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Abstract

In recent years the focus on electronic integration shifted from high perfor-
mance microprocessors, whose integration trend is dictated by the famous
Moore law, to System on Chip (SoC) and System in Package (SiP) for mo-
bile and embedded applications. The most common example of SoC can
be found in smartphones and tablets: multicore CPU (Central Processing
Unit) and GPU (Graphics Processing Unit), memory and Radio Frequency
(RF) transceivers are often integrated in the same die or package leading to
tremendous reduction in size and power consumption of the device. There-
fore SoCs/SiPs are by definition heterogeneous electrical systems, in the sense
that analog and digital components for RF and Base Band (BB) applications
are closely tied together.

To blend such a variety of components in the same electronic package
engineers face new difficulties both in design and verification phases. Signal
and Power integrity need to be carefully addressed in conjunction with noise
levels to address devices constraints. In the context of Analog Mixed Signal
(AMS) validation, analog blocks are still the simulation time bottlenecks.
The main issues are: the huge complexity of the parasitic networks extracted
from components layouts and interconnects, the need of parametric models
for non-linear components for what-if analyses, the need of reduced order
models for devices having huge ports count like Power Delivery Networks
(PDNs) and packages and the lack of low complexity noise complaint syn-
thesis methods for linear macromodels. Although tremendous steps forward
were achieved in the last decades in the areas of system identification and
model order reduction there are still chances for improvement.

In this thesis the state of the art from system identification of Linear Time
Invariant (LTT) systems is revised and improved tailoring the needs of AMS
simulations for SoC/SiP applications: a new system identification algorithm
to cope with linear components having huge dynamical order and ports count
(more than two order of magnitudes) is proposed and passivity constraints
are verified and imposed by means of parallel algorithms. The identifica-
tion of parametric linear models is extended to parameterized small-signal
models for non-linear devices. Finally a low-complexity noise compliant syn-
thesis algorithm is introduced in order to export the macromodels in standard
SPICE-based solvers. The main contributions of this work are: reduction of
simulation time for the verification of modern SoCs/SiPs, introduction of
parameterized small-signal models for non-linear RF components enabling a
simplified assessment of different project scenarios supporting the widespread



Intellectual Property (IP) reuse pattern, optimization and simplification of
the verification flow based on the provision of multi-purpose IP blocks in the
form of noise compliant networks.

We are facing the rise of a new era for consumer electronic, and time-
to-market is a key feature in the development of new products. Therefore
the availability of effective Analog Mixed Signal methodologies becomes a
sustainable competitive advantage for companies that are willing to lead
these new market segments. The novel algorithms proposed in this work
were proved to be of practical relevance in that sense.

Most, part of the material presented in this work is based on a research
activity carried out at the Munich site of Intel Mobile Communication. As a
consequence the methodologies proposed here, arising from practical needs,
were tested on several commercial benchmarks demonstrating the importance
of melting research activities with industries requirements.
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Chapter 1

System on Chip for mobile
applications

Businesses fail either because they leave their customers or because their
customers leave them!|1]
Andrew S. Grove, Intel corporation senior advisor

1.1 History and market perspectives

ISystem on Chip (SoC)| defines a highly integrated design pattern for Inte-
grated Circuits (IC). Sundry levels of integration are grouped by the SoC
definition: starting from a simple chip to memory interconnection up to the
integration of a complete transceive chain for cellphones applications. The
SoC paradigm raised naturally in the last decade to meet the requirements
of a new fast-growing market segment, i.e. the so called mobile market.

Only a few years ago|Personal Computer (PC)|users were always demand-
ing for an increase of the computational power. Central Processing Unit
(CPU) evolution was well predicted by the famous Moore’s law |2] and the
outcome nowadays are very complex devices delivering huge computing ca-
pabilities. The first step towards mobility was the introduction of Laptops.
Thereupon new design constraints appeared: power consumption and form
factor.

Telecommunication systems profited from the electronic evolution as well:
internet and the world wide web increased in usage and popularity, cellphones
evolved delivering a wide range of applications exploiting the potentiality of
a fast growing network infrastructure. The standards for mobile communica-

!Transceiver: device comprising both a transmitter and a receiver which are combined
and share common circuitry or a single housing.
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Figure 1.1: The most common system integration technologies are grouped
in the figure above as a function of form factor and circuit-to-circuit inter-
connect density |3, 4.

tion from the third generation (3G) on pushed toward an optimized usage of
the communication channel in order to allow the transmission of considerable
amounts of data.

In order to combine laptop features with cellphones portability, SiP (Sys-
tem in Package) and SoC are nowadays the integration paradigm for smart-
phones, tablets and phablets. A nice overview of the most common system
integration technologies as a function of form factor and circuit-to-circuit
density |3, 4] is depicted in Figure [Tl Planar integration technologies are
becoming more challenging as transistor channel lengths hit the range 20-30
nm. In order to meet the requirements of the market, 3D stacking techniques
are emerging as a promising workaround to planar integration limitations [3].

1.2 Design challenges

Compared with the design of nowadays classic ICs, Radio Frequency (RF)
SoC design is more involved due to the melt of heterogeneous electronic
systems in a small package [6]. Moreover, for RF and mobile applications,
Analog Mixed Signal (AMS) methodologies are a must since Digital Signal

2System integration is defined as the combination of circuits and Intellectual Property
(IP) blocks on the same die.
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Figure 1.2: Fabrication capital versus test capital based on Semiconductor
Industry Association (STA) and International Technology Roadmap for Semi-
conductors (ITRS), source [@]

Processing (DSP) blocks are in close connection with analog and RF compo-
nents [B] thus increasing the overall design complexity.

The main issues arising in RF SoC applications can be divided in two
macro groups.

1. Die and package: At this level the growth in transistor count and op-
erating frequency has a direct impact on design complexity leading to

e poor manufacturability: as the miniaturization process gets closer
to the theoretical limits of CMOS (Complementary Metal-Oxide-
Semiconductor) technology [@] the design becomes very sensitive
to process variation. This affects the throughput yieldﬁ, reliability
and testability. In 1999 the Semiconductor Industry Association
(STA) proposed an International Technology Roadmap for Semi-
conductors (ITRS) showing how the cost of test is going to surpass
the cost of silicon manufacturing as depicted in Figure As a
consequence there is an increasing interest in automatic testing
methodologies [@] and adaptive design techniques ] to stem
the drawbacks related with process tolerances;

e power consumption: four are the main sources of power dissipation
in CMOS technology ﬂﬁ] Piy,: dynamic switching power due to
the charging and discharging of circuit capacitances. Pj.;: due
to the leakage current from the reverse-biased diodes and sub-
threshold conduction. Pspe: due to the finite signal rise/fall
times. P,.s: static biasing power. Those issues are addressed
by supply power scaling techniques and Low Power (LP) CMOS
technologies [14];

3The definition of Yield in the context of Integrated Circuits is: the ratio of the number
of functional chips to that of the total chips manufacturedﬂg]
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e power delivery issues: low-power consumption constraints trans-
formed the design of Power Delivery Networks (PDNs) into a ver
challenging task in comparison with previous IC technologies
]. Multi-layer packages and grids are common to supply clean
power to the integrated circuits. Two are the figures of merit
for PDNs: the target impedance@ ﬂﬁ] and the voltage IR drop.
Both account for two different phenomena: the static IR voltage
drolﬂ which is introduced by the resistive nature of the PDN con-
ductors, and the inductive di/dt voltage drop which derives from
localized power demand and switching patterns [@] Moreover,
large voltage drops in on-chip PDN due to large di/dt may lead
to Electro-migrationd (EM) that is one of the most critical inter-
connect failure mechanism in ICs [lﬁ] Besides Power Integrity
(PI) considerations, PDN should be also designed to afford dy-
namic power management methodologies meant for power saving
modes driven by the control firmware [ﬂ],

e heat dissipation: the typical range of operating junction temper-
ature for modern VLSI designs is between 80° and 120° on the
silicon substrate ﬂﬁ] Such boundaries are easily exceeded due
to the cumulative power dissipation of the transistors leading to
the generation of extreme amounts of heat in a relatively small
area. High thermal density has a negative impact on circuit per-
formances by increasing the gate delay and shortening the life of
the device. Therefore the packages are carefully designed to re-
move the heat from the IC substrate;

e on-chip crosstalk: this is mainly introduced by the inter-wire cou-
pling capacitance between adjacent signal lines in on-chip buses ]
Both hardware (shielding via grounded conductors or particular
layout fabrics |24]) and coding signal techniques (crosstalk avoid-
ance codes, CACs [@]) are available to cope with this problem;

e noise: the effect of thermal/white noise due to the increase of
temperature becomes always more relevant and needs to be care-
fully addressed. The flicker (1/f) noise is tightly related with the

4The target impedance is calculated from: power supply tolerance, current and switch-
ing activity and has to be satisfied by the PDN from DC to at least the first harmonic of
the clock frequency [17].

SStatic IR Voltage drop: is the reduction of the nominal reference voltage for transistors
due to the transition of current (I) in the resistive (R) power delivery network.

6Electro-migration: flow of metal atoms under the influence of high current densities.
May be the cause for increased resistance and reliability problems [20].
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CMOS technology and becomes relevant only below a specific cor-
ner frequency [13].

2. System and components: considering that portable devices are meant
to support different communication standards like: Bluetooth (IEEE
802.15.1), Wi-Fi (IEEE 802.11), GSM, GPRS, UMTS and many more,
it is sensible that the same transceiver has to be used for all the com-
munications standards to meet the form-factor constraints of a portable
device. As a consequence transceivers and communications systems be-
come more complex due to the advent of new standards and the need
to preserve retro-compatibility leading to

e interconnect delay: for off-chip buses the main bottleneck is rep-
resented by the package. Data rate limits are related with the
quality of the package. Because of that the performance of the
package are crucial for the assessment of Signal and Power In-
tegrity (SI,PI) analysis;

e off-chip crosstalk: this is mainly due to inter-symbol interference
(ISI) and inductive crosstalk [26]. Eye diagram analysis [27] is
usually adopted to study such kind of problems.

Exploiting Silicon On Insulator (SOI) technology [28] the future of IC inte-
gration goes in the direction of 3D stacking [29]. Integration density, power
consumption and form-factor can be effectively addressed by 3D SoC design
methodologies|30] while Through Silicon Via (TSV) and Network on Chip
(NoC) are the emerging interconnect paradigms [31].

All the design challenges and methodologies described in this section are
faced relying on advanced modelling techniques and a well established design
flow. Next sections will outline the state of the art on macromodeling and
design flow for RF SoC.

1.3 Macromodeling and Design flow

Computer Aided Design (CAD) techniques are well established and widespread
in the electronic industries since decades. The introduction of Electronic De-
sign Automation (EDA) dates back to 1980 when it became clear that the
gap advances in engineering productivity (P;) compared with the increase in
silicon complexity (P,) was widening, as depicted in Figure [[L3l This trend,
know as productivity gap [32], became more relevant due to the advent of
SoC designs and stringent time-to-market constraints. The classic design
flow, depicted in a simplified version in Figure [[.4], is no longer effective in
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Figure 1.3: The bordeaux line represents the increase for the number of
transistors per chip as a function of years (P,) while the green line indicates
the advances in engineering (P;), source [32].

coping with the productivity gap in the context of SoC for mobile applica-
tions. The following requirements should be met by an effective SoC design
flow:

e rapid development to satisfy time-to-market pressures;

e quality of results: performance, form-factor and power consumption;
e simple verification of complex chips;

e simple to use for teams with different levels and areas of expertise.

To satisfy the constraints listed above modern design flows are heavily re-
lying on the concept of IP (Intellectual Property) reuse ﬂﬁ] each step in
the design flow depicted in Figure is now enhanced and supported by
well established TP blocks. In a similar fashion to the code reuse pattern
widely used in Information Technology applications, the main idea behind
the IP reuse strategy relies upon the construction of a library of components
(generally called TP blocks or macros) to be used in several different projects.
More details on this topic are provided in the next section.

Together with IP reuse, as ICs and design flows become more involved,
macromodels and related tools must improve and accomplish new features.
A macromodel is a high-level mathematical description of the system under
analysis that accurately represents its behaviour. The prefix macro empha-
sizes that only the input/output response is described, while no information
is retained on the internal structure of the physical system. Besides the typi-
cal requirements of accuracy, numerical robustness, physical consistency and
efficiency, a few new constraints must be taken into account for macromodels



CHAPTER 1. SYSTEM ON CHIP FOR MOBILE APPLICATIONS 7

Specifications and CMOS
Standards technology
—:. ll..

)
Lte €)Bluetooth

=T

.f' L] A 1
it :
I‘F‘ G ol’@ Ty

1 o1
e 1§y oo !
00 0 0y Tape out Products
Concept Model Validation

Figure 1.4: The mains steps involved in the design flow of mobile devices
are sketched. Starting from specifications and standards the concept of the
device is built. A model prototype is created using a peculiar technology in a
CAD environment. Several EDA software are used in the pre-tape-out phase
to address: functional specifications, manufacturability and physical consis-
tency of the prototype model. In the tape-out phase functional specifications
are checked on physical designs. In case of issues the model prototype is used
as a test bench. Of course, to reduce production costs, the minimum number
of tape-outs should be used to meet all the specifications.

e parameterization: in order to speed up what-if analysis and optimiza-
tion procedures macromodels should admit some of the most common
design parameters (temperature, V;; and geometry) as input variables.
With such a feature there is no need to build a new macromodel in case
of variations of design parameters;

e usability: macromodels should be available in a standard format, like
Spice netlist or HDL (Hardware Descrition Language). The same model
must be effective for different type of analyses (time/frequency domain,
noise). Inputs, parameters and options must enclose a simple and clear
description together with applicability bounds. Thereby independently
of user’s expertise the model can be used effectively, in a short time
and in several different contexts;

e scalability: it is well known that SoCs complexity, intended as dy-
namical order and elements/interconnections count, grows really fast
with time. Modelling techniques must cope with this trend, providing
accurate models with low complexity in a short time.

Design complexity and productivity gap will further increase with the advent
of 3D integration technologies; therefore the availability of accurate models
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providing low complexity is the corner stone for a modern design flow in-
tended to meet tight time-to-market constraints. Macromodels associated to
the sub-blocks of a complex system can be combined to mimic the behaviour
of the whole system leading to a tremendous simplification in the analysis
of complex devices. In the following sections the main features of IP reuse
and how to deliver adequate macromodels for this new design paradigm is
discussed.

1.3.1 1IP reuse

Design techniques based on IP reuse were born in the beginning of the 1990’s
[33]. Two major events are considered as the starting points for the IP reuse
diffusion:

e Establishment of the Virtual Socket Interface Alliance (VSIA): in 1996
this cross-industry organization, focused on IP reuse for SoC design,
was founded to help foster this new design pattern by combining the

skills and knowledge of semiconductor companies, system companies
and EDA industry;

e Register Transfer Level (RTL) IP reuse: in 1997 teams from Mentor
Graphics and Synopsis proposed the so called Reuse Methodology for
soft IP. The dictates of this design pattern are collected in the widely
known Reuse Methodology Manual [34].

The core idea behind IP-oriented SoC design relies upon the availability
of reusable TP blocks that support plug-and-play integration in a pre-defined
flow. As such IP blocks are the highest level building blocks of an SoC, they
are collected in libraries with various timing, area and power configurations
providing to designers simple to use [P macros.

The form of a reusable IP core can vary depending on the IP devel-
oper/vendor; as a high level classification, three are the following main cat-
egories of IP blocks [34]:

e soft IP: blocks defined using RTL or higher level descriptions. They are
typically used for digital cores relying on a process-independent, hard-
ware description language (HDL) that can be synthesized to gate level.
Advantages: flexibility, portability and reusability; while the drawbacks
are: lack of timing and power characteristics because performances are
tightly related with the technology used to synthesize the HDL. Those
macros can be encrypted to hide IP details and prevent the introduc-
tion of unreliable features; as a drawback encrypted blocks can not be
adapted to fit new design scenarios;
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Figure 1.5: The selection of the most suitable form to deliver and IP block
should take into account the trade-off depicted in this plot [@]

e hard IP: usually defined by means of faithful layouts tailored for a
specific application based on a given technology. For those blocks,
performances are predictable but the consequent drawback is the lack
of portability;

e firm IP: in the middle between hard and soft blocks, firm IP is delivered
as parametrized analog circuit meant to be tailored by designers for a
specific application. Block’s features can be trimmed leveraging on the
available parameters while retaining predictable performances.

As a consequence, selecting the most suited IP form for each block is of
paramount importance in order to build an effective and reliable design flow
for SoC applications. To drive such an important decision, the plot depicted
in Figure is suggested as a reference map in @]

When the IP reuse strategy is applied to the AMS design for RF SoC, one
problem arises @], i.e. the selection of the IP form most suited for an AMS
block. Compared to digital design, for which a common design methodology
is available [@], AMS design usually relies on specific design process. This
issue can be addressed using an effective mixed-signal SoC flow [@, @] based
on the AMS IP blocks in , 41, l42].

Currently, due to the complexity of AMS designs, the soft and hard IP
forms are used for analog-mixed signal applications “E, @, ] Of course,
this choice restricts the scope of applications reducing the overall SoC de-
sign flow efficiency [@] The migration of hard AMS IP blocks to the firm
form calls for new features on the macromodels used to derive netlists and
schematics. Indeed, as stated in Section [[.3] parametrizability and scala-
bility are the new features required on the macromodel side. Moreover, in



CHAPTER 1. SYSTEM ON CHIP FOR MOBILE APPLICATIONS 10

order to provide a high level of usability for such models (consequently for
the firm AMS IP blocks) a clear and simple taxonomy is needed; next section
introduces such a classification for macromodels.

1.3.2 Macromodels taxonomy

A simple and clear taxonomy for macromodels is needed in order to meet
the usability constraints imposed by the IP reuse paradigm detailed in Sec-
tion [L3Jl Considering that the main bottleneck in the design of analog-
mixed-signal components is represented by the analog blocks, two will be the
main criteria behind the proposed taxonomy: all the components are analog
(indeed also digital blocks are synthesized via analog elements), and their
level of non-linearity is the base for classification. As a consequence of this
coarse classification the proposed taxonomy is “orthogonal” to fine technolog-
ical details attaining the degree of portability required by IP blocks meant
to the firm IP form.

In the following for each level of classification the state of the art on
macromodeling and system identification will be briefly outlined together
with a list of AMS components belonging to each level of the proposed tax-
onomy.

Linear Time Invariant (LTT) systems

There are several components that can be accurately modelled as Linear
Time Invariant systems: packages [43|, buses and interconnects [44], Printed
Circuit Boards (PCB) [45], Power Distribution Networks (PDNs) [46] and
Through Silicon Via (TSV) for 3D SoC [47]. The construction of LTT models
for those components is usually based on the work flow depicted in Figure
from [43]: Scattering parameters are extracted from the layout or 3D model
of the component under analysis using a full wave solver. Thus the LTI
model can be extracted using the time or frequency raw data leading to a
state-space 48] or descriptor representation. Several well assessed techniques
are available to construct LTI models from tabulated data:

e Nevanlinna-Pick interpolation [49, 50] is a well known result of com-
plex analysis. Two matrix versions exist for this problem: the ma-
trix Nevanlinna-Pick problem [51] and the tangential Nevanlinna-Pick
problem [52]. This method was adopted for the first time in the system
identification context by [53] and more recent application can be found
in [54]. A comprehensive description of the Nevanlinna-Pick problem,
its extensions and variations can be found in [55]. Despite this method
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Figure 1.6: The typical work flow used for the creation of LTI models from
packages, PCB, TSV and related components is presented. Starting from the
layout or the 3D model a full wave solver is applied in order to extract the
Scattering parameters. From S-parameters the LTI model is identified via
the standard techniques summarized in Section [[.3.2l Once the LTI model is
available it can be synthesized as a Spice network and the results from Spice
are validated with the results from the 3D full wave solver, source ]
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is theoretically attractive it is seldom used in practice due to compu-
tational complexity and numerical stability reasons;

e Lowner interpolation dates back to the work of Lowner for the interpo-
lation of given data on a full arc of the unit circle in the complex plane
[56]. It was introduced in the context of control theory and system
identification by Kalman and Belevitch [57]. More recent applications
of this method can be found in [58, 59];

e The Sanathanan-Koerner iteration was originally proposed in [60] and
it is based on the complex curve fitting proposed by Levy in [61]. This
is a general strategy to recast a non-linear interpolation problem to
the solution of a sequence of linear overdetermined systems. The most
popular evolution of the Sanathanan-Koerner iteration is the Vector
Fitting (VF) algorithm |62, 63]. Nowadays this is the de facto standard
for the identification of linear systems in the EDA context. Despite
VF has no guarantees of convergence when dealing with noisy data
[64], it offers the best trade-off between computational complexity and
robustness [65]. As a consequence the Sanathanan-Koerner iteration
and VF are used in this work and are presented in more details in
Section 2.2}

e Padé approximation, originally proposed by the mathematician Henri
Padé [66], addresses the best approximation of a function under a spe-
cific norm by a rational function of a given order. It was introduced
in control theory to model exponential delays [67]. Recent applications
can be found in system identification literature [68]. This method was
quite popular before the introduction of VF and can be still considered
a good alternative to the Sanathanan-Koerner iteration for low-order
systems [69, [70];

e subspace methods |71] are all composed by three steps: estimation of
the predictable subspace from raw data, extraction of the state vari-
able from the predictable subspace and fitting the estimated states to a
state space model. Several algorithms are available both for continuous
[72] and discrete [73] time models identification. Those techniques are
numerically stable and efficient [74]. The lack of a priori physical prop-
erties impositions, like stability and passivity, prevents the systematic
application of those methods on analog circuits.

It is worth noting that the techniques listed above are meant for electronic
devices whose behaviour can be effectively approximated via lumped element
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networks, i.e. the propagation delay of the signal can be neglected, otherwise
different techniques should be used, like |75, [76].

Parameterized LTI (P-LTI) systems

Although LTI models are helpful and their usage is widespread, the main
drawback of the LTI approach lies in the lack of flexibility. Indeed several
components like: PCBs, interconnects, packages, RF inductors and TSVs
are designed and tested considering different geometrical configurations and
working temperatures. As a consequence, a considerable effort was spent in
the last years to extend the identification algorithms introduced in Section
to obtain Parameterized-LTI models:

e parameterized Nevanlinna-Pick interpolation was first proposed in [77]
but found only few applications in robust control applications |78];

e parameterized Lowner interpolation was introduced by |79]|. Due to the
major memory consumption this method is not used in practice;

e parameterized Sanathanan-Koerner (SK) iteration was first proposed
by Triverio in [80] and then extended by the same author to account
for stability [81] and passivity [82]. In a similar fashion VF was used
by Ferranti for the P-LTT identification [83] and then with passivity
constraints [84]. Currently those are the most diffused techniques for
the identification of P-L'TT models. Some applications and advances
are presented in Section B.2

e parameterized Padé approximation can be found in [85]. Being a com-
petitive alternative to VF and SK iteration it found several applications
86, 817];

e parameterized subspace methods were addressed recently [88]. Those
methods suffer from a curse of dimensionality leading to an ill-posed
parameter estimation problem; a recent attempt to overcome such a
limitation can be found in [89].

Despite the theoretical effort, up to now none of the techniques listed above
for the identification of P-LTT systems has the robustness and the efficiency
to become part of a user-friendly EDA tool.

Small-Signal P-LTI

Using a proper Direct Current (DC) correction strategy [90], presented in
Section B.J] P-LTT models can be also applied to mimic the behaviour of
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non-linear devices that behave almost linearly in the neighbourhood of one
equilibrium poimﬁ. This is a common scenario in RF applications, indeed
components like: Low Dropout (LDO) regulators, Operational Amplifiers
(Op Amp), Low Noise Amplifiers (LNA), buffers and active filters are de-
signed to behave almost linearly under specific working conditions. In the
context of RF applications, linear behaviour means that the device does not
generate spurious harmonics or that the spurious harmonics are strongly at-
tenuated and thus negligible. For AMS high integration technologies, like
in SoC and SiP, the suppression of spurious harmonics is relevant to control
coupling noise and undesired mixing effects.

Piecewise linear P-LTI

The P-LTI method can be extended to model strong non-linear devices like
drivers, mixers and Phase-Locked-Loops (PLLs) using a piecewise linear in-
terconnection of P-L'TT models. The first work dealing with piece wise linear
(PWL) networks dates back to Stern in 1956 [92]. A more rigorous study on
PWL models for non-linear devices is due to Chua [93], while several PWL
techniques are compared in [94]. The idea to use state-space models with
PWL states is quite recent and found several applications for the modelling
of non-linear devices [87]. In the context of AMS circuits PWL techniques can
be found in: formal verification of analog circuits [95], behavioural modelling
of nonlinear power amplifiers [96] and mixed-signal circuits [97].

1.4 Proposed advances

Despite the research effort spent in the development of EDA tools and al-
gorithms, design and verification of AMS SoC is still an open issue, which
costs to mobile communications companies huge resources [32]. Therefore
the main objective of this doctoral work consists in the development of new
methodologies to cope with the challenges posed by SoC integration high-
lighted in Section [[L2. The proposed solutions, while advancing the state of
the art for macromodeling of electronic devices, arise from industrial con-
straints and real design test cases, providing an immediate contribution to
practical needs.

Chapter 2] deals with the identification of linear macromodels belonging
to the LTI taxonomy class presented in Section [[L3.2l State-space models

"In this work by equilibrium or fixed point the Lyapunov definition of local stability is
considered [91].
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representation and basic identification tools are summarized in Section 2.1]
and The main contributions of Chapter [2] are:

e a compressed macromodeling algorithm is introduced in Section to
overcome the limitations of VF when dealing with components having
huge ports count, from tens to hundreds. As discussed in Section [[.2]
at system level the main bottleneck for interconnections is represented
by the package, while at chip level 3D technologies like TSV and NoC
are meant to increase the connectivity. The original version of VF ﬂﬁ]
and also the more recent advances like @, @] are not suited to address
such devices because of the excessive memory consumption or due to
ill-conditioning. The proposed compressed macromodeling algorithm
overcomes those issues relying on a clever reduction of the data set used
for the identification of the model. Accuracy and physical properties
like causality and passivity can be imposed directly on the compressed
macromodel, as presented in Section 2.3.4] leading to a tremendous
speedup on the overall identification procedure (see Section 244 in
comparison with state of the art techniques |;

e a parallel algorithm to verify the passivity of linear macromodels is
introduced in Section Since the most common algorithms for sys-
tem identification (VF and SK) do not guarantee the generation of
passive models, passivity needs to be addressed independently M]
Moreover, passivity characterization is of course the first step for the
passivity enforcement [@], and needs to be repeated several times.
Several algorithms are available for the passivity characterization [@,
]. Some of them are already available for parallel architectures
[M] The algorithm proposed in Section is an efficient parallel
implementation of |;

Chapter Bldiscusses the identification of parameterized LTI (P-LTI) mod-
els. The availability of parameterized models is the cornerstone for the devel-
opment of a modern and effective design and verification flow. Considering
that several methodologies for the identification of P-LTT models are available
as discussed in Section [[L.3.2], the main contributions of Chapter [3] are

e a Direct Current (DC) correction strategy for small-signal models of
non-linear circuits, presented in Section 3.l This simple but effective
idea is the link between linear and small-signal models for non-linear
devices. RF devices like LDO and OpAmp are designed to behave al-
most linearly under appropriate biasing. The so called small-signal LTI
models of those devices are accurate around a specified operating point
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but fail to reproduce the DC response of the real non-linear device.
The proposed DC correction can be used to overcome this issue;

e parameterized small-signal models are proposed in Section 3.2l Ac-
cording to the taxonomy proposed in Section models are sorted
depending on the level of non-linearity. The combination of P-LTTI
models with a parameterized DC correction strategy makes it possible
to model fairly non-linear devices using a smooth combination of linear
models parameterized by the operating point. The effectiveness of this
strategy is demonstrated in Section 3.3 by analysing some test cases of
practical relevance.

Chapter M presents the synthesis of State-Space models as linear lumped net-
works. As already noted in Section [L3.1] the first step for the migration of
AMS TP blocks towards the IP firm description relies on the availability of
flexible and efficient implementations of the macromodels. Therefore canoni-
cal synthesi algorithm in Spice compatible format are described. The main
contributions of Chapter (] are:

e modern presentation of canonical synthesis methods for static and dy-
namic networks discussed in Section and [L3l For each synthesis
method: complexity of the network and practical relevance are de-
tailed. In particular: stability, accuracy and noise analysis compliance
are considered. Statical network synthesis techniques are considered in
their own because of practical relevance for connectivity, static IR drop

| and power distribution analysis;

e a new synthesis method for dynamic networks, based on Darlington
resistance extraction framework, is presented in Section 3.4l Each
step of this new algorithm is described focusing on numerical robustness
and noise compliance of the resulting Spice netlist.

Finally, conclusions are summarized in the last Chapter, highlighting both
theoretical and practical relevance of results and methodologies discussed in
this work.

8 As explained in Chapter[d] a network synthesis is defined as canonical when it requires
the theoretical minimum number of primitive network elements.



Chapter 2

Linear Time Invariant
macromodels

Macromodeling techniques have become a standard practice in system design
and verification flows. Such methods allow to convert external characteriza-
tions of linear and time-invariant structures such as passive devices and elec-
trical interconnects into compact closed-form mathematical expressions or
circuit equivalents. This conversion is needed to allow system-level transient
simulations and verifications starting from a native characterization that is
typically available in the frequency domain in form of tabulated scattering
responses, the latter being determined from direct measurements or full-wave
numerical solutions.

This Chapter introduces some advances to the state of the art of Linear
Time Invariants (LTT) macromodeling techniques. The necessary background
on state-space models and system identification is discussed in Section 2.1],
while two of the most popular algorithms for linear systems identification
are described in Section 2.2] i.e. the Sanathanan-Koerner iteration and Vec-
tor Fitting. Extensions and improvements for those identification methods
are the main contributions of this Chapter. In Section 2.3} the Compressed
macromodeling algorithm is introduced as a clever system identification pro-
cedure based on Vector Fitting for systems having a large port count. In
Section 2.5 a highly efficient parallel passivity verification method is pre-
sented.

2.1 State-space macromodels

The state-space representation was introduced in control engineering and
circuit theory by Bashkow [48] and nowadays is the most common descrip-

17
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tion for dynamical systems. State-space equations constitute a mathematical
model of the physical system under analysis as a set of input, output and
internal state variables related by coupled first-order differential equations.
Dealing with linear time-invariant systems the associated state-space equa-
tions read

z(t) = Az(t) + Bu(t), (2.1)
y(t) = Cx(t) + Du(t). (2.2)

with A RN, B € RV*P C € RPN and D € RP*? constant [mafrices
Inputs are collected in [vector] w, outputs in vector y while the internal states
are in vector . Two features are of paramount importance for a state-space
system

e observability: defined as the ability to always reconstruct the initial
state (0) observing the outputs of the system for ¢ > 0 provided that
also the input evolution is known for ¢ > 0;

e controllability: defined as the possibility to always design an input
sequence that steers the system to a desired final state.

Both conditions are guaranteed when the model (Z1])-(22) has minimal dy-
namic order, defined as the McMillan degree of the system [107]. If the
state-space is not minimal, it can be converted to a minimal one by means
of standard techniques [108].

Taking now the Laplace transform of (2.I)) and (2.2) and assuming z(0) =
0, it follows

sX(s) = AX(s) + BU(s), (2.3)
Y (s) = CX(s)+DU(s), (2.4)

which leads to the transfer function matrix relating U(s) and Y (s)
H(s) =D+ C(sI - A)"'B. (2.5)

The transfer function (23]) is rational. In case of poles (eigenvalues of A)
with unit multiplicity, H(s) can also be written in the so called pole-residue
form, i.e.

H(s) =D+ ) Rx (2.6)

)
_ls_pn

where p,, are the simple poles, R,, are the associated residue matrices, and D
is the direct coupling term. Please note that the three descriptions (2.))-(2.5)
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Figure 2.1: Incident a; and reflected b; power waves for a two-port network.

and (2.6]) associated to the minimal state-space (2]) system are equivalent
to each other and one is preferred to the others depending on the application
context.

The identification work flow described in Section [[L3] (Figure [[L4]) heavily
relies on the availability of accurate models in the form of (2I]). Such mod-
els can be converted to linear lumped networks to be solved using SPICE
based solvers using the synthesis techniques discussed in Chapter @ In or-
der to extract accurate state-space models using the raw data obtained from
measurement or full-wave solvers an identification algorithm must be used.
In the following the raw data used for the identification are supposed to be
Scattering (S)-parameters [L09]. Recall that the S-parameters for a 2-port
(the extension to P-port is straightforward) linear time-invariant network, as
depicted in Figure 2.1l are defined as

by S Siz| (@

[bz] {521 522] {CLJ @ ( )
where Zj is a prescribed real reference impedance and the travelling waves
a; and b; are defined as

o tah o Vot Zoly (2.8)

Y oZ, T Z '
Vi — Zol Vo — Zol

by = 201y, o 22T S0 (2.9)

AV AV
The main constraint common to all identification procedures consists in the
minimization of the difference between the linear identified model response
and the reference raw data-set. Working with S-parameters (27) the raw
data for an LTI network is composed of matrices S; = S(s;) € R"*P, with
[ =1,...,L number of discrete frequency samples s; = jw;. In this context

the identification problem can be formulated as: find a state-space model
S(s) such that

min » _[|S(s;) — S| (2.10)
l
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for a given norm.

Among all the identification algorithms, listed in Section of Chap-
ter [ for the extraction of accurate state-space models starting from raw
data the two most used in practice are the Sanathanan-Koerner iteration
and the Vector Fitting procedure. Those two methods are presented in the
following section.

2.2 Sanathanan-Koerner and Vector Fitting

The minimization constraint (ZI0) associated to the identification problem
was addressed by Sanathanan and Koerner in [60], the resulting Sanathanan-
Koerner (SK) Iteration is briefly summarized in this section together with
his most popular extension, i.e. the Vector Fitting (VF) algorithm [62].
The identification of a scalar transfer function h(s) is considered, instead
of the matrix case (ZI0), in order to simplify and focus the presentation on
the algorithm. The extension to multi-port devices is straightforward [60]. In
the basic SK Tteration framework a set of frequency-domain samples (s;, ;)

for l =1,..., L is used to identify a rational model of the form
n(s;x) ag + ais + -+ ay,s™
his a) — _ 2.11
(s;2) d(s;x)  bo+bis+ -+ b,_1s" 1457 (2.11)

where n(s;x) and d(s; x) are respectively numerator and denominator poly-
nomials of degree m and n. The unknown coefficients are collected in the
vector

x = (ag,a1,...,0m, by, b1, ... 0y 1)". (2.12)

The general identification problem requires to find coefficients & which min-
imize in some norm the residual error 7(x), whose components are

n(s;; x)

Tl(ID) = h,l — d(sl;w) .

(2.13)

To avoid the solution of a non-linear interpolation problem the strategy pro-
posed by Levy in [61] can be used, i.e. instead of minimizing the non-linear
residual (2.13)), the following modified residual is minimised

el(x) = d(s;; x)r(x) = d(s;;2)hy — n(s;; x) (2.14)
by solving the linear least square problem

Fr~g (2.15)
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where g, = hys?', F = (Vi —HV,) with H = diag(h;), i = 1,..., L and
V,, Vandermonde matrix [110]

1 sy s2 ... s
1 sy 82 ... s§

v,= | (2.16)
1 sp s2 ... s%

based on the available frequency points s; with n 4+ 1 columns. Minimizing
lle(x)]| or ||r(x)]| is not equivalent due to the weight d(s;; ), therefore the SK
iteration |60| tries to overcome this limitation using an iteration-dependent
residual, defined as

d(s;;a,)hy — n(s;x,)
d(si; Ty-1)

ri () = (2.17)

where the normalization weight d(s;; @, _1) is known from the previous itera-
tion v — 1. The iteration-dependent vector x, which minimizes the iteration-
dependent residual (ZI7) can be found solving the overdetermined linear
system

M,_Fz, ~M,_ig (2.18)

where M,_; = diag(m\" ") with i = 1,...,L and m{" " = d"(s;; 1)
In case of convergence, as ¥ — oo the minimization of ([2.I7) is equiva-
lent to minimizing (2.13). In practice some numerical issues arise: it is
well known that Vandermonde matrices and their compositions are very ill-
conditioned |111]|, moreover raw input data can be affected by noise thus
making the identification problem more difficult.

In order to avoid those issues a general basis expansion can be used for
the numerator and denominator in (2.I1)), i.e.

m

w2700

h(s;x) = == (2.19)
;djcbj(s)

with « collecting the unknown coefficients c;,d; leading to the so-called
Generalized-SK iteration [112]. A typical choice is to use partial fraction
basis functions associated to a set of prescribed poles ¢;,j =1,...,n, i.e.

1

)
S—Qj

do(s) =1, and ¢;(s) = j=1,...,n. (2.20)
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Substituting ([2.:20) into (2.19) leads to

co + Z Sijq.

== (2.21)
d;

1 +]§1 prs

n(s;x

- d(s;x)

h(s;x)

which is equivalent to the model in (2.I1)). Indeed supposing that ¢;, d; and
the basis poles ¢; are known, (2.2I]) can be converted in a standard rational
form with the zeros of the numerator z;, and the zeros of the denominator
p; such that

=
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where it is clear that the poles ¢; cancel out being common to both numer-
ator and denominator. The GSK iteration is thus obtained by replacing the
monomials s} in (ZI6) with ¢;(s;).

A simple update on the basis poles and functions of each iteration leads
to the VF algorithm: starting from an arbitrary guess of the model poles
used to define the basis functions (2.20)), the non-linear problem (2.I3) is
solved using one GSK; then the initial basis poles are improved by using,
at the second iteration, the set p; defined in (222) to construct the partial
fraction basis functions. The process is then iterated until convergence. A
more detailed description of VF algorithm can be found in Appendix [B] or
in [62]. No more details are provided here since in the following VF is used as
an identification engine, the main focus will be in preprocessing of the data
and post-processing of the model.

One drawback of VF appears when dealing with devices with large ports
counts like TSV, packages and PDNs. Since the complexity of VF in the
most advanced formulation [98] scales as O (P?LN?) per iteration, the iden-
tification of devices having more than one hundred ports (P) and requir-
ing several frequency samples (L) for an accurate characterization will run
out-of-memory on commodity hardware, and will take a long time on high
performance servers. Therefore a clever reformulation of the identification
problem aimed at reducing the impact of ports (P) count and number of sam-
ples (L) on the overall complexity of [Vector Fitting (VF)|is of great interest.
Next section introduces an innovative technique, the so called compressed
macromodeling. This new methodology allows to perform the identification




CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 23

of large ports count devices, accurately sampled in frequency, on commodity
hardware (laptop) and in a short time compared to standard identification
procedures.

2.3 Compressed macromodeling

In this Section an approach for improving the efficiency of rational fitting and
passivity enforcement for medium and large-scale structures is presented.
Problems characterized by possibly hundreds of ports and requiring thou-
sands of internal states for their models are addressed. Requirements for
problems of such complexity arise, as discussed in Section [[.2] in power bus
modeling and optimization, chip-package co-design, TSV and NoC intercon-
nects for 3D packages and mixed-signal system design.

The basic idea behind the proposed strategy can be easily understood
considering a generic P-port electrical interconnect structure characterized
through tabulated scattering frequency samples S; € CP*F at frequencies wy,
with [ = 1,..., L. This raw data is usually available from field simulations or
direct measurements. The VF algorithm from Section is routinely used
to fit these data samples with a rational model

N
R,
S(s) = S°°+Zs—p , (2.23)
n=1 n

where p,, are the poles of the macromodel, R,, are the associated residue ma-
trices, and S is the direct coupling term. Standard formulations of the VF
algorithm [62] minimize the global model error (2.I0) through an iterative
sequence of linear least squares solutions. Since the compression strategy
presented here is complementary to the VF implementation, a detailed de-
scription of VF algorithm is not reported here, more details can be found
in Appendix [Bl or [62].

The main idea of the compression scheme is presented through an exam-
ple. Figure[2.2]depicts several scattering responses of a high-speed connector.
As it can be seen the various responses that are depicted look very similar,
with only marginal differences. Of course, these differences may be impor-
tant, so they should be preserved in the final macromodel. However, it is
conceivable that all these responses can be represented as a linear superposi-
tion of selected “representative” responses or, more formally, “basis functions”.
Therefore expansions of the form

p
Si(s) = 3 aliwy(s), (2.24)
q=1
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Figure 2.2: Various scattering responses of a high-speed connector (top
curves: reflection coefficients, bottom curves: crosstalks).

with constant coefficients agi’j) and frequency-dependent “basis functions”
wy(s), are suited for a clever reduction of the dataset. It is clear that if
the number of required basis functions w,(s) is much smaller than the total
number of responses, p < P2, it is possible to achieve a significant computa-
tional cost reduction by applying VF to the few functions w,(s), rather than
to the complete set of P? raw scattering responses. This idea is developed
in the following Subsection 2.31] relying on the well known Singular Values
Decomposition |-

2.3.1 SVD-based compression

Consider the set of raw scattering samples S;, VI. For each selected frequency
wy, all elements of the scattering matrix are stacked into a single row-vector
x; € C, constructed as @, = vec(S;)”. The vec() operator stacks all
columns of its matrix element into a single column vector. More precisely,
element (S;);; with 1 < 4,5 < P corresponds to element (x;);, for 1 < k < P?
through

k =i+ (—-1)P

i =1+mod(k—1,P) (2.25)

j = 1[k/P]
where mod(a,b) returns the remainder of the integer division a/b and [c]
is the ceil operator that returns the smallest integer not less than c¢. The
mapping (7, j) <> k in (2Z.25]) will be used consistently during the presentation.
All the vectors x; corresponding to different frequencies w; are now collected
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. . 2 .
as Tows in a matrix X € C*P7 j.e.

X=": : t |l =z - zpz|. (2.26)
— x, — o

Each row @; of this matrix corresponds to a single frequency w;, while
each column z; collects all frequency samples of a single scattering response
(21)1 = Sij(gwr).

Assume that the P? scattering responses can be represented as an ap-
proximate sum of few basis functions. This implies that the column span of
matrix X can be safely approximated by projection onto a subspace W hav-
ing a dimension p < P2. Several alternatives are available for constructing
this subspace. In this work, the Singular Value Decomposition (SVD) is used
since it provides a full control over the approximation error [113].

A direct application of SVD to matrix X leads to

~~~H ~—~0
X=USV =WV (2.27)

where U and V are complex unitary matrices collecting the left and right
singular vectors and X collects the sorted real and positive singular values
04 on its main diagonal. Matrix W = UX is orthogonal with each column
w, scaled by the corresponding singular value, ||w,|| = 7,. The k-th column
of X is thus represented, using (2.27]), as

Zp =Y U,y (2.28)
q

This expression is exact, with no approximation error, if all singular val-
ues/vectors are considered in the expansion. Each sampled scattering re-
sponse is thus represented as a superposition of “basis vectors” w,, whose
norm decreases uniformly with increasing q.

The coefficients vy, are complex-valued constants. Since a real expansion
coefficient is needed in order to guarantee the causality and the realness
of each element in the expansion (2.24]), the SVD is slightly modified by
splitting real and imaginary parts X = X’ + jX” where X', X" € REXP* or
equivalently

X//
where Iy, is the identity matrix of size L. Then, a truncated SVD decompo-

sition is performed, based on the optimized implementation for large matri-
ces [114], where only the first p singular values are retained

X =1, j1] {X,} (2.29)

/
Bg,,} — UV~ USV’, (2.30)
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where U € R2L%¢| 33 € RP*?, V € R with p < r = min{2L, P?}, and V
is orthonormal, Viv=l Defining now

W=[I, jI,]UZ (2.31)
leads the low-rank approximation
(2.32)
Equivalently,

p
z) kaqﬂjq, (2.33)
q=1

which is similar to (2.28) but has guaranteed real coefficients vy,. The g-
th column w, € C! of W, collects all frequency samples that define the
g-th basis function. Sharp bounds, in different norms, can be provided for
the error between the original matrix X collecting all scattering data and its
low-rank approximation X. Using the spectral norm, defined in Appendix [A]
leads to

&= X=X, = |1 su] [UsV" - usv]|

<1 m],||osv" - usv?

2

< V20,41, (2.34)

where the last row follows from standard properties of the SVD decomposi-
tion. It follows that the accuracy of the approximation is fully controlled by
the first neglected singular value o,;. Using the Frobenius norm the error
bound becomes

Er=|X-X|,< V2L Z o2, (2.35)

n=p+1

in terms of the cumulative energy of the neglected singular values in (2.30).
The accuracy of the proposed compression strategy is demonstrated in Fig-
ure 2.3t The top panel depicts two scattering responses of the same connector
already considered in Figure 2.2] together with the corresponding low-rank
approximation. The difference is hardly visible; while the bottom panel re-
ports the first three basis vectors w, in the corresponding expansion (2.33)).

2.3.2 Fitting the basis functions

Once expansion (233) is available, a rational approximation of each basis
vector w, is performed. Consider a row-vector of scalar functions of frequency

w(s) = (wi(s) wals) ... wy(s)), (2.36)
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Figure 2.3: Top: raw scattering responses of a high-speed connector before
compression (red dashed line), its compressed (p = 30) approximation (blue
dashed line), and its low-rank rational approximation computed by VF (black
line). Bottom: first three vectors w, (blue dashed lines) in expansion (2.33))
and corresponding VF approximation (black line).
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with each element assumed in rational form

Ny
U}q(S) = wq,oo + Z ﬁ . (237)
n=1 n

The unknown poles p,,, residues r,,, and direct coupling constants w, , are
computed by applying a standard VF run. Since only p independent re-
sponses are concurrently fitted instead ot P2, it is expected that the runtime
of the VF process is drastically reduced. This is indeed the case, as it is shown
in Section 2.3.3l Note that a set of common poles p,, for all basis functions
is used in w(s), since these will be used to reconstruct the original scatter-
ing matrix through (2.33)), thus obtaining a global rational macromodel in
form (2.23)).

A successful fitting process with stable poles is guaranteed by the realness
of the expansion coefficients in (Z.33)). In fact, post-multiplying (Z.32) by V,
since V'V = I, it follows

P2
w, ~ kaqzk, (2.38)
k=1

which shows that each basis vector can be represented as a linear combination
of the raw scattering responses with real coefficients. This is sufficient to
conclude that if the original responses are causal, each of the basis functions
will be causal. Therefore, the rational approximation (2.37)) is guaranteed to
have stable poles p,, see [115].

A state-space realization can be constructed from (2.37) using standard
techniques. For later convenience, this realization is constructed for the trans-
pose system, which has a Single-Input Multiple-Output structure, as

w(s)” o (‘é—z%) (2.39)

with A, € RNe>XNe B ¢ RMx1 C, € R>Ne D, € RP*!. A reshaped
global rational macromodel is defined according to the expansion (2.32]), as

XT(s) = Vw(s) =

. _ 2.40
= VD, + VC,(sly, — A,) 'B,, (2.40)

where X7 (s) is a column vector of P? rational responses. Finally, a global
rational macromodel for the original scattering representation is obtained
with a simple reshape operation

S(s) = mat(X*(s)), (2.41)
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where the mat(-) operator reconstructs a P x P matrix starting from the
corresponding P? x 1 vector vec(S). Tt is easy to show that a state-space
realization of S(s) can be obtained as

ﬂﬁ%(%%%) (2.42)

with
A =Ipr®A,, B =I»®B,, (2.43)
C =vY(Ip®C,), D =¥(Ip®D,), '
where ® denotes the Kronecker matrix product [116] and
U= (V,Vy V) (2.44)
with V; € RP*? collecting the P rows {j(P — 1)+ 1,...,jP} of matrix V
£
V=]: (2.45)
Vp

In (243)) the size of the various matrices is A € R¥V*Y B € R¥*P C ¢
RPN D € RP*P where N = N, P denotes the global dynamic order of the
realization. The transfer matrix of the compressed macromodel associated

to (243) reads
S(s) =C(sI—A)"'B+D. (2.46)

Once the rational approximation (2:37)) is available, w(s) is evaluated at each
raw frequency point w; and the results are collected as rows in matrix W &€
CE*?, which in turn is used to reconstruct the samples of the global rational

macromodel, collected in matrix X = WV”. Due to the orthonormality of
the columns of V it follows

HX—XH :Hv‘va_vAvaH :HW—V/\?H . (2.47)
2 2 2

This implies that the construction of a global rational model starting from
the rational basis functions is well-behaved, since it results in a fitting error
that is identical to the fitting error achieved in the construction of the low-
rank system w(s). The global approximation error between raw scattering
samples and global rational macromodel can thus be characterized as

Oy = HX—}A(H2 < HX_XHQJFHX_XHQ (2.48)
< V20,41 + HW B WHz’ |

where the individual contributions of SVD truncation and VF approximation
are explicit.
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Table 2.1: Benchmark structures: L is the number of raw frequency samples,
P the number of ports, p the number of basis functions; N, and N, denote
the number of poles used for full and compressed fitting, respectively.

Case L P P? N, N,
| p |

1 471 12 144 17 20 22
2 690 48 2304 24 27 28
3 1001 56 3136 30 30 30
4 D72 25 625 5 D 5
3 71 92 8464 22 22 23
6 570 34 1156 40 57 58
7 1001 24 276 13 12 12
8 1228 83 6889 31 30 31
9 100 8 64 6 29 29
10 197 245 60025 14 45 29
11 13 52 2704 3 3 3
12 40 800 640000 8 8 8
13 572 41 1681 10 11 11
14 141 542 293764 16 21 -
15 1000 34 1156 10 10 15
16 501 28 784 9 12 16
17 364 20 400 40 58 39
18 367 181 32761 6 24 39

2.3.3 Compressed fitting examples

Here are introduced some benchmark cases of practical interest. Table 2.1]
lists a total of 18 interconnect structures, characterized by different number
of ports P and raw frequency samples L. These structures include high-speed
connectors (cases 2, 3, 7), PCB interconnects (cases 9, 17), package inter-
connects (cases 5, 8, 13, 15, 16), power or mixed signal/power distribution
networks (cases 1, 4, 6, 10, 11, 14, 18), and Through Silicon Via (TSV) fields
(case 12). All raw frequency samples were obtained from 2D or 3D field
characterizations.

The last column in Table 2.1l shows the number of poles N, that were
required by Vector Fitting to fit the full set of responses with a global model-
vs-data deviation ||0X||, = J; defined in (2.48). The publicly available VF
code [117] was used for these tests, by iteratively increasing the number of
poles until the above accuracy condition was met.

In this subsection, the performance of standard and compressed VF are
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Figure 2.4: Two sample scattering responses for case 6 before (dash-dotted
lines) and after (dashed lines) compression, compared to the compressed
rational fitted model responses (solid lines).

compared. To this end, the compression error &, defined in (2:34]), and VF
approximation error are fixed to a constant value defined later (usually close
to 0.1). This choice results in a number of basis functions p and in a number
of poles for the basis functions NV,,, also reported in Table 2.1l These results
show collectively that

e the number of basis functions always results p < P2, therefore the
computational complexity of the compressed VF run always results
much less than the standard full VF;

e the number of poles required for the compressed and the full macro-
models is comparable, N,, ~ N,, showing that the compression strategy
does not create spurious or artificial components in the basis functions
that would require an excessive number of poles for their fitting.

Figure 2.4] compares the results of full and compressed macromodels to
the raw scattering responses for benchmark case 6, showing that an excellent
accuracy is obtained using both techniques. Figure shows some of the
corresponding basis functions together with their rational fitted models.

Table 2.2 reports the execution time in seconds that was required for com-
pression, denoted as Tsyp (based on [114]), for fitting the p basis functions
and constructing the compressed macromodel, denoted as Tygw, and for ap-
plying standard VF to the full set of raw responses, denoted as Typx. The
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Figure 2.5: First three basis functions for case 6. Original frequency samples
w, (dashed lines) and rational model w,(s) (solid lines).

Table 2.2: CPU time in seconds required for data compression (Tsyp), based
on the SVD optimized implementation for large matrices [114], and com-
pressed fitting (7yrw) compared to full fitting (Typx).

‘ Case TSVD [S] TVFW [S] TVFX [S] Speedup ‘

1 0.03 0.66 4.2 6.03
2 0.8 1.7 183.5 70.5
3 1.3 3.7 419.7 82.4
4 0.28 0.02 1.42 4.6
) 0.7 0.23 09.4 63
6 0.33 10.6 355.2 32.1
7 0.37 0.28 11.6 17.8
8 3.2 4.6 1273 160
9 0.004 0.2 0.94 4.44
10 2.4 1.2 1609 437.1
11 0.01 0.006 0.2 12
12 12.8 0.04 0992 45.8
13 1.7 0.3 17.8 8.8
14 9.2 0.8 - -
15 4.8 1.5 39 6.1
16 0.3 0.154 12 24.2
17 0.15 8.05 77.3 9.4
18 2.2 0.4 2074 760.4
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overall speedup reported in the last column demonstrates how effective can
the compressed macromodeling approach be for those cases that are charac-
terized by a large port count or a large number of frequency samples. For
case 14, standard VF could not even be applied due to an excessive memory
requirement.

2.3.4 Passivity of compressed macromodels

There is no guarantee that the global macromodel (2.46]) with state-space
matrices (2.43)) is passive. It is however possible to explicitly enforce model
(asymptotic) stability by constraining the poles p, to have a strictly negative
real part, a standard practice in VF applications [62]. The fundamental
condition under which a scattering transfer matrix S(s) (2.I02)) represents
a passive macromodel is bounded realness [118, [119, 120, 115]. A transfer
matrix S(s) is [Bounded Real (BR)|if

e cach element of S(s) is defined and analytic in Re{s} > 0;
o S°(s) = S(s"):
e O(s) =1—S(s)#S(s) = 0 for Re{s} > 0.

The first two conditions are guaranteed if the state-space realizations (2.102)
is real-valued and asymptotically stable [115]. Under these assumptions the
condition on O(s) can be relaxed and checked only on the imaginary axis
5= Jw

O(w) =0, Vw, (2.49)

which in turn is equivalent to requiring that all singular values of S(jw) must
be uniformly bounded by one at any frequency

0, <1, Vo, € O'(S(]W)) , Vw. (250)

Considering that o; = /1 — \;, where A € A\(@(jw)) are the eigenvalues of
O(yw), it follows that (2.49) is equivalent to

AN>0, Y\ eEANO(W)), V. (2.51)

The passivity condition (Z.57]), which can be checked either via adaptive
frequency sampling [104], see Section 2.3, or through identification of imagi-
nary eigenvalues of the associated Hamiltonian matrix [121], can be violated
over finite or infinite frequency bands. In particular, this second case occurs
if the model is not asymptotically passive, i.e. min A{@(co0)} < 0. In this
situation, asymptotic passivity can be recovered by perturbing just the direct
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coupling matrix D; this is the subject of Section 2.3.5l Then, in Section 2.4l
a global passivity enforcement scheme for enforcing ([2.57]) at all frequencies
w € R is presented.

2.3.5 Asymptotic passivity enforcement
The macromodel (2:46)) is asymptotically (strictly) passive if
D, <d, <1, (2.52)

where §, is some desired passivity threshold. In case (252) is not verified,
matrix D is modified so that this condition is met. Of course it is more
efficient to operate directly on the compressed macromodel (Z42]), therefore
a perturbation vector A,, is added to the corresponding direct coupling vector
d,,, preserving the projection coefficients in matrix ¥. The perturbed matrix
results

D, =9I, ®(d, + Ay)], (2.53)
with
D,-D=Y(Ip®A,). (2.54)
The minimal perturbation of (2.54)), in the standard 2-norm, should be used
to achieve asymptotic passivity. This leads to the following formulation

<6, (2.55)

pll2

min [ @(1p © Ay)]l, st ||ID

The solution of (2.55]) is now addressed using various different approaches,
with results presented and compared in Section

Once a solution A, of (2350) is available, an asymptotically passive
macromodel is constructed by

1. constructing the vector d, = d,, + Ay;

2. subtracting the ¢g-th component d, , of this vector from the frequency
samples of the ¢-th basis function w, by redefining

w, < w, —d,, (2.56)

3. fitting the resulting frequency samples with a strictly proper rational

function
Nu
wls) = 30 (257)
n=1 n

where the poles p, are kept fixed to the poles of the original unper-
turbed macromodel (2:37);
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4. defining the state-space realization of the compressed macromodel as
in (2.42)), but with d,, replaced by d,.

The following methods can be used to identify the perturbation vector A,
and the corresponding w,.

Direct scaling

The easiest way to enforce the asymptotic passivity is through the direct
rescaling

517
"D,

This definition imposes asymptotic passivity by construction, but does not
guarantee that the asymptotic model perturbation ||¥(Ip ® A,)||, is mini-
mized, as required by (2.53]). However, since the compressed macromodel will
be re-generated via a new constrained vector fitting run (Z.57), the asymp-
totic perturbation will have a significant effect only at high frequencies, re-
sulting in a quite acceptable accuracy within the modeling band. These
statements will be validated through numerical examples in There-
fore, this scaling method is actually quite competitive due to its simplicity
with respect to the more precise approaches that follow.

d,=d D, =¥(I,2d,). (2.58)

Linearization

The method described in this section is based on two simplifications of (2.55).
First, the norm of A, is minimized instead of the norm of D, — D. Second,
the constraint ||D,||, < 6, is replaced by an approximate constraint on A,,
based on a linearization process. These two conditions lead to a problem of
smaller size with respect to (2.53]), which should require less computational
effort for its solution.

Start with a SVD decomposition of D = LY R’ . Denoting the singular
values as ¢;, ¢ = 1,..., P with the associated left and right singular vectors

l; and 7r; it follows
G =1/Dr;. (2.59)

Apply now the same projection to the perturbed direct coupling matrix D,
obtaining

Note that this quantity is not equal to the ¢-th singular value g, ; of D, but
it provides only a first-order approximation. Thus, condition

I'D,r; <6, (2.61)
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corresponds to a linearised projection of constraint || D,|, < d,. Using (260),
after some straightforward algebraic manipulations leads to

(rl @IVA, <6, —q. (2.62)

Collecting the various constraints (2.62) for all i leads to the linear under-

determined system
MA, =b, (2.63)

where the number of rows in M defines the number of singular values of D
being perturbed. Among all vectors A, satisfying (2.63]), the minimum-norm
solution is needed, which is available in closed form as

A, =MT'b, (2.64)

with M' denoting the Moore-Penrose pseudoinverse of M.

Due to the approximate nature of (2.62]), the solution (2.64)) of (Z.63)) does
not guarantee that ||D, |, < d,. Therefore, the process can be iterated until
this condition is achieved. At each iteration, two slightly different constraints
can be used, leading to different numerical schemes

1. system (Z63) si formed by collecting all P singular values, setting at
the right hand side

o 5p_<l §i>5p7
b _{ ; s (2.65)

This choice tries to explicitly preserve those singular values that are
already below the threshold §,,.

2. only constraints with ¢; > ¢, are formed, so that only the singular value
terms exceeding the threshold 9, are explicitly perturbed.

Linear Matrix Inequalities

The problem stated in (2.55) can be cast as a Linear Matrix Inequality
(LMI) [122, 123]. In fact, introducing the slack variable 7, minimization
of the objective function in (Z.55]) can be restated as

. ’)/Ip lI’(Ip X Aw)
min y = s.t. |:(IP @ AT) BT 1, -0, (2.66)
whereas the asymptotic passivity constraint is equivalent to
5p1p D + ‘I’(IP X Aw)
{DT+ (Ip © AT)B" 5,15 > 0. (2.67)
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Expressions (2.66) and (2Z67) form a system of LMI’s. This formulation is
based on convex constraints with a convex objective function. Therefore, its
solution can be achieved numerically within arbitrary precision and with a fi-
nite number of steps using some specialized software. All results documented
in the following were obtained with the SeDuMi package [124].

2.3.6 Numerical Results

Table 2.3] compares the asymptotic passivity enforcement results obtained
by the various schemes presented in Sections for those cases that re-
sulted non-asymptotically passive after the compressed fitting stage. The
maximum singular value ||D]||, of the direct coupling matrix is reported for
convenience in the second column. The four schemes are compared in terms
of direct coupling perturbation amount A = D, —D measured in the spectral
norm, number of iterations (when applicable), and total runtime. The latter
includes not only the direct coupling perturbation, but also the computa-
tion of the perturbed residues and the construction of the global state-space
realization, as described in Sec. 2.3.5]

The direct scaling method requires no iterations. Only the computation
of the norm ||DJ|, is required. Scaling requires negligible time, so that the
total runtime is practically used for recomputing the updated residue matri-
ces. The linarization and the LMI methods instead require several iterations
and require significantly larger runtime. These three methods fail for the
largest cases 12 and 14 due to excessive memory occupation (LMI) or lack
of convergence (linearisation) within a maximum number of 600 iterations.
If converging, the linearization methods are faster than the LMI approach.
However, the linearisation methods are not guaranteed to attain the optimal
solution, as does the LMI approach. This is confirmed by the amount of
perturbation, which is smallest for the LMI case among all other methods.
It is worth noting that the simplistic direct scaling approach provides final
perturbation errors that are comparable with the LMI scheme. Due to its
efficiency, the direct scaling approach appears as the most competitive. Of
course, in case the resulting perturbation is excessive, one can resort to the
LMI scheme, which is guaranteed to be optimal though slow.

2.4 Global passivity enforcement

This section addresses the enforcement of global passivity for the macromodel
(248) characterized by the state-space realization (Z43), assumed to be
asymptotically stable and asymptotically passive. It is assumed that (251
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Figure 2.6: Singular value plot before passivity enforcement for the S-
parameter state-space model of a PCB. Passivity violations are highlighted
near 10GH z by a small red circle.

is violated at some frequencies w € €2, where €2 is the union of finite-width
frequency bands like in Figure 2.6, which refers to the state-space model of
a PCB.

In order to enforce passivity, one of the standard perturbation approaches
can be followed , ﬁ] Passivity violations can be identified via standard
techniques M] or using the parallel algorithm presented later in Section
The main difference in the present framework with respect to published re-
sults is that the system perturbation should not be arbitrary but structured,
according to the form of (2:43). In the following only the state-to-output
map is perturbed, i.e.

C,=C+Ac, (2.68)
where the perturbation term Ag is defined as
Ac=Y(Ip® Ag,). (2.69)

As for the asymptotic passivity enforcement of Sec.[2.3.5] the expansion coef-
ficients in matrix W are preserved and only the lower-dimensional compressed
macromodel (2.42)) is perturbed.

2.4.1 Passivity enforcement

Consider a single frequency wy at which condition (2.5]]) is violated by some
negative eigenvalue \; < 0, and let the corresponding eigenvector of © (jwy)
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(defined in Section 2.3.4) be (;, normalized such that ||(;]|, = 1. Ap-
plying (2.68) leads to a first-order approximation of the perturbed eigen-
value [125]

Api > X + ¢ Aol (2.70)
where
Ap ~ —K'A:S) — ST ALK, (2.71)
and
So=D+CK,, Ky= (wlI—-A)'B. (2.72)

Standard manipulations lead to
Api =2 N\ +tivec(A¢), (2.73)
where the row-vector ¢; is defined as
t; = —2Re{(KoC,)" & (SoC,)"} (2.74)
Enforcing now \,; > 0 leads to the following linear inequality constraint
t;vec(Ag) = —\; . (2.75)
Also an additional constraint is included, i.e.
t;vec(Ag) <1 -\ (2.76)

to guarantee that the perturbed eigenvalue remains in [0,1], as required by
the assumed scattering representation. The above constraints are built for
all M eigenvalues \; to be perturbed, possibly at multiple frequencies, and
formulated as

min ¢

[vec(Ac)|5 < 0 (2.77)

Tvec(A¢c) 2 b

where 6 is a slack variable. The last row collects in a compact form all

constraints (2.75)-(2.76)).

Now the perturbation structure (2.69) is imposed. Using (2Z44)), it is easy
to show that B B
Ac=(ViAc,,....VpAc,) . (2.78)

Applying the vec(-) operator to the i-th column block in (Z.78)) leads to
vec(V;Aq,) = (Iy, ® V) vec(Ag,), (2.79)
so that (278) can be written in “vectorized” form as

vec(Ag) = ITvec(Ag, ), (2.80)
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where IT € RPN*PNw {5 defined as

Iy, ® Vi
I = : (2.81)
Iy, ® Vp
Finally, defining T,, € R2M>*rNv a9
T, = TII, (2.82)

the structured and compressed passivity enforcement problem reads

min @
||VeC(ACw)||§ <0 (2.83)
T, vec(Ag,) = b

Note that matrix II is never constructed in practice, since all constraints
in (Z83) and in particular matrix T, can be built directly using optimized
code.

Comparing the standard formulation (2.77) with the compressed and
structured formulation (2:83)), it is evident that the latter is much more
convenient, since the number of decision variables is reduced by a factor

HAc) N _ Py (2.84)
#HAc} PN P
This makes the cost for the solution of (Z83) practically negligible with
respect to all other macromodeling steps. Note that the converse is typically
the case in standard macromodeling, since passivity enforcement is usually
the most demanding part of state of the art schemes. This big advantage is
due to the particular state-space structure in (2.43)).

2.4.2 Accuracy control

The formulations in (2.77) and (283) aim at finding the minimum norm of
the perturbation terms A¢ or Ag, that are compatible with the passivity
constraints. This condition however does not ensure that the energy (squared
#?-norm) of the transfer matrix perturbation is minimized. To this end, the
minimum of | e

26l = 5= [ er{As(u) Al ()} (2.85)
should be found. However, it is well known [126] that this norm can be

characterized as
|As]%. = tr{AcPcALY (2.86)
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where P¢ is the controllability Gramian associated to (2.43]), found as the
unique symmetric and positive definite solution of the Lyapunov equation

AP, +PcAT = —BB”. (2.87)
Computing the Cholesky factorization P = QLQ and defining
E=AcQL, &=vec(E)=(Qq®1Ip)vec(Ap), (2.88)
it follows
1As|l%: = tr{ZET} = €] (2.89)

Therefore, problem (2.77) can be cast as a minimum #Z?-norm formulation
by performing the change of variable (2.88)), obtaining

min 8
I1€]5 < 0 (2.90)
TéE>b

where T' = T(Q;' ® Ip) .
Apply now the same procedure to (Z83). The controllability Gramian
associated to the compressed state-space realization (2.42]) reads

A,Po, +Po, AL = -B,BL, (2.91)

together with its Cholesky factorization Po, = ngQCw. Note that the
numerical solution of (2:42)) requires only O (N,,) operations due to the sparse
(diagonal or tridiagonal) realization of w(s)?. This cost is negligible with
respect to all other macromodeling steps in the proposed framework. Defining

Ew = ACWng )
&, = vee(Bw) = (Qq, ®1L,) vec(Ag,)

and denoting as A, (s) the induced perturbation on the compressed macro-
model, it follows

(2.92)

1Awr [ = [1€ull5 (2.93)
so that substitution into (Z.83)) leads to
min ¢
I€.,115 < @ (2.94)
r,g,=>b

where ', = T,,(Qg! ®1,). The solution of (Z.94) thus provides the minimum
Z?2-norm perturbation of the compressed macromodel w”(s).
It follows that
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Lemma 1. Define Po and Pg,, as in (2.87) and 291)). Then
Po—=1,9Pq, . (2.95)

Proof. Suppose that P¢,, is the solution of (2.91]), then P defined in (2.93])
is a solution of (2.87) by direct substitution. Using (2.43),

AP +PoAT
= Ip®A,)Ip®Pc,)+ (Ip@Pc,)Ip @ Al)
= Ip® (A,Pg, +Pc, AL)
= I,®(-B,B))
= —(Ip®B,)(Ip®B))
= —BBT.

Since both A and A, are strictly negative definite, Po and P, are the
unique solutions of Lyapunov equations (2.87)) and (Z91]), which implies (Z.93]).

O
It is now possible to state an important result.
Theorem 1. Defining the compressed macromodel perturbation
A"LU B'UJ
A, & ( Ac | 0 ) (2.96)

and the corresponding global macromodel perturbation

A & (%c’%) , (2.97)

with state-space matrices constructed as in (2Z43), if follows
2 2
[As]l g2 = [[Awr g (2.98)

Proof. As a preliminary result, consider matrix V in (Z30). Using (2.45), the
orthogonality condition V'V =1 can be rewritten in terms of its constituent
blocks V; as

P

ST T (Ve (Vidn = 0ues nl=1,....p, (2.99)

i=1 m=1

where d,, = 1 if n = ¢ and 0 otherwise. Considering now (278) and us-
ing (2.93)), a straightforward algebraic manipulation leads to

P
AcPcAL =Y "ViT, V], (2.100)

i=1
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where Y, = A¢,Pc, Agw. The .#?-norm of the global macromodel pertur-
bation is characterized as

|As|%. = tr{AcPcAL}

which completes the proof. O

The practical relevance of this theorem is that the solution of the small-
size optimization problem (2Z94]), in addition to providing the minimum-
energy perturbation of the compressed macromodel, will also provide as a by-
product the minimum-energy solution of the full-size passivity enforcement
problem, which is the main objective. Global passivity enforcement is thus
achieved with optimal accuracy and negligible cost through (2.94).

2.4.3 Passivity enforcement examples

In this subsection, the performance of the passivity enforcement schemes (2.90)
and (2.94) are compared for each of the benchmark cases of Table 21 The
results are summarized in Table 2.4 where the total execution time and
number of iterations for both schemes are grouped in columns 2 and 3 for
convenience. It can be seen that the number of iterations for the compressed
scheme is practically always less than for the full scheme. This implies that,
independent on the runtime required for a single iteration, the compressed
scheme performs generally better. This consideration should be taken into
account when interpreting the total runtime, reported in the second column.
Note that a dramatic reduction is achieved by the compressed scheme, which
is able to complete the passivity enforcement also for those large cases (12,
14, and 18) for which the full scheme requires excessive memory.

Two different speedup factors are reported in the fourth column of Ta-
ble 2.4l The first is the overall speedup factor, obtained as the ratio of the
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Table 2.4: Comparison of full and compressed passivity enforcement schemes
in terms of number of iterations f it, runtime, and accuracy ||0X|,. Last
two columns report the overall speedup (SU) and the speedup per iteration

(SUit).

Full / Compressed

Case | it Time |s] 10X, SU  SUit
1 6/7 2.42 / 1.52 022/026| 1.6 1.8
2 2 /1 9.63 / 1.85 022 /0.11| 52 26
3 12 /7 255 / 3.87  2.61 /261 |66.1 385
4 2 /1 3.7 /0.36 0.04 /0.04 | 10.2 5.1
5 12/9 6875/ 226 0.16 / 0.21 | 30.4 22.8
6 |50 /30 3243/121 053 /041|268 16.1
7 2/2 1.45 / 0.36 0.05/0.06 | 4.1 4.1
8 28 / 10 510 / 15.9 1.43 /1.26 | 32.1 11.4
9 2 /26 5.83)/1.64 415 /4211 35 3.1
10 | 9/8 3%5 /145 3.31,/332|266 236
11 2 /4 9.34 / 1.81 0.04 /0.05| 52 104
12 | -/32 /144 - Jlo2l| - --
13 8 /7 24.7 / 4.86 0.16 /0.21 | 51 4.2
4 | -/13  --/5049 -- /121| - --
15 1/2 5.85/3.17 0.08/0.08| 1.8 3.6
16 |10/38 13.1 / 1.95 021/025| 68 54
17 |10/6 13.7 / 1.26 0.51 /051|114 6.8
8| -/5 C/1621 - /69| --  --
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Figure 2.7: Singular value plot before and after passivity enforcement for
case 17.

total runtime required by the full and compressed schemes. The second is
the average runtime per iteration, which provides a more precise metric for
assessing the enhancement in efficiency that can be achieved with proposed
approach. In any case, both speedup per iteration and overall speedup are
between 1 and 2 orders of magnitude for the most challenging cases, except
for the largest cases for which only the compressed scheme could achieve its
goal.

Finally, the last column of Table reports the deviation of the obtained
passive models with respect to the original raw data, showing that the ac-
curacies of both full and compressed schemes are comparable. Figure 2.7
reports as an example the singular value plot for case 17, showing all singu-
lar values before and after compressed passivity enforcement. As expected,
the singular values of the passive model are uniformly unitary bounded.

2.4.4 A summary of numerical results

The main results for all benchmark cases are now summarized. Table
provides a detailed report on the accuracy of all intermediate steps of the
proposed compressed passive macromodeling approach. The second column
reports the thresholds eqyp and eyr that were used, respectively, to bound
the approximation error for SVD truncation and compressed VF. Note that
these thresholds are used to bound the spectral 2-norm of error matrices
|0X]|, collecting all responses at all frequencies. Since the relationship of
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Table 2.5: Accuracy with respect to raw data of compressed data (0Xgyp)
and compressed macromodel before (§Xyr) and after (§Xpas) passivity en-

forcement.
€ 0Xgvp 0 Xyp 0Xpas
Case | SVD / VF | [lly / [I"lluase | "Iz /" [l 1 [-llo /1l
1 0.1 / 0.1 | 0.07 / 0.0039 | 0.09 / 0.006 | 0.26 / 0.014
2 0.1 / 0.1 | 0.06 / 0.0045 | 0.09 / 0.007 | 0.11 / 0.007
3 0.1 / 0.1 | 0.06 / 0.0029 | 0.08 / 0.003 | 2.61 / 0.064
4 0.1 / 0.1 | 0.04 / 0.0015 | 0.04 / 0.002 | 0.04 / 0.002
5 0.1 / 0.1 | 0.06 / 0.0105 | 0.09 / 0.051 | 0.23 / 0.057
6 0.1 / 0.1 | 0.07 / 0.0041 | 0.09 / 0.006 | 0.42 / 0.015
7 0.1 / 0.1 | 0.01 / 0.0005 | 0.04 / 0.001 | 0.06 / 0.002
8 0.1 / 0.5 | 0.08 / 0.0027 | 0.48 / 0.016 | 1.05 / 0.014
9 0.1 / 0.1 | 0.05 / 0.0084 | 0.05 / 0.008 | 4.12 / 0.632
10 0.1 / 3.0 | 0.07 / 0.0061 | 2.21 / 0.048 | 2.53 / 0.048
11 0.1 / 0.1 0.01 / 0.0012 | 0.01 / 0.001 | 0.18 / 0.016
12 0.1 / 0.1 0.02 / 0.0002 | 0.05 / 0.001 1.22 / 0.011
13 0.1 / 0.1 0.04 / 0.0046 | 0.05 / 0.011 | 0.21 / 0.011
14 0.1 / 0.1 0.07 / 0.0213 | 0.08 / 0.021 1.26 / 0.031
15 0.1 / 0.1 | 0.06 / 0.0018 | 0.08 / 0.002 | 0.08 / 0.002
16 0.1 / 0.1 | 0.04 / 0.0147 | 0.08 / 0.015 | 0.25 / 0.015
17 0.1 / 0.4 | 0.07 / 0.0241 | 0.39 / 0.315 | 0.43 / 0.315
18 0.1 / 6.8 | 0.07 / 0.0055 | 6.79 / 0.212 | 6.91 / 0.218
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these thresholds to the actual deviation that is achieved at a given frequency
for a given response is not obvious, the results in terms of the worst-case

norm, defined as
[0X]]

max

= max (X - (2.101)

are also reported.

The last three columns of Table report the spectral and worst-case
accuracies (with respect to raw data) of compressed data §Xgyp, compressed
fitted model 0Xvyp, and final model after compressed passivity enforcement
0Xpas, respectively. The table clearly shows that accuracy is well preserved
through all modeling steps. For illustration, in Figures 2.8 and 2.9, respec-
tively, the responses characterized by the worst-case absolute error can be
found for case 17, and the responses characterized by the worst-case relative
error for case 2. Similar results were obtained for all other cases and are not
reported here.

2.5 Parallel passivity check

In order to use the passivity enforcement scheme previously introduced in
Section 2.4.1] passivity violations of the state-space model

H(s) =D+ C(sI-A)"'B (2.102)

must be properly identified. While causality and stability are guaranteed
by the unique condition that all model poles should have negative real part,
passivity is more difficult to guarantee since a special set of constraints are
necessary according to Section 234l It is important to note that condi-
tion (Z5I) must be checked for each frequency w € R. The first idea is
then to use a frequency sampling process to extract a significant set of fre-
quency points w; and to check condition (ZZI) on these samples only. Of
course for the sake of reliability the set of samples w; must be determined
adaptively according to the dynamic features of the macromodel. As a con-
sequence, dealing with models having large port count and high dynamical
order makes this strategy computationally expensive. Therefore the main
objective of this section is to introduce an highly efficient parallel implemen-
tation of the available adaptive sampling scheme proposed in [104]. The core
idea of the adaptive sampling scheme is presented in the rest of this sec-
tion and in Section 2.5.1] while the new parallel implementation strategy is
detailed in Sections 2.5.2] 2.5.3 and 2.5.4]

The main objective of the proposed Parallel Adaptive Sampling (PAS)
scheme is to determine a partition of the frequency axis Q = [0,00) into
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Figure 2.8: A scattering response of a PCB interconnect (case 17) before
(red dashed line) and after (blue dashed line) compression. The black line
represents the response of the passive compressed macromodel.
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Figure 2.9: As in Figure 2.8 but for a high-speed connector (case 2).
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Figure 2.10: Graphical illustration passivity characterization via frequency
sampling. See text for details.
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disjoint sub-bands
Q= U Qg £ = [wg—1,w,) (2.103)

with wy = 0 and wg = +00. Defining the interior of each sub-band as

Qp = (wg-1,wq) = Qg — {wg—1}, (2.104)

the partition (2I03) is determined such that one of the following conditions
will hold for each sub-band €2,

e max;o;(Jw) > 1, Vw € Q,: in this case, passivity condition (Z49) is
violated at any point within the sub-band, which is thus flagged as
“non-passive” with the superscript "P.

e max; 0;(jw) < 1, Vw € Q: in this case, (Z4J) holds at any point within
the sub-band, which is thus flagged as “passive” with the superscript P.

e max; 0;(Jw) = 1, Yw € Q,: in this case, the maximum singular value
will be too close to the threshold v = 1 in order to qualify the system
as locally passive or non-passive in Qq. It should be guaranteed that
this last case is such that |Q,;| = w, —w,—1 is small. This undetermined
case will be flagged with the superscript .

Passive, non-passive, and undetermined bands will be collected as

Qv = U, max;oi(w) > 1, Vw € Q,
@ = U, maxoi(w) <1, Vwe Q, (2.105)
Q= U0 9 Zorur

In addition, for each non-passive sub-band 2, C Q" all local maxima 0;
and the corresponding frequencies w; at which these maxima are attained
are needed. See Figure 2.10] for a graphical illustration.

2.5.1 Accuracy-controlled sampling via eigenvector track-
ing

Recall that, when Scattering models are used the state-space matrix A has
no purely imaginary poles, as a consequence of VF implementation |117, [62],
thus the singular values o;(jw) are continuous and differentiable functions of
frequency [125]. However, when computing these singular values numerically
over a prescribed discrete set of frequencies {w;}, there is no guarantee that
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each o;(jw;) for fixed i collects samples from the same singular value trajec-
tory. The computation at each frequency w; is in fact independent, and the
adopted singular value or eigenvalue solver may return its results with an
order that may differ from one sample to the next.

The first objective is thus to dynamically determine a set of frequencies
{w;} that is sufficient to track the individual smooth singular value trajec-
tories by a suitable reordering. This reordering can be achieved by a mode
tracking scheme [127], such as the one presented in [104]. Given two avail-
able (adjacent) frequency samples w,, and w,,.1, the eigendecomposition of
O (ywm) and O(yw,,+1) is computed, then the eigenvalues are collected into
matrices A,, and A,,,; while the (orthogonal and unit-normalized) eigen-
vectors are stored into matrices V,, and V,,.;. Note that these matrices
coincide with the right singular vectors of S(jw). Then, all possible mutual
scalar products among all these eigenvectors are computed as

Pt = Vi Vinit - (2.106)

If the two frequencies are sufficiently close so that the direction of the eigen-
vectors undergoes a small change from w,, to wp1, then p,, .., will have
approximately the structure of a permutation matrix, with one single element,
per row and column with magnitude close to 1, and with all other elements
nearly 0. If this is true, the permutation matrix p,, ,,.; that reorders the
eigenvectors and eigenvalues from sample m to sample m + 1 is obtained by
rounding the magnitude of each element of p,, ,,, ., towards 0 or 1. A numer-
ical test whether this tracking/permutation is successful can be obtained by
checking

max { (I s B | = 1) }} <e (2.107)

for a suitable threshold ¢ < 1. Refer to [104] for more details. If condi-
tion (2.I07) is fulfilled, it follows that the behaviour of the system transfer
function and its singular values is well resolved within [wy,, wy,+1]. Otherwise,
a new sample wp,1/2 = (Wm+wm41)/2 is added and the check is applied again
to the two subintervals [wp,, Wypt1/2] and [Wy,41/2, Wit1]. Binary subdivision
of each pair of adjacent samples drawn from an initial distribution is applied
recursively until (ZI07) is met everywhere.

2.5.2 Parallel Adaptive Sampling

Consider in more details the above described adaptive refinement scheme.
Formally, the refinement check is expressed as

v =R(wWm,Wm+1) 5 (2.108)
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Figure 2.11: Adaptive frequency sampling via local refinement (serial imple-
mentation). Each row from top to bottom corresponds to one application of
the R check (2.108)). White dots denote samples still to be processed. Black
dots denote samples being used by current R check. Black squares denote
samples that do not need any more processing. A thick line highlights a
frequency band that is finalized and which does not need further refinement.

where the input arguments define the local band to be checked, and the
output v can be either wy, /> or the empty set (), in which case no further
refinement is required. Evaluation of (ZI08) requires the computation of
transfer matrix S(yw) at the two frequencies wy,, w11, together with its
right singular vector matrices V,, and V,,.1. As part of the R check, the
following computations are included: if v is empty, the resulting permutation
matrix Py, 41 is immediately applied to reorder the singular values at wy,1;
otherwise, the new sample w1/ is computed together with its associated
transfer matrix S(jwm41/2) and singular vector matrix V,,1q/2, which are
stored for the next check.

[terative application of (2I08]) determines a binary subdivision tree of
the frequency axis, where each node in the tree denotes a frequency sample.
Figure 2.17] illustrates the order in which the R check is applied in a serial
implementation, where it is assumed that the leftmost local sub-band that
is still to be refined is processed first. Figure 211l shows that the sub-bands
are finalized starting from the left edge of the initial frequency interval. This
consideration leads to a simple strategy for the parallelization of this refine-
ment, scheme using 7' concurrent threads, based on the following steps and
rules.



CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 54

Startup

At startup, a set of initial frequency samples S° is determined. Here, this
set is constructed as the union of samples obtained independently through
different strategies:

e an upper frequency Qyay is determined following the procedure in [102],
with the guarantee that no passivity violations occur for w > Qpay;
therefore, only the interval [0, Q] needs to be checked instead of the
full imaginary axis;

e a set Sy, of Iy, uniformly spaced samples are determined in [0, Qpax,
including edges;

e a set S of logarithmically spaced samples with [; samples per decade
are computed from wpyi, t0 Whnax, Where Iy, wmin and wpa.e depend on
the particular application and structure of interest;

e a set S, of samples is obtained as in [104] from the model poles p; =
a; = 708; by sampling uniformly with 2R + 1 points the phase of the
associated resonance curve, as

S, =UJ {w = B; + a; tan (2.109)

_
with r = —-R,..., R.

As a result, the set of initial samples that will be subject to the R iteration

is defined as
S' =81 U8 US,, (2.110)

with all samples reordered for increasing values.

Initial workload allocation

Supposing that T" concurrent threads are available, the set of initial samples
is partitioned as

T
s =8, (2.111)
t=1
where the number of elements of each subset is #{SY} = |#{S°}/T] for

t =0,...,T—1. The remaining samples are assigned to S». The subdivision
is ordered, such that for ¢; < to,

Yw; € S?l and Vw; € 8?2 = w; <wj, (2.112)
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Figure 2.12: Parallel adaptive frequency sampling via local refinement using
T = 2 threads. Samples assigned to thread ¢ = 1 (t = 2) are depicted with
circles (triangles). Arrows indicate start points (leftmost sample) for the two
threads. White fill denotes samples still to be processed, whereas black fill
denotes samples used by current iteration. Black squares denote samples
that do not need any more processing. A thick line highlights a frequency
band that is finalized and which does not need further refinement.

with each pair of adjacent sub-bands Sg and Sgﬂ sharing the single sample

w; = maXS?i = min S?Z_H .

(2.113)

Each subset S? is allocated statically to thread ¢, which iteratively applies
the R refinement check until the entire sub-band is covered, as in Figure 2.T1]
This initial allocation ensures that, if no refinement is required, approxi-
mately the same amount of work is allocated for each thread. Figure
illustrates this process, showing the evolution of each subset of samples &y
at few iterations v. In the following, the iteration count v will be dropped.

Dynamic thread reallocation

As the iterative refinement check proceeds and each sub-band is processed
independently by each thread, it may happen that some bands require more
adaptive refinement steps than others. Therefore, it may happen that one
thread ¢; completes its refinement task when the other threads are still work-
ing. In this case, the thread should not be left inactive, since this would
compromise parallel efficiency. In order to find some work to do for the idle
thread ¢;, the remaining threads ¢; are scanned for ¢ # j and the number of
sample pairs in set S;, that at current iteration are still to be processed is
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Figure 2.13: Parallel adaptive frequency sampling via local refinement using
T = 2 threads and dynamic rescheduling (same notation as in Figure 2.12).
Note that thread t = 2 is restarted at the third iteration after completing its
initially assigned workload.

found by the R check. Although it is not guaranteed that the work for these
threads will coincide with the corresponding number of unchecked sub-bands,
the number of expected R iterations will not certainly be smaller. There-
fore, the thread t, that requires the largest amount of estimated R checks is
identified and thread ¢; is restarted by assigning to it one half of the samples
still to be processed by t,. More precisely

Si— 8, US, (2.114)
is divided with the constraint

Yw; € Stz and Yw; € St]. = w; <w, (2.115)

with the two sets S’te, S’tj sharing only one sample. This strategy guaran-
tees an initially equal subdivision of the workload between t; and ¢,. Fig-
ure 2.13 provides a graphical illustration of this thread reallocation. Then,
the thread reallocation process is repeated any time some thread becomes
idle, by rescheduling it to help the most busy thread at that time.

End of refinement pass

The above described multi-thread adaptive refinement process stops when all
threads have completed their tasks. Due to the proposed optimized dynamic
scheduling, the algorithm is automatically load balanced, except for the last
iteration during which a group of threads might remain idle while the other
threads are completing their last task. The maximum total duration of this
last step is the time required for a single R iteration.
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In addition to the natural stopping condition for the R iteration, which
occurs when () is returned by (2.108) and in which case all singular value
trajectories are tracked based on their singular vector perturbation, an ad-
ditional stopping condition is added in terms of the maximum number of
nested refinements I,... This parameter intervenes when tracking is not
possible, e.g., in the case of singular values with higher multiplicity, whose
singular vectors cannot be defined uniquely. In all numerical tests in this
paper [,.. = 6 was used, providing a good compromise between accuracy
and efficiency.

2.5.3 Local passivity check

The final result of the above refinement scheme is a set of frequency samples
w; and a reordered sequence (through the above-defined permutation matri-
ces Py, my1) of singular values samples. For fixed i, the reordered samples
0;(yw;) can thus be considered to be drawn from a continuous and differ-
entiable trajectory o;(jw). Exploitation of this smoothness leads to various
straightforward ways of checking passivity between each pair of adjacent fre-
quencies. One can define a worst-case linear prediction error at sample w,,
based on a first-order eigenvalue perturbation from the adjacent left and right
samples [104]

A, = max {| (vl Opvnsr).. — (An)ul} (2.116)
and infer that the model is locally passive in a neighbourhood of w,, if
max o; (Jwy,) + fmax{A,  Al} <1, (2.117)

where § > 1 is a parameter used to compensate for the missing higher or-
der terms in the linear prediction. This local check at w,, can be formally
expressed as

U = C(Wm—1, Wi, Wimt1) 5 (2.118)

where ¥, is either 0 (flagging locally non-passive samples) or 1 (locally pas-
sive samples), since a symmetric check is performed using both samples at
the left and right of current sample. The only exception is when the check is
performed at the edge of the bandwidth of interest, in which case only two
samples are used to construct a one-sided linear prediction error A, or Af.

Performing this local passivity check using T° computational threads is
straightforward, since a direct static scheduling is sufficient. In fact, since
the C check is performed on a prescribed set of samples which remains fixed
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and does not grow through iterations, the static work allocation discussed in
Sec is already optimal. Therefore, this aspect is not further discussed.
As a result from above procedure, the model is concluded to be passive in
(Wi, Wiy ) if (ZI17) is satisfied at both w,, and wy, 1. Conversely, the model
is concluded to be non-passive in (wy,,wm+1), or at least in some portion of
it, if any of the maximum singular values at sample m and m + 1 is larger

than one,
mlaxai(jwm) >1 or mzaxal-(jwmﬂ) >1. (2.119)

For all other cases in which

maxo;(jw,) <1 and maxo;(Jwmer) <1, (2.120)

but (ZII7) is not satisfied at w,, and w,,,1, the sub-band is flagged as unde-
termined since the singular value trajectories are too close to the threshold.

Once all sub-bands are flagged, adjacent passive (non-passive or unde-
termined) bands are merged to form the subdivision (ZI03). Finally, the
local maxima (&, 6;) of the singular value trajectories for each non-passive
sub-band are determined by constructing a local quadratic polynomial that
interpolates three adjacent samples and by taking its peak value. All these
operations require negligible time and are performed as a serial post process-
ing in the actual implementation.

2.5.4 Optimizations

The local passivity check C as described above is performed after the adap-
tive refinement iteration R is completed. This strategy presents some critical
aspects related to memory use and management. In fact, the C check requires
to store, for each sample w,, to be checked, the matrix @(jw,,), the eigen-
value matrix A,,, and the eigenvector matrices at the left and right samples
V,+1. As a consequence, until a sub-band (w,, wy,+1) is definitely flagged as
passive /non-passive /undetermined, all the above quantities need to be stored
for each of the two samples m, m+ 1. For a P x P transfer function resulting
into a number L of final frequency samples, the overall storage requirement
scales as O (2P%L). For instance, a 100-port structure with 10000 frequency
samples requires more than 1.6 GB of storage using complex double-precision
arithmetic.

This large storage requirement can be relaxed and significantly reduced
with a modified scheduling approach that interleaves the application of R
and C iterations. In fact, after each sub-band (wy,,wn1) is flagged after
running the C check at both its endpoints, only the P eigenvalues along the
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Table 2.6: Peak memory usage during parallel adaptive sampling and local
passivity check for a test case (L = 4392, P = 56) with (M) and with-
out (M;) memory optimization. Results are shown for different number of
threads T'.

[T M, MB_M,, MB |

1 442 21
2 446 24
3 451 28
4 455 34
b} 461 32
6 471 39
7 480 41
8 491 90

diagonal of A,, need to be stored for the final identification of local singular
value maxima. The idea is then, during the R refinement loop, to

e apply a C check whenever a triplet of adjacent samples (w1, Wi, Wint1)
is finalized by the R check;

e flag sub-band (w,,,wm+1) as soon as both samples are processed by a
C check;

e free the memory from data that is not required by later R or C checks,
and reuse it to store new samples data, as required by local refinement.

The actual implementation does not free or allocate any memory during
the main refinement loop, since this would dramatically impact performance
(memory management operations require exclusive access to resources and
are not thread-safe). A preallocated pool (buffer) of elementary memory cells
is used, whose dimension is based on some heuristic criterion depending on
the number of concurrent threads 7. These cells are reused by suitable link-
ing through pointer reassignment. If the preallocated memory pool is full,
then another block is allocated at once, thus limiting impact on parallel per-
formance. Table illustrates the memory savings obtained for a significant
test case. Note that this memory optimization is achieved with no loss of
performance or parallel efficiency.



CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 60

Table 2.7: Test cases A-I: L, P and N denote the number of frequency
samples in the raw data, the number of ports and the dynamic order of the
obtained model, respectively.

Case L P N

511 | 18 | 4572
4096 | 36 | 4968
2000 | 36 | 8064
2043 | 18 | 2952
4096 | 18 | 3600
145 | 35 700

990 | 155 | 10540
282 | 164 | 6888
348 | 172 | 5504

DT OQEEHOQwW=

2.5.5 Parallel passivity check results

The performance of the proposed passivity check scheme is discussed in this
section. From the test cases listed in Table 2.1] the most relevant examples
are selected for this section, i.e. cases 5 and 6. Cases A-J are high order
models, whose details can be found in Table .7 specifically selected to test
and challenge the proposed algorithm. Those test cases are very challeng-
ing in term of execution time, therefore are very good benchmarks for the
parallelization strategy proposed in Section The first set of results in
Table 2.8 reports the number of frequency samples required by a continuous
smooth tracking of the singular values/vectors. The set of initial samples S°
was generated using the guidelines of Section 2.5.2] with [;, = 300 linearly
spaced samples, [; = 4 samples per decade over 9 decades of frequency, and
2R + 1 = 7 samples per pole. Since this number of initial samples is quite
limited, it is expected that the PAS scheme will add many samples in order
to track unambiguously the singular value trajectories. This is confirmed by
the number of final samples #{S°4} reported in Table 28] which is always
in the order of several thousands. Figure reports few selected singular
value trajectories for case 5 within a restricted frequency band, showing how
the final set of samples is able to resolve all fine variations of the curves,
which are sampled too coarsely by the initial sample distribution.

The passivity violations detected by the PAS scheme are depicted in Fig-
ure while Table 2.9 reports the timing results and the parallel speedup
for T'= 8 and T' = 16 concurrent threads obtained the proposed PAS scheme,
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Figure 2.14: Starting (circles) and final tracked frequency samples of few
selected singular values for case 5.

Table 2.8: Passivity check: number of initial #{S°} and final #{S*}
frequency samples obtained by the proposed adaptive frequency sampling
scheme.

Case | #{S8"} | #{5"}
5 376 5229
6 451 3129
A 1187 13216
B 766 6568
C 1093 16049
D 873 6932
E 1007 10112
F 348 1969
G 258 12712
H 467 11229
I 429 10128
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Table 2.9: Timing results for the Parallel Adaptive Sampling and local pas-
sivity check scheme for T'= 1,8 and 16 threads, with corresponding speedup

factors.

Case Ti, S T8, S Ti6, S
5 112.76 | 14.31 (7.88x) 7.11 (15.87x)
6 5.69 0.73 (7.80x%) 0.37 (15.39x)
A 444.01 | 59.02 (7.52x) | 30.90 (14.37x)
B | 4088.17 | 533.90 (7.66x) | 277.28 (14.74x)
C 104.72 | 13.89 (7.54x) 7.35 (14.25%)
D 373.64 | 49.65 (7.53x) | 25.66 (14.56x)
E 628.17 | 82.56 (7.61x) | 41.82 (15.02x)
F 1.39 0.19 (7.15x%) 0.11 (13.21x)
G 601.55 | 77.83 (7.73x) | 40.54 (14.84x)
H 569.44 | 72.77 (7.83x) | 36.66 (15.53x)
I 374.20 | 48.10 (7.78x) | 24.05 (15.56x)

inclusive of both adaptive sampling refinement and local passivity check. It
can be seen that the scalability of this passivity check scheme with the num-
ber of cores is excellent, with a speedup superior to 15x in almost all cases.

Finally the average speedup on several test cases is depicted in Fig-
ure 2,161

2.6 Conclusions

In this Chapter, a comprehensive framework for compressed passive macro-
modeling of large-scale interconnect structures was presented. The main
enabling factor for this new approach is the observation that the whole set
of P? scattering responses of P-port large-scale systems can be expressed
through a much lower-dimensional set of p < P basis functions. A singular
value truncation is able to determine both the number of such basis func-
tions and the corresponding expansion coefficients, with full control over the
approximation error.

The above compressed data representation was used to derive reduced-
complexity Vector Fitting and passivity enforcement schemes. The former
generates a rational macromodel for the set of basis functions. The latter
enforces global passivity constraints using a restricted set of perturbation
variables and relying on a robust and efficient parallel implementation of
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Figure 2.15: Maximum singular value (thin line) and frequency bands QP
that are flagged as passive after the adaptive sampling check (thick line).
Top panel: case 5; bottom panel: case 6.
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Speed-up
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No. of threads

Figure 2.16: The plots report the ratio 7/ versus the number 7" of compu-
tational threads for the best and worst cases (dashed lines), and the average
(solid lines) among all analysed benchmarks.
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the passivity check algorithm. The overall result is a passive macromodel-
ing scheme that has the potential to outperform state-of-the-art methods in
terms of scalability, memory occupation, and CPU requirements, as illus-
trated through several challenging benchmark cases.



Chapter 3

Small-signal and parameterized
macromodels

According to the design flow described in Section [[.3] once a prototype de-
sign is available, extensive numerical simulations are required using suitable
models for all Circuit Blocks (CBs), in order to verify the proper functioning
of the entire system under realistic operating conditions. It is clear that the
adoption of full transistor-level models for such verifications is not viable due
to excessive overall complexity. In several situations, however, the dynamic
behaviour of individual CB’s can be approximated by suitable reduced-order
behavioural macromodels. This is in fact true for those devices, such as
Low Noise Amplifiers (LNA), Operational Amplifiers, Low Dropout regu-
lator (LDO), or programmable filters, that operate almost linearly when
suitably biased around a specified operating points. Once validated against
the full transistor-level netlist models, such behavioural equivalents offer an
excellent solution for drastically reducing the overall runtime of system-level
simulations.

In this Chapter, a new parameterized behavioural modelling approach is
described that is able to: i) reliably compute a reduced order small-signal
macromodel of linearized CB; ii) enforce the DC response of the reduced
equivalent to match exactly the DC response of the original CB; iii) include
in the macromodel’s coefficients a closed-form parameterization in terms of
both biasing conditions, e.g. the nominal Vj; applied to the CB, and even ad-
ditional design or operation parameters, e.g., the temperature. The approach
presented here builds on existing parameterized macromodeling approaches
that are available in the literature [112, 115, 128, 182, 129, 130, (131, 132,
133, 134]. The focus here is to show what modifications are needed in these
approaches in order to guarantee at the same time a good parameterization
and full DC compliance.

66
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For the sake of clarity, Section [3.1]is dedicated to the presentation of the
DC correction strategy being such a methodology of interest by itself when
applied to Linear Transfer Function Models (LTFMs); the extension to the
parameterized case is detailed in Section together with applications to
real designs.

3.1 DC-corrected small-signal models

Non-linear and causal systems, for which the wavelength associated to the
operating frequency is much larger than the circuits physical dimensions, can
be modelled via finite-order non-linear state space equations |135]

@(t) = f(a(l), u(t)) (3.1)
y(t) = g(x(t), u(t)) 3.2

where u(t),y(t) € R” denote system inputs and outputs, x(¢) € R is an

internal state vector, and &(t) = dfl—gt).

When (B.I)-(B2) represent a non-linear circuit block for AMS and RF
applications, like LNA’s (Low Noise Amplifiers), OPA’s (Operational Am-
plifiers) and programmable active filters, a significant complexity reduction
of these non-linear state equations is possible. In fact, since these devices
are designed to operate almost linearly when driven below maximum allowed
input power or signal magnitude, the input, output and state vectors can be
represented as a superposition of a constant DC term (upc, pc, Ype) on
all the ports and a small-signal time dependent term (w(t), Z(t), y(t)) as

ult) = wupe+all), (3.3)
x(t) = xpc+x(t), (3.4)
y(t) = ypc+U), (3.5)

where vectors upc, Tpe, Ype collect the constant DC contributions. If only
constant inputs are applied (DC conditions), it follows

u(t) =upc and @(t) =0, (3.6)

which applied to (81) and (B.2)) leads to the definition of the DC operation
point as the solution of

Jf(xpc,upc) =0, (3.7)
Ypc = 9(Tpc, upc) - (3.8
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The triplet upc, €pe, Ype 1s available from a direct DC simulation of the
transistor-level circuit block.

Using (B3)-B3) into [B.1)-(B:2) leads to

2(t) = f(zpe + &(t), upc + (t)), (3.9)
y(t) + ype = g(xpc + (1), upc + u(t)) (3.10)

which, under small-signal excitation, can be approximated by a first-order
Taylor expansion of both state and output equations

z(t) ~ Az (t) + Ba(t), (3.11)
y(t) ~ Cx(t) + Da(t), (3.12)

where A € RV*N B ¢ RV*P C € RPN and D € RP*? denote constant
state-space matrices defining the small-signal Linear Transfer Function Model
(LTFM) of the Circuit Block (CB) around the specified bias conditions, with
frequency-dependent input-output response

H(s) =C(sI- A)"'B+D. (3.13)

The elements of these state matrices are formally defined as partial deriva-
tives of the various components of ([B.I)-(3.2) evaluated at the current DC
point. However, as discussed in [136], it is also possible to obtain the LTFM
by first extracting a set of frequency-dependent small-signal Scattering S;,
Admittance Y; or Impedance Z; parameters, in the following collectively de-
noted as H; with [ = 1,..., L, by exploiting standard features of state of
the art circuit solvers, namely a set of small-signal AC analyses. Then, this
data is fed to a macromodeling algorithm, e.g. Vector Fitting [62], to di-
rectly obtain the reduced-order macromodel (B11))-(3:12]) by minimizing the
macromodel error |H(jw;) — Hy|| in the desired norm.

The LTFM usually attains a very good accuracy for the small-signal char-
acterization of the CB in the frequency domain [136]. Unfortunately, similar
good results can not be obtained from time domain (transient) simulation.
In fact, a direct replacement of the non-linear CB with the LFTM in a tran-
sient, simulation setup leads to possibly incorrect biasing, since the small-
signal macromodel does not include any information of the underlying DC
operation point. When excited by constant inputs u(t) = upc, the LTFM
provides its closed form DC output solution

Jpc = H(0)upc = (D — CA™'B)upc, (3.14)

which has no relationship with the true DC operation point of the original
CB. This information is not embedded in the LTFM, which only represents
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l}nc = H(O) Upe
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Figure 3.1: Graphical illustration of the DC point correction for a static one-
port case. The LTFM (blue line) provides a good (first order) approximation
near the operating point of the non-linear characteristic (red curve), but the
DC solution of the LTFM ¢ from (B.I4]) has no relation with the correct
DC solution yp.

[=]

the dynamics of the small variations around the bias point. This issue is
summarized graphically in Figure 3.1

Considering the case of several CB’s modelled as LTFM’s and connected
together in a long chain to realize a low complexity model of an RF transceiver
path, it is clear that the DC solution of all individual simplified models
must comply with the exact bias conditions, especially when some non-linear
components are still present in the testbench. An example is provided by the
system level schematic of a simple receiver stage in Figure [@], which
shows how a circuit block driven by the outputs of the previous LTFM could
receive as an input the wrong DC bias and could therefore be operating
incorrectly.

3.1.1 DC correction strategy

To overcome the intrinsic DC-OP accuracy limitation of the LTFM at DC, the
following correction strategy can be implemented. Assume that the correct
bias conditions provided by the input-output pair (upc, ype) are known as
a solution of (B8] for the original non-linear system. Then, once the small-
signal macromodel (B:10))-([3.12)) is available, its closed-form DC solution § ¢
driven by the same nominal biasing inputs wupc is computed as in (3.14).
Compute the difference

AYype =Ypc — Upc (3.15)
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Control Logic Control Logic
Bias generators Bias generators
Filters Filters ADC

LNA .
Mixer

Figure 3.2: Top level schematic of a basic receiver chain [137]. For the
simulation of such a CB chain it is essential that each block in the chain biases
the following CB correctly. Even a small error in the DC-OP modelling of
some CB, like the LNA, will corrupt the performance of the following CB’s.

;(I) +IDL‘1__ ;(t) +"}D£I LTF 'Il/t) +}DL‘2 » ;‘{t) +IDL‘2
- g Model ) B

Al

DC1

Al

DCz2

Figure 3.3: DC point correction for a two port LTFM. The correct DC bias
is set via constant current sources Alpc; and Alpcs applied at the input
ports of the LTEFM. The current source values are provided by the elements
of the correction vector (3.15]).

which represents the correction that must be applied to the DC solution of
the LTFM in order to obtain the nominal CB bias level.

The correction terms Ayp~ are applied by defining an enlarged DC-
corrected small-signal macromodel which embeds the original LTFM and
adds at its interface ports suitable constant sources, whose values are the
components of Ayp.. In case the k-th port input u is a voltage and the
corresponding k-th output y, is a current, the correction is applied as a shunt
current source with value Ay ... Conversely, if u; is a current and y, is a
voltage, a series constant voltage source Ay is applied. The basic idea is
depicted in Figure 3.3 for a two-port voltage-controlled device. It should be
noted that using constant correction sources will affect and fix the DC point
only, without any effect on the accuracy of the LTFM around the OP point
under small-signal excitation.

The proposed strategy for the extraction of a low-complexity DC-compliant
small-signal linear macromodel can be summarized in the following steps:
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1. create a suitable CB characterization test bench and apply there the
desired DC operation point setting to each CB pin;

2. extract yp- and the small-signal frequency-dependent S;, Y,, or Z,
parameters from a circuit simulation of the non-linear system, here

represented by (B.I)-(3.2);

3. perform a rational curve fitting of the S;, Y,;, or Z; parameters, e.g.
using VF [62], and obtain a state-space realization of the LTFM;

4. compute §pe from BI4) and Ay from (BI15);

5. synthesize a circuit netlist using one of the standard macromodel real-
ization described in Chapter @, complemented by DC correction sources
Aype at its external ports.

3.1.2 Results

This section presents some results to illustrate the effectiveness of the pro-
posed method. The following test cases are considered.

o A two-stage buffer: this is a simple non-linear example whose netlist
is depicted in Figure B.7. The accuracy of the extracted LTFM can be
seen in Figure 3.4

e A Low-Drop Out (LDO) regulator: the corresponding CB is taken from
a real 3G transceiver design. This is basically a DC voltage regulator,
controlled by external biases and a logic unit. LDO’s can operate with a
very small input-output differential voltage. The high level schematic of
this component is depicted in Figure[3.8 The accuracy of the extracted
LTFM can be seen in Figure 3.5

e A Low Noise Amplifier (LNA): the corresponding CB was also taken
from a real 3G transceiver design. LNA’s are widely used in receiver
chains like the one depicted in Figure[3.2l A high level schematic for the
LNA is depicted in Figure 3.9 The accuracy of the extracted LTFM
can be seen in Figure [3.6

For each test case, the relative error between the raw and DC-corrected
LTFM responses is considered under constant excitation by the nominal bias
inputs. These errors are defined, respectively, as

Ypc — Ypo

69—

) (3.16)
Yoo
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Figure 3.4: S3 3 from the small-signal model of the Buffer. The red dashed
line is the model response while the blue lines are the data used for the

identification.
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Figure 3.5: 52 from the small-signal model of the LDO. The red dashed
line is the model response while the blue lines are the data used for the
identification.
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Figure 3.6: S;; from the small-signal model of the LNA. The red dashed
line is the model response while the blue lines are the data used for the
identification.

for the raw LTFM, and

_|\Ypc — Ypc
€ = | —————

(3.17)

Ypc

for the DC-corrected LTFM, where 9y represents the DC output obtained
from the LTFM after the application of the DC correction sources defined
by B.I5).

The results obtained by a circuit simulation of the original CB and syn-
thesized LTFM are reported in Table 3.1l where all DC results for all port

Figure 3.7: A two-stage buffer.
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Figure 3.8: High-level schematic of a Low-Drop Out (LDO) regulator CB
extracted from a real transceiver block. The Control Logic can be used to
select the desired voltage output V,,, while V.. and Vi pp are reference and

supply voltages.

Bias generators|
Control Logic

VDD Vss

Vinp

Vinn

LNA

I

Vop

Von

Figure 3.9: High-level schematic of an integrated LNA, which is part of a
real receiver chain (Figure[3.2)); terminals V;,,, and V;,,,, define the differential
input, while Vpp is the supply voltage and V,, V,, define the differential

output pair.
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Figure 3.10: Output transient results for the LNA example obtained with
the original CB (solid blue line) the raw LTFM (solid black line), and the
DC-corrected LTFM (dashed red line). The input signal for the LNA is a
simple sine wave having 1mV peak to peak amplitude. This simple example
clearly demonstrates the effectiveness of the proposed strategy. The transient
response obtained using the LTFM (black solid line), is very accurate except
for the vertical shift due to its incorrect DC level. The DC-corrected LTFM is
completely overlapped to the transient response obtained from the nonlinear
CB.

variables are reported, together with the corresponding LTFM relative er-
rors. As seen from this table the DC-corrected LTFM results are exact, as
expected, whereas the raw LTFM provides an incorrect DC solution.

In order to further illustrate the advantages of the proposed reduced-
order modelling strategy, a transient simulation is performed for the LNA
structure using both the original nonlinear CB and the small-signal raw and
DC-corrected macromodels. The results are depicted in Figure B.I0. It
is clear that the DC-corrected macromodel provides practically coincident
results with the reference, whereas the raw LTFM results in a DC shift of its
response. Note that the reference simulation took 10 minutes to perform a
transient analysis of 500ns, whereas the DC-corrected LTFM simulation only
required 5 seconds, with a significant speedup.

3.2 Parameterized small-signal models

In this section the DC correction strategy from Section B.I.T] is extended to
the parameterized case and combined with the state of the art techniques for
the identification of parameterized models from a set of raw data.



CHAPTER 3. SMALL-SIGNAL AND P-LTI MACROMODELS

76

Table 3.1: Voltage and currents for the test cases in Figure B.7H3.91 Where
Ypc are the DC data from the CB under analysis, yp- are the DC data
obtained from the LTFM before the application of the correction strategy and
Ypc are the same data after the application of the DC correction strategy.

Error norms €; and ¢; are defined according to (3.16) and (3.17).

Test Ypc Ypc (€) Upc (&)
I | -1.58e-11] 0 1) | -1.58-11 (0)
ot | 1.55e-3 | 3.87e-3  (1.5) | 1.55¢-3  (0)

Buffer 00| -155e-3 | -3.87e3  (1.5) | -L.55e-3  (0)
Vow | 1.55e-6 | 3.87e-6  (1.5) | 1.55e-6 (0)
Iop | -3.39e-4 | -1.32e-3  (28) | -3.39e-4  (0)

Do et | 253 | -26e3  (0.04) | -25e3  (0)
Lw | 3.39%e-4 | 1.32e-3  (28) | 3.39e-4  (0)
Vow | 1.204 | 1.205  (0.04) | 1.204  (0)
Iop | -1.81e-3 | 8.3e5 (1) | -1.81e3 (0)
Iss | -1.85e-3 | 0.024  (10) | -1.85¢-3  (0)

ina L | 524e3 | -5.62e-3  (7e2) | -5.24e-3 ()
Ion | -5.24e-3 | -5.62e-3 (7.2e-2) | -5.24e-3  (0)
Vo | -0262 | -028 (6.8e-2) | -0.262  (0)
Voo | -0.262 | -0.28 (6.8¢2) | -0.262  (0)
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Consider a generic nonlinear and dynamic Circuit Block (CB) represented
by the following state-space equations |135]

x(t;n) = f(z(t;n),u(t);n) (3.18)
y(t;m) = g(z(t;n), u(t);n) (3.19)

where u,y € R denote system inputs and outputs, * € R" is an inter-
nal state vector, and x indicates the time derivative of the state vector.
In (BI8]), the vector n € R” collects the v physical or design parameters
which the circuit block response depends on, that are the main subject of
this investigation. Note that both state and output equations may depend
on 1, inducing a parameter dependence on their solution. Therefore, both
state x(t;m) and output y(¢;n) vectors are multivariate functions of time ¢
and parameters 7). Assume that inputs are invariant for each geometrical or
physical configuration of the system, so that u(t) does not depend on 7.

3.2.1 Linear Transfer Function Models

For AMS and RF applications several circuit blocks such as Low Noise Am-
plifiers (LNA’s) or programmable active filters are designed to operate al-
most linearly when suitably biased and excited by small-signal inputs within
the maximum allowed range of input power. Under these conditions, in-
put, output and state vectors can be represented as a superposition of con-
stant DC terms upc, €pce(n), Ype(n) and small-signal time dependent terms

a(t),z(t;m), y(t;n) as

u(t) = wpe+alt), (3.20)
z(t;m) = xzpc(n)+z(t;n), (3.21)
y(t;m) = ypcn) +9(t;n). (3.22)

If the small-signal input @(¢) is switched off and only the constant DC
bias is applied, it follows

u(t) =upc and @(t;m) =0 (3.23)

uniformly for each instance of the parameter vector . Application to (3.18])-
(B.19) leads to the definition of the parameter-dependent DC operating point
as the solution of

f(.’lipc(’r[), uDC) =0, (3'24)
Ypc(n) = g(xzpc(n), upc). (3.25)
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The triplet upc, pc(n), Ype(n) is available from a direct DC sweep of the
transistor-level circuit block covering the desired range of variation of the
parameter vector.

Conversely, when the small-signal input is switched on, insertion of (3:20)-

B22) into (B.IR)-(B.19) leads to

2(t;m) = f(zpc(n) + (tn), upc + a(t)), (3.26)
y(t;m) +ypo(n) = g(xpc(n) + Z(t;n), upc + a(t)), (3.27)

which can be approximated by a first-order Taylor expansion of both state
and output equations as

x(t;n) ~ A(n)z(t;n) + B(n)a(t), (3.28)
y(t;m) =~ C(n)z(t;n) + D(n)u(l), (3.29)

where A(n) € RV B(n) € RY*P C(n) € RP*N and D(n) € RP*P
denote parameter-dependent state-space matrices defining the small-signal
Linear Transfer Function Model (LTFM) of the CB around the specified bias
conditions, with frequency- and parameter-dependent input-output response

H(s;n) = C(n)(sI— A(n))"'B(n) + D(n). (3.30)

The elements of these state matrices are formally defined as partial deriva-
tives of the various components of (B.I8)-(3.19) evaluated at the current DC
point.

3.2.2 Frequency and Time-domain macromodeling

The standard approach for the characterization of the small-signal input-
output behaviour of the CB is to extract a set of frequency- and parameter-
dependent small-signal Scattering, Admittance or Impedance parameters,
through a set of small-signal AC (Alternate Current) analyses. Standard
circuit solvers of the SPICE class are able to perform this operation only for
discrete values of frequency

wefw, l=1,...,L} (3.31)

and parameters
ne{n, k=1,..., K}, (3.32)

resulting in a set of P x P complex matrices

H,;, = H(]Wl; "7k) . (3-33)
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The computed DC operating points for the state and the output vectors over
the parameter grid are denoted as

Tpck = ﬂ’JDC(??k) (3-34)
Yook = Ypc(ny) - (3.35)

The discrete samples ([3.33)) of the linearised system response provide an
excellent approximation of the system behaviour for design and verification
purposes, as long as this verification is conducted in the frequency domain
and for the available parameter values n,. However, if the CB response
is required for an arbitrary parameter configuration n, that is not part of
the discrete set {m,}, a new extraction is required by solving the original
CB system (B.I8)-(3.19). It is clear that for complex CB’s and for repeated
parameter instances this approach may be overly time-consuming.

If the verification has to be performed in the time-domain, a frequency-
to-time conversion is further required. Several macromodeling approaches
are available @, , @] for performing this conversion and obtaining an
approximate state-space representation in form of (3.28))-(B.29) or (3.30).
This process usually leads to a reduced-order compact system with a number
of states n < N.

Macromodeling approaches are standard for non-parameterized systems.
In the proposed setting, for any fixed parameter instance n = n,, the fre-
quency dependence of the data samples H,j is approximated by a rational
model, or equivalently a state-space system in form

H;(s) = Ci(sI — A) "By + Dy, (3.36)

by minimizing the macromodel error |[Hj(jw;) — H; || in the desired norm.
The Vector Fitting (VF) scheme [@] with all its possible variants provides
therefore an excellent numerical tool.

The standard VF approach however does not solve the problem of making
a compact model available for any desired values of the parameters n. Fortu-
nately, an explicit treatment of the parameter dependence for the derivation
of a parameterized macromodel is also possible, using one of the available
parameterized macromodeling strategies ﬂm, w, m, @, , , ,
|L3_d, |L3j, |L34, |L3j] These methods are able to process collectively the
samples (3.33) to obtain a multivariate representation of the system as a
parameterized reduced-order macromodel in a form identical to (3.30), by
minimizing the error |[H(jw;; m;,) —H, k|| over the entire set of frequency and
parameter samples. A more detailed description of this approach is post-
poned to Section
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3.2.3 Parameterized macromodeling

The Sanathanan-Koerner algorithm discussed in Section is now extended
to the parameterized identification problem. Consider the following repre-
sentation for the parameterized small-signal macromodel

d(sa "7) ZMZO Tm(rr/)(bm(S)

where the frequency-dependent basis functions are partial fractions associ-
ated to a set of distinct prescribed poles ¢,

bos) =1, mls) = — (3.38)

S — dm

and where the parameter-dependent coefficients are expressed as a superpo-
sition of multivariate basis functions &;(n) as

R..(n) = ZRm,jfj(ﬂ)a Tm(n) = Z’f’m,jfj(ﬂ) (3.39)

with constant and unknown coefficients R,,; and r,, ;. The representa-
tion (B.37) is quite general, since it provides an implicit parameterization
of M-th order rational matrices with both parameter-dependent poles and
residues [141), 112, 128].

Several choices are possible for the basis functions &;(n), such as mono-
mials, orthogonal polynomials, or finite elements defined over structured or
unstructured grids in the parameter space [112, [140, [128, 182, 180, 1129, 130,
131, 1132, 1134, [133|. In this work standard monomials are used by setting

&(m) = H i’ (3.40)

with 4 spanning the number of free parameters (components of n), with j
interpreted as a global index spanning the set of all multivariate monomials
with overall degree > . x;; < k. The choice of polynomials is justified here
by the expected smooth parameter dependence for the structures of interest.
This will be confirmed by all examples of Section 3.3l This choice is however
not restrictive, since the same procedure can be applied without any modifi-
cation to different parameterization schemes based on general basis functions
&(n).

Given the set H;j of small-signal transfer matrices available at the fre-
quency points w; and parameter grid values 1, the coefficients R,,, ; and ry, ;
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are computed through a generalized parametric Sanathanan-Koerner (SK) it-
eration |60, 81], an extension of the algorithm presented in Section [2.2] which
minimizes the following cost function

L K
2
&= sz(,’li) [N(“) (g5 1) — ™) (e nk)Hl,k] (3.41)
=1 k=1
at each iteration p = 1,2, ..., where the iteration-dependent weight wl(f,? is

defined as the inverse of the denominator estimate available at the previous
iteration

_ -1
i = [ (s m)] (3.42)

with the initialization wl(?lg = 1. The above SK formulation is a standard
approach in linear and parameterized macromodeling. As discussed in Sec-
tion it allows to cast a global nonconvex optimization problem as a se-
quence of linearized problems (B.41]), since the residual whose norm is being
minimized at each iteration is an affine combination of the free variables
R, ; and 7, ;. Therefore, the numerical solution of (B.4I]) does not involve
particular difficulties, requiring a simple linear least squares solver. There
is however an additional difficulty, due to the fact that (B.41I]) will minimize
the least squares error, without any control over the accuracy of the fitted
model at prescribed frequency points, including DC. For the applications of
interest, which requires an exact representation of the DC response of the
small-signal macromodel, a better control is needed.

The DC response of the parameterized macromodel is readily computed

from (B.37) as

_N©O,7) o Rn(1)6m(0)
HOD =500 = S0 o mém(0)

(3.43)

Denoting with

Ho . = H(0;m;) (3.44)
the DC value of the linearized response of the original system, which is easily
extracted or extrapolated from a circuit solution of the original schematic,
the parameterized macromodel can be enforced to match exactly this DC
response by adding the following set of equality constraints

> Run()0m(0) = Hox Y 7n(0,)6m(0) = 0 (3.45)

for k = 1,..., K to the linear least squares problem (B.41]). The con-
straints (3.40) are also expressed as affine combinations of the decision vari-
ables. Therefore, the minimization of (8:41]) subject to (B:43]) is easily achieved
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through any standard solver for linearly-constrained linear least squares prob-
lems.

Once the macromodel coefficients are available, the computation of the
DC bias correction sources using (B.48)) is performed, for each of the available
parameter grid values ;. Then, a parameterized set of DC correction sources
is defined as a superposition of the basis functions £;(n) as

Apc(n) = ZA]@(n)- (3.46)

The coefficients A; are computed by enforcing the fitting/interpolation con-
dition (B:49) for each k, which requires the solution of a further linear least
squares system.

3.2.4 The need for DC correction

Another issue may affect the above described macromodeling flow, possibly
making the resulting small-signal parametric macromodels completely use-
less when employed in time-domain transient simulations. In fact, a direct
replacement of the nonlinear CB with the Linear Transfer Function Model
(LFTM) in a transient simulation setup leads to possibly incorrect biasing,
since the small-signal macromodel does not include any information of the un-
derlying DC operating point. When excited by constant inputs w(t) = upc,
the LTFM (B.30) provides its closed form DC output solution

Ipc(n) = H(0;n)upc
= (D(n) — C(n)A™'(n)B(n))upc, (3.47)

which has no relationship with the true DC operating point of the original
nonlinear CB. This information is not embedded in the LTFM, which only
represents the dynamics of small signal variations around the bias point.
This problem becomes severe when several CB’s are connected together to
form a complete RF transceiver path. If one of the CB models provides the
incorrect DC bias as its output, which is in turn fed to the input of another
block, the latter will not function properly due to inconsistent biasing, and
the entire verification results will be wrong.

For the non-parametric case, or equivalently for any fixed instance n = n,,
it was shown in [90] and Section B.J how the correct DC bias can be recovered
by adding suitable constant DC correction sources at the macromodel ports.
Assume that for any discrete parameter value 7, the correct bias conditions
provided by the input upc and output Ypc, = Ypco(ny,) are known from
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Figure 3.11: DC point correction for a two port LTFM, assuming a hybrid
configuration with one current-controlled (left) and one voltage-controlled
(right) port. The correct DC bias is set via constant current sources AVpe
and Alpco applied at the input ports of the LTFM. The source values are
provided by the elements of the correction vector (3.48]).

a solution of (B.25) for the original non-linear system. The DC solution
Ypc(ng) of the LTFM driven by the same nominal biasing inputs upc is
computed as in ([B.47), and the difference

Apc(Mr) = Yper — Ipc () (3.48)

is evaluated, which represents the correction that must be applied to the DC
solution of the LTFM in order to obtain the nominal CB bias level. The
correction terms A pc(n,) are applied by defining an enlarged DC-corrected
small-signal macromodel which embeds the original LTFM and adds at its
interface ports suitable constant sources (see Figure 3.11]), whose values are
the components of Apc(n,). It should be noted that using constant cor-
rection sources will affect and fix the DC point only, without any effect on
the accuracy of the LTFM around the operating point under small-signal
excitation.

The above approach is valid only for a fixed parameter value n = n,.
Therefore, a new LTF macromodel extraction and a new computation of the
DC correction sources for any new instance of the parameters is required.
The main purpose of this work is to present a general strategy that is able
to process the full set of samples (3.33), providing a DC-compliant reduced-
order parameterized LTF macromodel that can be directly used to replace a
transistor-level CB for any system-level time-domain verification and for any
arbitrary parameter value 1 within an admissible range.
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3.2.5 DC-compliant parameterized macromodeling

The proposed strategy for the extraction of a DC-compliant and parameter-
ized small-signal macromodel can be summarized in the following steps:

1. create a suitable CB characterization test bench in the adopted circuit
simulation environment and apply the desired biasing circuitry to each
CB pin;

2. extract DC bias information y ¢, and small-signal frequency response
H, ;, of the CB from a set of circuit simulations of the non-linear system,
here represented by (B.I8)-(319), for a set of discrete parameter values
ne{n,, k=1,..., K} and at a discrete set of frequencies w € {w;, | =
1,...,L};

3. perform a parameterized rational curve fitting of the data H;; using
a multivariate parametric macromodeling scheme, and obtain a state-
space realization (3.30) of the LTFM;

4. compute §po(n,) from BA7) and Apc(n,) from (B:48) over the dis-
crete parameter grid n,;

5. interpolate the data Apc(m;) with a closed-form parametric expression
Apc(n) so that )
Apc(ng) = Apc(ng) (3.49)

6. synthesize a circuit netlist with a standard parameterized macromodel
realization, complemented by DC correction sources A pc(n) connected
at its external ports.

Figure 311 depicts the result of this process in terms of high-level schematic
blocks. Next sections provide more details on the proposed modelling strat-
egy for steps 3), 5), and 6).

3.2.6 Macromodel representation

The above described procedure results in a DC compliant parameterized
small-signal macromodel H(s,n) defined in (B37), plus a set of parameter-
dependent DC correction sources Apc(n) defined in (B.46). These two block
elements are connected as in Figure 3.11l The final step consists of casting
these expressions in a form that can be used in a circuit solver of the SPICE
class.
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For the small-signal macromodel part, the detailed derivation in [81],
see also |126, 142, [143] shows that H(s,n) can be easily converted into a
parameterized descriptor form

Ez(t;n) = A(n)i(tn) +B(n)a(t), (3.50)
y(t;n) = Cn)z(t;n)
where
10 Ay B,
b= [o o] Aln) = [cm) Dz(n)] (3:51)
B=[0 —I,]" C(n) = [Ci(n) Di(n)] (3.52)
and where
A, = blkdiag{gnIp}M_, (3.53)
B, =[Ip,...,Ip)" (3.54)
Ci(n) = [Ri(n), ... Ru(n)] (3.55)
Co(m) = [r(m)Ip,...,ru(n)Ip] (3.56)
Di(n) = Ro(n) (3.57)
Dy(n) = ro(n)Ip (3.58)

with g, basis functions poles from (3.38). The main advantage of representa-
tion (B.50) is that those state-space matrix elements that are parameterized
coincide with the coefficients R,,(n) and r,,,(n). Since polynomial basis func-
tions &;(n) are used in the expansion, a SPICE synthesis of these equations
is straightforward using elementary dependent sources with polynomial gain.
The same consideration and synthesis applies for the DC correction sources

ADC(??)-

3.2.7 Stability and passivity

The proposed macromodeling flow is applied here to describe the linearized
behavior of active nonlinear CB’s. Therefore, passivity verification and en-
forcement is not required at all since the original CB is not a passive device.
Should the application at hand require a guaranteed passive parameterized
macromodel, an internally passive parameterization should be used instead
of (B31). See [129, 1130, 131, 132, 133, [134] for more details.

Conversely, uniform stability is important for any subsequent transient
analysis. All macromodel poles (which depend on the parameters 1) should
be confined into the left half complex plane for any value of the parameters
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Figure 3.12: Left panel: using a coarse grid (dots) for model identification
may lead to parameterized pole trajectories (dashed line) leaking into the
right hand complex plane. Right panel: grid refinement constraints the pa-
rameterized poles into the stable region.

within the admissible range. A simplistic approach to enforce uniform stabil-
ity is to not parameterize the poles at all, at the price of a reduced accuracy
and generality of the small-signal macromodel. This is easily achieved by
removing in (3.37) the dependence on the parameters n of the denomina-
tor coefficients r,,(n), see [136]. In general, necessary and sufficient crite-
ria that are able to guarantee uniform stability without compromising the
macromodel accuracy, e.g. by imposing additional structure in the model
equations, are still not available.

Guaranteed stable non-parameterized macromodels (3.36) for any fixed
parameter value are easy to obtain, see [62]. When introducing the external
parameters 1), the essential condition for preserving uniform stability is to
start with a sufficiently dense parameter grid n,, so that all system poles are
tracked with sufficient resolution between grid values. Figure provides
an intuitive illustration that instability may occur for coarse grids due to
insufficient knowledge of the original system dynamics between grid values.
A proper dense grid facilitates the enforcement of uniform stability.

In the proposed implementation, after computing an initial parameterized
macromodel (37, the macromodel poles are computed, i.e. the generalized
eigenvalues of pencil (E, A(n)), over a dense grid in the parameter space.
Note that this verification involves a minimal cost due to the compact size of
the macromodel. Should unstable poles be detected for some parameter value
7,, the identification grid 7, is enlarged by adding n, and the macromodel
is recomputed. This last repeated fitting stage was never required for all
application examples that were tested.
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Figure 3.13: Magnitude (top) and phase (bottom) of S for the parame-
terized small-signal NMOS model (blue solid lines) compared to the corre-
sponding original responses (dashed red lines), plotted for different values of
the parameter Vj, ranging from 0.8 V to 1.2 V. The Sy, is the response with
the smaller values at DC for a sweep of the Vj,. This result demonstrates
the effectiveness of the proposed DC enforcement strategy.

3.3 Examples

The effectiveness of the proposed methodology is demonstrated on three ex-
amples. The first two cases are very simple: a single NMOS transistor and a
two-stage buffer. These examples are mainly used as a proof of concept. The
third example is instead a fully implemented circuit block, namely a Low
Dropout Voltage regulator used in a commercial 3G transceiver design.

3.3.1 A NMOS transistor

The first example illustrates the proposed methodology on a single NMOS
transistor, for which a small-signal linearized model is derived using the
source-drain bias voltage Vjs as a free parameter. A 3-port configuration
is considered, where port one is the drain, port two the gate, and port three
the bulk, all referenced to the source, as depicted in Figure This is the
typical test pattern used to characterize field effect transistors. Because of
the technology used Vi, ~ 0.6V. The NMOS is biased with V,; = 1.2V and
Vis = 0V, As a consequence a sweep of Vy, from 0.8 V to 1.2 V explores the
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linear region of the NMOS characteristic. A comparison of the small-signal
S1o response of the original device with the corresponding parameterized
model is reported in Figure B.13 for a Vs sweep ranging from 0.8 V to 1.2 V.
This figure demonstrates that, even if the dynamic variation of the responses
is very large, the proposed DC constraint is able to guarantee a very ac-
curate macromodel, even at low frequencies where the magnitude response
is very small (lower than —150dB), thanks to the DC enforcement strategy
proposed.

Figure shows the computed parametric cor-
rection source to be applied to the input port (Gate) D
for DC compliance. Only the points marked with red
squares were used for the macromodel identification, G 4[5‘
whereas the blue crosses indicate additional valida-
tion points used to verify the interpolation. As ex- g
pected, the dependence of this correction source on
Vys is very smooth and therefore well captured by Figure 3.14: Typical
a low-order interpolation. The parameterized model characterization test
has dynamical order 2, while both numerator and pattern for NMOS.
denominator polynomial bases (3.37) have degree 2.
Finally, Figure reports the parameterized macromodel (real) poles, that
for this simple device show a weak and smooth dependence on the free pa-
rameter Vy, as a consequence of the small variation of charges in the MOS
channel while working in the linear region.

3.3.2 A two-stage buffer

The second example is the two-stage buffer depicted in Figure 3.17. For this
test case, two parameters are used: the supply voltage Vy, € [0.7,1.2] V and
the ambient temperature, in the range 7' € [—25° 125°] C. The accuracy
of the parameterized macromodel is demonstrated by comparing the small-
signal S-parameter S5 of the original buffer to the macromodel response for
two sweeps of Vyz and T in the two panels of Fig. B.I8 For this exam-
ple, a dynamical order 4 was used, with both numerator and denominator
polynomial bases (8:37) having degree 2.

Figure depicts the parameterized DC correction sources at the sup-
ply and output ports of the buffer, comparing the raw data with the interpo-
lated model. Considering that temperature effects in transistors models are
described by low degree polynomials (two or three at most), these two di-
mensional correction functions can be expected to be smooth as well thanks
to the proposed explicit DC constraint in the macromodel fitting. Therefore,
a low-order interpolation scheme is appropriate. For this example it was used
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Figure 3.15: Parametric DC current correction source (Gate) for the small-
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Figure 3.17: A two-stage buffer with ports numbering used in this work.
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Figure 3.18: Sy, for the parameterized small-signal buffer model
lines) compared to the corresponding original response (dashed
In the bottom panel, V, is fixed to 0.75 V and the temperature
the range —25 + 120°C, while in the top panel T is fixed to 20°
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sweeps from 0.7 V to 1.2 V. Sy, is presented being the S-parameter with the
wider variation with both parameters Vy; and T'. The phase is not depicted

because the variation with parameters V;; and 7' is small.
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a multivariate polynomial of order 2, leading to a root mean square error of
the polynomial interpolation less than 1075,

3.3.3 A Low Dropout (LDO) voltage regulator

Here a Low Dropout (LDO) voltage regulator is considered, whose transistor
level schematic is taken from a commercial 3G transceiver design. This device
is intended to provide a stabilized output voltage, under control by external
biases provided from the logic unit. The parameter that is considered is
again the supply voltage Vi € [1.2,1.7] V. For such a sweep of Vy; and
using a reference voltage of 0.6V, the LDO works in the linear region of
the characteristic. The original schematic includes hundreds of transistors,
therefore a reduced-order macromodel is desirable to reduce complexity and
runtime in system-level simulations.

A representative scattering response of the computed parameterized macro-
model is compared to the corresponding small-signal scattering response of
the transistor-level netlist in Figure [3.20. Also for this case, it can be seen
that an excellent accuracy is achieved for all values of the parameter Vyy
within the range of interest. The parameterized model has dynamical order
16, while numerator and denominator polynomial bases (8:37)) have respec-
tively degree 3 and 2. Figure [3.2I]shows the computed parametric correction
source to be applied to the power supply port (Vy,) for DC compliance. Only
the points marked with red squares were used for the macromodel identifi-
cation, whereas the blue dots indicate additional validation points used to
verify the interpolation.

The transient analysis result of the synthesized parameterized macro-
model is compared to the response obtained using the transistor-level netlist
in Figure .22l The simulation time for a short transient analysis like the
one depicted in Figure require 3s using the synthesized parameterized
model and 30s using the transistor level model. The real benefit of the
proposed methodology should be addressed on complex system level simu-
lation scenarios: replacing several CB with parameterized-LTFM can lead
to a tremendous complexity reduction while preserving the accuracy of the
simulation.

3.3.4 A system-level application

The proposed macromodeling procedure is illustrated on a circuit block com-
posed by a single OPerational Amplifier whose voltage source is provided by a
Low-DropOut (LDO) voltage regulator; test bench is depicted in Figure 323
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Figure 3.19: Parameterized DC correction sources for the supply (top) and
output port (bottom) of the two-stage buffer. The current correction sources,
are interpolated using a multivariate polynomial of order 2. The root means
square error of the polynomial interpolation is lower than le=.



CHAPTER 3. SMALL-SIGNAL AND P-LTI MACROMODELS 93

Real, S(3,3)
0.5 T
0, |
v
~0.5- dd .
_1 1 1 | |
10° 10° 10* 10° 10° 10"
Imag
1 T
0.5/ |
0 vdd 4
-0.5 | | | | | 7
10° 10° 10* 10° 10° 10"

Frequency [Hz]

Figure 3.20: Real (top) and imaginary (bottom) part of Ss3 for the param-
eterized small-signal LDO model (blue solid lines) compared to the corre-
sponding original responses (dashed red lines), plotted for different values of
the parameter Vy, ranging from 1.2 V to 1.7 V. The S33 element is depicted
being the one with the wider variation with V.
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Figure 3.21: Parametric DC current [A] correction source (Power supply port
Vaq) for the small-signal LDO model, plotted as a function of V. Similar
results are obtained for the current correction sources on the other ports.
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The effect of a small variation on the V; is considered. In the top plot the
square wave applied to the Vj, is depicted. In the bottom plot the transient
response obtained from the synthesized parameterized-LTFM before the DC
correction (blue continuous line) and after (blue dashed line) is compared
with the response from the transistor level schematic.

@: S-parameters ports

Vref —1 LDO —Vau R(a - 1)

A/D —— DSP

Figure 3.23: Subset of high-level circuit blocks inside an hypothetical base-
band receiver chain.
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The operational amplifier is a fundamental building block of analogue cir-
cuits, used in a vast variety of applications like A/D-D/A converters, high-
speed wired/wireless transmitter and receivers and sensors. In conjunction
with a negative-feedback network like in Figure B.23] it can implement signal
amplification, complex active filters, generation of voltage and current refer-
ences and voltage buffers. In the context of RF and transceiver design OPAs
are the building blocks for voltage regulators, low-noise amplifiers and active
filters. Under proper biasing the OPA behaves almost linearly, i.e. it does
not produce spurious harmonics thus preserving the quality of the signal in
the transceiver chain introducing a negligible noise contribution.

For the results of this work a real OPA component implemented in a
commercial 3G transceiver was used. The OPA circuit block, depicted in
Figure B:23] is parameterized by a supply voltage Vaq € [1.1,1.3] V with
20 mV steps and a gain « € [1, 2] with steps 0.05, which are ranges of practical
interest. Linearity and closed-loop stability were verified in practice by means
of Spice simulations. The LDO model is parameterized by a V3 € [1.2,1.7] V
using a nominal voltage reference Vs = 0.6 V. The effectiveness of the
proposed methodology for voltage regulars was discussed in Section [3.3.3l

Figures compare the computed macromodel responses to the
original small-signal scattering responses for various combination of the pa-
rameters. The accuracy is excellent. These figures show that the variability
induced by supply voltage variations is very small, whereas the sensitivity to
a gain variation is larger. This is further demonstrated in Figure [3.26l

The same macromodeling process was also applied to the LDO in Sec-
tion B33l Then, the parameterized macromodels of OPA and LDO were
synthesized in SPICE, and a transient analysis was performed to validate the
macromodel vs the full transistor level circuits. For illustration, a common
signal-integrity scenario is addressed: the output from a differential LNA in a
base-band receiver chain is amplified and filtered using an OPA. Signal qual-
ity and noise rejection are of paramount importance since the analog output
from the OPA is then processed by and A/D converter and provided to a
Digital Processing Block. Disturbances on the voltage reference Vg, due to
cross-talk or external noise sources must be handled by the LDO resulting in
a stable Vgq for the OPA. Therefore a multi-tone (1 GHz-567 MHz-40MHz)
multi-amplitude distortion is added to a 10 kHz square wave used as distur-
bance on the Vj of the LDO, while the input for the OPA is a 4 MHz square
wave.

A small part of the input signal and the corresponding outputs are de-
picted in Fig. for the OPA and in Fig. for the LDO. A 200 us
transient simulation is required in order to properly asses the effect of the
disturbances on the LDO voltage reference V3. The transistor level simula-
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Figure 3.24: Comparison between parameterized small-signal macromodel
(red dashed lines) and small-signal S-parameters S; 3 and S 3 responses of
the OPA circuit block for fixed supply voltage Vgq = 1.2 V and variable gain.
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Figure 3.25: As in Fig. [3.24] but for S3, with fixed gain o = 2 and variable
supply voltage Vyq.

tion required 10 h. Such large simulation time is quite common and basically
due to: the complexity of the transistor level models, involving 600 tran-
sistors, 100 diodes and 600 dynamical elements, and the complexity of the
multi-tone disturbance on the LDO. The linear macromodel completed the
simulation in only 8 minutes leveraging on the synthesized low order model:
order 11 for the OPA and 16 for the LDO. As can be seen in Figures
and B.28] such a tremendous speedup can be achieved with no compromise
on accuracy. The figures further demonstrate the necessity of including DC
correction sources, since the results without such sources present a clear DC
offset. Dealing with two parameters, i.e. Vyq and «, the DC correction cur-
rent, sources were modelled using two-dimensional polynomials; results are
depicted in Figure

3.4 Conclusions

This Chapter presented a systematic methodology for the extraction of com-
pact parameterized small-signal macromodels of complex nonlinear circuit
blocks for Mixed-Signal and RF applications. Thanks to an explicit con-
straint on the DC response of the macromodel and to the inclusion of pa-
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Figure 3.26: Illustration of the variability in the phase of a sample scattering
response S o of the parameterized OPA macromodel with respect to supply
voltage (top) and gain (bottom).
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Figure 3.27: Bottom panel: detail of the transient analysis of the LDO
transistor-level circuit block (blue continuous line) and parameterized macro-
model, with (red dashed line) and without (black line) DC correction sources.
The supply voltage affected by noise is depicted in the top panel. As ex-
pected, the output from the LDO is always close to the nominal value of
1.13 V.
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Figure 3.28: Bottom panel: detail of the transient analysis of the OPA
transistor-level circuit block (blue continuous line) and parameterized macro-
model, with (red dashed line) and without (black line) DC correction sources.

rameterized DC correction sources, the proposed macromodel can seamlessly
replace the corresponding transistor level schematic in system-level Signal In-
tegrity verifications, leading to a significant speedup in the computing time
required by transient simulations.

The feasibility of the proposed approach was demonstrated on two sim-
ple academic examples (a single transistor and a two-stage buffer) as well
as on two complex circuit models: a Low Dropout voltage regulator and an
Operational amplifier, both taken from a real 3G transceiver design. The
availability of accurate and efficient macromodels is considered as a key en-
abling factor for comprehensive system verification, allowing a fast systematic
analysis of the large number of configurations and operation modes required
by modern digitally-programmable systems.
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Figure 3.29: OPA current correction sources are depicted above as a function
of Viq and gain «. The 2D polynomial models (blue continuous line grid)
attains a RMS error of 1e~®. Polynomial degree is 4 in both variables. The
identification dataset is represented by red squares while the validation points
are the blue crosses in the plots above. Correction sources I for the input
port of the OPA are not depicted here since negligible in magnitude.



Chapter 4

Noise-compliant macromodel
synthesis

Lumped passive network synthesis, according to Cauer’s definition |144, [145],
consists in the design of a primitive network, i.e. a circuit composed only of
primitive elements (inductances, mutual inductances, resistances and capac-
itances), which exhibits a prescribed frequency response. Such a definition is
strictly related with the design of linear filters, hot topic at the beginning of
last century. In spite of the specific application, Cauer’s approach was very
general since he was the first to consider the synthesis of a linear network as
an inverse problem of network analysis. In this work, network synthesis is
mainly used to convert linear macromodels, like the ones described in Chap-
ter 2 and Bl into Spice-based compliant netlists for system-level simulations.

The synthesis of Linear Time Invariant (LTI) networks dates back to the
beginning of the last century with the pioneering work of Foster [146] and
Darlington [147]. The fathers of network theory: Cauer |148], Brune [149],
Tellegen [150] and later Bott and Duffin [151] were the first to study and
establish synthesis procedures for 1-port networks described as positive real
functions. The natural extension to the N-port case required the study of pos-
itive real matrices [107], leading to the more general results of Belevitch [109].
Two are the main classes of linear network synthesis methods: non-reciprocal
methods, based on the usage of gyrators [152] (passive and non-reciprocal
network elements) and gyratorless (reciprocal) methods. The required con-
ditions for both methods were deeply studied in [109].

After the introduction of State-Space techniques for the analysis of lin-
ear networks made by Bashkow [48] in 1957, several authors adopted the
State-Space approach also in the synthesis context. As it was noted by An-
derson [153] and Youla [154] the state-space methodology is theoretically
sound and easier to be interpreted from a physical perspective. Moreover,

102
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this mathematical approach was well consolidated in Physics and Control
Theory, leading to a convenient transfer of knowledge to the Circuit Theory
field. The seminal idea for an application of Control Theory results to the
problem of network synthesis can be found in the work of Kalman ]
Indeed the Reactance Extraction Method m, 119, cornerstone for all the
successive synthesis techniques, was inspired by |. From a state space
perspective the conditions for a passive and reciprocal (gyratorless) synthe-
sis can be easily related with the physical properties of the network [‘E],
avoiding the involved and abstract mathematical details required by the pre-
vious methods ﬂ@] The set of primitive network elements required for
the reciprocal synthesis of a passive network can be restricted at most to
the RLCT subset, i.e.: Resistors, Inductors, Capacitors and ideal multi-port
Transformers [@] Several years of research activity were devoted to further
reduce this RLCT subset. The question whether ideal transformers could be
avoided in the synthesis of passive networks had no answer for a long time,
see ﬂﬁ] and | as an example. In [@] MecMillan found the solution
demonstrating that ideal transformers can not be avoided in the synthesis
of passive networks. Motivated by the last results about the need to use
ideal transformers some research effort was spent to reduce the complexity
of the Reactance extraction algorithm [@], being the canonicall synthesis
of choice.

Although this topic was widely studied and is well consolidated, no ef-
fort has been devoted so far in order to characterize the noise compliance of
the synthesized network, i.e. under which conditions the obtained network
shows the same input-output noise response in comparison with the original
physical system /circuit. Therefore, in this Chapter several of the most pop-
ular network synthesis algorithms are analysed focusing on noise compliance
properties. As discussed in Section [[L3.1] the transition from hard to firm IP
blocks requires the availability of flexible netlists, i.e. the same circuit de-
scription should fit to multiple simulation contexts: transient, S-parameters
and noise analysis. As a consequence, the adopted synthesis algorithm must
preserve not only input-output response of the original system but also the
noise behaviour.

This Chapter deals with the noise-compliant synthesis of linear, lumped,
finite, time invariant, and passive networks. Section [l introduces the prob-
lem of noise-compliance in the synthesis process. Section discusses static
network synthesis, i.e. time/frequency independent circuits. This case is of

!The Reactance Extraction Synthesis is canonical, i.e. requires the minimum number
of passive elements only in the case of non-reciprocal synthesis (using gyrators). In the
reciprocal (gyratorless) case only the minimum number of dynamic elements (C and L) or
the minimum number of resistors, but not both minima together, can be guaranteed
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interest by itself since static networks are sufficient to perform connectivity
and static IR drop analysis for SoC devices like discussed in Section .2l The
extension to dynamic networks is treated in Section A3l For each section
results and example test cases are provided.

4.1 Problem statement

In the context of linear passive networks thermal noise (also known as Gaus-
sian or white noise) is the most relevant intrinsic noise contribution. It results
in a small fluctuation of voltage and current at the ports of a source-free pas-
sive device. This phenomenon was predicted by A. Einstein in 1905 [158] as a
consequence of the Brownian motion of free electrons inside a piece of metal
in thermal equilibrium. Then, it was first observed by Johnson in 1928 [159]
and explained by Nyquist the same year in |160].

Physically, white noise is due to the random thermal motion of free elec-
trons inside a piece of conductive material which leads to temporary agglom-
eration of carriers. At macroscopic level it implies a floating (in magnitude
and polarity) potential difference between two conductor ends. In a physical
resistor this is perceived as a fluctuation in the electrical current (if the resis-
tor is in a closed loop) or in the electrical voltage across its terminals (if the
resistor is open-circuited). In both cases the Direct Current (DC) component
of the fluctuation is zero.

In [160] Nyquist demonstrated that for linear resistances in thermal equi-
librium at temperature 7', the current or voltage fluctuations are quite in-
dependent of the conduction mechanism, type of material and shape and
geometry of the resistor. The generated thermal noise depends exclusively
upon the value of the resistance and its temperature. This result is known
as Nyquist’s theorem and can be written as

VZ(w) =4K,TR, (4.1)

with w = 27 f, K; = 1.38065107*%.J/ K (Boltzmann constant), resistor value
R and T temperature expressed in Kelvin. V,, is the noise voltage spectral
density and is measured in V/v/ Hz. A dual result holds for the current, i.e.

I’(w) = 4K, TG , (4.2)

where G = 1/R is the conductance.
Two equivalent circuit models for a noisy resistor follow from (£.1]) and (£2)):

e Thevenin model: composed by a noiseless resistor in series with a noise
voltage source based on ([AI));
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Noisy resistor Thevenin model Norton model

R

Figure 4.1: Thevenin and Norton equivalent circuits for a noisy resistor.
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Figure 4.2: Simple 2-port resistive circuit.

e Norton model: composed by a noiseless conductance in parallel with a
noise current source based on (4.2]).

Figure depicts Thevenin and Norton equivalent circuits for a noisy resis-
tor.

The noise analysis on a passive network can be easily performed relying
on the equivalent circuits depicted in Figure 4.1l As an example consider the
2-port resistive circuit in Figure[d.2l Noise analysis is conducted on the equiv-
alent circuit in Figure[4.3] where each noisy resistor was substituted with the
equivalent Thevenin model. To further simplify calculations it is assumed
that resistor noise sources are uncorrelated (statistically independent, a con-
dition that is verified in practice). The output noise voltage spectral density
v, on port 2 is evaluated given the input voltage v;, on port 1. Shorting the
first resistor and its noise source, using linear superposition it follows

1/2 1/2
v2 = _ 1z 2K, T + _12 2K, T = K, T, (4.3)
U%2 v%?)

for T'= 300K the voltage noise spectral density is
v, = 6.43¢ "V/VHz. (4.4)
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Figure 4.3: Equivalent circuit for the noise analysis of the simple 2-port
resistive circuit in Figure
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Figure 4.4: Equivalent controlled sources network for the resistive network
in Figure [4.2]

This result is verified with a noise analysis in Spice, since Spice uses internally
the equivalent circuits of Figure 1]

It is well known that a resistive network is electrically equivalent to a
circuit composed of controlled sources. Given the conductance matrix for
the resistive network in Figure

G = {_92 _42] (4.5)

an equivalent circuit solely composed of controlled sources is depicted in
Figure [4.4l. Since for controlled sources there does not exist an equivalent
noise model, the network in Figure [£.4] is noiseless. Indeed performing the
noise analysis in Spice leads to zero voltage and current noise spectral densi-
ties. Therefore, different circuit realizations that are equivalent in the input-
output responses are not equivalent for what concern the noise analysis. Such
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an issue motivates the investigation of a noise-compliant network synthesis.
As it will be further explained in Section and [4.3] in order to obtain
a noise-compliant synthesis, controlled sources can only be used to realize
noiseless (lossless) components.

4.2 Static network synthesis

Static networks are used to perform connectivity analysis and static IR drop
verification for Power Distribution Networks (PDNs). As discussed in Sec-
tion [L.2], the design of PDNs is becoming more and more cumbersome due to
low power constraints. The availability of a noise compliant static network
is therefore of paramount importance in order to asses Power Integrity.

In the following, some basic notions related with the description of static
networks are provided in Section £.2.1] then the synthesis with a predefined
network topology is considered in Section [4.2.2] and in Section the
canonical RT (Resistors and ideal Transformers) synthesis is summarized.

4.2.1 Basic assumptions

Some fundamental results from network theory |109] are briefly summarized
in the following since they are needed to tackle the static synthesis problem.
In particular: matrix description of static networks, existence of each rep-
resentation and passivity and reciprocity conditions are considered. For an
exhaustive presentation of those topics refer to [161].

Several equivalent (when they exist) representations can be used to de-
scribe a static network. Applying Kirchhoff current and voltage laws network
variables can be ordered (and weighted, in the case of scattering parameters)
obtaining: impedance R, admittance G, hybrid H and scattering S matrices.
It was demonstrated in [109] that for passive networks it is always possible to
combine voltages and currents in order to obtain a hybrid matrix (a similar
result hold for the Scattering matrix case dealing with power waves). Casting
networks description in matrix form greatly simplifies analysis and synthesis
methods. Indeed passivity and reciprocity conditions, which are the con-
straint of interest here, can be summarized in Table [l To further simplify
the notation for the characterization of reciprocity in the Hybrid case the
external signature matrix S.,; € RP*" is introduced. In general, signature
matrices |162] are diagonal matrices with 1 or —1 on the main diagonal. In
the particular case of hybrid matrices the external signature matrix is defined
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Table 4.1: Summary of passivity and reciprocity conditions for static network
matrix representations. In the reciprocity condition for the Hybrid matrix
the external signature matrix S.,; defined by (&6]) is used. In the passivity
conditions, zero equality means that the network is lossless, i.e. does not
absorb active power.

Type R G H S

Passivity @R+R'>0 G+GT'>0 H+H'>0 S+S8"=<21

Reciprocity R =RT G=GT' S..H=HTS,, S =87
as

1, port i is voltage (current) controlled
Se:vti’i =

—1, port i is current (voltage) controlled ’ (4.6)

From a mathematical perspective, the circuit synthesis of a generic (not
necessarily associated to a physical circuit) matrix N € RM*¥ given N in-
put variables ¢ and M outputs o can always be performed using controlled
sources. Despite its simplicity, such an approach is the core idea behind all
the static (and also dynamic) synthesis methods presented in the following
sections. Due to its relevance, a small example is provided to further clar-
ify the previous statement: consider a generic matrix N € RM*N and the
resulting system of equations

01 = n11i1 + ...+ nlnin
(4.7)

O = MNmilt+ ...+ Nnin

assuming that the inputs ¢ are currents and the outputs o are voltages, a
straightforward synthesis is depicted in Figure Although simple, such
approach produces a canonical synthesis for the system (£7)) which exactly
reproduces the system in (L7). Similar realizations are straightforward if
(i, 0) are (voltages, currents). At this point the question is whether a generic
matrix IN describes a stable, passive and noise compliant network (passive
and stable) and how to preserve those properties during a synthesis process.

The list of properties that should be considered when dealing with the
synthesis of a linear circuit is provided here:

e canonicity: a synthesis is canonical when it involves the minimum pos-
sible number of primitive network elements to synthesize all the systems
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Figure 4.5: Direct synthesis for the system of equations (£.1).

describing a particular set of networksd. The canonical property is of
paramount importance to keep under control the complexity of the
network resulting from the synthesis process.

passivity: is defined as the incapability of the network to provide a
power gain. Passivity conditions for static network descriptions are
summarized in Table[£Il A linear network that does not absorb active
power is lossless.

reciprocity: a P-port circuit is reciprocal if for any pair of voltages and
currents at circuit ports, i.e. {vq,4,} € RY and {v,,4,} € RY that
satisfy the circuit characteristics, it holds

z'bT'va =i, vy,

All linear multi-port circuits composed only by RLCT elements are
reciprocal [163,[164]. Also for this property, a generic synthesis based on
controlled sources must meet the conditions listed in Table in order
to preserve reciprocity. A circuit only composed by RLCT elements
will be called purely-reciprocal in the following.

topology-based: the primitive network elements involved by the syn-
thesis procedure can be connected according to a specific topology. The
most common configurations are the II and 7', see Figure As dis-
cussed in Section it is not possible in general to obtain a passive

2Please note that in the classic textbooks of network theory [109] canonical syntheses are
characterized considering the number of independent variables involved by the synthesis.
Instead in this work the number of primitive network elements is considered as the metric
of canonical definition begin more intuitive and immediate from a practical point of view.
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and reciprocal synthesis with the added constraint of topology. Condi-
tions under which a fixed topology passive and reciprocal synthesis is
possible are discussed in Section [4.2.2] as well.

e noise compliance: this is a more sensitive property since it is strictly
related to the components used to perform the synthesis. Due to the
fact that controlled sources are by definition noiseless components, the
only way to achieve a noise compliant synthesis consist in the use of
resistors. One possible approach consists in the selection of a particular
topology leading to a pure resistive network synthesis. Unfortunately
the latter method can not be used in general, since as explained in
more details in Section [1.2.2] topology constraints may lead to non-
physical networks (due to the need of negative resistors). In the general
case a synthesis based on positive Resistors and ideal Transformers
(RT) is the noise compliant synthesis of choice for static networks, see
Section [£.2.3] for details, since it extracts a purely resistive sub-network
(having only positive resistors) that connected to a proper lossless one
realizes the desired circuit. In this way, the noise associated to the
resistive subnetwork is not altered by the lossless one (which can also be
non-reciprocal in general) thus producing a noise-compliant synthesis
by construction.

4.2.2 Fixed topology

Several years of research and considerable effort were spent in order to per-
form the synthesis of a static network with a fixed topology [165, [166, [167] to
avoid the need of ideal transformers like in the synthesis of Belevitch [109].
The final and negative answer to the general feasibility of a passive and recip-
rocal network synthesis that does not involve ideal transformers was provided
only in more recent times by McMillan [156].

Sufficient and necessary conditions for a pure resistive synthesis based
on an admittance (similar results hold for the impedance) matrix G where
already considered in [109]

e dominant matrix: the admittance G = GT € RP*? is dominant iff
P
gii — > _19:51 >0, (4.8)
=1
J#i

e superdominant matrix: a dominant matrix satisfying g; ; <0 V i # j
is called superdominant [109].
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Figure 4.6: I topology synthesis for the impedance matrix G.; (£I1]) based

on (£.9) and (£.I0).

A real symmetric superdominant admittance matrix G admits a pure resis-
tive synthesis with Il topology. The admittances g between nodes ¢ and j
come directly from the admittance matrix G according to

Gij = —G0ij (4.9)

P
Gii = Zgi,j- (4.10)
j=1

As an example consider the simple admittance matrix G.; for a 2-port net-
work

G = {_92 _42] : (4.11)

G, is superdominant (positive definite). As a consequence the direct ap-
plication of (£9) and (£I0) leads the II topology synthesis depicted in Fig-
ure Although superdominant matrices are positive definite, i.e. passive
by construction, the opposite is not true, thus reducing the applicability of
this synthesis methodology and requiring the use of ideal transformers dis-
cussed in the following Section 3. A small example demonstrates that it
is not, difficult to construct a symmetric positive definite matrix that is not
dominant. Consider the simple 2 x 2 symmetric positive definite matrix

G, = {_95 _45] (4.12)

applying (4.9) if follows g » = —1, thus a IT topology synthesis based only on
positive resistors is not feasible for such a simple case, and ideal transformers
are needed like discussed in the following section.
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Figure 4.7: Ideal transformer circuit symbol. The first port on the left side is
called the primary port while the second port on the right is called secondary
port. The coupling factor n is defined as the ratio between the number of
turns on the primary N; and on the secondary N, port.
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Figure 4.8: Equivalent circuit for the 2-port ideal transformer based on equa-

tions (AI3))-(414).

4.2.3 Synthesis with Resistors and ideal Transformers

To overcome the intrinsic limitations of the purely resistive synthesis of Sec-
tion [L.2.2] Belevitch introduced in [109] the use of multiport ideal trans-
formers. It was demonstrated in [156] that ideal transformers, together with
resistors, inductors and capacitors, form the smallest set of network elements
needed for the synthesis of passive reciprocal linear systems. The restriction
to the static case further limits this set to ideal transformers and positive
resistors only. The constitutive equations for a 2-port ideal transformer are

Vg = nuy, (4.14)

and the component symbol is depicted in Figure 7. One possible circuit
equivalent for the ideal transformer based on ({I3))-(AI4) is depicted in Fig-
ure It is important to note that the total instantaneous power absorbed

by an ideal transformer is zero [109|, since applying the constitutive equa-
tions (ALI3)-(&I4) for the two port case leads to

le’01 + ig’UQ = 0. (415)
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The extension of this result to the multi-port case is straightforward [109].
The Hybrid matrix associated to a multi-port transformer, having R sec-
ondary ports and P primary ports, reads

-l o] (419
————
H;
where N € RE*F collects the turns ratio of the multi-port ideal transformer.
Using the results in Table 1] trivially confirms that H; + HtT = 0, i.e. the
multi-port ideal transformer is lossless.

Belevitch demonstrated in [109] that the synthesis of a passive recipro-
cal impedance (admittance) matrix is equivalent to the synthesis of an ideal
multi-port transformer whose secondary ports are closed on positive conduc-
tances (resistors). Define G, = diag(Gg,) > 0 as a matrix collecting some
positive conductances G4, on its main diagonal, with ¢ = 1,..., R; closing
the R secondary ports of the ideal multi-port transformer described by equa-
tion (AI6) on G4 imposes the relation

i, = —Gyo, (4.17)
whose substitution in (£I6) reads
0 o Gd —-N U,
L’p] a [NT 0 ] [ip} . (4.18)
Since Gy has full rank, elimination of v, from (£.I8) leads to v, = Zi,, where
Z =N"G,'N, (4.19)

and the dimension R of Gy is the rank of Z. An equivalent result to (£I19)
holds for the admittance matrix case terminating the P ports on positive

resistors Ry
Y = NG, N7”. (4.20)

From a mathematical perspective, equation (£I9) states that the synthe-
sis of a symmetric positive definite impedance matrix Z € R”* is equivalent
to the synthesis of a multi-port ideal transformer with turns ratio matrix
N € R®*F and secondary ports closed on the R positive resistors associ-
ated to the diagonal elements of G,'. Therefore the synthesis problem is
now equivalent to a matrix decomposition. The most convenient decompo-
sition for full-rank symmetric positive definite matrices is the LDL decom-
position [111] (basically an extension of the widespread Cholesky factoriza-
tion), while for the low-rank case a modification of LDL decomposition is
preferred [168].
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Once the decomposition ({I9) is performed on Z, the synthesis is straight-
forward: the turns ratio matrix IN associated to the multi-port ideal trans-
former is synthesized using controlled sources as explained in Section L2l
(like in Figure @3], while the positive elements on the main diagonal of G*
are the resistors closing the R secondary ports of the ideal multi-port trans-
former. Note that in the case of low-rank impedance or admittance matrices,
R is less than P.

The RT (Resistors and ideal Transformers) synthesis resulting from the
application of (£I9) is noise compliant by construction. Indeed the multi-
port ideal transformer, synthesized using controlled sources, results into a
lossless network that does not affect the noise produced by the positive re-
sistors placed at its secondary ports. Since the only noisy elements involved
in the RT synthesis are positive resistors, the synthesis is noise compliant.
This result was verified in practice relying on the automated noise testing
procedure discussed in Section [£.2.4]

The RT synthesis is now applied to the admittance matrix G, from (£12)).
For this example the pure resistive synthesis with fixed topology failed in
Section due to the need of negative resistors. According to the matrix
decomposition ([£20), the LDL factorization is performed on G, leading to

1 0]f9 o1 =2
-2 1] 0 F] |0 1 (4.21)
N e N e e e
N Gy NT

where the contributions from (£20) are highlighted. The resulting synthesis
for this example is depicted in Figure [£.90 Noise compliance for this simple
case can be verified analytically relying on the results of Section 1] or using
a Spice simulation, as in Section £.2.4l An automated procedure for the
validation of RT synthesis is discussed in Section [£.2.4l

4.2.4 Static synthesis results

The automated test procedure described in this section is focused on

e Synthesis accuracy: DC analysis results are compared using the admit-
tance matrix (similar results hold for the impedance) and the associated
RT synthesis, both in Spice. Of particular relevance are the cases in
which the admittance matrix is rank deficient, because for such cases
a low-rank matrix decomposition is used.

e Noise compliance: like for the DC analysis, the admittance matrix and
the resulting RT synthesis are used in Spice to perform the static noise
analysis.
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Figure 4.9: Resistors ideal Transformers (RT) synthesis for the admittance
matrix Gey based on the LDL factorization (4.21]).

For the sake of completeness several test cases are needed. Since the
availability of many real test cases is not feasible in a short amount of time,
an automated procedure for the creation of semi-positive definite impedance
or admittance matrices was created based on the following methodologies:

e random matrix: starting from a pseudo random matrix, reciprocity and
positive definitiveness are imposed (acting directly on the eigenvalues
of the symmetrized random matrix);

e greatest common divisor matrices: obtained from Matlab®)’s func-
tion gallery (option: gcdmat). Those matrices are symmetric positive
semidefinite by construction;

e symmetric, ill-conditioned Toeplitz matrices: obtained from Matlab®)’s
function gallery (options: prolate and w € [0, 0.5]). Those matrices are
low-rank and symmetric positive definite.

The number of ports for each case is selected randomly within a specified
range, i.e. P € [1,50].
Two are the main steps of the proposed automated procedure

1. DC analysis: using unitary inputs, in accordance to the matrix rep-
resentation used, i.e. impedance or admittance, the DC analysis is
performed in Spice using the impedance/admittance matrix and the
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Table 4.2: Selection of results obtained using the proposed automatic proce-
dure. epc is the error on the DC analysis defined by (£.22)), while max ¢, is
the maximum on all the errors €, defined by (4£.23)), obtained from the static
noise analysis related to a specific test case.

‘Test P epc max en‘

1 4  le-12 1le-13
2 8 2e-12 1le-13
3 20 8e-13  2e-13

associated Belevitch’s (RT) synthesis. The results of the DC analysis
based on the direct usage of the admittance/impedance matrix are de-
noted by y,, while the results obtained from the synthesized netlist are
Y,. The error metric used for the DC analysis is

€pCc = |yd - yb| ; (4-22)

2. Static noise analysis: considering all the possible combinations of input-
output ports, voltage and current spectral densities are evaluated in
Spice, using the impedance /admittance matrix and the associated Bele-
vitch’s (RT) synthesis. The results of the noise analysis obtained from
Spice using the admittance/impedance matrix are denoted by v, while
the results obtained from the synthesized netlist are v4. The error met-
ric used for the DC analysis is

_va— v

€, = 4.23
vl (4.23)

where the fraction is always well posed since noiseless cases are not
considered, i.e. vy # 0 by construction.

A small subset of the results obtained with the automatic verification strategy
are proposed here listed in Table 4.2l Similar results were obtained on a large
set. of more than one thousand test cases.

4.3 Dynamic network synthesis

Several techniques are available for the synthesis of dynamic networks asso-
ciated to state-space models [119]. The three most efficient and widespread
methods are: direct state-space procedure, described in Section [4.3.2] that
is based on the immediate conversion of state-space equations into a cir-
cuit [169]; Darlington’s resistance extraction, presented in 3.4 which is an
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extension of Resistors ideal Transformers (RT) static synthesis from Sec-
tion [1.2} Youla’s reactance extraction [154], discussed in Section 3.3 which
is a clever reformulation of Darlington’s resistance extraction. Results and
complexity tables are summarized in Section for all synthesis methods,
described below.

The main contributions of this chapter are: presentation of well known
synthesis methods focusing on complexity and noise compliance in order to
clarify a topic not adequately covered in classic books of network theory;
and thus introduction of noise preserving sparsification techniques for each
synthesis method aimed at reducing the complexity of the synthesis while
preserving the desired physical properties.

Before describing in more details the synthesis of dynamic networks, some
preliminary results concerning state-space models of passive devices are sum-
marized in Section 311

4.3.1 Preliminaries on state-space models

Some basic results concerning state-space models are summarized here since
they are needed for the presentation of dynamic synthesis methods in Sec-
tions [£.3.214.3.3] and [£.3.4l In this section minimal state-space realizations
and their canonical forms are discussed, together with reciprocity and pas-
sivity conditions.

As already mentioned in Section [I.3 it is common practice to model
reciprocal passive circuit blocks via frequency dependent network parameters
(scattering or hybrid). Using standard techniques, like those presented in
Chapter 2, a mathematical model is extracted and converted to state-space
form (2.46]), repeated here for reader convenience

z(t) = Azx(t) + Bu(t), (4.24)

y(t) = Cx(t) + Du(t), (4.25)
with A € RVN B ¢ RV*F, C € RP*N and D € RP*F. This is the starting
point for the synthesis algorithms considered in this Chapter.

In the following, models are assumed without loss of generality to be in
the impedance input-output representation, i.e.

Z(s)=C(sI-A)"'B+D « (%’3) : (4.26)

where s is the complex frequency (Laplace) variable.
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It is worth noting that the complexity of dynamic network synthesis is
directly related with the dynamic order of the model. In particular, a nec-
essary but not sufficient condition to have a canonicall synthesis is that the
state-space model must have McMillan degree [119] of Z(s) equal to N (the
size of A). This is equivalent to state that the state-space realization (£.26)
is minimal, i.e. the system is both controllable and observable.

Besides minimality, also the structure of state-space matrices has a direct
impact on the number of elements required by the synthesis. State-space
realizations are not unique. Two minimal state-space realizations of the same

T aean) e

are equivalent to each other through a change of basis in the state space [119],
applied though a similarity transformation as

A=T'AT, B=T"'B, (4.28)
C = CT, D =D, (4.29)

with T € RV invertible. In particular, Gilbert in [170] proposed a mini-
mal state-space realization that is relevant for the direct synthesis discussed
in Section [£.3l. Detail on how to construct Gilbert’s realization can be found
in [126]. It is worth noting here that such realization presents a sparse state-
space matrix A with the following block-diagonal structure

De, 1= j =cC
ij = Re{p;} Im{p}
—Im{p;} Re{p}

where {p;,p.} € AM(A) are the eigenvalues (real poles p., and complex poles
) associated to the minimal state-space model. Note that Gilbert’s realiza-
tion can be derived iff all the eigenvalues A(A) have algebraic multiplicity
one [126]. This condition is imposed by construction in the identification
methods described in Chapter

Besides the complexity constraint, also physical constraints must be taken
into consideration when dealing with the state-space model associated to a
real circuit. It is a well known result of network theory [161] that all RLCT
linear networks are reciprocal. As a consequence reciprocity is a physical

A (4.30)

i=01+1 j=11+1

3Note that Anderson in [119] demonstrated that it is not possible to synthesize a
reciprocal dynamic network attaining both the minimum number of dynamic and resistive
elements.
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property of interest that should be preserved by a well posed synthesis pro-
cess. Such a property has a direct impact on the structure of the state-space
model. A square system (4.24)-(4.20)) is reciprocal with respect to the signa-
ture matrix (&0) if and only if [171] its hybrid transfer function H(s) is sign
symmetric with respect to S..; (£8), i.e.

S..:H(s) = H(s)" S, . (4.31)
For the impedance (admittance) case condition (£3T]) simplifies to
Z(s) = Z(s)". (4.32)

It is clear that this is a straightforward extension of the definition of reci-
procity that was given for the static case in Section In addition to
conditions (£31)-(432), it can be demonstrated ﬂﬂ] that for reciprocal
state-space models there exists a symmetric matrix IT = II7 € RV*N such
that

B = IIC'S... (4:33)
If IT = S;,; with S;,; = blkdiag(Iy,, —Iy,) € RY*" internal signature matrix,
then the state-space model ([£25) is called internally reciprocal. Two strate-
gies are available to evaluate matrix IT (£33]) for a reciprocal state-space
model: solving directly the system (£33) via optimization packages like Se-
DuMi ], or by defining the similarity transformation matrix T (4.28)
relating the state-space model and its transposed [@]

Another physical constraint of paramount importance for linear mod-
els (£23)) is passivity. The general frequency-domain passivity conditions
discussed in Section can be transformed into purely algebraic ones [@]
called Positive Real Lemma (hybrid case) and Bounded Real Lemma (scatter-
ing case), also know as Kalman-Yakubovich-Popov (KYP) lemma. For the
sake of clarity and reader convenience passivity and reciprocity conditions
are summarized in Table 3 A real square state-space model (4.23)-(4.24),
based on hybrid or scattering representation, is passive if and only if the
corresponding Linear Matrix Inequality (LMI) in the column Passive admits
a symmetric positive definite solution matrix P. A similar result holds for
reciprocity considering the column Reciprocal and the solution matrix IT. As
it will be more clear in (£3.3)) and (£3.4)), different solution matrices IT and
P obtained for the condition in Table will lead to different Youla’s and
Darlington’s syntheses.

In the following sections the synthesis algorithms will be introduced to-
gether with simple explanatory examples. Results and a comparative study
of complexity for all the synthesis methods can be found in Section (£3.5).

{ ATl = TIAT
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Table 4.3: Summary of passivity and reciprocity conditions for dynamic net-
works representations. In the passivity conditions equality to zero means
that the network is lossless, i.e. does not absorb instantaneous/active power.

System Reciprocal Passive

ATl = TIAT [A"P +PA PB-C’
H <
hyb<7"8it)i { B = HCTSeazt L BTP - C -D — DT - 0

ATl = TIAT AP +PA +C'C PB+C'D

S(s) T T T T =0
scattering B = IIC L B'P+DC D'D-1Ip
with IT=1I" € RVN P=P" > 0,Pc RV
internal if TT=S, = | 9| pory
0 —Iu,

4.3.2 Direct state-space synthesis

The dynamic synthesis method presented in this section can be considered
as the extension of the direct synthesis method introduced in Section £2.1]
for the static case. The basic idea relies on a mere “translation” of the state-
space equations into an equivalent electric network. It was proposed by [169]
in the context of Model Order Reduction techniques in order to obtain a
low-complexity synthesis, in terms of number of primitive network elements,
for reduced order state-space models. As such this synthesis algorithm found
a great diffusion and it is commonly used in practice.

Beside the low complexity feature, another major benefit is the simplicity
of the algorithm itself. Indeed, considering the state-space model associated
to an impedance matrix

&(t) = Az(t)+Bi(t), (4.34)
v(t) = Ca(t)+Dit), (4.35)

with input vector 2 € RY and output vector v € R”, a direct conversion into
an equivalent network is straightforward and can be divided in two main
steps

1. state synthesis: consider a single row [ of (4.34])

SL’[(If) = Z al,jxj(t) + Z bl,kzk(t) . (436)
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Collecting on the left side of (£36) all the elements related with the
state z;(t) it follows

N P
() — apgan(t) = Y agzi(t) + ) buin(t) . (4.37)
j=1 k=1
J#
The left-hand side of (A3T) can be seen as the parallel of a unitary
capacitor and a resistor of value —1/q;; to whom a voltage x;(t) is ap-
plied. The resulting current must equal the right-hand side of (4.37),
which can then be interpreted as the parallel interconnection of con-
trolled current sources, where the control variables are the states x;(¢)
and the inputs ix(t). The sub-network associated to (L37) is depicted
in Figure (£I0). Please note that resistors —1/a;; V! will never be

negative@, since the poles of are in R™ by construction as a con-
sequence of model stability [62];

2. output equation synthesis: in a similar fashion to the previous synthesis
step, consider a single row m of (£33, i.e.

N P
V() =Y i+ Y diiik(t) (4.38)
j=1 k=1

with m,k = 1,...,P and j = 1,...,N. Since the output of (433])
has voltage units, the right side of (£38) is equivalent to a series in-
terconnection of controlled voltage sources, where the control variables
are the states z;(¢) and the inputs i4(¢). The sub-network associated

to (4.38)) is depicted in Figure (£.1T]).

Performing the two steps above for each row of (L34 and (£35) concludes
the synthesis process. Since the network elements involved in the synthesis
are only Resistors, Capacitors and Controlled Sources, in the following this
synthesis will be also defined as RCCS.

For what concerns the complexity of the resulting network, from equa-
tions (4.37) (£3]) it is clear how the number of elements used by the RCCS
synthesis is directly related to the structure of the state-space matrices
in (£34)-(@35). Consequently a low complexity synthesis can be obtained
converting a generic state-space realization into the Gilbert canonical form
that was introduced in This way the number of primitive network
elements will scale as O (N P?).

4Tt is always possible to transform the negative definite state-space matrix A into an
equivalent one having negative elements on the main diagonal.
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Figure 4.10: Direct states synthesis based on equation (£37).
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Figure 4.11: Direct ports synthesis based on equation (£38)).

The main drawback of this method is the lack of noise-compliance. As
it was discussed in Section for the static synthesis case, the use of
controlled sources in the synthesis process demands particular care, since
those components are not equipped with a noise model in standard Spice-
based solvers. A simple example in the following section will further clarify
this issue.

U1 C—D —_——C —_—C %

Figure 4.12: RC ladder circuit.
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Noise compliance issue

In order to further clarify the lack of noise compliance in the direct synthesis
method presented in Section [£.3.2], the simple RC ladder network depicted in
Figure will be analysed here. The state-space model associated to the
circuit in Figure will be synthesized using the RCCS algorithm, then the
analytic expression of the output noise spectral density will be evaluated for
both circuits by means of standard techniques [172]. Moreover, noise analysis
results will be compared with Spice simulations for the sake of completeness.

First, the analytic expression of the output voltage spectral density is
considered for the RC ladder network in Figure 412l As explained in Sec-
tion [4.1], noise analysis is based on the substitution of noisy resistors with the
equivalent Norton/Thevenin noise model; the resulting network is depicted
in Figure I3l Considering now the KCL at two nodes results

GWV—=Vu)+sCVi+GVi+V,, —V,) =0 (4.39)
sCV,+G[V,— (Vi +V,,)] =0 '
From the second row it follows
(G +sC)V, = GV, = GV} (4.40)
leading to
(1+ sRCYV, =V, = V. (4.41)

Substituting now (4L41)) in the second row of (A39) after simple algebraic
calculations reads

(1+ sRC + 2sRC + s*R*C*)V, — V,,, — (1 + sRC)V,,, = 0. (4.42)
Highlighting now the contributions from each noise source it follows

B Vi, N Vo, (1 + sRC)
14 3RCs+ s2R2C? 1+ 3RC's + s2R2C?’

Vs (4.43)
with V,,, and V,,, statistically independent. The analytical expression for the
voltage noise spectral density is obtained after straightforward calculations
substituting (A1) in (Z43) and considering the Root Mean Square (RMS)

value

_ 2 2

V2(w) = + (WRC) .
1+ 7(wRC)? 4+ (wRC)4

This result can be verified analytically considering that, by Nyquist theo-

rem (.1])

(4.44)

V(w) = 4K, TRe{ Zgy(w)}. (4.45)

o
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— —— 1 —— 1

Figure 4.13: RC ladder circuit for the noise analysis in the Laplace domain:
V,, are the noise equivalent voltage sources (the sign is arbitrary) and R are
noiseless resistors.

In fact, from the circuit in Figure [£.12], the expression of Z,,; can be easily
obtained as

1 R(2+sCR)

L R(2+ sCR)
Zout(s) - s¢ IR;FSCR = (446)
(2+sCR) 2
L [ R@HCR = T 3RCs + (RCs)

which matches ([£44))-(£45) as expected. The real part of Z,,; can be found
considering that Re{Z,u:(s)} = 0.5(Zout(S) + Zout(—s)), i.e.

2 — (RCs)?
1+ (RO — (3RCs)"

Re{Zou(s)} = R (4.47)

Equation (£44) can be verified performing the noise analysis in Spice for
the network in Figure .12l The results depicted in Figure match to
machine precision.

Now, a state-space model is derived for the RC ladder network and then
synthesized back to a circuit whose spectral noise density is evaluated ana-
lytically. From standard calculations? the state-space model, normalized by
C, in Gilbert canonical form for the RC ladder network in Figure results

in
1 pi 0 1 P1 g
A=_— b= = 4.48
R(O pQ)’ (1) ‘ (m | (445)
corresponding to

_ Rp, i Rpy
sCR—p, sCR—py’

Z(s) (4.49)

5For a detailed derivation of the Gilbert canonical state-space form associated to the
RC ladder network example see Appendix
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Figure 4.14: The result of the noise analysis from Spice performed using
the circuit in Figure .12 (blue dashed line) is compared with the direct
application of (L44]) (red continuous line).

where p; o are

—3+/9—-4 -3++5
P12 = = (4.50)
4 2
and \/_
5+ VD
P12 = ——"0". (4.51)

10
Applying now the direct synthesis method to the state-space model (£48)
leads to the network depicted in Figure Like for the RC ladder cir-
cuit, also for the network resulting from the direct synthesis of the Gilbert
canonical model the analytic expression describing the output spectral noise
density can be derived using the noise analysis method described in Sec-
tion [4.Il Considering that the mean square voltage noise associated to each
resistor in Figure is

R
vy = 4K,T (——) , pi€RT, (4.52)

it follows that the mean square voltage noise o7 from each sub-circuit in

Figure [4.16 reads
2
_9 _9 Di
= — . 4.53

Voltage controlled current sources do not affect the noise, therefore the noise
contributions 1731_ lead to the mean square voltage output by means of the
weighted sum

0 = 302, + gl (4.54)
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Figure 4.15: Direct synthesis from Gilbert canonical form (4.48]). Note that
the values of the resistors are positive since the poles p; must be negative to
describe a stable system.

v + .
ni ZS U
o
cC Url A
1
__L v,
a1 PUr1 _
O
5 pvr2 T
Un, +
c —_— Ur2 =
1
az,2

Figure 4.16: Noise analysis network from Gilbert canonical form (£.48) syn-
thesis.
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Figure 4.17: Noise analysis results comparison: the red continuous line is the
result from equation (444) (previously verified via Spice), while the black
dashed line is the result from equation (L53)), verified via Spice using the
network in Figure (blue continuous line).

Substituting (A53]) and (A52)) into (£54) leads to

2 pip1 P3D2
V2(w) = 4K, TR ( — = . 4.55
o (W) = 4K, ( PRCT L WRIC? + p§> (4.55)

The two analytical expressions for the output spectral voltage noise de-
rived so far are compared graphically in Figure 17 As can be seen, equa-
tion (453]), which describes the spectral noise associated to the synthesised
network, matches the result from Spice noise analysis. This confirms that
equation (A.55]) describes properly the noise response of the circuit in Fig-
ure [L15, but the two curves do not match the result from ({44 (previously
verified via Spice), which gives the output voltage noise spectral density of
the original RC ladder network (Figure[d.I2]). Since the state-space model is
correct, see Appendix[C], this result confirms that the direct synthesis method
is not able to preserve the noise response of the original circuit, i.e. the RC
ladder network.

The noise compliance issue described in this section is the consequence
of the improper usage of controlled sources in the synthesis process. In the
following sections two noise-compliant synthesis methods will be presented.
In both cases the root idea that allows to preserve the noise behaviour is
quite simple, and inherited from the static synthesis case: controlled sources
can only be used to construct lossless sub-networks; in this way controlled
sources will have no impact on the noise produced by resistors (the only
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p N LN

=

Figure 4.18: Generic (P 4+ N)-port network M.

elements responsible for Gaussian noise in a linear circuit, as explained in

Section [.11).

4.3.3 Youla’s reactance extraction

To overcome the lack of noise compliance in the RCCS synthesis, the clas-
sic reactance extraction algorithm, originally proposed by Youla and Tissi
in [154], can be used. As for the RT synthesis in the static case, also Youla’s
synthesis is noise compliant by construction, since controlled sources are only
used to construct lossless sub-networks. Moreover, reciprocity constraints are
also imposed, in order to avoid the usage of non-reciprocal elements (gyra-
tors), preserving all the physical properties of linear time-invariant lumped
network. As a preliminary step, the inductance extraction procedures is
briefly outlined in order to simplify the presentation of Youla’s synthesis.

Inductance extraction

The inductance extraction idea can be easily introduced considering a static
(P + N)-port network N, depicted in Figure LI8 Supposing that the
impedance matrix representation exists for this network, voltages and cur-
rents can be related by

Vp, = Z171’I:p -+ Zl,Zin s (456)

v, = Zoit, + Zopiy, (4.57)

with Z171 € RPXP, ZLQ € RPXN, Z271 e RV*F and Z272 e RV*N Tt is well
known that closing N ports of network N on unitary inductors imposes the
relation

v, = —ZL’I:n, (458)
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where Z;, = sly,. Substituting (£58) into (A57) and solving for v, leads to
the input-output relation

’Up = (Zl,l — Z172<ZL + Z272)_1Z271)ip . (459)

Note that (4.59) has a remarkable similarity with (4.26]), repeated here for
convenience

v, = (D+C(sI - A)"'B)i,. (4.60)

From a direct comparison, it follows that the state space realization {A, B, C, D}
of a P-port system can be synthesised as a static (P + N)-port impedance

network (£56)-(£57) with
° ZlylzDeRPXP;
o Z,,=—C c RPXV,
o 7y, =B € RVN*P,
® Zys=—-A € RV*N,

and with its last IV ports closed on unitary inductors Iy;,.

This simple example suggests that the state-space matrices of the transfer
function (L60) could constitute the impedance matrix of a static network.
The extension to the capacitance extraction case is straightforward and well
documented [@] The main question now is how and under which condi-
tions it is possible to construct from state-space matrices (L60) a passive
and symmetric impedance (or reciprocal hybrid matrix, in the general case)
matrix (£56) in a similar fashion to the previous example. Since the state-
space matrices describing a dynamic network are not unique (like discussed in
Section [£3.T]) the main concern in the following will be to find the similarity
transformation (4.28)) leading to a state-space model that allows to construct
the hybrid matrix associated to a passive, reciprocal static network. This
is the main task of Youla’s reactance extraction method and the enabling
factor for a reciprocal and noise-compliant synthesis. Note that this task is
tightly related with passivity and reciprocity conditions outlined in Table
for a state-space model.

As will be explained in the following, Youla’s reactance extraction syn-
thesis requires to transform the state-space matrices of the transfer func-
tion (£60) into a positive real balanced and internally reciprocal realization.
Details on how to define and perform such transformations are the main topic
in the rest of this section.
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Positive real balanced state-space realizations

Starting from the passive state-space realization {A, B, C, D} associated to
the impedance transfer function

Z(s)=C(sI-A)"'B+D « (%’%) : (4.61)

the following steps are required in order to obtain a positive real balanced
realization

e step 1: explicitly solve the Positive Real Lemma (PRL) for P, i.e.
the LMI in Table [4.3] for the hybrid case. Also form the dual system
{AT, c? BT, DT} and solve its associated PRL for the corresponding
matrix Q. Restricting now the analysis to the case R = D + D7 = 0
(corresponding to asymptotic strict dissipativity), it follows that the
matrices P and Q can be found by solving the Continuous Algebraic
Riccati Equations (CARE) [173, [174]

A"P+PA+ (PB-C"R ' (B'"P-C) =0, (4.62)
AQ+QA"+(QC"-B)R ' (CQ-B") =0, (4.63)
with P = P >~ 0 and Q = Q" = 0. This calculation can be per-

formed through the Laub’s method [175]|, based on the evaluation of
the invariant subspaces of the Hamiltonian matrices associated to (4.62])

and (BL.63);

e step 2: compute the Cholesky factorization [110] of P and Q
P=F'F, (4.64)
Q= G'G, (4.65)
with F, G € RV*¥ triangular matrices;

e step 3: apply the Singular Value Decomposition [110] on the matrix
product FGT, i.e.
FG' =UxZVT, (4.66)

with U,V € RV*¥ orthogonal, where the diagonal matrix ¥ € RV*V
stores the singular values in decreasing order on its main diagonal;

e step 4: construct the invertible similarity transformation matrix T by
T=GIvz12, (4.67)

and apply it to the state-space system (Z.GI]).
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The result of this process has the following property:
P=Q=X, (4.68)

i.e. the solutions of CAREs (4.62)-(£.63) are equal and diagonal. The result-
ing state-space realization {A,B, C,f)} is called "positive real balanced”.
Therefore the starting passive state-space realization {A, B, C,D} can be
converted into a positive real balanced one using the similarity transforma-
tion (A.67) according to (£27). A complete proof that the resulting state-
space realization verifies the passivity conditions in Table [£.3] and is positive
real balanced can be found in [171].

It can be demonstrated [119] that the static hybrid matrix M, resulting
from the reactance extraction method applied on the positive real balanced
realization {A,]é, é,ﬁ}, ie.

- [D -C
M= |- ~ 4.69
E (4.69)
~ ~ T

satisfies the static passivity condition in Table 4.1t M +M > 0.

The next step is to obtain an internally reciprocal state-space model start-
ing from {A,B,C,D}. Details on how to guarantee the reciprocity in the
reactance extraction method are discussed in the following.

Reciprocal state-space realization

As it was demonstrated in [119], the reactance extraction procedure applied
to a internally reciprocal state-space model leads to a reciprocal static hybrid
matrix M (&69). In other words: if the state-space matrices {A, B, C,D}
verify the internal reciprocity conditions in Table [4.3] repeated here as

~ ~ T

All = TIA (4.70)
~ ~ T

B = IIC , (4.71)

(where S.,; = Ip because an impedance transfer function is considered) then
the static hybrid matrix resulting from the reactance extraction procedure
will satisfy static reciprocity conditions in Table [£1] i.e.

SeM =M’ S,,; . (4.72)

In order to attain a reciprocal and passive synthesis, two alternative
strategies are possible, depending whether reciprocity constraints (Z£70])-
(A.7T)) are imposed before or after the solution of the Algebraic Riccati Equa-
tion (CARE) for the construction of the positive real balanced realization,
ie.



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS 132

e pre-care reciprocity: in this case a state-space with reciprocity con-
straints is obtained before solving the CAREs (4.62)-(4.62). Which
means that the matrix II relating the state-space matrices in a re-
ciprocal model is found by means of standard techniques ] To
preserve reciprocity in the positive real balanced state-space model re-
sulting from the similarity transformation obtained from the solution
of CAREs (L.62)-(4.62)), a particular solution to the dual-CARE (4.62))
can be found. Indeed once the solution matrix P of (£62]) is available,
since all the solutions of the PRL in Table [4.3] are related by similar-
ity transformations HE], the solution of the dual-CARE (£62) can be
found as

Q =1IIPIT, (4.73)

with II = II7 = II7', i.e. symmetric and orthogonal, from the so-
lution of the reciprocity constraint in Table 4.3l Relation (A.73) sim-
ply results from the imposition of state-space reciprocity constraints
in the CARE (£62). Applying now the similarity transformation ma-
trix T (467) leads to a balanced reciprocal state-space model, with
reciprocity matrix

II=T'TIT. (4.74)

In order to obtain an internally reciprocal model, according to Ta-
ble [L.3], the reciprocity matrix II has to be a signature matrix. There-
fore IT is factored according to ] (Algorithm 2) obtaining

II=VAVT (4.75)

with A signature matrix, i.e. diagonal matrix with 1 and —1 on the
main diagonal. Please note that factorization (£.75) can be performed
as a consequence of (L), see ] for details. Using now V as a
new similarity transformation, the resulting state-space model will be
internally reciprocal and positive real balanced;

e post-care reciprocity: in this case the starting point is the positive real
balanced state-space model {A, B, é, ]~D} Reciprocity conditions (£.70])-
(@) are explicitly imposed using an orthogonal symmetric matrix I1
obtained from the direct solution of the system

II =IIA, (4.76)
II, (4.77)

via standard tools like SeDuMi ] Please note that in addition to
symmetry also orthogonality is required to preserve the positive real



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS 133

property [171]. Internal reciprocity is obtained decomposing II as
II=VAVT, (4.78)
with A signature matrix.

In both cases the outcome will be an internally reciprocal balanced state-
space model {A, B, C,D} with internal signature matrix

Iy, O
-y 0], am
with V; + N, = N.

The balanced realization obtained via (4.67) guarantees the passivity of

the hybrid matrix
~ D -C
M= |- ~ 4.80
EY (4.80)
resulting from the reactance extraction procedure, i.e.

M+ M >0. (4.81)

The internal reciprocity guarantees the sign symmetry of the hybrid ma-

trix (£.80), i.e.
SyM=DM'S,, (4.82)

with signature matrix S,; defined by

Ip O
o= [t ) sy
and A internal signature matrix from (£79]).

Once the internally reciprocal balanced state-space model {A, B, C, ]5} is
available, the dynamic synthesis problem is mainly reduced to the synthesis
of the associated hybrid static matrix (£80). Next subsection outlines how
to perform the synthesis of (£80) thus completing the description of Youla’s
reactance extraction algorithm.

Synthesis algorithm

The starting point is the internally reciprocal and balanced state-space re-
alization {A, B, C,D} from which the hybrid, passive and sign symmetric,
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matrix M (Z80) is obtained. In order to convert (ZR0) into an equiva-
lent static P + N circuit it is important to note that the signature matrix
Sy ([A83) suggests the following partition of matrix M (.80,

Lo o] D -G -G
SM =10 INl 0 — M = Bl _Al,l _Al,c . (484)
0 0 _INC EAgc _Ac,l _Ac c

According to the partitioning of the hybrid matrix M in (4.84), currents and
voltages of the resulting static hybrid network can be arranged as

v] [D -G —€.1T
V| = Bl —Au _Al,c ’I:l (485)
ic Bc _Ac,l _Ac,c Ve

where 4, € R” are the input ports of the state-space model, 3, € R are the
ports of the hybrid matrix to be closed on inductors and v, € RYe are the
ports of the hybrid matrix to be closed on capacitors.

Three are the main steps involved by the synthesis of the hybrid matrix M
partitioned as in (£85]) in order to extract noise-compliant positive resistors,
ie.

1. impedance sub-network synthesis: from (£.85]) an impedance sub-network
is identified as

D -G
Zir = | 2 . . 4.
M [Bl _Al,l:| ( 86)

Due to passivity and reciprocity of M, it can be demonstrated [119]
that Z,; is a symmetric positive definite matrix. The synthesis of a
static impedance matrix was discussed in Section 2.3l Applying the
eigenvalue decomposition on Z,; leads to

Zy = N.D.NT (4.87)

with D, € RV*Nr positive diagonal matrix and N, € R(PHNXNr ¢y
ratio matrix for a lossless ideal multi-port transformer having P + N,
primary ports and NV, secondary ports. The rank of Z,; determines the
value of NV,;

2. admittance sub-network synthesis: from (£85) an admittance sub-

network is identified as
Y =—-A... (4.88)

)
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Due to the stability of the state space model, it can be demonstrated [119]
that Y, is a symmetric positive definite matrix. The synthesis of a
static admittance matrix was discussed in Section [£.2.3] Applying the
eigenvalue decomposition on Y ,; reads

Yy =N,D,N/, (4.89)

with D, € RNo*No positive diagonal matrix and N, € RE+N)*No tyrp
ratio matrix for a lossless ideal multi-port transformer having P + N,
primary ports and N, secondary ports. The rank of Y, determines
the value of Ng;

3. transformer sub-network: from (4.85) an ideal multi-port transformer
connecting impedance (£87) and admittance (£89) sub-networks pre-
viously identified can be defined as

N; = [Bc _Ac,l} = [Cc Al,c}T . (490)

As a consequence of the sign symmetry of M (@82 it is easy to prove
that N, € RNex(P+N) i5 the turns ratio matrix of an ideal multi-port
transformer having P + N; primary ports and NN, secondary ports.

The connection of the three sub-networks Z,, (£87) Y, (£89) and
N; (&£90), closed on N; unitary inductances and N, unitary capacitances
concludes the synthesis of the state-space model associated to the impedance
transfer function (A61)). Figure (£19) clearly demonstrates how to intercon-
nect the sub-circuits that constitute the desired Youla’s reactance extraction
synthesis.

RC ladder network example

The RC ladder network example from Section (43.3) is revisited here to show
the noise-compliance of Youla’s reactance extraction synthesis.

The starting point is the state-space model for the RC ladder network in
Gilbert canonical form, i.e.

1 p1 0 1 L1 ’
A— — b— = 4.91
R(O pz)’ (1) © (pz) / (4.9)

where p; 5 are

_—3i4\/9—4:—3i\/5 (4.92)

P12 = 5
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Figure 4.19: Interconnection of the three sub-networks Z,, (£87) Y ), (489)
and N; (£90), which closed on N; unitary inductances and N, unitary ca-
pacitances concludes the synthesis of the state-space model associated to the
impedance transfer function (LGI). Each sub-network is synthesized using
resistors and ideal transformers like described in Section [£.2.3] as an exam-
ple the synthesis of Z,, is depicted in Figure Note that each port in
the figure denotes collectively a set of P, N;, or N, ports for the interface,
inductance, and capacitance ports, respectively.
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Figure 4.20: Belevitch (RT) synthesis for the sub-network Z,, resulting from
Youla’s procedure. According to (£87): the N, secondary ports of the ideal
transformer described by N, are closed on unitary resistors, while the first
P primary ports realize the port of the impedance (L6I]) and the last N,
primary ports are connected in series to unitary inductors. Only a few turns
ratio values n;;, with¢=1,..., P+ N;and j = 1,..., N,, are considered for
the multi-port ideal transformer to simplify the presentation of the circuit.
Pt N;" and P~, N; are, respectively, positive and negative terminals for the
P + N, ports of Z,;.
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and

5+5

10
The conversion to a reciprocal and positive real balanced realization is straight-
forward: reciprocity is guaranteed by construction when dealing with a 1-port
circuit, while to obtain a positive real balanced model it is sufficient to im-
pose [162]

P12 = (493)

A = AT, (4.94)
B = CT. (4.95)

Since condition (£.94)) is already met by (£.91]), only (£.93) should be consid-
ered. It is easy to verify that the similarity matrix

T = v 0 (4.96)
0 2
transforms (4L.91]) into the positive real balanced realization

R

Using the reactance extraction procedure the static hybrid matrix M is

found as
[0 —vm —ym
M= |,/ —p/R 0 , (4.98)
VP2 0 —p2/R

with the corresponding signature matrix

1 0 0
Sw=10 -1 0]. (4.99)
0 0 -1

The synthesis of the hybrid matrix M is depicted in Figure @21l Please
note that: since the impedance sub-network Z,; in (£98)) is null, the input
port of Z(s) is directly connected to the transformer sub-network described
by the turns ration matrix Ny, = [\/p1 /p2]’. While the admittance sub-
network Yy, is composed by the two admittances —p; /R and —py /R, directly
connected in parallel to the unitary capacitors and to the secondary ports of
the multi-port transformer described by N;.

The voltage output noise spectral density can be evaluated analytically
like in Section leading to the equation

72 pip P3P
V2(w) = 4K,TR ( - = . 4.100
o (W) = 4K, ( CRCT+ 7 wR20? 1 pg) (4.100)
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Figure 4.21: Youla’s reactance extraction synthesis result from (Z98)) for the
RC ladder network example.

Equation ({I00) is compared in Figure ([{22]) with the results obtained from
Spice noise analysis using the original RC ladder network and Youla’s syn-
thesis based on (£98). As expected the three curves overlap each other.

Circuit complexity

The main issue of Youla’s reactance extraction synthesis lies in the complexity
of the resulting network, indeed the number of elements scales as O (P?N?)
compared with O (P?N) for the direct synthesis method from Section
There are several reasons for such a big difference in the number of elements
between the two synthesis methods, i.e.

e canonicity: as it was demonstrated in [119], it is impossible for a purely-
reciprocalﬁ passive synthesis to jointly use the minimum number of pas-
sive (resistors) and reactive (capacitors and inductors) elements. This
means that a purely-reciprocal passive synthesis will always require
more elements compared to a passive non-reciprocal one;

e noise-compliance: in order to preserve the noise response, the RT syn-
thesis is used on the hybrid static matrix (£.80) resulting in three sub-

6A circuit composed only by RLCT elements was defined as purely-reciprocal in Sec-

tion 2.1
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Figure 4.22: Comparison between noise analysis results obtained by means
of analytical equation (LI00) (red line), Spice simulation using the circuit in
Figure [L.2]] (dot-dashed line) and Spice simulation on the original RC ladder
network (blue dashed line).

networks of multi-port ideal transformers. The synthesis of those trans-
formers requires a large number of controlled sources;

e sparsity: starting with a sparse model, i.e. Gilbert canonical form, will
not result into a sparse reciprocal balanced realization because model
structure is not preserved by the similarity transformation (£.67) in the
general case.

As a consequence to the considerations above, the pure-reciprocity constraint
will be relaxed in the following while preserving noise-compliance in the syn-
thesis. Removing the constraint of pure-reciprocity leads to a synthesis with
a complexity comparable to the direct synthesis method in Section

4.3.4 Darlington’s resistance extraction

Duo to the complexity of the resulting network, Youla’s reactance extraction
can only be used in practice for state-space models possessing a low dynamic
order. As discussed in previous Section [4.3.3] this limitation is tightly re-
lated with the requirement of preserving a purely-reciprocal circuit in the
synthesis process. Since the main concern in this work lies in attaining a
noise-compliant synthesis, it is conceivable to remove the pure-reciprocity
constraint in order to achieve a result of practical relevance. Youla’s reac-
tance extraction procedure could be modified in that sense, but the similarity
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P No LN,
lossless

N

Figure 4.23: Darlington’s Resistance extraction: lossless dynamic sub-
network N closed on N, resistors.

transformation (£.67) will not allow to preserve the structure of the state-
space matrices in any case, thus loosing the sparsity pattern provided by
Gilbert canonical form. Therefore a different approach is considered in this
section, i.e. Darlington’s Resistance extraction technique.

The classic Resistance extraction algorithm was proposed by Darlington
in [147]. Given a linear and passive dynamic network A/, the main idea is:
extract all the resistors from N thus obtaining a lossless dynamic network
Ny like depicted in Figure .23 Since lossless networks are noise compliant
by construction, even if non—reciprocaﬂ the dynamic lossless sub-network
Ny can be synthesized via the direct synthesis method from Section [£.3.2]
leading to a circuit with a complexity scaling as O (P?N). In this way a
canonical noise-compliant synthesis can be obtained.

In the following the Resistance extraction technique will be applied to
the passive state-space model

&(t) = Az(t)+Bi(t), (4.101)
v(t) = Ca(t)+Dit), (4.102)

TAs discussed in Section E.3.3l noise-compliance is related with the proper usage of
controlled sources in the synthesis process: only lossless networks composed of controlled
sources are noise compliant. Since reciprocity is not required, even non-reciprocal lossless
networks will result into a noise-compliant circuit.
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with input vector ¢ € R”, output vector v € RY and state-space matrices:
A e RVN B e RV C e RPN and D € RP*P. Similar results hold for
scattering models [119].

State-space resistance extraction

The main objective of the resistance extraction method consists in the ex-
traction of a lossless dynamic state-space model N

&(t) = Agz(t) + By L’ir((tt))
{:%))} = Coz(t) + Do {.ir((t t))} : (4.104)

2

} , (4.103)

which closed on N, unitary resistors L, i.e.
v,(t) = =1,4,.(t), (4.105)

leads to the state-space of the starting passive dynamic network N described
by (AI0I)-(AI02). Please note that the lossless dynamic state-space real-
ization (A.I03) has the same dynamic order of the original dynamic net-
work (EI0T), i.e. Ag € RV*Y thus order minimality is preserved. The main
difference between network A and A is in the number of ports. Indeed
D, € RPHNIX(PEND) - swhere N, is the number of resistors closing the N,
inputs 4, of the lossless sub-network, with N, = rank{D + D”}.
Unfortunately it is not possible to provide a simple circuit interpretation
of the resistance extraction procedure, like it was done for the reactance
extraction in Section [4.3.3] because the extraction of resistances from a state-
spac model involves the solution of the quadratic system of equations

PA+A"P = —LLT, (4.106)
PB = CT'-LW, (4.107)
D+ D" = WI'wW (4.108)

with L € RN W € RV*F and P € RVXV,
According to [119], once the solution matrices L, W, P for (d.106])- (4108
are known, the lossless state-space model Ny (£103)-(EI04) can be directly

8The extraction of the resistors from the state-space model of N is equivalent to the
identification of the lossless dynamical sub-network Af.
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constructed as

1
Ay = §'f‘ ATy, (4.109)
1
B, = kB+CT 7§iica (4.110)
I D-D") Lw”
D, = |27, V2 . (4.111)
Rl

To verify that {Ag, Bg, Co, Do} constitutes a lossless state-space model it is
sufficient to check the relations

Ag+A] = 0, (4.112)
B, = CJ, (4.113)
D, +D] = 0, (4.114)

that are called the lossless PRL equations. The relation with the LMI in
Table (passivity column) is discussed in [@]

Please note that from (AI0Y) it is evident how the structure of matrix
A is preserved by the resistance extraction process. It follows that Gilbert
canonical form can be used in order to attain a low complexity synthesis like
in Section E3.2. Moreover, if D = D” in (@II1]), which is usually the case if
the starting impedance model describes the immittance of a linear reciprocal
circuit, Dy will only have the outer block-diagonal element different from
zero, i.e. W.

Once the lossless state-space model (AI09)-(ZI1T) is known from the
solution of the PRL, the synthesis is straightforward, being a simple applica-
tion of the direct synthesis method on (£I03)-(£I04), with the last N, ports

closed on unitary resistors.

Positive Real Lemma solution

In the solution of the PRL (4I06)-(£108), leading to L and W in (£I09)-
(4IT17), the attention is restricted here to the case in which

D+ D" -0, (4.115)

i.e. the state-space model (LI0I)-(I02) is strictly asymptotically pas-
sive. According to HE], under the hypothesis (£I15]), the solution of the

PRL (4.106)-(4108)) is obtained by the following steps
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1. stating from a minimal and passive state-space realization {A B, C, D},
solve the Algebraic Riccati Equation for the positive definite matrix P,
i.e.

AP +PA+ (PB-C")R'(B'"P-C) =0, (4.116)
using standard methods [173, [174];

2. obtain an internally passive model using the similarity transformation
defined by matrix P/?;

3. perform the decomposition

D+ D" =W'wW; (4.117)

4. decompose W as
W = VRY?2; (4.118)

with V orthogonal;

5. form L using the equation
L= (P/?B - P~ '2CT)RV/2VT (4.119)

where B and C come from the starting state-space in step 1, R and V

are in (LI18).

This concludes the resistance extraction process.

Example

The simple RC circuit example considered in Section [4.3.2] and [£.3.3] is pro-
posed here using the resistance extraction synthesis. Starting from the posi-
tive real state space realization obtained in [£3.3] i.e.

) () () e

with p; o = _3i4v 9—4 — _3j2“/5 and p; o = 5i15/5, the conversion to an internally

passive realization is performed based on the steps outlined before. Since
the state-space matrix D is zero in (£I20), the solution matrix W in the

PRL (£106)-(#I08) is zero as well. If follows that (£I06) and (LI07) are
decoupled and (I07) reduces to B = C”, which is satisfied by (ZI20).
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Table 4.4: This table summarizes the most relevant features of the synthesis
methods presented in this work: direct synthesis (RCCS) from Section [£.3.2]
Reactance extraction from Section [£3.3] and Resistance extraction from Sec-
tion [4.3.4l The constant factors differentiating the complexity of the RCCS
synthesis with the Resistance extraction are such that y < z € R.

RCCS ReactaI.me Res1sta_nce
extraction extraction

Pure-Reciprocity no yes no
Complexity O(yNP?% O(N?P?) O(zNP?)
Noise-compliant no yes yes

The solution matrix L in (£I06) can be obtained in this case by a direct
application of the Cholesky factorization, leading to

VE0
L=|V*# = (4.121)
0 V&

The state-space model associated to the lossless sub-network A in the re-
sistance extraction synthesis framework results from a direct application

of (A.109)-(£I11) based on (£I20) leading to
Ay = 0, (4.122)
_ /B
B, = {\/p_l oR _O ]:CT (4.123)

D, = 0. (4.124)

Since the state-space matrices (£I122)-(£124) define a lossless network, the
RCCS synthesis method discussed in Section [£.3.2 can be still used while pre-
serving noise-compliance. The resistance extraction procedure is completed
closing the last two ports of the lossless sub-network A on unitary resistors
like depicted in Figure The result of the frequency dependent noise
analysis performed in Spice are depicted in Figure [£.25. This result confirm
the noise-compliance property of the proposed synthesis strategy.

4.3.5 Dynamic synthesis results and comparison

In this section simulation time results and complexity are compared for the
state-space synthesis methods previously described. Table [4.4] highlights the



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS
—iry/pn 1

O
; /R
1r1 P1 T

146
+
1F

01
Vz1
Uzl\/p_l i_
i1z ]

0 Ug24/P2
_l’_
Z-r2\ / pA; T 1F —— Vg2 =

o JROT
10/ b1 N\—

/R /+
irl ir2
Figure 4.24: Darlington’s resistance extraction synthesis resulting
from (£122)-(4.124) for the RC ladder network example.
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Figure 4.25: Comparison between noise analysis results obtained by means

of Spice simulation using the circuit in Figure £.24] (blue dashed line) and
Spice simulation on the original RC ladder network (red line).
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Figure 4.26: Noise analysis result for the first example in Table (2 ports,
order 20). As can be seen the results obtained from Reactance (blue dashed)
and Resistance (red dashed) extractions-based synthesis methods match (to
machine precision) the result of the noise analysis obtained from Spice using
the raw S-parameters (Sp, black continuous line).

most relevant features of each synthesis method.

In a similar way to the static synthesis case, dynamic synthesis methods
are validated through test cases conducted on artificial state-space models,
obtained from the commercial software IdEM from IdemWorks, and on state-
space models derived from real designs using the identification procedures
discussed in Chapter 2l Frequency dependent noise responses are compared
with the results of Spice-based noise simulations based on [176].

Automated testing procedure

A simple automated testing procedure is used to asses accuracy and com-
plexity for the synthesis methods presented in this chapter. Several passive
state-space models, with ports count in [2,100] and order in [20,600], are
automatically generated using the software IdEM from IdemWorks and con-
verted to Spice netlists. A small subset of those test cases is reported here
with a detailed comparison of the number of network elements required by
each synthesis method. The following Tables compare the number of:
nodes, capacitors, current controlled sources, inductors, resistors and voltage
controlled sources used in the direct synthesis (RCCS), Reactance extraction
and the resistance extraction methods. Moreover S-parameters simulations
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Figure 4.27: S-parameters for the first example in Table L5 As can be
seen the results obtained from Reactance (blue dashed) and Resistance (red
dashed) extractions-based synthesis methods match the original raw Scatter-
ing parameters with great accuracy.

were performed in Spice using the netlists resulting from each synthesis and
execution times are reported in the tables as well. The accuracy of the S-
parameters resulting from reactance and resistance extraction methods is
demonstrated in Figure Noise analysis results are depicted in Fig-
ure for the first test case reported in Table Note that the results
concerning the RCCS synthesis refers to the Spice netlists obtained from the
commercial software [IdEM. The results collected in Table confirm that
the number of circuit elements scales as summarized in Table 4. When
the number of ports is larger or comparable to the order of the state-space
model, like in the examples of Table [4.6] resistance and reactance extraction
methods have a comparable number of elements.

Tests derived from hardware designs

From the big set of real design test cases considered, two of particular rel-
evance are considered in this section to compare the performances of the
synthesis methods. The number of network elements is compared for both
test cases in Table [4.7]

The first example is based on the state-space model for the centrally
involved LC-tank coil of a RF Digitally Controlled Oscillator (DCO). DCOs
can be tuned very accurately: their noise behaviour is a key figure of merit
and requires therefore accurate noise modeling of all involved design parts.
Thus modeling of the centrally involved LC-tank coil is a good benchmark
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Table 4.5: Automatic test cases results. The number of network elements:
capacitors (cap), current controlled sources (cccs), inductors (ind), resistors
(res), voltage controlled voltage sources (vevs), voltage controlled current
sources (vees), is compared for each synthesis method. As a global estimate
of network complexity the total number of circuit elements is also reported.
The simulation time refers to the execution time of S-parameter analysis in
a Spice solver.

order: 20 RCCS Reactapce Resista.nce
ports: 2 extraction extraction
nodes 44 90 30
cap 40 10 20
cces — 208 24
ind — 10 —
res 40 56 6
vevs — 34 4
vees 144 208 142
total 224 526 196
time 150ms 370ms 146ms
order: 64

ports: 4

nodes 72 869 84
cap 64 124 64
ccces — 20934 186
ind — 124 —
res 64 493 12
vevs — 338 8
vees 368 20934 820
total 568 42947 1090

time 300ms 1m35s 730ms
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Table 4.6: Automatic test cases results. The number of network elements:
capacitors (cap), current controlled sources (cccs), inductors (ind), resistors
(res), voltage controlled voltage sources (vevs), voltage controlled current
sources (vees), is compared for each synthesis method. As a global estimate
of network complexity the total number of circuit elements is also reported.
The simulation time refers to the execution time of S-parameter analysis in
a Spice solver.

order: 600 RCCS Reactance Resistance

ports: 30 extraction extraction
nodes 660 2550 750
cap 600 300 600
ccces — 153915 17808
ind — 300 —
res 600 1590 90
vevs — 960 60
vees 19740 153915 55002
total 21600 310980 73560
time 20s 20min 2min
order: 100

ports: 241

nodes 1400 1463 741
cap 1200 121 241
cces — 51051 28895
ind — 120 —
res 1200 902 300
vevs — 561 200
vees 131400 51051 77575
total 135200 103806 107211

time 5min 10min 10min
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Figure 4.28: S-parameters for the LC-tank coil example. As can be seen the
results obtained from Reactance (blue dashed) and Resistance (red dashed)
extractions-based synthesis methods match the original raw Scattering pa-
rameters with great accuracy. A small part of the frequency response is
shown since the response below 1GHz is very flat.

for the noise compliant synthesis. The accuracy of the synthesis methods in
the calculation of the S-parameters is demonstrated in Figure [4.28 Noise
analysis results are depicted in Figure [£.29L

The second example in Table .7 consider a 2-port base band filter block
used in the receiver chain of a 3G transceiver. Also in this case noise-
compliance is of paramount importance. All the components in a receiver
chain are carefully designed in order to reduce noise contributions thus pre-
serving the weak signal from the antenna. S-parameters accuracy is con-
firmed in Figure [4.30, while selected noise analysis results are reported in

Figure 4311
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Figure 4.29: Noise analysis result for the LC-tank coil example.
be seen the results obtained from Reactance (blue dashed) and Resistance
(red dashed) extractions-based synthesis methods match (to machine pre-
cision) the result of the noise analysis obtained from Spice using the raw
S-parameters (Sp, black continuous line). A small part of the frequency
response is shown since the response below 1GHz is very flat.
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Scattering matrix entries, magnitude

0.5F —data
---reactance ext.
--resistance ext.
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Figure 4.30: S-parameters for the base band filter example. As can be
seen the results obtained from Reactance (blue dashed) and Resistance (red
dashed) extractions-based synthesis methods match the original raw Scatter-
ing parameters with great accuracy.

Noise Input [V/V H?z]

-
------------
=fus

---RCCS
---reactance ext.
== resistance ext.

10 t ‘ e ‘ e ‘ ‘
10° 10° 10" 10"

Frequency [HZz]

Figure 4.31: Noise analysis result for the base band filter example. As can
be seen the results obtained from Reactance (blue dashed) and Resistance
(red dashed) extractions-based synthesis methods match (to machine pre-
cision) the result of the noise analysis obtained from Spice using the raw
S-parameters (Sp, black continuous line).
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Table 4.7: Results summary for the two test cases based on real designs. The
number of network elements: capacitors (cap), current controlled sources
(cces), inductors (ind), resistors (res), voltage controlled voltage sources
(vevs), voltage controlled current sources (vees), is compared for each synthe-
sis method. As a global estimate of network complexity the total number of
circuit elements is also reported. The simulation time refers to the execution
time of S-parameter analysis in a Spice solver.

order: 350 RCCS Reactance Resistance

ports: 25 extraction extraction
nodes 400 1406 475
cap 350 177 350
cCces — 53096 8631
ind — 173 —
res 350 293 75
VCVS — 540 50
vees 9925 53096 26817
total 11025 107915 35923
time 20s 10min 1min
order: 248

ports: 2

nodes 252 869 258
cap 248 124 248
cees — 20934 245
ind - 124 —
res 248 493 6
VCVS — 338 4
vees 874 20934 1731
total 1622 — 2234

time 0.5s 1min 1.2s
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4.4 Conclusions

Two noise compliant synthesis methods for linear behavioral macromodels
based on the classical techniques have been presented: one preserves all the
physical properties of the original system requiring a large number of net-
work elements; the second misses to preserve reciprocity of the circuit blocks
involved in the synthesis (while preserving noise behaviour) but requires less
elements. Relying solely on the use of network elements possessing a proper
noise model in SPICE based solvers, the proposed strategies are able to repro-
duce properly the noise behaviour of the system. The accuracy of the results
obtained from the noise analysis was assessed by comparing the proposed
synthesis with standard methods [176].

Noise compliance and network complexity have been the constraints of
interest. Unfortunately those constraints can not jointly attain the optimum
in the available synthesis. Indeed the direct state-space synthesis results
into a network whose number of elements scales linearly with model order
but that is not noise compliant, while Youla’s synthesis is noise compliant
but the number of network elements scales quadratically with model order.
The best trade-off is provided by Darlington’s resistance extraction, which is
noise compliant, but in order to have a complexity comparable with the di-
rect synthesis method requires the use of non-reciprocal elements. Therefore
the best suited synthesis method should be selected depending on the appli-
cation: for reduced order models of IC interconnects and parasitic networks
for RF, SoC/SiP applications noise compliance is a must and Darlington’s
synthesis is the best choice. When dealing with large-scale packages, PCBs
and transmission lines, the direct synthesis is best suited to tackle large or-
der models but the resulting network will not be noise-compliant. Youla’s
synthesis is appropriate for those cases in which network reciprocity of all
network component is needed.

The availability of a noise compliant network synthesis can be of paramount
importance in analog behavioural modeling for devices and complete building
blocks. Noise-preserving modeling is a must for simulation-based design and
design verification purposes of complex analog systems. The methodology
proposed here is an important step toward the migration of hard TP blocks
into firm IP blocks, like discussed in Section (L3).



Conclusions

This thesis proposed several improvements to various important steps in the
verification flow of SoC/SiP components. All the issues tackled in this work
raised from practical needs: fast identification and validation of component
with large ports count, complexity reduction in system level simulations in-
volving non-linear analog RF components and creation of versatile IP blocks
to be used in a high proficiency IP reuse-based modern design flow.

For the identification of behavioural models associated to linear devices
having hundreds of ports, an innovative algorithm was proposed and tested
on several test cases of practical relevance. Combined with standard identifi-
cation methods like Vector Fitting, the new procedure presented in this work
attains speed-ups of two order of magnitudes in comparison with standard
identification methods. Accuracy is completely under control and physical
properties like passivity and stability can be easily enforced on commodity
hardware relaying on a robust reformulation of common techniques.

Accurate small-signal models for RF analog non-linear components were
derived considering that: several RF non-linear blocks are designed in order
to behave in a linear way (no signal distortion or generation of spurious har-
monics) under application-defined operating conditions, therefore non-linear
effects are negligible and a small-signal model is accurate enough to mimic
the response of the system. A simple and effective correction strategy was
proposed in order to overcome the lack of accuracy at DC. The resulting mod-
els can substitute complex non-linear RF blocks resulting in a tremendous
reduction of simulation time for system level simulations.

The small-signal models can then be extended by means of standard tech-
niques to parameterized models. Application-defined operating conditions,
temperature and other design parameters can be considered in order to en-
hance the applicability range. The application of the proposed methodology
on real design test cases confirmed the quality of this approach.

Last but not the least, linear macromodels identified using the aforemen-
tioned techniques are converted (synthesized) in standard Spice netlists. In
comparison with the most common synthesis methods, particular care was
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devoted in this work in order to provide low-complexity Spice circuits reliable
in all simulation scenarios. The availability of such versatile models converted
to Spice netlists is the enabling factor for the migration of IP blocks from
firm to hard form leading to a more robust design/verification flow.

The solutions proposed in this thesis met quality standards and expec-
tations of the host institution, i.e. Intel Mobile Communications, and will
likely become relevant part of a professional verification/design flow.



Appendix A

Notation, acronyms and symbols

Though already introduced in the text, notation, acronyms and symbols used
in the thesis are summarized here for convenience of the reader.

Notation
constant identified by capital case letters (either Latin or Greek); example

A. Some letters are reserved for particular definitions, like: number of
circuit ports P.

index identified by lower case letters (either Latin or Greek); example a.
matrix identified by bold capital fonts; example X. Some letters are re-
served for particular applications, like A, B, C, D which are associated

to state-space models and I, which is the identity matrix.

vector identified by bold lower case fonts; example «.

Acronyms
3G third Generation; refereed to Mobile commu-
nications standards.
A/D-D/A Analog/Digital-Digital /Analog.
AC Alternating Current.
AMS Analog-Mixed Signal.
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Acronyms

BB
BR

CAD
CB
CMOS
CPU

DC
DSP

EDA

GPU
GSK

HDL

IC
IP
ITRS

LDO
LNA
LP
LTFM
LTI

MCM

NoC
OA,OpAmp,OPA
P-LTI

PAS

PC

PCB
PDN

159

Base Band.
Bounded Real.

Computer Aided Design.

Circuit Block.

Complementary Metal-Oxide-Semiconductor.
Central Processing Unit.

Direct Current.
Digital Signal Processing.

Electronic Design Automation.

Graphics Processing Unit.
Generalized Sanathanan-Koerner.

Hardware Description Language.

Integrated Circuit.

Intellectual Property.

International Technology Roadmap for Semi-
conductors.

Low Drop-Out regulator.

Low Noise Amplifier.

Low Power.

Linear Transfer Function Model.
Linear Time Invariant.

Multi-Chip Module, alternative name for SiP.
Network on Chip.

Operational Amplifier.

Parameterized-Linear Time Invariant.
Parallel Adaptive Sampling.

Personal Computer.

Printed Circuit Board.
Power Delivery Network.



List of symbols

PI
PLL
PR
PWL

RF

SI
STA
SiP
SK
SoC
SU
SVD

TSV

VF

Power Integrity.
Phase-Locked-Loop.
Positive Real.
Piece-Wise-Linear.

Radio Frequency.

Signal Integrity.

Semiconductor Industry Association.
System in Package.
Sanathanan-Koerner.

System on Chip.

Speed Up.

Singular Values Decomposition.

Through-Silicon Via.

Vector Fitting.

List of symbols

For all.

Big O notation. Describes the limiting be-
haviour of a function when the argument tends
towards a particular value or infinity.

Cardinality (number of elements) in set .
Maps the real number x to the smallest fol-
lowing integer.

Complex conjugate of x.

Set of all eigenvalues of matrix X.
Empty set.

There exists, there does not exist.

Maps the real number x to the largest previous
integer.

Conjugate-transpose of matrix X.



List of symbols

Identity matrix of dimension n.

If and only if.

Imaginary part of complex number z.
Imaginary unit.

Is an element of.

Set intersection.

Kronecker product.

Transforms the vector & in a matrix X stack-
ing sub-blocks of x as columns of X with
proper dimensions.

Maximum, the largest element of set (2.
Minimum, the smallest element of €).
Remainder of division z/2.

X is negative (semi)definite.

X is positive (semi)definite.
Product.
Moore-Penrose pseudoinverse of matrix X.

Real part of complex number .

Set of all singular values of matrix X.
Spectral norm of matrix X, defined as
max o (X).

Subject to.

Is a subset of.

Sum.

Set of complex numbers.

Frobenius norm of matrix X.

Set of real numbers.

The trace of a square matrix X is defined as
the sum of the elements on the main diagonal
of X.

Transpose of matrix X.
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U Set, union.

vec(X) Vector stacking all columns of matrix X.



Appendix B

The Vector Fitting algorithm

The starting point for the identification of a rational macromodel is a set of
samples from the system frequency response of a P-port LTT device:

H, cC™" ) {w} 1=1,..., L (B.1)

The model resulting from the application of the VF algorithm will be in
pole-residue form

H(s) =D+ ) - lj";n. (B.2)

The main goal is to minimize the approximation error in a generic norm
min [|[H(s;) — Hy|| VI (B.3)

Since the model (B.2)) requires the identification of poles p,, and residues R,,,
the resulting minimization problem (B.3) will be non-linear. As discussed in
Chapter[2 Section2.2], Vector Fitting (VF) uses the Generalized Sanathanan-
Koerner (GSK) Iteration to avoid dealing with the non-linear minimization
problem (B.3) thus converting it into a sequence of linear problems.

The original version of the VF algorithm as proposed by [62| is now
presented as a step-by-step procedure:

1. Starting poles selection: choose an arbitrar set of poles ¢; with j =
1,...,N;

!Some hints on how to choose the starting poles can be found in [62].
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2. Using the poles ¢; define two rational functions

N .
. . N*
O'HZ(S) = D + Z . _7;2 , (B4:)
N
4 d
o'(s) = 1+ Z . _"q (B.5)

Those will be numerator and denominator of the estimated model at
iteration 1, i.e. '
oH'(s)

' (s)

H'(s) = : (B.6)

3. based on the GSK iteration construct a linear system using the equation
oH' () ~ Hyio' (ywy) (B.7)
and solve it in the least-square sense for N, and d' ;

4. poles relocation: update the starting set of poles in (B.4)) and (B.9)
using the zeros of o (s) and force them to have negative real part (poles

flipping);

5. iterate steps (2)-(4), i = 4 + 1, until o%(s) — 1. This is the main
iteration for the identification of model poles.

6. When the poles relocation procedure converged, set the poles of (B.4)
as pn = q,.

7. Finally solve the equation

D%Z

in least-square sense to identifies the residues R,, of the final macro-
model.

(B.8)

S_qn



Appendix C

RC-example state-space
derivation

The state-space equations associated to the impedance transfer function Z,,;
from the RC circuit of Figure .12l can be extracted by direct inspection,
considering the RC network in Figure

: _ _ v ¥
Con =~ 7 (C.1)
Ci, =15+ 25>,
A simple rearrangement of the equations in (C.)), i.e.
2 1
v = —%Ul —+ %UO, C.2
0 o— L, 1 is ( : )
Vo = RVl ~ jalo t ¢

makes possible to identify the state vector

- (gz) , (C3)

n__ C vo _—_— C i Q)

Figure C.1: RC ladder circuit for the identification of a state-space model
using the direct inspection method.

165



APPENDIX C. RC-EXAMPLE STATE-SPACE DERIVATION 166

and the matrices (normalized by C') associated to the state variables

acn (2 0) o= (D) e=(0) amo o

leading to the system of differential equations

{ x =Ax +bi (C.5)
v, = CI.
with transfer function

Z(s) =d+c(sCI— A)™'b. (C.6)

The state-space equations obtained using the direct inspection method
can be converted to an equivalent state-space form, i.e. the Gilbert canonical
form [170]. In this representation the state-space matrix A is a (block)
diagonal matrix with the eigenvalues of the original A matrix (C.4) on the
main diagonal. As a consequence the Gilbert canonical form is equivalent
to the decomposition of the transfer function (C.6)) in the sum of rational

functions, i.e.
2+u P1 P2

§lu) = w2+ 3u+1 u—pr Jru—pg’
where v = RC's, £ = Z(s)/R and p; o are the poles of {(u) (zeros of u? +
3u + 1), while p; o are the residues of &(u)

p12 = &(p12)- (C.8)

Therefore the poles can be calculated from u? + 3u + 1
_ -3+£V9-4 -3+5
B 4 2

and the residues follows from (C.8))

545

10

A simple way to construct a diagonal canonical form consists in collecting

the residues in the state-space matrix ¢, the poles on the main diagonal of
A and ones in b, i.e.

AL ) () e () e

corresponding to

(C.7)

P12 (C.9)

P12 (C.10)

_ Rpl i Rpg
sCR—p1  sCR — ps
where the physical dimensions are consistent.

Z(s) (C.12)
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