed above is performed after the adap-

tive re�nement iterationR is ompleted. This strategy presents some ritial

aspets related to memory use and management. In fat, the C hek requires
to store, for eah sample ωm to be heked, the matrix Θ(ωm), the eigen-

value matrix Λm, and the eigenvetor matries at the left and right samples

Vm±1. As a onsequene, until a sub-band (ωm, ωm+1) is de�nitely �agged as

passive/non-passive/undetermined, all the above quantities need to be stored

for eah of the two samples m, m+1. For a P ×P transfer funtion resulting

into a number L of �nal frequeny samples, the overall storage requirement

sales as O (2P 2L). For instane, a 100-port struture with 10000 frequeny
samples requires more than 1.6 GB of storage using omplex double-preision

arithmeti.

This large storage requirement an be relaxed and signi�antly redued

with a modi�ed sheduling approah that interleaves the appliation of R
and C iterations. In fat, after eah sub-band (ωm, ωm+1) is �agged after

running the C hek at both its endpoints, only the P eigenvalues along the
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Table 2.6: Peak memory usage during parallel adaptive sampling and loal

passivity hek for a test ase (L = 4392, P = 56) with (M2) and with-

out (M1) memory optimization. Results are shown for di�erent number of

threads T .

T M1, MB M2, MB

1 442 21
2 446 24
3 451 28
4 455 34
5 461 32
6 471 39
7 480 41
8 491 50

diagonal of Λm need to be stored for the �nal identi�ation of loal singular

value maxima. The idea is then, during the R re�nement loop, to

• apply a C hek whenever a triplet of adjaent samples (ωm−1, ωm, ωm+1)
is �nalized by the R hek;

• �ag sub-band (ωm, ωm+1) as soon as both samples are proessed by a

C hek;

• free the memory from data that is not required by later R or C heks,
and reuse it to store new samples data, as required by loal re�nement.

The atual implementation does not free or alloate any memory during

the main re�nement loop, sine this would dramatially impat performane

(memory management operations require exlusive aess to resoures and

are not thread-safe). A prealloated pool (bu�er) of elementary memory ells

is used, whose dimension is based on some heuristi riterion depending on

the number of onurrent threads T . These ells are reused by suitable link-

ing through pointer reassignment. If the prealloated memory pool is full,

then another blok is alloated at one, thus limiting impat on parallel per-

formane. Table 2.6 illustrates the memory savings obtained for a signi�ant

test ase. Note that this memory optimization is ahieved with no loss of

performane or parallel e�ieny.
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Table 2.7: Test ases A-I: L, P and N denote the number of frequeny

samples in the raw data, the number of ports and the dynami order of the

obtained model, respetively.

Case L P N
A 511 18 4572

B 4096 36 4968

C 2000 36 8064

D 2043 18 2952

E 4096 18 3600

F 145 35 700

G 990 155 10540

H 282 164 6888

I 348 172 5504

2.5.5 Parallel passivity hek results

The performane of the proposed passivity hek sheme is disussed in this

setion. From the test ases listed in Table 2.1 the most relevant examples

are seleted for this setion, i.e. ases 5 and 6. Cases A-J are high order

models, whose details an be found in Table 2.7, spei�ally seleted to test

and hallenge the proposed algorithm. Those test ases are very halleng-

ing in term of exeution time, therefore are very good benhmarks for the

parallelization strategy proposed in Setion 2.5. The �rst set of results in

Table 2.8 reports the number of frequeny samples required by a ontinuous

smooth traking of the singular values/vetors. The set of initial samples S0

was generated using the guidelines of Setion 2.5.2, with llin = 300 linearly

spaed samples, ld = 4 samples per deade over 9 deades of frequeny, and

2R + 1 = 7 samples per pole. Sine this number of initial samples is quite

limited, it is expeted that the PAS sheme will add many samples in order

to trak unambiguously the singular value trajetories. This is on�rmed by

the number of �nal samples #{Send} reported in Table 2.8, whih is always

in the order of several thousands. Figure 2.14 reports few seleted singular

value trajetories for ase 5 within a restrited frequeny band, showing how

the �nal set of samples is able to resolve all �ne variations of the urves,

whih are sampled too oarsely by the initial sample distribution.

The passivity violations deteted by the PAS sheme are depited in Fig-

ure 2.15 while Table 2.9 reports the timing results and the parallel speedup

for T = 8 and T = 16 onurrent threads obtained the proposed PAS sheme,
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Figure 2.14: Starting (irles) and �nal traked frequeny samples of few

seleted singular values for ase 5.

Table 2.8: Passivity hek: number of initial #{S0} and �nal #{Send}
frequeny samples obtained by the proposed adaptive frequeny sampling

sheme.

Case #{S0} #{Send}
5 376 5229

6 451 3129

A 1187 13216

B 766 6568

C 1093 16049

D 873 6932

E 1007 10112

F 348 1969

G 558 12712

H 467 11229

I 429 10128
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Table 2.9: Timing results for the Parallel Adaptive Sampling and loal pas-

sivity hek sheme for T = 1, 8 and 16 threads, with orresponding speedup

fators.

Case τ1, s τ8, s τ16, s
5 112.76 14.31 (7.88×) 7.11 (15.87×)
6 5.69 0.73 (7.80×) 0.37 (15.39×)
A 444.01 59.02 (7.52×) 30.90 (14.37×)
B 4088.17 533.90 (7.66×) 277.28 (14.74×)
C 104.72 13.89 (7.54×) 7.35 (14.25×)
D 373.64 49.65 (7.53×) 25.66 (14.56×)
E 628.17 82.56 (7.61×) 41.82 (15.02×)
F 1.39 0.19 (7.15×) 0.11 (13.21×)
G 601.55 77.83 (7.73×) 40.54 (14.84×)
H 569.44 72.77 (7.83×) 36.66 (15.53×)
I 374.20 48.10 (7.78×) 24.05 (15.56×)

inlusive of both adaptive sampling re�nement and loal passivity hek. It

an be seen that the salability of this passivity hek sheme with the num-

ber of ores is exellent, with a speedup superior to 15× in almost all ases.

Finally the average speedup on several test ases is depited in Fig-

ure 2.16.

2.6 Conlusions

In this Chapter, a omprehensive framework for ompressed passive maro-

modeling of large-sale interonnet strutures was presented. The main

enabling fator for this new approah is the observation that the whole set

of P 2
sattering responses of P -port large-sale systems an be expressed

through a muh lower-dimensional set of ρ ≪ P basis funtions. A singular

value trunation is able to determine both the number of suh basis fun-

tions and the orresponding expansion oe�ients, with full ontrol over the

approximation error.

The above ompressed data representation was used to derive redued-

omplexity Vetor Fitting and passivity enforement shemes. The former

generates a rational maromodel for the set of basis funtions. The latter

enfores global passivity onstraints using a restrited set of perturbation

variables and relying on a robust and e�ient parallel implementation of
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Case 5

Case 6

Figure 2.15: Maximum singular value (thin line) and frequeny bands Ωp
q

that are �agged as passive after the adaptive sampling hek (thik line).

Top panel: ase 5; bottom panel: ase 6.
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Figure 2.16: The plots report the ratio τT/τ1 versus the number T of ompu-

tational threads for the best and worst ases (dashed lines), and the average

(solid lines) among all analysed benhmarks.
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the passivity hek algorithm. The overall result is a passive maromodel-

ing sheme that has the potential to outperform state-of-the-art methods in

terms of salability, memory oupation, and CPU requirements, as illus-

trated through several hallenging benhmark ases.



Chapter 3

Small-signal and parameterized

maromodels

Aording to the design �ow desribed in Setion 1.3 one a prototype de-

sign is available, extensive numerial simulations are required using suitable

models for all Ciruit Bloks (CBs), in order to verify the proper funtioning

of the entire system under realisti operating onditions. It is lear that the

adoption of full transistor-level models for suh veri�ations is not viable due

to exessive overall omplexity. In several situations, however, the dynami

behaviour of individual CB's an be approximated by suitable redued-order

behavioural maromodels. This is in fat true for those devies, suh as

Low Noise Ampli�ers (LNA), Operational Ampli�ers, Low Dropout regu-

lator (LDO), or programmable �lters, that operate almost linearly when

suitably biased around a spei�ed operating points. One validated against

the full transistor-level netlist models, suh behavioural equivalents o�er an

exellent solution for drastially reduing the overall runtime of system-level

simulations.

In this Chapter, a new parameterized behavioural modelling approah is

desribed that is able to: i) reliably ompute a redued order small-signal

maromodel of linearized CB; ii) enfore the DC response of the redued

equivalent to math exatly the DC response of the original CB; iii) inlude

in the maromodel's oe�ients a losed-form parameterization in terms of

both biasing onditions, e.g. the nominal Vdd applied to the CB, and even ad-

ditional design or operation parameters, e.g., the temperature. The approah

presented here builds on existing parameterized maromodeling approahes

that are available in the literature [112, 115, 128, 82, 129, 130, 131, 132,

133, 134℄. The fous here is to show what modi�ations are needed in these

approahes in order to guarantee at the same time a good parameterization

and full DC ompliane.

66
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For the sake of larity, Setion 3.1 is dediated to the presentation of the

DC orretion strategy being suh a methodology of interest by itself when

applied to Linear Transfer Funtion Models (LTFMs); the extension to the

parameterized ase is detailed in Setion 3.2 together with appliations to

real designs.

3.1 DC-orreted small-signal models

Non-linear and ausal systems, for whih the wavelength assoiated to the

operating frequeny is muh larger than the iruits physial dimensions, an

be modelled via �nite-order non-linear state spae equations [135℄

ẋ(t) = f(x(t),u(t)) (3.1)

y(t) = g(x(t),u(t)) (3.2)

where u(t),y(t) ∈ RP
denote system inputs and outputs, x(t) ∈ RN

is an

internal state vetor, and ẋ(t) = dx(t)
dt

.

When (3.1)-(3.2) represent a non-linear iruit blok for AMS and RF

appliations, like LNA's (Low Noise Ampli�ers), OPA's (Operational Am-

pli�ers) and programmable ative �lters, a signi�ant omplexity redution

of these non-linear state equations is possible. In fat, sine these devies

are designed to operate almost linearly when driven below maximum allowed

input power or signal magnitude, the input, output and state vetors an be

represented as a superposition of a onstant DC term (uDC ,xDC ,yDC) on

all the ports and a small-signal time dependent term (ũ(t), x̃(t), ỹ(t)) as

u(t) = uDC + ũ(t) , (3.3)

x(t) = xDC + x̃(t) , (3.4)

y(t) = yDC + ỹ(t) , (3.5)

where vetors uDC ,xDC ,yDC ollet the onstant DC ontributions. If only

onstant inputs are applied (DC onditions), it follows

u(t) = uDC and ẋ(t) = 0 , (3.6)

whih applied to (3.1) and (3.2) leads to the de�nition of the DC operation

point as the solution of

f(xDC ,uDC) = 0 , (3.7)

yDC = g(xDC ,uDC) . (3.8)
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The triplet uDC ,xDC ,yDC is available from a diret DC simulation of the

transistor-level iruit blok.

Using (3.3)-(3.5) into (3.1)-(3.2) leads to

˙̃x(t) = f (xDC + x̃(t),uDC + ũ(t)) , (3.9)

ỹ(t) + yDC = g(xDC + x̃(t),uDC + ũ(t)) , (3.10)

whih, under small-signal exitation, an be approximated by a �rst-order

Taylor expansion of both state and output equations

˙̃x(t) ≈ Ax̃(t) +Bũ(t) , (3.11)

ỹ(t) ≈ Cx̃(t) +Dũ(t) , (3.12)

where A ∈ RN×N
, B ∈ RN×P

, C ∈ RP×N
and D ∈ RP×P

denote onstant

state-spae matries de�ning the small-signal Linear Transfer Funtion Model

(LTFM) of the Ciruit Blok (CB) around the spei�ed bias onditions, with

frequeny-dependent input-output response

H(s) = C(sI−A)−1B+D. (3.13)

The elements of these state matries are formally de�ned as partial deriva-

tives of the various omponents of (3.1)-(3.2) evaluated at the urrent DC

point. However, as disussed in [136℄, it is also possible to obtain the LTFM

by �rst extrating a set of frequeny-dependent small-signal Sattering Sl,

Admittane Yl or Impedane Zl parameters, in the following olletively de-

noted as Hl with l = 1, . . . , L, by exploiting standard features of state of

the art iruit solvers, namely a set of small-signal AC analyses. Then, this

data is fed to a maromodeling algorithm, e.g. Vetor Fitting [62℄, to di-

retly obtain the redued-order maromodel (3.11)-(3.12) by minimizing the

maromodel error ‖H(ωl)−Hl‖ in the desired norm.

The LTFM usually attains a very good auray for the small-signal har-

aterization of the CB in the frequeny domain [136℄. Unfortunately, similar

good results an not be obtained from time domain (transient) simulation.

In fat, a diret replaement of the non-linear CB with the LFTM in a tran-

sient simulation setup leads to possibly inorret biasing, sine the small-

signal maromodel does not inlude any information of the underlying DC

operation point. When exited by onstant inputs u(t) = uDC , the LTFM

provides its losed form DC output solution

y̌DC = H(0)uDC = (D−CA−1B)uDC , (3.14)

whih has no relationship with the true DC operation point of the original

CB. This information is not embedded in the LTFM, whih only represents



CHAPTER 3. SMALL-SIGNAL AND P-LTI MACROMODELS 69

Figure 3.1: Graphial illustration of the DC point orretion for a stati one-

port ase. The LTFM (blue line) provides a good (�rst order) approximation

near the operating point of the non-linear harateristi (red urve), but the

DC solution of the LTFM y̌DC from (3.14) has no relation with the orret

DC solution yDC .

the dynamis of the small variations around the bias point. This issue is

summarized graphially in Figure 3.1.

Considering the ase of several CB's modelled as LTFM's and onneted

together in a long hain to realize a low omplexity model of an RF transeiver

path, it is lear that the DC solution of all individual simpli�ed models

must omply with the exat bias onditions, espeially when some non-linear

omponents are still present in the testbenh. An example is provided by the

system level shemati of a simple reeiver stage in Figure 3.2 [137℄, whih

shows how a iruit blok driven by the outputs of the previous LTFM ould

reeive as an input the wrong DC bias and ould therefore be operating

inorretly.

3.1.1 DC orretion strategy

To overome the intrinsi DC-OP auray limitation of the LTFM at DC, the

following orretion strategy an be implemented. Assume that the orret

bias onditions provided by the input-output pair (uDC ,yDC) are known as

a solution of (3.8) for the original non-linear system. Then, one the small-

signal maromodel (3.11)-(3.12) is available, its losed-form DC solution y̌DC

driven by the same nominal biasing inputs uDC is omputed as in (3.14).

Compute the di�erene

∆yDC = yDC − y̌DC , (3.15)
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Figure 3.2: Top level shemati of a basi reeiver hain [137℄. For the

simulation of suh a CB hain it is essential that eah blok in the hain biases

the following CB orretly. Even a small error in the DC-OP modelling of

some CB, like the LNA, will orrupt the performane of the following CB's.

Figure 3.3: DC point orretion for a two port LTFM. The orret DC bias

is set via onstant urrent soures ∆IDC1 and ∆IDC2 applied at the input

ports of the LTFM. The urrent soure values are provided by the elements

of the orretion vetor (3.15).

whih represents the orretion that must be applied to the DC solution of

the LTFM in order to obtain the nominal CB bias level.

The orretion terms ∆yDC are applied by de�ning an enlarged DC-

orreted small-signal maromodel whih embeds the original LTFM and

adds at its interfae ports suitable onstant soures, whose values are the

omponents of ∆yDC . In ase the k-th port input uk is a voltage and the

orresponding k-th output yk is a urrent, the orretion is applied as a shunt

urrent soure with value ∆yDCk. Conversely, if uk is a urrent and yk is a

voltage, a series onstant voltage soure ∆yDCk is applied. The basi idea is

depited in Figure 3.3 for a two-port voltage-ontrolled devie. It should be

noted that using onstant orretion soures will a�et and �x the DC point

only, without any e�et on the auray of the LTFM around the OP point

under small-signal exitation.

The proposed strategy for the extration of a low-omplexity DC-ompliant

small-signal linear maromodel an be summarized in the following steps:



CHAPTER 3. SMALL-SIGNAL AND P-LTI MACROMODELS 71

1. reate a suitable CB haraterization test benh and apply there the

desired DC operation point setting to eah CB pin;

2. extrat yDC and the small-signal frequeny-dependent Sl, Yl, or Zl

parameters from a iruit simulation of the non-linear system, here

represented by (3.1)-(3.2);

3. perform a rational urve �tting of the Sl, Yl, or Zl parameters, e.g.

using VF [62℄, and obtain a state-spae realization of the LTFM;

4. ompute y̌DC from (3.14) and ∆yDC from (3.15);

5. synthesize a iruit netlist using one of the standard maromodel real-

ization desribed in Chapter 4, omplemented by DC orretion soures

∆yDC at its external ports.

3.1.2 Results

This setion presents some results to illustrate the e�etiveness of the pro-

posed method. The following test ases are onsidered.

• A two-stage bu�er: this is a simple non-linear example whose netlist

is depited in Figure 3.7. The auray of the extrated LTFM an be

seen in Figure 3.4.

• A Low-Drop Out (LDO) regulator: the orresponding CB is taken from

a real 3G transeiver design. This is basially a DC voltage regulator,

ontrolled by external biases and a logi unit. LDO's an operate with a

very small input-output di�erential voltage. The high level shemati of

this omponent is depited in Figure 3.8. The auray of the extrated

LTFM an be seen in Figure 3.5.

• A Low Noise Ampli�er (LNA): the orresponding CB was also taken

from a real 3G transeiver design. LNA's are widely used in reeiver

hains like the one depited in Figure 3.2. A high level shemati for the

LNA is depited in Figure 3.9. The auray of the extrated LTFM

an be seen in Figure 3.6.

For eah test ase, the relative error between the raw and DC-orreted

LTFM responses is onsidered under onstant exitation by the nominal bias

inputs. These errors are de�ned, respetively, as

ǫy̌ =

∣∣∣∣
y̌DC − yDC

yDC

∣∣∣∣ , (3.16)
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Figure 3.4: S3,3 from the small-signal model of the Bu�er. The red dashed

line is the model response while the blue lines are the data used for the

identi�ation.
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Figure 3.5: S1,2 from the small-signal model of the LDO. The red dashed

line is the model response while the blue lines are the data used for the

identi�ation.
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Figure 3.6: S1,1 from the small-signal model of the LNA. The red dashed

line is the model response while the blue lines are the data used for the

identi�ation.

for the raw LTFM, and

ǫȳ =

∣∣∣∣
ȳDC − yDC

yDC

∣∣∣∣ (3.17)

for the DC-orreted LTFM, where ȳDC represents the DC output obtained

from the LTFM after the appliation of the DC orretion soures de�ned

by (3.15).

The results obtained by a iruit simulation of the original CB and syn-

thesized LTFM are reported in Table 3.1, where all DC results for all port

Figure 3.7: A two-stage bu�er.
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Figure 3.8: High-level shemati of a Low-Drop Out (LDO) regulator CB

extrated from a real transeiver blok. The Control Logi an be used to

selet the desired voltage output Vout, while Vref and VV DD are referene and

supply voltages.

Figure 3.9: High-level shemati of an integrated LNA, whih is part of a

real reeiver hain (Figure 3.2); terminals Vinp and Vinn de�ne the di�erential

input, while VDD is the supply voltage and Vop Von de�ne the di�erential

output pair.
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Figure 3.10: Output transient results for the LNA example obtained with

the original CB (solid blue line) the raw LTFM (solid blak line), and the

DC-orreted LTFM (dashed red line). The input signal for the LNA is a

simple sine wave having 1mV peak to peak amplitude. This simple example

learly demonstrates the e�etiveness of the proposed strategy. The transient

response obtained using the LTFM (blak solid line), is very aurate exept

for the vertial shift due to its inorret DC level. The DC-orreted LTFM is

ompletely overlapped to the transient response obtained from the nonlinear

CB.

variables are reported, together with the orresponding LTFM relative er-

rors. As seen from this table the DC-orreted LTFM results are exat, as

expeted, whereas the raw LTFM provides an inorret DC solution.

In order to further illustrate the advantages of the proposed redued-

order modelling strategy, a transient simulation is performed for the LNA

struture using both the original nonlinear CB and the small-signal raw and

DC-orreted maromodels. The results are depited in Figure 3.10. It

is lear that the DC-orreted maromodel provides pratially oinident

results with the referene, whereas the raw LTFM results in a DC shift of its

response. Note that the referene simulation took 10 minutes to perform a

transient analysis of 500ns, whereas the DC-orreted LTFM simulation only

required 5 seonds, with a signi�ant speedup.

3.2 Parameterized small-signal models

In this setion the DC orretion strategy from Setion 3.1.1 is extended to

the parameterized ase and ombined with the state of the art tehniques for

the identi�ation of parameterized models from a set of raw data.
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Table 3.1: Voltage and urrents for the test ases in Figure 3.7-3.9. Where

yDC are the DC data from the CB under analysis, y̌DC are the DC data

obtained from the LTFM before the appliation of the orretion strategy and

ȳDC are the same data after the appliation of the DC orretion strategy.

Error norms ǫy̌ and ǫȳ are de�ned aording to (3.16) and (3.17).

Test yDC y̌DC (ǫy̌) ȳDC (ǫȳ)

Bu�er

Iin -1.58e-11 0 (1) -1.58e-11 (0)

Iout 1.55e-3 3.87e-3 (1.5) 1.55e-3 (0)

IDD -1.55e-3 -3.87e-3 (1.5) -1.55e-3 (0)

Vout 1.55e-6 3.87e-6 (1.5) 1.55e-6 (0)

LDO

IDD -3.39e-4 -1.32e-3 (28) -3.39e-4 (0)

Iref -2.5e-3 -2.6e-3 (0.04) -2.5e-3 (0)

Iout 3.39e-4 1.32e-3 (28) 3.39e-4 (0)

Vout 1.294 1.295 (0.04) 1.294 (0)

LNA

IDD -1.81e-3 8.3e-5 (1) -1.81e-3 (0)

ISS -1.85e-3 0.024 (10) -1.85e-3 (0)

Iop -5.24e-3 -5.62e-3 (7e-2) -5.24e-3 (0)

Ion -5.24e-3 -5.62e-3 (7.2e-2) -5.24e-3 (0)

Vop -0.262 -0.28 (6.8e-2) -0.262 (0)

Von -0.262 -0.28 (6.8e-2) -0.262 (0)
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Consider a generi nonlinear and dynami Ciruit Blok (CB) represented

by the following state-spae equations [135℄

ẋ(t;η) = f (x(t;η),u(t);η) (3.18)

y(t;η) = g(x(t;η),u(t);η) (3.19)

where u,y ∈ RP
denote system inputs and outputs, x ∈ RN

is an inter-

nal state vetor, and ẋ indiates the time derivative of the state vetor.

In (3.18), the vetor η ∈ Rν
ollets the ν physial or design parameters

whih the iruit blok response depends on, that are the main subjet of

this investigation. Note that both state and output equations may depend

on η, induing a parameter dependene on their solution. Therefore, both

state x(t;η) and output y(t;η) vetors are multivariate funtions of time t
and parameters η. Assume that inputs are invariant for eah geometrial or

physial on�guration of the system, so that u(t) does not depend on η.

3.2.1 Linear Transfer Funtion Models

For AMS and RF appliations several iruit bloks suh as Low Noise Am-

pli�ers (LNA's) or programmable ative �lters are designed to operate al-

most linearly when suitably biased and exited by small-signal inputs within

the maximum allowed range of input power. Under these onditions, in-

put, output and state vetors an be represented as a superposition of on-

stant DC terms uDC ,xDC(η),yDC(η) and small-signal time dependent terms

ũ(t), x̃(t;η), ỹ(t;η) as

u(t) = uDC + ũ(t), (3.20)

x(t;η) = xDC(η) + x̃(t;η), (3.21)

y(t;η) = yDC(η) + ỹ(t;η). (3.22)

If the small-signal input ũ(t) is swithed o� and only the onstant DC

bias is applied, it follows

u(t) = uDC and ẋ(t;η) = 0 (3.23)

uniformly for eah instane of the parameter vetor η. Appliation to (3.18)-

(3.19) leads to the de�nition of the parameter-dependent DC operating point

as the solution of

f (xDC(η),uDC) = 0, (3.24)

yDC(η) = g(xDC(η),uDC). (3.25)
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The triplet uDC ,xDC(η),yDC(η) is available from a diret DC sweep of the

transistor-level iruit blok overing the desired range of variation of the

parameter vetor.

Conversely, when the small-signal input is swithed on, insertion of (3.20)-

(3.22) into (3.18)-(3.19) leads to

˙̃x(t;η) = f (xDC(η) + x̃(t;η),uDC + ũ(t)), (3.26)

ỹ(t;η) + yDC(η) = g(xDC(η) + x̃(t;η),uDC + ũ(t)), (3.27)

whih an be approximated by a �rst-order Taylor expansion of both state

and output equations as

˙̃x(t;η) ≈ A(η)x̃(t;η) +B(η)ũ(t), (3.28)

ỹ(t;η) ≈ C(η)x̃(t;η) +D(η)ũ(t), (3.29)

where A(η) ∈ RN×N
, B(η) ∈ RN×P

, C(η) ∈ RP×N
and D(η) ∈ RP×P

denote parameter-dependent state-spae matries de�ning the small-signal

Linear Transfer Funtion Model (LTFM) of the CB around the spei�ed bias

onditions, with frequeny- and parameter-dependent input-output response

H(s;η) = C(η)(sI−A(η))−1B(η) +D(η). (3.30)

The elements of these state matries are formally de�ned as partial deriva-

tives of the various omponents of (3.18)-(3.19) evaluated at the urrent DC

point.

3.2.2 Frequeny and Time-domain maromodeling

The standard approah for the haraterization of the small-signal input-

output behaviour of the CB is to extrat a set of frequeny- and parameter-

dependent small-signal Sattering, Admittane or Impedane parameters,

through a set of small-signal AC (Alternate Current) analyses. Standard

iruit solvers of the SPICE lass are able to perform this operation only for

disrete values of frequeny

ω ∈ {ωl, l = 1, . . . , L} (3.31)

and parameters

η ∈ {ηk, k = 1, . . . , K}, (3.32)

resulting in a set of P × P omplex matries

Hl,k = H(ωl;ηk) . (3.33)
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The omputed DC operating points for the state and the output vetors over

the parameter grid are denoted as

xDC,k = xDC(ηk) (3.34)

yDC,k = yDC(ηk) . (3.35)

The disrete samples (3.33) of the linearised system response provide an

exellent approximation of the system behaviour for design and veri�ation

purposes, as long as this veri�ation is onduted in the frequeny domain

and for the available parameter values ηk. However, if the CB response

is required for an arbitrary parameter on�guration η∗ that is not part of

the disrete set {ηk}, a new extration is required by solving the original

CB system (3.18)-(3.19). It is lear that for omplex CB's and for repeated

parameter instanes this approah may be overly time-onsuming.

If the veri�ation has to be performed in the time-domain, a frequeny-

to-time onversion is further required. Several maromodeling approahes

are available [62, 138, 139℄ for performing this onversion and obtaining an

approximate state-spae representation in form of (3.28)-(3.29) or (3.30).

This proess usually leads to a redued-order ompat system with a number

of states n≪ N .

Maromodeling approahes are standard for non-parameterized systems.

In the proposed setting, for any �xed parameter instane η = ηk, the fre-

queny dependene of the data samples Hl,k is approximated by a rational

model, or equivalently a state-spae system in form

Hk(s) = Ck(sI−Ak)
−1Bk +Dk (3.36)

by minimizing the maromodel error ‖Hk(ωl) −Hl,k‖ in the desired norm.

The Vetor Fitting (VF) sheme [62℄ with all its possible variants provides

therefore an exellent numerial tool.

The standard VF approah however does not solve the problem of making

a ompat model available for any desired values of the parameters η. Fortu-

nately, an expliit treatment of the parameter dependene for the derivation

of a parameterized maromodel is also possible, using one of the available

parameterized maromodeling strategies [112, 140, 128, 82, 80, 129, 131,

130, 132, 134, 133℄. These methods are able to proess olletively the

samples (3.33) to obtain a multivariate representation of the system as a

parameterized redued-order maromodel in a form idential to (3.30), by

minimizing the error ‖H(ωl;ηk)−Hl,k‖ over the entire set of frequeny and

parameter samples. A more detailed desription of this approah is post-

poned to Setion 3.2.5.
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3.2.3 Parameterized maromodeling

The Sanathanan-Koerner algorithm disussed in Setion 2.2 is now extended

to the parameterized identi�ation problem. Consider the following repre-

sentation for the parameterized small-signal maromodel

H(s,η) =
N(s,η)

d(s,η)
=

∑M
m=0 Rm(η)φm(s)∑M
m=0 rm(η)φm(s)

(3.37)

where the frequeny-dependent basis funtions are partial frations assoi-

ated to a set of distint presribed poles qm

φ0(s) = 1, φm(s) =
1

s− qm
(3.38)

and where the parameter-dependent oe�ients are expressed as a superpo-

sition of multivariate basis funtions ξj(η) as

Rm(η) =
J∑

j=1

Rm,jξj(η), rm(η) =
J∑

j=1

rm,jξj(η) (3.39)

with onstant and unknown oe�ients Rm,j and rm,j. The representa-

tion (3.37) is quite general, sine it provides an impliit parameterization

of M-th order rational matries with both parameter-dependent poles and

residues [141, 112, 128℄.

Several hoies are possible for the basis funtions ξj(η), suh as mono-

mials, orthogonal polynomials, or �nite elements de�ned over strutured or

unstrutured grids in the parameter spae [112, 140, 128, 82, 80, 129, 130,

131, 132, 134, 133℄. In this work standard monomials are used by setting

ξj(η) =
∏

i

η
κj,i

i (3.40)

with i spanning the number of free parameters (omponents of η), with j
interpreted as a global index spanning the set of all multivariate monomials

with overall degree

∑
i κj,i ≤ κ̄. The hoie of polynomials is justi�ed here

by the expeted smooth parameter dependene for the strutures of interest.

This will be on�rmed by all examples of Setion 3.3. This hoie is however

not restritive, sine the same proedure an be applied without any modi�-

ation to di�erent parameterization shemes based on general basis funtions

ξj(η).
Given the set Hl,k of small-signal transfer matries available at the fre-

queny points ωl and parameter grid values ηk, the oe�ients Rm,j and rm,j
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are omputed through a generalized parametri Sanathanan-Koerner (SK) it-

eration [60, 81℄, an extension of the algorithm presented in Setion 2.2, whih

minimizes the following ost funtion

E2µ =
L∑

l=1

K∑

k=1

∥∥∥w(µ)
l,k

[
N(µ)(ωl;ηk)− d(µ)(ωl;ηk)Hl,k

]∥∥∥
2

(3.41)

at eah iteration µ = 1, 2, . . . , where the iteration-dependent weight w
(µ)
l,k is

de�ned as the inverse of the denominator estimate available at the previous

iteration

w
(µ)
l,k =

[
d(µ−1)(ωl;ηk)

]−1
(3.42)

with the initialization w
(0)
l,k = 1. The above SK formulation is a standard

approah in linear and parameterized maromodeling. As disussed in Se-

tion 2.2 it allows to ast a global nononvex optimization problem as a se-

quene of linearized problems (3.41), sine the residual whose norm is being

minimized at eah iteration is an a�ne ombination of the free variables

Rm,j and rm,j. Therefore, the numerial solution of (3.41) does not involve

partiular di�ulties, requiring a simple linear least squares solver. There

is however an additional di�ulty, due to the fat that (3.41) will minimize

the least squares error, without any ontrol over the auray of the �tted

model at presribed frequeny points, inluding DC. For the appliations of

interest, whih requires an exat representation of the DC response of the

small-signal maromodel, a better ontrol is needed.

The DC response of the parameterized maromodel is readily omputed

from (3.37) as

H(0,η) =
N(0,η)

d(0,η)
=

∑M
m=0Rm(η)φm(0)∑M
m=0 rm(η)φm(0)

. (3.43)

Denoting with

H0,k = H(0;ηk) (3.44)

the DC value of the linearized response of the original system, whih is easily

extrated or extrapolated from a iruit solution of the original shemati,

the parameterized maromodel an be enfored to math exatly this DC

response by adding the following set of equality onstraints

M∑

m=0

Rm(ηk)φm(0)−H0,k

M∑

m=0

rm(ηk)φm(0) = 0 (3.45)

for k = 1, . . . , K to the linear least squares problem (3.41). The on-

straints (3.45) are also expressed as a�ne ombinations of the deision vari-

ables. Therefore, the minimization of (3.41) subjet to (3.45) is easily ahieved
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through any standard solver for linearly-onstrained linear least squares prob-

lems.

One the maromodel oe�ients are available, the omputation of the

DC bias orretion soures using (3.48) is performed, for eah of the available

parameter grid values ηk. Then, a parameterized set of DC orretion soures

is de�ned as a superposition of the basis funtions ξj(η) as

∆̄DC(η) =

J∑

j=1

∆̄jξj(η). (3.46)

The oe�ients ∆̄j are omputed by enforing the �tting/interpolation on-

dition (3.49) for eah k, whih requires the solution of a further linear least

squares system.

3.2.4 The need for DC orretion

Another issue may a�et the above desribed maromodeling �ow, possibly

making the resulting small-signal parametri maromodels ompletely use-

less when employed in time-domain transient simulations. In fat, a diret

replaement of the nonlinear CB with the Linear Transfer Funtion Model

(LFTM) in a transient simulation setup leads to possibly inorret biasing,

sine the small-signalmaromodel does not inlude any information of the un-

derlying DC operating point. When exited by onstant inputs u(t) = uDC ,

the LTFM (3.30) provides its losed form DC output solution

y̌DC(η) = H(0;η)uDC

= (D(η)−C(η)A−1(η)B(η))uDC , (3.47)

whih has no relationship with the true DC operating point of the original

nonlinear CB. This information is not embedded in the LTFM, whih only

represents the dynamis of small signal variations around the bias point.

This problem beomes severe when several CB's are onneted together to

form a omplete RF transeiver path. If one of the CB models provides the

inorret DC bias as its output, whih is in turn fed to the input of another

blok, the latter will not funtion properly due to inonsistent biasing, and

the entire veri�ation results will be wrong.

For the non-parametri ase, or equivalently for any �xed instane η = ηk,

it was shown in [90℄ and Setion 3.1 how the orret DC bias an be reovered

by adding suitable onstant DC orretion soures at the maromodel ports.

Assume that for any disrete parameter value ηk, the orret bias onditions

provided by the input uDC and output ŷDC,k = yDC(ηk) are known from
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Figure 3.11: DC point orretion for a two port LTFM, assuming a hybrid

on�guration with one urrent-ontrolled (left) and one voltage-ontrolled

(right) port. The orret DC bias is set via onstant urrent soures ∆VDC,1

and ∆IDC,2 applied at the input ports of the LTFM. The soure values are

provided by the elements of the orretion vetor (3.48).

a solution of (3.25) for the original non-linear system. The DC solution

yDC(ηk) of the LTFM driven by the same nominal biasing inputs uDC is

omputed as in (3.47), and the di�erene

∆DC(ηk) = yDC,k − y̌DC(ηk) (3.48)

is evaluated, whih represents the orretion that must be applied to the DC

solution of the LTFM in order to obtain the nominal CB bias level. The

orretion terms ∆DC(ηk) are applied by de�ning an enlarged DC-orreted

small-signal maromodel whih embeds the original LTFM and adds at its

interfae ports suitable onstant soures (see Figure 3.11), whose values are

the omponents of ∆DC(ηk). It should be noted that using onstant or-

retion soures will a�et and �x the DC point only, without any e�et on

the auray of the LTFM around the operating point under small-signal

exitation.

The above approah is valid only for a �xed parameter value η = ηk.

Therefore, a new LTF maromodel extration and a new omputation of the

DC orretion soures for any new instane of the parameters is required.

The main purpose of this work is to present a general strategy that is able

to proess the full set of samples (3.33), providing a DC-ompliant redued-

order parameterized LTF maromodel that an be diretly used to replae a

transistor-level CB for any system-level time-domain veri�ation and for any

arbitrary parameter value η within an admissible range.
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3.2.5 DC-ompliant parameterized maromodeling

The proposed strategy for the extration of a DC-ompliant and parameter-

ized small-signal maromodel an be summarized in the following steps:

1. reate a suitable CB haraterization test benh in the adopted iruit

simulation environment and apply the desired biasing iruitry to eah

CB pin;

2. extrat DC bias information yDC,k and small-signal frequeny response

Hl,k of the CB from a set of iruit simulations of the non-linear system,

here represented by (3.18)-(3.19), for a set of disrete parameter values

η ∈ {ηk, k = 1, . . . , K} and at a disrete set of frequenies ω ∈ {ωl, l =
1, . . . , L};

3. perform a parameterized rational urve �tting of the data Hl,k using

a multivariate parametri maromodeling sheme, and obtain a state-

spae realization (3.30) of the LTFM;

4. ompute y̌DC(ηk) from (3.47) and ∆DC(ηk) from (3.48) over the dis-

rete parameter grid ηk;

5. interpolate the data∆DC(ηk) with a losed-form parametri expression

∆̄DC(η) so that

∆̄DC(ηk) = ∆DC(ηk) (3.49)

6. synthesize a iruit netlist with a standard parameterized maromodel

realization, omplemented by DC orretion soures ∆̄DC(η) onneted
at its external ports.

Figure 3.11 depits the result of this proess in terms of high-level shemati

bloks. Next setions provide more details on the proposed modelling strat-

egy for steps 3), 5), and 6).

3.2.6 Maromodel representation

The above desribed proedure results in a DC ompliant parameterized

small-signal maromodel H(s,η) de�ned in (3.37), plus a set of parameter-

dependent DC orretion soures ∆̄DC(η) de�ned in (3.46). These two blok

elements are onneted as in Figure 3.11. The �nal step onsists of asting

these expressions in a form that an be used in a iruit solver of the SPICE

lass.
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For the small-signal maromodel part, the detailed derivation in [81℄,

see also [126, 142, 143℄ shows that H(s,η) an be easily onverted into a

parameterized desriptor form

E ˙̃x(t;η) = A(η)x̃(t;η) +B(η)ũ(t), (3.50)

ỹ(t;η) = C(η)x̃(t;η)

where

E =

[
I 0

0 0

]
A(η) =

[
A1 B1

C2(η) D2(η)

]
(3.51)

B =
[
0 −IP

]T
C(η) =

[
C1(η) D1(η)

]
(3.52)

and where

A1 = blkdiag{qmIP}Mm=1 (3.53)

B1 = [IP , . . . , IP ]
T

(3.54)

C1(η) = [R1(η), . . . ,RM(η)] (3.55)

C2(η) = [r1(η)IP , . . . , rM(η)IP ] (3.56)

D1(η) = R0(η) (3.57)

D2(η) = r0(η)IP (3.58)

with qm basis funtions poles from (3.38). The main advantage of representa-

tion (3.50) is that those state-spae matrix elements that are parameterized

oinide with the oe�ients Rm(η) and rm(η). Sine polynomial basis fun-

tions ξj(η) are used in the expansion, a SPICE synthesis of these equations

is straightforward using elementary dependent soures with polynomial gain.

The same onsideration and synthesis applies for the DC orretion soures

∆̄DC(η).

3.2.7 Stability and passivity

The proposed maromodeling �ow is applied here to desribe the linearized

behavior of ative nonlinear CB's. Therefore, passivity veri�ation and en-

forement is not required at all sine the original CB is not a passive devie.

Should the appliation at hand require a guaranteed passive parameterized

maromodel, an internally passive parameterization should be used instead

of (3.37). See [129, 130, 131, 132, 133, 134℄ for more details.

Conversely, uniform stability is important for any subsequent transient

analysis. All maromodel poles (whih depend on the parameters η) should

be on�ned into the left half omplex plane for any value of the parameters
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Figure 3.12: Left panel: using a oarse grid (dots) for model identi�ation

may lead to parameterized pole trajetories (dashed line) leaking into the

right hand omplex plane. Right panel: grid re�nement onstraints the pa-

rameterized poles into the stable region.

within the admissible range. A simplisti approah to enfore uniform stabil-

ity is to not parameterize the poles at all, at the prie of a redued auray

and generality of the small-signal maromodel. This is easily ahieved by

removing in (3.37) the dependene on the parameters η of the denomina-

tor oe�ients rm(η), see [136℄. In general, neessary and su�ient rite-

ria that are able to guarantee uniform stability without ompromising the

maromodel auray, e.g. by imposing additional struture in the model

equations, are still not available.

Guaranteed stable non-parameterized maromodels (3.36) for any �xed

parameter value are easy to obtain, see [62℄. When introduing the external

parameters η, the essential ondition for preserving uniform stability is to

start with a su�iently dense parameter grid ηk, so that all system poles are

traked with su�ient resolution between grid values. Figure 3.12 provides

an intuitive illustration that instability may our for oarse grids due to

insu�ient knowledge of the original system dynamis between grid values.

A proper dense grid failitates the enforement of uniform stability.

In the proposed implementation, after omputing an initial parameterized

maromodel (3.37), the maromodel poles are omputed, i.e. the generalized

eigenvalues of penil (E,A(η)), over a dense grid in the parameter spae.

Note that this veri�ation involves a minimal ost due to the ompat size of

the maromodel. Should unstable poles be deteted for some parameter value

η∗, the identi�ation grid ηk is enlarged by adding η∗ and the maromodel

is reomputed. This last repeated �tting stage was never required for all

appliation examples that were tested.



CHAPTER 3. SMALL-SIGNAL AND P-LTI MACROMODELS 87

10
0

10
2

10
4

10
6

10
8

10
10

−200

−150

−100

−50

0
Scattering matrix entries, magnitude (dB)

 

 

Vds

10
0

10
2

10
4

10
6

10
8

10
10

0

50

100

Frequency [Hz]

Scattering matrix entries, phase (degrees)

 

 

S(1,2), model

S(1,2), data

Figure 3.13: Magnitude (top) and phase (bottom) of S12 for the parame-

terized small-signal NMOS model (blue solid lines) ompared to the orre-

sponding original responses (dashed red lines), plotted for di�erent values of

the parameter Vds ranging from 0.8 V to 1.2 V. The S12 is the response with

the smaller values at DC for a sweep of the Vds. This result demonstrates

the e�etiveness of the proposed DC enforement strategy.

3.3 Examples

The e�etiveness of the proposed methodology is demonstrated on three ex-

amples. The �rst two ases are very simple: a single NMOS transistor and a

two-stage bu�er. These examples are mainly used as a proof of onept. The

third example is instead a fully implemented iruit blok, namely a Low

Dropout Voltage regulator used in a ommerial 3G transeiver design.

3.3.1 A NMOS transistor

The �rst example illustrates the proposed methodology on a single NMOS

transistor, for whih a small-signal linearized model is derived using the

soure-drain bias voltage Vds as a free parameter. A 3-port on�guration

is onsidered, where port one is the drain, port two the gate, and port three

the bulk, all referened to the soure, as depited in Figure 3.14. This is the

typial test pattern used to haraterize �eld e�et transistors. Beause of

the tehnology used Vth ≈ 0.6V . The NMOS is biased with Vgs = 1.2V and

Vbs = 0V . As a onsequene a sweep of Vds from 0.8 V to 1.2 V explores the
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linear region of the NMOS harateristi. A omparison of the small-signal

S12 response of the original devie with the orresponding parameterized

model is reported in Figure 3.13 for a Vds sweep ranging from 0.8 V to 1.2 V.

This �gure demonstrates that, even if the dynami variation of the responses

is very large, the proposed DC onstraint is able to guarantee a very a-

urate maromodel, even at low frequenies where the magnitude response

is very small (lower than −150dB), thanks to the DC enforement strategy

proposed.

BG

D

S

Figure 3.14: Typial

haraterization test

pattern for NMOS.

Figure 3.15 shows the omputed parametri or-

retion soure to be applied to the input port (Gate)

for DC ompliane. Only the points marked with red

squares were used for the maromodel identi�ation,

whereas the blue rosses indiate additional valida-

tion points used to verify the interpolation. As ex-

peted, the dependene of this orretion soure on

Vds is very smooth and therefore well aptured by

a low-order interpolation. The parameterized model

has dynamial order 2, while both numerator and

denominator polynomial bases (3.37) have degree 2.

Finally, Figure 3.16 reports the parameterized maromodel (real) poles, that

for this simple devie show a weak and smooth dependene on the free pa-

rameter Vds as a onsequene of the small variation of harges in the MOS

hannel while working in the linear region.

3.3.2 A two-stage bu�er

The seond example is the two-stage bu�er depited in Figure 3.17. For this

test ase, two parameters are used: the supply voltage Vdd ∈ [0.7, 1.2] V and

the ambient temperature, in the range T ∈ [−25◦, 125◦] C. The auray

of the parameterized maromodel is demonstrated by omparing the small-

signal S-parameter S22 of the original bu�er to the maromodel response for

two sweeps of Vdd and T in the two panels of Fig. 3.18. For this exam-

ple, a dynamial order 4 was used, with both numerator and denominator

polynomial bases (3.37) having degree 2.

Figure 3.19 depits the parameterized DC orretion soures at the sup-

ply and output ports of the bu�er, omparing the raw data with the interpo-

lated model. Considering that temperature e�ets in transistors models are

desribed by low degree polynomials (two or three at most), these two di-

mensional orretion funtions an be expeted to be smooth as well thanks

to the proposed expliit DC onstraint in the maromodel �tting. Therefore,

a low-order interpolation sheme is appropriate. For this example it was used
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Figure 3.15: Parametri DC urrent orretion soure (Gate) for the small-

signal NMOS model, plotted as a funtion of Vds.
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Figure 3.16: Parameter-dependent poles of the small-signal NMOS model.
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Figure 3.17: A two-stage bu�er with ports numbering used in this work.
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Figure 3.18: S22 for the parameterized small-signal bu�er model (blue solid

lines) ompared to the orresponding original response (dashed red lines).

In the bottom panel, Vdd is �xed to 0.75 V and the temperature sweeps in

the range −25 ÷ 120◦C, while in the top panel T is �xed to 20◦C and Vdd

sweeps from 0.7 V to 1.2 V. S22 is presented being the S-parameter with the

wider variation with both parameters Vdd and T . The phase is not depited
beause the variation with parameters Vdd and T is small.
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a multivariate polynomial of order 2, leading to a root mean square error of

the polynomial interpolation less than 10−5
.

3.3.3 A Low Dropout (LDO) voltage regulator

Here a Low Dropout (LDO) voltage regulator is onsidered, whose transistor

level shemati is taken from a ommerial 3G transeiver design. This devie

is intended to provide a stabilized output voltage, under ontrol by external

biases provided from the logi unit. The parameter that is onsidered is

again the supply voltage Vdd ∈ [1.2, 1.7] V. For suh a sweep of Vdd and

using a referene voltage of 0.6V, the LDO works in the linear region of

the harateristi. The original shemati inludes hundreds of transistors,

therefore a redued-order maromodel is desirable to redue omplexity and

runtime in system-level simulations.

A representative sattering response of the omputed parameterized maro-

model is ompared to the orresponding small-signal sattering response of

the transistor-level netlist in Figure 3.20. Also for this ase, it an be seen

that an exellent auray is ahieved for all values of the parameter Vdd

within the range of interest. The parameterized model has dynamial order

16, while numerator and denominator polynomial bases (3.37) have respe-

tively degree 3 and 2. Figure 3.21 shows the omputed parametri orretion

soure to be applied to the power supply port (Vdd) for DC ompliane. Only

the points marked with red squares were used for the maromodel identi�-

ation, whereas the blue dots indiate additional validation points used to

verify the interpolation.

The transient analysis result of the synthesized parameterized maro-

model is ompared to the response obtained using the transistor-level netlist

in Figure 3.22. The simulation time for a short transient analysis like the

one depited in Figure 3.22 require 3s using the synthesized parameterized

model and 30s using the transistor level model. The real bene�t of the

proposed methodology should be addressed on omplex system level simu-

lation senarios: replaing several CB with parameterized-LTFM an lead

to a tremendous omplexity redution while preserving the auray of the

simulation.

3.3.4 A system-level appliation

The proposed maromodeling proedure is illustrated on a iruit blok om-

posed by a single OPerational Ampli�er whose voltage soure is provided by a

Low-DropOut (LDO) voltage regulator; test benh is depited in Figure 3.23.



CHAPTER 3. SMALL-SIGNAL AND P-LTI MACROMODELS 92

0.7
0.8

0.9
1

1.1
1.2

−20
0

20
40

60
80

100
120

1

1.5

2

2.5

3

3.5

4

x 10
−3

 

Vdd [V]

DC correction

Temperature [°C]

 

I 2
 [

A
]

  model

  validation

  identification

0.7 0.8 0.9 1 1.1 1.2

−20020406080100120

−4

−3.5

−3

−2.5

−2

−1.5

−1

x 10
−3  

Vdd [V]

DC correction

Temperature [°C]

 

I 3
 [

A
]

  model

  validation

  identification

Figure 3.19: Parameterized DC orretion soures for the supply (top) and

output port (bottom) of the two-stage bu�er. The urrent orretion soures,

are interpolated using a multivariate polynomial of order 2. The root means

square error of the polynomial interpolation is lower than 1e−5
.
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Figure 3.21: Parametri DC urrent [A℄ orretion soure (Power supply port

Vdd) for the small-signal LDO model, plotted as a funtion of Vdd. Similar

results are obtained for the urrent orretion soures on the other ports.
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The e�et of a small variation on the Vdd is onsidered. In the top plot the

square wave applied to the Vdd is depited. In the bottom plot the transient

response obtained from the synthesized parameterized-LTFM before the DC

orretion (blue ontinuous line) and after (blue dashed line) is ompared

with the response from the transistor level shemati.
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Figure 3.23: Subset of high-level iruit bloks inside an hypothetial base-

band reeiver hain.
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The operational ampli�er is a fundamental building blok of analogue ir-

uits, used in a vast variety of appliations like A/D-D/A onverters, high-

speed wired/wireless transmitter and reeivers and sensors. In onjuntion

with a negative-feedbak network like in Figure 3.23, it an implement signal

ampli�ation, omplex ative �lters, generation of voltage and urrent refer-

enes and voltage bu�ers. In the ontext of RF and transeiver design OPAs

are the building bloks for voltage regulators, low-noise ampli�ers and ative

�lters. Under proper biasing the OPA behaves almost linearly, i.e. it does

not produe spurious harmonis thus preserving the quality of the signal in

the transeiver hain introduing a negligible noise ontribution.

For the results of this work a real OPA omponent implemented in a

ommerial 3G transeiver was used. The OPA iruit blok, depited in

Figure 3.23, is parameterized by a supply voltage Vdd ∈ [1.1, 1.3] V with

20mV steps and a gain α ∈ [1, 2] with steps 0.05, whih are ranges of pratial
interest. Linearity and losed-loop stability were veri�ed in pratie by means

of Spie simulations. The LDO model is parameterized by a Vd ∈ [1.2, 1.7] V
using a nominal voltage referene Vref = 0.6 V. The e�etiveness of the

proposed methodology for voltage regulars was disussed in Setion 3.3.3.

Figures 3.24-3.25 ompare the omputed maromodel responses to the

original small-signal sattering responses for various ombination of the pa-

rameters. The auray is exellent. These �gures show that the variability

indued by supply voltage variations is very small, whereas the sensitivity to

a gain variation is larger. This is further demonstrated in Figure 3.26.

The same maromodeling proess was also applied to the LDO in Se-

tion 3.3.3. Then, the parameterized maromodels of OPA and LDO were

synthesized in SPICE, and a transient analysis was performed to validate the

maromodel vs the full transistor level iruits. For illustration, a ommon

signal-integrity senario is addressed: the output from a di�erential LNA in a

base-band reeiver hain is ampli�ed and �ltered using an OPA. Signal qual-

ity and noise rejetion are of paramount importane sine the analog output

from the OPA is then proessed by and A/D onverter and provided to a

Digital Proessing Blok. Disturbanes on the voltage referene Vd, due to

ross-talk or external noise soures must be handled by the LDO resulting in

a stable Vdd for the OPA. Therefore a multi-tone (1 GHz-567 MHz-40MHz)

multi-amplitude distortion is added to a 10 kHz square wave used as distur-

bane on the Vd of the LDO, while the input for the OPA is a 4 MHz square

wave.

A small part of the input signal and the orresponding outputs are de-

pited in Fig. 3.28 for the OPA and in Fig. 3.27 for the LDO. A 200 µs
transient simulation is required in order to properly asses the e�et of the

disturbanes on the LDO voltage referene Vd. The transistor level simula-
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Figure 3.24: Comparison between parameterized small-signal maromodel

(red dashed lines) and small-signal S-parameters S1,3 and S2,3 responses of

the OPA iruit blok for �xed supply voltage Vdd = 1.2 V and variable gain.
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Figure 3.25: As in Fig. 3.24, but for S3,2 with �xed gain α = 2 and variable

supply voltage Vdd.

tion required 10 h. Suh large simulation time is quite ommon and basially

due to: the omplexity of the transistor level models, involving 600 tran-

sistors, 100 diodes and 600 dynamial elements, and the omplexity of the

multi-tone disturbane on the LDO. The linear maromodel ompleted the

simulation in only 8 minutes leveraging on the synthesized low order model:

order 11 for the OPA and 16 for the LDO. As an be seen in Figures 3.27

and 3.28, suh a tremendous speedup an be ahieved with no ompromise

on auray. The �gures further demonstrate the neessity of inluding DC

orretion soures, sine the results without suh soures present a lear DC

o�set. Dealing with two parameters, i.e. Vdd and α, the DC orretion ur-

rent soures were modelled using two-dimensional polynomials; results are

depited in Figure 3.29.

3.4 Conlusions

This Chapter presented a systemati methodology for the extration of om-

pat parameterized small-signal maromodels of omplex nonlinear iruit

bloks for Mixed-Signal and RF appliations. Thanks to an expliit on-

straint on the DC response of the maromodel and to the inlusion of pa-
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Figure 3.27: Bottom panel: detail of the transient analysis of the LDO

transistor-level iruit blok (blue ontinuous line) and parameterized maro-

model, with (red dashed line) and without (blak line) DC orretion soures.

The supply voltage a�eted by noise is depited in the top panel. As ex-

peted, the output from the LDO is always lose to the nominal value of

1.13 V.
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Figure 3.28: Bottom panel: detail of the transient analysis of the OPA

transistor-level iruit blok (blue ontinuous line) and parameterized maro-

model, with (red dashed line) and without (blak line) DC orretion soures.

rameterized DC orretion soures, the proposed maromodel an seamlessly

replae the orresponding transistor level shemati in system-level Signal In-

tegrity veri�ations, leading to a signi�ant speedup in the omputing time

required by transient simulations.

The feasibility of the proposed approah was demonstrated on two sim-

ple aademi examples (a single transistor and a two-stage bu�er) as well

as on two omplex iruit models: a Low Dropout voltage regulator and an

Operational ampli�er, both taken from a real 3G transeiver design. The

availability of aurate and e�ient maromodels is onsidered as a key en-

abling fator for omprehensive system veri�ation, allowing a fast systemati

analysis of the large number of on�gurations and operation modes required

by modern digitally-programmable systems.
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Figure 3.29: OPA urrent orretion soures are depited above as a funtion

of Vdd and gain α. The 2D polynomial models (blue ontinuous line grid)

attains a RMS error of 1e−5
. Polynomial degree is 4 in both variables. The

identi�ation dataset is represented by red squares while the validation points

are the blue rosses in the plots above. Corretion soures I1 for the input

port of the OPA are not depited here sine negligible in magnitude.



Chapter 4

Noise-ompliant maromodel

synthesis

Lumped passive network synthesis, aording to Cauer's de�nition [144, 145℄,

onsists in the design of a primitive network, i.e. a iruit omposed only of

primitive elements (indutanes, mutual indutanes, resistanes and apa-

itanes), whih exhibits a presribed frequeny response. Suh a de�nition is

stritly related with the design of linear �lters, hot topi at the beginning of

last entury. In spite of the spei� appliation, Cauer's approah was very

general sine he was the �rst to onsider the synthesis of a linear network as

an inverse problem of network analysis. In this work, network synthesis is

mainly used to onvert linear maromodels, like the ones desribed in Chap-

ter 2 and 3, into Spie-based ompliant netlists for system-level simulations.

The synthesis of Linear Time Invariant (LTI) networks dates bak to the

beginning of the last entury with the pioneering work of Foster [146℄ and

Darlington [147℄. The fathers of network theory: Cauer [148℄, Brune [149℄,

Tellegen [150℄ and later Bott and Du�n [151℄ were the �rst to study and

establish synthesis proedures for 1-port networks desribed as positive real

funtions. The natural extension to the N-port ase required the study of pos-

itive real matries [107℄, leading to the more general results of Belevith [109℄.

Two are the main lasses of linear network synthesis methods: non-reiproal

methods, based on the usage of gyrators [152℄ (passive and non-reiproal

network elements) and gyratorless (reiproal) methods. The required on-

ditions for both methods were deeply studied in [109℄.

After the introdution of State-Spae tehniques for the analysis of lin-

ear networks made by Bashkow [48℄ in 1957, several authors adopted the

State-Spae approah also in the synthesis ontext. As it was noted by An-

derson [153℄ and Youla [154℄ the state-spae methodology is theoretially

sound and easier to be interpreted from a physial perspetive. Moreover,

102
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this mathematial approah was well onsolidated in Physis and Control

Theory, leading to a onvenient transfer of knowledge to the Ciruit Theory

�eld. The seminal idea for an appliation of Control Theory results to the

problem of network synthesis an be found in the work of Kalman [155℄.

Indeed the Reatane Extration Method [154, 119℄, ornerstone for all the

suessive synthesis tehniques, was inspired by [155℄. From a state spae

perspetive the onditions for a passive and reiproal (gyratorless) synthe-

sis an be easily related with the physial properties of the network [119℄,

avoiding the involved and abstrat mathematial details required by the pre-

vious methods [109℄. The set of primitive network elements required for

the reiproal synthesis of a passive network an be restrited at most to

the RLCT subset, i.e.: Resistors, Indutors, Capaitors and ideal multi-port

Transformers [156℄. Several years of researh ativity were devoted to further

redue this RLCT subset. The question whether ideal transformers ould be

avoided in the synthesis of passive networks had no answer for a long time,

see [151℄ and [157℄ as an example. In [156℄ MMillan found the solution

demonstrating that ideal transformers an not be avoided in the synthesis

of passive networks. Motivated by the last results about the need to use

ideal transformers some researh e�ort was spent to redue the omplexity

of the Reatane extration algorithm [154℄, being the anonial

1

synthesis

of hoie.

Although this topi was widely studied and is well onsolidated, no ef-

fort has been devoted so far in order to haraterize the noise ompliane of

the synthesized network, i.e. under whih onditions the obtained network

shows the same input-output noise response in omparison with the original

physial system/iruit. Therefore, in this Chapter several of the most pop-

ular network synthesis algorithms are analysed fousing on noise ompliane

properties. As disussed in Setion 1.3.1, the transition from hard to �rm IP

bloks requires the availability of �exible netlists, i.e. the same iruit de-

sription should �t to multiple simulation ontexts: transient, S-parameters

and noise analysis. As a onsequene, the adopted synthesis algorithm must

preserve not only input-output response of the original system but also the

noise behaviour.

This Chapter deals with the noise-ompliant synthesis of linear, lumped,

�nite, time invariant, and passive networks. Setion 4.1 introdues the prob-

lem of noise-ompliane in the synthesis proess. Setion 4.2 disusses stati

network synthesis, i.e. time/frequeny independent iruits. This ase is of

1

The Reatane Extration Synthesis is anonial, i.e. requires the minimum number

of passive elements only in the ase of non-reiproal synthesis (using gyrators). In the

reiproal (gyratorless) ase only the minimum number of dynami elements (C and L) or

the minimum number of resistors, but not both minima together, an be guaranteed [119℄.
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interest by itself sine stati networks are su�ient to perform onnetivity

and stati IR drop analysis for SoC devies like disussed in Setion 1.2. The

extension to dynami networks is treated in Setion 4.3. For eah setion

results and example test ases are provided.

4.1 Problem statement

In the ontext of linear passive networks thermal noise (also known as Gaus-

sian or white noise) is the most relevant intrinsi noise ontribution. It results

in a small �utuation of voltage and urrent at the ports of a soure-free pas-

sive devie. This phenomenon was predited by A. Einstein in 1905 [158℄ as a

onsequene of the Brownian motion of free eletrons inside a piee of metal

in thermal equilibrium. Then, it was �rst observed by Johnson in 1928 [159℄

and explained by Nyquist the same year in [160℄.

Physially, white noise is due to the random thermal motion of free ele-

trons inside a piee of ondutive material whih leads to temporary agglom-

eration of arriers. At marosopi level it implies a �oating (in magnitude

and polarity) potential di�erene between two ondutor ends. In a physial

resistor this is pereived as a �utuation in the eletrial urrent (if the resis-

tor is in a losed loop) or in the eletrial voltage aross its terminals (if the

resistor is open-iruited). In both ases the Diret Current (DC) omponent

of the �utuation is zero.

In [160℄ Nyquist demonstrated that for linear resistanes in thermal equi-

librium at temperature T , the urrent or voltage �utuations are quite in-

dependent of the ondution mehanism, type of material and shape and

geometry of the resistor. The generated thermal noise depends exlusively

upon the value of the resistane and its temperature. This result is known

as Nyquist's theorem and an be written as

V̄ 2
n (ω) = 4KbTR , (4.1)

with ω = 2πf , Kb = 1.38065 10−23J/K (Boltzmann onstant), resistor value

R and T temperature expressed in Kelvin. V̄n is the noise voltage spetral

density and is measured in V/
√
Hz. A dual result holds for the urrent, i.e.

Ī2n(ω) = 4KbTG , (4.2)

where G = 1/R is the ondutane.

Two equivalent iruit models for a noisy resistor follow from (4.1) and (4.2):

• Thevenin model: omposed by a noiseless resistor in series with a noise

voltage soure based on (4.1);
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Noisy resistor

R

Thevenin model

+−vn

R

R in

Norton model

Figure 4.1: Thevenin and Norton equivalent iruits for a noisy resistor.

1/7Ω

1/2Ω

1/2Ω

P1 P2

Figure 4.2: Simple 2-port resistive iruit.

• Norton model: omposed by a noiseless ondutane in parallel with a

noise urrent soure based on (4.2).

Figure 4.1 depits Thevenin and Norton equivalent iruits for a noisy resis-

tor.

The noise analysis on a passive network an be easily performed relying

on the equivalent iruits depited in Figure 4.1. As an example onsider the

2-port resistive iruit in Figure 4.2. Noise analysis is onduted on the equiv-

alent iruit in Figure 4.3, where eah noisy resistor was substituted with the

equivalent Thevenin model. To further simplify alulations it is assumed

that resistor noise soures are unorrelated (statistially independent, a on-

dition that is veri�ed in pratie). The output noise voltage spetral density

vo on port 2 is evaluated given the input voltage vin on port 1. Shorting the

�rst resistor and its noise soure, using linear superposition it follows

v2o =

(
1/2

1/2 + 1/2

)
2KbT︸ ︷︷ ︸
v2n2

+

(
1/2

1/2 + 1/2

)
2KbT︸ ︷︷ ︸
v2n3

= KbT , (4.3)

for T = 300K the voltage noise spetral density is

vo = 6.43e−11V/
√
Hz . (4.4)
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+−vn1

1/7Ω

1/2Ω

+−

vn2

+−vn3

1/2Ω

vin vo

Figure 4.3: Equivalent iruit for the noise analysis of the simple 2-port

resistive iruit in Figure 4.2.

+
−9i1

+
−−2i2

i1 o1

+
−−2i1

+
−4i2

i2 o2

Figure 4.4: Equivalent ontrolled soures network for the resistive network

in Figure 4.2.

This result is veri�ed with a noise analysis in Spie, sine Spie uses internally

the equivalent iruits of Figure 4.1

It is well known that a resistive network is eletrially equivalent to a

iruit omposed of ontrolled soures. Given the ondutane matrix for

the resistive network in Figure 4.2

Ge1 =

[
9 −2
−2 4

]
(4.5)

an equivalent iruit solely omposed of ontrolled soures is depited in

Figure 4.4. Sine for ontrolled soures there does not exist an equivalent

noise model, the network in Figure 4.4 is noiseless. Indeed performing the

noise analysis in Spie leads to zero voltage and urrent noise spetral densi-

ties. Therefore, di�erent iruit realizations that are equivalent in the input-

output responses are not equivalent for what onern the noise analysis. Suh
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an issue motivates the investigation of a noise-ompliant network synthesis.

As it will be further explained in Setion 4.2 and 4.3, in order to obtain

a noise-ompliant synthesis, ontrolled soures an only be used to realize

noiseless (lossless) omponents.

4.2 Stati network synthesis

Stati networks are used to perform onnetivity analysis and stati IR drop

veri�ation for Power Distribution Networks (PDNs). As disussed in Se-

tion 1.2, the design of PDNs is beoming more and more umbersome due to

low power onstraints. The availability of a noise ompliant stati network

is therefore of paramount importane in order to asses Power Integrity.

In the following, some basi notions related with the desription of stati

networks are provided in Setion 4.2.1, then the synthesis with a prede�ned

network topology is onsidered in Setion 4.2.2, and in Setion 4.2.3 the

anonial RT (Resistors and ideal Transformers) synthesis is summarized.

4.2.1 Basi assumptions

Some fundamental results from network theory [109℄ are brie�y summarized

in the following sine they are needed to takle the stati synthesis problem.

In partiular: matrix desription of stati networks, existene of eah rep-

resentation and passivity and reiproity onditions are onsidered. For an

exhaustive presentation of those topis refer to [161℄.

Several equivalent (when they exist) representations an be used to de-

sribe a stati network. Applying Kirhho� urrent and voltage laws network

variables an be ordered (and weighted, in the ase of sattering parameters)

obtaining: impedaneR, admittaneG, hybrid H and sattering S matries.

It was demonstrated in [109℄ that for passive networks it is always possible to

ombine voltages and urrents in order to obtain a hybrid matrix (a similar

result hold for the Sattering matrix ase dealing with power waves). Casting

networks desription in matrix form greatly simpli�es analysis and synthesis

methods. Indeed passivity and reiproity onditions, whih are the on-

straint of interest here, an be summarized in Table 4.1. To further simplify

the notation for the haraterization of reiproity in the Hybrid ase the

external signature matrix Sext ∈ RP×P
is introdued. In general, signature

matries [162℄ are diagonal matries with 1 or −1 on the main diagonal. In

the partiular ase of hybrid matries the external signature matrix is de�ned
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Table 4.1: Summary of passivity and reiproity onditions for stati network

matrix representations. In the reiproity ondition for the Hybrid matrix

the external signature matrix Sext de�ned by (4.6) is used. In the passivity

onditions, zero equality means that the network is lossless, i.e. does not

absorb ative power.

Type R G H S

Passivity R+RT � 0 G+GT � 0 H+HT � 0 S+ ST � 2I
Reiproity R = RT G = GT SextH = HTSext S = ST

as

Sexti,i =

{
1, port i is voltage (urrent) ontrolled
−1, port i is urrent (voltage) ontrolled

, (4.6)

From a mathematial perspetive, the iruit synthesis of a generi (not

neessarily assoiated to a physial iruit) matrix N ∈ RM×N
, given N in-

put variables i and M outputs o an always be performed using ontrolled

soures. Despite its simpliity, suh an approah is the ore idea behind all

the stati (and also dynami) synthesis methods presented in the following

setions. Due to its relevane, a small example is provided to further lar-

ify the previous statement: onsider a generi matrix N ∈ RM×N
and the

resulting system of equations





o1 = n11i1 + . . .+ n1nin
.

.

.

om = nm1i1 + . . .+ nmnin

(4.7)

assuming that the inputs i are urrents and the outputs o are voltages, a

straightforward synthesis is depited in Figure 4.5. Although simple, suh

approah produes a anonial synthesis for the system (4.7) whih exatly

reprodues the system in (4.7). Similar realizations are straightforward if

(i, o) are (voltages, urrents). At this point the question is whether a generi

matrix N desribes a stable, passive and noise ompliant network (passive

and stable) and how to preserve those properties during a synthesis proess.

The list of properties that should be onsidered when dealing with the

synthesis of a linear iruit is provided here:

• anoniity: a synthesis is anonial when it involves the minimum pos-

sible number of primitive network elements to synthesize all the systems
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+
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.

.

.

+
−innm1

i1 o1 . . .

+
−i1n1n

.

.

.

+
−innmn

in on

Figure 4.5: Diret synthesis for the system of equations (4.7).

desribing a partiular set of networks

2

. The anonial property is of

paramount importane to keep under ontrol the omplexity of the

network resulting from the synthesis proess.

• passivity: is de�ned as the inapability of the network to provide a

power gain. Passivity onditions for stati network desriptions are

summarized in Table 4.1. A linear network that does not absorb ative

power is lossless.

• reiproity: a P -port iruit is reiproal if for any pair of voltages and
urrents at iruit ports, i.e. {va, ia} ∈ RP

and {vb, ib} ∈ RP
that

satisfy the iruit harateristis, it holds

iTb va = ia
Tvb .

All linear multi-port iruits omposed only by RLCT elements are

reiproal [163, 164℄. Also for this property, a generi synthesis based on

ontrolled soures must meet the onditions listed in Table 4.1 in order

to preserve reiproity. A iruit only omposed by RLCT elements

will be alled purely-reiproal in the following.

• topology-based: the primitive network elements involved by the syn-

thesis proedure an be onneted aording to a spei� topology. The

most ommon on�gurations are the Π and T , see Figure 4.6. As dis-
ussed in Setion 4.2.2 it is not possible in general to obtain a passive

2

Please note that in the lassi textbooks of network theory [109℄ anonial syntheses are

haraterized onsidering the number of independent variables involved by the synthesis.

Instead in this work the number of primitive network elements is onsidered as the metri

of anonial de�nition begin more intuitive and immediate from a pratial point of view.
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and reiproal synthesis with the added onstraint of topology. Condi-

tions under whih a �xed topology passive and reiproal synthesis is

possible are disussed in Setion 4.2.2 as well.

• noise ompliane: this is a more sensitive property sine it is stritly

related to the omponents used to perform the synthesis. Due to the

fat that ontrolled soures are by de�nition noiseless omponents, the

only way to ahieve a noise ompliant synthesis onsist in the use of

resistors. One possible approah onsists in the seletion of a partiular

topology leading to a pure resistive network synthesis. Unfortunately

the latter method an not be used in general, sine as explained in

more details in Setion 4.2.2, topology onstraints may lead to non-

physial networks (due to the need of negative resistors). In the general

ase a synthesis based on positive Resistors and ideal Transformers

(RT) is the noise ompliant synthesis of hoie for stati networks, see

Setion 4.2.3 for details, sine it extrats a purely resistive sub-network

(having only positive resistors) that onneted to a proper lossless one

realizes the desired iruit. In this way, the noise assoiated to the

resistive subnetwork is not altered by the lossless one (whih an also be

non-reiproal in general) thus produing a noise-ompliant synthesis

by onstrution.

4.2.2 Fixed topology

Several years of researh and onsiderable e�ort were spent in order to per-

form the synthesis of a stati network with a �xed topology [165, 166, 167℄ to

avoid the need of ideal transformers like in the synthesis of Belevith [109℄.

The �nal and negative answer to the general feasibility of a passive and reip-

roal network synthesis that does not involve ideal transformers was provided

only in more reent times by MMillan [156℄.

Su�ient and neessary onditions for a pure resistive synthesis based

on an admittane (similar results hold for the impedane) matrix G where

already onsidered in [109℄

• dominant matrix: the admittane G = GT ∈ RP×P
is dominant i�

gi,i −
P∑

j=1
j 6=i

|gi,j| ≥ 0, (4.8)

• superdominant matrix: a dominant matrix satisfying gi,j < 0 ∀ i 6= j
is alled superdominant [109℄.
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g̃1,1=7S

g̃1,2=g̃2,1=2S

g̃2,2=2S

P1 P2

Figure 4.6: Π topology synthesis for the impedane matrix Ge1 (4.11) based

on (4.9) and (4.10).

A real symmetri superdominant admittane matrix G admits a pure resis-

tive synthesis with Π topology. The admittanes g̃ between nodes i and j
ome diretly from the admittane matrix G aording to

g̃i,j = −gi,j (4.9)

g̃i,i =
P∑

j=1

gi,j. (4.10)

As an example onsider the simple admittane matrix Ge1 for a 2-port net-

work

Ge1 =

[
9 −2
−2 4

]
. (4.11)

Ge1 is superdominant (positive de�nite). As a onsequene the diret ap-

pliation of (4.9) and (4.10) leads the Π topology synthesis depited in Fig-

ure 4.6. Although superdominant matries are positive de�nite, i.e. passive

by onstrution, the opposite is not true, thus reduing the appliability of

this synthesis methodology and requiring the use of ideal transformers dis-

ussed in the following Setion 4.3. A small example demonstrates that it

is not di�ult to onstrut a symmetri positive de�nite matrix that is not

dominant. Consider the simple 2× 2 symmetri positive de�nite matrix

Ge2 =

[
9 −5
−5 4

]
(4.12)

applying (4.9) if follows g̃2,2 = −1, thus a Π topology synthesis based only on

positive resistors is not feasible for suh a simple ase, and ideal transformers

are needed like disussed in the following setion.
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i1
+

−

v1

i2
+

−

v2

1 : n

Figure 4.7: Ideal transformer iruit symbol. The �rst port on the left side is

alled the primary port while the seond port on the right is alled seondary

port. The oupling fator n is de�ned as the ratio between the number of

turns on the primary N1 and on the seondary N2 port.

i1

−ni2
+

−

v1

+
−

nv1

i2

+

−

v2

Figure 4.8: Equivalent iruit for the 2-port ideal transformer based on equa-

tions (4.13)-(4.14).

4.2.3 Synthesis with Resistors and ideal Transformers

To overome the intrinsi limitations of the purely resistive synthesis of Se-

tion 4.2.2, Belevith introdued in [109℄ the use of multiport ideal trans-

formers. It was demonstrated in [156℄ that ideal transformers, together with

resistors, indutors and apaitors, form the smallest set of network elements

needed for the synthesis of passive reiproal linear systems. The restrition

to the stati ase further limits this set to ideal transformers and positive

resistors only. The onstitutive equations for a 2-port ideal transformer are

i1 + ni2 = 0 (4.13)

v2 = nv1, (4.14)

and the omponent symbol is depited in Figure 4.7. One possible iruit

equivalent for the ideal transformer based on (4.13)-(4.14) is depited in Fig-

ure 4.8. It is important to note that the total instantaneous power absorbed

by an ideal transformer is zero [109℄, sine applying the onstitutive equa-

tions (4.13)-(4.14) for the two port ase leads to

i1v1 + i2v2 = 0. (4.15)
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The extension of this result to the multi-port ase is straightforward [109℄.

The Hybrid matrix assoiated to a multi-port transformer, having R se-

ondary ports and P primary ports, reads

[
ir
vp

]
=

[
0 −N
NT 0

]

︸ ︷︷ ︸
Ht

[
vr

ip

]
(4.16)

where N ∈ RR×P
ollets the turns ratio of the multi-port ideal transformer.

Using the results in Table 4.1 trivially on�rms that Ht +HT
t = 0, i.e. the

multi-port ideal transformer is lossless.

Belevith demonstrated in [109℄ that the synthesis of a passive reipro-

al impedane (admittane) matrix is equivalent to the synthesis of an ideal

multi-port transformer whose seondary ports are losed on positive ondu-

tanes (resistors). De�ne Gd = diag(Gdi) > 0 as a matrix olleting some

positive ondutanes Gdi on its main diagonal, with i = 1, . . . , R; losing
the R seondary ports of the ideal multi-port transformer desribed by equa-

tion (4.16) on Gd imposes the relation

ir = −Gdvr , (4.17)

whose substitution in (4.16) reads

[
0

vp

]
=

[
Gd −N
NT 0

] [
vr

ip

]
. (4.18)

Sine Gd has full rank, elimination of vr from (4.18) leads to vp = Zip, where

Z = NTG−1
d N , (4.19)

and the dimension R of Gd is the rank of Z. An equivalent result to (4.19)

holds for the admittane matrix ase terminating the P ports on positive

resistors Rd

Y = NGdN
T . (4.20)

From a mathematial perspetive, equation (4.19) states that the synthe-

sis of a symmetri positive de�nite impedane matrix Z ∈ RP×P
is equivalent

to the synthesis of a multi-port ideal transformer with turns ratio matrix

N ∈ RR×P
and seondary ports losed on the R positive resistors assoi-

ated to the diagonal elements of G−1
d . Therefore the synthesis problem is

now equivalent to a matrix deomposition. The most onvenient deompo-

sition for full-rank symmetri positive de�nite matries is the LDL deom-

position [111℄ (basially an extension of the widespread Cholesky fatoriza-

tion), while for the low-rank ase a modi�ation of LDL deomposition is

preferred [168℄.
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One the deomposition (4.19) is performed on Z, the synthesis is straight-

forward: the turns ratio matrix N assoiated to the multi-port ideal trans-

former is synthesized using ontrolled soures as explained in Setion 4.2.1

(like in Figure 4.5), while the positive elements on the main diagonal of G−1
d

are the resistors losing the R seondary ports of the ideal multi-port trans-

former. Note that in the ase of low-rank impedane or admittane matries,

R is less than P .
The RT (Resistors and ideal Transformers) synthesis resulting from the

appliation of (4.19) is noise ompliant by onstrution. Indeed the multi-

port ideal transformer, synthesized using ontrolled soures, results into a

lossless network that does not a�et the noise produed by the positive re-

sistors plaed at its seondary ports. Sine the only noisy elements involved

in the RT synthesis are positive resistors, the synthesis is noise ompliant.

This result was veri�ed in pratie relying on the automated noise testing

proedure disussed in Setion 4.2.4.

The RT synthesis is now applied to the admittane matrixGe2 from (4.12).

For this example the pure resistive synthesis with �xed topology failed in

Setion 4.2.2 due to the need of negative resistors. Aording to the matrix

deomposition (4.20), the LDL fatorization is performed on Ge2 leading to

Ge2 =

[
1 0
−5

9
1

]

︸ ︷︷ ︸
N

[
9 0
0 11

9

]

︸ ︷︷ ︸
Gd

[
1 −5

9

0 1

]

︸ ︷︷ ︸
N

T

(4.21)

where the ontributions from (4.20) are highlighted. The resulting synthesis

for this example is depited in Figure 4.9. Noise ompliane for this simple

ase an be veri�ed analytially relying on the results of Setion 4.1 or using

a Spie simulation, as in Setion 4.2.4. An automated proedure for the

validation of RT synthesis is disussed in Setion 4.2.4.

4.2.4 Stati synthesis results

The automated test proedure desribed in this setion is foused on

• Synthesis auray: DC analysis results are ompared using the admit-

tane matrix (similar results hold for the impedane) and the assoiated

RT synthesis, both in Spie. Of partiular relevane are the ases in

whih the admittane matrix is rank de�ient, beause for suh ases

a low-rank matrix deomposition is used.

• Noise ompliane: like for the DC analysis, the admittane matrix and

the resulting RT synthesis are used in Spie to perform the stati noise

analysis.
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Figure 4.9: Resistors ideal Transformers (RT) synthesis for the admittane

matrix Ge2 based on the LDL fatorization (4.21).

For the sake of ompleteness several test ases are needed. Sine the

availability of many real test ases is not feasible in a short amount of time,

an automated proedure for the reation of semi-positive de�nite impedane

or admittane matries was reated based on the following methodologies:

• random matrix: starting from a pseudo random matrix, reiproity and

positive de�nitiveness are imposed (ating diretly on the eigenvalues

of the symmetrized random matrix);

• greatest ommon divisor matries: obtained from Matlab

R©'s fun-

tion gallery (option: gdmat). Those matries are symmetri positive

semide�nite by onstrution;

• symmetri, ill-onditioned Toeplitz matries: obtained fromMatlab

R©'s

funtion gallery (options: prolate and w ∈ [0, 0.5]). Those matries are

low-rank and symmetri positive de�nite.

The number of ports for eah ase is seleted randomly within a spei�ed

range, i.e. P ∈ [1, 50].
Two are the main steps of the proposed automated proedure

1. DC analysis: using unitary inputs, in aordane to the matrix rep-

resentation used, i.e. impedane or admittane, the DC analysis is

performed in Spie using the impedane/admittane matrix and the
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Table 4.2: Seletion of results obtained using the proposed automati proe-

dure. ǫDC is the error on the DC analysis de�ned by (4.22), while max ǫn is

the maximum on all the errors ǫn, de�ned by (4.23), obtained from the stati

noise analysis related to a spei� test ase.

Test P ǫDC max ǫn

1 4 1e-12 1e-13

2 8 2e-12 1e-13

3 20 8e-13 2e-13

assoiated Belevith's (RT) synthesis. The results of the DC analysis

based on the diret usage of the admittane/impedane matrix are de-

noted by yd, while the results obtained from the synthesized netlist are

yb. The error metri used for the DC analysis is

ǫDC = |yd − yb| ; (4.22)

2. Stati noise analysis: onsidering all the possible ombinations of input-

output ports, voltage and urrent spetral densities are evaluated in

Spie, using the impedane/admittane matrix and the assoiated Bele-

vith's (RT) synthesis. The results of the noise analysis obtained from

Spie using the admittane/impedane matrix are denoted by νd, while
the results obtained from the synthesized netlist are νb. The error met-

ri used for the DC analysis is

ǫn =
|νd − νb|
|νd|

, (4.23)

where the fration is always well posed sine noiseless ases are not

onsidered, i.e. νd 6= 0 by onstrution.

A small subset of the results obtained with the automati veri�ation strategy

are proposed here listed in Table 4.2. Similar results were obtained on a large

set of more than one thousand test ases.

4.3 Dynami network synthesis

Several tehniques are available for the synthesis of dynami networks asso-

iated to state-spae models [119℄. The three most e�ient and widespread

methods are: diret state-spae proedure, desribed in Setion 4.3.2, that

is based on the immediate onversion of state-spae equations into a ir-

uit [169℄; Darlington's resistane extration, presented in 4.3.4 whih is an
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extension of Resistors ideal Transformers (RT) stati synthesis from Se-

tion 4.2; Youla's reatane extration [154℄, disussed in Setion 4.3.3, whih

is a lever reformulation of Darlington's resistane extration. Results and

omplexity tables are summarized in Setion 4.3.5 for all synthesis methods,

desribed below.

The main ontributions of this hapter are: presentation of well known

synthesis methods fousing on omplexity and noise ompliane in order to

larify a topi not adequately overed in lassi books of network theory;

and thus introdution of noise preserving sparsi�ation tehniques for eah

synthesis method aimed at reduing the omplexity of the synthesis while

preserving the desired physial properties.

Before desribing in more details the synthesis of dynami networks, some

preliminary results onerning state-spae models of passive devies are sum-

marized in Setion 4.3.1.

4.3.1 Preliminaries on state-spae models

Some basi results onerning state-spae models are summarized here sine

they are needed for the presentation of dynami synthesis methods in Se-

tions 4.3.2 4.3.3 and 4.3.4. In this setion minimal state-spae realizations

and their anonial forms are disussed, together with reiproity and pas-

sivity onditions.

As already mentioned in Setion 1.3, it is ommon pratie to model

reiproal passive iruit bloks via frequeny dependent network parameters

(sattering or hybrid). Using standard tehniques, like those presented in

Chapter 2, a mathematial model is extrated and onverted to state-spae

form (2.46), repeated here for reader onveniene

ẋ(t) = Ax(t) +Bu(t), (4.24)

y(t) = Cx(t) +Du(t), (4.25)

with A ∈ RN×N
, B ∈ RN×P

, C ∈ RP×N
and D ∈ RP×P

. This is the starting

point for the synthesis algorithms onsidered in this Chapter.

In the following, models are assumed without loss of generality to be in

the impedane input-output representation, i.e.

Z(s) = C(sI−A)−1B+D↔
(

A B

C D

)
, (4.26)

where s is the omplex frequeny (Laplae) variable.
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It is worth noting that the omplexity of dynami network synthesis is

diretly related with the dynami order of the model. In partiular, a ne-

essary but not su�ient ondition to have a anonial

3

synthesis is that the

state-spae model must have MMillan degree [119℄ of Z(s) equal to N (the

size of A). This is equivalent to state that the state-spae realization (4.26)

is minimal, i.e. the system is both ontrollable and observable.

Besides minimality, also the struture of state-spae matries has a diret

impat on the number of elements required by the synthesis. State-spae

realizations are not unique. Two minimal state-spae realizations of the same

system (
A B

C D

)
↔
(

Ã B̃

C̃ D̃

)
(4.27)

are equivalent to eah other through a hange of basis in the state spae [119℄,

applied though a similarity transformation as

Ã = T−1AT, B̃ = T−1B, (4.28)

C̃ = CT, D̃ = D, (4.29)

with T ∈ RN×N
invertible. In partiular, Gilbert in [170℄ proposed a mini-

mal state-spae realization that is relevant for the diret synthesis disussed

in Setion 4.3. Detail on how to onstrut Gilbert's realization an be found

in [126℄. It is worth noting here that suh realization presents a sparse state-

spae matrix A with the following blok-diagonal struture

Ai,j =





pc, i = j = c[
Re{pl} Im{pl}
−Im{pl} Re{pl}

]
i = l, l + 1 j = l, l + 1

(4.30)

where {pl, pc} ∈ λ(A) are the eigenvalues (real poles pc, and omplex poles

pl) assoiated to the minimal state-spae model. Note that Gilbert's realiza-

tion an be derived i� all the eigenvalues λ(A) have algebrai multipliity

one [126℄. This ondition is imposed by onstrution in the identi�ation

methods desribed in Chapter 2.

Besides the omplexity onstraint, also physial onstraints must be taken

into onsideration when dealing with the state-spae model assoiated to a

real iruit. It is a well known result of network theory [161℄ that all RLCT

linear networks are reiproal. As a onsequene reiproity is a physial

3

Note that Anderson in [119℄ demonstrated that it is not possible to synthesize a

reiproal dynami network attaining both the minimum number of dynami and resistive

elements.
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property of interest that should be preserved by a well posed synthesis pro-

ess. Suh a property has a diret impat on the struture of the state-spae

model. A square system (4.24)-(4.25) is reiproal with respet to the signa-

ture matrix (4.6) if and only if [171℄ its hybrid transfer funtion H(s) is sign
symmetri with respet to Sext (4.6), i.e.

SextH(s) = H(s)TSext . (4.31)

For the impedane (admittane) ase ondition (4.31) simpli�es to

Z(s) = Z(s)T . (4.32)

It is lear that this is a straightforward extension of the de�nition of rei-

proity that was given for the stati ase in Setion 4.2.1. In addition to

onditions (4.31)-(4.32), it an be demonstrated [171℄ that for reiproal

state-spae models there exists a symmetri matrix Π = ΠT ∈ RN×N
suh

that {
AΠ = ΠAT ,
B = ΠCTSext.

(4.33)

IfΠ = Sint with Sint = blkdiag(INl
,−INc

) ∈ RN×N
internal signature matrix,

then the state-spae model (4.25) is alled internally reiproal. Two strate-

gies are available to evaluate matrix Π (4.33) for a reiproal state-spae

model: solving diretly the system (4.33) via optimization pakages like Se-

DuMi [124℄, or by de�ning the similarity transformation matrix T (4.28)

relating the state-spae model and its transposed [119℄.

Another physial onstraint of paramount importane for linear mod-

els (4.25) is passivity. The general frequeny-domain passivity onditions

disussed in Setion 2.5 an be transformed into purely algebrai ones [103℄

alled Positive Real Lemma (hybrid ase) and Bounded Real Lemma (satter-

ing ase), also know as Kalman-Yakubovih-Popov (KYP) lemma. For the

sake of larity and reader onveniene passivity and reiproity onditions

are summarized in Table 4.3. A real square state-spae model (4.25)-(4.24),

based on hybrid or sattering representation, is passive if and only if the

orresponding Linear Matrix Inequality (LMI) in the olumn Passive admits

a symmetri positive de�nite solution matrix P. A similar result holds for

reiproity onsidering the olumn Reiproal and the solution matrix Π. As

it will be more lear in (4.3.3) and (4.3.4), di�erent solution matries Π and

P obtained for the ondition in Table 4.3 will lead to di�erent Youla's and

Darlington's syntheses.

In the following setions the synthesis algorithms will be introdued to-

gether with simple explanatory examples. Results and a omparative study

of omplexity for all the synthesis methods an be found in Setion (4.3.5).
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Table 4.3: Summary of passivity and reiproity onditions for dynami net-

works representations. In the passivity onditions equality to zero means

that the network is lossless, i.e. does not absorb instantaneous/ative power.

System Reiproal Passive

H(s)
hybrid

{
AΠ = ΠAT

B = ΠCTSext

[
ATP+PA PB−CT

BTP−C −D−DT

]
� 0

S(s)
scattering

{
AΠ = ΠAT

B = ΠCT

[
ATP+PA+CTC PB+CTD

BTP+DTC DTD− IP

]
� 0

with Π = ΠT ∈ RN×N P = PT ≻ 0,P ∈ RN×N

internal if Π = Sint =

[
INl

0

0 −INc

]
P = IN

4.3.2 Diret state-spae synthesis

The dynami synthesis method presented in this setion an be onsidered

as the extension of the diret synthesis method introdued in Setion 4.2.1

for the stati ase. The basi idea relies on a mere �translation� of the state-

spae equations into an equivalent eletri network. It was proposed by [169℄

in the ontext of Model Order Redution tehniques in order to obtain a

low-omplexity synthesis, in terms of number of primitive network elements,

for redued order state-spae models. As suh this synthesis algorithm found

a great di�usion and it is ommonly used in pratie.

Beside the low omplexity feature, another major bene�t is the simpliity

of the algorithm itself. Indeed, onsidering the state-spae model assoiated

to an impedane matrix

ẋ(t) = Ax(t) +Bi(t) , (4.34)

v(t) = Cx(t) +Di(t) , (4.35)

with input vetor i ∈ RP
and output vetor v ∈ RP

, a diret onversion into

an equivalent network is straightforward and an be divided in two main

steps

1. state synthesis: onsider a single row l of (4.34)

ẋl(t) =
N∑

j=1

al,jxj(t) +
P∑

k=1

bl,kik(t) . (4.36)
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Colleting on the left side of (4.36) all the elements related with the

state xl(t) it follows

ẋl(t)− al,lxl(t) =

N∑

j=1
j 6=l

al,jxj(t) +

P∑

k=1

bl,kik(t) . (4.37)

The left-hand side of (4.37) an be seen as the parallel of a unitary

apaitor and a resistor of value −1/al,l to whom a voltage xl(t) is ap-
plied. The resulting urrent must equal the right-hand side of (4.37),

whih an then be interpreted as the parallel interonnetion of on-

trolled urrent soures, where the ontrol variables are the states xj(t)
and the inputs ik(t). The sub-network assoiated to (4.37) is depited

in Figure (4.10). Please note that resistors −1/al,l ∀ l will never be

negative

4

, sine the poles of (4.34) are in R−
by onstrution as a on-

sequene of model stability [62℄;

2. output equation synthesis: in a similar fashion to the previous synthesis

step, onsider a single row m of (4.35), i.e.

vm(t) =
N∑

j=1

cm,jxj +
P∑

k=1

dm,kik(t) (4.38)

with m, k = 1, . . . , P and j = 1, . . . , N . Sine the output of (4.35)

has voltage units, the right side of (4.38) is equivalent to a series in-

teronnetion of ontrolled voltage soures, where the ontrol variables

are the states xj(t) and the inputs ik(t). The sub-network assoiated

to (4.38) is depited in Figure (4.11).

Performing the two steps above for eah row of (4.34) and (4.35) onludes

the synthesis proess. Sine the network elements involved in the synthesis

are only Resistors, Capaitors and Controlled Soures, in the following this

synthesis will be also de�ned as RCCS.

For what onerns the omplexity of the resulting network, from equa-

tions (4.37) (4.38) it is lear how the number of elements used by the RCCS

synthesis is diretly related to the struture of the state-spae matries

in (4.34)-(4.35). Consequently a low omplexity synthesis an be obtained

onverting a generi state-spae realization into the Gilbert anonial form

that was introdued in 4.3.1. This way the number of primitive network

elements will sale as O (NP 2).

4

It is always possible to transform the negative de�nite state-spae matrix A into an

equivalent one having negative elements on the main diagonal.
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+

−

xl 1F − 1
al,l

al,1x1 al,NxN bl,1i1 bl,P iP

Figure 4.10: Diret states synthesis based on equation (4.37).

.

.

.

+
−cm,jxj

.

.

.

+
−dm,kik

.

.

.

im vm

Figure 4.11: Diret ports synthesis based on equation (4.38).

The main drawbak of this method is the lak of noise-ompliane. As

it was disussed in Setion 4.2.1 for the stati synthesis ase, the use of

ontrolled soures in the synthesis proess demands partiular are, sine

those omponents are not equipped with a noise model in standard Spie-

based solvers. A simple example in the following setion will further larify

this issue.

R R

C C

+−v1

+

−

v0

Figure 4.12: RC ladder iruit.



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS 123

Noise ompliane issue

In order to further larify the lak of noise ompliane in the diret synthesis

method presented in Setion 4.3.2, the simple RC ladder network depited in

Figure 4.12 will be analysed here. The state-spae model assoiated to the

iruit in Figure 4.12 will be synthesized using the RCCS algorithm, then the

analyti expression of the output noise spetral density will be evaluated for

both iruits by means of standard tehniques [172℄. Moreover, noise analysis

results will be ompared with Spie simulations for the sake of ompleteness.

First, the analyti expression of the output voltage spetral density is

onsidered for the RC ladder network in Figure 4.12. As explained in Se-

tion 4.1, noise analysis is based on the substitution of noisy resistors with the

equivalent Norton/Thevenin noise model; the resulting network is depited

in Figure 4.13. Considering now the KCL at two nodes results

{
G(V1 − Vn1

) + sCV1 +G(V1 + Vn2
− Vo) = 0

sCVo +G[Vo − (V1 + Vn2
)] = 0

(4.39)

From the seond row it follows

(G+ sC)Vo −GVn2
= GV1 (4.40)

leading to

(1 + sRC)Vo − Vn2
= V1. (4.41)

Substituting now (4.41) in the seond row of (4.39) after simple algebrai

alulations reads

(1 + sRC + 2sRC + s2R2C2)Vo − Vn1
− (1 + sRC)Vn2

= 0. (4.42)

Highlighting now the ontributions from eah noise soure it follows

Vo =
Vn1

1 + 3RCs+ s2R2C2
+

Vn2
(1 + sRC)

1 + 3RCs+ s2R2C2
. (4.43)

with Vn1
and Vn2

statistially independent. The analytial expression for the

voltage noise spetral density is obtained after straightforward alulations

substituting (4.1) in (4.43) and onsidering the Root Mean Square (RMS)

value

V̄ 2
o (ω) =

2 + (ωRC)2

1 + 7(ωRC)2 + (ωRC)4
. (4.44)

This result an be veri�ed analytially onsidering that, by Nyquist theo-

rem (4.1)

V̄ 2
o (ω) = 4KbTRe{Zout(ω)}. (4.45)
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R

+−

Vn2 R

1
sC

1
sC+

− Vn1

+

−

v0

Figure 4.13: RC ladder iruit for the noise analysis in the Laplae domain:

Vn are the noise equivalent voltage soures (the sign is arbitrary) and R are

noiseless resistors.

In fat, from the iruit in Figure 4.12, the expression of Zout an be easily

obtained as

Zout(s) =
1
sC

R(2+sCR)
1+sCR

1
sC

+ R(2+sCR)
1+sCR

=
R(2 + sCR)

1 + 3RCs+ (RCs)2
, (4.46)

whih mathes (4.44)-(4.45) as expeted. The real part of Zout an be found

onsidering that Re{Zout(s)} = 0.5(Zout(s) + Zout(−s)), i.e.

Re{Zout(s)} = R
2− (RCs)2

[1 + (RCs)2]2 − (3RCs)2
. (4.47)

Equation (4.44) an be veri�ed performing the noise analysis in Spie for

the network in Figure 4.12. The results depited in Figure 4.14 math to

mahine preision.

Now, a state-spae model is derived for the RC ladder network and then

synthesized bak to a iruit whose spetral noise density is evaluated ana-

lytially. From standard alulations

5

the state-spae model, normalized by

C, in Gilbert anonial form for the RC ladder network in Figure 4.12 results

in

A =
1

R

(
p1 0
0 p2

)
, b =

(
1
1

)
, c =

(
ρ1
ρ2

)T

, (4.48)

orresponding to

Z(s) =
Rρ1

sCR− p1
+

Rρ2
sCR− p2

, (4.49)

5

For a detailed derivation of the Gilbert anonial state-spae form assoiated to the

RC ladder network example see Appendix C.
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Figure 4.14: The result of the noise analysis from Spie performed using

the iruit in Figure 4.12 (blue dashed line) is ompared with the diret

appliation of (4.44) (red ontinuous line).

where p1,2 are

p1,2 =
−3±

√
9− 4

4
=
−3 ±

√
5

2
(4.50)

and

ρ1,2 =
5±
√
5

10
. (4.51)

Applying now the diret synthesis method to the state-spae model (4.48)

leads to the network depited in Figure 4.15. Like for the RC ladder ir-

uit, also for the network resulting from the diret synthesis of the Gilbert

anonial model the analyti expression desribing the output spetral noise

density an be derived using the noise analysis method desribed in Se-

tion 4.1. Considering that the mean square voltage noise assoiated to eah

resistor in Figure 4.16 is

v̄2ni
= 4KbT

(
−R

pi

)
, pi ∈ R−, (4.52)

it follows that the mean square voltage noise v̄2ri from eah sub-iruit in

Figure 4.16 reads

v̄2ri = v̄2ni

(
pi

pi +RCs

)2

. (4.53)

Voltage ontrolled urrent soures do not a�et the noise, therefore the noise

ontributions v̄2ri lead to the mean square voltage output by means of the

weighted sum

v̄2o = ρ21v̄
2
r1
+ ρ22v̄

2
r2
. (4.54)
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+

−

vr1isb11 − 1
a1,1 C

+

−

vr2isb21 − 1
a2,2 C

+
−c21vr2

+
−c11vr1

is vo

Figure 4.15: Diret synthesis from Gilbert anonial form (4.48). Note that

the values of the resistors are positive sine the poles pi must be negative to
desribe a stable system.

+

−

vr1
− 1

a1,1

+−vn1

C

+

−

vr2
− 1

a2,2

+−vn2

C

+
−ρvr2

+
−ρvr1

is vo

Figure 4.16: Noise analysis network from Gilbert anonial form (4.48) syn-

thesis.
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Figure 4.17: Noise analysis results omparison: the red ontinuous line is the

result from equation (4.44) (previously veri�ed via Spie), while the blak

dashed line is the result from equation (4.55), veri�ed via Spie using the

network in Figure 4.15 (blue ontinuous line).

Substituting (4.53) and (4.52) into (4.54) leads to

V̄ 2
o (ω) = 4KbTR

(
− ρ21p1
ω2R2C2 + p21

− ρ22p2
ω2R2C2 + p22

)
. (4.55)

The two analytial expressions for the output spetral voltage noise de-

rived so far are ompared graphially in Figure 4.17. As an be seen, equa-

tion (4.55), whih desribes the spetral noise assoiated to the synthesised

network, mathes the result from Spie noise analysis. This on�rms that

equation (4.55) desribes properly the noise response of the iruit in Fig-

ure 4.15, but the two urves do not math the result from (4.44) (previously

veri�ed via Spie), whih gives the output voltage noise spetral density of

the original RC ladder network (Figure 4.12). Sine the state-spae model is

orret, see Appendix C, this result on�rms that the diret synthesis method

is not able to preserve the noise response of the original iruit, i.e. the RC

ladder network.

The noise ompliane issue desribed in this setion is the onsequene

of the improper usage of ontrolled soures in the synthesis proess. In the

following setions two noise-ompliant synthesis methods will be presented.

In both ases the root idea that allows to preserve the noise behaviour is

quite simple, and inherited from the stati synthesis ase: ontrolled soures

an only be used to onstrut lossless sub-networks; in this way ontrolled

soures will have no impat on the noise produed by resistors (the only
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NsP
.

.

.

.

.

. N

Figure 4.18: Generi (P +N)-port network Ns.

elements responsible for Gaussian noise in a linear iruit, as explained in

Setion 4.1.).

4.3.3 Youla's reatane extration

To overome the lak of noise ompliane in the RCCS synthesis, the las-

si reatane extration algorithm, originally proposed by Youla and Tissi

in [154℄, an be used. As for the RT synthesis in the stati ase, also Youla's

synthesis is noise ompliant by onstrution, sine ontrolled soures are only

used to onstrut lossless sub-networks. Moreover, reiproity onstraints are

also imposed, in order to avoid the usage of non-reiproal elements (gyra-

tors), preserving all the physial properties of linear time-invariant lumped

network. As a preliminary step, the indutane extration proedures is

brie�y outlined in order to simplify the presentation of Youla's synthesis.

Indutane extration

The indutane extration idea an be easily introdued onsidering a stati

(P + N)-port network Ns depited in Figure 4.18. Supposing that the

impedane matrix representation exists for this network, voltages and ur-

rents an be related by

vp = Z1,1ip + Z1,2in , (4.56)

vn = Z2,1ip + Z2,2in , (4.57)

with Z1,1 ∈ RP×P
, Z1,2 ∈ RP×N

, Z2,1 ∈ RN×P
and Z2,2 ∈ RN×N

. It is well

known that losing N ports of network Ns on unitary indutors imposes the

relation

vn = −ZLin , (4.58)
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where ZL = sINl
. Substituting (4.58) into (4.57) and solving for vp leads to

the input-output relation

vp = (Z1,1 − Z1,2(ZL + Z2,2)
−1Z2,1)ip . (4.59)

Note that (4.59) has a remarkable similarity with (4.26), repeated here for

onveniene

vp = (D+C(sI−A)−1B)ip . (4.60)

From a diret omparison, it follows that the state spae realization {A,B,C,D}
of a P -port system an be synthesised as a stati (P + N)-port impedane

network (4.56)-(4.57) with

• Z1,1 = D ∈ RP×P
;

• Z1,2 = −C ∈ RP×N
;

• Z2,1 = B ∈ RN×P
;

• Z2,2 = −A ∈ RN×N
,

and with its last N ports losed on unitary indutors INl
.

This simple example suggests that the state-spae matries of the transfer

funtion (4.60) ould onstitute the impedane matrix of a stati network.

The extension to the apaitane extration ase is straightforward and well

doumented [119℄. The main question now is how and under whih ondi-

tions it is possible to onstrut from state-spae matries (4.60) a passive

and symmetri impedane (or reiproal hybrid matrix, in the general ase)

matrix (4.56) in a similar fashion to the previous example. Sine the state-

spae matries desribing a dynami network are not unique (like disussed in

Setion 4.3.1) the main onern in the following will be to �nd the similarity

transformation (4.28) leading to a state-spae model that allows to onstrut

the hybrid matrix assoiated to a passive, reiproal stati network. This

is the main task of Youla's reatane extration method and the enabling

fator for a reiproal and noise-ompliant synthesis. Note that this task is

tightly related with passivity and reiproity onditions outlined in Table 4.3

for a state-spae model.

As will be explained in the following, Youla's reatane extration syn-

thesis requires to transform the state-spae matries of the transfer fun-

tion (4.60) into a positive real balaned and internally reiproal realization.

Details on how to de�ne and perform suh transformations are the main topi

in the rest of this setion.
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Positive real balaned state-spae realizations

Starting from the passive state-spae realization {A,B,C,D} assoiated to

the impedane transfer funtion

Z(s) = C(sI−A)−1B+D↔
(

A B

C D

)
, (4.61)

the following steps are required in order to obtain a positive real balaned

realization

• step 1: expliitly solve the Positive Real Lemma (PRL) for P, i.e.

the LMI in Table 4.3 for the hybrid ase. Also form the dual system

{AT ,CT ,BT ,DT} and solve its assoiated PRL for the orresponding

matrix Q. Restriting now the analysis to the ase R = D +DT ≻ 0
(orresponding to asymptoti strit dissipativity), it follows that the

matries P and Q an be found by solving the Continuous Algebrai

Riati Equations (CARE) [173, 174℄

ATP+PA+
(
PB−CT

)
R−1

(
BTP−C

)
= 0, (4.62)

AQ+QAT +
(
QCT −B

)
R−1

(
CQ−BT

)
= 0, (4.63)

with P = PT ≻ 0 and Q = QT ≻ 0. This alulation an be per-

formed through the Laub's method [175℄, based on the evaluation of

the invariant subspaes of the Hamiltonianmatries assoiated to (4.62)

and (4.63);

• step 2: ompute the Cholesky fatorization [110℄ of P and Q

P = FTF, (4.64)

Q = GTG, (4.65)

with F,G ∈ RN×N
triangular matries;

• step 3: apply the Singular Value Deomposition [110℄ on the matrix

produt FGT
, i.e.

FGT = UΣVT , (4.66)

with U,V ∈ RN×N
orthogonal, where the diagonal matrix Σ ∈ RN×N

stores the singular values in dereasing order on its main diagonal;

• step 4: onstrut the invertible similarity transformation matrix T by

T = GTVΣ−1/2 . (4.67)

and apply it to the state-spae system (4.61).
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The result of this proess has the following property:

P = Q = Σ , (4.68)

i.e. the solutions of CAREs (4.62)-(4.63) are equal and diagonal. The result-

ing state-spae realization {Ã, B̃, C̃, D̃} is alled "positive real balaned�.

Therefore the starting passive state-spae realization {A,B,C,D} an be

onverted into a positive real balaned one using the similarity transforma-

tion (4.67) aording to (4.27). A omplete proof that the resulting state-

spae realization veri�es the passivity onditions in Table 4.3 and is positive

real balaned an be found in [171℄.

It an be demonstrated [119℄ that the stati hybrid matrix M̃, resulting

from the reatane extration method applied on the positive real balaned

realization {Ã, B̃, C̃, D̃}, i.e.

M̃ =

[
D̃ −C̃
B̃ −Ã

]
(4.69)

satis�es the stati passivity ondition in Table 4.1: M̃+ M̃
T � 0.

The next step is to obtain an internally reiproal state-spae model start-

ing from {Ã, B̃, C̃, D̃}. Details on how to guarantee the reiproity in the

reatane extration method are disussed in the following.

Reiproal state-spae realization

As it was demonstrated in [119℄, the reatane extration proedure applied

to a internally reiproal state-spae model leads to a reiproal stati hybrid

matrix M̃ (4.69). In other words: if the state-spae matries {Ã, B̃, C̃, D̃}
verify the internal reiproity onditions in Table 4.3, repeated here as

ÃΠ = ΠÃ
T
, (4.70)

B̃ = ΠC̃
T
, (4.71)

(where Sext = IP beause an impedane transfer funtion is onsidered) then

the stati hybrid matrix resulting from the reatane extration proedure

will satisfy stati reiproity onditions in Table 4.1, i.e.

SextM̃ = M̃
T
Sext . (4.72)

In order to attain a reiproal and passive synthesis, two alternative

strategies are possible, depending whether reiproity onstraints (4.70)-

(4.71) are imposed before or after the solution of the Algebrai Riati Equa-

tion (CARE) for the onstrution of the positive real balaned realization,

i.e.
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• pre-are reiproity: in this ase a state-spae with reiproity on-

straints is obtained before solving the CAREs (4.62)-(4.62). Whih

means that the matrix Π relating the state-spae matries in a re-

iproal model is found by means of standard tehniques [124℄. To

preserve reiproity in the positive real balaned state-spae model re-

sulting from the similarity transformation obtained from the solution

of CAREs (4.62)-(4.62), a partiular solution to the dual-CARE (4.62)

an be found. Indeed one the solution matrix P of (4.62) is available,

sine all the solutions of the PRL in Table 4.3 are related by similar-

ity transformations [119℄, the solution of the dual-CARE (4.62) an be

found as

Q = ΠPΠ , (4.73)

with Π = ΠT = Π−1
, i.e. symmetri and orthogonal, from the so-

lution of the reiproity onstraint in Table 4.3. Relation (4.73) sim-

ply results from the imposition of state-spae reiproity onstraints

in the CARE (4.62). Applying now the similarity transformation ma-

trix T (4.67) leads to a balaned reiproal state-spae model, with

reiproity matrix

Π̃ = TTΠT . (4.74)

In order to obtain an internally reiproal model, aording to Ta-

ble 4.3, the reiproity matrix Π̃ has to be a signature matrix. There-

fore Π̃ is fatored aording to [171℄ (Algorithm 2) obtaining

Π̃ = VΛVT
(4.75)

with Λ signature matrix, i.e. diagonal matrix with 1 and −1 on the

main diagonal. Please note that fatorization (4.75) an be performed

as a onsequene of (4.74), see [171℄ for details. Using now V as a

new similarity transformation, the resulting state-spae model will be

internally reiproal and positive real balaned;

• post-are reiproity: in this ase the starting point is the positive real

balaned state-spae model {Ã, B̃, C̃, D̃}. Reiproity onditions (4.70)-
(4.71) are expliitly imposed using an orthogonal symmetri matrix Π̂

obtained from the diret solution of the system

Ã
T
Π̂ = Π̂Ã , (4.76)

C̃ = B̃
T
Π̂ , (4.77)

via standard tools like SeDuMi [124℄. Please note that in addition to

symmetry also orthogonality is required to preserve the positive real



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS 133

property [171℄. Internal reiproity is obtained deomposing Π̂ as

Π̂ = VΛVT , (4.78)

with Λ signature matrix.

In both ases the outome will be an internally reiproal balaned state-

spae model {Â, B̂, Ĉ, D̂} with internal signature matrix

Λ =

[
INl

0

0 −INc

]
, (4.79)

with Nl +Nc = N .

The balaned realization obtained via (4.67) guarantees the passivity of

the hybrid matrix

M̂ =

[
D̂ −Ĉ
B̂ −Â

]
(4.80)

resulting from the reatane extration proedure, i.e.

M̂+ M̂
T � 0 . (4.81)

The internal reiproity guarantees the sign symmetry of the hybrid ma-

trix (4.80), i.e.

SMM̂ = M̂
T
SM , (4.82)

with signature matrix SM de�ned by

SM =

[
IP 0

0 Λ

]
(4.83)

and Λ internal signature matrix from (4.79).

One the internally reiproal balaned state-spae model {Â, B̂, Ĉ, D̂} is
available, the dynami synthesis problem is mainly redued to the synthesis

of the assoiated hybrid stati matrix (4.80). Next subsetion outlines how

to perform the synthesis of (4.80) thus ompleting the desription of Youla's

reatane extration algorithm.

Synthesis algorithm

The starting point is the internally reiproal and balaned state-spae re-

alization {Â, B̂, Ĉ, D̂} from whih the hybrid, passive and sign symmetri,
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matrix M̂ (4.80) is obtained. In order to onvert (4.80) into an equiva-

lent stati P + N iruit it is important to note that the signature matrix

SM (4.83) suggests the following partition of matrix M̂ (4.80),

SM =



IP 0 0

0 INl
0

0 0 −INc


→ M̂ =



D̂ −Ĉl −Ĉc

B̂l −Âl,l −Âl,c

B̂c −Âc,l −Âc,c


 . (4.84)

Aording to the partitioning of the hybrid matrix M̂ in (4.84), urrents and

voltages of the resulting stati hybrid network an be arranged as



vp

vl

ic


 =



D̂ −Ĉl −Ĉc

B̂l −Âl,l −Âl,c

B̂c −Âc,l −Âc,c





ip
il
vc




(4.85)

where ip ∈ RP
are the input ports of the state-spae model, il ∈ RNl

are the

ports of the hybrid matrix to be losed on indutors and vc ∈ RNc
are the

ports of the hybrid matrix to be losed on apaitors.

Three are the main steps involved by the synthesis of the hybrid matrix M̂

partitioned as in (4.85) in order to extrat noise-ompliant positive resistors,

i.e.

1. impedane sub-network synthesis: from (4.85) an impedane sub-network

is identi�ed as

ZM =

[
D̂ −Ĉl

B̂l −Âl,l

]
. (4.86)

Due to passivity and reiproity of M̂, it an be demonstrated [119℄

that ZM is a symmetri positive de�nite matrix. The synthesis of a

stati impedane matrix was disussed in Setion 4.2.3. Applying the

eigenvalue deomposition on ZM leads to

ZM = NzDzN
T
z , (4.87)

with Dz ∈ RNr×Nr
positive diagonal matrix and Nz ∈ R(P+Nl)×Nr

turn

ratio matrix for a lossless ideal multi-port transformer having P + Nl

primary ports and Nr seondary ports. The rank of ZM determines the

value of Nr;

2. admittane sub-network synthesis: from (4.85) an admittane sub-

network is identi�ed as

YM = −Âc,c . (4.88)
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Due to the stability of the state spae model, it an be demonstrated [119℄

that YM is a symmetri positive de�nite matrix. The synthesis of a

stati admittane matrix was disussed in Setion 4.2.3. Applying the

eigenvalue deomposition on YM reads

YM = NyDyN
T
y , (4.89)

with Dy ∈ RNg×Ng
positive diagonal matrix and Nz ∈ R(P+Nc)×Ng

turn

ratio matrix for a lossless ideal multi-port transformer having P +Nc

primary ports and Ng seondary ports. The rank of YM determines

the value of Ng;

3. transformer sub-network: from (4.85) an ideal multi-port transformer

onneting impedane (4.87) and admittane (4.89) sub-networks pre-

viously identi�ed an be de�ned as

Nt =
[
B̂c −Âc,l

]
=
[
Ĉc Âl,c

]T
. (4.90)

As a onsequene of the sign symmetry of M̂ (4.82) it is easy to prove

that Nt ∈ RNc×(P+Nl)
is the turns ratio matrix of an ideal multi-port

transformer having P +Nl primary ports and Nc seondary ports.

The onnetion of the three sub-networks ZM (4.87) YM (4.89) and

Nt (4.90), losed on Nl unitary indutanes and Nc unitary apaitanes

onludes the synthesis of the state-spae model assoiated to the impedane

transfer funtion (4.61). Figure (4.19) learly demonstrates how to interon-

net the sub-iruits that onstitute the desired Youla's reatane extration

synthesis.

RC ladder network example

The RC ladder network example from Setion (4.3.3) is revisited here to show

the noise-ompliane of Youla's reatane extration synthesis.

The starting point is the state-spae model for the RC ladder network in

Gilbert anonial form, i.e.

A =
1

R

(
p1 0
0 p2

)
, b =

(
1
1

)
, c =

(
ρ1
ρ2

)T

, (4.91)

where p1,2 are

p1,2 =
−3±

√
9− 4

4
=
−3 ±

√
5

2
(4.92)
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1F

YM

Nt

(P )− + (Nl)
+ − 1H

ZM

+ −(P ) − +(Nl)

(Nc) M̂

(P )

Figure 4.19: Interonnetion of the three sub-networks ZM (4.87) YM (4.89)

and Nt (4.90), whih losed on Nl unitary indutanes and Nc unitary a-

paitanes onludes the synthesis of the state-spae model assoiated to the

impedane transfer funtion (4.61). Eah sub-network is synthesized using

resistors and ideal transformers like desribed in Setion 4.2.3, as an exam-

ple the synthesis of ZM is depited in Figure 4.20. Note that eah port in

the �gure denotes olletively a set of P , Nl, or Nc ports for the interfae,

indutane, and apaitane ports, respetively.
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Figure 4.20: Belevith (RT) synthesis for the sub-network ZM resulting from

Youla's proedure. Aording to (4.87): the Nr seondary ports of the ideal

transformer desribed by Nz are losed on unitary resistors, while the �rst

P primary ports realize the port of the impedane (4.61) and the last Nl

primary ports are onneted in series to unitary indutors. Only a few turns

ratio values nj,i, with i = 1, . . . , P +Nl and j = 1, . . . , Nr, are onsidered for

the multi-port ideal transformer to simplify the presentation of the iruit.

P+, N+
l and P−, N−

l are, respetively, positive and negative terminals for the

P +Nl ports of ZM .
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and

ρ1,2 =
5±
√
5

10
. (4.93)

The onversion to a reiproal and positive real balaned realization is straight-

forward: reiproity is guaranteed by onstrution when dealing with a 1-port

iruit, while to obtain a positive real balaned model it is su�ient to im-

pose [162℄

A = AT , (4.94)

B = CT . (4.95)

Sine ondition (4.94) is already met by (4.91), only (4.95) should be onsid-

ered. It is easy to verify that the similarity matrix

T =

(√
ρ1 0
0
√
ρ2

)
(4.96)

transforms (4.91) into the positive real balaned realization

Â =
1

R

(
p1 0
0 p2

)
b̂ =

(√
ρ1√
ρ2

)
ĉ =

(√
ρ1√
ρ2

)T

. (4.97)

Using the reatane extration proedure the stati hybrid matrix M̂ is

found as

M̂ =




0 −√ρ1 −√ρ2√
ρ1 −p1/R 0√
ρ2 0 −p2/R


 , (4.98)

with the orresponding signature matrix

SM =



1 0 0
0 −1 0
0 0 −1


 . (4.99)

The synthesis of the hybrid matrix M̂ is depited in Figure 4.21. Please

note that: sine the impedane sub-network ZM in (4.98) is null, the input

port of Z(s) is diretly onneted to the transformer sub-network desribed

by the turns ration matrix Nt = [
√
ρ1
√
ρ2]

T
. While the admittane sub-

network YM is omposed by the two admittanes−p1/R and −p2/R, diretly
onneted in parallel to the unitary apaitors and to the seondary ports of

the multi-port transformer desribed by Nt.

The voltage output noise spetral density an be evaluated analytially

like in Setion 4.3.2 leading to the equation

V̄ 2
o (ω) = 4KbTR

(
− ρ21p1
ω2R2C2 + p21

− ρ22p2
ω2R2C2 + p22

)
. (4.100)
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−
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Figure 4.21: Youla's reatane extration synthesis result from (4.98) for the

RC ladder network example.

Equation (4.100) is ompared in Figure (4.22) with the results obtained from

Spie noise analysis using the original RC ladder network and Youla's syn-

thesis based on (4.98). As expeted the three urves overlap eah other.

Ciruit omplexity

The main issue of Youla's reatane extration synthesis lies in the omplexity

of the resulting network, indeed the number of elements sales as O (P 2N2)
ompared with O (P 2N) for the diret synthesis method from Setion 4.3.2.

There are several reasons for suh a big di�erene in the number of elements

between the two synthesis methods, i.e.

• anoniity: as it was demonstrated in [119℄, it is impossible for a purely-

reiproal

6

passive synthesis to jointly use the minimum number of pas-

sive (resistors) and reative (apaitors and indutors) elements. This

means that a purely-reiproal passive synthesis will always require

more elements ompared to a passive non-reiproal one;

• noise-ompliane: in order to preserve the noise response, the RT syn-

thesis is used on the hybrid stati matrix (4.80) resulting in three sub-

6

A iruit omposed only by RLCT elements was de�ned as purely-reiproal in Se-

tion 4.2.1.
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Figure 4.22: Comparison between noise analysis results obtained by means

of analytial equation (4.100) (red line), Spie simulation using the iruit in

Figure 4.21 (dot-dashed line) and Spie simulation on the original RC ladder

network (blue dashed line).

networks of multi-port ideal transformers. The synthesis of those trans-

formers requires a large number of ontrolled soures;

• sparsity: starting with a sparse model, i.e. Gilbert anonial form, will

not result into a sparse reiproal balaned realization beause model

struture is not preserved by the similarity transformation (4.67) in the

general ase.

As a onsequene to the onsiderations above, the pure-reiproity onstraint

will be relaxed in the following while preserving noise-ompliane in the syn-

thesis. Removing the onstraint of pure-reiproity leads to a synthesis with

a omplexity omparable to the diret synthesis method in Setion 4.3.2.

4.3.4 Darlington's resistane extration

Duo to the omplexity of the resulting network, Youla's reatane extration

an only be used in pratie for state-spae models possessing a low dynami

order. As disussed in previous Setion 4.3.3, this limitation is tightly re-

lated with the requirement of preserving a purely-reiproal iruit in the

synthesis proess. Sine the main onern in this work lies in attaining a

noise-ompliant synthesis, it is oneivable to remove the pure-reiproity

onstraint in order to ahieve a result of pratial relevane. Youla's rea-

tane extration proedure ould be modi�ed in that sense, but the similarity



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS 141
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Figure 4.23: Darlington's Resistane extration: lossless dynami sub-

network N0 losed on Nr resistors.

transformation (4.67) will not allow to preserve the struture of the state-

spae matries in any ase, thus loosing the sparsity pattern provided by

Gilbert anonial form. Therefore a di�erent approah is onsidered in this

setion, i.e. Darlington's Resistane extration tehnique.

The lassi Resistane extration algorithm was proposed by Darlington

in [147℄. Given a linear and passive dynami network N , the main idea is:

extrat all the resistors from N thus obtaining a lossless dynami network

N0 like depited in Figure 4.23. Sine lossless networks are noise ompliant

by onstrution, even if non-reiproal

7

, the dynami lossless sub-network

N0 an be synthesized via the diret synthesis method from Setion 4.3.2,

leading to a iruit with a omplexity saling as O (P 2N). In this way a

anonial noise-ompliant synthesis an be obtained.

In the following the Resistane extration tehnique will be applied to

the passive state-spae model

ẋ(t) = Ax(t) +Bi(t) , (4.101)

v(t) = Cx(t) +Di(t) , (4.102)

7

As disussed in Setion 4.3.3, noise-ompliane is related with the proper usage of

ontrolled soures in the synthesis proess: only lossless networks omposed of ontrolled

soures are noise ompliant. Sine reiproity is not required, even non-reiproal lossless

networks will result into a noise-ompliant iruit.
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with input vetor i ∈ RP
, output vetor v ∈ RP

and state-spae matries:

A ∈ RN×N
, B ∈ RN×P

, C ∈ RP×N
and D ∈ RP×P

. Similar results hold for

sattering models [119℄.

State-spae resistane extration

The main objetive of the resistane extration method onsists in the ex-

tration of a lossless dynami state-spae model N0

ẋ(t) = A0x(t) +B0

[
i(t)
ir(t)

]
, (4.103)

[
v(t)
vr(t)

]
= C0x(t) +D0

[
i(t)
ir(t)

]
, (4.104)

whih losed on Nr unitary resistors Ir, i.e.

vr(t) = −Irir(t) , (4.105)

leads to the state-spae of the starting passive dynami network N desribed

by (4.101)-(4.102). Please note that the lossless dynami state-spae real-

ization (4.103) has the same dynami order of the original dynami net-

work (4.101), i.e. A0 ∈ RN×N
, thus order minimality is preserved. The main

di�erene between network N and N0 is in the number of ports. Indeed

D0 ∈ R(P+Nr)×(P+Nr)
, where Nr is the number of resistors losing the Nr

inputs ir of the lossless sub-network, with Nr = rank{D+DT}.
Unfortunately it is not possible to provide a simple iruit interpretation

of the resistane extration proedure, like it was done for the reatane

extration in Setion 4.3.3, beause the extration of resistanes from a state-

spae

8

model involves the solution of the quadrati system of equations

PA+ATP = −LLT , (4.106)

PB = CT − LW , (4.107)

D+DT = WTW (4.108)

with L ∈ RN×Nr
, W ∈ RNr×P

and P ∈ RN×N
.

Aording to [119℄, one the solution matries L,W,P for (4.106)-(4.108)

are known, the lossless state-spae model N0 (4.103)-(4.104) an be diretly

8

The extration of the resistors from the state-spae model of N is equivalent to the

identi�ation of the lossless dynamial sub-network N0.
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onstruted as

A0
.
=

1

2
(A−AT ) , (4.109)

B0
.
=

[
1

2
(B+CT )− 1√

2
L

]
.
= CT

0 , (4.110)

D0
.
=

[
1
2
(D−DT ) 1√

2
WT

− 1√
2
W 0

]
. (4.111)

To verify that {A0,B0,C0,D0} onstitutes a lossless state-spae model it is

su�ient to hek the relations

A0 +AT
0 = 0 , (4.112)

B0 = CT
0 , (4.113)

D0 +DT
0 = 0 , (4.114)

that are alled the lossless PRL equations. The relation with the LMI in

Table 4.3 (passivity olumn) is disussed in [119℄.

Please note that from (4.109) it is evident how the struture of matrix

A is preserved by the resistane extration proess. It follows that Gilbert

anonial form an be used in order to attain a low omplexity synthesis like

in Setion 4.3.2. Moreover, if D = DT
in (4.111), whih is usually the ase if

the starting impedane model desribes the immittane of a linear reiproal

iruit, D0 will only have the outer blok-diagonal element di�erent from

zero, i.e. W.

One the lossless state-spae model (4.109)-(4.111) is known from the

solution of the PRL, the synthesis is straightforward, being a simple applia-

tion of the diret synthesis method on (4.103)-(4.104), with the last Nr ports

losed on unitary resistors.

Positive Real Lemma solution

In the solution of the PRL (4.106)-(4.108), leading to L and W in (4.109)-

(4.111), the attention is restrited here to the ase in whih

D+DT ≻ 0 , (4.115)

i.e. the state-spae model (4.101)-(4.102) is stritly asymptotially pas-

sive. Aording to [119℄, under the hypothesis (4.115), the solution of the

PRL (4.106)-(4.108) is obtained by the following steps
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1. stating from a minimal and passive state-spae realization {A,B,C,D},
solve the Algebrai Riati Equation for the positive de�nite matrix P,

i.e.

ATP+PA+
(
PB−CT

)
R−1

(
BTP−C

)
= 0 , (4.116)

using standard methods [173, 174℄;

2. obtain an internally passive model using the similarity transformation

de�ned by matrix P1/2
;

3. perform the deomposition

D+DT = WTW ; (4.117)

4. deompose W as

W = VR1/2 ; (4.118)

with V orthogonal;

5. form L using the equation

L = (P1/2B−P−1/2CT )R−1/2VT
(4.119)

where B and C ome from the starting state-spae in step 1, R and V

are in (4.118).

This onludes the resistane extration proess.

Example

The simple RC iruit example onsidered in Setion 4.3.2 and 4.3.3 is pro-

posed here using the resistane extration synthesis. Starting from the posi-

tive real state spae realization obtained in 4.3.3, i.e.

Â =
1

R

(
p1 0
0 p2

)
b̂ =

(√
ρ1√
ρ2

)
ĉ =

(√
ρ1√
ρ2

)T

(4.120)

with p1,2 =
−3±

√
9−4

4
= −3±

√
5

2
and ρ1,2 =

5±
√
5

10
, the onversion to an internally

passive realization is performed based on the steps outlined before. Sine

the state-spae matrix D is zero in (4.120), the solution matrix W in the

PRL (4.106)-(4.108) is zero as well. If follows that (4.106) and (4.107) are

deoupled and (4.107) redues to B = CT
, whih is satis�ed by (4.120).
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Table 4.4: This table summarizes the most relevant features of the synthesis

methods presented in this work: diret synthesis (RCCS) from Setion 4.3.2,

Reatane extration from Setion 4.3.3 and Resistane extration from Se-

tion 4.3.4. The onstant fators di�erentiating the omplexity of the RCCS

synthesis with the Resistane extration are suh that y < x ∈ R.

RCCS

Reatane

extration

Resistane

extration

Pure-Reiproity no yes no

Complexity O (yNP 2) O (N2P 2) O (xNP 2)
Noise-ompliant no yes yes

The solution matrix L in (4.106) an be obtained in this ase by a diret

appliation of the Cholesky fatorization, leading to

L =



√

2p1
R

0

0
√

2p2
R


 . (4.121)

The state-spae model assoiated to the lossless sub-network N0 in the re-

sistane extration synthesis framework results from a diret appliation

of (4.109)-(4.111) based on (4.120) leading to

A0 = 0 , (4.122)

B0 =

[√
ρ1 −

√
p1
R

0√
ρ2 0 −

√
p2
R

]
= CT

0 , (4.123)

D0 = 0 . (4.124)

Sine the state-spae matries (4.122)-(4.124) de�ne a lossless network, the

RCCS synthesis method disussed in Setion 4.3.2 an be still used while pre-

serving noise-ompliane. The resistane extration proedure is ompleted

losing the last two ports of the lossless sub-network N0 on unitary resistors

like depited in Figure 4.24. The result of the frequeny dependent noise

analysis performed in Spie are depited in Figure 4.25. This result on�rm

the noise-ompliane property of the proposed synthesis strategy.

4.3.5 Dynami synthesis results and omparison

In this setion simulation time results and omplexity are ompared for the

state-spae synthesis methods previously desribed. Table 4.4 highlights the
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Figure 4.24: Darlington's resistane extration synthesis resulting

from (4.122)-(4.124) for the RC ladder network example.
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Figure 4.25: Comparison between noise analysis results obtained by means

of Spie simulation using the iruit in Figure 4.24 (blue dashed line) and

Spie simulation on the original RC ladder network (red line).
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Figure 4.26: Noise analysis result for the �rst example in Table 4.5 (2 ports,

order 20). As an be seen the results obtained from Reatane (blue dashed)

and Resistane (red dashed) extrations-based synthesis methods math (to

mahine preision) the result of the noise analysis obtained from Spie using

the raw S-parameters (Sp, blak ontinuous line).

most relevant features of eah synthesis method.

In a similar way to the stati synthesis ase, dynami synthesis methods

are validated through test ases onduted on arti�ial state-spae models,

obtained from the ommerial software IdEM from IdemWorks, and on state-

spae models derived from real designs using the identi�ation proedures

disussed in Chapter 2. Frequeny dependent noise responses are ompared

with the results of Spie-based noise simulations based on [176℄.

Automated testing proedure

A simple automated testing proedure is used to asses auray and om-

plexity for the synthesis methods presented in this hapter. Several passive

state-spae models, with ports ount in [2, 100] and order in [20, 600], are
automatially generated using the software IdEM from IdemWorks and on-

verted to Spie netlists. A small subset of those test ases is reported here

with a detailed omparison of the number of network elements required by

eah synthesis method. The following Tables 4.5-4.6 ompare the number of:

nodes, apaitors, urrent ontrolled soures, indutors, resistors and voltage

ontrolled soures used in the diret synthesis (RCCS), Reatane extration

and the resistane extration methods. Moreover S-parameters simulations
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Figure 4.27: S-parameters for the �rst example in Table 4.5. As an be

seen the results obtained from Reatane (blue dashed) and Resistane (red

dashed) extrations-based synthesis methods math the original raw Satter-

ing parameters with great auray.

were performed in Spie using the netlists resulting from eah synthesis and

exeution times are reported in the tables as well. The auray of the S-

parameters resulting from reatane and resistane extration methods is

demonstrated in Figure 4.27. Noise analysis results are depited in Fig-

ure 4.26 for the �rst test ase reported in Table 4.5. Note that the results

onerning the RCCS synthesis refers to the Spie netlists obtained from the

ommerial software IdEM. The results olleted in Table 4.5 on�rm that

the number of iruit elements sales as summarized in Table 4.4. When

the number of ports is larger or omparable to the order of the state-spae

model, like in the examples of Table 4.6, resistane and reatane extration

methods have a omparable number of elements.

Tests derived from hardware designs

From the big set of real design test ases onsidered, two of partiular rel-

evane are onsidered in this setion to ompare the performanes of the

synthesis methods. The number of network elements is ompared for both

test ases in Table 4.7.

The �rst example is based on the state-spae model for the entrally

involved LC-tank oil of a RF Digitally Controlled Osillator (DCO). DCOs

an be tuned very aurately: their noise behaviour is a key �gure of merit

and requires therefore aurate noise modeling of all involved design parts.

Thus modeling of the entrally involved LC-tank oil is a good benhmark
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Table 4.5: Automati test ases results. The number of network elements:

apaitors (ap), urrent ontrolled soures (s), indutors (ind), resistors

(res), voltage ontrolled voltage soures (vvs), voltage ontrolled urrent

soures (vs), is ompared for eah synthesis method. As a global estimate

of network omplexity the total number of iruit elements is also reported.

The simulation time refers to the exeution time of S-parameter analysis in

a Spie solver.

order: 20

ports: 2

RCCS

Reatane

extration

Resistane

extration

nodes 44 90 30
ap 40 10 20
s − 208 24
ind − 10 −
res 40 56 6
vvs − 34 4
vs 144 208 142
total 224 526 196

time 150ms 370ms 146ms

order: 64

ports: 4

nodes 72 869 84
ap 64 124 64
s − 20934 186
ind − 124 −
res 64 493 12
vvs − 338 8
vs 368 20934 820
total 568 42947 1090

time 300ms 1m35s 730ms
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Table 4.6: Automati test ases results. The number of network elements:

apaitors (ap), urrent ontrolled soures (s), indutors (ind), resistors

(res), voltage ontrolled voltage soures (vvs), voltage ontrolled urrent

soures (vs), is ompared for eah synthesis method. As a global estimate

of network omplexity the total number of iruit elements is also reported.

The simulation time refers to the exeution time of S-parameter analysis in

a Spie solver.

order: 600

ports: 30

RCCS

Reatane

extration

Resistane

extration

nodes 660 2550 750
ap 600 300 600
s − 153915 17808
ind − 300 −
res 600 1590 90
vvs − 960 60
vs 19740 153915 55002
total 21600 310980 73560

time 20s 20min 2min

order: 100

ports: 241

nodes 1400 1463 741
ap 1200 121 241
s − 51051 28895
ind − 120 −
res 1200 902 300
vvs − 561 200
vs 131400 51051 77575
total 135200 103806 107211

time 5min 10min 10min
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Figure 4.28: S-parameters for the LC-tank oil example. As an be seen the

results obtained from Reatane (blue dashed) and Resistane (red dashed)

extrations-based synthesis methods math the original raw Sattering pa-

rameters with great auray. A small part of the frequeny response is

shown sine the response below 1GHz is very �at.

for the noise ompliant synthesis. The auray of the synthesis methods in

the alulation of the S-parameters is demonstrated in Figure 4.28. Noise

analysis results are depited in Figure 4.29.

The seond example in Table 4.7 onsider a 2-port base band �lter blok

used in the reeiver hain of a 3G transeiver. Also in this ase noise-

ompliane is of paramount importane. All the omponents in a reeiver

hain are arefully designed in order to redue noise ontributions thus pre-

serving the weak signal from the antenna. S-parameters auray is on-

�rmed in Figure 4.30, while seleted noise analysis results are reported in

Figure 4.31.
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Figure 4.29: Noise analysis result for the LC-tank oil example. As an

be seen the results obtained from Reatane (blue dashed) and Resistane

(red dashed) extrations-based synthesis methods math (to mahine pre-

ision) the result of the noise analysis obtained from Spie using the raw

S-parameters (Sp, blak ontinuous line). A small part of the frequeny

response is shown sine the response below 1GHz is very �at.
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Figure 4.30: S-parameters for the base band �lter example. As an be

seen the results obtained from Reatane (blue dashed) and Resistane (red

dashed) extrations-based synthesis methods math the original raw Satter-

ing parameters with great auray.
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Figure 4.31: Noise analysis result for the base band �lter example. As an

be seen the results obtained from Reatane (blue dashed) and Resistane

(red dashed) extrations-based synthesis methods math (to mahine pre-

ision) the result of the noise analysis obtained from Spie using the raw

S-parameters (Sp, blak ontinuous line).
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Table 4.7: Results summary for the two test ases based on real designs. The

number of network elements: apaitors (ap), urrent ontrolled soures

(s), indutors (ind), resistors (res), voltage ontrolled voltage soures

(vvs), voltage ontrolled urrent soures (vs), is ompared for eah synthe-

sis method. As a global estimate of network omplexity the total number of

iruit elements is also reported. The simulation time refers to the exeution

time of S-parameter analysis in a Spie solver.

order: 350

ports: 25

RCCS

Reatane

extration

Resistane

extration

nodes 400 1406 475
ap 350 177 350
s − 53096 8631
ind − 173 −
res 350 293 75
vvs − 540 50
vs 9925 53096 26817
total 11025 107915 35923

time 20s 10min 1min

order: 248

ports: 2

nodes 252 869 258
ap 248 124 248
s − 20934 245
ind − 124 −
res 248 493 6
vvs − 338 4
vs 874 20934 1731
total 1622 − 2234

time 0.5s 1min 1.2s
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4.4 Conlusions

Two noise ompliant synthesis methods for linear behavioral maromodels

based on the lassial tehniques have been presented: one preserves all the

physial properties of the original system requiring a large number of net-

work elements; the seond misses to preserve reiproity of the iruit bloks

involved in the synthesis (while preserving noise behaviour) but requires less

elements. Relying solely on the use of network elements possessing a proper

noise model in SPICE based solvers, the proposed strategies are able to repro-

due properly the noise behaviour of the system. The auray of the results

obtained from the noise analysis was assessed by omparing the proposed

synthesis with standard methods [176℄.

Noise ompliane and network omplexity have been the onstraints of

interest. Unfortunately those onstraints an not jointly attain the optimum

in the available synthesis. Indeed the diret state-spae synthesis results

into a network whose number of elements sales linearly with model order

but that is not noise ompliant, while Youla's synthesis is noise ompliant

but the number of network elements sales quadratially with model order.

The best trade-o� is provided by Darlington's resistane extration, whih is

noise ompliant, but in order to have a omplexity omparable with the di-

ret synthesis method requires the use of non-reiproal elements. Therefore

the best suited synthesis method should be seleted depending on the appli-

ation: for redued order models of IC interonnets and parasiti networks

for RF, SoC/SiP appliations noise ompliane is a must and Darlington's

synthesis is the best hoie. When dealing with large-sale pakages, PCBs

and transmission lines, the diret synthesis is best suited to takle large or-

der models but the resulting network will not be noise-ompliant. Youla's

synthesis is appropriate for those ases in whih network reiproity of all

network omponent is needed.

The availability of a noise ompliant network synthesis an be of paramount

importane in analog behavioural modeling for devies and omplete building

bloks. Noise-preserving modeling is a must for simulation-based design and

design veri�ation purposes of omplex analog systems. The methodology

proposed here is an important step toward the migration of hard IP bloks

into �rm IP bloks, like disussed in Setion (1.3.1).



Conlusions

This thesis proposed several improvements to various important steps in the

veri�ation �ow of SoC/SiP omponents. All the issues takled in this work

raised from pratial needs: fast identi�ation and validation of omponent

with large ports ount, omplexity redution in system level simulations in-

volving non-linear analog RF omponents and reation of versatile IP bloks

to be used in a high pro�ieny IP reuse-based modern design �ow.

For the identi�ation of behavioural models assoiated to linear devies

having hundreds of ports, an innovative algorithm was proposed and tested

on several test ases of pratial relevane. Combined with standard identi�-

ation methods like Vetor Fitting, the new proedure presented in this work

attains speed-ups of two order of magnitudes in omparison with standard

identi�ation methods. Auray is ompletely under ontrol and physial

properties like passivity and stability an be easily enfored on ommodity

hardware relaying on a robust reformulation of ommon tehniques.

Aurate small-signal models for RF analog non-linear omponents were

derived onsidering that: several RF non-linear bloks are designed in order

to behave in a linear way (no signal distortion or generation of spurious har-

monis) under appliation-de�ned operating onditions, therefore non-linear

e�ets are negligible and a small-signal model is aurate enough to mimi

the response of the system. A simple and e�etive orretion strategy was

proposed in order to overome the lak of auray at DC. The resulting mod-

els an substitute omplex non-linear RF bloks resulting in a tremendous

redution of simulation time for system level simulations.

The small-signal models an then be extended by means of standard teh-

niques to parameterized models. Appliation-de�ned operating onditions,

temperature and other design parameters an be onsidered in order to en-

hane the appliability range. The appliation of the proposed methodology

on real design test ases on�rmed the quality of this approah.

Last but not the least, linear maromodels identi�ed using the aforemen-

tioned tehniques are onverted (synthesized) in standard Spie netlists. In

omparison with the most ommon synthesis methods, partiular are was

156
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devoted in this work in order to provide low-omplexity Spie iruits reliable

in all simulation senarios. The availability of suh versatile models onverted

to Spie netlists is the enabling fator for the migration of IP bloks from

�rm to hard form leading to a more robust design/veri�ation �ow.

The solutions proposed in this thesis met quality standards and expe-

tations of the host institution, i.e. Intel Mobile Communiations, and will

likely beome relevant part of a professional veri�ation/design �ow.



Appendix A

Notation, aronyms and symbols

Though already introdued in the text, notation, aronyms and symbols used

in the thesis are summarized here for onveniene of the reader.

Notation

onstant identi�ed by apital ase letters (either Latin or Greek); example

A. Some letters are reserved for partiular de�nitions, like: number of

iruit ports P .

index identi�ed by lower ase letters (either Latin or Greek); example a.

matrix identi�ed by bold apital fonts; example X. Some letters are re-

served for partiular appliations, like A,B,C,D whih are assoiated

to state-spae models and I, whih is the identity matrix.

vetor identi�ed by bold lower ase fonts; example x.

Aronyms

3G third Generation; refereed to Mobile ommu-

niations standards.

A/D-D/A Analog/Digital-Digital/Analog.

AC Alternating Current.

AMS Analog-Mixed Signal.
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BB Base Band.

BR Bounded Real.

CAD Computer Aided Design.

CB Ciruit Blok.

CMOS Complementary Metal-Oxide-Semiondutor.

CPU Central Proessing Unit.

DC Diret Current.

DSP Digital Signal Proessing.

EDA Eletroni Design Automation.

GPU Graphis Proessing Unit.

GSK Generalized Sanathanan-Koerner.

HDL Hardware Desription Language.

IC Integrated Ciruit.

IP Intelletual Property.

ITRS International Tehnology Roadmap for Semi-

ondutors.

LDO Low Drop-Out regulator.

LNA Low Noise Ampli�er.

LP Low Power.

LTFM Linear Transfer Funtion Model.

LTI Linear Time Invariant.

MCM Multi-Chip Module, alternative name for SiP.

NoC Network on Chip.

OA,OpAmp,OPA Operational Ampli�er.

P-LTI Parameterized-Linear Time Invariant.

PAS Parallel Adaptive Sampling.

PC Personal Computer.

PCB Printed Ciruit Board.

PDN Power Delivery Network.
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PI Power Integrity.

PLL Phase-Loked-Loop.

PR Positive Real.

PWL Piee-Wise-Linear.

RF Radio Frequeny.

SI Signal Integrity.

SIA Semiondutor Industry Assoiation.

SiP System in Pakage.

SK Sanathanan-Koerner.

SoC System on Chip.

SU Speed Up.

SVD Singular Values Deomposition.

TSV Through-Silion Via.

VF Vetor Fitting.

List of symbols

∀ For all.

O (·) Big O notation. Desribes the limiting be-

haviour of a funtion when the argument tends

towards a partiular value or in�nity.

♯Ω Cardinality (number of elements) in set Ω.
⌈x⌉ Maps the real number x to the smallest fol-

lowing integer.

x∗
Complex onjugate of x.

λ(X) Set of all eigenvalues of matrix X.

∅ Empty set.

∃, ∄ There exists, there does not exist.

⌊x⌋ Maps the real number x to the largest previous
integer.

XH
Conjugate-transpose of matrix X.
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In Identity matrix of dimension n.
i� If and only if.

Im{x} Imaginary part of omplex number x.
 Imaginary unit.

∈ Is an element of.

∩ Set intersetion.

⊗ Kroneker produt.

mat(x) Transforms the vetor x in a matrix X stak-

ing sub-bloks of x as olumns of X with

proper dimensions.

maxΩ Maximum, the largest element of set Ω.
minΩ Minimum, the smallest element of Ω.
mod(x) Remainder of division x/2.

X ≺ 0,X � 0 X is negative (semi)de�nite.

X ≻ 0,X � 0 X is positive (semi)de�nite.∏
Produt.

X†
Moore-Penrose pseudoinverse of matrix X.

Re{x} Real part of omplex number x.

σ(X) Set of all singular values of matrix X.

‖X‖2 Spetral norm of matrix X, de�ned as

maxσ(X).
s.t. Subjet to.

⊂,⊆ Is a subset of.∑
Sum.

C Set of omplex numbers.

‖X‖F Frobenius norm of matrix X.

R Set of real numbers.

tr(X) The trae of a square matrix X is de�ned as

the sum of the elements on the main diagonal

of X.

XT
Transpose of matrix X.
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∪ Set union.

vec(X) Vetor staking all olumns of matrix X.



Appendix B

The Vetor Fitting algorithm

The starting point for the identi�ation of a rational maromodel is a set of

samples from the system frequeny response of a P -port LTI devie:

Hl ∈ CP×P , {ωl} l = 1, . . . , L. (B.1)

The model resulting from the appliation of the VF algorithm will be in

pole-residue form

H(s) = D+
N∑

n=1

Rn

s− pn
. (B.2)

The main goal is to minimize the approximation error in a generi norm

min ‖H(sl)−Hl‖ ∀l (B.3)

Sine the model (B.2) requires the identi�ation of poles pn and residues Rn,

the resulting minimization problem (B.3) will be non-linear. As disussed in

Chapter 2, Setion 2.2, Vetor Fitting (VF) uses the Generalized Sanathanan-

Koerner (GSK) Iteration to avoid dealing with the non-linear minimization

problem (B.3) thus onverting it into a sequene of linear problems.

The original version of the VF algorithm as proposed by [62℄ is now

presented as a step-by-step proedure:

1. Starting poles seletion: hoose an arbitrary

1

set of poles qj with j =
1, . . . , N ;

1

Some hints on how to hoose the starting poles an be found in [62℄.
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2. Using the poles qj de�ne two rational funtions

σHi(s) = Di +

N∑

n=1

Ni
n

s− qin
, (B.4)

σi(s) = 1 +
N∑

n=1

din
s− qin

. (B.5)

Those will be numerator and denominator of the estimated model at

iteration i, i.e.

Hi(s) =
σHi(s)

σi(s)
; (B.6)

3. based on the GSK iteration onstrut a linear system using the equation

σHi(ωl) ≃ Hlσ
i(ωl) , (B.7)

and solve it in the least-square sense for Ni
n and din;

4. poles reloation: update the starting set of poles in (B.4) and (B.5)

using the zeros of σi(s) and fore them to have negative real part (poles

�ipping);

5. iterate steps (2)-(4), i = i + 1, until σi(s) → 1. This is the main

iteration for the identi�ation of model poles.

6. When the poles reloation proedure onverged, set the poles of (B.4)

as pn = qin.

7. Finally solve the equation

Di +

N∑

n=1

Rn

s− qin
≃ Hl (B.8)

in least-square sense to identi�es the residues Rn of the �nal maro-

model.



Appendix C

RC-example state-spae

derivation

The state-spae equations assoiated to the impedane transfer funtion Zout

from the RC iruit of Figure 4.12 an be extrated by diret inspetion,

onsidering the RC network in Figure C.1.

{
Cv̇1 = −v1

R
− v1−vo

R
,

Cv̇o = is +
v1−vo

R
.

(C.1)

A simple rearrangement of the equations in (C.1), i.e.

{
v̇1 = − 2

RC
v1 +

1
RC

vo,
v̇o = 1

RC
v1 − 1

RC
vo +

is
C
,

(C.2)

makes possible to identify the state vetor

x =

(
v1
vo

)
, (C.3)

R R

C

+

−

v1 C

+

−

v0 is

Figure C.1: RC ladder iruit for the identi�ation of a state-spae model

using the diret inspetion method.
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and the matries (normalized by C) assoiated to the state variables

A =
1

R

(
−2 1
1 −1

)
b =

(
0
1

)
c =

(
0
1

)T

d = 0 (C.4)

leading to the system of di�erential equations

{
ẋ = Ax+ bi
vo = cx.

(C.5)

with transfer funtion

Z(s) = d+ c(sCI−A)−1b. (C.6)

The state-spae equations obtained using the diret inspetion method

an be onverted to an equivalent state-spae form, i.e. the Gilbert anonial

form [170℄. In this representation the state-spae matrix Ã is a (blok)

diagonal matrix with the eigenvalues of the original A matrix (C.4) on the

main diagonal. As a onsequene the Gilbert anonial form is equivalent

to the deomposition of the transfer funtion (C.6) in the sum of rational

funtions, i.e.

ξ(u) =
2 + u

u2 + 3u+ 1
=

ρ1
u− p1

+
ρ2

u− p2
, (C.7)

where u = RCs, ξ = Z(s)/R and p1,2 are the poles of ξ(u) (zeros of u2 +
3u+ 1), while ρ1,2 are the residues of ξ(u)

ρ1,2 = ξ(p1,2). (C.8)

Therefore the poles an be alulated from u2 + 3u+ 1

p1,2 =
−3±

√
9− 4

4
=
−3 ±

√
5

2
(C.9)

and the residues follows from (C.8)

ρ1,2 =
5±
√
5

10
. (C.10)

A simple way to onstrut a diagonal anonial form onsists in olleting

the residues in the state-spae matrix c̃, the poles on the main diagonal of

Ã and ones in b̃, i.e.

Ã =
1

R

(
p1 0
0 p2

)
b̃ =

(
1
1

)
c̃ =

(
ρ1
ρ2

)T

(C.11)

orresponding to

Z(s) =
Rρ1

sCR− p1
+

Rρ2
sCR− p2

(C.12)

where the physial dimensions are onsistent.
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