
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Ingegneria Informatica e dei Sistemi – XXVI ciclo

Tesi di Dottorato

Multi-Criteria Optimization for
Energy-Efficient Multi-Core

Systems-on-Chip

Haroon Mahmood
matricola: 179100

Relatore
Enrico Macii

February 2014

Dedication
I dedicate this thesis to my family

Dedicated to my Parents
for their unconditional love, encouragement
and support that motivates me to set higher

targets and without whom none of my
success would have been possible

Dedicated to my wife
for her love, care and continual
encouragement in hard times

Dedicated to my brother and two
lovely sisters

for their prayers and wonderful laughter we
share together

Acknowledgements

I would like to express my sincere gratitude to my adviser Prof. Enrico Macii for his
mentorship and providing research freedom to help me grow as a research scientist.
I would like to express my special appreciation and thanks to Prof. Massimo Pon-
cino, my immediate hands-on co-advisor, for his availability at all times, immense
knowledge and technical contributions in all my research activities. I also want
to thanks Prof. Alberto Macii for providing a conductive research environment.
Many thanks go to Higher Education Commission (HEC) of Pakistan for providing
financial support for my doctorate program.

And because there is some life apart from work I want to thank all the friends I
made in Turin and have some of the most wonderful time and unforgettable memories
of my life with them. Without them this journey would not have been the same.

v

Abstract

The steady downscaling of transistor dimensions has made possible the evolutionary
progress leading to today’s high-performance multi-GHz microprocessors and core-
based System-on-Chip (SoC) that offer superior performance, dramatically reduced
cost per function, and much-reduced physical size compared to their predecessors.
On the negative side, this rapid scaling however also translates to high power densi-
ties, higher operating temperatures and reduced reliability making it imperative to
address design issues that have cropped up in its wake. In particular, the aggres-
sive physical miniaturization have increased CMOS fault sensitivity to the extent
that many reliability constraints pose threat to the device normal operation and
accelerate the onset of wearout-based failures. Among various wearout-based failure
mechanisms, Negative biased temperature instability (NBTI) has been recognized
as the most critical source of device aging.

The urge of reliable, low-power circuits is driving the EDA community to develop
new design techniques, circuit solutions, algorithms, and software, that can address
these critical issues. Unfortunately, this challenge is complicated by the fact that
power and reliability are known to be intrinsically conflicting metrics: traditional
solutions to improve reliability such as redundancy, increase of voltage levels, and
up-sizing of critical devices do contrast with traditional low-power solutions, which
rely on compact architectures, scaled supply voltages, and small devices.

This dissertation focuses on methodologies to bridge this gap and establishes
an important link between low-power solutions and aging effects. More specifically,
we proposed new architectural solutions based on power management strategies to
enable the design of low-power, aging aware cache memories.

Cache memories are one of the most critical components for warranting reliable
and timely operation. However, they are also more susceptible to aging effects. Due
to symmetric structure of a memory cell, aging occurs regardless of the fact that a
cell (or word) is accessed or not. Moreover, aging is a worst-case matric and line
with worst-case access pattern determines the aging of the entire cache. In order to
stop the aging of a memory cell, it must be put into a proper idle state when a cell
(or word) is not accessed which require proper management of the idleness of each
atomic unit of power management.

We have proposed several reliability management techniques based on the idea of
cache partitioning to alleviate NBTI-induced aging and obtain joint energy and life-
time benefits. We introduce graceful degradation mechanism which allows different
cache blocks into which a cache is partitioned to age at different rates. This implies
that various sub-blocks become unreliable at different times, and the cache keeps
functioning with reduced efficiency. We extended the capabilities of this architecture

by integrating the concept of re-configurable caches to maintain the performance of
the cache throughout its lifetime. By this strategy, whenever a block becomes unre-
liable, the remaining cache is reconfigured to work as a smaller size cache with only
a marginal degradation of performance.

Many mission-critical applications require guaranteed lifetime of their operations
and therefore the hardware implementing their functionality. Such constraints are
usually enforced by means of various reliability enhancing solutions mostly based
on redundancy which are not energy-friendly. In our work, we have proposed a
novel cache architecture in which a smart use of cache partitions for redundancy
allows us to obtain cache that meet a desired lifetime target with minimal energy
consumption.

ii

Contents

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution of this dissertation . 4
1.3 Organization of this dissertation . 7

2 Background and related work 9
2.1 Aging in digital devices . 10

2.1.1 Electromigration (EM) . 10
2.1.2 Hot carrier injection . 11
2.1.3 Time dependent dielectric breakdown 11
2.1.4 Bias Temperature Instability (BTI) 12

2.2 Negative Bias Temperature Instability 13
2.2.1 NBTI effects on Circuit delay 15
2.2.2 NBTI effects on SRAM cells 16
2.2.3 Aging relation with Power Management 18

2.2.3.1 Impact of Power Gating on SRAM Aging 20
2.2.3.2 Impact of Vdd Scaling on SRAM Aging 20

2.3 Previous Solutions . 20

3 Aging aware cache architectures 25
3.1 Motivation and concept . 25

3.1.1 Motivational example . 26
3.2 Aging aware cache partitioning . 28

3.2.1 True Partitioning . 30
3.2.1.1 Coarse-grain Partitioning 31
3.2.1.2 Fine-grain Partitioning 32
3.2.1.3 Block Level Dynamic Indexing 32

3.2.2 Virtual Partitioning . 32
3.2.2.1 Dynamically Re-sizable Cache 32

iii

4 Aging-driven caches with graceful performance degradation 35
4.1 Introduction . 35
4.2 Aging-driven cache partitioning . 37

4.2.1 Exploration strategy . 37
4.2.2 Metrics . 39
4.2.3 Aging-Driven Partitioning Algorithm 43
4.2.4 Architectural support . 43
4.2.5 Aging model . 44

4.3 Cache Architectures . 46
4.3.1 Coarse-grain implementation 46
4.3.2 Fine-grain Implementation 48

4.4 Optimization algorithms for coarse-grain partitioning 50
4.4.1 Partition & Swap Strategy . 50
4.4.2 Cluster & Partition Strategy 51

4.5 Experimental Results . 52
4.5.1 ELT Results . 53
4.5.2 AMR Results . 54
4.5.3 Energy Results . 56
4.5.4 Detailed Trace-by-Trace Results 57

5 Energy-Optimal Caches with Guaranteed Lifetime 61
5.1 Overview and related work . 61
5.2 Motivation and Concept . 62

5.2.1 Architecture . 63
5.2.2 Models . 66

5.2.2.1 Lifetime . 66
5.2.2.2 Miss Rate . 67
5.2.2.3 Power . 69

5.3 Experimental Setup . 70
5.3.1 Power and Lifetime Results 71

6 Dynamically re-sizable and re-configurable caches 75
6.1 Overview . 75
6.2 Dynamically resizable cache architecture 76
6.3 DRC for aging and performance Optimization 77

6.3.1 DRC Architecture . 78
6.3.2 Architectural Variants . 80
6.3.3 Metrics . 81

6.4 Simulation Results . 82

7 Conclusion 87

iv

Bibliography 89

v

List of Tables

1.1 Power-Reliability Tradeoff. 4
2.1 Reaction-Diffusion Model. 14
2.2 Summary of Characteristics of Power Management Implementations. 21
3.1 Detailed Results for 16kB cache and k=1 30
4.1 Detailed ELT Improvements [%] . 57
4.2 Detailed ELT Improvements [%] 16k 58
4.3 Detailed Energy Results . 59
4.4 Detailed Energy Results 16k . 59
5.1 Total Power (Normalized) of the Memory Hierarchy and Cache Life-

time. 71
5.2 Total Power (Normalized) of the Memory Hierarchy and Average Miss

Rate for T = 15. 71
5.3 Total Power (Normalized) of the Memory Hierarchy and Average Miss

Rate for T = 25. 72
6.1 Detailed Results for 8kB cache and k=1 85
6.2 Detailed Results for 16kB cache and k=1 86

vi

List of Figures

1.1 Design challenges brought by technology scaling [3] 2
1.2 Design challenges due to technology scaling [3] 3
2.1 Inverter . 13
2.2 Static vs Dynamic NBTI . 15
2.3 Normalized delay over time as a function of stress probability 16
2.4 Worst-case degradation . 17
2.5 Best-case degradation . 18
2.6 Two state Power management model 19
2.7 Power-Gated (a) and Drowsy Scheme (b) 21
3.1 Idleness Profiles of adpcm.dec . 26
3.2 Worst- vs. Average Case for the MiBench Benchmarks (8KB Direct

Mapped Cache). 27
3.3 Cache partitioning . 29
3.4 Partitioning approaches . 31
4.1 Worst-case idleness in case of two partitions 38
4.2 Worst-case idleness in case of three partitions 39
4.3 Effective Lifetime and Effective Miss Rate. 41
4.4 ELT (Top) and Miss Rate (Bottom) vs. Time for a Sample Trace. . . 42
4.5 Lifetime vs. Idleness of a SRAM cell. 45
4.6 Variable-Size Partitioned Cache Architecture. 47
4.7 Sensor Block . 48
4.8 Decoder Block . 48
4.9 Internal Structure of a Cache Line. 49
4.10 Comparison of Effective Lifetime. 53
4.11 Lifetime Improvement of 16 KB Cache. 54
4.12 Average Miss Rate Comparison. 55
4.13 Miss Rate Before and After the Death of the First Cache Block. . . 55
4.14 Energy Savings Comparison. 56
4.15 Idleness Profiles of adpcm.dec and mad. 60
5.1 Traditional Dynamic-Indexing Operations (a) and Proposed Archi-

tecture (b). 64

vii

5.2 Lifetime of SRAM cell vs. % Idleness. 67
5.3 Idleness as a Function of Cache Size. 68
5.4 Miss Rate as a Function of Cache Size. 69
5.5 Power Saving vs. Lifetime Target (32 kB Cache). 73
6.1 Dynamically Resizable Cache Architecture [53]. 77
6.2 Adaptation for Aging of a 2-Block DRC architecture. 79
6.3 Internals of the Sensor Block (SB). 79
6.4 Average Miss Rate. 81
6.5 Average miss rate of 8 KB Cache. 82
6.6 Lifetime Improvement of 8 KB Cache. 83
6.7 Average miss rate of 8 KB Cache. 84
6.8 Miss Rate Profile . 85

viii

Chapter 1

Introduction

1.1 Motivation

Scaling of CMOS technologies has been the major force behind the advancements
of computer and electronic devices in recent years, especially in terms of improved
performance and reduction in the size and cost of these devices. It was proclaimed in
the famous Moore’s Law [1] that the number of transistors per chip roughly doubles
every two years, resulting in more features, increased performance and decreased
cost per transistor. Even though scaling has faced many barriers but clever engi-
neering solutions and new device architectures have thus far broken through such
barriers enabling scaling to continue at the same speed, and possibly at a slightly
slower pace for the next 10 years. Obviously it can not continue forever as in terms
of size, we are approaching the size of atoms which is a fundamental barrier. Nev-
ertheless at least another decade is expected before MOS technology reaches the
ultimate limits imposed by fundamental physics. According to International Tech-
nology Roadmap for Semiconductors initiative (ITRS)[2], the operation frequency
is expected to increase up to 12 GHz, and a single chip will contain over 12 billion
transistors in 2020.

The process of making more-complex circuits with ever smaller transistors has
become prohibitively expensive and, most important, the obtained circuits are en-
ergy inefficient. With device geometries scaling below the 45-nm range, the avail-
able reliability margins are drastically reduced and different types of non-idealities
have emerged in scaled technologies. Figure 1.1 illustrates various design challenges
brought by technology scaling in the last decade. As the miniaturization trend ap-
proaches the physical limits of operation and manufacturing, future systems based
on non-CMOS nanoelectronic devices are expected to suffer from high power and
low reliability as depicted by Figure 1.2. Power densities have increased enormously
due to higher integration of transistors in a single die, which typically results in an

1

1 – Introduction

Figure 1.1. Design challenges brought by technology scaling [3]

increase of on-chip operating temperatures as power consumed per unit area is usu-
ally dissipated in the form of heat. This implies a double effect. On one hand, rising
temperature causes static power to grows exponentially and a larger sub-threshold
conductance causes the sub-threshold currents to increase, thereby inducing more
static power dissipation and consequently leading to even higher operating tem-
peratures. The resulting electro-thermal coupling effect creates a positive feedback
which may fall in thermal runaway.

On the other hand Thinner oxide layers, higher electric fields and operating
temperatures, induce time-dependent changes in the operating characteristics of
devices. Deviation from the ideal behavior of manufactured devices is the most
critical downside of technology scaling beyond the 90nm node. The most evident
type of non-ideality is related to the non-determinism of devices due to process
variations [4]. They are mostly due to random fluctuations of dopant atoms and to
the systematic or non-systematic impreciseness of the manufacturing process, and
can be viewed as a sort of ‘time-zero’, fixed deviation from the nominal behavior of
each device.

There exists however another, and even more insidious, type of non-ideality re-
sulting from technology scaling, namely, time-dependent deviations in the operating
characteristics of devices [5]. Two are essentially the sources of time-dependent vari-
ations: Bias Temperature Instability (BTI), and Hot Carrier Interface (HCI). These
physical/chemical effects result in the degradation of the oxide thus causing a drift
of the threshold voltage over time.

2

1 – Introduction

Figure 1.2. Design challenges due to technology scaling [3]

Bias Temperature Instability (BTI) effects MOS transistors resulting in time-
dependent, permanent increase of the threshold voltage Vth of active transistors.
Although BTI occurs in both n-type and p-type devices, at the current technology
nodes, i.e., 65nm and 45nm, only pMOS transistors are significantly affected, the
NMOS transistor has a negligible level of holes in the channel and thus, does not
suffer from the BTI degradation.

Negative Bias Temperature Instability (NBTI) affects p-channel MOS field effect
transistors (MOSFETS), when a pMOS is negatively biased (i.e., a logic ‘0’ is applied
to the gate of the pMOS, resulting in Vgs = -VDD), leading to severe shifts of
important transistor parameters as the threshold voltage Vth or the drain current.
Increase of threshold voltage of pMOS devices reflects on logic circuits in the form
of delay degradation [7, 8] and overall performance slows down but the effect is more
susceptible in Static RAM (SRAM) memory cells, where it affects the robustness
of device operation and storage capability due to a reduced Static Noise Margin
(SNM) [9, 10, 11, 12]. The actual amount of NBTI-induced degradation depends
on several parameters of a device, such as its logic function, size, and temperature
[13, 14]; experimental data on a 45nm CMOS technology report variation of Vth in
the range of 10-15% after the first year of life, which translates into a lower, but
still substantial reduction in circuit speed (5-10%) and the SRAM memory SNM (3-
8%). These effects represents the main cause of MTTF reduction in modern digital
systems. It is clear that the push to embed low power and reliable, aging-free circuits
has become of paramount importance.

Several approaches have been proposed in recent years to reduce NBTI-induced

3

1 – Introduction

DfR Solution Impact on Power
Use of redundancy Increases area, which affects static power
Use of strong signals Achieved through high-swing signals, corresponding to higher

Vdd; affects both static and dynamic power.
Use of robust devices Achieved through large devices; affects both static and dy-

namic power.

Table 1.1. Power-Reliability Tradeoff.

aging. Most of them try to act on design variables that regulate the aging process,
exploiting the value-dependent characteristic of NBTI on PMOS transistors (a logic
“0” on the gate input causes degradation, whereas a logic “1” partially recovers from
aging). However, this strategy is not feasible for SRAM cells: given their symmetric
structure, memory cell ages regardless of the value being stored in it.

Traditionally, power and reliability have been considered as conflicting metrics,
since most design solutions for improving reliability (redundant circuits, strong sig-
nals, large devices) are intrinsically power inefficient. Table 1.1 lists some of the
traditional DfR solutions and its counter-effects on static and/or dynamic power
consumption.

However, the recent emergence of reliability issues in the form of aging (i.e.,
temporal drift of performance) of devices has opened a new perspective of this di-
chotomy. Typical power management strategies (i.e., voltage scaling and power/ground
gating) [17, 18] have been proven effective to reduce NBTI-induced aging. In case
of voltage scaling, supplying a device with a smaller Vdd translates into a smaller
Vgs which results into a smaller magnitude of negative bias [17]. Whereas, using
power gating, by disconnecting a logic block from the ground voltage using a sleep
transistor, can provide even more powerful way of reducing the NBTI effects. In
fact power gating can completely nullify the aging effects because when a logic block
is disconnected from the ground network, the floating nodes inside that block are
all pulled up to a logic "1". Therefore, proper revisitation of power-managed mem-
ory/cache architectures according to an aging-related metric can achieve concurrent
energy and aging improvements [19, 20, 21].

1.2 Contribution of this dissertation
The research activities described in this thesis focus on new architectural solutions
that can enable and assist the design of low-power, aging-aware cache memories.
More specifically, the proposed solutions aim at mitigating the incompatibility be-
tween power and reliability and provide techniques to concurrently reduce power
and aging of memories.

In next chapters, we will show how power management solutions (power/ground

4

1 – Introduction

gating and dynamic voltage scaling), well known techniques to reduce static power
consumption in both logic circuits and SRAM memories, also represents an effective
way to alleviate NBTI-induced aging effects. We introduce several low-overhead
reliability management solutions based on the idea of cache partitioning to reduce
power consumption and effectively alleviate aging effects. We specifically target the
aging of SRAMs in the memory sub-system, which is the most critical component
for warranting reliable and timely operations.

Memory sub-banking is beneficial for energy in general because of the non-
uniform distribution of accesses to memory locations: there are set of addresses
that are more accessed than other ones. So even a naive partition of two identical
sub-blocks guarantees a sizable reduction of average energy. However, in a memory
cell aging occurs (and by extension to a memory word) regardless of the fact that
a cell (or word) is accessed or not. In other words, there is a substantial difference
between dynamic power and NBTI aging. In order to “stop” the aging, a memory
cell (or word) must be put into a proper “idle” state that can be used when a cell
(word) is not accessed. Technically, it is the implementation of power management
that determines how aging is affected. Two are the typical options: dynamic voltage
scaling (DVS) and power/ground gating. In case of voltage scaling, supplying a de-
vice with a smaller Vdd translates into a smaller Vgs and thus a smaller magnitude of
negative bias [17]. Whereas, using power gating, the disconnection of a logic block
from the ground voltage using a sleep transistor, can provide even more powerful
way of reducing the NBTI effects. In fact power gating can completely nullify the
aging effects because when a logic block is disconnected from the ground network,
the floating nodes inside that block are all pulled up to a logic "1".

Aging of cache memories is determined by the most frequently used atomic unit
of power management. Therefore, if one considers (as done in most schemes) a cache
line as such an atomic unit, the line with the worst-case access pattern determines
the aging of the entire cache. Such worst-case pattern correspond to the line with
the least power management opportunities, that is, the one for which most idle
intervals are too short to trigger the transition to a low-power state. From the
leakage standpoint, the issue of the worst-case pattern is immaterial: what matters
for power is that the average idleness is significant, since the total saved energy will
be accrued by summing up the contributions of individual lines. This dichotomy is
another facet of the different nature of timing and power as metrics: aging is a worst-
case metric, whereas leakage is an average one. In order to obtain joint energy and
aging benefits, we need proper management of the idleness of each atomic unit of
power management.

On the basis of above considerations, it is therefore clear that in order to exploit
power management techniques to reduce aging we need to implement an appropri-
ate power-down mechanism for memory words, and by aggregation, blocks of words
(banks). The important consideration at this point is to define the partitioning

5

1 – Introduction

strategy that can achieve maximum aging reduction and reduced power consump-
tion. We have proposed several partitioning techniques to get maximum exploitation
of idleness resulting in a given workload. First group consists of techniques with true
partitioning where the address space is split into independent memory sub-blocks
and power management is done at block level. The partition sizes remain constant
during the lifetime of cache. The other technique that we have proposed utilizes the
concept of virtual partitioning where physically the cache structure is monolithic
without any partition. The only feature that is partition-oriented is that the power
management occurs at the block granularity.

In terms of novelty, main contributions of this thesis can be summarized as
follows.

• Graceful shutdown aging strategy We introduce a partitioned cache ar-
chitecture which allows different cache blocks into which a cache is partitioned
to age at different rate. This implies that some cache block will become un-
reliable first, and the cache will keep functioning with a reduced efficiency.
Offering such a graceful degradation is typical in reliable systems, where a
faulty component should not jeopardize the whole device, if a degradation in
the level of service can be tolerated. Such a concept of smooth failure has not
been considered in memory hierarchy, since the memory array has typically
been regarded as a monolithic (flawless or not) unit.

• Re-sizable and re-configurable cache a new approach to obtain maximum
utilization of whole cache and tackle the issue of cache performance degrada-
tion. In this approach, cache works normally with its full potential until a
line becomes unreliable which will also mark the end of its original lifetime.
Then the cache is reconfigured to work as a smaller size cache which is done
by remapping the addresses from memory to cache lines. Remapping the ad-
dresses will redirect almost all memory accesses back to cache and there will
only be a marginal increase in miss rate.

• Exploiting benefits of redundancy using sub-banking a novel cache
architecture in which a smart joint use of redundancy and power management
allows us to obtain caches that meet a desired lifetime target with minimal
energy overhead. We do not use extra hardware, instead, it is made possible
by using cache sub-blocks for redundancy. We only use a subset of the cache
to store values. Energy reduction is achieved because the cache sub-block used
for redundancy can be put into a non state preserving state during standby
state without compromising performance.

6

1 – Introduction

1.3 Organization of this dissertation
The dissertation is organized as follows:

• Chapter 2 provides appropriate background and summary of the main de-
sign challenges posed by nanometric CMOS technologies. Next, we look at
the physics behind NBTI and techniques to combat this increasingly critical
reliability issue.

• Chapter 3 provides analysis and assessment of the impact of power manage-
ment solutions on aging and then presents an overview of different techniques
we have proposed to mitigate aging effects. We will also provide the detailed
classification of our approaches based on their partitioning architectures and
management of different blocks.

• Chapter 4 presents graceful degradation mechanisms for the extension of the
lifetime of power-managed caches.

• Chapter 5 proposes an effective design techniques based on redundancy to
provide a guaranteed level of service, and specifically, a guaranteed lifetime.

• Chapter 6 presents a re-sizable and re-configurable cache architecture to obtain
joint energy, lifetime and performance benefits.

7

Chapter 2

Background and related work

In this chapter, we provide details of the technological reliability issues posed by
nanometric CMOS technologies in particular the critical wearout-based failure mech-
anisms. Next, we look at the physics behind NBTI and techniques to combat this
increasingly critical reliability issue. We will then analyze and assess the impact of
power management solutions on aging with brief overview of typical power manage-
ment strategies (voltage scaling and power/ground gating).

With ever increasing densities and clock frequencies, uncertainties associated
with parameter variations have become a primary concern for VLSI chip design,
especially in the nanometeric regime. Variation is the deviation of a manufactured
CMOS circuit from its intended behavior. The sources of such variation can be
broadly classified according to their nature (statistical vs. deterministic), their spa-
tial reach (local or global), and their temporal rate of change (static or dynamic).
Under the label statistical it is possible to include all those variations which are
induced by stochastic events; they differ from deterministic variations, that can be
somehow predicted at design time. Global variations affect all the transistors on the
die, while local variations are limited to a few transistors in the immediate vicinity
of each other. Finally, the classification between static and dynamic depends on the
actual rate of change with time. Static variations, e.g., process variations, remain
effectively invariant over the entire lifetime of the manufactured chips, dynamic
variations change over the lifetime of the chips. The changes can manifest on a
large time-sale (that is the case of slow-variations like aging effects: NBTI, HCI and
TDDB), or, in short time-scale (fast-variations like IR-drop, clock jitter, coupling
noise, temperature and Vdd variations). Although all these sources of variability
have deleterious effects on the reliability of CMOS digital circuits, aging has been
recognized as particularly critical in nanometric technologies.

9

2 – Background and related work

2.1 Aging in digital devices

Aging include all those wear-out mechanisms which induce time-dependent degrada-
tion of the operating characteristics of devices [5]. The time to wearout is dependent
on many factors including manufacturing process, the temperature and the voltage
conditions. The frequency of use or duty cycle is also very important. A circuit which
is always operating will suffer much more degradation as compared to one which is
less frequently used. Following are essentially the main sources of aging effects in ac-
tive devices: Electromigration (EM), Hot Carrier Injection (HCI), Bias Temperature
Instability (BTI)and Time dependent dielectric breakdown (TDDB)[33].

2.1.1 Electromigration (EM)

With the down-scaling of the minimum feature size in integrated circuits, intercon-
nect dimension scales about 30% with advancing technology node which also results
in current density and an increase in the ratio of Cu/cap interface to the total Cu
volume [23]. Failures of interconnects are mainly due to EM. Narrower interconnects
tend to have higher current density and are more sensitive to the increase in the
interconnect line resistances due to voids formation, especially when the circuits are
operating at higher frequencies [24]. Therefore, they are expected to have a shorter
time to failure and a higher failure rate.

The electromigration is characterized by gradual displacement of aluminum ions
in a conductor caused by momenta exchange between the current-carrying electrons
and the host metal. The number of atoms passing through a specific cross-sectional
area in a unit of time is called the atomic flux [25]. The time difference between
the atomic flux into and out of a volume element per unit time is the atomic flux
divergence (AFD), and it is the main cause for EM failure in IC interconnects. Due
to the presence of flux divergence centers, vacancies start to cluster, clusters grow
into voids, and the voids can continue to grow until they block the current flow in the
aluminum. Thus, the current is forced to flow through the supporting barrier layer
and/or capping layer; the resultant increase in resistance leads to device failure.
The effect is more subtle in applications where high direct current densities are
used, such as in microelectronics and related structures. As the structure size in
electronics such as integrated circuits (ICs) decreases, the practical significance of
this effect increases. Since this is a mass conserving process, accumulations of the
transported aluminum ions increase the mechanical stress in supporting dielectrics
and may eventually cause fractures and shorts to occur.

The factors that affect the "dislodging" force include current density, temperature
and thermo-mechanical stress.

10

2 – Background and related work

2.1.2 Hot carrier injection
Hot carriers injection is the phenomena by which energetic electrons and holes in
the channel gain sufficient energy to be injected into the gate oxide or cause inter-
facial damage, introducing instabilities in the electrical characteristics of MOSFET
device. Initially the carriers can gain enough kinetic energy from transit through
regions of high electric field in excess of thermal energy to enter substrate region. If
they continue to gain more energy (3.2-3.8 eV) they are injected into the oxide layer.
This occurs as carriers move along the channel of a MOSFET and experience impact
ionization near the drain end of the device. The substrate current produce impact
ionization and finally CMOS latchup while the carriers injected to oxide layer lead to
the formation of oxide states and trapped oxide charges. Interface-state generation
and charge trapping induced by this mechanism result in transistor parameter degra-
dation, typically switching frequency degradation rather than a “hard” functional
failure.

A small fraction of the more energetic channel carriers that impact the Si/SiO2
interface or that are injected into the SiO2 are responsible for the physical damage
resulting in shifts in the device characteristics (Vth, Id, etc.). It is important to no-
tice that shifts in key MOSFET parameters only indirectly correlate with the nature
of the HCI damage at the Si/SiO2 interface. The localization of HCI damage fur-
ther complicates the relation between the device parameter shifts and the physical
damage. Three different types of damage mechanisms have been observed during
the stresses of both nMOSFET and pMOSFET devices: interface states generation
(Nit), electron trapping, and hole trapping. The dominance of each of these mech-
anisms is strongly related to the carrier injection processes, which, in turn, depend
on the bias condition at stress [25].

2.1.3 Time dependent dielectric breakdown
Time dependent Dielectric breakdown (TDDB) is the irreversible local change of
the dielectric isolation property. In TDDB, the dielectric material isolating gate
and substrate suffers form short circuit failure due to intense electric field applied
across them. Within the dielectric area a tiny spot develops with increased con-
ductivity compared to the rest of the dielectric area that remains nearly unchanged.
Although the conducting spot is very small compared to the capacitor or device area,
it now dominates the current flow and therefore changes the electric characteristics
(current-voltage curve) from a behavior before breakdown to a clearly different char-
acteristic after breakdown. TDDB is a two step linked process consisting wearout
and thermal runway. In the first step charge traps accumulate in bulk oxide and
silicon/oxide interface, with the passage of time their density reaches to a critical
value. The step is followed by sufficient local electric field and current that causes

11

2 – Background and related work

thermal runaway and melting of microscopic regions. Thus wear out is a global
while runaway is a local phenomena. A breakdown happens after a certain amount
of time during which the oxide is subjected to an electrical stress at product oper-
ation or elevated conditions. This local change of properties causes, in most cases,
the product to stop functioning as intended. The gate can lose the control of the
MOSFET current depending on the leakage current increase through the dielectric
due to localized dielectric failure. In the case of memory applications such as stor-
age capacitors, a dielectric failure can result in a loss of information due to its high
sensitivity to even a small increase of leakage current from the specified functional
level.

2.1.4 Bias Temperature Instability (BTI)
Bias Temperature Instability, or BTI is a phenomenon that is known to cause thresh-
old voltage shifts over time, eventually causing the circuit to fail to meet its specifi-
cations. It has proven to be the most insidious source of permanent, time-dependent
variation of the transistor characteristics. This degradation is further heightened by
the application of a “bias” on the gate node of a transistor. The resulting degrada-
tion not only depends on supply voltage and temperature but also threshold voltage
and other technology parameters of the MOS transistor which results in more thresh-
old voltage degradation with further scaling. MOS becomes a slower switch with
threshold voltage degradation which leads to undesirable operation of circuits con-
sisting MOS transistors. As a result, some high performance application might fail
over time.

Even if both n-type and p-type MOS transistors suffer from BTI-induced degra-
dation, at the current technology nodes (65nm and 45nm), BTI is only significant
for pMOS transistors with negative gate to source voltage, NBTI (i.e., Vgs = −Vdd).
NBTI in PMOSFET devices is not a recently discovered wearout mechanism. It
was originally observed in the early phases of CMOS development almost 40 years
ago but was not considered of great importance because of the low electric fields in
operation. However, because of NBTI’s impact to key pMOSFET parameters, such
as threshold voltage (Vth), linear (Idlin) and saturation (Idsat) drain current, and
transconductance (gm), it has become the most critical MOSFET reliability concern
in current circuit design. Technology scaling has also resulted in the convergence
of several factors including the introduction of nitrided oxides (required to reduce
boron penetration in p+ poly PMOSFETs) as well as the increase in gate oxide
fields and operating temperature making it imperative to address this extremely
important wearout mechanism.

The next section describe in more details the key aspects of the physics of NBTI
with a mathematical model and evaluation of NBTI’s impact to key PMOS param-
eters. Next we will provide a brief overview of the most effective techniques for

12

2 – Background and related work

the mitigation of the NBTI effects and the relationship between power management
strategies and aging.

2.2 Negative Bias Temperature Instability
NBTI occurs when a pMOS is negatively biased (i.e., a logic ’0’ is applied to the
gate of the pMOS, resulting in Vgs = -VDD), and manifests itself as an increase of
the threshold voltage with time, resulting in the reduction of drive current and noise
margin, causing in turn a degradation of the delay of a device. The phenomenon of
NBTI is illustrated with the help of a simple inverter circuit, illustrated in Figure
2.1.

Figure 2.1. Inverter

The most widely accepted physical model that explains the NBTI phenomena is
the Reaction Diffusion (R-D) mechanism [16], which explains the temporal shift of
Vth in terms of the breaking of hydrogen-passivated Si−H bonds at the Si− SiO2

interface and the subsequent diffusion of hydrogen, which induces the formation
of interface traps. The generated traps, which accumulate over time, decrease the
electrostatic control of the channel, therefore resulting in a larger threshold voltage
Vth. This trap generation phase is called the stress phase, when the electrical stress
is removed (i.e., Vgs = 0, corresponding to having a logic ‘1’ on the pMOS gate
input), holes are not present in the channel thereby avoiding the generation of new
traps, while part of the free hydrogen atoms diffuse back and anneal the broken
Si − H bonds. In this phase, called the recovery phase, the number of interface
traps is reduced and the Vth partially recovered.

A simplified version of such a model is described in the following Equations:
ks and kr are technology-dependent constants whose values depend on techno-

logical parameters, like oxide thickness, channel strain and nitrogen concentration;
k is the Boltzmann constant; T is the operating temperature of the device; Ea is
a technology-independent parameter that guarantees the convergence of the model;

13

2 – Background and related work

Stress Recovery
Vgs = −Vdd Vgs = 0

∆Vth ∝ kse
−Ea
kT (t− tstr)

1
4 ∆Vth ∝ kr

√
t−trcv

t

Table 2.1. Reaction-Diffusion Model.

tstr and trcv correspond to the time at which the stress and the recovery phases
begin, respectively.

In principle, the presence of alternated stress and recovery periods complicates
the modeling of NBTI, since each single device should be simulated by collecting
the exact sequence of stress/recovery cycles. Two peculiar properties of NBTI allow
to substantially simplify the calculation of aging.

a) NBTI is roughly frequency independent: several results validated against mea-
sured data have shown that the final ∆Vth is independent of the switching
frequency of the device. As a result, only the duty cycle (i.e., fraction of
stress/recovery time) will affect the aging [5, 7].

b) NBTI is mostly determined by the cumulative amount of stress and recovery
time that determines the drift in the device parameters. Therefore, a generic
waveform applied at the gate terminal of the pMOS can be modeled as a
periodic one with a fixed frequency but same amount of stress time[15].

These properties allow treating NBTI effects in probabilistic terms; more specif-
ically, NBTI effects can be abstractly modeled as a function of the stress probability
β, that is, the fraction of time the gate voltage is at the logic “0”:

∆Vth = K · (β · t)1/4 (2.1)

whereK lumps all the technological constants and considers the operating conditions
of the device, and t denotes time. The term βt can be seen as the effective stress
time.

Figure 2.2 shows the temporal diagram of a typical NBTI-induced Vth degra-
dation and recovery sequence. Experimental data report variation of Vth of about
10-15% per year, depending on the target technology and electrical or environmental
conditions. The delay degradation follows the same trend as threshold voltage, yet
with a smaller magnitude.

Static stress presents the situation when the transistor is in continuous stress for
a long period of time. while in case of dynamic stress the stress occurs repeatedly
and alternately which is the most common case in most of the operating functional
units. The plot in Figure 2.2 shows the variation of Vth in a pMOS device for a square

14

2 – Background and related work

�

�

�

��

��

��
�
��
��
�
�
�
�
	
�

�
�
�

���	�

�

�

�

� ���� ���� ���� ����

�
��
��
�
�
�
�
	
�

�
�
�

���	�
��

���	�

��� �	���	��

Figure 2.2. Static vs Dynamic NBTI

wave consisting of a stress phase of 1000s followed by a recovery phase of 1000s. It
can be observed that at the end of each stress-recovery cycle Vth is progressively
larger which has been highlighted by “missed recovery” in the figure. “0” The
actual amount of degradation depends on several parameters of a device, such as its
logic function, threshold voltage, size, load, and temperature [13]. From the design
standpoint, however, the most important property of NBTI is its dependence on the
logic values. The threshold voltage (and delay) degradation effects occur only when
a pMOS device is in its critical state (the stress states), that is, when a logic ‘0’
is applied to the device inputs. In fact, when a logic ‘1’ is applied, NBTI stress is
actually removed, resulting in a partial recovery (i.e., a decrease) of the threshold
voltage (the recovery state) as depicted by Figure 2.2.

2.2.1 NBTI effects on Circuit delay
The delay of a generic logic gate, using the alpha-power law, is approximately given
by:

d = CL · Vdd
(Vgs − Vth)α

(2.2)

where CL is the load capacitance, Vgs the gate voltage, Vth the threshold voltage,

15

2 – Background and related work

and α a technology-related exponents that can be approximated to 1 for sub-90nm
technology. If the threshold voltage increases over time, as described by Equation
2.1, the new delay d’ < d becomes:

d′(t) = CL · Vdd
Vgs − (Vth + ∆Vth(t))

(2.3)

which can be expressed in terms of the original delay as:

d′(t) = d · (1 + K · (β · t)1/4

Vgs − (VGT −K · (β · t)1/4) (2.4)

where the time dependency of ∆Vth has been made explicit, and where VGT =
Vgs − Vth,0(Vth,0 is the (nominal) threshold voltage at time 0). Figure 2.3 plots
the normalized delay over time using Equation 2.8 as a function of β, assuming a
value of K = 10−3 (corresponding to a delay increase of about 15after 3 years), and
VGT = 0.7(i.e., Vgs = 1V andVth,0 = 0.3V).

Figure 2.3. Normalized delay over time as a function of stress probability

2.2.2 NBTI effects on SRAM cells
In an SRAM cell, the threshold voltage drift manifested by NBTI does not truly
affects the delay of an SRAM cell rather it impacts its stability. A conventionally
accepted metric for the degradation or aging of an SRAM cell is the static noise

16

2 – Background and related work

margin (SNM), defined as the minimum DC noise voltage required to change the
state of the cell. It can be better visualized by Figure 2.4 where SNM is the side-
length of the largest possible square that can be inserted between two voltage transfer
curves (VTC) of the CMOS inverters. With the passage of time, threshold voltage
drift of PMOS transistors lowers the static characteristics of the transistors that
form the 6T-SRAM cell and therefore the SNM of the cell falls below a threshold
that allows safe storage of data and it can not be safely read or written. A common
practice is to design the cell such that under all conditions some SNM is reserved
to cope with dynamic disturbances caused by α-particles, crosstalk, voltage supply
ripple, and thermal noise. However, due to aging effects, this constraint may be
no longer met after some year of operating life. In fact, when the pull-up pMOS
are negative biased, NBTI effects induce Vth shift over time, thus moving the static
characteristics of the two inverters.

To notice that, differently from logic circuits, where, if the stress is not applied
(i.e., when Vgs = 0) a partial recovery of the delay occurs. The issue with SRAM
cells is that due to its symmetric structure the value dependence is quite weak and
cell ages whatever the value being stored: one of the two inverters is always under
stress. In worst case, the value stored in the cell does not change frequently and
only one of pMOS transistors degrades as shown in Figure 2.4. The NBTI impact
will be higher in this case resulting in an early disappearance of the SNM window
and loss of cell functionality.

Figure 2.4. Worst-case degradation

The minimum degradation occurs when both inverters in the cell exhibit same
amount of degradation; the output of each inverter is 0 for 50 % of the time[9].

17

2 – Background and related work

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
��

�

	

�
�

����

� ��� ��� ��� ��� �

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

	���

����

Figure 2.5. Best-case degradation

Such degradation of both pMOS transistors results in shift of the VTCs of both
inverters resulting in a complete degeneration of orginal VTC as shown in Figure
2.4. Therefore, it is the skew from the 0.5 probability that matters (rather than the
value probability).

Operating conditions play an important role in the degradation of the SRAM
cells. For a given set of technological parameters of a device, NBTI effects are
mainly dependent on temperature (increases with increasing T), supply voltage Vdd
(decreases with decreasing Vdd) and threshold voltage Vth (decreases with increasing
Vth). The property of supply voltage is relevant in our context since one class of
power management options is based on Vdd scaling.

2.2.3 Aging relation with Power Management
Although all systems and components are normally designed to deliver peak perfor-
mance but they do not need peak performance all the times, infact they seldom need
it. So in order to reduce power consumption, dynamic power management(DPM)
techniques can be employed to selectively placed the idle components into low-power
states. There can be several idle states with different power and service level; sim-
plest being a two state model as shown in Figure 2.6. If the system is not in use,
put it into off state and when required turn it on. TON represents the time in which
the system is active whereas TOFF represents the time in which the system is idle.

18

2 – Background and related work

Figure 2.6. Two state Power management model

If the transition time and transition power is 0 then DPM policy is trivial; stop
a component as soon as it is not needed. However this is not the case and at the
minimum, device needs to stay in the low-power state for long enough (defined as the
break even time) to recuperate the cost of transitioning in and out of the state (i.e.,
time to turn off and on again). The break even time TBE, as defined in Equation
2.5, is a function of the power consumption in the active state, Pon; the amount of
power consumed in off state, Poff ; and the cost of transition in terms of both time,
Ttr and power, Ptr.

TBE = Ttr + Ttr
Ptr − Pon
Pon − Poff

(2.5)

If it was possible to predict ahead of time the exact length of each idle period,
then the ideal power management policy would place a device in the sleep state
only when idle period will be longer than the break even time. Unfortunately, in
most real systems such perfect prediction of idle period is not possible. As a result,
one of the primary tasks DPM algorithms have is to predict when the idle period
will be long enough to amortize the cost of transition to a low-power state, and to
select the state to transition. These techniques can be classified as timeout-based,
predictive, adoptive and stochastic policies. The policies in each class differ in the
way prediction of the length of the idle period is made, and the timing of the actual
transition into the low-power state (e.g., transitioning immediately at the start of
an idle period versus after some amount of idle time has passed).

In our approach we have used timeout-based policy with a preset threshold; a
component is put into low-power state if the idle-time becomes greater than thresh-
old. Therefore the useful idleness can be calculated by adding all idle-cycles longer
than predefined threshold as depicted by equation 2.6.

Iuseful =
∑

(IdleCyclesi − threshold) (2.6)

These idle periods can be exploited to reduce NBTI-induced aging as well and
traditional power (and in particular, static power) optimization techniques have
been proven effective to mitigate NBTI effects in memories [19, 20]. The power

19

2 – Background and related work

management is implemented by either disconnecting a sub-block memory from the
ground/supply network (power gating) or by reducing the supply voltage (dynamic
voltage scaling - DVS).

2.2.3.1 Impact of Power Gating on SRAM Aging

The impact of power gating, conversely, is more articulated but also more sizable
than that of voltage scaling. Firstly, the benefit for aging is obtained only when
gating is implemented through an nMOS footer transistor on the n-network of a
CMOS device. The implementation with a pMOS footer transistor, which is a
popular implementation of power gating, is not useful for NBTI mitigation.

In a footer-based implementation as shown in figure 2.7(a), when the footer
transistor is turned off, the logic block becomes disconnected from the ground; the
virtual ground node (i.e., the terminal of the transistor to which the logic block is
connected) and the internal nodes of the block will then gradually reach the “1”
value, i.e., the NBTI-immune configuration. Therefore, whenever a logic block is
put into a standby state by opening the footer, not only the cell will not age, but it
will even recover some of its SNM.

The downside of power gating is that, when applied to a SRAM cell, it will
imply losing the stored value; therefore the use of power gating is suitable only for
memories such as caches, which can restore values from farther levels of the memory
hierarchy.

2.2.3.2 Impact of Vdd Scaling on SRAM Aging

Concerning voltage scaling, its beneficial impact on NBTI is quite intuitive: since
NBTI is determined by the amount of negative bias voltage (i.e., gate-to-source
voltage), a reduced Vdd corresponds to a smaller source voltage and thus a smaller
bias voltage. The decision to select lower Vdd is based on its usage: lines that are
not accessed since a given number of cycles (the breakeven time) are put into a
low-leakage state as shown in figure 2.7 (b). In dynamic voltage scaling (DVS), the
contents are preserved (“drowsy” state), and only a small time interval is required
to restore the line back into the active state. On the other side, it does not truly
remove aging but only mitigates it.

Table 2.2 summarizes the impact of the two implementation of a standby state
on NBTI and memory state.

2.3 Previous Solutions
Physical explanation of NBTI process has been known for decades and early research
works on NBTI [13, 29, 30] originate from the communities of device and reliability

20

2 – Background and related work

Figure 2.7. Power-Gated (a) and Drowsy Scheme (b)

Impact on Aging Effect on Memory
State

Voltage Scaling About 50–60% for a re-
duction of Vdd of about
0.5V [16]

Preserves memory
state provided that
Vdd does not go below
the threshold voltage

Power Gating Aging is nullified and
actually some recovery
occurs

Memory state is de-
stroyed

Table 2.2. Summary of Characteristics of Power Management Implementations.

physics. In the past, only few works have addressed the reliability issues posed by
physical phenomena caused by technology scaling (e.g., the temporal degradation
of MOSFET parameters induced by NBTI). However, recently a lot of research has
been published to address NBTI aging from the design and EDA perspective, mostly
focusing on modeling, as a way to bridge the gap between device models and EDA

21

2 – Background and related work

tools.
The work of [31] introduces a predictive model for NBTI that allows to express

the Vth change in closed form under multiple stress/recovery cycles. These models
are used in [7] to analyze the sensitivity to various design and process parameters,
and propose potential design solutions to mitigate NBTI effects. The work of [15]
presents an alternative, simpler analytical model based on the characterization of
a squared wave that models the stress/recovery cycles. The first application of
these models has been in the context of timing analysis. The works of Wang et al.
[32, 14] have addressed the problem of how to modify standard static timing analysis
to incorporate NBTI effects. Such timing analysis engines have been the essential
enabling technology for the first NBTI-aware design techniques.

SRAM memories have received special attention in this regard due to their crit-
icality in determination of the overall system performance and the fact that aging
effect can only be marginally tackled by controlling the occurrence probability of
negative bias conditions (a logic input of ‘0′ at the gate of a pMOS transistor).

Previous works to mitigate NBTI effects in SRAMs follow three main approaches.
One class of solution dealt with the issue of how NBTI impacts the SNM of an
SRAM cell and provide methods that try to balance the degradation of the two
pMOS devices in the memory cell by attempting to equalize cell value probabilities
since 50% probability of storing a value provides minimum aging. In [9] the authors
present hardware and software schemes to periodically invert the entire content of a
memory so as to guarantee a perfectly balanced probability and achieve performance
recovery due to the application of periodic stress and relaxation on the gate of the
PMOS device to improve the SNM of the SRAM cell. A similar approach was
proposed by [34], yet at a word granularity and with a much shorter inversion
frequency (thousands of cycles). A flip signal determines whether values are to be
read or written in inverted form; each memory word has a flip bit which is copied
from the flip signal upon access. Another recovery enhancement technique has been
suggested by [35] which uses a spare memory array to proactively put SRAM cells
into the recovery mode. By this technique when an array is put into the recovery
mode, the pMOS devices in one of the inverters in all of the cells belonging to that
array are put into the recovery mode followed by those in the other inverter and this
recurring pattern is continued throughout the recovery period for that array.

A second class of solutions aims at designing customized NBTI-resilient cells.
In [36] a “recovery boosting” solution has been proposed which allows both pMOS
devices in the cell to be put into the recovery mode by raising the ground voltage
and bitlines to the nominal voltage through modification of each memory cell. On
the other hand in [37] a new cell structure is proposed, consisting of a set of NAND
gates arranged so that minimum degradation ratio for all pMOS transistors in the
cell is obtained.

The third class of solutions exploit the aging benefits provided by low-energy

22

2 – Background and related work

states, [20, 19, 21], to obtain aging benefit combined with reduction of energy con-
sumption. In [41], the authors assess the aging benefits provided by the application
of power gating to a memory cell which provides a much higher impact than control-
ling the value probability. The work of [20] proposes power management solutions
at the architectural level (based on both DVS and power gating) acting on entire
memory blocks.

The strategy proposed in [19] make use of an “averaging” technique called dy-
namic indexing to achieve a uniform distribution of idleness over the cache lines
by modifying the cache indexing function over time. By employing such kind of
approach the worst-case idleness co-incides with the average case and therefore all
leaking saving opportunities can also be used for aging reduction. A similar ap-
proach is presented in [21] but at a coarse-grain level. It implements a uniform-size,
multi-bank cache where the dynamic indexing is applied to individual banks rather
than cache lines with the purpose of achieving a better design point in aging/energy
design space.

23

Chapter 3

Aging aware cache architectures

Cache memories are not only one of the main contributors to the total energy of the
system but they are also critical components in terms of reliability: they are involved
in every executed instruction (e.g., instruction, data fetch), thus, once a memory
block can not be reliably read or written, the whole system becomes unreliable.
For an efficient working of the system, it is important that caches keep functioning
in a reliable and power-efficient manner for a longer period of time. However as
pointed out in chapter 1, long-term stability of a conventional six-transistor SRAM
cell is strongly affected by temporal degradation of MOSFET parameters induced
by NBTI. In particular, the increase over time of the threshold voltage of the PMOS
transistors, which in turn reduces the robustness of an SRAM cell.

In this chapter, we will highlight the reliability issues specific to SRAM cells and
motivation behind our research work. We will then present an overview of different
techniques we have proposed to mitigate aging effects. We will also provide the
detailed classification of our approaches based on their partitioning architectures
and management of different blocks. Finally we will describe models to accurately
characterize the aging and energy of an SRAM cell with respect to the percentage
of idleness.

3.1 Motivation and concept

As discussed earlier, exploiting the value-dependent characteristics of NBTI on
PMOS transistors is not feasible for SRAM cells due to their symmetric structure:
SRAM cells ages regardless of their internal state. The most popular category of
solutions leverages the intuitive inverse correlation between idleness of devices and
their aging, which establishes a parallel between power management strategies and
aging mitigation techniques. The basic idea is to transform the idleness resulting

25

3 – Aging aware cache architectures

from a given workload (which is exploited to reduce energy) into an equivalent ben-
efit for aging as well. However, the direct use of idleness is not always possible
and the key element to achieve a joint energy and aging benefit is to recognize the
different nature of two metrics. While the energy saved for each unit contributes
to the total energy savings, for aging, the earliest failing line will cause the whole
cache to become unreliable. In other words, for energy it is the total idleness that
matters but for aging (a worst-case metric) it is the distribution of the idleness that
matters. We can better understand this concept by following example.

3.1.1 Motivational example

Aging is a worst-case metric and lifetime of the device is determined by the most
frequently used atomic unit of power management. Therefore, if we consider (as
done in most schemes) a cache line as an atomic unit, the line with the worst-case
access pattern determines the aging of the entire cache. Such worst-case pattern
corresponds to the line with the least power management opportunities, that is,
the one for which most idle intervals are too short to trigger the transition to a
low-power state.

Figure 3.1. Idleness Profiles of adpcm.dec

26

3 – Aging aware cache architectures

Figure 3.1 shows the idleness profile of a sample application depicting the per-
centage of idleness for each of the 1024 lines of the 16KB cache. More precisely,
this is the useful idleness, that is, the percentage of idle intervals longer than some
breakeven time (calculated during the characterization of the SRAM) and that can
therefore be fully exploited by power management.

Although the average idleness in this case is quite large 95.8%, which will roughly
translate to an equivalent energy savings. However, there exists a line with only 6%
idleness which will actually determines the lifetime of the entire cache and thus does
not benefit from large opportunities of power management.

0%

20%

40%

60%

80%

100%

120%
Worst Case Average

Figure 3.2. Worst- vs. Average Case for the MiBench Benchmarks (8KB
Direct Mapped Cache).

The situation depicted in Figure 3.1 is a pathological case, but the difference
between average and worst case idleness is significant for most applications. Figure
3.2 shows this difference for the MiBench benchmarks [50] used in our experiments.
For each benchmark, the two columns show, worst-case (the line with the least

27

3 – Aging aware cache architectures

idleness) and the average (over the lines) case. The data come from the simulation
of a 8KB direct-mapped cache with a line size of eight bytes.

It is evident from the plot that average idleness is consistently very high (> 95%)
for all benchmarks, whereas the worst case is quite far from the average but for a
few cases. The average of the worst case bars is 58.6%, denoting that only about
half of the idleness can be used to reduce aging.

3.2 Aging aware cache partitioning
We have seen how the idleness of an individual SRAM cell can be exploited to mit-
igate its aging by power managing it in some way. Power management however is
not typically applied to single memory cells, but rather to diversely sized aggrega-
tions of memory cells: one row, one column, a set of rows or column, or a generic
bi-dimensional region [40]. We will call hereafter this aggregation unit of power
management (UPM).

The idea of splitting a memory array into multiple blocks for aging mitigation
relies on three basic properties:

1. Memory accesses are not uniformly distributed (due to spatial locality): there
will be sets of addresses that are more accessed than other ones.

2. There exists an inverse correlation between idleness of a cache line and its
aging.

3. Aging is worst case metric: first component which becomes unreliable will
determine the life span of an entire device.

Based on these properties, it is intuitive to split the address space (i.e., a single,
monolithic memory block) into multiple, independently accessed memory sub-blocks,
in such a way that most frequently accessed addresses are mapped on smaller sub-
blocks. Several variants of this idea are possible; for example, the sub-blocks could
map sets of contiguous versus non-contiguous addresses. In the former case we speak
of partitioning, whereas in the latter case the problem encompasses the relocation
of addresses.

Figure 3.3 pictorially presents the partitioning concept where a monolithic cache
has been partitioned into four-block non-overlapping uniform partitioning instances.
Splitting the address space into multiple, independently accessed memory sub-blocks
provides opportunity to power manage these blocks in a controlled manner to get
significant reduction in aging. Due to locality of accesses, it is quite common that
one or more blocks are idle for a significant amount of time. Table I shows, for a

28

3 – Aging aware cache architectures

Figure 3.3. Cache partitioning

M = 4 partition the worst-case idleness of each block, for the benchmarks used in
our simulations. Column Average is the average idleness over the four banks, and is
a measure of the achievable power saving. From the leakage standpoint, the issue
of the worst-case pattern is immaterial: what matters for power is that the average
idleness is significant, since the total saved energy will be accrued by summing up
the contributions of individual blocks.

When considering a UPM in isolation, its idleness can be entirely exploited to
mitigate its aging. However, when evaluating the aggregate benefit over the whole
memory, the different natures of power or energy (cumulative cost functions) and
aging (a worst-case one) becomes apparent. Each power-managed UPM will in
fact contribute to the total power saving with its (small or large) contribution;
conversely, from the aging standpoint, the first failing UPM (the one with the least
power management opportunities) will cause the entire memory to become unusable.

A possible solution to this problem could be that of implementing some form of
graceful, step-wise management of the aging of the cache. For instance, we could
progressively disable cache sub-blocks that become progressively unusable. An other
useful strategy is the use of redundancy to put selected sub-arrays with excessive
aging into deep low-power state implemented through a sort of power gating. We
have proposed several architectural solutions based on multi-bank, partitioned cache
implementations to effectively exploit idleness and achieve maximum aging reduc-
tion and reduced power consumption. Figure 3.4 provides an overview of different
strategies proposed in this context.

We can categorize our partitioning approaches into two groups. First group
consists of techniques where the cache is partitioned into independent sub-blocks and

29

3 – Aging aware cache architectures

I0 I1 I2 I3 Average

adpcm.dec 2.46% 99.98% 99.98% 3.75% 51.54%
cjpeg 22.64% 53.24% 59.37% 9.51% 36.19%
CRC32 18.54% 2.19% 44.38% 2.88% 16.99%
dijkstra 12.06% 18.55% 50.65% 56.28% 34.38%
djpeg 67.66% 29.23% 27.89% 24.97% 37.44%
fft_1 49.35% 48.34% 61.32% 9.12% 42.03%
fft_2 54.78% 51.82% 58.03% 6.96% 42.90%
gsmd 6.92% 90.81% 92.82% 0.40% 47.74%
gsme 49.17% 72.88% 89.34% 0.37% 52.94%
ispell 66.36% 55.63% 44.82% 21.04% 46.96%
lame 58.78% 32.94% 38.62% 13.74% 36.02%
mad 37.25% 48.74% 34.00% 28.10% 37.02%
rijndael_i 82.35% 31.72% 22.61% 3.71% 35.10%
rijndael_o 20.59% 19.45% 91.78% 3.63% 33.86%
say 88.53% 85.51% 26.59% 12.42% 53.26%
search 66.57% 23.43% 48.00% 57.78% 48.95%
sha 4.91% 98.62% 94.09% 3.13% 50.19%
tiff2bw 33.88% 17.43% 67.38% 70.49% 47.29%
Average 41.71%

Table 3.1. Detailed Results for 16kB cache and k=1

the partition sizes remain constant during its lifetime. The second group contains
techniques with virtual partitions where physically the cache structure is monolithic
without any partition. The only feature that is partition-oriented is that the power
management occurs at the block granularity.

3.2.1 True Partitioning
Granularity Issues

Although the size of the unit of power management (unit hereafter) can take any
value, we considered only two possible “categories” of the unit; either a single line
(fine-grain implementation) or a few blocks of large size (coarse-grain). This di-
chotomy is driven by the fact that the two schemes correspond to different abstrac-
tion levels in the design process.

If the designer instantiates (and can power-manage) embedded memory blocks
generated by a memory compiler, wiring and control overhead (power, but also area)
limits the number of these blocks to small values (up to 8 blocks, according to our

30

3 – Aging aware cache architectures

Figure 3.4. Partitioning approaches

overhead assessment). Pushing this value further would not provide any benefit
because the overhead will cancel the energy benefits resulting from partitioning.
Conversely, if the designer has access to the internals of the SRAM and can add
power management structures inside the SRAM, it is worth using the smallest pos-
sible unit of power management because it will correspond to the maximum aging
and energy benefit. The overhead is in fact limited for this scheme: for the voltage-
scaled version, 1 bit per line plus some wiring and gating logic; for the power-gated
version, one sleep transistor per line plus some wiring. Therefore, the two schemes
are only conceptually two extremes of a “design space” in which the exploration vari-
able is the granularity of the unit. In practice, they are two very different solutions
corresponding to alternative design scenarios.

3.2.1.1 Coarse-grain Partitioning

First one is a coarse-grain partitioned cache architecture, in which a cache is split
into non-uniform sub-blocks which can be individually power-managed. The inde-
pendent management of the sub-blocks allows implementing a graceful degradation
of the cache, in which the various sub-blocks will become unreliable at different
times, and the cache will keep functioning with reduced efficiency (or, equivalently,
as a progressively smaller cache). It provides an “architectural” solution in which the
internals of the memory blocks need not to be modified: blocks are independently
addressed sub-caches.

31

3 – Aging aware cache architectures

3.2.1.2 Fine-grain Partitioning

Next is fine-grain partitioning in which a block corresponds to a cache line which
guarantees maximum exploitability, because in this approach the unit of cache ac-
cess (a line) coincides with the unit of power (and aging) management. Clearly,
such a fine-grain partitioning cannot support the use of independently-addressed
blocks: decoding and wiring will become unmanageable. Therefore, we sacrifice the
architectural property of the coarse-grain approach and manage the lines by modi-
fying the internals of the cache with the proper power management structures which
in turn also provides a better control of the leakage/aging tradeoff. This choice is
also consistent with classical power-managed cache architectures in which individ-
ual lines can be turned into a low-power state based on their access pattern (e.g.,
[42, 43]).

3.2.1.3 Block Level Dynamic Indexing

Use of redundant hardware is a widely used reliability-enhancing paradigm which
usually requires extra space and budget to acquire and adjust duplicate hardware.
However, in this work we have proposed a smart technique which uses redundancy
without requiring duplicate hardware. The rationale of our architecture is to use
sub-banking not to reduce the impact of the worst-case idleness but rather as an
extra memory space over which better distribute idleness. In this work we show that,
by properly combining the partitioning approaches and redundancy, it is possible to
push the aging and energy reduction beyond the limits of previous works. We keep
only a subset S ′ < S of the cache lines as active cache lines; The remaining S − S ′
act as spare lines that can be used to mitigate the aging of the whole cache. Energy
reduction is achieved because the cache sub-block used for redundancy can be put
into a non state-preserving state during standby without compromising performance.
However, this also extends lifetime because aging is virtually removed under footer-
based power gating (actually there is a recovery), and the “inactive” part of the
cache is less aged when it gets reused.

3.2.2 Virtual Partitioning
3.2.2.1 Dynamically Re-sizable Cache

Graceful degradation schemes although provides remarkable extension of lifetime
and reduction in energy but they suffer from performance degradation: miss rate
rises exponentially when a partition dies. So we have adopted a new approach to
tackle the issue of cache performance degradation which is based on dynamically
re-sizable cache (DRC) and our basic cache partitioning technique. In this approach
when some portion of the cache is dead, we discard that specific block and re-size the

32

3 – Aging aware cache architectures

cache to utilize the remaining healthy portion of the cache. Cache works normally
until a line is dead which can be detected easily using a sensor proposed in and at that
point the cache will be re-sized by discarding the dead cache block. Consequently,
the lifetime of the cache consists of two phases. In the first phase, cache works
normally with its full potential until a line becomes unreliable which will also mark
the end of its original lifetime. Then in second phase, the cache is reconfigured to
work as a smaller size cache which is done by remapping the addresses from memory
to cache lines. Remapping the addresses will redirect almost all memory accesses
back to cache and there will only be a marginal increase in miss rate.

33

Chapter 4

Aging-driven caches with graceful
performance degradation

4.1 Introduction

Aging of transistors can adversely impact the long-term reliability of devices in
sub-nanometric technologies. NBTI affects PMOS transistors with negative gate to
source voltage (bias), and causes an increase of the threshold voltage of the device,
which decreases the carrier mobility and in turn increases the propagation delay
over time [5]. Without any countermeasure, the first component which becomes
unreliable determines the life span of an entire device. Effect is more susceptible in
memory arrays, where failure of a single SRAM cell would cause the failure of the
whole system.

Study of the idleness profile of various applications shows that the average idle-
ness during the execution of an application is very high, normally more than 90%
which translates roughly into an equivalent leakage reduction. However due to tem-
poral and spatial locality there always exists a set of adjacent lines with much lower
idleness, usually less than 10% of the time. While this is not an issue for leakage,
it is deleterious for aging. Such a low idleness even for one line will virtually nullify
the possible benefits of idleness for aging reduction. This is a consequence of the
fact that the cache is regarded as monolithic (and power-managed as a whole): as
soon as the first line becomes unreliable because of the aging, the entire cache will
consequently be unusable.

The simplest and most intuitive way to remove aging effects is to over-design;
this approach, called guard-banding, essentially implements a fastest nominal, time-
zero design so that the required performance target is met at the desired time point.
The disadvantage of this paradigm is evident: for typical lifetime targets (in the
order of a few years), the required design margin can be 10-20%; provided that it is

35

4 – Aging-driven caches with graceful performance degradation

feasible to design such a faster implementation, such a large margin implies a huge
energy overhead, since an unnecessarily faster (and thus more power hungry) design
is run for a significant portion of its lifetime.

An alternative approach that avoids being trapped in the usual energy/performance
tradeoff consists of mitigating aging effects by acting on the quantities that regulate
the aging process. Some of these quantities are technological (e.g., oxide thick-
ness, mobility), and, as such, cannot be considered by designers as true variables.
Other quantities, however, are functional and can be tuned by appropriate design
strategies.

The most popular solution exploits the value-dependent characteristic of NBTI
on PMOS transistors (a logic “0” on the gate input causes degradation, whereas a
logic “1” partially recovers from aging), and tries to maximize the logical conditions
under which NBTI is relieved. Another popular category leverages the intuitive cor-
relation between “activity” of devices and their aging, which establishes an analogy
between power management strategies and aging mitigation techniques.

In generic circuits, both strategies are applicable; they are actually orthogonal,
since value control can be applied during circuit operations while the aging benefits
of power management can be exploited during standby intervals. Conversely, in
SRAM arrays, solutions based on value control have limited effectiveness: due to
their symmetric structure, a memory cell ages regardless of the value being stored
in it. Therefore, in SRAMs the exploitation of power management strategies is the
only true possibility for the reduction of aging.

In this chapter we present reliability management techniques based on the idea of
cache partitioning to exploit idleness for joint energy and aging reduction. Under this
strategy, the cache is assumed to be split intoM sub-blocks which can be individually
power-managed. Our re-visitation of partitioning and power management from an
aging perspective is characterized by three main elements, which constitute the
novelty of the proposed approach:

• The adoption of a graceful shutdown aging strategy A distinctive char-
acteristic of this strategy is that the independent management of the sub-
blocks allows implementing a graceful degradation of the cache, in which the
entire memory does not fail in its entirety but the various sub-blocks will be-
come unreliable at different times, and the cache will keep functioning with
reduced efficiency (or, equivalently, as a progressively smaller cache). Offering
such a graceful degradation is typical in reliable systems, where a faulty com-
ponent should not jeopardize the whole device, if a degradation in the level
of service can be tolerated. Such a concept of smooth failure has not been
considered in memory hierarchy, since the memory array has typically been
regarded as a monolithic (flawless or not) unit.
Adopting this strategy opens a new trade-off between performance and lifetime

36

4 – Aging-driven caches with graceful performance degradation

of the system, since an access to a dead unit will imply a cache miss. This
issue requires a new “timed” metric to properly quantify the relative benefits
of the architectures. Furthermore, appropriate management of dead units is
also required to prevent incorrect memory accesses.

• The use of an aging-driven cost function for the partitioning: Unlike
existing methods ([26, 27, 28]), the cost function we use to determine the
optimal partitioning explicitly accounts for the aging metric. It is in fact
essential to account for the different nature of energy and aging as metrics.
Power is an average quantity, and the energy saved for each power managed
unit contributes to the total energy saving; conversely, aging is a worst-case
metric, and the earliest failing unit will cause the whole cache to become
unreliable. The cost function properly handles this worst case nature of the
aging metric, with marginal impact on energy.

• The use of variable granularity in the partitioning: The main design
issue is the choice of the block granularity. The same basic paradigm and
the cost functions can be used to implement both a coarse-grain and a fine-
grain partitioned architecture. In coarse-grain option, the units are cache sub-
blocks of non-uniform size, similar to the architectures of [26, 27, 28]. This
choice was motivated by the possibility of having an “architectural” solution in
which the internals of the memory blocks need not to be modified: blocks are
independently addressed sub-caches. Obviously, proper decoding of addressing
is required. In the fine-grain case, power managed units are individual cache
lines, as done in traditional leakage-driven power managed cache architectures
([42, 43]). This option allows achieving different energy/lifetime/performance
tradeoffs.

Implementation of this fine-grain strategy requires the definition of (i) proper
metrics that account for the time-varying nature of the level of service of the cache,
and (ii) proper architectural support for the detection and management of “dead”
blocks.

4.2 Aging-driven cache partitioning

4.2.1 Exploration strategy
Our work is focused on caches and is close in scope to that of [21], in which a
multi-bank cache implementation with an improved aging profile was proposed: the
work leverages the idea introduced in [19], that is, the use of time-varying cache
indexing strategy (called dynamic indexing) to achieve perfectly uniform distribution

37

4 – Aging-driven caches with graceful performance degradation

of idleness over the cache lines. The work of [21] extends this paradigm to a multi-
bank cache architecture in which dynamic indexing is applied to individual banks
rather than cache lines to achieve concurrent (static) energy (thanks to the cache
partitioning) and aging benefits. In practice, [21] implements a coarse-grain version
of [19].

Regardless of the granularity, the two methods share two features: first, dynamic
indexing causes all the power management units (cache lines or cache blocks) to age
identically. Second, all power management units have same size.

Our strategy presents one specific distinction with respect to previous works on
the subject: since every block of the partition has its own worst case idleness, each
block will “fail” at a different point in time. This implies a progressive degradation
of performance (as a result of a progressively smaller cache) that must be reflected
by a proper cost function.

Figure 4.1. Worst-case idleness in case of two partitions

The key element in this strategy is the identification of the unit of power manage-
ment (UPMs) in such a way that the existing idleness can be maximally exploited for
aging. To this purpose an aging-related cost function must be used to determine the
partition. Figures 4.1 and 4.2 provides a visual demonstration of this concept for
two-blocks and three-blocks partitioning strategies. Obviously as we increase the

38

4 – Aging-driven caches with graceful performance degradation

number of partitions, the effect of worst-case idleness decreases and thus provide
more benefit in terms of lifetime.

Figure 4.2. Worst-case idleness in case of three partitions

4.2.2 Metrics
In such a graceful degradation scheme, it would not be fair to simply state the
lifetime of the cache equal to the lifetime of the last dying block. Infact for a fair
comparison against previous works, we need to devise an aging and performance
metric that takes into account the fact that the progressive death of the various
UPMs over time results into a reduced “level of service” of the cache.

To this purpose, we introduce the concept of Effective LifeTime (ELT), defined
as the product of lifetime and size of a memory block. ELT conceptually measures
for how much time a memory block of a given size can be used and is determined
by the line with least idleness. On similar basis, we define the Average Miss Rate
(AMR), which measures the average level of service offered over time.

Consider a cache of L lines with idleness profile I = {i1, . . . , iL} that can be
partitioned into M banks B = B0, . . . , BM−1 in order to maximize the ELT of the
partitioned cache. As the lifetime of a block is dependent on the line with least

39

4 – Aging-driven caches with graceful performance degradation

idleness so using the relation between idleness and corresponding lifetime, we can
derive an analytical formula for the ELT. For a generic M -way partitioned cache,
ELT is obtained as:

ELT =
∑

i=0,...,M−1
(LT (mini) · Si) (4.1)

where mini and Si are the line with minimum idleness and the size of block i,
respectively. LT () represents the lifetime vs. idleness function, i.e., the lifetime of
an SRAM cell for a given percentage of usage of the cell; an example is depicted in
Figure 4.5.

A careful analysis of this equation reveals that the lifetime benefit increases with
increasing the number of partitions: an early dying cell in a smaller partition will
have a smaller impact. Undoubtedly the best case occurs when number of blocks are
equal to number of lines or in other words considering each cache line as a separate
unit. In such a fine-grain partition with single cache line as a block, the ELT will
simply be the addition of lifetime of each line and therefore the above formula will
be simplified as follows:

ELT =
∑

i=0,...,M−1
(LT (i))

Figure 4.3 presents in detail the concept of ELT (top) and AMR (bottom).
Let us first focus on the top plot (ELT) and analyze in detail the aging profiles

reported in the figure. The solid green curve represents the lifetime of a regular
cache without any aging management: N lines are usable reliably for an amount
of time equal to LTorig. Under coarse-grain graceful degradation (assume that two
equally-sized blocks a and b are considered), one of the two blocks will have the
same lifetime as original cache and will die at LTa = LTorig, but the second half
of the memory will keep functioning until LTb (dot-dashed blue curve). We have
shown here only two equally size partitions to keep things simple however advantage
is much bigger with more than two partitions having non-uniform sizes. Maximum
benefit is obtained by allowing fine-grain, line-based degradation, as shown in the
dashed red line. At LT1 ≡ LTorig the first line will fail, then the second will fail at
LT2, and so on, until all lines are dead. Due to non-uniform distribution of idleness,
the advantage is always higher than a coarse-grain partition. The ELT corresponds
to the area below the aging curves, which we want to be as large as possible.

A similar trend is shown by miss rate profile where all curves start at the baseline
miss rate MR0, then they increase according to the corresponding aging profile. In
case of a monolithic cache, it will obviously go directly to 100% percent once a line
becomes unreliable whereas in case of course-grain approach, degradation will occur
in large steps depending on the size of each partition. On the other hand fine-grain

40

4 – Aging-driven caches with graceful performance degradation

���������	�

���

�
����

�
���
���
���� �
� �
���
� �
��
���

����
����

����
����

������

������
�����

������
�����

������	�������
��

 !��������"

������
����

#����������
��������

����� ���
���$��$�%"

�
���
���
���� �
� �
���
� �
��
���

�����&���

���

�
����
�
� �
���
� �
�

�
���

�&'

�''(

Figure 4.3. Effective Lifetime and Effective Miss Rate.

solution provides a more sophisticated performance degradation: disabling one line
at a time will have a smaller impact on miss rate. AMR is an average metric, and
it is measured as the total number of misses over a reference time interval. For a
comparison between various strategies, the reference interval is the lifetime of the
last dying cell (i.e., from 0 to LTN). On the plot, AMR is equivalent to the area
below the curves divided by the lifetime LTN . Clearly, smaller values of AMR are
better.

Notice that even if the fine-grain miss rate curve is always smoother than the
coarse-grain one, the actual miss rate profile grows quite rapidly. Since lines with
the least idleness are also the most accessed ones, even the loss of a few lines causes
the miss rate to increase significantly. Therefore, it might make sense to just wait
for some small number k (e.g., 8 or 16) of lines to fail, and disable the entire cache
thereafter. without waiting the failure of all the lines. Clearly, a too small value of
k might result in worst ELT and AMR than a coarse-grain solution.

Figure 4.3 represents abstract ELT and MR profiles and serves the purpose of

41

4 – Aging-driven caches with graceful performance degradation

introducing the metrics and the visualize the concepts of ELT and AMR. However,
they do not allow to extrapolate typical trends in the two profiles. To this purpose,
we show in Figure 4.4 the same curves of Figure 4.3 for a sample trace, thus with
actual lifetime and miss rate values.

����������������

		��
��		��
��

������������
��

������
�����
��

������������
��

����������� ������
�����
��

�����������

�����������

��	�� �!�" �����������

��#�� �!�"

��	�� �!�"

��#�� �!�"

Figure 4.4. ELT (Top) and Miss Rate (Bottom) vs. Time for a Sample Trace.

Three curves are reported in each plot: the baseline case (Original - green dash-
dot line), the coarse-grain architecture with M = 4 (CG(M=4) – dashed blue line)
and the fine grain one (FG – red solid line). We can notice that the ELT curve
decreases more slowly than what the MR one does; this is more visible for the FG
curve. This is a general trend of all traces, and it is due to the fact that lines with
the least idleness (i.e., failing first) are also typically the most accessed ones, so
even the loss of a few lines causes the miss rate to increase significantly, unlike ELT,
which is a measure of how many lines are usable.

For instance, in the example of Figure 4.4 and for the FG case, we see how the
failure of the first five lines causes miss rate to increase by 50% with respect to the

42

4 – Aging-driven caches with graceful performance degradation

initial value (from 23% to 34.5%), whereas in the ELT curve the change is barely
visible.

This is also visible on the CG curves. In the MR curve, when the first block
(consisting of 22 lines) fails, the miss rate jumps at 39.6% (a 72% increase) whereas
the ELT curve only exhibits a small step corresponding to the 22 lost lines.

It is worth re-emphasizing that this degradation of miss rate does not impact
the baseline (i.e., until its nominal lifetime LTorig) performance of the cache. The
latter will be identical to that of a regular cache until LTorig, then the cache will be
available with reduced miss rate for a longer time. In the case of multiple blocks,
the total ELT is simply the sum over the various blocks.

4.2.3 Aging-Driven Partitioning Algorithm
Since the cost function used to drive the partitioning is quite simple and the number
of sub-blocks M is small, there is no need of a sophisticated algorithm to generate
the optimal partition.

The sub-blocks sizes can then be derived by exhaustive exploration of all possible
p-partitions, p = 2, . . . ,M , using a conventional recursive backtracking scheme. For
each partition we calculate the ELT using Equation 4.1; the one yielding maximum
ELT is stored as the optimal one.ultimate1

4.2.4 Architectural support
A substantial requirement for this architecture is the availability of a NBTI sensor to
track the aging of each memory block regardless of its granularity. There are various
sensors available which provide the possibility of tracking NBTI-induced aging either
by monitoring ring oscillator frequency, circuit delay or current degradation. Some of
the most recent efforts include the work [45, 44, 46, 47, 48]. The sensor in [44] used
a PMOS device biased in sub-threshold region that controls the current supplied
to a 15-stage NAND-gate ring oscillator. Aging can be monitored by observing
oscillation frequency which will reduce with NBTI effect increasing the threshold
voltage of the PMOS device. However the size of the sensor is quite large (308
um2 at 130nm technology). Another option is binary sensors [45] which is 28 um2

in area with 65nm technology but it only tells whether a critical point is reached.
The solution of [46] uses a Delay Lock Loop (DLL) device, whose control voltage is
obtained by amplifying the very shift in pMOS threshold voltage due to stress; this
allows measuring the effects of accelerated DC and AC stress by simply monitoring
that control voltage with standard lab equipment.

These three implementations are targeted towards generic logic circuits in which
a set of critical paths are monitored to detect aging. Fewer are the works especially
dedicate to the measurement of SRAMs aging [47, 48]. The sensor proposed in [47]

43

4 – Aging-driven caches with graceful performance degradation

is specifically targeted for SRAM cells and perfectly fits our needs: it can easily be
embedded into an existing memory array and it is extremely compact. The sensor
is designed in the form of asymmetric 6T SRAM cell with one of the two PMOS
stronger than the other. When voltage is supplied to this cell, it starts a fight
between the two cross coupled inverters to establish either storage of a 0 or a 1;
this will depend on which of the two PMOSs is stronger, which will also be the
one that is negatively biased and will age accordingly. As time goes on, NBTI will
cancel out the strength difference, eventually changing the state of the cell to the
complement of the original value. Since the monitor underwent the same biasing
and supply conditions as any other cell in the line, sensor triggering happens exactly
when some other cell in that line will start to fail.

Another architectural issue concerns how to manage “dead” cache blocks. There
are two possible options to handle them. In first scenario, after a block dies, the
cache can be viewed as becoming progressively smaller, similar to what is done in the
DRI cache proposed in [42]. Although possible, this implies the re-design of the cache
indexing mechanism (a smaller cache results into extra index bits, depending on how
small it becomes); furthermore, it would limit the size of the block to manageable
sizes (proper powers of two). Therefore, we adopt another scenario with simpler
management. As soon as one block dies, we simply force the corresponding lines
to become indefinitely invalid, and disable any kind of replacement for those lines:
any further access to these lines will result on a miss. It is clear that this has
impact on performance, but will allow to use the cache longer than without any
aging management; in other terms, the performance of the cache will be identical to
the original one until the time the latter will die, then it will become inferior.

4.2.5 Aging model

Since lifetime of a given block is dependent on the earliest failing line, which in
turn is determined by the first failing cell, it suffices to model the aging for a single
SRAM cell as a function of idleness. We have therefore characterized using HSPICE
the aging of a 45nm SRAM cell with respect to the percentage of idleness.

We define the lifetime of an SRAM cell as the time at which the SNM decreases
by 20% with respect to the nominal value. Our cell has a nominal SNM of 462mV,
therefore we consider the cell as unreliable when the SNM reaches approximately
370mV. Based on published error models [49] that correlate the SNM and bit error
rate (BER), this value of SNM approximately correspond to a BER of 3 · 10−4.

Idleness is the percentage of time in which the cell is assumed to be powered at
the reduced voltage Vdd,low. Given the dependence of the SNM on the probability
of the stored value, we have chosen the worst case corresponding to a fixed 0 or 1
stored value. The idleness values are therefore a lower bound of the actual idleness.

44

4 – Aging-driven caches with graceful performance degradation

Figure 4.5 shows the lifetime vs. idleness curve we have obtained with our
experiments.

�����
�����

�����
��	
�

�����
�����

�����

��
��

	����

���	�

�����

�

�

	

�

�

�
��
��
��
�
�
��
	
�

��

�

�

�

��
�� ��� ��� ��� ��� ��� ��� 	�� ���
���

��
��
��
�
�
��
	
�

��

�����������������

Figure 4.5. Lifetime vs. Idleness of a SRAM cell.

The curve is obviously monotonically increasing with respect to the percentage
idleness; the intercept on the Y-axis (3.96 years) denotes the baseline lifetime of the
cell (0% idleness). Conversely, 100% idleness (a theoretical value) implies that the
cell is always in the low voltage state; the corresponding lifetime value (about 12
years) represents the intrinsic benefit achieved by DVS.

One final but fundamental observation for our architectures is how to use the
above idleness function for the calculation of the ELT or the AMR of a given cache
configuration. As the metrics described in Section 4.2.2 show, idleness is always a
property of the unit of access, i.e., a line, regardless of the UPM granularity. This
implies that the plot of Figure 4.5, which is derived by analysis of a single cell, must
be used with care in determining the lifetime of the line (and by extension, of the
block to which that belongs).

The idleness of a line is slightly different from the idleness of a cell because when
considering an entire line, the transition from the low-voltage state requires some
minimum number of idle cycles to be amortized (the breakeven time in conventional
dynamic power management). Therefore, when talking of line idleness we refer to
the exploitable idleness, that is, the percentage of idle periods longer than
the breakeven time. The latter depends on the line size and it is in the order of
a few tens of cycles.

45

4 – Aging-driven caches with graceful performance degradation

The plot of Figure 4.5 is therefore still usable, it is just the definition of idleness
that changes.

4.3 Cache Architectures

4.3.1 Coarse-grain implementation
A coarse-grain implementation, in which the UPM is a set of adjacent cache
lines. The UPMs have non-uniform sizes; this implies that a key element in this
strategy is the identification of the UPMs in such a way that the existing idleness
can be maximally exploited for aging. To this purpose an aging-related cost func-
tion must be used to determine the partition. Given this compact cost function and
the fact that M is a small number, it is reasonable to think of an exhaustive explo-
ration algorithm in which all possible p-partitions with p = 2, . . . ,M are evaluated
and the one yielding maximum ELT configuration is stored. By representing a M
partition as a set of M − 1 address boundaries, we can generate all possible parti-
tions by enumerating all possible boundaries using a classical recursive backtracking
framework.

Another characteristic is that of providing a truly “architectural” solution in
which the internals of the memory blocks need not to be modified: blocks are inde-
pendently addressed sub-caches, and the hardware modifications imply only the use
of extra circuitry outside the cache.

This architecture mimics the memory partitioning optimization described in [26]–
[28].

Considering a direct-mapped cache with L = 2n lines (l0, . . . , lL−1), where n is
the number of the index bits of the cache address, we want to split the cache into
M blocks B0, . . . , BM−1, of sizes S0, . . . , SM−1, addressed using n0, . . . , nM−1 bits,
respectively. In order to monitor the aging of each block accurately, we need an
aging sensor for each line but in coarse-grain partitioning we can not change the
internals of the cache so we have to create some architectural solution to handle this
issue. The approach that we have adopted to tackle this problem is shown in Figure
4.6 where we have proposed an array of L sensors (equal to the number of line of
the cache). So there is a sensor for each cache line that has been assigned the same
address as that of a cache line to which this sensor has been associated. In this way
when a cache line is accessed, this sensor cell will also be accessed, ultimately lasting
for same amount of time as that of cache line. Moreover, this array of sensors has
been partitioned into same size blocks as in cache. Figure 4.6 shows the conceptual
architecture and the relevant quantities.

The figures assumes the use of voltage scaling for implementing the low-energy
states for the blocks (denoted by the dotted signal from the dual supply voltage

46

4 – Aging-driven caches with graceful performance degradation

��

��� �������	

������

�
�
�

�
�

���

���

��
�
�

�
�

�
�

�
���

��

����

�
�

�
���

�

�

�	

��

��

����

���

���

�
��

�
��

�
��

�
�

�
�

�
�

�
���

�
���

Figure 4.6. Variable-Size Partitioned Cache Architecture.

selector). Voltage scaling is the only viable choice for the standard memory blocks
provided by the memory compiler in our target technology. Moreover, voltage scaling
allows to preserve the contents of the memory block in the standby state with a
better energy/performance tradeoff [19].

Figure 4.7 shows the detail of a sensor block SBi having n sensors corresponding
to a cache block Bi. According to our strategy, when any one of these sensors will
become unreliable, the whole block will be disabled so the output of each sensor
goes to an ’OR’ gate which will trigger output when it receives ’1’ from one of these
sensors and will send a signal to the corresponding cache block to be disabled. After
receiving notification, that block will not be usable and all accesses to that block
will be invalid.

The decoding block Dec in figure 4.8 serves two purposes: remapping the address
on the proper cache and sensor block and asserting the standby signals for these M
blocks.

47

4 – Aging-driven caches with graceful performance degradation

���

���

������

������	
��������

��������

��	
�	

��
�����

���	���

��

��

�

�
�
��
��
�
�
��

��
�
��
�
�
�

�

�

� ����

����

Figure 4.7. Sensor Block

�

�
�

��������
	
��

�

��������
�

������

�������

�

�������

�����	
��

�

�
���

��������
	
��

���

�
�
�

��������
��������

��������
���

�
�
� �

�	��

��
��
��

Figure 4.8. Decoder Block

4.3.2 Fine-grain Implementation

In fine-grain partitioning, the size of the UPM coincides with the unit of
access, i.e., a cache line. The fine granularity provides maximum exploitability
of the idleness (the UPM and unit of access coincide) but we need to sacrifice the
“architectural” property of the coarse-grain approach; lines must be managed by
modifying the internals of the cache with the proper power management structures

48

4 – Aging-driven caches with graceful performance degradation

which in turn also allow a better control of the leakage/aging tradeoff.
This choice is also consistent with classical power-managed cache architectures

in which individual lines can be turned into a low-power state based on their access
pattern (e.g., [42, 43]). In fine-grain implementation, the things are bit simple as we
can change the internals of the cache so a sensor will work as an extra cell in each
cache line. Figure 4.9 shows the conceptual structure of a modified cache line. The
basic power management infrastructure is borrowed from the classical drowsy cache
[43].

����

�

����

�

����

�

����

���
	 ����������	

��

����	���	���� �����������

�����

��

�		����

�		

�������

�����

��	����

������

����

������������

������

�
�

��
�
��
	
�
�

���

�
�		����
������������

��������

�
�

��
�
��
	
�
�

���

Figure 4.9. Internal Structure of a Cache Line.

The block Control implements a counting-based mechanism that triggers the
standby of a line after some number of idle cycles (determined by the cost of transi-
tioning from the low Vdd state – a few tens of cycles in our technology). The choice
of voltage scaling as implementation of the standby state is dictated by the fact that
it preserve the contents of the cache line during standby, resulting thus in a better
energy/performance tradeoff, as reported in [19].

When standby is entered, a “drowsy” bit is set, and the low supply voltage
Vdd,low is chosen (the dotted signal from the dual supply voltage selector). Setting
the drowsy signal also gates the wordline to prevent accesses to a drowsy line that
will result in an invalid value. The figure also shows how a “dead” cache line is
automatically managed. When the sensors triggers, indicating it has reached the
aging limit, we simply force the corresponding line to become indefinitely invalid:

49

4 – Aging-driven caches with graceful performance degradation

any further access to the line will result in a miss.
This architecture easily lends itself to implement the scheme in which a limited

number k of lines is allowed to trigger. All the sensor outputs are OR-ed into a
signal which triggers the count of a small log2 k bits. When the counter saturates,
the cache is completely disabled.

4.4 Optimization algorithms for coarse-grain par-
titioning

As the results will show, ELT-driven partitioning alone already yields significant
benefits in terms of both aging and energy with respect to a fixed-size partition as
the one of [21], thanks to a better matching between the partition sizes and the
idleness profile. However, the knowledge of the idleness profile can be exploited so
as to further improve both aging and energy, at the cost of a small hardware over-
head. The basic transformation we implement is to selectively swap addresses across
partitions in order to achieve a better overall ELT. This can be easily implemented
by modifying the cache indexing function for a few, selected addresses.

The choice of a possible swap-based strategy depends on its relation with the
ELT-driven partitioning step. There are essentially two options to combine these
two phases.

The first, and most intuitive is to run the partitioning first and then improve the
results of partitioning with a set of swaps. We call this strategy partition & swap.
A second option is to first tweak the idleness profile with a set of swaps and then
find the best partition on that profile. We call this strategy cluster & partition.

In the following we describe two detailed algorithms for the two strategies.
Both algorithms are parameterized by a parameter k, which denotes the number
of swapped addresses.

4.4.1 Partition & Swap Strategy
Since both size and minimum idleness concur to determine ELT, the basic principle
behind this strategy is to repeatedly swap the address with the minimum idleness in
the largest block with some address (with a larger idleness) of a smaller block that
dies earlier.

The operation of the algorithm (called k-swap) can be described as follows (see
pseudocode): First we get the partition B = B0, . . . , BM−1 with sizes S0, . . . , SM−1.
1: k-Swap (I)
2: B = ELT-DrivenPartitioning (I)
3: for l = 1 . . . k do

50

4 – Aging-driven caches with graceful performance degradation

4: i⇐ index of address with l-th maximum idleness in the earliest failing block.

5: j = index of block with maximum value of Sj · (m2j −m1j.
6: if (I[i] > I[m1j]) then
7: SWAP(I[i], I[m1j])
8: end if
9:
10: end for
11: return B

Then, we repeat k times the swap between two addresses: the one with maximum
idleness in the earliest failing block (i) and the one with the minimum idleness in
the block j in which such a swap would maximize the benefit. The latter is defined
as the product between size of the block and difference between the second and first
minimum (Si · (m2j −m1j). The second factor represents how much the lifetime of
this block would be extended.

Clearly, the swap is done only if beneficial (i.e., if we are bringing into Block j
an address with idleness higher than the previous minimum m1j).

4.4.2 Cluster & Partition Strategy
The rational behind this strategy is driven by the observation that the ELT-driven
partitioning would provide ideal results if the idleness profile I is sorted in non-
decreasing order. In that case, partitioning would yield M blocks that have the
maximum possible overall ELT: the partitioning would return theM−1 boundaries
that identify the point of diminishing returns of the ELT cost function.

Since sorting the entire profile would require an excessive number of swaps, the
algorithm we implement under this strategy (called k-min clustering) identifies
the k minima in the idleness profile a swaps them with the addresses to one end of
the profile (first or last k addresses), as shown in the pseudocode below.

Then, the ELT-driven partitioning is applied on the modified idleness profile.
1: k-MinClustering (I)
2: (j1, . . . , jk)⇐ indices of the first k minima
3: i = 0
4: for l = 1 . . . k do
5: SWAP(I[i], I[jl]);
6: i+ +
7: end for
8: B = ELT-DrivenPartitioning (I)
9: return B

Notice that also in this case k is an upper bound on the number of swaps. Some of

51

4 – Aging-driven caches with graceful performance degradation

the minima might already be “in place”.

4.5 Experimental Results
The effectiveness of the proposed architectures have been assessed on a set of traces,
extracted from the simulation of the MiBench suite [50] with an in-house cache
simulator that estimates the aging and energy consumption, static and dynamic, of
the whole memory hierarchy

(thus considering the impact of misses also in terms of energy consumption)
We used aging and energy models derived from an industrial 45nm design kit

provided by STMicroelectronics. As already discussed, lifetime is defined as the
time after which SNM of a cell has decreased by more than 20% with respect to its
nominal value, and results refer to the worst case aging, i.e., assuming a fixed value
is stored in each cell.

We first present an initial overview of the results for the three metrics of in-
terest (ELT, AMR and total energy) obtained by averaging the data over all the
benchmarks.

Concerning the architectures to be compared, the coarse-grain scheme has no
pre-defined value of M , which is therefore an essential parameter of the architec-
ture. In our evaluation we limited ourselves to M ≤ 4 because it was previously
shown ([26, 28]) that the overhead resulting from the partitioning (decoding, extra
wiring) does not generally allow to have more than M = 4 blocks. Conversely,
the fine grain scheme has a fixed granularity of 1 (line), and therefore there is no
intrinsic architectural parameter. We will therefore present results for the following
architectures:

• CG–(M=2): Coarse-grain architecture with M=2 blocks;

• CG–(M=3): Coarse-grain architecture with M=3 blocks;

• CG–(M=4): Coarse-grain architecture with M=4 blocks;

• FG: Fine-grain architecture.

The CG schemes have been obtained by exhaustively exploring all possible M -
partitions of the memory; the reported data refer the partition that accrued the
largest ELT.

Concerning the cache sizes, we have considered three sizes (4KB, 8KB, 16KB)
typical of L1 caches in embedded systems. Line size is 16 bytes in all cases.

52

4 – Aging-driven caches with graceful performance degradation

4.5.1 ELT Results
Figure 4.10 summarizes the ELT results in terms of percentage improvement over a
regular, power-managed cache without any aging management.

Figure 4.10. Comparison of Effective Lifetime.

We can see how both aging management schemes provide a significant extension
of ELT. Coarse-grain implementation on average provides a lifetime extension be-
tween 75% and 180% depending onM and cache size. As a general trend, increasing
M obviously yields higher lifetime benefits. Also, larger caches show higher aging
improvements because the idleness is distributed on a larger space.

Considering the FG strategy as a particular case of CG withM = L, it is obvious
that FG yields the best results with lifetime extensions around 2.5X, more or less
independent of cache size.

We have seen in section 4.4, the knowledge of the idleness profile can be exploited
to further improve both aging and energy, at the cost of a small hardware overhead
to selectively swap addresses across partitions.

Figure 4.11 shows the lifetime benefit obtained by these strategies for 16kB
cache. It reports average lifetime improvement over a monolithic, power-managed
cache and refer to the case of M=2 blocks.

To further signify the importance of our partitioning strategy, we have made
comparison with a previous work PALT which refers to uniform partitioning with re-
indexing [21], which yields slightly less than 50% lifetime improvement. PLT denotes
the ELT-driven partitioning alone, which provides a lifetime extension of about 120%
on average. The adoption of swap-based algorithms yields even better results. Both
proposed algorithms perform similarly, although they scale differently with respect

53

4 – Aging-driven caches with graceful performance degradation

Figure 4.11. Lifetime Improvement of 16 KB Cache.

to the number of swaps. For smaller number of swaps the k-min clustering does
not show considerable improvement in lifetime but then it grows rapidly as k gets
larger. Conversely, for the k-swap lifetime increases almost linearly.

k-min clustering appears then to be more advantageous for bigger caches with
possibility of performing higher number of swaps and k-min clustering will be better
suited for situation where only fewer swaps are possible. This gives us the flexibility
to choose better suited algorithm depending on the cache size and on the acceptable
number of swaps.

4.5.2 AMR Results
Figure 4.12 presents resulrs fro Average miss rate (AMR). The plot exhibits a trend
similar to that of ELT: the longer the lifetime of the memory, the smaller the average
miss rate (because of an increased availability of a portion of the cache). In all cases
AMR is smaller than the case of a regular cache, which will operate at 100% miss
rate after the first failure. Moreover, the benefit in the CG case is not very sensitive
to the value of M : there is only a few percent difference between the M = 2 and
M = 4.

Notice, also, that AMR values for different cache sizes are not directly compara-
ble, since the average is performed on different lifetime spans.

To assess the impact of progressive reduction of the cache we report data on
miss rate in Figure 4.13 which shows the evolution of the miss rate before and after
the “death” of the first block for a 16 KB cache. We report sample curves for a

54

4 – Aging-driven caches with graceful performance degradation

Figure 4.12. Average Miss Rate Comparison.

monolithic cache, and for a cache partitioned into 4 blocks using first the PLT and
another ones using with the k-min clustering algorithm.

0%

25%

50%

75%

100%

time

monolithic cache

PLT

k=4

MR benefit of
partitioning after
the first block death

LT
1

Figure 4.13. Miss Rate Before and After the Death of the First Cache Block.

As expected, the miss rate is strongly impacted by the death of the first block.
Since we are forcing in that partition the lines used the most, it is very likely that
such a block has a relevant impact on cache performance. However, if we compare
such a behavior against the one of a monolithic cache (which, from the death of
the first block suffers from a 100% miss rate), we can notice that the cache is still
working, allowing to exploit the locality principle for more than 50% of the cases.

55

4 – Aging-driven caches with graceful performance degradation

4.5.3 Energy Results
Regarding energy reductions, there are two components that must be considered.
The first one is common to both fine-grain architecture and the PLT strategies;
both are in fact modifications of a traditional power managed cache, so energy is
saved due to the exploitation of idleness. This quantity corresponds to 65.4% for
the 4KB cache, 71.6% for the 8KB, and 76.9% for the 16KB cache. This energy is
also saved by a conventional power-managed cache architecture without any aging
management.

The second component is due to the energy saved thanks to a reduced number
of misses over time. It can be roughly quantified as the AMR after the death of the
first line (LTorig in Figure 6.4) multiplied by the cost of accessing the cache. This
product accounts for the accesses to the next level of hierarchy that are avoided
thanks to the fact that the cache is partly active. The savings for this component
are therefore highly correlated to the AMR figures.

Figure 4.14. Energy Savings Comparison.

Figure 4.14 shows the energy saved on the whole memory architecture (thus ac-
counting the energy cost of misses) on average on all the benchmarks, computed
over the whole lifetime of the cache. We compared the proposed graceful degrada-
tion schemes (coarse-grain and fine-grained against a regular power managed cache
without any aging management. We have used 5 cycles as the value of the miss
penalty: this is a reasonable value for a L2 cache (larger values would yield even
better figures for our method). Due to the same considerations done for the ELT
and AMR analysis, FG provides best results, from 34% (4KB cache) to 43% (16KB
cache); similarly, the energy savings for the CG schemes increase with increasing

56

4 – Aging-driven caches with graceful performance degradation

M , approximately with the same trend for all the cache sizes.

4.5.4 Detailed Trace-by-Trace Results
In order to better analyze the specific dependence on individual traces or identify
some pathological cases, in this section we report detailed trace-by-trace results
for ELT and total energy, for the three caches sizes and for the four architectures
summarized in Figures 4.10–4.14. We do not report AMR results because energy
savings are mostly due to improvement in the AMR, so the trend in the tables would
be similar.

4K 8K
CG(M=2)CG(M=3)CG(M=4) FG CG(M=2)CG(M=3)CG(M=4) FG

adpcm.dec 250.59 457.63 607.55 655,59 334,71 570.02 644,57 672,44
adpcm.enc 224.25 390.61 466.09 503,25 235,83 392.77 425,11 445,6
cjpeg 51.02 81.57 96.07 191,43 78,77 94.71 109,83 207,47
CRC32 99.44 143.52 240.19 492,01 44,14 135.03 176,15 459,83
dijkstra 60.66 175.12 235.78 341,66 171,76 205.8 271,48 384,38
djpeg 41.21 51.96 60.96 131,73 29,07 45.65 62,56 124,23
fft_1 26.37 44.98 51.94 99,19 46,36 56 60,48 100,92
fft_2 21.57 33.54 38.53 79,98 35,36 43.77 49,1 83,72
gsmd 59.79 142.45 202.24 417,44 74,35 237.35 270,33 437,54
gsme 128.28 177.54 210.75 292,22 188,02 233.62 264,19 326,97
ispell 36.30 50.02 58.31 95,11 32,62 48.68 53,85 97,98
lame 14.19 20.28 23.19 39,16 21,49 26.63 31,04 47,11
mad 3.91 9.13 12.14 34,09 4,51 9.89 11,53 32,81
rijndael_i 85.27 106.04 124.61 206,68 91,28 124.81 139,79 213,52
rijndael_o 114.75 146.11 163.32 257,24 120,72 163.69 182,06 253,56
say 36.19 54.46 68.31 164,5 89,75 100.18 107,49 177,3
search 57.75 112.36 121.56 204,13 90,42 145.76 162,07 249,09
sha 58.96 84.44 107.52 164,27 73,99 133.46 147,4 192,35
tiff2bw 108.71 175.83 206.87 254,61 185,35 234 268,7 299,05
Average 77,85 129.35 162,94 243,38 102.55 157.99 180.93 252.94
mix-2 140.04 181.52 213.37 290.61 184.8 202.8 237.15 298.51
mix-2 106.53 203.97 247.41 278.86 141.67 253.31 274.9 293.36
mix-2 38.35 70.1 91.05 168.38 49.62 105.06 120.93 177.03
mix-4 8.7 15.05 22.79 68.85 8.23 26 34.23 74
mix-4 38.89 74.84 89.47 132.84 43.91 67.36 77.02 117.86
mix-4 14.35 46.1 60.45 96.06 13.27 67.29 74.46 106.22
mix-8 12.18 15.58 17.4 35.9 15.88 18.56 20.98 40.71
mix-8 4.41 7.27 10.54 33.39 6.74 13.24 17.59 40.78
mix-8 6.84 9.78 12.45 35.16 5.61 10.72 13.16 37.65

Table 4.1. Detailed ELT Improvements [%]

ELT results are reported in Table 4.1. It is immediate to observe how there exist a
significant variation across the traces. Let us take the 16KB case, FG case. We notice
that the difference between the trace with best results (adpcm.dec, 6.42X lifetime
improvement) and the one with least benefit (mad, only 28.57% improvement) is
really huge. This is due to the idleness distribution resulting from the corresponding
trace. Figure 4.15 shows the idleness profiles for these two traces with opposite

57

4 – Aging-driven caches with graceful performance degradation

16K
CG(M=2)CG(M=3)CG(M=4) FG

adpcm.dec 378.18 581.96 611.76 642.91
adpcm.enc 246.99 363.74 375.22 392.83
cjpeg 83.73 93.09 108.27 171.00
CRC32 19.15 189.32 207.58 407.19
dijkstra 254.37 285.92 305.98 411.29
djpeg 28.75 65.90 77.07 116.03
fft_1 52.30 57.11 61.69 99.94
fft_2 35.83 41.45 44.83 74.24
gsmd 94.36 194.82 222.51 397.08
gsme 196.18 245.29 267.54 339.86
ispell 50.77 57.15 60.71 97.41
lame 18.64 28.95 31.47 46.56
mad 2.80 6.43 8.74 28.57
rijndael_i 68.91 100.14 116.40 168.44
rijndael_o 93.53 117.72 135.39 203.30
say 55.30 97.34 130.66 203.97
search 129.77 163.52 170.55 259.90
sha 80.44 117.64 149.45 201.85
tiff2bw 294.64 322.91 343.86 370.86
Average 114.98 164.76 180.51 243.85
mix-2 190.51 228.8 251.41 283.64
mix-2 167.03 257.22 265.9 282.1
mix-2 49.78 87.01 97.1 155.27
mix-4 4.13 24.84 31.41 67.71
mix-4 56.27 80.32 83.42 104.48
mix-4 18.19 72.35 76.46 103.75
mix-8 14.29 18.91 20.89 36.97
mix-8 3.05 16.16 19.21 38.22
mix-8 2.99 14.33 17.31 37.31

Table 4.2. Detailed ELT Improvements [%] 16k

behavior. The profiles actually denote the percentage of idleness for each of the
1024 lines of the 16KB cache More precisely, this is the useful idleness, that is, the
percentage of idle intervals longer than some breakeven time (calculated during the
characterization of the SRAM) and that can therefore be fully exploited by power
management.

We notice that the profile of adpcm.dec (dotted red curve) exhibits a small region
(about 15 lines) around line 64 with a very low idleness, whereas in the rest of the
lines the idleness is very high (average 99.3%). Assuming the FG architecture, it is
clear that this trace strongly benefits from a graceful shutdown: the few lines with
the low idleness will fail first (in reverse order of idleness), then the rest of the cache
will be usable with similar performance (more than 1,000 lines are still available).
Thus, the lifetime extension without an aging management where the cache fails as
soon as the first line fails is evident.

Conversely, for mad (blue solid line), the idleness is quite constaint (min 93.1%,
max 100%, average 99.4%), so even a cache without aging management will have a
similar duration.

58

4 – Aging-driven caches with graceful performance degradation

8K 16K
CG(M=2)CG(M=3)CG(M=4) FG CG(M=2)CG(M=3)CG(M=4) FG

adpcm.dec 3,73 5,29 8,01 13,56 15,93 17,11 19,47 16,78
adpcm.enc 3,47 4,94 6,45 12,44 15,49 16,63 17,95 14,83
cjpeg 13,24 15,77 23,22 43,56 29,14 30,76 34,17 48,41
CRC32 0,93 1,32 2,23 8,83 13,43 14,49 15,23 11,87
dijkstra 2,98 9,94 12,91 22,9 22,69 23,63 30,69 28,18
djpeg 9,65 11,28 16,33 40,21 13,59 24,34 31,96 43,63
fft_1 9,77 18,82 17,27 42,4 35,1 39,27 40,37 49,29
fft_2 9,43 16,52 15,75 42,21 30,53 35,67 35,84 49,79
gsmd 5,92 11,45 17,37 39,78 23,17 26,2 31,38 44,64
gsme 8,43 30,5 32,53 48,51 30,26 34,21 50,03 57,89
ispell 13,01 20,75 25,99 40,38 28,51 30,72 29,05 45,13
lame 13,23 20,14 23,07 40,5 33,67 36,24 38,04 46,32
mad 3,66 8,91 11,73 33,67 18,49 22,61 24,48 37,63
rijndael_i 17,05 24,23 26,79 43,9 33,72 37,73 39,11 48,35
rijndael_o 17,11 26,46 28,89 45,08 31,79 34,76 39,28 47,15
say 4,66 11,48 11,72 42,46 8,6 15,04 16,44 44,76
search 16,68 20,99 22,35 34,29 27,92 35,67 36,54 39,57
sha 21,48 21,62 25,2 33,21 31,86 20,6 20,73 34,86
tiff2bw 9,96 13,65 15,65 18,54 24,73 30,05 31,4 23,68
Average 9,70 15,48 18,08 34,02 24,66 27,67 30,64 38,57

Table 4.3. Detailed Energy Results

16K
CG(M=2)CG(M=3)CG(M=4) FG

adpcm.dec 7,05 9,87 9,96 21,29
adpcm.enc 6,04 8,17 8,29 21,63
cjpeg 18,65 24,21 26,88 48,96
CRC32 0,9 2,36 3,22 15,89
dijkstra 16,94 18,69 24,04 33,97
djpeg 15,01 27,75 28,61 45,33
fft_1 29,08 23,64 27,98 54,75
fft_2 26,66 29,02 32,2 54,21
gsmd 17,96 18,65 20,77 47,69
gsme 35,22 37,59 42,25 60,40
ispell 21,83 24,53 25,57 48,39
lame 19,33 34,23 35,2 51,63
mad 4,61 7 10,82 36,54
rijndael_i 21,69 25,88 30,54 52,22
rijndael_o 25,24 29,05 30,21 53,46
say 1,13 15,84 10,43 52,79
search 25,89 28,37 28,95 40,42
sha 22,64 8,17 10,53 34,92
tiff2bw 22,32 29,66 31,94 34,40
Average 17,80 21,19 23,07 42,57

Table 4.4. Detailed Energy Results 16k

In summary, aging benefits are roughly correlated with the minimum idleness in
the profile (the worst case), and to some extent also on the variance of the profile.
The larger the distance of the minimum from the average idleness, the higher the
benefits.

59

4 – Aging-driven caches with graceful performance degradation

���

���

���

����

����

��
��
�
�
�
�

���������

���

��

���

����	

Figure 4.15. Idleness Profiles of adpcm.dec and mad.

We also evaluated the ELT when the system is running more than a single
benchmark, thus measuring the interference among applications in a multi-task en-
vironment. In Table 4.1, rows labeled mix-n are related to a multi-programming
degree equal to n (for each value, we tested a different set of applications).

Concerning energy (reported in Table 4.3), the variation among traces is much
more limited. A few traces are significantly below the average: adpcm.dec, adpcm.enc,
CRC32, and tiff2bw. These traces exhibit a very high locality that manifest itself
in terms of a few lines being simultaneously (i) the ones with the most accesses
(i.e., with least idleness) and (ii) those accounting for most of the hits. Therefore,
these lines will fail first (both in CG and FG), and when this occurs, the miss rate
increases drastically, thus limiting the savings.

Since the energy metric is additive, this table does not report data about for the
mix- traces. The energy spent by a set of benchmarks is in fact exactly the sum of
the energy spent by each application. Therefore, the resulting energy saving is just
the weighted average of the energy savings shown in Table 4.3 (the weights being
the trace lengths).

60

Chapter 5

Energy-Optimal Caches with
Guaranteed Lifetime

5.1 Overview and related work

Many mission-critical applications require guaranteed lifetime of their operations,
and therefore of the hardware implementing their functionality. In some cases, a
guaranteed level of service must also be granted, for instance in terms of through-
put. Such constraints are usually enforced by means of various reliability-enhancing
solutions mostly based on redundancy [55], which are typically not energy-friendly,
because the replicas consume extra energy (even when power managed) and so does
the control logic required for managing the operations.

In this chapter we will address the aging of the memory sub-system due to
NBTI (Negative Bias Temperature Instability) in systems that have to provide a
guaranteed level of service, and specifically, a guaranteed lifetime.

Our approach leverages a novel cache architecture in which a smart joint use of
redundancy and power management allows us to obtain caches that meet a desired
lifetime target with minimal energy consumption. This is made possible by exploit-
ing the possibility of putting the cache sub-block used as for redundancy into a
deep low-power state, thus allowing more energy saving than a regular architecture.
Sacrificing a portion of the cache for aging mitigation only marginally affects per-
formance thanks to the non-linear dependency of miss rate versus cache size, which
allows to find the best cache size that maximizes the objective.

Previous works have observed that there exists a correlation between the concept
of idleness exploited in power management strategies and aging. In particular, the
“hardware” implementation of a low-power state (i.e., voltage scaling for dynamic
power and power/ground gating for static power) can be leveraged to reduce NBTI-
induced aging [17, 18]. Therefore, several works have properly revisited various

61

5 – Energy-Optimal Caches with Guaranteed Lifetime

traditional power-managed cache and memory architectures under an aging-related
metric so to achieve concurrent energy and aging improvements [19, 20].

All these approaches are based on the idea of transforming the idleness resulting
from a given workload (which is exploited to reduce energy) into an equivalent
benefit for aging as well. Direct use of the idleness is not always possible: while
for energy it is the total idleness that matters, for aging (a worst-case metric) it
is the distribution of the idleness that matters. Such a transformation consists
either of a proper arrangement of addressing mechanisms ([19]) or of multi-banked
organization of an SRAM ([20]). None of these approaches however relies on widely
used reliability-enhancing paradigm, that is, the use of redundancy.

One architectural approach based on redundancy is the one proposed in [35], in
which a spare cache sub-array is used to replace, on a rotating basis, selected sub-
arrays with excessive aging, which are then put into a special wearout-recovery state
implemented through a sort of power gating. This approach is more fine-grain than
ours, but requires considerable overhead. The “scheduling” of the spare unit must
be explicitly managed, and the choice of the unit to be recovered requires per-unit
detection of the level of aging. Conversely, our scheme is suitable also for small-scale
systems and does not require modification on the internals of the cache.

In this chapter we show that, by properly combining the two above approaches
and redundancy, it is possible to push the energy reduction beyond the limits of
previous works. The rationale of our architecture is to use sub-banking not to
reduce the impact of the worst-case idleness ([20]) but rather as an extra memory
space over which better distribute idleness. In other terms, we only use a subset of
the cache to store values. Energy reduction is achieved because the cache sub-block
used for redundancy can in be put into a non state-preserving state during standby
without compromising performance. As shown in [19], this is not feasible if the
whole cache is active, due to the poor exploitability of a non state-preserving state.

The use of a virtually smaller cache, however, affects performance. We show that
this impact is marginal, thanks to the non-linear dependence between miss rate and
cache size, which saturates for typical cache sizes.

The proposed approach allows, for a given lifetime target, to significantly improv-
ing the overall energy consumption of the cache (measured over the target lifetime),
with truly marginal degradation of miss rate.

5.2 Motivation and Concept
Consider a system with a cache (for simplicity, direct-mapped with a pre-defined line
size) of a given size S, measured in cache lines, determined according to some archi-
tectural considerations. This baseline cache will have a given power consumption,
lifetime, and performance (e.g., miss rate). Since all these quantities are affected by

62

5 – Energy-Optimal Caches with Guaranteed Lifetime

cache size, we denote them by P (S), LT (S),MR(S). Suppose also that the system
constraints include the warranty that the system (in this case, the cache) guarantees
operation for a specified target lifetime1. Our objective is to devise an organization
the cache sub-system so that the lifetime target is met by using the least possible
power and with smallest possible performance penalty.

One way to approach this problem is to try to extend the default lifetime by using
the intrinsic idleness of the application that uses the cache ([19, 20]). For example
the “dynamic indexing” proposed in [19] proposes a simple and effective solution
that exploit 100% the available idleness by distributing it over the cache lines so
that all lines exhibit the same idleness (and lifetime). This solution maximizes
lifetime, but the fact that all the cache lines are used limits the possibility of power
managing the lines. As a matter of fact, [19] ruled out a low-power state based on
power gating (which provided longer lifetime) because it is less exploitable from the
energy standpoint due to much longer break-even times caused by miss penalty.

Our method overcomes this limit as follows. We keep only a subset S ′ < S of
the cache lines as “active” cache lines; The remaining S − S ′ act as “spare” lines
that can be used to mitigate the aging of the whole cache. The benefit from the
energy standpoint is intuitive: the “inactive” portion of the cache can be put in a
non state-preserving low-power state (thus saving more energy). However, this also
extends lifetime because aging is virtually removed under footer-based power gating
(actually there is a recovery)[19], and the “inactive” part of the cache is less aged
when it gets reused.

On the other hand, under this scheme we are virtually using a smaller cache,
so performance can be impacted. However, thanks to the dependence of the the
three metrics (E(), LT (), and MR()) versus cache size, it is possible to make this
performance overhead negligible.

One final note concerns the concept of “portion”. In order to make addressing
simple, the above mentioned portions must coincide with power-of-two fractions of
the initial cache size.

In the rest of the section we illustrate the basic dependencies of the three above
metrics versus cache size and then we will discuss architectural issues and the opti-
mization strategy.

5.2.1 Architecture
Consider a direct-mapped cache with S = 2n lines where n is the number of the
index bits of the cache address. As discussed in Section 5.2.2.1, we assume the
cache line is the atomic unit of power management. Figure 5.1-(a) depicts the

1We are assuming the regular lifetime of the cache is shorter than the target.

63

5 – Energy-Optimal Caches with Guaranteed Lifetime

conventional scenario resulting from the use of Dynamic Indexing (DI) [19]; the
original idleness distribution (shown on the left) is transformed by the DI block into
a uniform distribution, thus making worst and average cases to coincide. This is
achieved by changing the indexing over time; the change is triggered by an Update
signal (refer to [19] for more details). Let Iavg,1 be this average idleness. In this
scenario, the entire cache is kept active (blue color), that is, any line is addressable
at any time. Clearly, at a given time, some lines will be in a standby state; in this
case this state must be implemented through DVS (state-preserving) to avoid the
miss penalty in the re-activation.

��

� �
����������

��	�
����

������

�����

�

��
�

�����

�

��
����	
�

�

��
�

��

������

�������

���	
�

���	
�

��

��� ���

���	���
����

���	���
����

������

�����

�

��
�
���	
�

�����

��
�

�����

�

��
�

��

���	
�

���	
�

Figure 5.1. Traditional Dynamic-Indexing Operations (a) and Pro-
posed Architecture (b).

Figure 5.1-(b) depicts the proposed scenario. The cache is conceptually split into
k portions (S ′ = S

k
, k = 2 in figure), only one of which is active at a given time.

This implies that the system effectively uses a smaller cache. The intrinsic idleness
(the distribution shown on the left) is now different from the previous case and its

64

5 – Energy-Optimal Caches with Guaranteed Lifetime

average will also be smaller: intuitively, Iavg,k ≈ Iavg,1
k

, because the same accesses are
now distributed over a portion of the address space. Dynamic indexing will again
flatten the distribution and make it uniform. Therefore, all lines in the active block
will degrade of the same amount.

While a cache portion is accessed, the other ones (in gray) can be put in a
non state-preserving state implemented by a footer-based power gating. This state
induces and electrical state inside each cell where all nodes drift towards a logic “1”,
which is the recovery state for NBTI [18]. While this very deep standby state cannot
be used for the active block, we can afford it for the inactive ones, which can easily
lose their values without impact on performance.

Whenever the Update signal is triggered to change the indexing mechanism, the
selector brings up another portion of the cache (now rejuvenated by having passed
some time in the recovery state) and puts the first one into the non-preserving
standby state. As in the conventional architecture, updating the indexing needs a
flush of the entire cache; this is not a true overhead because updates can be syn-
chronized to architectural events that require cache flushes (e.g., context switches).
The overall effect is a sort of bi-dimensional and heterogeneous indexing over the
cache blocks. Each one will age of the same amount, but when not used they save
much more energy than in the regular case.

One relevant observation that is worth mentioning is that using one less bit for
the index to address a smaller cache (n − 1 instead of n) implies storing one extra
tag bit; the total width of the address is clearly fixed. This is typical in other
variants of variable-size caches, like for instance the Dynamically Resizable I-cache
[56]. The impact of such a larger tag array, however, will be considered by the
accurate explorative analysis below.

Given the above architecture, the objective is to determine what cache size, and
what value of k yields the least energy for a a given target lifetime. This problem can
be viewed as a novel, aging-aware optimization scenario in which lifetime becomes
an explicit constraint (as opposed to a traditional performance metrics) and energy
as the variable to be optimized. This has also impacts on how we evlauate energy.
If the system is forced to operate for a fixed time, energy should be evaluated as the
integral of power over the entire lifetime.

Finding an analytical solution to this optimization problem by using the models
of Section 5.2.2 is in theory possible. However, two consideration suggest a much
simpler approach. First, the solution would require complex mathematical solutions
due to the non strong linearity and the variety of the functions describing the models.
Second, and more relevant, the design space is very sparse: not olny the main
variable S is discretized, but it can assume only a very limited number of values
(the mpowers of two). Since we assume S=1KB as the atomic unit of instantiation,
we need to evaluate less than 10 solutions.

For this reason, our analysis is based on an explorative approach in which the

65

5 – Energy-Optimal Caches with Guaranteed Lifetime

cache size parameter is swept from the minimum to the maximum value and the
values of the other metrics are evaluated.

5.2.2 Models
In the following, we consider a power-managed cache in which a cache line is the
atomic unit of power management.

5.2.2.1 Lifetime

By running a given workload with a cache simulator we extract then the exploitable
idleness (i.e., idle intervals longer than some break-even time) of each line; the
latter is a metric of how much energy can be saved. Using the characterization
methodology described in [18], it is possible to extract the lifetime of an SRAM cell
as a function of its idleness, that is, the percentage of time in which it is in standby
state. The lifetime of a cell determines the lifetime of the line it belongs to, for
a line is the atomic unit of access of a cache. The lifetime of the entire cache is
the one of the earliest failing line (i.e., the line with smallest idleness). As already
mentioned, special architectural arrangement such as the dynamic indexing in [19]
can distribute the idleness over the cache lines uniformly so that all lines fail at the
same time (and worst-case coincides with average case).

Figure 5.2 shows the result of the characterization for a dynamically indexed
32kB cache. The plot refers to a DVS-based implementation of the standby state
(“drowsy”), which is the mechanism used for the “active” portion of the cache in
our redundant architecture. Conversely, the “inactive” portion of the cache can be
power-gated without incurring the cost of a miss penalty, since it is not used. For
the inactive block, idleness is 100% and aging is zero.

Lifetime is obviously monotonically increasing with respect to the percentage
idleness; the intercept on the Y-axis (3.96 years) denotes the baseline lifetime of the
cache (0% idleness). Conversely, 100% idleness (a theoretical value) implies that
the all cache lines are always off; the corresponding lifetime value (about 12 years)
represents the intrinsic benefit achieved by DVS. The fact that this value is not
infinity (as it would be in the case power gating is used [19]) is because DVS does
not nullify aging but just mitigates it. The figure also shows the interpolation to be
used in our analytical formulation. We found that the cubic function

LT (I) = 3.96 + 4 · I − 7.0 · I2 + 11.1I3 (5.1)

well approximates the simulation data (average error = 0.18%, maximum error =
+1.97%).

In order to express lifetime in terms of cache size, we need first to establish a
relation I(S) between idleness and cache size. Intuitively, a larger cache will have

66

5 – Energy-Optimal Caches with Guaranteed Lifetime

�

�

�

��

��

��

��
��
��
�
�
��
	
�

��

�����
����

��������
���

�

�

�

�� ��� ��� ��� ��� 	�� ���
�� ��� ��� ����

�����������������

Figure 5.2. Lifetime of SRAM cell vs. % Idleness.

higher average idleness (same accesses with more targets available), so I(S) will be
a monotonically increasing function. The actual behavior has to be characterized
by running a cache simulator under different workloads and for different cache sizes.

Figure 5.3 shows the result of the characterization.
As one would expect, the idleness is very low for very small cache sizes, then

it grows quickly and tends to saturate. Conceptually, idleness becomes 100% for
infinite cache sizes. We fitted the curve to a template f(x) = 1 − 1

ax+b . A good fit
is obtained with

I(S) = 1− 1
0.005 · S + 0.92 (5.2)

For cache sizes larger than 32 bytes, the average (maximum) error is 5.6% (8.3%).
By composing the two functions, we can finally get LT (S) by replacing Equation

5.2 into Equation 5.1. Due to the shape of the two curves, the result of LT (S)
curve roughly follows the shape of the I(S) curve: lifetime has a steep increase for
intermediate cache sizes (between 1K and 4K) and then it quickly saturates.

5.2.2.2 Miss Rate

There are many empirical studies that have tried to correlate cache miss rate versus
its size ([38, 39]). A widely accepted model that is relatively accurate over various
cache organizations and different workloads states that miss rate roughly goes as

67

5 – Energy-Optimal Caches with Guaranteed Lifetime

���

���

���

����

����
�	
�������� ����	��

��

���

Figure 5.3. Idleness as a Function of Cache Size.

1√
(x)

. We have therefore characterized our embedded applications to extract the
actual dependency and have fitted the results to a template f(x) = a√

b·x+c , obtaining
the following function:

MR(S) = 3.6√
0.45 · S + 30

(5.3)

Figure 5.4 pictorially shows the simulated data and the fitted curve of Equation
5.3.

If we consider the complement curve of the hit rate, we could recognize some
similitude between the LT (S) and MR(S) curves. This is intuitive since idleness
and miss rate are somehow correlated: remember that we are considering average
idleness. For instance, if idleness is low (as in small caches), very likely the miss
rate will also be high. However, the correlation gets weaker as cache size increases:
idleness has to do with the distribution of accesses, whereas miss rate considers
the specific location of accesses. Therefore, we expect our strategy providing more
benefits for larger caches.

68

5 – Energy-Optimal Caches with Guaranteed Lifetime

���

���

���

���

���

���

	
�����������

�
���������

��

���

Figure 5.4. Miss Rate as a Function of Cache Size.

5.2.2.3 Power

A line consumes static power only for the fraction of time it is used, that is, 1−I(S).
Hence, the static power spent by a cache in “drowsy” mode is:

Pstatic(S) = S · (1− I(S)) · P ′(S) + S · Pidle(S)

where P ′ is the leakage normalized with respect to line size, and Pidle is the
(normalized) leakage in the idle state implemented using DVS. In our technology,
Pidle is not zero and is about one order of magnitude smaller than P ′.

Notice that the model explicitly exposes the dependence of both P ′ and Pidle
(which is a fraction of P ′) on S. This dependence accounts for the fact that a given
cache size implies a specific aspect ratio (rows and columns) of the tags and data
arrays, which affects the capacitance of the interconnects (bit- and word-lines) as
well as the structure of the decoder, the number of MUXes and sense amps. It is
therefore essential not to consider P ′ and Pidle not as constant values.

Dynamic power, conversely, is not affected by the nature of the idle state: it
consists of the sum of the power spent during cache accesses plus the power spent
by the background memory when a miss occurs. Since the cache is used at each
cycle (at least for the instruction fetch), the dynamic power can be expressed as:

Pdynamic(S) = Pcache(S) +MR(S) · Pmiss

Where Pcache is the power spent for accessing the cache, and Pmiss is the power
spent by the lower levels of the memory hierarchy when accessed. Therefore, while

69

5 – Energy-Optimal Caches with Guaranteed Lifetime

exploiting idleness is beneficial for controlling static power, at the same time the
miss rate must be kept under control, in order to avoid an increase of dynamic
power.

However, when we move to consider energy, and thus include the temporal di-
mension in the analysis, the choice of the lifetime target significantly impacts the
overall energy consumption.

Assume a lifetime target T and that the cache becomes unusable at some time
LTcache < T . It is clear that after time T , the miss rate jumps at 100% (no cache),
and each memory access will imply access to a background memory. Although the
cache, once it has become unusable, can now be put into a very low-leakage, the
relative benefit is a marginal compensation against the huge increase dynamic power
consumption.

The total energy spent by the memory during the system operating time T , can
be expressed as:

Etotal = LTcache · (Pstatic + Pdynamic) + (T − LTcache) · Pmiss

Since Pmiss is about two orders of magnitude larger than the power spent by
the cache, it is evident that a long lasting cache (i.e., a cache with a larger LTcache)
will provide larger energy benefits (or, in other words, will be an energy effective
solution for a larger time).

5.3 Experimental Setup
We have assessed the proposed architecture by evaluating a set of applications from
the MediaBench suite [50]. We implemented a cache simulator that evaluates the
miss rate and, for each cache access, estimates the power consumption, leveraging
power models derived from an industrial 45nm design kit provided by STMicroelec-
tronics. The power models also account for the leakage power spent by the cache
lines (in the active and in the low-leakage “drowsy” state). Furthermore, for each
cache miss, the simulator accounts for the energy spent in the background memory
to refill the target line. Finally, the simulator keeps track of the useful idleness of
each line, in order to evaluate the cache lifetime as depicted in Section 5.2.2.1.

The following tables report the average power of the whole memory hierarchy
(cache and background memory), both static and dynamic, normalized to the power
required to access a 8kB cache. Lifetime values are expressed in years, while miss
rates in percentages.

In our analysis, we considered the 1kB cache as the smallest unit that can be
instantiated, since the preliminary considerations drawn in Section 5.2.2 indicate
that too small caches incur in too large overhead to benefit from our strategy.

70

5 – Energy-Optimal Caches with Guaranteed Lifetime

5.3.1 Power and Lifetime Results
In the first experiment, we compared the non-redundant, power managed caches,
with and without dynamic re-indexing, against the proposed redundant architectures
where the memory array is split in two or in four blocks. The various configurations
are evaluated in terms of power consumption and lifetime.

Cache No redundancy 2-blocks 4-blocks
Size Porig LTorig LTdyn P LT P LT
1 kB 10.12 5.42 8.87 – – – –
2 kB 7.63 5.90 10.53 10.12 17.75 – –
4 kB 5.76 6.05 11.29 7.63 21.06 10.12 35.50
8 kB 4.34 6.16 11.70 5.76 22.57 7.63 42.12
16 kB 3.21 6.34 11.91 4.34 23.41 5.76 45.14
32 kB 2.66 6.83 12.00 3.21 23.82 4.34 46.81

Table 5.1. Total Power (Normalized) of the Memory Hierarchy and Cache Lifetime.

Results reported in Table 5.1 show that while the dynamic re-indexing allows a
significant extension of the cache lifetime, still cannot guarantee much more than
about 12 years of cache operating time (for the largest cache considered), that is quite
near to the upper bound shown in Figure 5.2. If the required lifetime is longer, the
redundant architecture can break this barrier and offer a substantial improvement.
A 2-block architecture, can reach about 24 years of lifetime, and extending to a
4-block cache a time horizon longer than 40 years, even for relatively small caches.

No redundancy 2-blocks 4-blocks
Size Porig Pdyn MR P MR P MR
1 kB 37.78 27.81 51.18 – – – –
2 kB 35.41 21.28 38.89 10.12 17.48 – –
4 kB 34.22 17.57 31.80 7.63 12.96 10.12 17.48
8 kB 33.27 15.13 27.10 5.76 9.36 7.63 12.96
16 kB 32.20 13.56 24.02 4.34 6.57 5.76 9.36
32 kB 30.30 12.82 22.43 3.21 4.29 4.34 6.57

Table 5.2. Total Power (Normalized) of the Memory Hierarchy and
Average Miss Rate for T = 15.

Power consumption is clearly larger in redundant architectures; using a smaller
“active” set of memory locations implies a larger miss rate. If we measure power
over the actual target lifetime of the system, the power balance (initially in favor of
the regular architecture) eventually becomes in favor of the redundant one. In other
words, there is a power penalty only until the time during which the non-redundant

71

5 – Energy-Optimal Caches with Guaranteed Lifetime

No redundancy 2-blocks 4-blocks
Size Porig Pdyn MR P MR P MR
1 kB 44.04 38.06 70.71 – – – –
2 kB 42.62 34.14 63.34 22.69 41.42 – –
4 kB 41.91 31.91 59.08 14.85 26.67 10.12 17.48
8 kB 41.34 30.45 56.26 10.39 18.17 7.63 12.96
16 kB 40.69 29.51 54.41 7.47 12.52 5.76 9.36
32 kB 39.56 29.07 53.46 5.59 8.83 4.34 6.57

Table 5.3. Total Power (Normalized) of the Memory Hierarchy and
Average Miss Rate for T = 25.

cache is working: after it becomes unusable, the redundant cache becomes also power
efficient. This effect can be noticed In Tables 5.2 and 5.3, reporting power figures
for a T = 15 and T = 20, respectively.

Results show how the initial (up to regular cache duration) power penalties are
compensated by the benefits it provides in the excess operating time. In this second
phase, in fact, the non-redundant caches are forcing a 100% miss rate, which implies
a strong increment of the power consumption, because each memory access must be
resolved by the background memory. Conversely, the redundant caches are still fully
operative and thus they provide a relevant power benefit over the whole time span:
if compared with a dynamic re-indexed cache, a 2-bank cache provides a benefit up
to 4x for a 15 years operating time and above 5x if such a time is 25 years. Notice,
also, that a dynamic re-indexed cache is already the result of a lifetime-enhancing
strategy. If we compare against a standard “drowsy” cache, the power benefits
increase up to more that 9x (T = 25) and 7x (T = 15) respectively.

Miss rate values in the tables are average miss rates over time, that is, MRorig ·
LTcache+100%·(T−LTcache), whereMRorig is the miss rate of the regular cache. This
explains why the values for the non-redundant caches are quite large and increase
as T increases.

Notice also that the values of P and MR for the 4-block architecture are the
same in both tables. This is because the corresponding lifetimes (last column of
Table 5.3) are larger than T = 25, thus these caches are still active at T .

Finally, Figure 5.5 illustrates the trend of the power saving as a function of the
lifetime target T , for a reference (dynamically indexed) cache with a baseline lifetime
of about 12 years.

The plot confirms the results shown in the tables, and also shows that after the
redundant cache becomes unusable (the two gray arrows in the plot), the power
saving starts dropping and for very long time horizon it asymptotically tends to
reach the level of the regular cache.

72

5 – Energy-Optimal Caches with Guaranteed Lifetime

�

��

��

��

��

���

�
�
�
�
��
�
�
	

�
�
�
��
�
�

���

���

���

���

�

� �� �� �� ��

�
�
�
�
��
�
�
	

�
�
�
��
�
�

�
���
���

������
�������

�������

Figure 5.5. Power Saving vs. Lifetime Target (32 kB Cache).

73

Chapter 6

Dynamically re-sizable and
re-configurable caches

6.1 Overview

In past, several works have addressed the issue of NBTI-induced aging by control-
ling the design variables that regulate the aging process and in particular the logic
values [8, 54]. Such solutions are not feasible for SRAM memories due to their
symmetric structure: an SRAM cell ages regardless of the value being stored in
it. In alternative, our partitioning-based strategies discussed in previous chapter
coupled with power management techniques proved effective to reduce aging effect
in SRAM memories. We proposed a multi-bank architecture that allows different
cache sub-blocks to age at different rates thus providing significant improvement in
both energy and aging. However the focus of that work was on aging and energy
optimization, while performance of the cache decreases with time due to the fact
that first-dying partition is also the one with maximum accesses. So as soon as a
partition dies, it causes a sudden increase in the miss rate of the cache and thus
reduces its performance significantly.

In this work, we have adopted a new approach to tackle the issue of cache per-
formance degradation which is based on dynamically re-sizable cache (DRC) [53]
and on the cache partitioning approach (PLT) [22]. The solution proposed in [53]
though provides a good solution for energy reduction but for aging it is only par-
tially effective. Aging is a worst-case metric and lifetime of the cache depends on
the line with least idleness. And in this approach, it is possible that a specific line is
continuously in use and therefore re-sizing does not have any effect on aging. More-
over, this approach requires continuous tracking of the instruction working set and
corresponding cache usage in order to adjust cache size dynamically. On the other
hand, cache partitioning approach chapter 3 provides excellent solution to reduce

75

6 – Dynamically re-sizable and re-configurable caches

aging and energy but in this case, performance of the cache reduces significantly as
discussed before.

In this work, we specifically target application-specific systems to concurrently
improve aging, energy and performance of direct-mapped caches. Our idea is based
on the observation that cache idleness profile always exhibits an uneven distribution
of idleness. Some lines are heavily accessed and therefore age much more rapidly as
compared to a bigger portion of the cache having fewer accesses and thus less prone to
aging effect. So in our approach when some portion of the cache is dead, we discard
that specific block and re-size the cache to utilize the remaining healthy portion
of the cache. Unlike the original DRC, we do not require a continuous analysis of
cache workload and repetitively adjust its size; cache works normally until a line
is dead which can be detected easily using a sensor proposed in [47] and at that
point the cache will be re-sized by discarding the dead cache block. Consequently,
the lifetime of the cache consists of two phases. In the first phase, cache works
normally with its full potential until a line becomes unreliable which will also mark
the end of its original lifetime. Then in second phase, the cache is reconfigured to
work as a smaller size cache which is done by remapping the addresses from memory
to cache lines. Remapping the addresses will redirect almost all memory accesses
back to cache whereas all of them were causing cache misses in the work of [22].
This implies that there will only be a marginal increase in miss rate whereas in
previous techniques, miss rate rises exponentially when a partition dies. On average
our DRC approach limits the performance degradation to 0.4x as compared to PLT
where average performance degradation was 7x.

6.2 Dynamically resizable cache architecture
The Dynamically Resizable Cache (DRC) [53] is an architecture originally devised
for instruction caches in which the cache dynamically resizes itself to the size required
during application execution and turns off the unused portion of the cache in order
to suppress leakage energy.

In this architecture, the cache resizing process occurs in power-of-two: upon up-
sizing/downsizing, the cache size changes by a factor of two. Re-sizing the cache
requires masking of the index bits of the address needed for a given cache size as
shown in Figure 6.1. To monitor cache performance an application’s execution time
is divided into fixed-length intervals. At the end of each interval, miss count is
compared to a preset value (miss bound) and cache size is determined accordingly.
When downsizing (cache performance below threshold) the number of index bits is
decreased by one (half the cache size); when upsizing (cache performance beyond
threshold) the number of index bits is increased by one (double the cache size).
Obviously, the increase/decrease in the number of index bits must be matched by

76

6 – Dynamically re-sizable and re-configurable caches

Figure 6.1. Dynamically Resizable Cache Architecture [53].

a corresponding decrease/increase of the tag bits (not shown in the architecture)
to guarantee that cache blocks can be retrieved. This implies some dynamic en-
abling/disabling features of tag bits in the cache.

The main objective in the architecture of [53] is to reduce leakage energy which
comes as a tradeoff with cache performance. Next section will show how to exploit
the DRC idea to reduce aging while preserving performance (which will ultimately
provide energy reduction).

6.3 DRC for aging and performance Optimization
In our architecture, we have combined the concept of DRC along with cache par-
titioning to develop a new technique for improved cache performance along with
reduction in both energy and aging. We used a simplified variant of the DRC in
which the cache is re-sized only once in its lifetime, and only in one direction, i.e.,
downsized only. The resizing decision is taken based on the aging of the cache it-
self and it is not performance driven as in DRC. We do not need then to monitor
application behavior nor we have to compensate by miss rate.

Using DRC for aging reduction requires then a much simpler management. At
the end of its normal lifetime, i.e., as soon as the first unit of access (a line) fails,
instead of discarding whole cache, we only discard that specific portion (block) of
the cache containing that line. This is the basic principle of our partitioned cache for

77

6 – Dynamically re-sizable and re-configurable caches

aging, elaborated in Chapter 3. The difference between the traditional partitioned
architectures and our modified DRC lies in how the “dead” block is managed. In
the partitioned approach the dead portion of the cache is marked as invalid, with
the result that subsequent accesses to lines in that block will systematically result
into a miss. This is why previous approaches of [22, 52] suffer from a significant
deterioration of performance after the first block fails.

In the proposed architecture, conversely, once a block becomes unusable, we
resize the cache according to the DRC principle and then cache is flushed and re-
configured to work as a smaller size cache. The benefits of this architecture for
performance are evident. Since cache lines that age first are also the ones accessed
the most, once the block containing lines that age quickly becomes unusable (because
marked as invalid) will result in a large number of misses. Conversely, if we resize
the cache, the application will just have a smaller (half the size) active set of lines.

An important consideration in this analysis is the fact that all cache lines will
have degraded somehow (depending on the cache access pattern) during the first
phase of their operation. In order to obtain the precise amount of aging it is therefore
necessary to carefully calculate the degradation of each memory line during first
phase and use this info as an initial level of aging for the second phase of cache
operation.

6.3.1 DRC Architecture
Consider a direct-mapped cache with L = 2n lines (l0, . . . , lL−1), where n is the
number of the index bits of the cache address. we consider the two halves of the
cache as 2 blocks B0 and B1 of equal sizes though physically the cache structure is
monolithic without any partition (Figure 6.2). The only feature that is partition-
oriented is that the power management occurs at the block (half cache) granularity.

In order to accurately monitor aging, an aging sensor is required for each line.
However due to our strategy discussed in section 6.3.2, we only need to monitor the
aging of second block B1. We use an array of L/2 sensors, one for each line of the
second block having same address as that of the cache line. In this way a sensor will
be accessed for the same number of times as the cache line. Moreover, since we are
interested to the aging of the whole block rather than that of single lines, all sensors
outputs are OR-ed and therefore as soon as one of these sensors triggers indicating
a faulty line, whole cache block will be disabled and cache will be reset to operate
as half size cache (Figure 6.3).

We use power gating [42] to turn the unused block into a standby state (although
any other implementation of the standby state is possible). Implementation of this
technique can be seen in Figure 6.2 where we have used a sleep transistor. When a
signal is received from the sensor block, the sleep transistor is turned off and thus
all cells of the block are disconnected from ground.

78

6 – Dynamically re-sizable and re-configurable caches

Figure 6.2. Adaptation for Aging of a 2-Block DRC architecture.

���

���

������

������	
��������

��������

��	
�	

��
�����

���	���

��

��

�

�
�
��
��
�
�
��

��
�
��
�
�
�

�

�

� ����

����

Figure 6.3. Internals of the Sensor Block (SB).

79

6 – Dynamically re-sizable and re-configurable caches

The block SC in the Figure 6.3 denotes the aging sensor that monitors the aging
of each individual line. A wide range of sensors are available in literature to track
NBTI-induced aging but only few dedicated solutions are suitable to measure the
aging of SRAM cells. Implementation of the sensor proposed in [47] perfectly fits
our need as it is associated to a unit of access and therefore can easily be embedded
into an existing memory array.

Finally, the control block (CB), upon receiving a signal from the sensors to
indicate that a block has become unusable, is responsible for the masking of the
address into an address of size n− 1.

6.3.2 Architectural Variants

To keep things simple, we have considered a two partition case here where the
lifetime of each block is determined by the line with least idleness. Moreover to
avoid complications of address remapping in second phase, we only reuse the lower
half of the cache for DRC method. However, it is obviously not possible in every
case to have worst case idleness in second half and it can exist in either partition. If
worst case idleness exist in lower partition then whole memory needs to be discarded
when first block dies. To avoid this situation and get maximum advantage, the
knowledge of the idleness profile can be exploited. We have experimented with a
selective swap strategy to move heavily accessed lines to second half of the cache
which can easily be implemented by modifying the cache indexing function for a
few, selected addresses. In this way we obtain reducible cache in all cases which
provides significant improvement not only in miss rate but also in energy and aging
results.

We have used a simple k-swap algorithm to repeatedly swap the address with
minimum idleness in the first block with maximum idleness address of the second
half. The number of swaps depends on the proportional benefit obtained by each
swap and will be done only if beneficial in terms of average miss rate (AMR) and
Effective lifetime (ELT).

The operation of k-swap algorithm is quite simple and is explained by the fol-
lowing pseudo-code which is self-explanatory: IL and IH are the idleness profiles
of two cache partitions (lower half and higher half respectively).
1: k-Swap (IL, IH)
2: for l = 1 . . . k do
3: i⇐ index of address with l-th minimum idleness in the first block.
4: j = index of address with l-th maximum idleness in the second block.
5: if (IL[i] < IH[j]) then
6: SWAP(IL[i], IH[j])
7: end if

80

6 – Dynamically re-sizable and re-configurable caches

8: end for
9: return

6.3.3 Metrics
In order to do a fair comparison against previous works, we need proper metrics for
performance and aging. To this purpose, we utilize the concept presented in [22, 52]
for Average Miss Rate (AMR), which measures the performance of the cache by
calculating average level of service offered over time and Effective LifeTime (ELT)
defined as the product of lifetime and size of a memory block. It conceptually
measures for how much time a memory block of a given size can be used.

Consider an idleness profile I = {i1, . . . , iL} of a cache with L lines that can be
partitioned into 2 blocks B0 and B1. The lifetime of a block is determined by the
line with least idleness and the ELT can be expressed in this case as:

ELT = L

2 (LT (min0) + LT (min1))

where mini represents the line with minimum idleness of block i.

Figure 6.4. Average Miss Rate.

AMR is an average metric, measured as the total number of misses over a refer-
ence time interval. The reference interval is the lifetime of the last-dying partition
(B0); since this values differs in general between PLT and DRC, we choose the largest
of the two LTmax. Figure 6.4 shows an example of the AMR concept for three con-
figurations: regular cache with no partitioning nor aging management (Orig), the
non-uniform multi-bank architecture [22] PLT, and our proposed strategy DRC.

81

6 – Dynamically re-sizable and re-configurable caches

In regular cache, all L lines are usable reliably for an amount of time equal to
LTorig, when the first line dies. Being the cache monolithic, from that point on the
cache experiences 100% miss rate (solid line).

In PLT and DRC approaches, one of the two blocks will have the same lifetime
as original cache and will die at LTorig, but the second half of the memory will keep
functioning until LTPLT and LTDRC respectively. In the case of PLT, after the first
half dies, miss rate degrades significantly due to repeated misses in the second half
(dash-dot line). Conversely our DRC technique provides a more sophisticated solu-
tion: reconfiguration of cache will enable the access to frequent addresses through
cache again and thus maintains the performance of the cache with negligible degra-
dation (dashed line).

On the plot, AMR is equivalent to area below the curves divided by the lifetime
LTmax, which in this case is LTPLT . Obviously, smaller values of AMR are better
and we can clearly see the advantage obtained through DRC by looking at red dotted
line.

6.4 Simulation Results

Figure 6.5. Average miss rate of 8 KB Cache.

Figures 6.5 and 6.6 show a comparison of the results obtained by our proposed

82

6 – Dynamically re-sizable and re-configurable caches

architecture against previous work of [22] for an 8kB cache averaged over all bench-
marks. The plot shows AMR and lifetime improvement over a regular, power-
managed cache; with reference to [22] data refer to the case of M=2 blocks.

Figure 6.6. Lifetime Improvement of 8 KB Cache.

Data is reported as a function of k as discussed in section 6.3.2, where k denotes
the number of swapped addresses. From figure 6.5 and 6.6, we can notice that the
DRC strategy alone (even without swap, k = 0) improves AMR significantly and
provides appreciable improvement in lifetime. AMR is only 8% in DRC as compared
to 23% in case of PLT. Moreover, lifetime extension is almost equivalent to PLT in
this case. Furthermore, we can also observe from these plots that in our strategy
the AMR remains almost constant for all values of k while it grows quite rapidly in
case of PLT due to the fact that lines with least idleness are the ones with maximum
accesses.

In other terms, the PLT architecture, in order to extend lifetime beyond the
possibilities of DRC (k ≥ 4), it has to heavily sacrifice performance. For instance,
for k = 16 PLT achieves 80% ELT improvement, at the price of a 43% AMR.

By analyzing the results obtained by selective swap strategy with different values
of k, we see that even few swaps are sufficient to obtain the desired result, infact best
trade-off is obtained for k = 1 and we will use this case in the rest of this section

83

6 – Dynamically re-sizable and re-configurable caches

Figure 6.7. Average miss rate of 8 KB Cache.

to obtain other results. We can better appreciate the benefit obtained through our
technique by looking at figure 6.7 which shows a trace-by-trace result depicting AMR
over the lifetime of a cache with 8KB cache size and k = 1.

Regarding energy reduction, our architecture is a modification of a traditional
power-managed cache, so energy is saved due to the exploitation of idleness which
is equivalent to energy saved by a conventional power-managed cache architecture
without any aging management. The second component is due to the energy saved
thanks to a reduced number of misses over time. It can be roughly quantified as
the AMR after the death of the first line (LTorig in Figure 6.4) multiplied by the
cost of accessing the cache. This product accounts for the accesses to the next level
of hierarchy that are avoided thanks to the fact that the cache is still active. The
savings for this component are therefore highly correlated to the AMR figures.

To have a better view of the advantage obtained by our strategy, we have shown
in figure 6.8 miss rate profile of two applications that demonstrates the change
in miss rate when a partition dies. Selected applications show the extreme cases
corresponding to minimum (adpcm.enc, about 10%) and maximum (say, about
90%) change in miss rate of an application after failing of the first line. We can
clearly see that in case of DRC the change in miss rate can be significantly smoothed
out thanks to the effective re-distribution of addresses resulting from cache resizing.

For the sake of completeness, we have also reported detailed results in table 6.1
and table 6.2 for the case of 8KB and 16KB cache (see next page). First three

84

6 – Dynamically re-sizable and re-configurable caches

Figure 6.8. Miss Rate Profile

Orig MR PLT MR DRC MR Orig LT PLT DRC LT PLT
ELT
Impr[%]

DRC
ELT
Impr[%]

adpcm.dec 0.409 0.071 0.015 3.39 5.65 5.59 33.33 32.34
adpcm.enc 0.359 0.046 0.011 4.96 6.89 7.65 19.49 27.18
cjpeg 0.576 0.383 0.061 8.19 18.36 12.95 62.13 29.07
CRC32 0.351 0.180 0.011 4.80 5.67 7.32 9.04 26.25
dijkstra 0.359 0.108 0.039 5.54 6.35 8.38 7.31 25.69
djpeg 0.389 0.259 0.081 10.32 13.35 15.62 14.66 25.64
fft_1 0.436 0.287 0.061 11.60 19.60 17.66 34.45 26.09
fft_2 0.390 0.268 0.066 12.79 19.92 19.45 27.85 26.02
gsmd 0.437 0.161 0.011 4.94 8.70 7.97 38.10 30.64
gsme 0.670 0.472 0.013 6.25 18.80 10.15 100.36 31.16
ispell 0.411 0.338 0.124 11.97 16.83 18.02 20.31 25.29
lame 0.374 0.240 0.066 16.24 21.02 24.60 14.71 25.75
mad 0.362 0.223 0.091 18.32 18.63 26.53 0.86 22.40
rijndael_i 0.565 0.383 0.200 8.11 15.74 12.79 47.05 28.90
rijndael_o 0.613 0.382 0.204 7.50 16.02 11.66 56.82 27.73
say 0.650 0.599 0.085 8.76 23.03 13.81 81.43 28.84
search 0.606 0.480 0.127 7.71 17.37 12.54 62.57 31.31
sha 0.339 0.106 0.010 8.53 8.53 12.82 0.00 25.19
tiff2bw 0.460 0.241 0.194 6.87 6.87 10.49 0.03 26.41
Average 0.461 0.275 0.077 33.18 27.47

Table 6.1. Detailed Results for 8kB cache and k=1

85

6 – Dynamically re-sizable and re-configurable caches

columns show a comparison of Average Miss rate among original, PLT and DRC
architectures. Although there is variation across traces but the benefit in case of
DRC is always sizable. Next three columns contain the absolute lifetime in all
three cases and last two columns depicts the ELT improvement for PLT and DRC
strategies over a simple power managed cache lifetime.

Orig MR PLT MR DRC MR Orig LT PLT DRC LT PLT
ELT
Impr[%]

DRC
ELT
Impr[%]

adpcm.dec 0.468 0.063 0.007 3.62 6.81 5.85 43.99 30.72
adpcm.enc 0.354 0.034 0.004 5.63 8.24 8.72 23.18 27.44
cjpeg 0.572 0.433 0.057 9.11 20.40 13.89 61.97 26.24
CRC32 0.347 0.145 0.011 5.47 6.52 8.30 9.61 25.91
dijkstra 0.390 0.136 0.034 5.42 7.65 8.71 20.62 30.39
djpeg 0.384 0.222 0.071 11.12 14.91 16.97 17.02 26.30
fft_1 0.418 0.243 0.045 12.16 20.48 18.64 34.17 26.60
fft_2 0.362 0.188 0.046 13.97 21.45 20.94 26.78 24.95
gsmd 0.444 0.322 0.009 5.54 9.94 8.63 39.63 27.81
gsme 0.657 0.272 0.012 6.29 18.23 10.13 94.85 30.49
ispell 0.443 0.322 0.112 12.45 20.31 19.11 31.60 26.77
lame 0.353 0.176 0.057 17.40 18.26 25.86 2.47 24.32
mad 0.364 0.205 0.086 19.63 20.08 28.73 1.14 23.18
rijndael_i 0.494 0.251 0.168 9.16 16.15 13.88 38.13 25.74
rijndael_o 0.578 0.428 0.173 8.42 17.81 12.83 55.73 26.15
say 0.405 0.139 0.064 8.42 10.66 13.43 13.36 29.81
search 0.631 0.517 0.126 7.68 18.54 12.30 70.69 30.04
sha 0.330 0.056 0.007 8.48 8.48 12.62 0.00 24.45
tiff2bw 0.399 0.201 0.121 5.91 5.92 9.25 0.04 28.24
Average 0.442 0.229 0.064 30.79 27.13

Table 6.2. Detailed Results for 16kB cache and k=1

86

Chapter 7

Conclusion

We have seen that with continuous aggressive technology scaling, it is increasingly
difficult to simultaneously provide the required performance, reduce energy con-
sumption, control power dissipation, and maintain reliability. The challenge is com-
plicated by the fact that power and reliability are known to be intrinsically conflict-
ing: variability is usually mitigated by means of redundant architectures which are
prone to consume more power. Even if static power and variability are not new in
the EDA community, and various options for their independent management are al-
ready available, design techniques which aim at a simultaneous energy minimization
and variability compensation are still rare.

In this work, we did an in-depth analysis of aging phenomena and assesses the
possibility of exploiting low-power techniques for concurrent leakage, aging and per-
formance optimization. More specifically, this work focused on cache memories.
We introduced a novel approach based on partitioned cache architectures that al-
lows different cache blocks to age at different rate, thus implementing a graceful
degradation mechanism that provides significant extension of lifetime, coupled with
traditional energy benefits.

A coarse-grain implementation of the proposed technique provides a purely ar-
chitectural solution with an aging-driven algorithm to obtain maximum energy and
aging reductions without affecting or changing the internals of the cache. On the
other hand, fine-grain partitioning strategy extend the aging benefits to its maxi-
mum limit with single cache line as a unit of power management to implement a
more sophisticated and graceful degradation mechanism that provides a size-able
reduction both in aging and energy. Although in this technique, we need to sacrifice
the architectural property of the coarse-grain approach but it provides maximum
exploitation of cache with the use of proper power management structures, providing
a better control of the leakage/aging trade-off.

We have also proposed a redundant cache architecture that allows to achieve

87

7 – Conclusion

energy-optimal cache configurations while meeting a given lifetime target. The pro-
posed scheme allows to overcome the limit resulting from non-redundant schemes
that are based on redistribution of addresses, and exploits the fact that the draw-
backs resulting from effectively using a smaller cache (higher power and higher miss
rate) are respectively transformed into a benefit (power) or made negligible (miss
rate). For large lifetime targets (15 and 25 years), our redundant architectures can
reduce the energy consumed by the memory hierarchy by a factor from 3x to 10x
(for 15 years), and from 2x to 8x (for 25 years).

And finally we presented a dynamically re-sizable and re-configurable cache ar-
chitecture with virtual partitioning that provides a perfect solution for aging mit-
igation and improved miss rate with minimal hardware overhead. The proposed
scheme exploits cache idleness in a smarter way to take advantage of those cache
lines which are rarely used and can be re-utilized for concurrent aging and perfor-
mance improvement. In addition to basic algorithm, we have exploited selective
swap strategy that selectively swaps addresses among different blocks to get better
aging and performance results.

By employing our DRC strategy, average miss rate of an 8KB cache reduces from
46% to 8% averaged over all benchmarks in contrast to PLT where AMR goes down
to 28% only. A similar trend is shown by 16KB cache.

88

Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics
Magazine, vol. 38, pp. 114-117, 1965.

[2] (2007) International technology roadmap for semiconductors. [Online]. Available:
http://www.itrs.net/Links/2007ITRS/Home2007.htm

[3] Research directions at NeCRL. [Online]. Available:
http://userwww.sfsu.edu/necrc/#top

[4] Borkar, S., “Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation,” Micro, IEEE , vol.25, no.6,
pp.10,16, Nov.-Dec. 2005

[5] M.A.Alam, “Reliability- and process-variation aware design of integrated cir-
cuits,” Microelectronics Reliability, Vol. 48, No. 8, August 2008, pp. 1114-1122.

[6] S. Nassif, K. Bernstein, D. Frank, A. Gattiker, W. Haensch, B. Ji, E. Nowak,
D. Pearson, and N. Rohrer, “High Performance CMOS Variability in the 65nm
Regime and Beyond,” IEDM 2007: International Electron Devices Meeting, pp.
569–571, Dec. 2007.

[7] R. Vattikonda, W. Wang, Yu Cao, “Modeling and minimization of PMOS NBTI
effect for robust nanometer design,” DAC’06: Proceedings of the 43rd Annual
Design Automation Conference, pp. 1047-1052, 2006.

[8] Kumar, S.V.; Kim, C.H.; Sapatnekar, S.S., “NBTI-Aware Synthesis of Digital
Circuits,” Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE ,
vol., no., pp.370,375, 4-8 June 2007.

[9] S.V. Kumar, K.H. Kim, S.S Sapatnekar, “Impact of NBTI on SRAM read sta-
bility and design for reliability,” ISQED’06, March 2006, pp. 213–218.

[10] K. Kang, M. Alam, and K. Roy, “Characterization of nbti induced temporal
performance degradation in nano-scale sram array using iddq,” in Test Confer-
ence, 2007. ITC 2007. IEEE International, Oct. 2007, pp. 1-10.

[11] V. Huard, C. Parthasarathy, C. Guerin, T. Valentin, E. Pion, M. Mammasse,
N. Planes, and L. Camus, “Nbti degradation: From transistor to sram arrays,”
in Reliability Physics Symposium, 2008. IRPS 2008. IEEE International, May
2008, pp. 289-300.

89

Bibliography

[12] K.Kang, H. Kufluoglu, K. Roy, M.A. Alam, “Impact of Negative-Bias Tem-
perature Instability in Nanoscale SRAM Array: Modeling and Analysis,” IEEE
Transactions on CAD, Vol. 26, No. 10, pp. 1770-1781, Oct. 2008.

[13] KIMIZUKA N., YAMAMOTO, T. MOGAMI, T. YAMAGUCHI, K. IMAI, K.
HORIUCHI, “The Impact of bias temperature instability for direct tunneling
ultra-thin gate oxide on MOSFET scaling”, Symposium on VLSI Technology,
1999, pp. 73-74

[14] W.Wang, S. Yang, and Y. Cao, “Node criticality computation for circuit timing
analysis and optimization under nbti effect,” in Quality Electronic Design, 2008.
ISQED 2008. 9th International Symposium on, Mar. 2008, pp. 763 -768.

[15] S. V. Kumar, et.al. “An analytical model for negative bias temperature insta-
bility,” ICCAD’06: ACM/IEEE International Conference on CAD, pp. 493–496,
November 2006.

[16] A. Calimera, M. Loghi, E. Macii, M. Poncino, “Aging Effects of Leakage Op-
timizations for Caches,” GLSVLSI’10: IEEE Great Lakes Symposium on VLSI,
pp. 95–98, May 2010.

[17] L. Zhang, R. P. Dick, “Scheduled Voltage Scaling for Increasing Lifetime in the
Presence of NBTI,” ASPDAC’09, pp. 492–497, Jan. 2009.

[18] A. Calimera, E. Macii, M. Poncino, "NBTI-Aware Power Gating for Concurrent
Leakage and Aging Optimization", ISLPED ’09: International Symposium on
Low power Electronics and Design, pp. 127-132, August 2009.

[19] A. Calimera, M. Loghi, E. Macii, M. Poncino,
[20] A. Ricketts, J. Singh., K. Ramakrishnan, N. Vijaykrishnan, D. K. Pradhan.

“Investigating the Impact of NBTI on Different Power Saving Cache Strategies,”
DATE’10: Design, Automation and Test in Europe, pp. 592–597, March 2010.

[21] A. Calimera, M. Loghi, E. Macii, M. Poncino “Partitioned Cache Architectures
for Reduced NBTI-Induced Aging,” DATE’11: Design, Automation and Test in
Europe, pp. 938–943, March 2011.

[22] H. Mahmood, M. Loghi, E. Macii, M. Poncino, “Application-Specific Memory
Partitioning for Joint Energy and Lifetime Optimization,” DATE’12: Design,
Automation and Test in Europe, March 2012, pp. 364–369.

[23] Hu C. -K, Gignac L., Rosenberg R., Liniger E., Rubino J., Sambucetti C.,
Domenicucci A., Chen X., Stamper A.K., “Reduced electromigration of Cu
wires by surface coating,” Applied Physics Letters, vol.81, no.10, September 2002,
pp.1782–1784.

[24] Srinivasan J., Adve S.V., Bose P., Rivers J.A., “The impact of technology
scaling on lifetime reliability,” International Conference on Dependable Systems
and Networks, June 2004, pp.177–186.

[25] Strong AW, Wu EY, Vollertsen R-P, Sune J, Rosa GL, “Reliability wearout
mechanisms in advanced CMOS technologies”, Wiley, London 2009

90

Bibliography

[26] L. Benini, L. Macchiarulo, A. Macii, E. Macii, M. Poncino, “Layout-Driven
Memory Synthesis for Embedded Systems-on-Chip,” IEEE Transactions on
VLSI Systems, Vol. 10, No. 2, pp. 96-105, April 2002.

[27] O. Ozturk, M. Kandemir, “Nonuniform Banking for Reducing Memory Energy
Consumption,” DATE’05: Design, Automation and Test in Europe, pp. 814–819,
Mar. 2005.

[28] M. Loghi, O. Golubeva, E. Macii, M. Poncino, “Architectural Leakage Power
Minimization of Scratchpad Memories by Application-Driven Subbanking,”
IEEE Transactions on Computers, Vol. 59, No. 7, pp. 891-904, July 2010.

[29] G. Chen, M. Li, C. Ang, J. Zheng, and D. Kwong, “Dynamic nbti of p-mos
transistors and its impact on mosfet scaling,” Electron Device Letters, IEEE,
vol. 23, no. 12, pp. 734-736, Dec. 2002.

[30] Paul B.C., Kunhyuk Kang, Kufluoglu H., Alam M.A., Roy K., “Impact of
NBTI on the temporal performance degradation of digital circuits,” Electron
Device Letters, IEEE, vol.26, no.8, pp.560-562, Aug. 2005

[31] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predictive
modeling of the nbti effect for reliable design,” in CICC’06: IEEE Conference
on Custom Integrated Circuits, Sep. 2006, pp. 189 -192.

[32] e. a. W. Wang, “Compact modeling and simulation of circuit reliability for 65-
nm cmos technology,” IEEE Transactions on Device and Materials Reliability,
vol. 7, no. 4, pp. 509-517, 2007.

[33] S. Mahapatra, D. Saha, D. Varghese, and P. Kumar, “On the generation and
recovery of interface traps in mosfets subjected to nbti, fn, and hci stress,” IEEE
Transactions on Electron Devices, vol. 53, no. 7, pp. 1583-1592, Jul. 2006.

[34] Y. Kunitake, T. Sato, H. Yasuura, “A case study of Short Term Cell-Flipping
technique for mitigating NBTI degradation on cache,” ISQED’10, : International
Symposium on Quality Electronic Design, pp. 660–666, March 2010.

[35] J. Shin, V. Zyuban, P. Bose, and T. M. Pinkston, “A proactive wearout recovery
approach for exploiting microarchitectural redundancy to extend cache SRAM
lifetime,” in Proceedings of International Symposium on Computer Architecture,
2008, pp. 353–362.

[36] T. Siddiqua, S. Gurumurthi, “Recovery Boosting: A Technique to Enhance
NBTI Recovery in SRAM Arrays,” ISVLSI’10: IEEE Annual Symposium on
VLSI, July 2010.

[37] J. Abella, X. Vera, O. Unsal and A. González, “NBTI-Resilient Memory Cells
with NAND Gates for Highly-Ported Structures”, Workshop on Dependable and
Secure Nanocomputing, June 2007.

[38] J. Pal Singh, H. S. Stone , D. F. Thiébaut, “A Model of Workloads and its Use
in Miss-Rate Prediction for Fully Associative Caches”, IEEE Transactions on
Computers, vol .41 no. 7, pp. 811-825, July 1992.

91

Bibliography

[39] A. Hartstein, V. Srinivasan, T. R. Puzak, P. G. Emma, “Cache miss behavior:
is it
√

2?” 3rd conference on Computing frontiers, pp. 313–320, 2006.
[40] A. Calimera, A. Macii, E. Macii, M. Poncino, “Design Techniques and Archi-

tectures for Low-Leakage SRAMs”, IEEE Transactions on Circuits and Systems
I, Vol. 59, No. 12, September 2012, pp. 1992-2007.

[41] A. Calimera, M. Loghi, E. Macii, M. Poncino, “Analysis of NBTI-induced SNM
degradation in power-gated SRAM cells,” ISCAS’10: International Symposium
on Circuits and Systems, pp. 785–788, May 2010.

[42] Powell, M.; Se-Hyun Yang; Falsafi, B.; Roy, K.; Vijaykumar, T.N., “Gated-Vdd:
A Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memories,”
ISLPED’00: International Symposium on Low power Electronics and Design,
July 2000, pp. 90–95.

[43] K. Flautner, et al., N. Kim, S. Martin, D. Blaauw, T. Mudge, “Drowsy caches:
Simple techniques for reducing leakage power,” ISCA’02: International Sympo-
sium on Computer Architecture, May 2002, pp. 148–157.

[44] E. Karl, P. Singh, D. Blauuw, D. Sylvester, “Compact In-Situ Sensors for Mea-
suring Negative Bias Temperature Instability Effect and Oxide Degradation,”
ISSCC’08: IEEE International Solid-State Circuits Conference, pp. 408–410,
February 2008.

[45] A. Cabe, et al., “Small Embeddable NBTI Sensors (SENS) for Tracking On-
Chip Performance Decay,” ISQED’09: , International Symposium on Quality of
Electronic Design, March 2009. pp. 1–6.

[46] J. Keane, T.-H. Kim; C. Kim, “An On-Chip NBTI Sensor for Measuring pMOS
Threshold Voltage Degradation,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems Vol. 18, No. 6, June 2010 , pp. 947–956.

[47] Qi, J., J. Wang, B. H. Calhoun, M. Stan “SRAM-based NBTI/PBTI sensor
system design,” DAC-47 : 47th Design Automation Conference, June 2010, pp.
48.1–48.4.

[48] A. Ceratti, T. Copetti, L. Bolzani, F. Vargas, “On-Chip Aging Sensor to
Monitor NBTI Effect in Nano-Scale SRAM,” DDECS’12: IEEE 15th Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits and Systems
(DDECS), April 2012, pp. 354–359.

[49] Y. Kagiyama, S. Okumura, K. Yanagida, S. Yoshimoto, Y. Nakata, S. Izumi,
H. Kawaguchi, M. Yoshimoto, “Bit Error Rate Estimation in SRAM Consider-
ing Temperature Fluctuation,” ISQED’12: International Symposium on Quality
Electronic Design (ISQED) March 2012, pp. 516-519.

[50] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
R. B. Brown, “MiBench: A free, commercially representative embedded bench-
mark suite”, IEEE 4th Annual Workshop on Workload Characterization, pp. 3–
14, Dec. 2001.

[51] Koichiro Ishibashi, Kenichi Osada (2011). Low Power and Reliable SRAM

92

Bibliography

Memory Cell and Array Design. Springer Series in ADVANCED MICROELEC-
TRONICS. p. 154.

[52] H. Mahmood, M. Loghi, E. Macii, M. Poncino, “Aging-aware caches with grace-
ful degradation of performance”, VLSI-SoC’12: IEEE/IFIP 20th International
Conference on VLSI and System-on-Chip, vol., no., pp.237,242, 7-10 Oct. 2012

[53] Y. Wang et al., “An energy-efficient high performance deep submicron instruc-
tion cache.” IEEE Transactions on VLSI, Special Issue on Low Power Electronics
and Design (2001)

[54] Y. Wang et al., “Gate replacement techniques for simultaneous leakage and
aging optimization,” DATE’09: Design Automation and Test in Europe, pp.
328–333, March 2009.

[55] P. Yang, J.-H. Chern, “Design for Reliability: The Major Challenge for VLSI,”
Proceedings of the IEEE, pp. 730-744, Vol. 81, No. 5, May 1993.

[56] M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, T. N. Vijaykumar, “Reduc-
ing Leakage in a High-Performance Deep-Submicron Instruction Cache,” IEEE
Transactions on VLSI, Vol. 9, No. 1, February 2001, pp. 77–89.

93

	Acknowledgements
	Introduction
	Motivation
	Contribution of this dissertation
	Organization of this dissertation

	Background and related work
	Aging in digital devices
	Electromigration (EM)
	Hot carrier injection
	Time dependent dielectric breakdown
	Bias Temperature Instability (BTI)

	Negative Bias Temperature Instability
	NBTI effects on Circuit delay
	NBTI effects on SRAM cells
	Aging relation with Power Management
	Impact of Power Gating on SRAM Aging
	Impact of Vdd Scaling on SRAM Aging

	Previous Solutions

	Aging aware cache architectures
	Motivation and concept
	Motivational example

	Aging aware cache partitioning
	True Partitioning
	Coarse-grain Partitioning
	Fine-grain Partitioning
	Block Level Dynamic Indexing

	Virtual Partitioning
	Dynamically Re-sizable Cache

	Aging-driven caches with graceful performance degradation
	Introduction
	Aging-driven cache partitioning
	Exploration strategy
	Metrics
	Aging-Driven Partitioning Algorithm
	Architectural support
	Aging model

	Cache Architectures
	 Coarse-grain implementation
	 Fine-grain Implementation

	Optimization algorithms for coarse-grain partitioning
	Partition & Swap Strategy
	Cluster & Partition Strategy

	Experimental Results
	ELT Results
	AMR Results
	Energy Results
	Detailed Trace-by-Trace Results

	Energy-Optimal Caches with Guaranteed Lifetime
	Overview and related work
	Motivation and Concept
	Architecture
	Models
	Lifetime
	Miss Rate
	Power

	Experimental Setup
	Power and Lifetime Results

	Dynamically re-sizable and re-configurable caches
	Overview
	Dynamically resizable cache architecture
	DRC for aging and performance Optimization
	DRC Architecture
	Architectural Variants
	Metrics

	Simulation Results

	Conclusion
	Bibliography

