POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Ingegneria Informatica e del Sistemi — XXV ciclo

Tesi di Dottorato

Design Time Methodology for the
Formal Modeling and Verification of
Smart Environments

Muhammad Sanaullah

Tutore Coordinatore del corso di dottorato
Prof. Fulvio Corno Prof. Pietro Laface

February 2014






to my beloved uncle
Sheikh lkram Shahzad
(late)

and my most respected
teacher

Hazrat Sayad
Muhammad
Bader-ul-Zaman Shah sb.
(late)



Acknowledgements

“In the name of GOD, the Most Gracious and the Most Merciful”

I would like to express special thanks to my Ph.D. advisofdasor Fulvio Corno,
whose encouragement, inspiration, great efforts in welogitine new ideas and elaborat-
ing them clearly helped me think as a research scientistsiHtgre guidance, knowledge
and vision assisted me at every step of the doctoral prograheasured the completion
of my dissertation.

I would like to thank e-Lite research group members, esfigdia. Dario Bonino
and Dr. Faisal Razzak, for giving me time to discuss variosisas related to my research
activities. | would like to thank the faculty, staff and teitians of Dipartimento di
Automatica ed Informatica (DAUIN), Scuola Di Dottorato (SDO) and the Politecnico
Di Torino — Italy, whose active involvement facilitated nmeavery matter.

I am very thankful to my funding agency Higher Education Cossiun (HEC) Pak-
istan, who gave me the opportunity to attain the highesteegr education from abroad.

| am grateful to Dr. Muhammad Jamaluddin Thaheem who alwajighttfully ac-
cepts my work for review and provides detailed feedbacksoula like to say thanks to
the anonymous reviewers of different conferences and @sinthose comments helped
in purifying and shaping my research in a more constructhng @nvincing way. | am
grateful to the examiner committee, Professor Paolo Mahiy®rofessor Filippo Lanu-
bile and Professor Alberto Bosio, who will give time from thbusy schedule to review
my dissertation.

| feel great pleasure to extend my thanks to my parents, siifatethers, sisters and in-
laws. Their wishes, efforts, prayers, love and care havaydween a source of motivation
for me.

At the end, | have no words to express the appreciation to ngvee wife Mina
Arshad who always understands and encourages me at evergnhom



Contents

Acknowledgements Y,

1 Introduction 1
1.1 Motivation. . . . . . . . . 3
1.2 ProblemStatement . . . . .. ... ... .. 5
1.3 Contribution . . . . . . . . 5
1.4 Structureofthe Thesis . . . . . . . . . . . . . . . . . . ... 7

2 Background 9
21 FormalModeling. . . . . . . . .. 9

2.1.1 BlackBoxModeling. . . ... ... ... ... ......... 9
2.1.2 WhiteBoxModeling. . . ... ... ... ... ......... 12
2.1.3 High-Level Goals Modeling. . . . .. ... ... ........ 14
2.1.4 PropertiesModeling. . . . . ... ... .. .. 16
2.2 Model Checker for UML Statecharts. . . . . .. ... .. ... .... 17
221 UMCModelChecker . . . . . ... ... ... .. ....... 17
23 Gateway. . . . ..o e e 18

3 Survey and Analysis of State of the art 21

3.1 Modeling and verification processes. . . . . . . . .. ... ... ... 22
3.1.1 FormalModeling. . . . .. ... ... . . ... ... ... 22
3.1.2 ComponentModeling. . . . . ... ... ... ... ...... 23
3.1.3 Formal Verification . . . . ... .. .. ... .. .. ... ... 24
3.1.4 Adopted Procedures/Tools. . . . . . ... ... ........ 24

3.2 SurveyedLiterature . . . . . . ... 24

3.3 Empirically-derived Parameter-based Methodolagy . . . . . . . . .. 31
3.3.1 FormalModeling. . . ... ... ... .. ... ... ... ... 32
3.3.2 ComponentModeling. . . . . ... ... ... ... ...... 35
3.3.3 Formal Verification . . . . .. ... .. ... .. .. ... .. 38
3.3.4 Adopted Procedures/Tools. . . . . ... ... ... ...... 41

3.4 DISCUSSION . . . . . . e e 43



4 Proposed Methodology 4

4.1 Bank Door Security Booth System (BDSB): A Case Study . . . . . . 47
4.2 Methodology . . . . . . . . . 48
4.2.1 Step 1. SmE Specification Identification . . . . . .. ... .. 49
422 Step2:UsersModeling. . . ... ... ... ... ..., 50
4.2.3 Step3:DevicesModeling . . ... ... ... ......... 52
4.2.4 Step 4: Individual Device Verification . . . . . .. .. ... .. 54
4.2.5 Step 5: Environment Modeling. . . . . ... ... ... ... 55
4.2.6 Step 6: Control Algorithms Modeling . . . . . .. ... .. .. 57
4.2.7 Step 7: Temporal Properties Designing. . . . . . . . .. ... 58
4.2.8 Step8: Integrated SmEmodel. . . . .. ... ... ... ... 59
4.2.9 Step 9: Formal verification of SmE Model . . . . . ... ... 60
4.2.10 Step 10: DevelopmentPhase . . . . .. .. .. ... ..... 61
5 Designed Techniques 63
5.1 Individual Device Verification. . . . . .. .. ... .. ... ...... 63
5.1.1 Device Model Verification Technique . . . . . . ... .. ... 64
5.1.2 ExperimentsandResults. . . . . ... ... ... ....... 70
5.2 SmE Verification . . . . . .. ... 70
5.2.1 Designed Technique . . . . .. .. ... .. ... ....... 72
5.2.2 ExperimentandResults . . . .. ... ... ... . ... 74
53 DISCUSSION . . . . . . . . 78
6 Achievement of High Level Goals 79
6.1 RelatedWork. . . . . . . . . ... 81
6.1.1 GoalsModeling . . . .. .. ... ... .. ... ... 81
6.1.2 EvolutionFinding . . . . ... ... ... ... . ... ..., 82
6.2 Problem Statement . . . . .. ... . Lo 85
6.3 TV Model: AnExample . . . . . . . ... . ... ... 85
6.4 Goals Achievement Methodology . . . . . ... ... ... ...... 88
6.4.1 Design-Time Methodology . . . . . . ... ... .. ...... 89
6.4.2 Runtime Methodology. . . . . .. .. .. ... .. ....... 93
6.5 ExperimentandResults. . . . .. .. ... .. ... ... ... 100
6.6 DISCUSSION . . . . . . . . . e 106
7 Discussion and Conclusion 107
Bibliography 113

Vi



8 Publications

8.1 InternationalJournals . . . . . . . . . . ...

8.2 Proceedings

VII



List of Tables

3.1
3.2
3.3
3.4
5.1
5.2
5.3
6.1
6.2
6.3
6.4
6.5
7.1
7.2

Modeling Evaluation. . . . . . . . .. .. .. .. ... .. 33
ComponentModeling . . . . . ... ... ... ... 36
Formal Verification Evaluation . . . . . ... ... ... ........ 39
Adopted Procedures/Tools . . . . . .. .. .. .. ... ... ..... 42
Dimmer Lamp details available inDogOnt . . . . . . ... ... ... 67
List of Verified Device Models (DSCs). . . . . . ... .. ... .. .. 71
The properties with their evaluationdetails . . . . . . .. ... .. .. 75
Morning Wakeup Goal Enforcement at Runtime . . . . . . . ... .. 99

Device Type Graph Contents. . . . . . . . ... ... ... ...... 101
Evolution Construction Details from Each Device Typerf®@damples) 102

Selected High-Level Goalsfor6 UseCases . . . . . ... .. .... 103
Device Activation Statistics . . . . . . . . . .. ... L. 104
Formal Modeling analysis with the Proposed Methodology . . . . . . 110

Formal Verification analysis with the Proposed Methodgl. . . . . . . 111

VI



List of Figures

1.1
1.2
1.3
2.1
2.2
2.3
2.4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
5.1
5.2
5.3
5.4
5.5
5.6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

A Framework for Smart Environments. . . . . .. ... ... ... .. 2

Night Mood: AService. . . . . . . . . . . . e 3
Overall Contribution . . . . . . .. . .. . ... ... . ... 6
DogOntOntology. . . . . . . . . . . e 11
An Example of defining Effects. . . . . .. ... ... .. ... .... 15
A use case for illuminatingthe Room . . . . . . ... ... ... ... 16

Domotic OSGiGateway. . . . . . . . . . . o o i 18
Bank Door Security Booth System. . . . . ... ... ... ...... 48
SmE Specification Identification . . . . . .. ... .. ... ...... 49
UsersModeling. . . . . . . . . . 51
DevicesModeling . . . . . . . . .. ... 53
Statechart modeling of Door Actuatar . . . . . . ... ... ...... 53

Individual Device verification . . . . . ... ... ... ... ... ... 54
EnvironmentModeling. . . . . ... .. ... .. ... .. .. 56
Control Algorithms Modeling . . . . . . . . ... ... ... .. .... 57
Temporal Properties Designing. . . . . . . . . . . ... ... ... .. 58
Integrated SmE model. . . . . . ... ... . 60
Formal verification of SmEModel . . . . . . .. ... ... ... ... 61
Device Model Verification Technique. . . . . . .. ... ... ..... 65
Closed Environment Strategy. . . . . . . . . . . ... ... ... ... 66
Closed Model of DimmerLamp. . . . . . ... ... ... ....... 68
Temporal Properties for Interface Verificatian. . . . . . .. ... ... 69

Temporal Properties for Behavioral Verification. . . . . . . ... ... 69

Designed Technique. . . . . . . . . . . . .. 73
Evolution from Source State to Destination State . . . . . . .. ... 80

Interface Modelingof TVinDogOnt. . . . . ... ... ... ..... 86
Behavioral Modelingof TV . . . . . . . . . . . .. ... ... .. ... 87
Framework of the Proposed Methodology. . . . . . .. .. ... ... 88

System Expansion. . . . . ... 90
Methodology for Transition Finding . . . . . .. ... ... ...... 92
Closed Model of TVinUMC format . . . . . .. ... ... ...... 94

IX



6.8 A Fragment of TV Graph

6.9 Steps of Domotic Effects Executor. . . . . . .. ... ... ... ...



Chapter 1

Introduction

Smart environment is “a physical world that is richly andigivly interwo-
ven with sensors, actuators, displays, and computati¢emlents, embedded
seamlessly in the everyday objects of our lives, and coedabrough a con-
tinuous network.”

Mark Weiser{1]

Smart environment is “a small world where different kindssofart device
are continuously working to make inhabitants’ lives morenéartable.”

Diane J. Cook and Sajal K. D4£]

Smart Environments (SmE) are digital worlds which are higignsitive, adaptive and
responsive with the users’ activiti€s §i]. The roots of SmE come from multi-disciplinary
fields; computer science, electrical engineering, indaistesign, human-computer inter-
action and cognitive sciences][ Thanks to the advancements in sensor functionalities,
artificial intelligence, ubiquitous and pervasive compgtiechnologies, SmE have gained
the capacity to deliver various services in intelligent mamby considering the presence
and actions of userd [3, 6]. For specific services, users can interact with the system i
any manner and at any time. The system consists of varioasdgeineous devices, which
range from simple sensors to multi-feature devices, anicjzate to achieve desired ser-
vices.

The basic objective of SmE is to provide intelligent sersjcgeuch as energy man-
agement, temperature management, assisted living orgresféntion f-9]. The safety
and security services are also some of the essential regemts for many SmE, and de-
pend upon the context (interchangeably mentioned as @mvient’) and domains of the
application f#,10]. For example, the safety service in case of fire is to swittkthe secu-
rity alarms, unlock and open the emergency exit doors, tarthe emergency and path-
pointing lights directing people towards the emergency, erake recorded calls to the

1



1 — Introduction

nearby fire and rescue offices and other key officials of resfgeenvironment; whereas
the security requirement for accessing the bank is achieyedossing two automatically
locked doors in which one door will not open until the othetlissed.

Planning/
Execution Resources
Goals -
Users m‘%
&
Actions
=)
Input/ 2p0 c
Sensing j_. ¥ ﬁ ( -’ o
Devices - . g “@ E
Decisions =
S
Decision ' Q‘ Control Algorithms ~ <#&% =
Logic sl < <
Operations Operating . | ‘| \ —_
Devices e e ) o

Figure 1.1. A Framework for Smart Environments

For providing the services automatically and in intelligeay, some computation is
added through which the functionalities of these assatiagterogeneous devices can be
controlled [L1,12]. These computational components are also known as Conlgo- A
rithms and use artificial intelligence (e.g. fuzzy logiceci$ion trees, machine learning,
case-based reasoning and temporal reasoning) or databgseeyent-condition-action
rules and SQL-based data management) techniques foratenisiking in an intelligence
manner.

The basic elements of SmE are users, devices, control tdgwiand environment,
as represented in Figufiel With their interactions, the desired functionalities dan
achieved. A generic execution flow in SmE can be classifiedunlayers: goals, actions,
decisions and operations. Goals are the desires of the wbaéh they want to achieve
from SmE (such as turn on the TV, turn off all the lights exdépse of TV lounge, switch
the home in sleeping mood, etc.). For achieving a certaih gears have to perform some
specific action. The actions can be sensed through sendtisyaran be input by directly
performing them on the devices, or can also be commandedihy tree designed APIs
of the SmE (through various handheld devices).

When user performs any action, a notification message (orcd setssages) is sent to
the control algorithms. Control algorithms reside at gatelssels, where the concerning
devices are also connected by using some wired or wireledsaimeand the requirements

2



1.1 — Motivation

related to the safety, security and reliable behavior of SmeEncorporated and enforced
through them. Control algorithms act as sophisticated kriggtween the input actions
and the output operations. Against each incoming messhgesurrent configuration
of the system and devices is considered, and according tme¢beporated constraints,
a decision for the specific operations (services) is madethéy on the basis of these
decisions, control algorithms send the relevant commamdiset devices for performing
the decided operation. The devices, according to theieatizonfiguration and internal
constraints, perform the specific operations and acknayeldthck about the status of
the operation to the control algorithms (these acknowleslgsare also considered as
notifications).

By having these sophisticated controlling features, SmEcareently being intro-
duced in homes, hospitals, offices, industries, airpoaiyays, transportation mediums
and many other important (industrial and public) placéls [On the basis of adopted
technologies and their various application scenariosienaiture, such environments are
mostly referred as Smart Environments (SmE), Smart Spactelligent Environments
(IEs), Ambient Intelligence (Aml), Smart Home and Intedlig Domotic Environments
(IDE).

1.1 Motivation

A service offered by SmE can consist (of controlling the tioalities) of more than
one device. The devices are of heterogeneous nature anddgtiendent with their own
working functionalities and internal behaviors. For awirig the desired functionalities,
some specific relevant commands are required to post ondeegmes. For a night mood
service, as depicted in Figufe2, in which various devices, such as windows, window
shutters, lights, doors, burglar alarm and many other, egaired to be controlled, and
each device accepts its relevant commands.

Shutdown the windows

Close the windows
shutters

2 \

2ZZ22Z. :
Lock the doors Activate the burglar
alarms
J
e ™ /
Switch off all the lights - Turn off TV, stove,
except bed-side dimmer oven and other
lamp appliances except Fridge

\_ J

Figure 1.2. Night Mood: A Service

3



1 — Introduction

The devices which are used in SmE can also be complex by hawittgple features,
such as a service can be requested against which the TV iseddo be switched “ON”
with channel “22”, volume “60”, brightness “70”, contragi(” and sharpness “50”. De-
pending upon the current configuration of the TV, differestssof commands can be
posted (the commands when the TV is in “OFF” state are diffefi®m the commands
when it is in “ON” state). Further, the system level consitsi(related to the overall
safety, security and reliable behavior) add innumerougilden the system. Due the their
control (of heterogeneous devices), various system levgdtcaints, distributed and par-
allel state information, synchronous and asynchronowsactions, multiple sources of
control (as one device can be associated with more than oviees®) and different evo-
lution paths (depending upon the current configuratioms) behavior of SmE becomes
difficult to predict (by the designers of SmE) and may eved lkeeerror-prone scenarios.

SmE systems can be implemented in sensitive environmekgsfifle control units,
theft or traffic control systems, nursing care houses andrs}hwhere the occurrence
of errors may cause critical/unwanted situations. Fordiugithe errors, their thorough
verification is very important. The verification process tenperformed at design or
implementation time. Based on the complexities and theitiegpn scenarios, it is
advisable to verify SmE models at design time for reducintjcatity, time, cost and
energy, and achieving reliability. B-16].

For the design time verification, simulation or formal (metiatical) methods (strate-
gies and structured approaches) are commonly used withaWwei strengths and limita-
tions. As complexity and ambiguity are usually the commaatdees of such systems,
and it may not be effective to verify the accuracy on all plolysieachable paths through
simulation [L7,18]. Therefore a technique is required which may ensure thaustive
verification of various requirements. Thus, the use of fdrmethods helps to root them
out, and, in result, a reliable secure system can be desigheth has all the desired
features and consistency among its integrated componetiisttve environment J4].
Moreover, formal methods promise holistic design timefieation based on the follow-
ing strengths:

* they are strongly based on mathematical evidence andaserte understandabil-
ity of the modeled system;

they are used for reliably modeling a system at design time;

* they can model the concerning requirements in the formapb@rties by using logic
based on mathematics;

they can formally verify the modeled system against theiregnents (reliable be-
havior, along with other requirements of the system);

they can trace back the errors and can help in fixing themrbt @esign stages.

4



1.2 — Problem Statement

1.2 Problem Statement

The SmE are the integration of hardware (devices) and sadt(gantrol algorithms) com-
ponents which continuously interact with each other in airegnent-accomplishing man-
ner according to the presences, locations, actions or kasf the user. The software
components have the information of the imposed constramdsome form of intellectual
strategies for automatically controlling the functiotiak of various devices.

The systems are huge as a number of heterogeneous devigasateced with added
functionalities. For automatically controlling the furatalities of each devices (as the
manufactures are also many), their associated commancsgarieed for triggering them.
Their heterogeneous nature and complex parallel and blécat behaviour (depending
upon the offered functionalities), may introduce ambiguBimilarly, for obtaining more
sophistication, various system level constraints are nesxively added in SmE specifi-
cations, which also introduce complexity and ambiguity ¢ontrolling the SmE. The
wishes for facilitating the users at various levels, by odesng their actions and behav-
iors, according to their context, also become a reason oéasing complexity.

The impact for these complexities at individual and collety controlled level may
not allow the designers, developers or programmers to aamtfidclaim about the correct-
ness, completeness and consistence reliable behavioumBfuBder all circumstances.
As the applicability of SmE is also in sensitive fields wheng avrong decision or the
existence of bug may lead to unwanted or critical situatibarefor the reliance of these
systems strongly demands confirmations.

The confirmation of correctness, completeness and consis&haviour regarding
the specifications is an essential concern of SmE stakeiso{designers, developers,
programmers as well as their users) and can be satisfied whesygtem is designed and
verified by adopting a suitable methodology: starting frawér level details to higher
level goals achievements.

1.3 Contribution

The major objective of this thesis is to resolve the incorngplacorrect and inconsistent
behavioral issues of SmE. For ensuring the solution of thessee, a design time method-
ology is proposed, which provides the guideline to the Smétgieers and validators by
addressing and revaluing the important concerns and faetbich are required to be
considered during the modeling and verification of SmE. Fedmrmethod techniques are
adopted for the modeling and verification purposes, duediv everal advantages.

The process starts from the lower level formal modeling asrification of each com-
ponent to the higher level formal modelling and achievenoégbals. A set of technolo-
gies are designed and developed by following the proposeateliyues. Different case
studies and experiments are conducted, the results etgureliability and adaptability

5



1 — Introduction

Design Time

High Level Goals

Implementation
Time

Goal Modeling

High Level Goals

Instances

Model Translation + States T
# and features Abstraction + # Model Checker

4

liable Behavi

vl Temporal

Devices C y and R

Generation of Data
# and Control Flow
Graph

Properties

Close
Environment

L>|

Model Translation
+ Abstraction +

=h}Mo

del Checker >=)a Satisfied

4

Specifications e

~~4 Control Algorithm

SmE Model

Temporal Properties

Model Translation +

Abstraction +
Instances

|_———  Unsatisfied

Model Checker

Devices|

Control Algorithm, Users and Environment Interacti

User Modeling

ion

Extended
.| Specifications With Environment Whole SmE
Users and Modeling ‘ Model
Environment

Model Translation +
Abstraction +
Instances

Control

Algorithm

- Temporal
b Properties

‘ Model Checker 1

Unsatisfied } Satisfied

Figure 1.3. Overall Contribution

of the proposed guidelines.

A collective view of the set of technologies used for aclmevihe desired objective
is presented in Figurg.3. The integration linkage flow, among each section (tectejiqu
of the figure, shows the consistency and reusability of w&tiiomponents. The abstract
level listing of the major steps carried out in this thesisnéisted below:

1. an analysis of the existing state-of-the-art literattetated to the formal modelling
and verification of SmE, is performed by proposing a pararitesed empirical

methodology

2. lower level modeling of the acceptable actions and behnswf the users

6




1.4 — Structure of the Thesis

w

. lower level modeling of the devices according to theirtoolied and offered func-
tionalities

4. lower level modeling of the environment by considering tonfigurations of the
devices and users

5. lower level modeling of the intelligence strategy by whibe interaction can be
controlled according to the imposed constraints and speaiéquirements

6. consistency verification among lower level formalismbjoli may be adopted for
the modeling of components

7. verification of the requirement-accomplished reliabdddvior at individual level
of the modeled component

8. verification of the reliable interactions among each congmt
9. verification of the overall imposed constraints of thetesys

10. design and development of a strategy by which the higivet goals can be achieved

1.4 Structure of the Thesis

The thesis is organized in seven chapters. Ch&ppeesents an overview of the adopted
tools with their selection motivation. Chapt8rpresents a parameter-based empirical
methodology which is used to analyze the surveyed liteeator knowing the trends,
covered and uncovered areas by the SmE research communigpteCh presents the
proposed methodology used for the formal modeling and eatitin of SmE. Chaptes
presents a set of techniques which are designed to impleaimeptoposed methodology.
Moreover in this chapter, the reliance of the proposed nuetlogy is confirmed with
results obtained by running the case studies (or examptetf)ese designed techniques.
Chapter6 proposes a methodology for the achievement of high-levet Sser require-
ments, referred as goals. Chapfeconcludes the thesis and offers possible directions
in which the research can be extended. At the end, in Ch8gtex list of publications
produced from the research explained in this thesis is ptede






Chapter 2

Background

The implementation of the proposed methodology builds uperxisting tools and tech-
niques. The state-of-the art along with the motivation efshlected tools and techniques
are explained in the following sub-sections.

2.1 Formal Modeling

Formal modeling is a way of describing the specification efslistem by using the syn-
tax and semantics of the mathematically based languagen e performed with the use
of black box and white box modeling conventions. As SmE agelsystems and consist
of a number of heterogeneous devices, therefor a genetiortacy and naming/commu-

nication convention mechanism may be required which woska eore reference point,
and the communication among various heterogeneous deacdse performed by using
them. In our case, the generic (centralized) modeling othallinvolved devices is per-

formed by using black box technique and the modeling of tineier details is performed

by using white box technique.

2.1.1 Black Box Modeling

Controlling and commanding the functionalities of ele@tidow cost or smart) devices
is one of the main goals of SmE. These devices are of heteeogemature, having
some common and distinguish functionalities, commandsfication, states and others.
The desired functionality from the relevant devices is asit#e by posting specific com-
mands, which is acceptable by them. The modeling of theséomaghieved by using the
object-oriented approachekd 20], Unified Modeling Language (UML) artifact&[,22],
ontologies or taxonomie2p-29), etc. Ontologies are one of the semantic web artifacts;
they provide a formal explicit modeling structure for reggating different concepts, their

9



2 — Background

relationships and their associations, and give a suitaasaning power on such shared
and featured environment3(, 31].

Different ontological solutions exist for the modeling am§, such as EHS Do-
moML [29], SOUPA [27], CoBra [28], DogOnt 23] and some other, each with their own
limitations. The EHS taxonomy classifies the Home appliano&é white and brown
goods along with their placement in SmE. It provides theraxtgon information so that
all the devices can communicate with each other, but it doeprovide the information
of capabilities, functionalities and desired operatiohdavices. DomoML ontology uses
the existing DomoML-core, DomoML-env and DomoML-fun ordgiles. The DomoML-
core ontology is used for correlating the components of Saesdribed in DomoML-env
ontology) and devices along their functionalities (ddsediin DomoML-fun Ontology).
It uses different well know vocabularies for defining the cepts. The limitation of Do-
moML is the lack of state modeling and query functionalities

SOUPA and CoBra ontologies describe SmE but their main focas modeling the
functionalities and capabilities of user/agent in thetligipervasive and ubiquitous com-
puting concepts. Their major limitations are the modelifigl@vice functionalities and
commands, which are not permitted in SOUPA and CoBra ontadofegOnt P3] is an
ontology based solution, which is used for the modeling oESystems, especially for
the modeling of household appliances with their functidies, commands, notifications,
states and placement in the environment. Moreover, folgdesy a complete context-
aware SmE, SOUPA and CoBra ontologies can be used on the upekiréen DogOnt:
the device interoperability information can be collectathvhe use of DogOnt, and the
context and user/agent information are collected with geaf SOUPA and CoBra on-
tologies.

DogOnt

DogOnt is an ontology (a semantic web artifact) for the miodedf SmE with a focus
on the black box modeling of heterogeneous devices, thktioaship with the other
devices and their installed location in the Sn2E][ For the modeling of SmE by targeting
these goals, DogOnt defines the following top level classifims which are graphically
represented in Figur2 1

1. “Building Environment:” In this category, the physicamM@oenment of the SmE is
modeled according to its description, such as building, §latage, garden, room
(e.g. bathroom, bedroom and kitchen).

2. “Building Thing:” This category is further divided into twmain classes: con-
trollable and uncontrollable. In the controllable classifion, those devices are

1The European Home System, http://www.ehsa.com

10



2.1 — Formal Modeling

BTicino
Componen
Discrete
State Valug

i State Value Contlnuous
Garage e State Valug
|sA \
N f’WI Thlng ) hasStateVaIué hasStateVaIue
Building - X w
Enwronment i
. i Continuousy
is, : State

p’ésStateVaIue

Discrete
State

s isA

Building
Thing

hasdpmmand

Control
Functionality,

|s&

. Notification
iSA Functionality,
Appliances
HousePlants

Figure 2.1. DogOnt Ontology

included which can be electronically controlled (e.g. égitooker, fan, lamp, ac-
tuator and sensor), whereas in the uncontrollable categerthe devices which are
part of the SmE but cannot be electronically controlled.(¢adple, sofa and bed).
Moreover, for electronically controlling these devicethey electrical devices (e.g.
door actuator or window actuator) are required.

3. “Functionality:” The controllable devices are capabi@erforming some specific
functionality. These functionalities can be related tartkkentrol (the main func-
tionalities of the devices which they can perform, e.g. adaan beON or OFF),
guery (at which state the device is at a particular time, a.amp is inON state)
or notification (the messages/signals which the devicesbadk after performing
an operation, e.gonNotificationwhen the lamp is switche@N)?.

4. "Command:” In this category are the commands which areireddor triggering
the control functionalities of the devices.

5. “Notification:” In this category, those notification maggs/signals are included
which devices send after the completion of task. In our dasesystem is designed

2It is possible that the devices are not so sophisticatedwitht the help of relays, hardware (e.g.
Bitichno, Knx and ZeeBee) and software (e.g. Dog) gatewidngse functionalities can be achieved.

11



2 — Background

in such a manner that devices send some notification baaktaéeeompletion of
each transition.

6. “State” and “State Values:” At any time the devices are fragicular state, such as
a door actuator can be movingor not movingstate, and the TV can be @N state
with the volume30. TheseON, movingandnot movingare discrete state values,
whereas th&0is the continuous state value of thelumestate. The discrete values
are referred astatesand continuous values ésature valuesluring the behavioral
modeling of the device. The functionalities associatedhwhiese continuous state
values are termed dsatures

7. "Domotic Network Component:.” The communication among dlegices or gate-
way (details are given in Sectidh3) is performed through the exchange of mes-
sages, which can be carried out by adopting some specifioqmist(such as Kon-
nex, ModBus, ZigBee, ZWave and others). For performing astmmthe devices
(without interacting with multi-interface provided by tfent manufactures), and
bypassing the user exposure to device complexity and yatlet gateway needs
to know about the manufacturer and its protocol informasgonthat the devices
can understand the messages and act accordingly. The nmgpdéthe information
related to device manufacturer, its protocol characterastd network addressing
scheme is performed in this category.

2.1.2 White Box Modeling

Black box information is important and useful for the appiieas/services, which are
required to interact with it. On the other hand, white box eh&évioral modeling is re-
quired for analyzing the internal behaviour of the devicedaio Behavior modeling can
be performed by using the semantics of labeled-transitystems, in which the more
commonly used approaches are UML (a graphical modelinguiageg in Software Engi-
neering) Statecharts, process algebra (like Calculus aieSe@ml Processes (CCP), Cal-
culus of Communicating Systems (CCS), Algebra of Communic&imgesses (ACP)),
Petri nets. Each of these can be applicable for the modedind erification) of different
domains.

Statecharts

Devices range from simple (lamp) to complex (TV) due to thadfered features (de-
scribed in Sectior2.1.1under “State” and “State Values”). These features can be mod
eled with the use of variables. For controlling them, valokthe relevant variables are
required to change. For the behavioral modeling of suchcesyia semantic is required
by which the modeling of multiple features can be achievedudlly, the modeling of

12



2.1 — Formal Modeling

complex devices is performed with the use of hierarchical parallel (or concurrent)
sub-state concepts.

In 1987, Harel introduced statechart diagrams for the niogelf reactive systems,
whose variant became a standard in the UNAP][ Statechart diagrams are used to rep-
resent the dynamic behavior, with the support of varialaard conditions, hierarchical
and parallel states of the complex system. The behaviordeimy of devices is per-
formed with the use of statecharts, and the semantics is gew.

Let D be the set of installedontrollable devicesn SmE. Each devicé, d € D, is
characterized by device typde.g. lamp, television or air conditioner). The behavioral
modeling M of each devicel can be defined by a tuplet(d) ={S, so, C, N, V, ©, T}

In which

1. S is afinite set non-empty of statesthat may be simple or composite states.

2. so C S is afinite set of initial states, including the initial staitef the composite
states.

3. Cis afinite set of triggered commands.

4. N is afinite set of notifications which a device can produce ascknowledgment
about the status of the assigned task, or an indication me#s#he case of sensing
data by the sensors.

5. Vis a finite set of variables, each variablev € V, is used for controlling the
functionality of a device.

6. ©is an interpretation over, which is used to assign the values to a variable defined
inV.

7. T is a finite set of transitions. Each transitiont € 7, is a tuple(s, ¢, g,a, s)

and can be representedﬁém s, wheres ands’ € S ands’ is the next state
to s, ¢ € C, g is a guard condition over the variables € V anda is an action

which may consist of (zero or more) notifications, the assignt statements for
some variablesd(v), v : v € V) or both. Moreover, g anda of the transition

tuple are optional and the variahleaffected by the transitiohwill be considered

asv’ in states’.

Several transitions may be required to evolve from a sousate,ss, to a destination

state,ds; ss ~gl/edy o telglod g Lenlgnl/ond 0 The sequence of these
transitions, from a source state to a destination statenaw/k as arevolutione.

13



2 — Background

2.1.3 High-Level Goals Modeling

A fundamental aim of SmE is to provide intelligent servideotigh which the user can
be supported. For the modeling of such services, severabagipes are proposed that
include device centric perspective3f35], learning models§, 36] and abstract modeling
frameworks B5, 37-39.

One such approach is the Domotic Effects framew@& 40] which provides the
facility for the modeling of interesting goals (or desirashigh-level a®omotic Effects
(DE). The framework is organized in a three tiered architectCore Layer, Aml Layer
and Instance Layer. The core layer has the definitions ot Isasicture (classes with their
relations) by which the services’ goals (or DE) can be exq@és The Aml layer assists
the SmE designers for defining functional properties in teaffoperators. The instance
layer has the detailed high-level description of the goatd)E) based on the particular
devices with their desired destination states.

DogEffects

For providing a knowledge-base corresponding to the ldgiesign of DE framework, a
three tiered “DogEffects” ontology is formalized(] based on the OWL Web Ontology
Language41]. By taking the advantages of the modular concepts of OWL (whltows
to integrate the ontology with others), the DogEffects tegnated with DogOntg3] for
accessing the required devices (instances in the envinon@ed their states. A collective
graphical view of DogEffects with an example (explainedhistfollowing section) is
presented in Fig2.2 The brief description of each layer is given below.

The core layer defines the three basic concepts of DE frankeidiect, Effect Op-
erator and Operand. The effect (DE) that depends upon aesilaylice (with a specific
destination state or sub-state) is callesiraple effec{SE) and this will be the terminal
point of the goal which ends upon the specific device instaaoee with a particular state
value. The DE which depends upon a combination of devicealisccacomplex effect
(CE). A CE consists of the functional expressions of SEs orrd@ites by using effect
operators. These operators can take one DE (called unargtopeor more DEs (called
non-unary operator) as operands. Sometimes, the orderevfiog become extremely
important for producing the results and sometimes it is ofalae; mathematically, cate-
gorized as non-commutative operator and commutative tgreraspectively.

The Aml layer contains the operators by sub-classing themgéonperator classes de-
fined at the core layer. The results of these operators bétBgolean domain (true or
false). Although Boolean logic has a smaller set of operdi@ig or, and or not), de-
signers are allowed to define their own operators (e.g. rater conditional or greater).
Against each newly defined operator, the designer is redjtargrovide the implementa-
tion details in-terms of Boolean sub-expression. Thesaldeti@ important for encoding

14



2.1 — Formal Modeling

Core Layer

operandEffect(=1) Operand

Ordered
Operand

Effect

opName  hasOp hasOperand(>=2)

dogont:
Controllable

effectOf(=1) hasPositionN
Effect
Operator
hasOperand

functionOf (only)

NotCommutative
Operator

NonUnary
Operator

dogont:
StateValue

Complex
Effect

Unary
Operator

Commutative
Operator

1sA / \ \

Aml Layer
(Boolean Domain)

complement
Effect

Boolean
Simple
Effect

Alternate

Conditional Operator

Operator

opName

opName
opName

stateValue

|
|
|
|
|
|
i
|
Instance Layer i
|
|
|
|
|
|
|
|
|
|
|
|

Op2

operandEffect

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: operandEffect
|

£ asResult
lllumination (=0) llumination

dff PQeerend hasnesuie hasResult Nature
operandfffect Lo
— Alternatel lllumination
MirrorLamp Greaterl
lllumination hasOperand

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| hasResult
|
|
|
|
|
|
|
|
|
|
|
|

hasOperand hasOperand
hasOpegard asOperand  gperandEffect operandEffect funttionOf

on8 o9 CellingLamp
P P lllumination Outside
lllumination

effectdf fungtionOf

effectDf  ¥unctionof

| DogOnt ecror i : ctionOf effectO fNof ] \
effectO
: Instances - ‘ Outlllummatlon Outlllumination Shutter H UpStateValue_ ‘

| Sensorl Sensorl_Value Actuator_bed ShutterBed

‘ LampZ OnStateVaIue

Figure 2.2.  An Example of defining Effects

15




2 — Background

lllumination = Cond (Outsidelllumination, Naturallllumination, Artificiallllumination)
Outsidelllumination= Greater(OutllluminationSensor_Value, 60)

Artificiallllumination = Alternate(CeilingLamplllumination, MirrorLamplllumination)
MirrorLamplllumination = AND (leftMirrorLamplllumination, RightMirrorLamplllumination)
Naturallllumination = SE (shutterActuator_bed, UpStateValue_ShutterBed)
CeilingLamplllumination = SE(Lamp2, OnStateValue_lamp2)

leftMirrorLamplllumination= SE(Lamp4, OnStateValue_lamp4)

o SE RightMirrorLamplllumination=SE(Lamp5, OnStateValue_lamp5)

CE
- — Lamp2 ON
Mirror Lamp lllumination

‘ Artificial lllumination | | shutterActuator_bed up |

SE SE
Lamp4 ON HTampS ON |

(a) (b)

Figure 2.3. A use case for illuminating the Room

in java language and placed in the effect-operator-stotk thie implementation algo-
rithms of other operators.

The instance layer models the goals as the instances ofdbgsed defined in the core
and Aml layers. The following example better clarifies theramentioned concepts.
Consider a room “lllumination” goal, which is graphicallypresented in Fig2.3(a) and
functionally represented in Fig2.3(b). Depending upon the outside illumination value,
the room can be naturally illuminated (by moving the winddwtser UP) or artificially
(by switching ON the ceiling lamp or the lamps placed at ead& sf the mirror). This
example is modeled at instance layer (instances of the SEn@®perators) of DogEf-
fects, in Fig.2.2, with the association to the device and state instancesddtigOnt.

2.1.4 Properties Modeling

A process, in which the specifications of the system are difim¢he form of proper-
ties or axioms, by adopting the syntax of some formal languagn be known as formal
properties modeling. These properties or axioms are dedignrepresent behavioral and
non-behavioral aspects of the system. The behavioral tsspecrelated to reliable func-
tionalities (relation between event and action) and ndmab®ral aspects are related to
security and safety policies, performance, and other cheriatics of the system. For-
mal representation of the concerning specifications aenakpressed with the use of
temporal logic.

Action-and-State based Temporal Logic

Temporal Logics are used for formally defining the speciitcet, and based on the set of
rules for reasoning with different propositional quantgiéexplicit, implicit) depending
on time conditions (Next, Future, Global, eté?]. There are two main classifications

16



2.2 — Model Checker for UML Statecharts

of temporal logic: Linear Time Temporal Logic (LTL) and Brdmicg Time Temporal
Logic (BTTL). LTL deals with a single trace path at a time, wéws the BTTL deals
with multiple trace paths at a time, therefore BTTL is appiater for the analyzing the
complex behaviour of such systems.

UCTL is a UML-oriented action-and-state based branching tiemporal logic43].
It has a combined power of ACTL (Action Based Branching Time k@4 and CTL
(State Based Branching time logic)qg. Due to the rich set of state propositions and
action expressions, UCTL is suitable for analyzing the behavhe system which is
modeled in the form of state machine&[47]. With the help of UCTL, we can ana-
lyze different behaviour of the system like liveness (sdrnimgf good will eventually hap-
pen) or safety (nothing bad can happen) with or without tivaéss restrictions. UCTL
uses the box] (“necessarily”) and diamond> (“possible”) operators from Hennessy-
Milner Logic [48] and temporal operators (Until, Next, Future, Globally, Axists) from
CTL/ACTL. By using these logics, the Absence, Existence, Uity and Responses
patterns of any predicate(s) can be analyzed.

2.2 Model Checker for UML Statecharts

Model checking49] is a technique used for automatically analyzing/verifythe behav-
ior of the system, which is dynamic in its nature, accordmthe modeling. It is capable
of exhaustively considering all the states and the posgilles of the model from a par-
ticular state for analyzing/verifying the correctness pédfications. State explosion is
a major drawback in Model Checking technique; it can occulimglex systems with a
large number of states. Abstractions play a vital role faidwg this issue by preventing
unnecessary information of states, variable values andages from the original model
of the system §0, 51]. In-result, the original model is sufficiently reduced ibsé&ract
model (the subset of relevant information, which designemtito observe) of the system,
which can be conveniently handled by a model checker.

2.2.1 UMC Model Checker

UMC [52,53] is an “on-the-fly” model checker tool, designed for the fatranalysis/ver-
ification of the dynamic behavior of UML statecharts, by pdivg a user friendly envi-
ronment, for expressing the system and the properties. UM&st because it is based on
a linear time complexity model checking algorithm for theetxanalysis/verification of
the system. Moreover, “on-the-fly” nature makes it efficieptnot requiring to explore
the whole model, but it allows optimally exploring the motaked on the given property
and return true or false depending upon the satisfactioneoptoperty.

The statecharts semantic in UMC is defined in terms of Doubleelled Transition
System (L2TL), which can represent various system configura on states and system

17



2 — Background

evaluation through edgeg, 47,54]. An online version of the UMC model checker is
also availablg

The structure of the model analyzed by UMC consists of ciggsstances and ab-
straction rules. Classes are used to represent the statenemaitextual format. They
have states, operators (used for synchronous commumgctinessages) or signals (used
for asynchronous communication of messages), local Vasand transitions. Further,
transitions are associated with states (source and destipdriggers, guards and actions,
and instances are the class objects.

2.3 Gateway

In SmE, devices are connected through a (wired or wirelessyark with some dis-

tributed or central gateways. Dog (Domotic OSGi Gatew&})] [s one such gateway,
based on OSGi (Open Source Gateway initiatiz®) $7] framework. It provides a neu-
tral generic interface (API) to the users for performing rigsactions on all the devices
(without distinguishing the manufacturers). Moreovehas additional computation ca-
pabilities for making itself technology independent, witle use of DogOnt information
of the devices, by accessing the devices with their propatopol and the suitable ad-
dressing mechanism.

(" Domotic Gateway h

[ API J
[ House Model ][ Intelligence ]

[ Harmonization / Abstraction ]
Domotic Domotic Smart
Network Network ||  Device
Interface Interface Interface

Figure 2.4. Domotic OSGi Gateway

As represented in Figur2.4, “House Model” contains the Black-Box modeling of
the Domotic system; in our case DogOnt provides all the wittglrmation at this stage.
The Control Algorithms, which are responsible for the ingelht working of the domotic
system, are also embedded in gateways, and represented‘bgelligence” component.
The “Abstraction/Harmonization” layer hides the unneeegsletailed White-Box infor-
mation of devices/drivers (see Sectiar2.1for more details). All the instances of the
devices, with their behavioral modeling and drivers, apgesented at the bottom layer.
Dog has additional computation capabilities for makinglitsechnology independent,

Shttp://fnt.isti.cnr.it/unc/

18


http://fmt.isti.cnr.it/umc/

2.3 — Gateway

with the use of DogOnt information of the devices, by acaegshe devices with their
proper protocol and the suitable addressing mechanism.

19






Chapter 3

Survey and Analysis of State of the art

Due to a large variety of implementation scenarios and sugpo conditional behav-
ior/processing, the concept of SmE is applicable to divarsas which calls for focused
research. As a result, a number of modeling and verificagohrtiques have been made
available for designers. This chapter explores and putsgetspective the modeling and
verification techniques based on an extended literaturegur

The formal verification of all possible aspects of SmE is atduand laborious un-
dertaking owing to the complex nature of these systems. eftw, research seems to
have emphasized the specific aspects based on requirementisesr specialized com-
petencies. As a result, this focused approach has depieddademicians and new
researchers/designers from a generic and one-sizelfksrdlof modeling and verifica-
tion technique. In an attempt to collect the existing stdtéhe-art, this chapter brings
together the techniques/approaches that are exploitexnmaf verification of SmE with
respect to different aspects with a few overlapping scesgsuch as user interaction, de-
vices interaction and control, context awareness, etbg.t€chniques are categorized on
the basis of various factors and formalisms consideredi®mnodeling and verification.
For this a parameter-based empirical methodology is peghowhich helps to under-
stand the verity of adopted modeling and verification teghes in different applications
and scenarios. The study expands upon the uncovered mgdelthverification areas of
SmE. The findings of the research show that no surveyed gabmhaintains a holistic
perspective; each technique is used for the modeling arificegion of specific SmE as-
pects. The results further help the designers select apatepnodeling and verification
techniques under given requirements and stress for more Ri&B mto SmE modeling
and verification research.

The rest of the chapter is organized as following: the engstormal modeling and
verification process adopted for SmE are reported in Se&tigrthe surveyed literature
is presented in sectioB.2, the proposed parameter-based empirical methodology-is de
scribed in sectioB.3with the overview of existing state-of-the art; and finallg analysis
and concluding remarks, on the surveyed literature agtiagiroposed methodology, are

21



3 — Survey and Analysis of State of the art

presented in sectioB.4.

3.1 Modeling and verification processes

This section describes commonly adopted modeling and ea&tiibn processes during
formal verification. These processes are classified acuprdi their coverage of SmE
aspects and application domain, namely: 1) formal mode)gomponent modeling,
3) formal verification, 4) Adopted Procedures/Tools. Théaile of each process are
described in the following subsections.

3.1.1 Formal Modeling

Formal Modeling is the process of describing a system (a satterconnected com-
ponents performing desired operations) in a well definechébrsyntax and semantics
language; the following are its different perspectivesped in the modeling of SmE.

Black Box Modeling

Black Box or Interface modeling is the representation of ttiermation required to in-
teract with the system. The black box modeling focuses ontionalities of the system
without any internal details.

Let consider a smart home where whenever a user enters irtinedm, it will be il-
luminated depending upon the outside light intensity (ge=i— as depicted from Figure
1.1). The smart room senses through sensors the presencetentifathe user (action).
The sensor will send the notification message to the conlgokighm. The control al-
gorithm sends a request to the illumination sensor (placgside the room) that replies
with the outside light intensity value. According to thidwe, the current configuration of
window-shutter and the lamp, a control algorithm decides twailluminate the room (de-
cision): either by moving the window-shutter up or by switghthe lamp on. Based on
the optimal decision, the control algorithm sends suitablamands to the corresponding
devices, which perform the task (operation).

In this, the control algorithm sends a command to the windaowiter to move up; the
command is fulfilled by the window shutter-actuator. Theadstabout how the command
has been sent by control algorithm and how the operationrieneed by the shutter-
actuator are not considered in the black box models. Instd@dmodeling of which
message is sent and which action is performed against ihamnain focus of the black
box.

22



3.1 — Modeling and verification processes

White Box Modeling

White Box or Behavioral modeling is a representation of a cotepleernal behavior
of the system. The details of how commands are issued, hovatomes are carried out,
and how the system (or individual component) requiremergdfilled are taken care
of in white box modeling. In the running example, for instandetails about how the
control algorithm sends commands, how other devices partioeir tasks: in other words,
complete flow of actions done by the system (or componentspaeled in this category.

Intelligence Modeling

One of the basic objectives of SmE is to provide services inttligent way according to
the system-level specifications and constraints. To e@mk with intelligence, different
artificial intelligence and database techniques can betadppnd their representation is
called intelligent modeling. For example, the decisionidagf control algorithms either
to move window shutter up or to switch lamp off can be modelgédopting different
techniques, such as fuzzy logic, decision trees, ruleshasent-condition-action, etc.

Requirements Modeling

Requirements are the starting point of any formal verificepitocess and are specified in
the form of properties or axioms by adopting the syntax ofséonmal language. These
properties or axioms are designed to represent behaviodah@an-behavioral aspects of
the system. The behavioral aspects are related to reliabigidnalities (relation between
event and action) and non-behavioral aspects are relateectoity and safety policies,
performance, and other characteristics of the system.ristaince, in the running exam-
ple, the requirements related to the events — when the euigidt intensity is high then
the smart home has to move the window shutter up as well astswiit the lamp (if it is
found on) — are presented in formal way in this modeling apgino Formal representation
of the requirements is often expressed in temporal logic.

3.1.2 Component Modeling

The components of SmE are users, context/environmengeeand control algorithms.
Depending upon the application domain, covered featureésrerinterested scenarios, the
(black-box or/and) white-box modeling of these componan¢saccordingly performed.
Modeling of these components along with their interactietads are considered in this
classification.

23



3 — Survey and Analysis of State of the art

3.1.3 Formal Verification

The system correctness with respect to its specificatiod<anstraints can be formally
(comprehensively) verified and this process is known as dbxmrification. During the

verification process, different aspects of the system aréeed The description of the
noted aspect is presented in the following sub-sections.

Consistency Verification

The consistency verification provides coherency of modelen both black box and
white box processes are applied. It is important to verigt thoth of the formalisms are
consistent with each other; otherwise there is a fair chrateone of the formalisms may
have some additional or missing information. Due to incstesicies, each formalism may
behave differently and the access to desired functionaign independent way may be
difficult. For example, if the command to move window shuttprin black box is recog-
nized as “UP”, whilst the same command in white box is idexdifas “RISE”, this causes
inconsistency between the two modeling processes andeaitl towards denial of the
desired outcome$H]. Similarly, it is important to verify that the specified regements
are incorporated in the designed model and will behave pippeall scenarios.

Entire SmE Verification

SmE are integrated environments and promise to deliveicgsnin an intelligent requirements-
accomplished way. As mentioned in SectibnSmE covers different aspects of given
areas, the verification of the behavior of individual comgaais along with their interac-

tion in the entire system can be formally performed by usimgleh checking or theorem
proving techniques, for ensuring the specified SmE behakatiable interaction along

with the safety and security constraints.

3.1.4 Adopted Procedures/Tools

In this classification, the investigation of the verificatiprocesses is performed on the
basis of the adopted procedures (through which the compsalgeverification of cor-
rectness of system is analyzed with respect to specifiedrezgents) and tools. During
the investigation, the maturity of surveyed technique &lyred in terms of automation,
scalability, adopted tool and the examined scenario (dask)s

3.2 Surveyed Literature

Various techniques regarding the modeling and verificasfd®mE and their related com-
ponents are analyzed under the empirically derived paemétxplained in sectiod.3).

24



3.2 — Surveyed Literature

Although various literature on SmE is available, the pamenrssidered for this survey
encapsulate the formal modeling and verification techrigpeoviding the SmE devel-
opers and designers with a specific study material aimedlattag SmE-centric work.
Though during survey a number of techniques were found whaktend the logic for
developing the tool (§9-62)), verification of the protocols (§3-65]) and modeling of
the cognition-based user behavio66]67]), such techniques are out of the scope of this
chapter and therefore are not included.

In [68], the authors present static verification of security regments for CSCW
(Computer Supported Cooperative Work) systems using fingtee sechniques (model
checking). They use a role based collaboration model focigpeg coordination and
security constraints of CSCW systems. The completeness arsistency of the speci-
fication is ensured by verification within the global requoients. They have developed
a number of verification models for checking security prtipsr(task-flow constraints,
information flow or confidentiality) and assignment of adisirative privileges. Their
primary contribution is a methodology for verification ofcseity requirements during
designing of collaboration systems. Finally, they have aurather peculiar case study
of collaborative activities of academic nature. It is ouderstanding that replacing the
components of this case study with SmE devices, it can alsapbked on a complex
system.

In [69)], the authors propose MIRIE (Methodology for Improving theli&ality of
Intelligent Environment) by focusing and motivating on tiee of formal methods for the
modeling and verification of the reliable behavior of thetegss at early design states.
The focused components are Users, Devices (sensors,ashy&ontrol unit and Envi-
ronment (context) which are attempted to be modeled. Thawehmodeling of the sys-
tem is performed with the use of Promela (Process Meta Layjgua language through
which the synchronous and asynchronous communication @rtie@ncomponents can
be modeled as non-deterministic automata and the resuttadél can be verified with
the use of SPIN model checker. System requirements arefisgesith the use of LTL
temporal logic. Iteratively extending the system modetytkexplained/guided different
properties/features of SPIN model checker. The feasihdftproposed MIRIE is en-
sured on the Nocturnal (Night Optimized Care Technology feeRs Needing Assisted
Livestyles) project.

In the first part of 0], the authors describe important characteristics, paesatt-
nologies and the applications of SmE in various domains.nTthey present behavior
models of various components of SmE. The modeling of eachpooent is performed
by using the semantics of finite state machines (network tifraata). The controlling
component, known as coordinator system, detects the presd#rhome occupant with
the use of seven motion sensors, placed in kitchen, liviegrdedroom and bathroom.
By sensing some activity, the system specified constraiet€laecked and the suitable
operations are performed. Also the TV component is modehegicontroller deactivates

25



3 — Survey and Analysis of State of the art

the TV when it is found unattended for a long time. Similady alarm manager com-
ponent is modeled which continuously monitors the triggessy smoke alarms, burglar
alarm and emergency pull cord, and contacts fire brigadeyiggor nursing unit based

on triggers. Other controlling components, such as dobrb@nager, telephone man-
ager, temperature system manager, environment managertahsigns monitoring are

modeled in the form of state machines. After modeling thesaponents, they design
different behavioral properties regarding the verificatod specifications-accomplished
behavior, individual component behavior, safety and sgcwith the use of Timed Com-

putation Tree Logic (TCTL) by considering the timing factoedl-time system). For

verifying these properties on the model, UPPAL is suggeatediodel checking tool.

The process of system modeling and properties designingriesqmed manually.

In [70], the authors, having worked in the area of verifying AAL (Aient Assisted
Living) systems, present a verification approach for chegkhe satisfaction of non-
functional requirements, such as timeliness and safetgdoas timed traces semantics
and UML-RT models (MEDISTAM-RT). They use a real-time syst@esign and analysis
methodology based on the semi-formal UML-RT models (whiehgenerally recognized
to be well suited for designing complex time-constrainestays) and the formal CSP+T
notation. In their methodology, the system is designed itepvgise refinement manner,
where components are divided hierarchically into sub-comepts till the final level. The
behavior of these basic components are separately desipn@€omed State Diagrams
(TSD) and the behavior of the whole is derived from the bedrani its constituent parts
by following a compositional specification process base@€8k/+T. Their methodology
is aimed at ensuring safe deadlock-free communicationdetwomponents. The authors
verify an Emergency Assistance System using this veriboapproach.

In [13], the authors present a formal verification environmentefwsuring the desired
behavior along with the 'safety’ and ’liveness’ propertie& case study of Computer
Based Railway Interlocking system is reported in which all tbenmunication is con-
trolled through a sophisticated control unit. The systermaer is modeled by using
the formalism of Calculus of Communicating Systems (CCS). Justlter Concurrency
Kit (JACK) is used as a model checking tool and the propertressaecified by using
ACTL logic. The model is abstracted by using the “Zoominghieicjue. In case of need
for more reduction, the “Testing signal values” and “Statanfiguration parameters”
techniques can be applied on the model. The system modeichgraperties designing
process is manually performed.

In [21], the authors present their work for the modeling and vexifan of SmE. In
their methodology, the design process is based on the SydEigineering standards,
especially on EIA-632. In the design process, UML2 and SYSétHndard diagrams
are used. They take the example of energy manager systemr{kam ERGDOM) for
home comfort. The ERGDOM is a self-configuring system, whasdntifies the users’
comfort patterns, habits and the current temperature diohee, and accordingly makes

26



3.2 — Surveyed Literature

the environment comfortable by controlling the functiotie$ of HVAC systems, shut-
ters, air-conditioning and convectors. The specificatiglated to main functionalities
(e.g. Measurement of temperature, moisture, luminosityanquality in each part of
the home for home comfort), the roles of each component gusedevices) and their
interaction with the system, is formalized by the use of eghtliagrams. Then with
the adoption of use-case diagrams, the use cases of thensfgstéhe desired services
(goals) by the users and devices are designed. Furtheretiaior of each use case with
their interaction is formulated by using sequence diagraifisese sequence diagrams
are usually detailed due to the controlling aspects andhamre summarized into the con-
cise activity diagrams. These activity diagrams, basedhenautomatic translation of
the ERGDOM model and their relation, are converted into Redtiby adopting HiLes
functional formalism. Various temporal properties, rethto the structure and dynamic
behavior verification of the control model of ERGDOM, are fied by using TINA (a
model checking tool for Petri-net formalism).

In [71], the authors propose a method for the verification of theexdrand situa-
tion in pervasive computing environments. As devices aeeltisic elements of SmE
and each device has some capabilities (features), whichecaantrolled by changing its
value. These values can be non-numeric (a lamp camlzg o f f) or numeric (the light
intensity of dimmer lamp can be controlled frdit% to 100%). During the verification
of the context/situation of SmE, it is essential to confira garticular feature values of
concerning devices. A context/situation (defined by sonEeds) may be associated,
through the relation of generalization, composition, cef@nce or contradiction, with
other contexts{2]. The modeling of the context is performed with the use of @grt
Space Theory (CST) which is further formalized in propertyfat by using Situation
Algebra Expression. On the basis of the rules defined@#:14], they designed 3 algo-
rithms by which the context modeling can be converted intd@nthotope-based situation
space and situation algebra expressiatig. [ These expressions are further checked on
the Orthotope-based situation space for identifying th@tamass or counterexample in
case of validation. The feasibility of the proposed methogy is confirmed with the
example of Smart Office Environment. It is opportune to nbt this paper does not
refer the context as the user location.

In [15, 75, 76], the authors present their work for the modeling and vexifan of
ambient intelligence applications. The authors’ key fosuen the location dependent
movement of users (also referred as ambient) by incorpaydtie concepts of Pervasive
and Ubiquitous Computing. They propose a seven step prooesbd interface, be-
havioral and constraints modeling of SmE. The Ontology &dusr interface modeling
where ambient calculus (AC) (a process calculus formalisnvel from pi-calculus) is
used for behavioral modeling. They theoretically extendl®y(borrowing the concepts
from different formal modeling techniques for incorponatithe real-time constraints and
conditional movements which are among the limitations of Alle properties related to
the pervasive and ubiquitous concepts are specified in tefrAsnbient Logic (AL) —

27



3 — Survey and Analysis of State of the art

having a combined power of propositional logic, first-orttegic, temporal logic, some-
where and everywhere operators— the properties relatexptié real-time constraints
are specified in terms of Real-Time Temporal Logic (RTTL) anel properties related
to the pre-and-post conditions are specified by using DeBigontract (DBC). A case
study of a patient monitoring system is modeled accordintp¢éoabove mentioned for-
malisms. The patient’s movements among different roones:; #ttivities and operations
are identified with the use of RFID Tag. For the modeling andfieation, they develop
a tool, known as Ambient Designer which can visually modelgiistem in the form of
AC and AL. It has an additional functionality of translatitite model in the acceptable
language of NuSVM model checker. The designed model can tifeedeby implement-
ing the model checking algorithm for AC in the designed tadbpusing NuSVM model
checker tool. By this, the properties related to the funaiaorrectness, reliability, avail-
ability, safety and security of the system can be verified.

In [77], the authors present a branching time model-checkingoagaprfor the formal
verification of dynamic aspects of complex systems. Autdefsied some formal seman-
tics, based on the work o8] and JACK (model checker), for considering the dynamic
aspects of the system (described in the form of Hierarciioc&mata). For the verifica-
tion, authors consider the Statechart modeling of useraot®n with TV system. The
dynamic behavioral properties are specified in ACTL logic agxfied on the model with
the help of JACK model checking tool. The syntax and staticas#ios of Statecharts are
formally defined; however their dynamic aspects are infdisnaefined.

In [79], the authors present the UMC model checker tool for the &bwerification
of the dynamic behavior of complex systems. The systemshwdaa be verified through
UMC are required to be specified in the form of UML communicgtStatecharts which
can interact with others. The system requirements are i@ethby using the syntax
and semantics of mu-ACTL logic (ACTL logic with the completenmy of mu-calculus
as well) and verified on the model with the use of UMC. A case)stfdthe system,
consisting of two airports, two passengers and an airplarensidered for showing the
satisfactory outcomes of the model checker.

In [80, 81], the authors present an agent based ambient system fasrthalfmodel-
ing and verification of the interaction among multi-agerfsr the generic and domain
specific behavior modeling of the interaction, they usedlipagte logic. And for the ver-
ification of the specification, they used rule based Tempinade Language (TTL)3Z],
which is specially designed for the formal specification andlysis of dynamic prop-
erties, regarding the qualitative and quantitative (mmt@f time) interaction aspects of
the systems belonging to biological, cognitive and socahdins. They have modeled
the Medicine Usage Management system, in which patienstaledicines from the in-
telligent Medicine box (which has the ability of knowing thaantity of the dosage and
the time of previously taken medicine). On crossing theshodd values (maximum and
minimum quantity of dosage and time), the system notifieb Wwéep and by automati-
cally sending the SMS to the patient. In case of no reply (spoese) from the patient,

28



3.2 — Surveyed Literature

the system sends a history SMS to relevant doctor. For theslimgdof each component
(agent), input, internal and output states are considerptedicate logic format (referred
as Ontology). A stochastic model of the patient is considleaad interaction of the model
system is sent to the LEADST@J], which executes and simulates the traces of the sys-
tem. The TTL properties are also analyzed on the modeledmsy@dty using these traces)
through TTL checking tool§2] or by using SMV model checkér

In [86], the authors present a theoretical framework for the fdmmadeling of SmE
by concentrating upon the concepts of Pervasive compufiiipy perform the formal
modeling of requirements, assumptions and behaviors dicapipn software with re-
spect to the user (identification, movements, scopes) amadbessible features of the
surrounding devices. According to the requirements andnaggons, the abstract inter-
action modeling of the accessible features of the devicgsh® users at some certain
time) is performed, which is further analyzed and formalgyitied. For the behavioral
modeling of such system, Event Calculus is used; a formalsraxpressing and reason-
ing the effects of any actiorB8f]. According to the scopes (the direct interaction of the
users with the accessible devices) and duration, the mgeints along with the imple-
mentation of assumption are modeled in the form of axiomiegju A theorem proving
inference approach is used by adopting Discrete Event Qeldkasoner8g] as a tool
for formally satisfying the system requirements. Discietent Calculus is for represent-
ing the requirements in the properties format. DiscretenE@alculus is converted into
the (well-known) SAT problem and inference is made on theehddlith the example of
Meeting Support System, they justify the feasibility ofiti@oposed framework.

In [19], the authors present their work related to the modelingwandication of the
integrated services in the home network system (HNS). Tlesgribed and modeled the
HNS by using the semantic of Object Oriented modeling in Whie environment, ap-
pliances, properties, methods, states and other relevManiiation are considered. After
that, they presented a descriptive language for the maglelithe HNS. Then the ser-
vices’ reliability of HNS is verified. Authors used a casedstof a home system in which
air conditioner, inside and outside thermometers, smokeaeventilators and windows
are modeled. The appliances and their integrated servieeseaified with respect to
different CTL specified properties by using SMV model chegkiool.

In [89)], the authors propose the use of formal methods to analgzpédhvasive com-
puting systems. They start with proposing a formal moddiiamework for covering the
main characteristics of pervasive computing systems. adept CSP# for modeling and
verification as it is rich in the syntax for modeling concuntreystem with hierarchies.

IMoreover, Jan Treur (one of the authors 80,[81]) extended the work by covering other aspects of
the agent based ambient system, with the collaborationh&fraesearcher8f, 85]. In his work [85], the
cognitive analysis is performed through simulation (tf@meis not including in our survey). The purpose
of mentioning this is that it is the only found work which pamihed cognitive analysis for the ambient
system.

29



3 — Survey and Analysis of State of the art

Later, the safety requirements are identified and the spatidn patterns for safety and
liveness properties are provided as they have classifietrpertant requirements into
these categories. By doing so, the critical properties agj#ie system model can be ver-
ified by using model checking to detect the design flaws atainky design stage. Finally,
a case study of a smart health care system for mild demeritenga(AMUPADH) is run
to demonstrate the practicality of proposed framework.

In [90-92], the authors’ main goal is to verify the (software of) medidevices by us-
ing their Uls. They verify the devices by adopting differstrategies. They investigate the
user’s actual behavior in the field and verify it with the présed one as mentioned in the
user manualqQ]. Similarly, they provide a solution to the investigatiantiaorities for ver-
ifying as to which specified user-interface requiremengssatisfactorily incorporated in
the medical device after their implementati®@i]. Moreover, they extend their work and
investigate the interaction design issues in the impleat@mt by generating the keying
sequences (data entry task) and analyzing them with theinteeaction behaviord?2).
For the verification purpose, they adopt theorem proving@agh. The Prototype Verifi-
cation System (PVS) is adopted as a theorem proving toolttenchodel of the system is
designed by using the reverse engineering processes. $igmdd model is further trans-
lated into the acceptable format of PVS, which is based olndrigrdered-typed logic and
equipped with similar features of various languages (like-\CH#he requirements which
are required to verify are formalized into axioms (accogdio the template for proper-
ties) and then verified on the model. The verification procegerformed in §0,91] by
using proof obligations component of PVS and94][by using configuration diagrams (a
labeled graph of the modeled system/device in which nogeesent configurations and
edges represents transition with guard conditions). Thes&guration diagrams help in
generating the test cases for exposing the interactioesssuthe model. With the case
study of glucose monitoring procedure in oncology w&d [infusion pump P1] and a
layout of medical deviced?], they proved the authenticity of their work.

In [93], the authors present their theoretical contribution foe tnodeling and ver-
ification of pervasive computing environment. They consithe software controlling
components, devices, users, environment and other phydiEcts in the environment
as ambient which are spatially interrelated with other cigjeAlong with the movement,
an ambient can enter or leave the environment and can be fpaitier environments.
The modeling of these ambient along with their operatiors ativities are performed
with the use of Ambient Calculus. The properties related tafyiag the availability
of the services at anytime and anywhere, and devices molnilitase of changing their
context (entering and existing of ambient in other envirenth are performed with the
use of ambient logic. A case study (named as Gaia) of untyassconsidered which is
equipped with multiple sensors, computers and actuatdrgdeBts can enter with their
digital devices (mobiles, PDAs, laptop) and can perfornotes pervasive activities. Dif-
ferent model checking algorithms/tools, such as specifie[®4], can be used for the
verification of the pervasive properties.

30



3.3 — Empirically-derived Parameter-based Methodology

3.3 Empirically-derived Parameter-based Methodology

For the development of SmE, it is evident from the literaturéirstly design and verify
the system (motivation is given in Sectiép Practically, project manager (along with the
team) may have many questions regarding the modeling aificaton of the system.
As SmE has the capacity to cover various domains with diffeperspective, different
techniques and tools are used — according to their apitatieas and covered aspects —
for the modeling and verification. On the basis of our experés and surveyed literature,
we try to identify and classify the emerging concerns (tddtelow) into four groups.

» Among the basic components of SmE (mentioned in Sedfipwhich components
are required to be modeled for this specific application;area

» For the modeling of the selected components, which as@eetsequired to be
covered,

* How the modeling of each selected component is performedadmgidering the
level of details necessary to be achieved?

» How the intelligence/computation is modeled by consiugthe system constraints?

» How the requirements of different perspectives are maljdi@ confirming the
correct incorporation in the system model?

» How the verification of the different aspects/perspestiwethe components or sys-
tem is performed?

» Which techniques and tools are used for the modeling anficagion of the sys-
tem?

» Which application area is selected for proving the religbibf the proposed ap-
proach?

» Which abstraction technique is employed/adopted for redptbe size of the model
so that the verification can be easily performed by focusimghe interested per-
spective?

During the first course of the literature survey, these qoestwere identified and
classified according to criteria mentioned in Sectoh A deep analysis of each classi-
fication with the internal categorization is carried outhe second round, and termed as
parameter In the third round of survey, the existing state-of-theamainst each param-
eter is identified and analyzed according to its modelingieation capacity, termed as
parameter values

31



3 — Survey and Analysis of State of the art

To the best of our knowledge, the existing state-of-thefidrmal modeling and veri-
fication processes (as described in SecBdi), with respect to their level of adoption and
application scenarios, may be comprehensively repredenta tabular form, in which
each formal parameter is represented by the adopted dtdte-art (parameter values)
against the surveyed literature. The complete procedudesifjning tabular form (from
extracting parameters to their corresponding values agasch surveyed literature) is
referred as empirically-derived parameter-based metbggo

In order to perform an in-depth analysis of the surveyeddttge, an overview of the
existing state-of-the-art techniques has been perforriiéd. details of their application
domains, level of adoption, and their corresponding scesare presented in the subse-
guent sections. Moreover, uncovered areas by the exidtierof-the-art processes and
commonly used ones are also investigated.

The following subsections are the main classification, regga@ach of which, a table
is designed that provides the adopted tools/techniquesniation against each surveyed
literature. The inner subsections of this classificatiomkas parameters of these tables.
These inner subsections represent different perspeetivesi may be adopted during the
formal modeling and verification, in the surveyed literatufhe values of the parameter
represent the formalism (existing state-of-the art) oratleption of perspectives in the
surveyed literature.

3.3.1 Formal Modeling
Black Box Modeling

Different formalisms are used for Black Box modeling such asctre diagrams (Class
diagrams, Object diagrams)q] and Ontologies §6]. Structure diagrams are Unified
Modeling Language (UML) artifacts that model the Objecteédted systems, whereas
Ontologies are the semantic web solution for describingltitea as complete data model,
formal semantics, knowledge discovery and sufficient ne@gppower; due to these ad-
vantages, Ontologies are often preferred for the modelir&nE.

Black box, as a parameter in our methodology, is used for septeng the explicitly
adopted formalism of modeling information. In tabular f@atnthis parameter is either
represented with the name of the employed formalism or wittoas mark((l), indicating
that it is not adopted (as represented in TéblB.

White Box Modeling

The behavioral modeling of SmE can be performed through UMhavioral diagrams
[95], process calculug[7, 98] and petri-netsZ1, 99].

UML behavioral diagrams consist of Use Case, Activity, Sexqee Statecharts and
other diagrams. Statecharts (Automata or labeled transsystems) are commonly used

32



€e

Researchers Black Box White Box Intelligence Requirements
Modeling Modeling Modeling Modeling
Ahmed and Tripathi§8] | Role based collaboration Role based LTL
model
Augusto and Hornos5p) O Activity Modeling | Event (Activity detection),| LTL
Through Promela pro{ Condition(location identi-
cesses fication), Action (opera-
tion graded)
Augusto and McCullagh| O Finite State Machine Event Condition Action TCTL
(10
Benghazi et al.70] O UML-RT (Timed Se-| Event Condition (previoug Frp (Common Formal
guence Diagram, Timed history) Action Semantic Domain)
State Diagram), CSP+T
Bernardeschi et al1[3] O CCS/MEIJE Process Al{ Event Condition Action mu-ACTL

gebra

Bonhomme et al.41]

System Engineering Stan
dards, EIA-632, Use Caseg
Sequence, Activity and
Dynamic Context Dia-
grams, UML2, SYSML

Petri-Nets, HiLes

Decision Logic

Temporal Properties

Boytsov and Za-| Context Space Theory Orthotope-based Situation Weighted Rule Based Situation Algebra Expres-
slavsky [/1] (CST) Space sion
Coronato and Pietrolp, | Ontology Ambient Calculus Ambient movement, Pre; Ambient logic + RTTL
75,76 and-Post conditions
Gnesietal. T7] ] Hierarchical Statecharts | Event Condition Action ACTL
Gnesi and Mazzanti’P] | Communicating State Ma; Event Condition Action mu-ACTL
chines
Hoogendoorn et al. 80, | O Predicate logic Rule Based TTL
81]
Ishikawa et al. §6] | Event Calculus Rule Based Axioms Based through

Discrete Event Calculus

Leelaprute et al.]9]

Object Oriented Model-
ing, System description

Object Oriented Model-
ing, Service description

Event Condition Action

CTL

Liu et al. [89] | CSP# Rule Based LTL

[90-92] | PVS Logic, a Typed| O Axioms Based (according
higher-ordered Logic to property template)

Ranganathan and Camp- [ Ambient Calculus Rule Based, DL-Based, Ambient Logic

bell [93]

Relational Algebra

Table 3.1.

Modeling Evaluation

AbBojopoyia paseq-iajawered paalsp-Ajjeauidws — g



3 — Survey and Analysis of State of the art

artifacts for specifying the system in a formal way. Diffiergariants of state diagrams for
modeling different aspects of behaviors, with each vaiving its own limitations, are
designed. The more famous and exploited variants are Haatdcharts 32], Commu-
nicating Statechartsp], Automata [LO, 100 and Hierarchical Automata/[7, 101]. The
probabilistic and timed behavior of the complex system camiodeled with the use of
Probabilistic Statechart4 (2] and Timed Automatall6], respectively.

Process algebras can also be represented as labeleddrasggtems for specifying
the behavior of the system. In process calculus, the mostmotty used formalism are
Calculus of Communicating Systems (CC3$3,[103, Communicating Sequential Pro-
cesses (CSP)LP4, 105 and Pi-calculus106], whereas their extension with the context-
aware (mobility) modeling information is known as Ambientl€dus (AC) [L5, 107].
The probabilistic modeling of the system is mostly perfodnhy enhancing the seman-
tics of process calculus formalisms.

Petri nets are used as framework for specifying the conotigygstems with detailed
(mathematical and conceptual) basic semantic for theiraimogl Timed-petri-nets is
an extension of petri-nets, in which the concurrent behaviadhe system is formally
specified in terms of time.

White box, as a parameter in our methodology, is used for septeng the adopted
formalism of modeling information. In tabular format, thalwe of this parameter is
represented with the name of the employed formalism.

Intelligence Modeling

For providing services intelligently, different technegiare adopted among which artifi-
cial intelligence (e.g. fuzzy logics inpg 109, decision trees in]1(, machine learn-
ing in [111], case-based reasoning i1}, rule-based reasoning i ]], databases (e.g.
event-condition-action in[13 and SQL-based data managementif4) are some of
the mostly adopted approaches. Based on these approachas] etgorithms decide
feasible operations and send commands accordingly tospmneling devices.

In empirically-derived parameter-based methodologglligience modeling is used as
a parameter (see Tal#el). The value represents the name of the employed formalism by
the surveyed technique and cross markifidicates that it is not observed in the surveyed
technique (as represented in TaBl&).

Requirements Modeling

Temporal Logics are widely used in formal verification in @rdo formalize and specify
the requirements of complex systerd,[44,45,54]. The truth value of these specified
requirements depend upon time; whether the specific regeimewill be true at any path
(Exists), or on all the paths (All) of the complex systemsatidition to Exists and All,
there are other temporal quantifiers like Global, Next, Ftwntil, Implies, which help

34



3.3 — Empirically-derived Parameter-based Methodology

in verifying the complex requirements on different brarefrem some specific state at a
certain time.

Linear-Time Temporal Logic (LTL) is used to represent thguieements for linear
time model of the system, whereas Action Based Branching Tiogc (ACTL) [44]
and State Based Branching Time Logic (CTUY] are used for representing the require-
ments for computational time temporal logic of the systemve$al logics are designed
for handling different aspects of requirements, many arméitated by integrating the
already designed languages addressing a wider range ofaerunts like UCTL 115,
SocL [116. Time based requirements are usually handled by TCTL, RTITIRTPTL,
RTCTL [117] whereas probabilistic requirements are handled by usiiig.RRnd PCTL
logics [11§].

In our methodology, requirements modeling is used as a petearand the value (in
Table3.1) reports the adopted logic by the surveyed technique.

3.3.2 Component Modeling
User Modeling

Users interact with the SmE in their own ways which, in tumsponds according to
the specified and modeled behaviors. The level of detailssaptistication varies from
system to system, context to context and goals to goals. gnddferent perspectives,
some of the behavioral aspects which are considered fomuseeling are:

» User identification (Ul): the identification of the userdhgh sensing and/or input
devices;

» User actions history (UH): the stored history of previossnactions;

» User privileges —on the basis of their roles— (UPr): basetthe role categorization,
the system functionality provision granted to the user;

» User position —pre- and post-action execution— (UP): theggaphical location of
the user within the system boundaries with respect to afspection;

» User’s possible actions (UA): the actions of the user widah be contemplated
and facilitated by the system,;

» User’s possible behaviors (UB): the behavior (related tovanment and context-
approved actions) of the user which can be contemplated aailitdted by the
system;

In Table3.2 the values at the end of listed items (placed in parenthassised as pa-
rameter values for representing the modeling aspects etd\srthe referring technique.

35



3 — Survey and Analysis of State of the art

Researchers Users _ Devicgs Contrql Conte>'<t Interagtion
Modeling Modeling Modeling Modeling Modeling

Ahmed and Tripathi§8] UPr, UA O ul, IC, CO

Augusto and Hornossp) Ul, UP, UA, O O Us, UC, SC, CO
uB

Augusto and McCullagh| UA Behavior g us, Ul, SC, IC, CO

(10

Benghazi et al.70] UH, UA O us, Ul, SC, IC, CO

Bernardeschi et al1[3] O IC, CO

Bonhomme et al.41] Ul, UH, UA [H] uUs, Ul, SC, IC, CO

Boytsov and Za- [H] IC

slavsky [71]

Coronato and Pietrolp, | Ul, UP, UB O O Us, UC, SC, CO

75,76

Gnesietal.T7] UA Behavior ul

Gnesi and Mazzanti’P] UA, UB Behavior | UcC, Ul

Hoogendoorn et al. 80, | UH, UA g ul, IC, CO

81]

Ishikawa et al. §6] Ul, UPr, UP, O O us, UC, Ul, SC, CO
UA

Leelaprute et al.]9] Behavior g IC, CO

Liu etal. [89 ul, UA O O us, UC, UI, SC, IC,

CO
[90-92] Ul, UPr, UA Behavior ul
Ranganathan and Camp- Ul, UA O O us, UC, UI, SC, IC,

bell [93]

CO

Table 3.2. Component Modeling

36



3.3 — Empirically-derived Parameter-based Methodology

Devices Modeling

Device modeling can be done by two methodologies: interfawk behavior. In inter-
face modeling, we usually consider commands (triggers)vicdenay receive; associ-
ated functionality (operation) it may perform; constraifttules) it has to follow; states
at which it will be at any time; notifications that it sendseafthe completion of task.
Whereas in behavior modeling, acceptance of specific comsnand particular state,
implementation of constraints, operations which may béopered on that state after the
satisfaction of constraints are considered.

Referring to Table8.2, the value “Behavior” under this category show the modeling
of internal behavior of the devices in the surveyed techaiqu

Control Algorithms Modeling

The overall sophisticated control strategy of SmE is im@atad through control algo-
rithms. Control algorithms take input from the input/seggilevices and according to the
system specifications and imposed constraints, decidénéoreliable functionality. For
the fulfillment of the desired functionality, they send coamds to the relevant operating
devices for performing required task/operation (as preskim Figurel.l).

In Table3.2, a tick mark (J) under this parameter show that the referred technique
takes decision by implementing the mentioned pattern.

Context/Environment Modeling

The identification of the user location is grouped in thisegaty, and termed as Context
modeling. Referring to Tabl®.2, a tick mark () under this category shows the referring
technique performed this type of modeling.

Interaction Modeling

SmE components can interact with each other for the achientof desired goals. In
the surveyed literature, researchers are found focusirdiffament interaction levels and
accordingly building the system. On the basis of these ®guse categorized the inter-
action levels into the following groups:

» User interaction with the environment through sensors)(ltHe considerable user
actions in the environment are monitored or noticed withube of sensors;

» User interaction according to its context (UC): the useioastare recognized ac-
cording to user’s movements in the environment; althougiserare usually mon-
itored by sensors, the focus point is that with a change irptsition, the system
will able to consider the activities;

37



3 — Survey and Analysis of State of the art

» User action performance on input devices (Ul): user imtisravith the system through
handheld devices, or by directly performing action on tred mgputting devices;

» Sensor interaction with the control algorithms (SC): theseel data is sent by the
sensors to the control algorithms, on the basis of whichrobatgorithms decide
for the preferable action;

* Input device interaction with the control algorithms (I@)e handheld devices or
real devices send the commands to the control algorithmgeidorming the spe-
cific task;

» Control algorithms interaction with the operating devi¢€®): control algorithms
incorporate the intelligence strategies and on the basigofming commands, de-
cide for the preferable action and accordingly send mesdagbe relevant devices.

In Table3.2 the values presented at the end of each listing item areassétk pa-
rameter values for informing that the referred techniguedsising/performing on which
type of interaction modeling.

3.3.3 Formal Verification

The system correctness with respect to its specificatiodscanstraints can formally
(comprehensively) be verified and this process is known gsdbverification. Different

aspects are verified during the verification process. Therigi®n of each aspect is
presented in the following subsections.

Consistency Verification

Consistency verification, as a parameter in our methodolsgysed for representing
whether applied modeling formalisms are consistent witipeet to their vocabulary and
functionalities, and the specified requirements are pippecorporated in the designed
system (as mentioned in Secti8rl.3. In Table3.3 a tick mark (1) shows it is consid-
ered and performed in surveyed literature.

Entire SmE Verification

In order to verify entire system, different aspects are oedewhich can be classified as
the following: Users Behavior Verification, Context Verifiat, Device Behavior Veri-
fication, Devices Interaction and Control Verification, Remh@& Verification and Proba-
bilistic Verification.

38



6€

Entire System Verification

Authors Consistency | Users Context Device Devices Real Probabilistic
Verification Behavior Verification | Behavior Interaction Time Verification
Verification Verification | Control Verifi- | Verification
cation
Ahmed and Tripathi§8] ad ]
Augusto and Hornossp) a a ]
Augusto and McCullagh O O ad
(10
Benghazi et al.70] O O O
Bernardeschi et al1[] [H]
Bonhomme et al.41] U (Behavioral O
Analysis)
Boytsov and Za-| O
slavsky [71]
Coronato and Pietrolp, g a g
75,76
Gnesietal.T7) 0
Gnesi and Mazzanti’P] 0 [
Hoogendoorn et al. 80, O O
81]
Ishikawa et al. §6] O O O O
Leelaprute et al.19] O |
Liu et al. [89] O O 0
[90-92] O O
Ranganathan and Camp- O O ]
bell [93]

Table 3.3. Formal Verification Evaluation

AbBojopoyia paseq-iajawered paalsp-Ajjeauidws — g



3 — Survey and Analysis of State of the art

» Users Behavior VerificationThe key concern while designing SmE is to facili-
tate the environment with integrated technologies to benséirs, who have certain
goals/desires and a complex web of behaviors which can bhatedlouring inter-
action with the system. In this classification, accomplishtrof user goals against
the specified actions with the input devices (or sensors)tla@adinderstanding of
the possible behavior (moves) of the users are verified. iCk€[d ) sign under this
category shows its application in verification of usersawiand behavior.

» Context Verification:Users interact with the SmE through the environment. Ac-
cording to location (also referred as Context), users capsacservices (mostly
concerned with safety and security) from the environmehe &nvironment mod-
els of SmE have extra computational power for determiniegctirrent state of the
corresponding objects/devices/users and providing Bpeservices accordingly.
For instance, room illumination services are only accdssihen residents are
awake and/or present in room. Talde3 reports whether the surveyed technique
performs context verification or not; the tickl | sign shows context verification is
performed.

» Device Behavior VerificationThe devices in SmE are of heterogeneous nature with
some common and distinct features. They are self-dependergonents with their
own internal specified behavior that may be complex baseti@nevice features
(smart devices). In this classification, the specified maebehavior of devices is
explicitly confirmed on their models. The tickl( sign in Table3.3shows scenarios
in which this verification is performed.

» Devices Interaction and Control Verificationthe system level requirements are
implemented through control algorithms which regulaterattion among devices.
In this classification, the system level constraints andé¢hable interaction among
devices under control algorithms are confirmed. The ti¢k gign under this cate-
gory shows it has been applied.

* Real Time VerificationThe application areas of SmE are almost in every domain.
Some applications can be time dependent such as trafficootsgstem, where time
factors are also considered in modeling and verificatiogestdn this classifica-
tion, real-time verification of the system is ensured. Thk (i) sign in Table3.3
indicates real time verification is performed.

* Probabilistic Verification: The system being large along with possibilities of its
multi-tasking nature make it more complicated. Probaiilisiodeling, in this re-
gard, can be adopted to ensure its smooth behavior withaegppossible actions
the system can perform at a given time. SmE may encountdeolgailg conditions
such as versatile user behaviors, malfunctioning senlsmken or out-of-order de-
vices, which may compromise reliable response of the syst@mcater to such

40



3.3 — Empirically-derived Parameter-based Methodology

scenarios, probabilistic modeling and verification is ligyzerformed. In this clas-
sification, checking of probabilistic verification in suyesl literature is taken into
consideration (see Tab&3).

3.3.4 Adopted Procedures/Tools

In this category, analysis of verification procedures&aslconsidered. The following
subsections explain in details.

Formal Verification Techniques

Model checking is suitable for the system in which the staice is finite 1227 but it
can also work for infinite state space models representediaseastate space by adopt-
ing some reduction technique (such as abstraction, iregtviable elimination, inter-
nal transition by passing, approximation). Several modheicking tools are available
for the formal verification of SmE related systems. The weation can be performed
using Linear-Temporal Logics or Branching-Time Temporabics. Some of the re-
ported model checkers that use Linear-Temporal Logicsraf&li-121], HEGO [123,
VUML [124] based on SPIN125, whereas JACK, 17], SMV [12§, CMC [127] and
UMC [79] are used for verifying state and action based branching temporal behav-
ior. For the verification of real-time systems, UPPAL2B and nuSVM [L29 model
checkers are used, while TINA3(, TAPAAL [13]], ROMEO [137, DREAM [133
are exploited when model is specified in terms of Petri-NE&tse based verification can
be performed with the use of UPPAL, TAPAAL, ROMEO, DREAM, CWB3{] and
other model checkers, whereas probabilistic model chgokam be performed with the
use of CADP [135, PAT [13€], PRISM [137] and others.

The formal verification on the system can also be performel thie use of theorem
proving techniques, in which the system is modeled usingriamts and set-theoretical
structures. Different logical inference rules, linear aachporal properties can be ap-
plied for checking correctness of the system. Inferencelmsemi-automatic (with
user involvement) or fully-automatic (by providing full wer of inference to theorem
prover). The commonly used semi-automatic theorem praeeH®L [13§], Coq [139,
ACL2 [14Q PVS [14]] and Isabelle 147, whereas fully-automatic theorem prover are
Perfect Developerld3 and Escher CJ44]. The possible scenarios, where these model-
ing techniques are applied, are described in Table

Abstraction

In case of model checkers, abstraction techniques aredntiguused for reducing the
size of the system model. The abstraction can be appliedatessiactions and variables
of the model. Under this parameter, either the name of theaadti®n technique explicitly

41



3 — Survey and Analysis of State of the art

rt

)

Researchers Verification Abstraction Automatic Scalability Verification Case
Technique Tool Study
Ahmed and Tripathi§g] Model Checking | incremental modeling with| Automatic SPIN Computer Supported Coopera:
separation of concerns and tive Work (CSCW) system for
property specific abstractions Monitoring Exam Activities
Augusto and Hornossp) Model Checking | O Manual O SPIN Nocturnal (Night Optimized
Care Technology for UseR
Needing Assisted Livestyles)
Augusto and McCullaghl Model Checking | O Manually O UPPAL Smart Home
(10
Benghazi et al. 70] Transformation d Semi- | O Emergency Assistace Syste
and Mapping automatic for Cardiac patient
rules
Bernardeschi et al1[] Model Checking | Testing Signal Values, Static Manually JACK Computer Based Railway In
configuration parameters, terlocking System
Zooming
Bonhomme et al.41] Model Checking | O Semi- TINA Smart Energy Management
automatic System for Home Comfort
(EDGDOM)
Boytsov and Za-| Rule Based ad Manual Self-designed Smart Office Environment
slavsky [71] Algorithms  for
Emptiness Check
Coronato and Pietrolp, | Model Checking | O Semi- ] Ambient De- | Pervasive Healthcare Applica-
75,76 automatic signer, Nu-SMV | tion for Monitoring the Patient
Gnesietal. 7] Model Checking | Refinement Function Manually JACK User and TV System
Gnesi and Mazzanti’P] Model Checking | not generating the global Manually O uMC Plane and Passenger in Airpo
model of the system System
Hoogendoorn et al. 80, | Model Checking | O Semi- TTL  Checker, | Medicine Usage Management
81] automatic SMV
Ishikawa et al. §6] Theorem Proving| O Manual Discrete  Event| Meeting Support System
Calculus  Rea-
soner
Leelaprute et al.]9] Model Checking | Symbolic representation of Semi- SMV Air Cleaning Service in Home
the State space automatic Network System
Liu et al. [89] Model Checking | O Semi- | PAT Heath care system for Demer
automatic tia patient
[90-92] Theorem Proving| O Semi- PVS Glucose monitoring procedur
automatic in oncology ward, Infusion
pump, a real medical device
Ranganathan and Camp- Model Checking | [ Manually specified in L19-

bell [93]

121]

Gaia (pervasive environmenT

with digital devices)

Table 3.4. Adopted Procedures/Tools

42



3.4 — Discussion

adopted by the surveyed literature is mentioned or the ¢fdssign indicating that it is
not performed.

Automated

This parameter is used to represent that the surveyed tpahgenerates the model and
the properties “automatically”, or it performs some mannatruction and some part is
automatically generated (“semi-automatically”), or atink is performed “manually”.

Scalability

Scalability is among the important factors which are cosi®d for the evaluation of tech-
niques. It is a broader term and can be used in many dimenditere the scalability is
referred as the ability of the surveyed technique to enhdsek by adding more compo-
nents of same or different nature in the system. Under thignpeter, the tick[{l) sign
indicates our observation that the technique can be entddoycadding other components
with their inner aspects and details.

Verification Tool

This parameter indicates that among the several model oiggttkeorem proving tools
(as listed in sectio3.3.4), which tools are adopted and in which domains and scenarios
In Table3.4, this parameter (verification tool) contains the name ofhelied approach-
es/processes/tools in verification process.

Example/Case Study

This parameter has the name of the application area, whiséléxted by the surveyed
literature as a case study/example, for proving the sat@fiaoutcomes.

3.4 Discussion

In this chapter, a survey of SmE modeling techniques is eogtly conducted. In sur-
vey, the modeling techniques which also perform formalfieaiion for confirming their
correct behavior are considered.

As evident in the Tabl&.1, the analysis shows that most of the techniques do not
perform black box modeling, but white box modeling is gldpglerformed. The rea-
soning behind this trend can be attributed to the fact thitast behavior modeling is
performed in any case due to the minimum formalism requirgnt&ack box modeling,
on the other hand, plays more of a foundational role (in fofltoonmon dictionaries and
conventions). This role nevertheless has a consideraaieplg and development cost.

43



3 — Survey and Analysis of State of the art

Owing to shortage of time and resources, researchers seleenaa hurry to furnish the
obvious functioning aspects of formal verification ratheart the foundation. For white
box modeling, most of the techniques consistently use 8tatés (or their variants) due
to their maturity and ready availability other than math&oad-oriented wide coverage
of all possible paths. Intelligence modeling, mostly pdad through Event-Condition-
Action technique, is almost globally performed by all theheiques. It is imperative to
mention that artificial intelligence (fuzzy logic, decisitree) is not diffused in formal
verification practice. Finally, using the variants of temgddogic, most of the surveyed
techniques perform requirements modeling.

The analysis of Tabl8.2shows that minimal user modeling is performed by almost all
the surveyed techniques. However, it is opportune to meititiat most of the techniques
acquire the knowledge of user identification and actionsetdopm user modeling. The
real user behavior modeling is performed by a minority ohtegues and a majority does
not do so due to pertinent complexity of behavior versgtéind uncertainty. Further,
all surveyed techniques in device modeling are considetiegnteraction between the
devices. But the behavior of individual devices is only medddy a very few techniques.
Further the table shows that almost all the techniques prréontrol modeling, but their
point of reference is different. some involve the user'spective, some involve device’s
perspective and some involve the environment’s/cont@edispective. 6 of the surveyed
techniques consider the user movements before taking ansi@®in context modeling.
Further, the interaction modeling seems to be largely @aday the techniques; user
identification and action, and based on them the operatititshwveould be performed are
major focus of interaction modeling. Leaving aside Liu et(dB9]), no other technique
seems holistic and global in its nature. They consider ont@rother component of
SmE with the control and model it; mostly the user. Three eftéchniques are some-
what holistic as they model 3 out of 4 SmE components. Thedefigitely scarcity of
techniques covering all areas of components modeling.

The analysis of Tabl8.3 shows that only 3 techniques perform holistic consistency
verification (between black box and white box), whereas Adhraed Tripathi ( 68)),
though not having performed a black box modeling, still @doponsistency verification
strategy by validating the successive formalisms with texipus ones. Since most of
the techniques have not performed black box modeling, theret seems appropriate
that they (other than Ahmed and Tripathi) do not perform @iaacy verification. It is
also observed that 6 techniques perform user behavioroagidn. This shows a lack of
interactivity and liveliness of SmE modeling and verificatpractices.

Similarly, the situation is equally alarming in context Meation with 6 out of 16
surveyed techniques performing this verification. It caralgued that SmE are context
critical systems and demand an understanding of their palyand location-based modal-
ities, therefore such a modeling is highly required and #search impetus is too strong
to ignore in future works.

Also, some of the techniques are found to perform deviceaot®n verification. The

44



3.4 — Discussion

increasing complexity of devices and intricate nature efrthehavior within the system
impede this type of verification. But, based on mounting ngiédsimperative to perform
this type of modeling.

The analysis further reveals that device interaction anutrob verification is per-
formed by almost all the techniques. It is grounded on thetfet most of the surveyed
techniques use control algorithms for accomplishing thetesy requirements, therefore
it seems natural that all these techniques do perform thid & verification. Finally, real
time verification and probabilistic verification are not fmuso diffused in the surveyed
techniques. These seem to be highly neglected areas of Snfi€at®n and owing to
their importance, it is necessary that SmE researchersdaleat some effort to these
areas.

The analysis of Tabl8.4 shows abstraction is performed by less than half of the sur-
veyed techniques, whereas others do not perform the atistrakt can be said that those
techniques which perform abstraction do so based on thige &ze and focus. According
to the observation, it is found that some techniques arebllslwhich can be enhanced
by adding the other components and their aspects in morgsdétarther, it is found that
8 techniques are manual, 7 are semi-automatic and only hitgah claims to be fully
automatic (as it is rule-based). It can be argued theretleatdmplex nature of SmE and
correspondingly complex modeling and verification requieats hinder the automation
of these techniques, as the only fully automatic technigsi@so not truly automatic in
its nature and is based on rules. All but two surveyed teclasgise verification tools of
different nature. Finally, all the surveyed techniquestasted on one or the other case
study of varying nature, scope and level of complexity.

45






Chapter 4

Proposed Methodology

A comprehensive methodology is proposed for the design anflcation of SmE. The
methodology entails all the major components of SmE; uskngces, environment and
control algorithms. It is advisable that for designing theES the detailed specifications
of these components are listed at requirement gatheringephiehe organized specifica-
tions provide a better understandability of the system {@reélated components) through
which the ambiguities during modeling can be sufficientiyueed. Further, these orga-
nized specifications help in designing the propertiesedl&d the verification of reliable
behavior (consisting of safety, security and other majpeats) of the system. For the be-
havioral modeling of each component, the methodology ad8fattecharts. The method-
ology provides ten steps, which are briefly explained in \iligh following case study of
Bank Door Security Booth System.

4.1 Bank Door Security Booth System (BDSB): A Case
Study

The Bank Door Security Booth System (BDSB) is our real world eXangd a SmE
system 13, which is extended with the concept of users’ and enviramnfeontext)
modeling. Although BDSB is an initial level small SmE systdatrexhibits a complex
behavior due to the interaction of multiple users with thetegn and performs a complex
communication between different hardware (e.g. devices) software (e.g. control
algorithms) components according to user interaction. @ppical layout of the BDSB
environment is presented in Figufel.

The BDSB is designed in such a way that multiple users canactavith the sys-
tem; ideally, the security and safety measures of the BDS&8yshould never fail. The
system is composed of two electronically controlled dolmsated outside (known as ex-
ternal door (DEXxt)) and inside the bank (known as inner dBémiier)). For electronically
controlling a door, actuators are installed. DExt and Dirare controlled by DAExt and

47



4 — Proposed Methodology

DAInner door actuators respectively.

Door Lock Control

M@m

Users

Figure 4.1. Bank Door Security Booth System

There is an isolated space between both doors, where usersdwait so that the
opened door is closed first and then the other door may be dpdie user request for
door opening is only possible through touch sensors (TSigwére installed near each
side of each door. The Touch sensor attached outside theiBEalled T1, and the one
attached within the isolated space is called T2. Similahky,touch sensor attached to the
DInner from within the isolated side is called T3 and the ottached from inside of the
bank is called T4.

The Door sensors (DSExt and DSInner) are used for querymgttius (whether it is
open, close or in moving states) of the door; DSEXxt is attdetith DExt and DSInner is
attached with DInner. Similarly, two obstacle detectionss®s are used for reopening the
door when itis in closing state and any object (e.g. persohgid in between the closing
path of the door, ODSEXxt is attached with DExt and OSDInnatteched with Dinner. A
control algorithm, known as Door Lock Control (DLC), managkshe communication
and functionalities of these devices in a safe and secure way

4.2 Methodology

The explanation of the proposed methodology with the dedégails is given in the fol-
lowing sections.

48



4.2 — Methodology

4.2.1 Step 1: SmE Specification Identification

Requirements gathering and listing in a suitable way is nbyrttee first step from where
any complex project begin®$]. The same process is adopted for the design of SmE
where the system level specifications are identified. Thesedaated to the physical
components of the system, their functional behavior (aleitly their interaction details)
and the overall constraints (e.g. Security, Safety) fordisgigned SmE. A graphical view
of the activities carried out in this step is explained inuFeg.2

Step 1: SmE
Specification
Identification

List of List the required Services s .
L. X . List the internal
participating which can be provided Constraints
Devices through these device
I
| |
Relationship Desired System level cons_tramts
3 (Safety, Security,
among these Behavior of the R
. Availability and other
device System

aspects)

Figure 4.2. SmE Specification Identification

The devices which are used in SmE are of two types: Contreliatdl Uncontrollable.
Controllable devices can be divided into two main categdséesed on their usage: input
and output devices. Input devices are used for taking thet inpm the environment, by
observing the actions of the users (e.g. sensors) or wittiteet interaction of the users
to the devices (e.g. touch sensors); whereas the outputede(e.g. actuators) are used
for performing the required operations, they can be sedfrafing or they can be attached
with some other uncontrollable devices (e.g. doors, wirglamd gates) for controlling
their functionalities. As these uncontrollable devices ased as an interface in the en-
vironment but they cannot be directly controlled throughssages, for controlling them
controllable devises are required to associate with them.

For the design of any SmE, it is required to identify the liktloese devices with
their positioning details. Also, the list of services, whare to be accomplished by using
these devices, is created. Each service is associated odmintes in some relationship
and against each service, SmE perform some certain fuaditypnAt this step, it is also
required to identify these relationships and the desiredtfanalities. Then, the overall
constraints on the system are required to be identified dotlley can be considered
while modeling the SmE, such as the security constraints cdase all the entry points
(e.g. main door, windows, rear door) when a smart home goé&daap mode” and the

49



4 — Proposed Methodology

safety constraint is to open all the entry and exit pointsaisecof fire.

After this step, a clear picture of the SmE will be obtaineduti@m is advised at this
stage because reliable, secure and safe implementatibe sf/stem will closely follow
these specifications.

The design specifications, the internal constraints anoledebehavior of the BDSB
systems are given bellow:

Design Specification

1.

two doors (external and internal) are used for ensuriagséturity measures from
the harmful access (direct access should not be possiltie teank;

there is an isolated space between external and intevned;d

doors can be controlled from the outside and inside ofsdblaied space through the
associated touch sensors installed at each side of theldpseding the door-open
request), so that the people can cross the door without Iséuc;

Internal constraints and desired behavior

1.

doors will remain open for a fixed time after opening andbetlosing so that the
users can cross;

when one door is in the process of opening-and-closingtia@adame door-open
request from the associated TS arrives, BDSB checks theattadgich the request
is received and accordingly performs the following action:

(a) if the same door-open request arrives when the door einpening process,
BDSB just holds this request and will not open the door again;

(b) if the same door-open request arrives when the door fsrelosing process,
BDSB will re-open the door;

if one door is in the opening-and-closing process and toe-dpen request from
the other door arrives, the BDSB will hold the request and Veaithe closing of
other door. As soon the other door will be closed, BDSB will opiee requested
door.

4.2.2 Step 2: Users Modeling

Users play a key role in the operations of SmE. According &rtpresence (observed
from different sensing devices) and actions (performedesogs), SmE perform specific
operations. For the identification and modeling of such ireguents, a two steps process
is adopted: goal modeling and behavior modeling. In goaleting, the Goals, Actions
and Roles of the users which they can achieve from SmE areilbedcrGoals are the

50



4.2 — Methodology

set of objectives which can be performed/demanded by thes.us®r achieving these
goals, users have to perform specific actions. Roles edtablislationship between the
user actions and the environment, which allows the userpddiorming specific task
according to the environment configurations. The flow of #ektcarried out in this step
is shown in Figuret.3.

Step 2: Users Modeling

Requirement Gathering

¢ Identify Users Activities, actions and roles

¢ Identify Users behavior

¢ Identify the devices to whom users can interact
\

Perform Formal Behavior Modeling

Figure 4.3. Users Modeling

The users have complex web of behaviors which they can adwjpigothe interaction
with the system. In behavior modeling, the analysis of th#ipossible moves are iden-
tified and modeled by incorporating their organized goabiimfation. Among different
perspectives, some of the behavioral aspects, which wedayed for users modeling in
this thesis, are following:

1. How the users can interact with the system?
2. Which user actions are considerable for the system?
3. Where a user can be positioned after performing an action?

4. What are the set of possible user behaviors which they aaptad
Some other aspects of the users, though not consideredddhésis, are the follow-
ing: 1) Actions history of the users 2) Division of users oa basis of their roles

The following is the list of users’ activities, behaviorsdaabservations which are
considered for the users’ modeling in BDSB system:

1. user can access and return from the bank by crossing ths;doo

51



4 — Proposed Methodology

2. users can press the associated touch sensors (at each tsidedoor) for opening
the doors;

3. users can press touch sensors more than one time;

4. users observe the states of the doors and when a door i émem, they can act in
following ways:

(a) they may cross the door;
(b) their mind may change and they stay there without crgsia door;

(c) they cross the door, but sooner their mind may change laddross-back
and come to their previous location.

5. users can change their mind from the isolated space ahdr@xi there without
entering into the bank; similarly they can re-enter in thekoaithout exiting.

4.2.3 Step 3: Devices Modeling

Controlling and commanding the functionalities of ele@tlifow cost or smart) devices
are main goals of SmE. These devices are of heterogeneaug nath some common
and distinguish features (such as functionalities, conteanotification, states and oth-
ers). The desired functionality from the relevant deviceadcessed by inputting some
specific commands or by interacting with them depending upertype of the devices.
For the sensor, the input is received by sensing the envieahand its output is usually
a notification message; whereas for other devices, the tgoube a command and the
output can be a physical operation. The input and outputrdkepa the category of the
devices; further the devices can be smart by having somenaiteonstraints. These ele-
ments (input, constraints, output) are required to be gath@rganized and described at
requirement gathering phase.

For the design and verification of complete interaction agn®mE components, it is
also required to model the attached devices at design titmemiodeling of these devices
can be performed by adopting interface (black box) and bheral\(white box) modeling
schemes. Before modeling a device it is first required to cotleeir detailed relevant
information, which includes the interface information -e tommands (triggers) it may
receive, the associated functionality (operation) it masfgrm, the constraints (rules) it
has to follow, the states at which it will be at any time, theifrmations which it sends
after the completion of task — and behavioral informatiorhe &cceptance of specific
commands on a particular state, the implementation of cainss, the operations which
may be performed on that state after the satisfaction oftcaings — of the particular
devices. A graphical flow of the task carried out at this ssgpresented in Figuré.4.

Touch sensors, door actuators, door sensors and obstéetdiole sensors are used as
controllable devices in BDSB. The modeling of each device ifopeed according to the

52



4.2 — Methodology

Step 3: Device Modeling

TR

AN

Requirement Gathering

Identify device functionalities Identify device behavior
| ‘
Interface Modeling
. Ident.lfy fe mt!erfac!e. Identify device Perform formal interface
information (functionalities, Categor modelin
commands, notifications, states) gory g
4
Behavior Modeling
. Identify the
Usertnh: dlzlti:e‘rface Identify the state internal Perform formal
. 8 to state transition constraintsof the  behavior modeling
information device

Figure 4.4. Devices Modeling

!

top

open

notMoving

open/
timedOn(waitValue);
en.stateChanged(opening,self)

/

close/ .
timedOn(waitValue); en s?aetlgé(r:gezzzjclnasﬁyself)
en.stateChanged(closing,self) : 9 ’

delay(timeToDelay)/ /

en.stateChanged(open,self)

isMoving

closing

open/
timedOn(waitValue);
en.stateChanged(opening,self)

opening

timedOn(timeToOff)/
delay(waitValue)

timedOn(timeToOff)/
delay(waitValue)

Figure 4.5. Statechart modeling of Door Actuator

53




4 — Proposed Methodology

activities specified in the methodology (from requiremeathgring to their behavioral
modeling); such as the door actuator component of BDSB sy&eatascribed to have
open-close functionality by which it provides force to opmrclose the door. The door
actuator, at any specific time, can be in moving (openingtaty) or in non-moving (open-
close) state. For activating the desired functionalitgdtepts open or close command
and, accordingly, performs its operation. It can also séednbtification back after the
state has changed. The behavioral modeling of door actuat&@tatechart format, is
represented in Figuré.5.

4.2.4 Step 4: Individual Device Verification

Every SmE (from simple to complex, based on the feature $extteaf) makes use of vari-
ous devices of heterogeneous nature. The intelligence B iSiprovided by controlling
the functionalities of these devices. Other componentsht Sirectly or indirectly in-
teract with these devices. The modelling of these devicedegerformed by adopting
both black box and white box formalisms. The black box foismlwill help other com-
ponents to interact with them, whereas whenever theirbielibehavior is required, the
white box formalism is considered.

| ° Individual Device VerificatiO“J

¢ Obtain device interface modeling from Step 3

Device | ¢ Obtain device behavior modeling from Step 3
Modeling

* Design Temporal properties according to interface information (commands, \
notifications, states) for Consistency Verification

| ¢ Design temporal properties according to the offered functionalities and device

Preparing |  pehavior for Behavior Verification

Model and . d di d ificati ived -

Temporal ¢ Design a commands sending and notifications received environment

Properties| ° Translate and integrate the environment and behavioral model in Model checker
format /

\\ / ¢ Input the integrated model to the model checker and check temporal properties
Model on the model.
Checking

/

Figure 4.6. Individual Device verification

Before verifying the complete SmE, which may consist of adistievices, it is best
to verify the requirement accomplished behaviour alont) Wie consistency verification

54



4.2 — Methodology

among the adopted black box and white box formalisms at edygn stages. By this,

at the time of entire system verification, the abstractiantm@aapplied on the interaction,
control strategy and the inner details of other componamts concentrating on the device
behavior becomes challenging, which may cause the exmaorattthe graph (as a number
of devices are used in SmE). In result, the drawback of usiaodeinchecker technique,

state-space-exploration problem, can be sufficientlyrotietl. The task carried out in

this step is graphically represented in Figdré.

The verification process can be performed with the use of hataeker technique in
which the model of each component is verified with the userapiaral properties related
to the consistency and behavioral verification. For theviddial component verification,
it is required to convert the respective (device) model endhceptable format of model
checker by establishing a system through which the commeadse sent in any or-
der, the acceptable commands can be accepted at that [zarttate and the associated
functionality/operation be performed, the rest of the cands are ignored.

The requirements regarding the consistency (by consiglenme modelling formal-
ism as a reference and comparing it with the other) and feliabhavior, according to
the specifications, are firstly transformed into the fornfaemporal properties and then
these properties are verified on the model with the use of hutweker. In the case of
unsatisfactory properties, the model is corrected and éndication process is repeated
until all the properties are satisfied.

Some devices of BDSB system are Touch sensors, door actudtanssensors and
obstacle detection sensors. The implementation detallisfstep is given in Chaptér
Section5.1

4.2.5 Step 5: Environment Modeling

In reality, users can observe the environment by seeinguirertt states of the concern-
ing devices and accordingly interact with them for achigvihe desired goals. But at
design time, these features can be modeled by adding som@ecexhputations through
environment models. The environment models can updatedbefiguration when any
action or operation is performed by the concerning devi&milarly, the environment
model can be capable of registering the actions, locatindsrderactions of the users. At
requirement gathering phase, the identification and gstihthese computations, which
are considered to be in the real environment, are requirbd ttescribed. These descrip-
tions help for the reliable modeling of the environment. Toacerning features which
are required to be considered for the environment modeliaggeaphically represented
in Figure4.7.

Considering the users’ modeling at design time, it is suggkestat the modeling of
the environment component must also be done, as users mageliee environment
configurations and accordingly interact with the systemr ths, a mechanism can be
designed which stores the state information of interestengces so that the users’ model

55



4 — Proposed Methodology

Step 5: Environment Modeling

|-
A
Identify the users and the devices through which they can interact with the system,

from Step 2

\, /

Design a mechanism through which the environment model can update its
configurations by knowing the current Status of the Devices

/

Design a mechanism through which the sensing devices can be triggered

Design a mechanism through which the activates and actions of the users can be
registered

NV

Perform Formal Modeling of the Environment

Figure 4.7. Environment Modeling

can observe the environment configurations at design tinseth@ devices model states
change, the environment model updates the current statbgqgdarticular device) with
the new values. Similarly, the users’ interaction with tbasors can be formalized with
the use of environment modeling; the environment model ¢smragister the activities
of the user (so that the exact location of the users can béfie€i.

The users can view the states of the door, whether it is in ,oplese, opening or
closing state; and accordingly perform some actions (egsscthe door, press the cor-
responding touch sensor). For designing such a real emagat) an environment model
is designed by having the ability to update it's configunat&s soon as the doors change
their states (taking advantage from State-Change-Notdicatessage). Through this the
users can have the latest configuration of the environmehtan behave accordingly.
Similarly, for knowing the proper location of users and adaogly providing access to
the relevant devices, environment model registers thermbf the users. Additionally,
the interaction with the obstacle detecting sensors camlk@smade through the envi-
ronment modeling. All these features are modeled with tHp beparallel Statechart
formalisms.

56



4.2 — Methodology

4.2.6 Step 6: Control Algorithms Modeling

Control algorithms aid the computation in the SmE. For achgpa goal, the user per-
forms an action which is forwarded to these controlling athes in the form of mes-
sages. According to these incoming messages, the currafiye@tion of the whole
system and the implemented rules, control algorithms maki&io sophisticated deci-
sions and send triggering messages to the associated siemigeerforming the required
operations.

Step 6: Control Algorithm Modeling

\
///

Use the SmE specifications collected at Step 1

/

\\ /
N

Use the device interface information modeled in Step 3

Identify the commands which are required
for the achievement of desired
functionalities

Identify the notifications which devices
send after the completion of task

) 4

Filter the unnecessary commands and notifications

]
N/

Perform Formal Modeling of Control Algorithm

Figure 4.8. Control Algorithms Modeling

The desired behavior of SmE (listed in Step 1: SmE Specifinalilentification
Stage), related to providing the required services, rididkehavior, security, safety and
other constraints, is achieved through control algorithiiee control algorithms accom-
plish the required behavior by controlling the functiotieB of the concerning devices.
For an effective communication, control algorithms havede the devices interface in-
formation (which are modeled in step 3: Devices Modelinggraphical task flow of this
step is given in Figurd.8.

Door Lock Control (DLC) is an intelligent component of a BDSBt&ys. It takes in-
puts from Touch Sensors (TS), Door Sensors (DS) and obstatdetion sensors (ODS),
and according to the designed requirements, instructs tdwe Bctuators for opening/-
closing the doors. All the computation requirements (noered in SmE Specification
Identification Stage) are achieved through DLC. For achgetie desired computational

57



4 — Proposed Methodology

requirements (what to do when the door-open request apPrivdsen the requested door
will be opened? when to send the acknowledgment?), diffeyeards (constraints) are
designed with the use of relational and logical operaton@s€ guards work on the basis
of incoming messages and the variable values.

4.2.7 Step 7: Temporal Properties Designing

Itis important for any complex and critical system to engbheesuccessful modeling of all
the desired behavior (related to the safety, security)tfanalities and other constraints
is performed. For the verification of these features, theeting of the temporal proper-
ties is required so that they can be confirmed at the formdicegron step. During the
formal verification, some properties may likely be ignore do system complexity. For
reducing the chances of ignoring important propertiesyélg@irements described so far
are used. These requirements are further formulated by tlsnsyntax and semantics of
temporal logics.

Step 7: Temporal Properties Designing

] :
< Z

Use the modeled information

Use user and

Use SmE ; User Device Use Use Control
: devices o <
Constraints 5 2 Interface environment Algorithm
R = interaction Rt = . .
information information Information information behavior from
from Step 1 from Step 3 from St t
(o] ep from Step 2 om Step om Step 5 Step 6

N

Design Properties related to the verification of

Reliable Reliable Security, Safety,
specified Desired SmE interaction Availability and Context
behavior of behavior among the other
Users components constraints

Figure 4.9. Temporal Properties Designing

The temporal logics are mostly used for the verification efithachability of certain
states, satisfaction of sequence, absence or existency predicate (at any state) and
the boundary checking or the universality of any state aoactBy using these features

58



4.2 — Methodology

of temporal logic, the properties can be designed by whiehli¢hable specified behavior,
safety, security and other constrains of the SmE can beegriliasks carried out in this
step are graphically represented in Figdre

As mentioned, the requirements related to the reliable\behaf BDSB along with
the safety, security and other constraints are formalizagsing the syntax and semantics
of UCTL temporal logic. The detailed description of theseuiegments with designed
properties are given in Secti@n?.2 one of the requirements of BDSB system (in UCTL
format) is that the external door will be opened when the usleases any touch sensor
associated at each side of the external door.

EF{eztDoorCrassed}A T {—extDoorOpened} U{TlReleaseorTQRelease} T}

The touch sensor associated with the external door fromsthlated space can only
be accessed when user crosses the external door; therdedofiest part of the property
ensures that one user has crossed the door, now the doorexpesst of both sensor can
arrive. The next path of the property is related to that sgerthat the extDoorOpened
request will not arrive until the associated touch senspeessed.

4.2.8 Step 8: Integrated SmE model

As control algorithms govern all the interaction among desi(and affect the environ-
ment), they receive a lot of messages (commands or notditatifrom the connected
devices. The devices models can send and receive nearlgsaliigle messages related
to their functionalities. But among these messages, somsages are of interest for the
current system and should be modeled in control algorithitee rest of the messages
are useless for the current system, but it's a good pradteteal] the incoming messages
must be received. If the modeling of all possible messagesrirmed in the control
algorithms, then the size, complexity and ambiguities @itau algorithms grow higher.

For curbing these issues, it is suggested to introduce adiranound control algo-
rithms which, at the initial level, checks the suitabilitiyareceived message and sends
forward only those messages which concern the currentrays&milarly, the received
messages can have different parameters; therefore thejstabe modified at this stage
if required. This helps in optimizing the control algoritemthe processing load is re-
duced and the “lost-event” errors don’t occur (during maztedcking) due to failure of
acceptance at receiver’s side.

Up to this stage, all the prerequisites for the modeling oESirocess are completed.
Now it is required to convert them into the acceptable lagguaf the model checker and
then combine them so that a complete SmE model can be predavethe translation,
the behavior models of the users, connected devices, emvéot, control algorithms,
firewall (with messages filter and converter) are requirémhawith the proper abstrac-
tion and list of their instances (connected in the SmE). iAéenverting them the whole

59



4 — Proposed Methodology

integrated SmE model is designed in the acceptable formaioatel checker. The task
carried out in this step are graphically presented in Figut@

Step 8: Integrated SmE model

Obtain formal behavior model of Users from Step 2
NS
Obtain formal behavior model of Devices from Step 4

NS

Obtain formal behavior model of Environment from Step 5

Obtain formal behavior model of Control Algorithms from Step 6
L 4
Add firewall

N/

Add the required abstractions and list of instances

NS

Integration and conversion in the acceptable format of model checker

Figure 4.10. Integrated SmE model

The firewall is added so that the all the messages can be eecand only the use-
ful messages and notifications can be passed. Then, alohghgifirewall component,
the individual behavior model of users, devices, environin@ad control algorithm are
converted into the acceptable format of UMC. Further, thérabgons and instances in-
formation is added for completing the holistic integratedS>model.

4.2.9 Step 9: Formal verification of SmE Model

The whole integrated SmE model, in the acceptable formataafehchecker, designed
at Step 8 is sent to the model checker, and the temporal pgrepétesigned in Step 6)
are verified on the model. On finding any unsatisfactory priypé¢he SmE model is
updated with the required modifications, and the verificaioocess is repeated until all
the properties are satisfied. The task carried out in this @te graphically presented in
Figure4.11

All the temporal properties, included the one mentionedvabare verified on the
BDSB model and the satisfactory results confirmed the suftdesdaustive verification
of our tested SmE, with the explicit focus on safety and sgctequirements.

60



4.2 — Methodology

Step 9: Formal Verification of SmE

Use whole Integrated SmE
model converted at Step 8

00000
. Verified reliable,

secure and safe

Formal SmE model o
Verification

(
through ‘ 00000
Model ( ]

Use temporal properties Checking o

design in Step 7
00000

Figure 4.11. Formal verification of SmE Model

A brief description and implementation details of this siepresented in Chaptér
Section5.2

4.2.10 Step 10: Development Phase

When all the properties are verified, it is implied that the Smétlel is according to the
specification and will behave reliably, surely and safelgienthe verified properties in all
scenarios. It is time to safely start the development andementation phases.

61






Chapter 5

Designed Techniques

A set of two techniques is designed and implemented by erm@dyogOnt, SCXML,
UCTL and UMC as tools and follows the steps of proposed metloggqgiven in Chap-
ter4). In the first technique the reliable behavior of individdaVices model, with respect
to specifications, and the consistency among both black bdxshite box modeling for-
malizes are verified (step 4). Then, in the second technitpese verified behavioral
models are integrated with other models and control stydtagverifying the entire SmE
(step 9). The following sections briefly explain these tegheas with examples (or case
study) and their results.

5.1 Individual Device Verification

In the components verification phase, the consistency amge&mong their interface
and behavioral modeling formalism is confirmed by autonadificdesigning the tem-
poral properties and, the behavioral verification with extgo the listed specifications
are confirmed by manually designing the temporal properties

The interface model of the device is known as “Device Int=fodel” (DIM) and
the behavioral model is known as “Device Behavioral ModelB{®). In the device veri-
fication process, the consistency and behavioral verifinatof the device are performed
for resolving the following issues:

1. The DBM should perform the functionalities which are spediin DIM, so that,
the device model can perform all its functionalities whitlsicapable of.

2. The DBM should perform the specified task against the spdaifommands which
are mentioned in DIM, so that, all the associated task can b®idevice model.

3. The DBM should send all the notifications back (as an ackedgrhent about the
completion of tasks) which are specified in DIM, so that thvéfer activities, which
are dependent on the arrival of notifications, can be peddrm

63



5 — Designed Techniques

4. The DBM should contain all states which are available in Dédlthat, the associ-
ated actions against such states can be performed by theedwodel.

5. The DBM should be modeled according to the specificatiorthagy the device
model can perform its reliable functionalities.

6. The DBM should be modeled in such a way that a deadlock magr w@cur in any
scenario.

5.1.1 Device Model Verification Technique

A technique is designed for the consistency and behavi@aafication of devices and
graphically represented in FiguBel All the specifications are listed and written in an
understandable natural language format. By considerirsgtbgecifications, the interface
modeling is performed with the use of DogOnt and the behal/rapdeling is performed
with the use of statecharts, know as Devices StatechariSgD$ SCXML [L45 format.

In the consistency verification phase, it is required to emthat all the modeled com-
mands, notifications and states (modeled in DIM) are ina@real in the DBM. As, the
device can accept some specific commands at particulas qi@tteers are rejected on
that state); for checking the existence of commands, by nowkng the command se-
guence structure in DBM. For achieving this constraint, a €@ldsnvironment strategy
is adopted, through which DBM can asynchronously accept camaisiand send notifi-
cations back after the completion of task. If the commantifination is implemented on
a reachable state in the DBM, then the existence propertygofas a satisfactory result.
Similarly, the reachability of the state can also be verifiedugh Closed Environment
strategy (if the state is in DBM but can not be reached, theexitstence is meaningless,
therefor reachability verification is performed).

The Environment Designer component, represented in Figdrautomatically gen-
erates “Environment Generate Commands” (EGC) and “EnviroiiReceive Notifica-
tions” (ERN), by considering DogOnt, in a form acceptable byddl checker (which is
UMC in our case), graphically represented in Figr2 EGC is responsible for gener-
ating all the commands specified in DogOnt against the dévao®g currently checked,
whereas ERN is responsible for accepting all the notificatspecified in DogOnt against
it.

The EGC and ERN are sent to Model Builder (MB), where MB perfotmedollowing
activities:

1. It automatically obtains the DBM, which is in the form of SCXMrom “Library
File” container.

2. It automatically converts the SCXML model into the formateptable by model
checker (in our case UMC)

64



5.1 — Individual Device Verification

Device
Specification

l

|

Device A\ N[> Device—,,
9 Interface [} ‘4\ Behavioral O —— — ———
Modeling - J Modeling
—xala_

|

DogOnt
Device statechart (DSC)

Modelin SCXMLFormat € = = = = = = =| = — = = = I
v v |
Environment Designer Behavioral |

Temporal
Environment | Environment Properties I

Generate Receive o
Events Notifications BlodelBlioey I
(EGE) (ERN) |
Temporal I
Properties Generator Closed Model

(TPG) |
Interface I
Tempon:al —_—> Model Checker — I
Properties I
Properties I
Verification I
v ) l I
‘ satisfied ‘ Unsatisfied ‘ —_— —I

- - S 4 N— S Jr

Store the updated
3 behavioral model
(from Closed Model)
Figure 5.1. Device Model Verification Technique

. It automatically combines the statecharts of EGC, ERN aaddmverted SCXML
model.

. It automatically adds some abstractions rules.

. It, in last, saves all the gathered and designed infoonati a file, known as Closed
Model.

65



5 — Designed Techniques

Environment

Environment --=3 Environment
Generates --=-» Receives
Commands Device ---3] Notifications
(EGC) ——> (ERN)
-=->)

Figure 5.2. Closed Environment Strategy

Temporal Property Generator (TPG) is responsible for aatmally generating the
Temporal properties, in the form of UCTL, to verify the comsigy between the DIM
and DBM models. As, there is no direct way to match them, bexhaoth are used for
different purposes, but it is important that both have samf@mation. For this, TPG
automatically designs three types of action-and-statecbssmporal properties by con-
sidering the information available in DogOnt. The propestare related for checking that
the system can send all the mentioned commands and the a=wiaeceived these as-
sociated commands, similarly after completing the taskdévice send the notifications
(as an acknowledgment) and the system can accept them, wltinthe verification of
the reachability of the specific states.

The temporal properties, related to “sending” of messagesrequired because of
the possibility of some notifications being available in @uog but not being modeled
in DSCs. The “accepting” message properties are requireausecof the possibility of
DSCs missing to model some functionality which is accesdtneugh a specific com-
mand. The last type of temporal properties is responsiblehexk the reachability of
states, which are modeled in DogOnt.

The closed model and the temporal properties, designed ey BG, are verified
through the model checker. On finding any unsatisfactorpenty, it is required to update
the DSCs by fixing the problem. When all the properties arefsatisthe verifier may
manually generate temporal properties for verifying therext behavior of the device.
In the behavior verification phase, these behavioral ptegseare designed manually, by
considering the device specifications. In the case of argriact property, it is required
to update the DSC by fixing the issue and regenerating the chaxlel. The behavioral
properties are verified until all the properties (behavjaee satisfied. After this process,
the DSC is verified and can be used in the driver developmextgs or for verifying the
system through simulation, emulation, model checking a&hdrs.

Dimmer Lamp: A Case Study

A case study of a dimmer lamp is presented here in which cemsig and behavioral
issues are found. We consider the interface modeling (tirdogOnt) of the Dimmer

66



5.1 — Individual Device Verification

Lamp, as presented in tatdel, in which all the, direct and inherited, functionalitiesdan
states which a dimmer lamp can hold are summarized.

| C d
off Command rea Nomman off
ame
OnOff Functionality has Command
real Command
on Command on
Name
StepUp real Command
stepU
Command Name e -
StepDown real Command 2
step Down o
- 5 Command Name g
Light Regulation . d 2
Functionality 2>emiman real Command _— 2
Name °
set Command €
command Param| "valueAr S
Name Object”
has max Value "100"
Functionality | Level Control Functionality
min Value "o"
notification A d
i state Change:
Dimmer Name a ng '5 _TBT,'
Lamp State Change Notification P State Change ‘:n; 5
% " . = ok AN o= v
Functionality Notification otiheation new; St":'te b E
State"An 25
Param Name ; o
Literal
| Co d
fealsommaly getState z
Name > =
c
Query Functionality has Command | Get Command Z .%
return Type Object o
2
OnState Value | real State Value on %
OnOff State has Stae Value g ﬂ
OffState Value | real State Value off 2
hasState
Light Intensi
Light Intensity State has Stae Value . 'y real State Value | " 1 Literal"
State Value
- Device Interface Detail + >

Table 5.1. Dimmer Lamp details available in DogOnt

With the use of information, provided in tabk1, “Environment Generate Com-
mands” (EGC) and “Environment Receive Notifications” (ERN)oswitically generate
the sending commands and receiving notifications modelth@racceptable format of
model checker) from DogOnt. Then “Model Builder” (MB) obtairSD of the device
and automatically convert the DSC in the format acceptapliaé model checker, it then
combines this converted model with the models generated@®@ Bnd ERN, further it
automatically adds the required abstractions and gersetfageinstances of these model.
After this, the combined model is ready for verification, veses this model in the file,
know “Closed Model”, as represented in Figir@ and passed it to the model checker.

“Temporal Property Generator” (TPG) automatically getegall the related interface
properties from DogOnt. The designed properties relatddrtotionalities and notifica-
tions are of two types, one is used for checking the “sendofghe commands/notifi-
cations, whereas the other is related to the “acceptinghe$¢ commands/notifications.

67



5 — Designed Techniques

Class State is
end State;
Class ECC is
Vars: RandonVal ue:int =35
State top = E
Transitions:
E -> E {-/D mer Lanpl nst ance. set (RandonVal ue) }
E -> E {-/Di nmer Lanpl nst ance. st epDown() }
E -> E {-/Di nmer Lanpl nst ance. st epUp()}
E -> E {-/D mer Lanpl nstance. of f ()}
E -> E {-/Di nmer Lanpl nst ance. on()}
end ECC,
Class ERN i s
Operations: stateChanged(newSt at e: St at e)
State top = N
Transi tions:
N -> N {stateChanged(newState)/}
end ERN,
Class DimrerLanp is
Qperations: on(), off(), set(value:int), stepUp(), stepDown()
Vars: lightlntensity:int=50, |ightStep:int=10
State top = off, on
State on = lightlntensityState
Transitions:
of f-> on{on()/ }
off-> lightIntensityState{set(value)/ |ightlntensity:=val ue}

on -> lightintensityState{-/}
on-> of f{of f()/ }

lightIntensityState -> lightintensityState{stepUp() /
if (lightlntensity < 100 )then
{lightIntensity := lightintensity + lightStep} else {lightlntensity := 100};

lightIntensityState -> 1lightlntensityState{stepDown() /
if (lightintensity > 0)then
{lightIntensity := lightintensity - lightStep} else {lightlntensity := 0};

lightIntensityState -> lightlntensityState{set(value)/ lightlntensity:=value}
end Di nmer Lanp

bj ect s:
ec: EGC
en: ERN

Di mrer Lanpl nst ance: Di nmer Lanp
Abstractions{
Action $1($*) -> $1($*)
Action $1 -> sending($1)
Action accept ($1) -> accepting($1)
Action |ostevent ($1) -> discarding($1)

State inState(D mrer Lanpl nstance. lightlntensityState) -> LightlntensityState

State inState(D mrerLanpl nstance.off) -> offState

State inState(D mrerLanpl nstance.on) -> onState

State Di mmerLanpl nstance.lightlintensity < 0 -> underFl ow

State Di mmer Lanpl nstance. lightlintensity > 100 -> overFl ow

State Di mrer Lanpl nstance.lightlntensity >= 0 and Di nmer Lanpl nstance.lightlintensity
<= 100 -> inRange

}

Figure 5.3. Closed Model of Dimmer Lamp

68




5.1 — Individual Device Verification

--Action Properties
--the acceptance of all the commands in DSC
EF {sendi ng(stepDown)} true
EF {sendi ng(stepUp)} true
EF {sending(set)} true
EF {sending(off)} true
EF {sendi ng(on)} true

EF {accepting (stepDown)} true
EF {accepting (stepUp)} true
EF {accepting (set)} true

EF {accepting (off)} true

EF {accepting (on)} true

--the generation of all the notifications in DSC
EF {sendi ng(stateChanged)} true
EF {accepting(stateChanged)} true

--State Properties
--the reachability of all the states in DSC
EF (offState)
EF (onState)
EF (LightlntensityState)

Figure 5.4. Temporal Properties for Interface Verification

E [true {not accepting(off)} U {accepting(on) or accepting(set)} true]

E [true {not (accepting(stepDown)or accepting(stepUp))} U {accepting(on) or
accepting(set)} true]

EF (not under Fl ow)

EF (not overFl ow)

EF (i nRange)

Figure 5.5. Temporal Properties for Behavioral Verification

The properties related to the reachability of states aegdserated by TPG. The auto-
matically generated properties related to the interfacéic@tion of Dimmer Lamp are
presented in Figurg.4.

Results of Dimmer Lamp

The automatically generated properties, presented inr&tg4, are verified on the Closed
model. It is found that the sending property related to that&Changed” notification is
not satisfied, which shows that in designing DSCs this notiGioais ignored and not
modeled in DSCs of Dimmer Lamp. The error is fixed by modifyihg DSC and the
verification process is repeated, which shows the veritioatf all interface properties.
The behavioral properties related to the verification of Dien Lamp are manually
formalized, as shown in Figui5, according to device specifications. When these prop-
erties are verified on the model, it is found that the lastehmeperties related to bound

69



5 — Designed Techniques

checking (as light intensity of Dimmer Lamp must be in-beaw8% to 100%) are vi-
olated. The model is analyzed, and the conditlmhtintensity < 100is replaced by

lightintensity + lightStep <= 100 similar action is taken for the decrement condi-
tion, too. After this the behavioral properties are verifegmin and all the properties are
found satisfactory.

The modifications made in the DSC and accordingly the Closedkins regenerated
and verified. Now, the both (interface and behavioral) modefiormalisms will be con-
sistent and according to the specification (mentioned inigcl). After this process, the
following goals will be achieved regarding the specific fied device:

1. All the interaction commands which are modeled in DogQGmt,triggering the
specific task, are also modeled in DSC.

2. All the natifications which are modeled in DogOnt, as acileolgments about the
task completion, are also modeled in DSC.

3. All the states which are modeled in DogOnt, for performapgcific actions, are
also modeled in DSC.

4. All the functionalities which are modeled in DogOnt, fordwing the capabilities
of the device, are modeled in DSC.

5. The DSC model is also verified for the existence of any arkd|

5.1.2 Experiments and Results

The feasibility of the “Individual Device Verification” poess is checked by selecting
and verifying thirteen devices among the 143 devices maddelelogOnt. During this
verification process the consistency errors and the betavgsues are found in some
DSCs. In table5.2 the interface information of these devices are presentdth, thve
additional information of the results of the Automaticallgsigned and satisfied interface
properties (are shown in last two columns of the t&b®, by the model checker.

5.2 SmE Verification

The desired SmE model is verified by integrating the behal/imodels of each compo-
nents, control strategy, the required firewall with the gbabstractions. The technique,
based upon the steps of proposed methodology, is presentied following subsection
with the results of the BDSB case study (presented in Chdjpter

70



TL

Number of Number of Numberof Numberof Number of Number of  Nhemof
Device External DogOnt DogOnt DogOnt Explored  Automatical Satisfied
Commands Commands Notifications States States (max) desigised Properties
Button 1 0 3 2 16 8 8
Dimmer Lamp 0 5 1 3 417 15 13
Door Actuator 4 2 1 4 65 10 8
Door Sensor 2 0 3 2 16 8 8
Infrared Sensor 2 0 3 2 16 8
Mains Power Outlet 0 6 1 2 30 16 12
On Off Switch 1 0 3 2 12 8 8
Shutter Actuator 2 3 1 5 50 13 11
Simple Lamp 0 2 1 2 14 8 8
Smoke Sensor 2 0 3 2 16 8 8
Toggle Relay 0 1 3 2 12 10 10
Touch Sensor 2 0 3 2 16 8 8
Window Actuator 4 2 1 4 65 10 8

Table 5.2. List of Verified Device Models (DSCs)

uoneoyLaA JWS —Z°S



5 — Designed Techniques

5.2.1 Designed Technique

A graphical view of the technique is represented in Figufe It works by adopting the
following activities:

1. SmE and its related components requirements are orgbac®rding to the oper-
ational flow and various Steps of the proposed methodology;

2. the behavioral components of SmE are collected;

3. according to the specifications, the control strategyeisighed in the form of
SCXML statechats;

4. the firewall component (for filtering and converting thesseges) is represented in
SCXML semantics;

5. the behavioral models of the SmE components and firewalcanverted in the
acceptable format of model checker;

6. the required abstractions with the device instancegrmddon are queried from
DogOnt and added at the end of converted model (in the addegtam of model
checker);

7. the computation requirements in the form of propertiesfarmmalized by adopting
the following steps:

(a) according to the modeled requirements, the possiblguatational properties
are identified;

(b) for designing the properties, the system configurat{snsh as the informa-
tion of all the associated instances of devices with th&ation, states, func-
tionalities, commands, notifications and others) are gdewith the use of
DogOnt;

(c) the Statecharts modeling of the corresponding compsraea used for query-
ing the sequences of commands, notifications and states;

(d) properties are designed based on above mentioned iafimm by using the
syntax and semantics of temporal logic acceptable by mdusdker (UCTL
in our case);

8. the designed properties and the complete SmE model ase¢gas the model
checker (UMC in our case), which verifies these propertiethermodel and re-
ports about their satisfaction:

(a) in the case of finding unsatisfactory properties, theesponding behavioral
models are updated with the required modifications;

72



5.2 — SmE Verification

Design Phase

SmE
Requirements

J

Requirement Modeling
(SmE Specifications, SmE

Constraints, Users, Environment,
Devices, Control Algorithms)

\ 4

\ 4

DogOnt
Interface

Y

Modeling

N
System
Configuration

SCXML Behavioral Modeling

U Control
ses Algorithms
e e
Devices Environment
\_/_- J

!

Add Firewall (for filtering and
converting the messages)

y

J

> ‘

't instances with the converted model

Add the list of abstractions and

J

v

Integrate and convert these models

in the format of model checker

Whole Integrated SmE model J

Properties
Verification

N

Satisfied

y

v
Temporal
Properties <€ l,
/’— L
Verification —)[ Model Checker ]<
Phase )

A

Unsatisfied }— -

/

y

1

(b) the verification process is repeated until all the propsiare satisfied

When all the properties are satisfied, then the system candieree as reliable, safe
and secure, and will behave well according to the verifiediregnents in all scenarios.

v _

Development and

Figure 5.6. Designed Technique

73




5 — Designed Techniques

As a result, the implementation phase can be started.

5.2.2 Experiment and Results

In this Section, the requirements related to the safetyrégcand reliable behavior of
BDSB and its related components are formalized accordingaaategories (users’ be-
havior modeling, users and their interaction modeling whih devices, device modeling,
devices interaction and their control modeling and comeaxdtleling), by considering the
message exchange behavior of BDSB and its components. Theserges are then
specified in UCTL format. All the properties are individuallgrified on BDSB model.
The abstracted evolution graph (generated by UMC) of BDSB tumesists of 2,79,119
states with the depth at 30 levels. The time taken for vergheach property was usu-
ally less than a minute in the on-line version of UMC. In Tablg the reference of these
properties is given with their evaluation time, the numifestates and computations frag-
ments generated for evaluating them. During the verifiogbimcess at first stage, it was
found that the designed model did not satisfy all the progertUMC provides an error
trace tree through which the errors have been located amddbel was updated by fixing
the bugs. The verification process has been repeated unhiegbroperties were proven
TRUE against the BDSB model.

Properties related to Users behavior

The user modeling is performed according to the specifioatiall the users can enter
the bank by crossing the external door, the isolated spatéhannternal door. It is also
possible that users may change their mind and stay out witnossing the external door.
Therefore, path 'Existence’ quantifier is used in the prgparstead of 'All' quantifier
for the verification. Similarly, users’ mind may change ahdyt may go back from the
isolated space without crossing the internal door. Foifyieg that users can access the
places, the following set of state properties (by usingesafistraction) is formalized.

Pl) EF(ulAtOutsideTheBank)
P2) EF(ulAtIssolatedSpace)

P3) EF(ulAtIn'rLerSideOfTheBank‘)

P4) EF{eztDoorCrossed}T

P5) EF{emtDoorCrossed}T

74



5.2 — SmE Verification

Property | Evaluation Time States | Computations Fragments
(in Sec.) Generated Generated

P1 <1ms 2 2
P2 <1ms 63 110
P3 0.33 3778 7461
P4 <1ms 62 52
P5 0.48 3791 3826
P6 <1ms 2 2
P7 0.03 389 593
P8 0.03 388 384
P9 0.50 3940 4310
P10 <1ms 2 2
P11 0.02 286 310
P12 0.51 4310 5511
P13 6.91 77397 81725
P14 0.50 3936 3993
P15 0.74 6252 6782
P16 <1ms 37 63
P17 0.26 2770 3039
P18 0.26 2770 2976
P19 6.76 77083 80043
P20 0.08 821 1005
P21 0.83 6935 7966
P22 0.07 819 819
P23 0.14 1388 2169
P24 0.52 4117 4281
P25 0.74 6252 6782

Table 5.3. The properties with their evaluation details

75



5 — Designed Techniques

Properties related to actions performed by the Users

For achieving any goal, users have to perform some actiokn®w that users can press
and release the respective touch sensors, the followingfgmbperties is formalized.

Although all the users can access the outside touch sensett@fal door, the other
sensors (T2 and T3) can only be accessed when the user hascttbe external door,
whereas T4 can only be accessed when user has also crossedethdoor. Therefore,

'Existence’ quantifier is used with the properties of otlwerah sensors.

P6) AF{TlRelease}T
P7) EF{TQRelease}T
P8) EF{T3Release}T

P9) EF{T4Release}T

Properties related to Users and Device Interaction

The external door will be opened when the user releases amh teensor associated
at each side of the door. Same will happen with the inner datwe following set of
properties is used to verify such type of users’ interactutth the devices.

PlO) A |:T {—extDoorOpened} U{TlRelease} T}

Pll) EF{eztDoorCrossed}
E [T {ﬁemtDoorOpened}U{TQRelease} T}

P12) EF{extDoorCrossed}

A [T {—extDoorOpened}
U{TlReleaseorTQRelease} T]

Pl3) EF{innerDoorCrossed}
E [T {—inner DoorOpened} U{TSRelease} T}

P14) EF{mnerDom"Crossed}
E [T {ﬁinneTDom"Opened}U{T4Release} T:|

P15) EF{innerDoorC’rossed}
A[T {—innerDoorOpened}

U{T3ReleaseorT4Release} T]

76



5.2 — SmE Verification

Properties related to Safety Constraints

One of the safety constraints is to ensure no user is stutdeitise isolated space. In any
case, the user may exit the space by either entering insedbahk of exiting out. The
following set of properties is used to verify this type ofetgfconstraints.

P16) AF{TlRelease}AF{DoorResponse(open,DAE:L’t)}T
P17) EF{TQRelease}AF{DoorResponse(open,DAEa:t)}T
P18) EF{TBRelease}AF{DoorResponse(open,DAInner)}T

Plg) EF{T4Release} AF{DoorResponse(open,DAInner)} T

Properties related to individual Devices

When the command for opening the door is passed to any doatactit will open the
respective door as a result. These properties are useditp ther functionalities of the
door actuators that, when they receive the open commaret, gfening the door, they
will also close it.

PZO) AF{OpenExtDoor}
AF{DoorResponse(close,DAE:rt)}T

P21) EF{OpenInnerDoor}
AF{DoorResponse(close,DAhmer)} T

Properties related to Security Constraints

Ideally, both of the doors should not be opened at a same thmeeppen door must be
closed first and then the other requested door will be opened.

P22) A[T {—DoorResponse(open,DAlnner)}
U{DoorResponse(close,DAE:):t)} T]

P23) EF{e:vtDom’C’rossed}

A[T {=DoorResponse(open,DAlnner)}
U{DoorResponse(close,DAExt)} T]

P24) EF{innerDoorCrossed}

A[T {—=DoorResponse(open,DAExt)}
U{DoorResponse(close,DAInner)} T]

77



5 — Designed Techniques

Properties related to Context Awareness

The users can access the touch sensors only when they areagea [mcation. When
users are inside the bank, they can come out from the bankdsgipg the touch sensor
attached at the inner side of the bank.

P25) EF{innerDoarCrossed}
A[T {—inner DoorCrossed} U{T4Release} T]

5.3 Discussion

The Table5.3 shows the temporal values of verification of various testep@rties. The
average time for verifying all the 25 properties is 0.79 setth the standard deviation
1.83. As a general rule, the superficial properties (for Wwiie on-the-fly model checker
didn’t have to go deeper inside the system for verificatioth@smaller number of states
are generated) are verified in relatively lesser time, ssdRlg P2, P4, P6, P10 and P16
(takes less than 1 milliseconé (1 ms)). Whereas the complex properties (for which the
on-the-fly model checker had to go deeper inside the systenefdication and a larger
number of states are generated) are verified using moresimsh,as P13 and P19.

The proposed design time verification methodology, aidedidsr behavior model-
ing, device modeling, environment/context modeling, canélgorithm modeling, and
their interaction modeling, has demonstrated successsuilts for verifying the correct-
ness, reliability, safety, security and desired behavi@mE systems. The methodology
proceeds sequentially from requirement listing to modgénd formal verification. The
probability of missing any properties has been efficientgteolled by requirement list-
ing. The methodology is implemented through the designelthigue and implemented
on a small but not so simple real life SmE system. The first fiuenfication process did
not achieve all the properties as satisfactory against thaein After appropriate modifi-
cations to the model, it was then proven to conform to deseguirements. This verified
model can be used safely at the implementation phase.

78



Chapter 6

Achievement of High Level Goals

Modern Smart Environments (SmE) are equipped with a mdkitof devices (e.g. sen-
sors, actuators, lamps or TV) aimed at intelligent servicHse services are associated
with a multitude of resources and can relate to acquiringfiinetionalities of a single
device or a group of devices. With the growth in the hetereges nature of devices
regarding their controlled (various among manufactures) @fered functionalities, the
issue of effectively managing the SmE is being raised. Téxedtiof device-centric man-
agement33-35] is going to shift with abstract modeling approach@s, B7-39]. These
approaches are aimed at providing the High-Level desonptif the goals of SmE ser-
vices for interacting and controlling the functionalitieflsthe associated devices.

It is imperative to note that the accomplishment of deviaecfionality is subject to
their required states fi6, 147]. Thus a goal oflluminating the bedroonean be achieved
when a lamp placed inside the bedroom iSON state; whereasleeping modean be
achieved by rendering all the lamps and cooking appliant@d-F state, entrance doors
in LOCK state, windows irCLOSEstate, bedroom window shutter khalf-Openstate,
burglar alarms irACTIVEstate and the room temperature adjuste2btoC.

The devices are wide-ranging: simple (like lamp) to comglike TV) based on their
inherent functionalities. A complex device can have a casiipstate at any pointin time
according to the functionalities offered. For example, &dved ON TV, with volume
level at60% and channel value & represents a composite state. The composite states
can be modeled as parallel (or concurrent) sub-states o¥iaedeln the remainder of
chapter, the terrstaterefers to the composite state of a single device.

Before serving a goal, a device can be in any state which isregf@ssource state
Later, when it successfully fulfills a goal, it reachesd@stination state Thus, a goal
consists of a list of the corresponding devices along widirthesired destination states.
The deterministic process of traversing the states (fromncgoto destination) of a single
device is called amrvolutionand of all the devices involved in fulfilling the goal as a
global evolution

The evolution consists dfansition(s) as depicted in Figuré.1 Depending upon

79



6 — Achievement of High Level Goals

Represents Source State

Represents Destination State
(a) Single transition

(e.g. Evolving the Lamp from “OFF” to “ON” state) O Represents Intermediate State

~" Represents Transition

(b) A sequence of transitions
(e.g. Evolving the Dimmer Lamp by increasing its light intensity from 30% to 70%)

(c) A sequence of transitions in the case of composite state
(e.g. Evolving the TV from “OFF” to “ON” state with the new values of volume and channel)

Figure 6.1. Evolution from Source State to Destination State

the source state, the destination state and the nature alfethees, the transitions can
be entirely sequential (parts a & b of Figuel) or partially-ordered (parallel state in
part c of Figure5.1). A transition consists of aommandto trigger the devices), against
which the device performs its specified functionality anddseback (one or moraotifi-
cation(s)(acknowledgment about the status of the assigned task)e€&iving specified
notification(s), the following command may render the devicthe next state.

For the automatic generation of global evolution — in acaam with the goals — the
task of finding certain transitions and their correct segedior each device is detailed
and complicated due to possible variance in the specific camishand their sequences
according to the source and destination states of eachadeligs chapter addresses the
issue of automatically finding and enforcing the correcusege of commands required
for the global evolution to achieve the high-level goalsr. thts, a comprehensive method-
ology is proposed which can be adopted across different Sim&Emethodology works at
two levels: design-time and runtime, and is applied on tofneDomotic Effectdrame-
work [38]. The implementation and experimentation details enapaithe applicability
and effectiveness of the proposed approach for the SmE.

The remaining chapter is organized into following sectioBsction6.1 provides an
overview of the existing literature; Secti@?2 formally defines the addressed problem;

80



6.1 — Related Work

Section6.3 presents an example carried out in this chapter; Seétiaxplains the pro-
posed methodology with the implementation details; Se&iddescribes the experimen-
tation; and SectioB.6 contains the discussion on the results.

6.1 Related Work

The related work is divided into two main areas: Goals Modgknd Evolution Find-
ing. The related work regarding the goals modeling is prieskim Sectior6.1.1and the
discovery of evolutions is presented in Sectéh.2

6.1.1 Goals Modeling

The Smart environments (SmE) offer the service delivenntialligent manners. These
services are accomplished by transforming the states infabgociated devices into their
desired destination states. The modeling of these seratc@sstract level can be referred
as High-Level goals modeling. The objective of goals matgis to define the possible
ways, at high level, by which the services can be intelliyeamthieved. During the liter-
ature survey, the goals modeling in various domains is fdergl artificial intelligence,
agents’ goals or policy language) with their specific fumies and concerns. This type
of modeling is different from others due to a direct focus e tlevices, their required
states and possible ways by which the goals can achievedeféhe, in this section, only
high level modeling is covered. Moreover, some works rel&dehe interaction modeling
among goals, focusing on their conflicts, are fouhdid-150 but they are not entertained
in this thesis due to our limited focus.

Our solution “Domotic Effects” provides the ability to thpgication designers to de-
sign the goals at higher level of abstraction, define theim operators for more complex
goals and apply the required heuristics for selecting abl@atconfiguration among the
set of possible configurations at runtime.

Katasonov 85| proposes high-level abstraction mechanism for easilyagarg the
SmE by concentrating on the devices and software compoaénisitime. The abstrac-
tions are based on task (or sub-task). However the focussoivibrk seems limited due
to author’s disregard for the mechanism by which the orgditm of the task (their hier-
archical nature) can be stored and achieve at run time. Toteoand improve upon this
identified weakness, our work not only provides the way hasvtéisks (goals) are stored
but also goes one step ahead and illustrates how they camiesed and enforced on the
devices at run time.

Amigoni et al. designed a planning system, named as D-HIA\ py involving the
concepts of centralized and distributed planning from atesory. For storing and using
the list of actions associated with the respective goay; tised hierarchical task network
(HTN) approach. The language “Task network5[l] on which HTN is based is static in

81



6 — Achievement of High Level Goals

nature, and therefore does not allow the designers for dgfimew operators (which may
vary from domain to domain). In this case, our solution cjzés upon this limitation by
not only modeling the goals in hierarchical structure, glaith the sequences of actions,
but also provides facilitates the designer for definingrtbein operators of interest.

Kaldeli et al. B9 propose an architecture for defining the goals in SmE. Thsy a
predefined the goals in declarative pattern, which is used3y (Constraint Satisfaction
Problem) based planner for computing the plan (selecti@moofiguration from the goal).
In comparison with our solution, they do not facilitate thesiyners for defining their
own operators according to their need for satisfying theliregnents in intelligent way.
Moreover, the planner is comparatively slower; it takesetim seconds whereas ours
takes time in milliseconds for finding a solution.

Cheng et al.33] propose a reasoning system for SmE, named as ASBR. By recording
the history in form of scenarios, the system derives thegpeeices or habits of the resi-
dents and stores them in ontology. The apparent limitatiahesr work is their disregard
for providing the storage mechanism; moreover the systelmased upon the historical
data and extensive coverage of all possible scenarios ikrbeledge base can not be
guaranteed. Our solution is capable of storing all possibtdiguration with the flexibil-
ity of imposing any type of constraints (e.g. energy optatian or context aware).

6.1.2 Evolution Finding

Our work aims at finding the evolution (path from source tdidesion) which is a com-
bination of one or more individual transitions. There is @yof knowledge pertaining
to similar generalized framework for evolution finding wiglocedural differences as part
of their operation: state space search, path finding and#ésst generation are some of
the methodologies in which the sequence of transitions frotial to destination states
is extracted. On the other hand, target achievement is enfiiindation for a couple of
methodologies in the body of knowledge which aims at findimgtarget state in which
the device must be in order for a command to execute.

Rouillard and Tarby152 present a solution to communicate with a home automation
system using speech recognition. All actions that can blepeed by residents are mod-
eled with the help of a statechart (SCXML). The statecharsists of three basic entities,
i.e. action, object and place. The action entity representaction/operation requested
by a user. The object entity represents a device on whichdhenais requested. The
place entity indicates the location of the device. All easitare represented as concurrent
substates in the statechart. When the user requests anyiopeaamessage structure is
filled with information regarding all three entities and thessage is executed by the in-
stalled automation system. It is assumed that an actioruisagnt to a command which
may be used to perform the action. However, it may not be gulyportable in real smart
spaces where not only the user intention may map to multipkcds (objects) but also,
within each device, a sequence of commands may be needeovidea specific utility.

82



6.1 — Related Work

Our work, on the other hand, takes into account the aforaoreed issues by finding the
evolution of each device and then enforcing it to achieveue intentions.

For the automatic generation of test cases, it is importaett the source state, the
destination state and the correct sequence of eventsia@re obtained from the state-
charts [L53-157. Initially, it is required to flatten/normalize or expaniet statecharts
into a suitable format (such as Extended Finite State Ma&c(f#$M), Kripke Strucure,
Markov Chain, reachability tree or flowchart) according te ttoverage criteria on the
basis of variables and events (such as all-nodes, all-edgkall-paths) so that a detailed
view can be obtained. Then, by using different FSMs or sketddased methods the
test cases can be designéd]. Compared to this, our work generates the abstracted
action and state based behavioral state space graph usioded checker, which helps in
finding the correct sequence of events/actions from anycedordestination state.

In [155, Kansomkeat and Rivepiboon propose a technique for thevatto gener-
ation of test cases from statecharts. For this, statecheetsitially transformed into a
Testing Flow Graph (TFG). On the basis of states, eventggrs), guards (conditions)
and actions, an algorithm is designed through which thelgércal structure and explicit
control flow of the statecharts are transformed into a fladeRFG. Then, going from the
root (initial) node of TFG to each leaf node, test sequencedeasigned which are further
implemented for proving the correct behavior of the devetbpystem. Compared to our
work, this technique does not support the statechart péisai concepts.

In [158], Hong et al. describe a method for the automatic generafitest cases from
the specification of the system, modeled using statechBntsy adopt a model checking
approach for the generation of test cases. Firstly, the stesaf statecharts using Kripke
structures (a variant of automata used in model checkirgdlefined, then the statecharts
are translated into the SMV model checker program. SMV is a (Skate Based Branch-
ing time logic) 5] model checking approach, therefore the CTL temporal ptogseare
designed by using the statecharts specifications; thugrtdposed control and data flow
meet the coverage criteria. Each CTL formula contains orie#se which returns true in
the case of not matching with the specification; otherwigeniodel checker provides a
counterexample, by following which a feasible (and exdolefetest case is designed with
the observable events. Although both techniques have trengabes of model checking,
compared to our work, this technique does not manage mebijltes (as a single com-
posite state or distinguished states) according to therfea@alue used for representing
source and destination states, and it cannot find a compaandition through which
such states can be reachable.

In [154], Hong et al. present their work for the selection of testusgges from
statecharts. For this, the statecharts are initially ntiz@@d into Extended FSM format
and then, by following the methods of Ural et dl5@, Extended FSMs are transformed
into a flow graph which has the data and control flow of the systéhe test sequences
are designed by following all possible paths starting andirenwith the initial state
(configuration). Compared to our work, this technique dodssopport the filtering of

83



6 — Achievement of High Level Goals

uninteresting events and features.

Stone et al. 147 describe an approach to support the modeling and validaifo
command sequences for space missions. They propGheckable Sequence Language
(CSL)to model spacecraft components, sequences of commandf@mrdgtertions of
flight rules. Given a sequence of commands, they validatéhenany command violates
the flight rules (represented as a future state) or not. kFeptirpose, they adopt a model
checking approach. They try different sequences of comsand check whether or
not the required destination state is reachable. In commariour work is capable of
furnishing the correct sequence of commands from sourcegbirétion states instead of
checking their suitability repeatedly. This, in turn, enbes the optimization of resources
and implementation.

In the context of personalized remote/appliance conthel,concepts of “Task-based
button grouping” and “Macros” are proposed in the literat[ir60-162. By using dif-
ferent techniques, such as machine learning or fuzzy ldge,set of commands (for
accomplishing the task) are extracted and stored as usditdeg In these concepts, the
recorded data of a user command is used. Compared to our \wede techniques work
with log files by maintaining a copy of the file for each user @amine. Moreover, these
technigues can only address those destination states atechisited by the users/ma-
chines.

Due to the following collective advantages over the abovatimeed techniques, our
work is one step further and simpler:

* Most of the techniques spend more of their energy in defitigsemantics to
explicitly flatten/normalize the statechart of the systevhereas in our work, for
obtaining the control and data flow graph of the system, a habaeking technique
(based upon theory of graph algorithms, data structuresogig) is used.

» The model checking technique (especially on-the-fly) haagacity for covering
and designing the exhaustive graph of the system.

» With the use of action abstraction, the unwanted everitsfesccan be ignored by
model checking.

» The composition of states — not found in the above techsiguean be performed
with the use of state abstractions.

» The sequence of minimum composite events/actions, thradnich the destination
composite state from where the source is reachable (by @myidering the inter-
esting events/actions) can be obtained with the use of ttecatbed graph generated
by the model checking technique.

84



6.2 — Problem Statement

6.2 Problem Statement

A collective view of the states of all SmE devices at any paoirtime is referred as the
global stateG (of the environment). A change of state in any device has fattebn

G and a new statg’ will be produced. The goa} is associated with some devices and
their corresponding destination states, and has an effeGt ¢-or achievingy, a global
evolution&(g) is required by whicly evolves tag’, as expressed below:

g 5(9) g/

The global evolutior£(g) is a set of evolutions of each concerned deyiegl;), help-
ing to realize the goaj. If m devices are involved, then the global evolution for saiigfy
g can be represented as below:

E(g) ={el(dr), e(dz) .. .e(dm)}

The chapter addresses the problem of finding and enforaiapal evolutiort which
aims at satisfying the high-level go@aby evolving the entire environment froghto G'.

6.3 TV Model: An Example

In the context of this chapter, it is assumed that the devdacesndependent: the working
of one device will not depend/effect on the working of othevides in the environment.
The interface modeling of the devices is performed by usiregRogOnt ontology43],
whereas the behavior of each device (according to the irdbom modeled in DogOnt)
is textually encoded by using the semantics of State Chadrisikile Markup Language
(SCXML) [145.

The TV model is used as a running example in the rest of thipteha A tabular
view of the interface modeling of TV in DogOnt is represenied-igure 6.2, and its
behavioral modeling is represented in Fig@& For the behavioral modeling of the
devices, an assumption is made: the internal heuristicseotievices are ignored, such
assetChanneandsetVolumeommands although modeled in DogOnt. getChannebr
setVolumeommands directly move the TV to the required destinatiatedty generating
a single transition, these commands are excluded for theecfaletailed experimentations
(finding more transitions in an evolution).

1An evolution for a single device may consist of more than saadition for evolving the device from

a source statess, to a destination statels: ss o1/ ®dy o teonlosnl/aind o Aealanl/and o e

sequence of these transitions, from a source state to andisti state, is known as avolutione. For
more details, consider Chapt2Section2.1.2

85



6 — Achievement of High Level Goals

real
c rr?rff nd Command off
OnOff has omma Name
Functionality | Command o real
n Command on
Command
Name
Down real
Command down
Command
Name
real
Up Command up
Command
has Name
Tuner Command real
. . Command setChannel
Functionality
SetChannel Name o
Command | command B =
channel** =
Param Integer” g
Name 8 2
max Value 12 g
hasLimit | LimitValues | min Value 1 =
step Value 1 g
real g
S
Decrease | ¢ and dec <
Command
has Name
Functionality Increase real
Command inc
Command
has Name
Volume Command real
Regularion Command setVolume
Tv Functionality SetVolume Name
Command | command
"volume”*
Param Integer”
Name 8
max Value 100
hasLimit | LimitValues | min Value 0
step Value 10
notification stateChanged .
State Change Name g =
e has State Change 2
Notification e e - ® £
. .| Notification| Notification | notification S o
Functionality "newState”” &5
Param State” 'g ]
Name z 2
real
Command getState 2
Query has Get Name > ®
Functionality | Command | Command B . B g g
DeviceStatus” **| 3 5
return Type . =]
string g
1<%
OnState real State on
Value Value ]
OnOff State | 1S State =)
Value OffState real State off 5 s
Value Value E @
hasState Tuner State hasState |Channel State| real State "1 Literal"
Value Value Value 3
]
£ 2
Volume Level hasState LevelState | real State "1 Literal" E &
Value Value Value S
- Device Interface Detail +

Figure 6.2. Interface Modeling of TV in DogOnt

In the behavioral modeling of a T\ff is considered as the initial state of TV, as
represented in Figur@.3. With theon() command, it moves froroff to on state and, as

86



6.3 — TV Model: An Example

(I'VState )
on()/ stateChanged(onf()/ stateChanged(off)
("on 1 )
rchannel up()/if (channelValue < channelMax )then

{channelValue := channelValue + channelStep}
else {channelValue := channelMin};
stateChanged(channelState)

channelState

down()/if (channelValue > channelMin )then
{channelValue := channelValue - channelStep}
else {channelValue := channelMax};

stateChanged(channelState)
\ v

r
volume inc()/if (volumeValue < volumeMax)then

{volumeValue := volumeValue + volumeStep}
else {volumeValue := volumeMax};

" stateChanged(volumeState)

(volumeState )
dec()/if (volumeValue > volumeMin )then
{volumeValue := volumeValue - volumeStep}
else {volumeValue := volumeMin };
stateChanged(volumeState)

Figure 6.3. Behavioral Modeling of TV

a result, the TV will be on. Then state is a composite state in which ttleanneland
volume(features of the TV) can be controlled. The initial value baonel is set t®
and volume is set t60% By usingup() anddown()commands, channel values can be
adjusted with stefd. The channel values are set in a loop and range ftam12. With
the up() command at its maximum value, it wraps around and vice-verdadown()
command. Thenc() command is used for increasing the volume aed() command
for decreasing it, with a step di0% The possible values of volume range fr@ to
100% After completion the task, at each state, the device sesi@dgeChanged(newState)
notification back as an acknowledgement about the stataskf t

87



6 — Achievement of High Level Goals

6.4 Goals Achievement Methodology

For finding and enforcing global evolutidf(g), this chapter proposes a comprehensive
methodology which attains its purpose in two steps: desige-and runtime. The frame-
work of the proposed methodology is presented in FigudeAt design-time, it generates
the expanded behavioral graphs of all the devices with theedfe model checking tech-
nigue. Then at runtime, the individual evolutions for thkevant devices are extracted by
using these graphs and enforced with the help of differer®iS5] services.

Design Time

Graph Generation

Interface | Behavior
Modeling Modeling Model Checking
Graph Storage

Repository for Devices Expanded
Abstracted Behavioral graphs

$931n3Q

s|e0 [ana7-YSIH

Run Time

Goal Enforcement

Device Current States Device Stored Graphs
Device Destination Enforcement

States Services

Figure 6.4. Framework of the Proposed Methodology

The following subsections explain the design-time andinatmethodologies. Each
section contains a technique by which the methodology idampnted and an example
is shown to demonstrate the proposed methodology.

88



6.4 — Goals Achievement Methodology

6.4.1 Design-Time Methodology

The global evolutior£ (g) consists of a set of evolutions of various individual ardepen-
dent devices(d;). For finding the evolutions, their deterministic behavioredels are
required which can behave likeal devices in theeal environment at design-time. As in
thereal environment, the commands can arrive in any order. Depgngion the current
state, which is the manifestation of device configuratiojuaposition of feature and
state values (defined in Secti@rl.1), the commands which are acceptable at that par-
ticular state are considered and the rest are ignored (eigg command, when the TV is
in off state, is ignored). And when a device is performing any adigainst a command,
and meantime another command arrives, depending upon tine red the command and
(device or system) specification, it can be immediately sadpd to (obstacle detected
when the elevator door was in closing position), pushedangtack/queue (elevator call
request from the fourth floor when it is descending from sd¢an ignored/locked (ele-
vator request from the same floor when it is already in thek&aeue).

A modeling framework is the work through which the devices ba synchronized
with the environment by accepting the commands and sentmgatifications back to
the environment. Building upon the concept of such a closgdamment from Chapter
5 Section5.1.1, this chapter embeds the device in a synthetic environmendepicted
in Figure5.2 Similarly, the Environment Generates Commands (EGC) coepiois
designed to send all possible commands to the device in algy.dBased on the current
state, which is a manifestation of device configuration xégposition of feature and state
values (see Sectidhl.]) of Chapter2), the relevant commands are accepted. Against the
accepted command, the device model performs the relevgnatal sends one (or more)
notification message(s) which are received by the EnviroirReceives Notifications
(ERN) component.

The current configuration of the device is updated with thange in any state or
feature values, with which different transitions may pethe next configurations. The
state-space of the system can be represented with a grapk alhpossible configura-
tions are represented as different states (data flow by whecbhange in state or feature/-
variable values can be identified) and the transitions bylwthe next configuration can
be accessed are represented with edges (control flow). Bgr&iag such graphs from
one configuration to other, the complete sequence of tiansiflabeled at edges) can be
identified. This sequence of transitions is the requiredugvam. A graphical view of
such an expanded behavioral graph is presented in Fgbre

In the proposed framework, as the device modeling is kepbsed in the environ-
ment, the expanded behavioral graph of the system (deviesation with the environ-
ment) exhibits the actual (data and control) flow of inforimatwhen the device partic-
ipates in the real environment. But the graph may contain rti@e one state with the
same configuration. This is due to the collective nature efgtaph in which the device
model interacts with the environment model and the currenfiguration of the device

89



6 — Achievement of High Level Goals

Represents Initial State

L | Represents Source State " Represents Transition

|:| Represents State /" Represents Required Transition
Represents Destination State

Figure 6.5. System Expansion

will reflect the states of EGC and ERN, and thus are annotatétitiaese state as well.

At the time of traversing the graph, it is required to know #xact source and desti-
nation states so that the sequence of control flow can beifieentBut due to the same
configuration at more than one state, it becomes difficultrid the exact source and
destination. For this, a solution is proposed: EGC sendsdhemands, some of which
are accepted by the device based on its current configurafions the edges on which
the commands are accepted by the device model have beeratathfwith the use of
action/event abstraction). Similarly, the resultant agunfations are also annotated (with
the use of state abstraction). Since the command is irdtiagghe environment, the edge
annotated with the command trailed by the annotated staeafinotated state which is
before this annotated edge) is considered as the souree Afédr the completion of the
task, the current configuration of the device is updated ar&d(or more) notification(s)
are sent to the ERN. This, in return, discards the notificati@ssage and the discarding
event is annotated on the edge. The annotated state trgilgte lwiscarded message is
considered as the destination state.

The model checking technique, due to the following advaegagrovides the facility
to generate such an expanded behavioral annotated dataoatrdl dlow graph of the
modeled system:

* Itis strongly based on mathematics by underpinning therthef graph algorithms,
data structures and logic.

90



6.4 — Goals Achievement Methodology

» Exhaustive coverage of all the possible scenarios, whiévace/system may have
to deal with, can be explored through it.

* |t provides abstraction facilities by which the importaonhcerns can be annotated
with simple keywords and the rest of the information may renh@dden.

— With the use of action/event abstraction, the more conaglidelrcommands/no-
tifications can be annotated on the edges of the graph.

— With the help of state abstraction, the resultant configomatcan be annotated
on the states of the system.

Design-Time Technique

For the implementation of the above design-time methodplagechnique is designed
which is graphically represented in Figugé in which DogOnt (for the interface model-
ing of the devices), SCXML (for the behavioral modeling of wes) and UMC (a model
checker used for generating the abstracted graph) are stedls.

With the help of DogOnt, environment modeling for the comeel device is per-
formed to automatically generate Environment Generate Camdsi(EGC) and Environ-
ment Receive Notifications (ERN) as components in the acclieptatmat of the model
checker (UMC in our case). The EGC contains all the commartdshna device can
accept and ERN is capable of receiving all the notificationgkwh device can send. The
model designer component converts the behavioral modéleotiévice into the format
of a model checker and concatenates it with the EGC and ERNsdtgenerates the
instances of these components and stores the semi-cothptetiel in a file.

The abstraction generator component takes the semi-ctadpieodel file, the list of
(discrete type) states, the abbreviation of the offeretufea with their minimum, max-
imum, step values and the variable names which are useddmrsenting these features
in the behavioral modeling. Then it automatically geneyatk possible configurations
based on the principle of Markov chains6[3, in which permutations are performed
starting from the list of states, the feature minimum to maxin values, along with their
abbreviated characters (such as channel is abbreviate@ag WIlume is abbreviated as
V) and increased by their step values.

Referring to the TV Model where the total number of discretgest’’(S) are2 (on
andoff), and offered features () are2 (channel and volume). The channel has tal
possible value§'(V;) (ranges froni to 12 with a step ofl) and volume hag1 possible
valuesT'(V5) (ranges fronD to 100 with a step ofl0). So, the total number of possible
configurations which can be annotated with the use of stateaattions,I’(S,), are cal-
culated by the formula:

91



6 — Achievement of High Level Goals

Design Time Technique

\

(For Graph Generation) ]

-

Device Interface

Specification

Device

-

Device Behavioral

|
|

Modeling <«——> Modeling @t.
(DogOnt) (SCXML) Ne%
Environment Designer
Environment Environment
Generate Receive
Commands Notifications
(EGC) (ERN)
|—> Model Designer -~

Abstractions Generator

_t

Model Checker

\ 4

Expanded Abstracted Data and
Control Flow Behavioral Graph of
Device

y
y
\
\

/ y

Repository for |
Devices Graphs |

\

/

S

1\\\

S

Figure 6.6. Methodology for Transition Finding

T(F)

i=1

T(8$a) =T ]I, T(V3)

According to the formula(S4) = 2 (12 * 11)), 264 possible configurations are
generated by the abstraction generator. A configurationhictwthe device will be at
on state, the channel value 40 and volume value a0, is annotated asnC10V50
with the help of Gtate inState(tv.on)and tv.channelValue=10 and tv.veNatue=50 ->
onC10V50 state abstraction.

After the state abstraction, the abstraction generatorpoment automatically gen-
erates both action abstractions (one is used for the ideatidn of source state and the
other is used for the identification of destination state)oprporating the instance name
of the devices (example is given in Figuse3). These state and action abstractions are
added in the file. A complete file is known as a closed modelclis passed to the

92



6.4 — Goals Achievement Methodology

model checker. The model checker has the power of geneltangxpanded abstracted
data and control flow behavioral graph of this closed model.

For this purpose, UMC is used as a model checker tool whichgesierate the ex-
panded abstracted data and control flow behavioral grapheoimtodel. It also provide
the facility to store the graph locally, for which it can expthe graph in Scalable Vec-
tor Graphics (SVG) format. SVG is an open standard for désggthe vector images in
XML format, developed by the W3C. The images designed by SVGeeaily be con-
structed, parsed and indexed. By this, the graph can be easistructed and parsed for
finding the source state, destination state and the evatulayi which the destination state
can be reached.

The SVG graph of the closed model against the respectiveel@ame is stored in
the repository for the further use at runtime.

Example

The closed model of the running TV example is representduetsiMC format in Figure
6.72. A total number of264 state abstractions are in this section, but due to limited
space only two state abstractions with both action absbraeire represented in Figure
5.3 A fragment of the TV expanded abstracted data and contmwlldEhavioral graph is
presented in Figuré.8.

The action abstractiofAction tv.accept($1) -> $1is used for the identification of the
source state. The $1 represents the name of the command istdcbepted by the TV
model (adown up andoff commands are annotated on the edges of Fi§u)e The ab-
stracted state trailed by the edge having command name s&devad as the source state.
Similarly, the(Action $1:ec.return -> discardingReturn(ed¥)used for the identification
of the destination state. The abstracted state trailed &etlye havingliscardingRe-
turn(ec)annotation (as shown on the edges of Fighu&® is identified as the destination
state (the internal logic for identification is presente&attion6.4.7).

6.4.2 Runtime Methodology

The request for fulfilling a high-level gogl comes to the gateway. According ¢othe
gateway calls a functiofi’ps(g), in-result a configuration is obtained which consist of a
list of the devices with their desired destination statgsired for satisfying;. Realizing
this function will take the global state t&.

2|t is divided into three sections: the first section has thgeshart of the environment (EGC and ERN)
components and the device; the second section (Objectshbhasformation of the instances of these
statecharts; and the third section (Abstractions) hag aflebstractions.

93



6 — Achievement of High Level Goals

Class State is
end State;
Class ECCis
State top = E
Transi tions:
E->E {-/tv.down()}
E->E {-/tv.up()}
E->E {-/tv.off()}
E->E {-/tv.on()}
E->E{-/tv.inc()}
E ->E {-/tv.dec()}
end EGC,
Class ERN i s
Operations: stateChanged(newSt at e: St at e)
State top = N
Transitions:
N -> N {stateChanged(newState)/}
end ERN,
Class TVis
Qperations: on(),off(),up(),down(),inc(),dec()
Var s: channel Val ue: i nt =6, channel Step:int=1, channel M n:int=1, channel Max:int=12,
vol uneVal ue: i nt =50, vol uneStep:int=10, voluneM n:int=0 , vol umeMax:int=100
State TVState = off, on
State on = channel /vol une
State channel = channel State
State volunme = voluneState
Transitions:
of f->on{on()/ notification. stateChanged(onState)}
channel St at e- >channel St at e{up()/
i f (channel Val ue<channel Max) t hen {channel Val ue: =channel Val ue+channel St ep}
el se{ channel Val ue: =channel M n}; noti fi cati on. st at eChanged(channel State)}
channel St at e- >channel St at e{ down()/
i f (channel Val ue>channel M n)t hen {channel Val ue: =channel Val ue- channel St ep}
el se{ channel Val ue: =channel Max}; notification. st ateChanged(channel State)}
vol unesSt at e- >vol uneSt at e{i nc()/
i f (vol umeVal ue<vol uneMax) t hen {vol uneVal ue: =vol uneVal ue+vol uneSt ep}
el se{vol umeVal ue: =vol umeMax}; notification. stateChanged(vol uneState)}
vol unesSt at e- >vol uneSt at e{dec()/
i f (vol uneVal ue>vol uneM n) t hen {vol uneVal ue: =vol uneVal ue- vol uneSt ep}
el se{vol unmeVal ue: =vol umeM n}; notification. stateChanged(vol uneState)}
on->of f{of f()/notification.stateChanged(offState)}
end TV
oj ect s:
ec: EGC
notification: ERN
tv: TV
channel State: State
vol uneSt ate: State
onState: State
offState: State

Abstractions{
Action tv.accept(\$1) -> \$1
Action \$1l:ec.return -> discardi ngReturn(ec)
State inState(tv.on) and tv.channel Val ue=1 and tv. vol uneVal ue=0 -> onC1V0
State inState(tv.off)and tv.channel Val ue=7 and tv. vol uneVal ue=40 -> of f C7V40

Figure 6.7. Closed Model of TV in UMC format

94




6.4 — Goals Achievement Methodology

,konC12v50

{stateChanged}

{discardingReturn(ec)}

{onC12V50
dow|
{up
{onC11V50} {off}
{stateChanged} onC10V50 onC12V50
onC11V50} {stateChanged} {stateChanged}
{discardingReturn(ec)}

{discardingReturn(ec)} {discardingReturn(ec)}

onC10V50 / {offC12V50}

{0'% {discardingReturn(ec)}

N\
{stateChanged}

Figure 6.8. A Fragment of TV Graph

down}

Let there ben devices involved for fulfillingg, then Fps(g) returns to the gateway
the list of all devices (specific instances of the device }ypiéh the corresponding desti-
nation statesds(d;), 1 < i < m), as represented below:

Fps(g) « {ds(dy), ds(dy) ...ds(dp,)}

Against the list of these devices returned fréixs (¢ ), the functionFss(g) is activated
by the gateway to attain the current states (globally rep#sgG) (d;(ss), 1 < i < m)
of these devices, as represented below:

Fss(g) < {ss(d), ss(da) .. .s5(dm)}

On getting this list with the corresponding source and dasitn statesd;(ss, ds), 1 <
i < m), a functionFpr(g) will be called by the gateway, which returns the type of each
device associated with. Then, a functionF,(¢) will be modeled. The objective of the
function is to arrange the source and the destination stddeg with the device identifi-
cation, as represented below:

95



6 — Achievement of High Level Goals

For(g) + {dt(dy), dt(da) ... dt(d)}

F.(g9) ={dy(dt, ss,ds), da(dt, ss,ds) ...
d,(dt, ss,ds)}

According to thedevice type information returned by functiof’prr(g), the function
F.(g) firstly accesses the relevant expanded behavioral grapeachf device. Then the
graph traversal algorithm is executed with the aim of idgimg the source and destina-
tion states. The complete evolution against each deviegg)(1 < i < m) is returned.
The set of evolutions is referred to as thlebal evolutionf(g) and is represented below:

Fe(g) < {eldr), e(da) - - .e(dm)}

E(g) ={eldr), e(da) - . .e(dm)}

Further, theglobal evolutionf(g) is enforced on the relevant devices for fulfilling the
request of selected goa] as a result, the global configuratignof the environment will
evolve tog’, as represented below:

g g(g) g/

Runtime Technique

For the implementation of the runtime methodology, a teghaiis designed which is
graphically represented in Figueo.

In this technique, the high-level goal modeling is obtailbgdusing the DogEffects
ontology (see SectioR.1.3of Chapter chap:Background) and device interface modeling
is adopted from the DogOnt ontolog?23]. A new moduleDomotic Effects Executor
was built as an OSGiBf] bundle so that it can be integrated with the Domotic Effects
framework B8, 40] and can communicate with the devices according to the ek sa-
guests/commands. The DE framework approach is generictureyabut currently its
implementation is built on top of Domotic OSGi Gateway (D@gf)]. The expanded ab-
stracted data and control flow behavioral graphs of the ds\iwhich are in SVG format)
are obtained and constructed at start-up of the SmE. Thesegand the steps performed
for the implementation by using these tools are elucidatovin

1. A goal g can selected from the goals modeled in DogEffects ontolddyainst
which the enforcement request for the selected goals aratvéhe Domotic OSGi
Gateway (Dog), where the Domotic Effects (DE) frameworkiipiemented.

96



6.4 — Goals Achievement Methodology

DogEffects DogOnt

> Repository for
i Devices Graphs

Q

-
~

g o~

DE Executor

1

|

1

1

5 |

1

DE Framework | < % |
/ 1

: v
g/

User Gateway Real Devices

Figure 6.9. Steps of Domotic Effects Executor

2. The DE framework queries the DogEffects ontology andivesghe complete tree
along with the device names and their state, from the instkayer, associated with
g (as presented in Fi@.2).

This tree is transformed into Boolean satisfiability problgAT) [164]. The DE
(SE or CE) are mapped as Boolean variables, and the expresssodated to the
operator (defined in Aml layer) are firstly converted into theression of basic
logical operators (by the designed algorithms, mentionegeiction2.1.3 and then
mapped in terms of Boolean sub-expression. The heuridgosithms are designed
for the expression associated to the operators which capenminverted into basic
logical operators.

These Boolean expressions are passed to the SAT solver. trasey Sat4j solver
is used, which is mature, open source, Java based and refstas (as the results
of our energy optimization work also showsd]) [165. The SAT solver returns
the possible configurations (devices with the desired wlaistin states), then for
the uncovered operators, their corresponding algorithmguwn and the possible
configurations are heuristically designed. Finally, a gunfation is selected from
them (the selection can be based on any constraints or $actonterest: energy
optimization, context awareness or security demand). €hlexted configurations,
against selected, consists of a list of specific instances of the devices withirt

97



6 — Achievement of High Level Goals

required destination states.

3. According to the obtained list of device instances, thairent state (source state)
is queried by using thBogStatebundle of Dog 55].

4. Thereafter, the device type of each instance is obtaigagsimg the DogOnt on-
tology and accordingly its associated expanded behawypegih is traversed with
the help of the Djisktra shortest path (referred as evatutiothis chapter) algo-
rithm [166], which is a renowned algorithm for finding shortest path eochpared
to other algorithms, takes less time. Theoretically, theetcomplexity of the algo-
rithm, when Fibonacci heap is used as a priority queu€,j$| + | E|log |E|) (in
it S is total number of States and E is total number of eddes)] [

The source and destination states are identified by usingdiepresented in Sec-
tion 6.4.1 The algorithm returns the shortest evolution from the sewstate to the
destination against the instances of these device types.

5. The newbomotic Effects Executanodule uses these evolutions and enforces them
to the devices. These evolutions are enforced in paralteima

After the enforcement of the global evolution, the configiora of the environment is
updated. The new configuration is the required configuratimich is associated with the
goal.

In the case of selecting multiple goals at a time, the DE fraonk considers them as
a single (complex) goal. In sequential pattern, it enfotbesn on the devices, and upon
the successful enforcement of these goals, the requirdyacation of the environment
will be obtained.

Example

The “Morning Wakeup” high-level goal is represented as aangxle. It is a combina-
tion of multiple individual activities: illuminating thedziroom, kitchen and bathroom,;
switching off the gas heater inside the bedroom; closingrdtive windows and raising
their shutters; switching on the radio inside the bathroana switching on the TV inside
the kitchen with volume configured #0 and the channel t8.

As soon as the goal is selected, the appropriate requesageesss received at the
gateway. The gateway queries the goal details from Dogtsfighich in turn returns the
“Device Identification” and “Destination State” as mentahin Table6.1. The gateway
further consults the identified devices to find out their sewgtates as given in the column
“Source State”. Later, the DE Executor queries the DogOntle device type from
which it extracts the evolution path after traversing frdma source state of the graph as
given in column “Extracted Evolution”. A total df7 devices participated to achieve the
“Morning Wakeup” goal of whicl8 were already in the required destination states and the

98



66

# Device Source | Destination| Total Number| Total Number Extracted
Identification State State of Commands of Notifications Evolution
1 | SimpleLamp_lamp6_kitchen| offState offState
2 ShutterActuator_kitchen upState upState
3 | ShutterActuator_shl bedroom upState upState
4 DoorActuator_d5_kitchen | closeState closeState
5 Radio_BathRoom offState onState 1 1 on, stateChanged
6 | WindowActuator_w4_kitchen| openStatg closeState 1 2 close, stateChanged
stateChanged
7 SimpleLamp_lamp2_bath | offState onState 1 1 on, stateChanged
8 SimpleLamp_lamp9_bath | offState onState 1 1 on, stateChanged
9 | ShutterActuator_sh2_bedroom upState upState
10 DoorActuator_d7_kitchen | closeState closeState
11 Tv_Kitchen offC6V20 | onC8V70 8 8 on, stateChanged, in¢
stateChanged
inc, stateChanged, in¢
stateChanged
up, stateChanged, in¢
stateChanged
inc, stateChanged, uf
stateChanged
12 exhaustfanl offState onState 1 1 on, stateChanged
13 ShutterActuator_bath upState upState
14 SimpleLamp_lamp8_bath | offState onState 1 1 on, stateChanged
15 | WindowActuator_w2_bedroom openState closeState 1 2 close, stateChanged
stateChanged
16 GasHeater_BedRoom offState offState
17 | WindowActuator_wl_bedroom openState closeState 1 2 close, stateChanged

ABojopoyIaN JUBLWBASIYIY S[e0D — 9

)

stateChanged

Table

6.1.

Morning Wakeup Goal Enforcement at Runtime




6 — Achievement of High Level Goals

remaining9 needed to follow the evolution. At successful completionhaf individual
activities, the high-level goal was fulfilled, the evolutiovas attained, and the global state
was updated.

6.5 Experiment and Results

To prove the validity of the proposed methodology and measlifferent performance

parameters, a set of experiments were carried out. In tleargs lab, we have some
simple devices (switch, buttons, lamp and sensors) buhekperimentation purpose,
the complex devices are also required, therefor in the a@iesafra real inhabited house, the
emulation capabilities of the Dog gateway to simulate thealer of devices was used.
The complete house environment was simulated whose dostoticture was modeled

as an instance of DogOnt ontology. The underlying domotigggent may be handled

by BTicino MyOpen, Z-Wave, ModBus and/or Knx.

In fact Dog simulates domotic environments thanks to the $dg[169 library. A
new test bundle was developed to test the validity of the@pr and measure different
performance parameters. Domotic effects, correspondimgheric goals (like securing
or illuminating the house), were defined over the house.

The experiments ran on a standard personal computer witladcpre Intel i5 pro-
cessor and 4GB of RAM.

Tables6.2 and6.3 show the design-time experiment details, while Talbldsand6.5
show those of runtime.

The values undefime to Construct a Graph (in Millisecondpainst each parameters
of Device Typen Table6.2represent the time taken to access the files stored in reppsit
in the SVG format and construct the graph of the devices (is8thE). TheTotal Num-
ber of Statesand Total Number of Edgegarameters represent the number of nodes and
edges used to construct the graph. Taotal Number of Abstracted StataisdTotal Num-
ber of Abstracted Edggsarameters show the number of abstracted nodes (which may
occur more than once) and edges which are annotated acgaodime criteria defined in
Section6.4.1 (by the UMC model checker). Theotal Number of Possible Evolutions
T(FE), are the maximum evolutions from any possible (selectettatised) source state
to any destination state of a device, and can be calculatatidogiven formula (from
Section6.4.1, T'(S4) represents the total number of Abstracted states):

T(E)=T(S4)?-T(Sa)
In the example of the TV model, there a264 abstracted states therefore the pos-
sible evolutions for TV model according to the formula &@132 The average time

taken for computing all possible evolutiof$F) against each device are given under the
parameteAverage Time to compute all Possible Evolutions (in Mitlmed) Given the

100



TOT

Device Time to Total Total Total Total Total Average Time
Type Construct Number| Number of| Number| Number of| Number of| (in Millisecond) to
a Graph of Abstracted of Abstracted| Possible compute all
(in Millisecond) | States States Edges Edges | Evolutions| Possible Evolutions

Dimmer Lamp 681.47 48 12 70 58 132 1.6
Door Actuator 659.28 16 4 17 13 12 2.89
Shutter Actuator 712.69 20 5 24 19 20 1.92
Simple Lamp 586.36 8 2 8 6 2 0.69
TV 3455.04 1320 792 1848 1584 69432 7.66
Window Actuator 740.57 20 5 23 18 20 1.84

Table 6.2. Device Type Graph Contents

s)nsay pue juawuadxy —G'9



6 — Achievement of High Level Goals

Device Source Destination | Length of| Number of | Number of | Time (in Millisecond)
Type State State Path Commands Notifications| for each Evolution

Dimmer Lamp on50 onl00 30 5 5 2.53
offState on80 24 4 4 1.77
Door Actuator | closeState openState 12 1 2 0.69
closingState openingState 6 1 1 2.00
Shutter Actuator| downState upState 12 1 2 1.07
upState | HalfOpenState 12 2 2 1.08
Simple Lamp offState onState 6 1 1 0.72
onState offState 6 1 1 0.50
TV onC8V60 offC12VvO0 66 11 11 6.27
onC10v20| onC9V100 54 9 9 3.10
onC9Vv100 onC7Vv40 48 8 8 3.09
onC12Vv80 onC1Vv90 12 2 2 0.82
Window Actuator| openState | closeState 12 1 2 0.86
closingState openingState 12 1 2 1.14

Table 6.3. Evolution Construction Details from Each Device Type (Some Sajnple

102



6.5 — Experiment and Results

space constraints, the detailed representatidf(éf) is not possible, therefore a sam-
ple set of few evolutions is presented in Tabl8 TheLength of Patlparameter shows
the total number of (abstracted or unabstracted) statgsassing which th®estination
Statewill be reachable from the correspondi&gurce State The respective evolution
consists of commands and notifications, Muember of CommandandNumber of Noti-
ficationsparameters show their total number (along with their segeen TheTime for
each evolution (in Millisecondepresents the time of each evolution which is taken (by
the Djisktra shortest path algorithm) to identify it.

High-Level | Secure Home Morning Air Afternoon Bath
Goal Number| Home | Illumination | Wakeup | Passage Lunch | lllumination
1 O O O v O O
2 O O v O O O
3 O v O O O O
4 O O v O O v
5 O O O v O v
6 O v O O 0 v
7 O v O O v v
8 v O O O O O
9 v v O O O O
10 v v O O v O
11 v [ O O O v
12 v v O O O v
13 v v O O v v

Table 6.4. Selected High-Level Goals for 6 Use Cases

For enforcing high-level goals on the SmE at runtime, a ramdelection ofl3 use
cases is made from the possible combination$ ofse cases2{ = 64, or 63 if the
trivial case is omitted, where no DE is enforced on the emvitent). These ar8ecure
Home Home Illumination Morning Wakeup Air Passage Afternoon Lunchand Bath
[llumination.

The “Secure Home” use case secures all the exit points of dnedj i.e. all exit
doors and windows. This use case consists of several DEglprg\the ability to secure
different rooms of the house. It can be used in case of emeygtreft and robbery.

The “Home lllumination” use case requires that all the roaihe house be illumi-
nated. lllumination can either be natural or artificial. Fatural illumination window
shutters (depending upon outside illumination) can be egeRor artificial illumination
lights and lamps can be switched on.

The “Morning Wakeup” use case represents a typical scemdren a resident wants

103



6 — Achievement of High Level Goals

High-level Total Total Number of| Total Number of Total Total Enforcement
Goal Number of Active Devices in Number of | Number of Time
Number Devices Devices Destination State Commands Notifications| (in Millisecond)
1 15 9 6 18 18 95.40
2 17 11 6 19 19 87.01
3 24 9 15 12 12 58.64
4 17 3 14 5 5 38.53
5 19 8 11 15 15 66.66
6 24 6 18 11 11 48.55
7 27 6 21 9 9 63.14
8 20 8 12 19 19 25.47
9 28 2 26 2 2 29.52
10 31 3 28 6 6 79.38
11 23 3 20 5 5 48.50
12 28 5 23 8 8 51.75
13 31 0 31 0 0 44 .42

Table 6.5. Device Activation Statistics

104



6.5 — Experiment and Results

to perform a sequence of activities after waking up in mayniike illuminating the bed-
room, the kitchen and the bathroom, switching off the gasdneaside the bedroom, and
switching on the kitchen television and the bathroom ratfloré details and formulation
of each use cases are given 4]

The "Air Passage” use case regulates the passage of naituiragide the home by
controlling the windows and their shutters.

The “Afternoon Lunch” use case heats the oven, closes tlobedit door to prevent
the cooking odor from entering inside the home and switchrethe kitchen TV. The
“Bathroom Illumination” use case lights up the bathroom gsiatural or artificial lights
based on time of the day and external conditions.

These use cases are tabulated in Té&bdeén such a way that the first goal considers
the home in its “initial” state (as a source state), wheréhalappliances are switched off.
Moving on, every preceding goal (destination state) tré@previous one as the source
state. Also, every goal is a complex combination of preMipdsscribed six user cases:
tick (v') denotes the use case as “selected” and the crdss(‘not selected” (which does
not necessarily mean “inactive”).

For the selected goals, Tales shows the number of devices involved in enforcing
the DE under the paramet@otal number of Deviceagainst the reference number of the
selected goal (mentioned in Tal®ed). In the selected goal, chances are that some de-
vices are already in their required destination states antesare required to evolve for
reaching there. The value undBstal Number of Active Devicaspresents the number
of devices which are required to evolve, wher&atal Number of Devices in Destination
Statementions the number of devices which are already in the Bpedestination state.
For the devices which should evolve, the number of commandsetexecutedTptal
Number of Commangieind the number of notification receivetbal Number of Notifi-
cationg for enforcing the selected goals are given under thesarpeas. The time taken
for enforcing the overall selected goal is given under thaipeterEnforcement Time (in
Millisecond)

A thorough analysis of Tablé.2 shows that the TV device type has the maximum
number of states and accordingly the times to constructridqgghgand compute all possible
evolutions are the maximum among all the tested device typhe reason for a larger
time span for computing all possible evolution is attrilslite the high number of states
and the longer length of paths due to continuity of long ravejaes. Whereas the other
device types, which mostly offer limited functionality, \ealower number of states and
accordingly lower time requirements.

Further, analyzing Tablé.3, it can be observed that TV device type takes the max-
imum time for single evolution. As mentioned in the previalescription as well, the
TV has a lengthy path with a higher number of commands andicaitons. This results
in consumption of more time. Whereas Door Actuator, Shutteiuator, Simple Lamp
and Wind Actuator, with only 1 command to execute and shqa¢hs, take less time for
individual evolutions.

105



6 — Achievement of High Level Goals

Moving on, the analysis of Tablé.5 shows that the enforcement time is highly de-
pendent on the number of devices to be activated. For coeségoals, where one (or
many) devices have already reached their desired statenfbrcement time is consider-
ably lower. But in cases where a majority of devices are reguio switch their states,
the enforcement time is understandably higher. Also, inperative to consider the se-
guence of operations; for the consequent goals, if the deagtivation is already done by
the previous goal, the enforcement operation is usualht.lig

6.6 Discussion

The experiments allow the evaluation of the overall metthaglp proposed here. The
time consumption in the case of complex devices is obsexwvéde thigher owing to the

higher number of states, commands, notifications and thincmus type of long ranging

values of these devices. Simple devices, on the other hanahmistrate a rather light and
insubstantial time and processing load. Also the sequehopeayation plays important

role in minimizing the time as the methodology is designedvoid any redundancy of
operations.

The integration with Dog and the results prove the applidgbof the proposed
methodology to real systems. In addition, it shows that {hygr@ach satisfies the re-
quirement of performing most operations in real time. Ndtatanding the strengths of
this research, it disregards the possible conflicts arisiggals due to complex scenarios.
Further, a typical user is not necessarily over-incenggtidue to lack of goal personal-
ization with the help of user-friendly GUI environment. Bjuhe future research aims
at resolving the potential conflicts and deadlocks of usatgym complex scenarios and
providing user-friendly graphical environment where gsaiay take the liberty of per-
sonalizing the system according to his/her needs and desire

106



Chapter 7

Discussion and Conclusion

Smart Environments (SmE) are a growing field which provideglicit computation fa-
cilities in the environment so that they behave in a soptastid and desired manner. This
sophistication is achieved with the interaction of userhwhe sensors, actuators, elec-
trical appliances and hidden computation. The versatileraaof these components and
their interaction render the systems huge, complex andgunbs, motivating to use the
formal verification for validating the desired behavior. fasmal methods, especially
model checking, have various advantages over other tasbsjgvhich are (also listed in
the thesis) given below:

* they are strongly based on mathematical evidence andaseithe understandabil-
ity of the modeled system,;

* they are underpinning the theory of graph algorithms, datactures and logic;
* they are used for reliably modeling a system at design time;

» they can explore the exhaustive coverage of all the passibénarios, which a
device/system model may have to deal with;

» they can model the concerning requirements in the formab@rties by using logic
based on mathematics;

* they can formally verify the modeled system against theliregqnents (reliable be-
havior, along with other requirements of the system);

* they provides abstraction facilities by which the impattaoncerns can be anno-
tated with simple keywords and the rest of the informatioly meemain hidden.

— With the use of action/event abstraction, the more conalidlecommands/no-
tifications can be annotated on the edges of the graph.

107



7 — Discussion and Conclusion

— With the help of state abstraction, the resultant configomatcan be annotated
on the states of the system.

* they can trace back the errors and can help in fixing themrbt éesign stages.

Formal verification of SmE (and its related components) régomed by various re-
searchers but it is found that there is a sizable researcing@mE modeling and veri-
fication area. Mostly complex modeling and verification stes and components are
given less or no attention partly due to the inherent comiylexd partly due to personal
inclination of current researchers towards areas of tinéérést. This hinders in provid-
ing holistic solutions leaving behind the industry and sseith their specific needs and
demands.

For this, an in-depth survey of existing literature andestatthe art techniques is per-
formed. In which, the techniques which are used for the modelf SmE and its related
components, along with the conformance of reliable bemdkiough formal verification
approaches, are considered.

These techniques are analyzed by empirically driving soanameters related to the
focused area, modeling formalism, formal verification atfteoimportant factors. The
analysis conclude that the techniques mostly follow Stegs for the modeling pur-
pose. It was also observed that the black box modeling, otaitgck of its visibility, is
scarcely diffused in the techniques. Nevertheless, itrassta fundamental role by pro-
viding generic dictionaries and naming/communicationveoions which help broadly
at the time of implementation. It is also observed that vesy fechniqgues model and
verify — at a deeper level — all basic components of SmE (dssices, control algorithm,
environment/context). The model checking technique isl tisethe formal verification.
Some techniques also use abstractions for reducing treesgate of the model. Results
of the survey show that no technique is fully automatic iretnature and covers all the
dimensions (e.g. modeling of context, user, devices) of Shtiterefore, it is deduced
that more R&D effort, impartial and objective in its natureeds to be put into the SmE
modeling and verification research.

A comprehensive methodology is required which may enthitred major compo-
nents, for the design and verification, of SmE; users, dsyieavironment and control
algorithms. On the basis of the analysis of the literaturgesuand the empirically de-
duced parameters, a methodology is proposed. The propatbddology consists of ten
steps, starting from the requirement organization of eachponent, with the elabora-
tion of important aspects, to the verification of entire Sfhke organized specifications
provide a better understandability of the system througithvthe ambiguities (during
modeling and verification) can be sufficiently reduced. fertthe probability of missing
any properties has been efficiently controlled by requirgroeganization.

It is attempted to bridge the discovered research gap frenfitdrature survey in the
proposed methodology. By keeping in view the covered anduwered modeling areas

108



of other surveyed methodologies/techniques, their fatgsacerns, and the verification
aspects, a methodology is proposed. In the proposed mddgyd is tried to integrate
the advantages, covered and uncovered areas, of surveygeeh with the use of mostly
adopted and richer semantic tools.

The proposed methodologies use both type of formalismshntodeling purpose:
black box and white box. The black box modeling is performeith whe use of Ontol-
ogy where white box modeling is performed by using the seioswaff Harel statechart.
The intelligence is modeled with the use of event-condiaetion strategy. The desired
behavior/aspects which are required to verify, on the miydslformatted in properties
by using the syntax and semantic of Action-and-State bamegdral logic, known as
UCTL. For the modeling of SmE all basic components: Usersadsyicontrol strategy,
context and their interaction are considered. All the baralaspects of the users are
considered except the action history and their divisiorheiasis of roles are not consid-
ered. The interaction among various components of SmE yimiuglevels, is considered
in the proposed methodology. The verificational aspectdedlto different components
and levels are considered except the real time and pros@bierification (as such type
of modeling is not performed).

The methodology is implemented through a set of designduhtgoes (individual de-
vice verification and entire system verification) and impderted on (small but not so sim-
ple) real life systems. Almost 80% work, including the caisien of device behavioral
models into the accepted format of model checker, the ggaeraf temporal properties
related to verify the consistency, the generation of emvirent component, abstractions,
instances, the integration of these models into the ackleptarmat of model checker,
and saving the complete model in a file are automaticallyoperéd. The rest of the task,
the interface and behavioral modeling of devices, the niogelf control strategy, the de-
signing of complex temporal properties related to behaviegrification and checking of
these properties on the model are manually performed. Merewith the use of action
and state abstraction the unnecessary details are kegrhiotdresult the only limitation
of model checking technique is sufficiently reduced.

The first run of verification processes did not achieve allgtoperties as satisfactory
against the models. After appropriate modifications to tlogl@fs, it was then proven to
conform to the organized requirements. The successfultsedemonstrate the consis-
tency, correctness, reliability, safety, security andreéesbehavior of the modeled SmE
system and its related modeled components: user behavidelmg, device modeling,
environment/context modeling, control algorithm modgland their interaction. These
behavioral verified models can be used safely, for any pa;poss/arious design and im-
plementation phases. A closer look of the proposed metbggiolith the reference of
surveyed techniques are presented in Takleand7.2

More advanced SmE requirements, related to High Level getgor of various user
goals, are also achieved by automatically activating tivecds with the use of their ver-
ified behavioral models. As, the goals are associated withiléitade of resources and

109



7 — Discussion and Conclusion

Researchers Black Box White Box Intelligence Requirements Users Devices Control Context Interaction
Modeling Modeling Modeling Modeling Modeling Modeling Modeling Modeling Modeling
Ahmed and Tripathi| O Role based col-| Role based LTL UPr, UA O Ui, IC, CO
[68] laboration model
Augusto and Hornog 0O Activity  Mod- | Event (Activity | LTL ul, UP, ad O us, UC,
[69] eling  Through| detection), Con- UA, UB SC, CO
Promela pro-| dition(location
cesses identification),
Action (operation
graded)
Augusto and McCul-| [ Finite State Ma-| Event Condition| TCTL UA Behavior | us, ul,
lagh [10] chine Action SC, IC, CO
Benghazi et al. 70] O UML-RT , | Event Condition| Fpp (Common | UH, UA g us, ul,
CSP+T (previous history)| Formal Semantic SC, IC, CO
Action Domain)
Bernardeschi et O CCS/MEIJE Pro-| Event Condition| mu-ACTL O IC, CO
al. [13] cess Algebra Action
Bonhomme etal.41] | System Engineer{ Petri-Nets, HiLes| Decision Logic Temporal Proper-| Ul,  UH, O us, ul,
ing  Standards, ties UA SC, IC, CO
EIA-632
Boytsov and Za-| Context Space Orthotope-based| Weighted Rule| Situation Algebra O IC
slavsky [71] Theory (CST) Situation Space | Based Expression
Corno and | Ontology Statecharts Event Condition | UCTL ul, UP, | Behavior g O us, UC,
Sanaullah Action UA, UB ul, SC,
[58,113 169 IC, CO
Coronato and Pietrg Ontology Ambient Calcu-| Ambient move-| Ambient logic + | Ul, UP, UB g O us, UC,
[15,75,76] lus ment, Pre-and- RTTL SC, CO
Post conditions
Gnesietal. 77| O Hierarchical Stat-| Event Condition| ACTL UA Behavior ul
echarts Action
Gnesi and Mazzantj O Communicating | Event Condition| mu-ACTL UA, UB Behavior O ucC, ul
[79 State Machines | Action
Hoogendoorn et al| O Predicate logic Rule Based TTL UH, UA g ul, IC, CO
[80,81]
Ishikawa et al. $6] O Event Calculus Rule Based Axioms  Based| Ul, UPr, O 0 us, UC,
through Discrete| UP, UA ul, SC, CO
Event Calculus
Leelaprute et al.19] Object Oriented| Object Oriented| Event Condition| CTL Behavior 0 IC, CO
Modeling, Sys-| Modeling, Ser-| Action
tem description vice description
Liu et al. [89 O CSP# Rule Based LTL ul, UA O 0 us, UC,
Ul, SC, IC,
CO
[90-92] 0 PVS Logic, a| O Axioms Based| Ul, UPr, | Behavior ul
Typed higher- (according to| UA
ordered Logic property tem-
plate)
Ranganathan and O Ambient Calcu-| Rule Based, DL-| Ambient Logic Ul, UA O O us, UC,
Campbell P3] lus Based, Relational Ul, SC, IC,
Algebra CO
Table 7.1. Formal Modeling analysis with the Proposed Methodology

110



T1T

Entire System Verification

Researchers Consistency Users Context Device Devices Real Probabilistiq Abstraction | Automatic | Scalability | Verification
Verification | Behavior Verification | Behavior Interaction | Time Verification Tool
Verification Verification | Control Verification
Verifica-
tion
Ahmed and Tri- ] O a Automatic SPIN
pathi [68)]
Augusto and O O O O Manual O SPIN
Hornos B9
Augusto and Mc- O O g a Manually | UPPAL
Cullagh [10]
Benghazi et al.| O d | d Semi- O 0
[70] automatic
Bernardeschi et O o Manually JACK
al. [13]
Bonhomme et al.| [0(Behavioral d d Semi- TINA
[21] Analysis) automatic
Boytsov and Za-| O o Manual Algorithms
slavsky [71]
Corno and | O O O O 0 0 Semi- O UMC
Sanaullah automatic
[58,113 169
Coronato and O O O 0 Semi- O Ambient
Pietro [L5,75,76] automatic Designer,
Nu-SMV
Gnesietal. 77 O O Manually JACK
Gnesi and Maz- [B] O O Manually [H] UuMC
zanti [79]
Hoogendoorn et O O O Semi- TTL
al. [80,81]] automatic Checker,
SMV
Ishikawa et | O O O O Manual Discrete
al. [86] Event
Calculus
Reasoner
Leelaprute et al. O O O Semi- SMV
[19 automatic
Liu et al. [89] o o O a Semi- | PAT
automatic
[90-92] O O O Semi- PVS
automatic
Ranganathan andl O O O O Manually specified in
Campbell p3] [119-127)
Table 7.2. Formal Verification analysis with the Proposed Methodology




7 — Discussion and Conclusion

can relate to acquiring the functionalities of a single dewr a group of devices (e.g.
sensors, actuators, lamps or TV). The variety of devices&iasd a major problem of
managing SmE. An increasingly adopted solution to the bt the modeling of goals
and intentions, and then using artificial intelligence tatcol the respective SmE accord-
ingly. Generally, the solution advocates that the goalsbeaachieved by controlling the
evolution of the states of the devices. In order to reach ticodar state, an automatic
device activation methodology is proposed, which uses énéied behavioral models of
the concerning devices and considajshe composite nature of the state of an individual
device;b) the possible variation of specific commands, notificatiand their sequence
based on the current states of the devices.

The methodology works at two levels: design-time and ruetirAt design-time, it
constructs a data and control flow behavioral graph of thgieérdevice models, based
upon the concepts of a model checking approach. Then atmentin the arrival of any
request for the enforcement of a goal, it accordingly cdssilese graphs and extracts
a reliable shortest evolution for all the devices which hewbe affected by the desired
goal. Then, these extracted evolutions are enforced onattiesponding devices and, as
a result, the desired high-level goal will be automaticaltgomplished.

A detailed experimentation is conducted which shows theatithe consumption in the
case of complex devices is observed to be higher owing toitfleehnumber of states,
commands, notifications and the continuous type of longirgneplues of these devices.
Simple devices, on the other hand, demonstrate a rathérdighinsubstantial time and
processing load. Also the sequence of operation plays itaporole in minimizing the
time as the methodology is designed to avoid any redundanogeyations. In addition,
it shows that the approach satisfies the requirement of peifig most operations in real
time. Notwithstanding the strengths of the research, rtedisrds the possible conflicts
arising in High Level goals due to complex scenarios. Fuytngypical user is not neces-
sarily over-incentivized due to lack of goal personalizatwith the help of user-friendly
GUI environment. Thus, the future research aims at resplthie potential conflicts and
deadlocks of user goals in complex scenarios and providsegfriendly graphical envi-
ronment where users may take the liberty of personaliziagjtstem according to his/her
needs and desires.

112



Bibliography

[1] M. Weiser. The Computer for the 21st Centur§cientific American265(3):94—
104, 1991.

[2] D. Cook and S. DasSmart environments: Technology, protocols and applicegtio
volume 43. Wiley-Interscience, 2004.

[3] D.J. Cook, J.C. Augusto, and V.R. Jakkula. Ambient inteltige: Technologies,
applications, and opportunitie®ervasive and Mobile Computin§(4):277-298,
20009.

[4] F. Sadri. Ambient Intelligence: A Surve\YACM Computing Survey43(4):36:1—
36:66, October 2011.

[5] E. Aarts. Ambient intelligence: Basic elements and ihssgit-Information Tech-
nology, 50(1):7-12, 2008.

[6] D. Saha and A. Mukherjee. Pervasive computing: a pamaday the 21st century.
Computer 36(3):25-31, 2003.

[7] G. Acamporaand V. Loia. Fuzzy Control InteroperabilibdsScalability for Adap-
tive Domotic FrameworkIEEE Transactions on Industrial Informatic%(2):97—
111, 2005.

[8] D.J. Cook. Multi-agent smart environment¥ournal of Ambient Intelligence and
Smart Environmentd (1):51-55, 2009.

[9] C. Diane and D. SajalSmart Environments: Technology, Protocols and Applica-
tions Wiley-Interscience, 2004.

[10] J.C. Augusto and P. Mccullagh. Ambient Intelligence: Capts and Applications.
Computer Science and Information Systednd):1-27, 2007.

[11] A. Steventon and S. Wrighintelligent spaces: the application of pervasive ICT
Springer-Verlag New York Inc, 2006.

[12] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and.Burgelman. Sce-
narios for Ambient Intelligence in 2010. Technical repd®&TAG: IST Advisory
Group, February 2001.

[13] C. Bernardeschi, A. Fantechi, S. Gnesi, S. Larosa, G. Madigand D. Romano.
A Formal Verification Environment for Railway Signaling Sgst Design.Formal
Methods in System Desigh2(2):139-161, 1998.

113



Bibliography

[14] E.M. Clarke and J.M. Wing. Formal Methods: State of theé @&rd Future Direc-
tions. ACM Computing Survey28(4):626—-643, 1996.

[15] A. Coronato and G. De Pietro. Formal Design of Ambientligence Applica-
tions. Computer 43(12):60 —68, December 2010.

[16] F. Wang. Formal Verification of Timed Systems: A Surveyl &erspectivePro-
ceedings of the IEEP2(8):1283-1305, 2004.

[17] A. Gupta. Formal hardware verification methods: A syrvBormal Methods in
System Desigri(2):151-238, 1992.

[18] D. Bonino and F. Corno. Domains: Domain-based modelimgafobient intelli-
gence.Pervasive and Mobile Computing(4):614-628, 2012.

[19] P. Leelaprute, M. Nakamura, T. Tsuchiya, K. Matsumatod T. Kikuno. De-
scribing and Verifying Integrated Services of Home Netw8&gstems. Inl2th
Asia-Pacific Software Engineering Conferenpage 10, December 2005.

[20] D. Muthiayen. Animation and formal verification of rei@ine reactive systems in
an object-oriented environment. A Thesis in the Departroé@omputer Science,
1996.

[21] S. Bonhomme, E. Campo, D. Esteve, and J. Guennec. Methgygahd tools for
the design and verification of a smart management systemofoelcomfort. In
Intelligent Systems, 2008. I1S’08. 4th International IEEEnféoence volume 3,
pages 24-2. IEEE, 2008.

[22] M. R. Kakoee, H. Shojaei, H. Ghasemzadeh, M. Sirjani, Zntlavabi. A new
approach for design and verification of transaction levetietl® InCircuits and
Systems, 2007. ISCAS 2007. IEEE International Symposiupagas 3760 —-3763,
may 2007.

[23] D. Bonino and F. Corno. DogOnt - Ontology Modeling for liigeent Domotic
Environments. In Amith Sheth, Steffen Staab, Mike Dean, $fae Paolucci,
Diana Maynard, Timothy Finin, and Krishnaprasad Thirugar editors|nterna-
tional Semantic Web Conferenceimber 5318 in LNCS, pages 790-803. Springer-
Verlag, October 2008.

[24] E. Meshkova, J. Riihijarvi, P. Mahonen, and C. Kavadiagdiling the home envi-
ronment using ontology with applications in software comfagion management.
In Telecommunications, 2008. ICT 2008. International Confegesn pages 1-6.
IEEE, 2008.

[25] J. Rouillard, X. Le Pallec, J.C. Tarby, and R. Marvie. Héaiing the Design of
Multi-channel Interfaces for Ambient Computing. 8910 Third International
Conference on Advances in Computer-Human Interactipages 95-100. IEEE,
2010.

[26] M.H. Coen. Design principles for intelligent environnis. In Proceedings of
the fifteenth national/tenth conference on Atrtificial iiggnce/Innovative appli-
cations of artificial intelligenceAAAIl '98/IAAI '98, pages 547-554, Menlo Park,
CA, USA, 1998. American Association for Atrtificial Intelligee.

114



Bibliography

[27] H. Chen, F. Perich, T. Finin, and A. Joshi. Soupa: stashdatology for ubiquitous
and pervasive applications. Mobile and Ubiquitous Systems: Networking and
Services, 2004. MOBIQUITOUS 2004. The First Annual Inteéamal Conference
on, pages 258 — 267. IEEE Computer Society, aug. 2004.

[28] H. Chen, T. Finin, and A. Joshi. A context broker for bunlgl smart meeting
rooms. InProceedings of the Knowledge Representation and Ontologpder
tonomous Systems Symposildafense Technical Information Center, 2004.

[29] L. Sommaruga, A. Perri, and F. Furfari. Domoml-env: ariotogy for human
home interaction. IfProceedings of SWAPages 14-16. Citeseer, 2005.

[30] T.R. Gruber et al. A translation approach to portableotngy specifications.
Knowledge acquisitiorb:199-199, 1993.

[31] D. Fensel.Ontologies: a silver bullet for knowledge management andtelaic
commerce Springer-Verlag, New York, NY, USA, 2001.

[32] D. Harel. Statecharts: A visual formalism for complgstems. Science of com-
puter programming8(3):231-274, 1987.

[33] S.T. Cheng, C.H. Wang, and C.C. Chen. An adaptive scenaredb@sasoning
system cross smart houses.dommunications and Information Technology, 2009.
ISCIT 2009. 9th International Symposium pages 549-554. IEEE, 2009.

[34] H. Dibowski, J. Ploennigs, and K. Kabitzsch. Automatisign of building au-
tomation systems.Industrial Electronics, IEEE Transactions p87(11):3606—
3613, 2010.

[35] A. Katasonov. Enabling non-programmers to developrsmavironment appli-
cations. InComputers and Communications (ISCC), 2010 IEEE Symposiym on
pages 1059-1064. IEEE, 2010.

[36] P. Rashidi and D.J. Cook. Keeping the resident in the lo&gapting the smart
home to the userSystems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions ar39(5):949 —959, 9 2009.

[37] F. Amigoni, N. Gatti, C. Pinciroli, and M. Roveri. What plagr for ambient intelli-
gence applications8ystems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions gr35(1):7 — 21, 1 2005.

[38] F. Corno and F. Razzak. Intelligent energy optimizationuser intelligible goals
in smart home environmentSmart Grid, IEEE Transactions 06(4):2128-2135,
2012.

[39] E. Kaldeli, E. Warriach, J. Bresser, A. Lazovik, and Meho. Interoperation,
composition and simulation of services at hom8ervice-Oriented Computing
pages 167-181, 2010.

[40] F. Corno and F. Razzak. Sat based enforcement of domd¢ictefin smart en-
vironments. Journal of Ambient Intelligence and Humanized Compuytpages
1-15, 2013.

[41] D.L. McGuinness, F.V. Harmelen, et al. Owl web ontoldgnguage overview.
W3C recommendatiori0(2004-03):10, 2004.

115



Bibliography

[42] Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systems
Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[43] Franco MazzantiUMC 3.3 User Guide, ISTI Technical Report 2006-TR-[ETI-
CNR Pisa-ltaly, September 2006.

[44] R. De Nicola and F. Vaandrager. Action versus state blaggcks for transition sys-
tems. Semantics of Systems of Concurrent Processes, Lecture Nd@esniputer
Science469:407-419, 1990.

[45] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automaticifieation of Finite-
State Concurrent Systems Using Temporal Logic Specificatié¢dCM Transac-
tions on Programming Languages and SysteBra.244—263, April 1986.

[46] M.H. Ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. Atica/state-based
model-checking approach for the analysis of communicairotocols for service-
oriented applications. IRroceedings of the 12th international conference on For-
mal methods for industrial critical systeqsages 133—-148. Springer-Verlag, 2007.

[47] M.H. Ter Beek, S. Gnesi, N. Koch, and F. Mazzanti. Fornaification of an au-
tomotive scenario in service-oriented computing.Sioftware Engineering, 2008.
ICSE’08. ACM/IEEE 30th International Conference, grages 613-622. IEEE,
2008.

[48] Matthew Hennessy and Robin Milner. On observing nondetasm and concur-
rency. In Jaco de Bakker and Jan van Leeuwen, edikaitgmata, Languages and
Programming volume 85 ofLecture Notes in Computer Sciengages 299-309.
Springer Berlin / Heidelberg, 1980.

[49] C. Baier and J.P. Katoe®rinciples of model-checkingrhe MIT Press, ISBN-10:
0-262-02649-X ISBN-13:978-0-262-02649-9, May 2008.

[50] P. Cousot and R. Cousot. Abstract interpretation framksvalournal of logic and
computation2(4):511, 1992.

[51] O. Wei. Abstraction for verification and refutation in model cheaki PhD thesis,
University of Toronto, 2009.

[52] S. Gnesiand F. Mazzanti. A Model Checking VerificatiorviEmnments for UML
Statecharts. IProceedings of the XLIII Congresso Annuale A]J@A05.

[53] F. Mazzanti. Designing UML models with UMC. Technicapuoet, Technical
Report 2009-TR-43, ISTI-CNR-Pisa, Italy, 2009.

[54] R.D. Nicola. Three Logics for Branching Bisimulatiodournal of the Association
for Computing Machinery42:2:458-487, March 1995.

[55] D. Bonino, E. Castellina, and F. Corno. The DOG gateway:bing Ontology-
based Intelligent Domotic EnvironmentdEEE Transactions on Consumer Elec-
tronics 54(4):1656 —1664, November 2008.

[56] OSGi Alliance. Osgi service platform, core specifioatirelease 4, version 4.1.
OSGi Specificatior2007.

[57] D. Marples and P. Kriens. The open services gatewaiativié: An introductory
overview. Communications Magazine, IEEB9(12):110-114, 2001.

116



Bibliography

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

F. Corno and M. Sanaullah. Formal verification of devitgeschart models. In
Intelligent Environments (IE), 2011 7th International Cerg@nce onpages 66 —73,

july 2011.

Lars Birkedal, Sgren Debois, Ebbe Elsborg, Thomas Hildedt, and Henning
Niss. Bigraphical models of context-aware systemsFdandations of software

science and computation structurgsges 187—-201. Springer, 2006.

Cecilia Mascolo, Dan Ghica, Mark Ryan, and Emil Lupu. UddiVFundamental

Approaches to Validation of Ubiquitous Computing Applicats and Infrastruc-
tures. Research Proposed EP/D076625/2, EPSRC, 2009.

Francois Siewe, Hussein Zedan, and Antonio Cau. The Galaf Context-Aware

Ambients.Journal of Computer and System Sciend@@$4):597—-620, 2011.

Gruia-Catalin Roman, Christine Julien, and Jamie Paytbodeling Adaptive
Behaviors in Context UNITY. Theoretical Computer Scienc876(3):185-204,
2007.

Vojtéch Forejt, Marta Kwiatkowska, Gethin Norman, and DavidkBar Auto-
mated Verification Techniques for Probabilistic SystemsFdrmal Methods for
Eternal Networked Software Systemages 53—113. Springer, 2011.

Luca Mottola, Thiemo Voigt, Fredrik Osterlind, JoakEniksson, Luciano Baresi,
and Carlo Ghezzi. Anquiro: Enabling Efficient Static Verifioa of Sensor Net-
work Software. IrProceedings of the ICSE Workshop on Software Engineering for
Sensor Network Applicationpages 32—-37. ACM, 2010.

Peng Li and John Regehr. T-check: Bug Finding for Senstwbidks. InProceed-
ings of the 9th ACM/IEEE International Conference on InfonimaProcessing in
Sensor Networkpages 174-185. ACM, 2010.

Matthew L. Bolton, Ellen J. Bass, and Radu I. Siminiceanan&ating Phenotyp-
ical Erroneous Human Behavior to Evaluate Human-Automdtgaraction using
Model Checking.International Journal of Human-Computer Studié9(11):888
—906, 2012.

Jit Biswas, Mounir Mokhtari, Jin Song Dong, and Philippyavild Dementia Care
at Home—Integrating Activity Monitoring, User InterfacéaBticity and Scenario
Verification. InAging Friendly Technology for Health and Independenuages
160-170. Springer, 2010.

Tanvir Ahmed and Anand R. Tripathi. Static VerificatiohSecurity Requirements
in Role Based CSCW Systems. Rroceedings of the Eighth ACM Symposium
on Access Control Models and Technologi®@8CMAT '03, pages 196-203, New
York, NY, USA, 2003. ACM.

J.C. Augusto and M. J. Hornos. Software Simulation andfi¢ation to Increase
the Reliability of Intelligent Environments Advances in Engineering Software
58:18-34, 2013.

K. Benghazi, M.V. Hurtado, M.J. Hornos, M.L. Rodriguez, Rodriguez-
Dominguez, A.B. Pelegrina, and M.J. Rodriguez-Fértiz. BngliCorrect Design

117



Bibliography

and Formal Analysis of Ambient Assisted Living systerdsurnal of Systems and
Software 85(3):498-510, 2012.

[71] A.Boytsov and A. Zaslavsky. Formal Verification of Contard Situation Models
in Pervasive ComputingPervasive and Mobile Computing(1):98 — 117, 2013.

[72] Juan Ye, Simon Dobson, and Susan McKeever. Situatientiication Techniques
in Pervasive Computing: A ReviewPervasive and Mobile Computing(1):36—
66, 2012.

[73] Amir Padovitz, Seng W Loke, and Arkady Zaslavsky. Mpig-Agent Perspectives
in Reasoning about Situations for Context-Aware Pervasive fiiiimg Systems.
IEEE Transactions on Systems, Man and Cybernetics, Part gte@y and Hu-
mans 38(4):729-742, 2008.

[74] Lotfi Asker Zadeh. Fuzzy Seténformation and contrql8(3):338—353, 1965.

[75] A. Coronato and G.D.E. Pietro. Formal Specification oféMss and Pervasive
Healthcare Applications. ACM Transactions on Embedded Computing Systems
10(1):12, 2010.

[76] A.Coronato and G. De Pietro. Formal Specification andfigation of Ubiquitous
and Pervasive System8CM Transactions on Autonomous and Adaptive Systems
6(1):9:1-9:6, February 2011.

[77] S. Gnesi, D. Latella, and M. Massink. Model Checking UMtat8chart Dia-
grams Using JACK. InProceedings of 4th IEEE International Symposium on
High-Assurance Systems Engineeripgges 46-55. IEEE, 1999.

[78] D. Latella, I. Majzik, and M. Massink. Towards a Formgbé&ational Semantics
of UML Statechart Diagrams. IRroceedings of the IFIP TC6/WGG@olume 99,
pages 15-18, 1999.

[79] S. Gnesi and F. Mazzanti. On the Fly Model Checking of Comicating UML
State Machines. Isecond ACIS International Conference on Software Engineer-
ing Research, Management and Applicatigpeges 331-338, 2004.

[80] Mark Hoogendoorn, MichelC.A. Klein, Zulfigar A. MemomaJan Treur. Formal
Verification of an Agent-Based Support System for Medicirtake. In Ana Fred,
Joaquim Filipe, and Hugo Gamboa, edit@dsgmedical Engineering Systems and
Technologiesvolume 25 ofCommunications in Computer and Information Sci-
ence pages 453—-466. Springer Berlin Heidelberg, 2009.

[81] Mark Hoogendoorn, Michel C.A. Klein, Zulfigar A. Memonna Jan Treur. For-
mal Specification and Analysis of Intelligent Agents for Mb@Based Medicine
Usage ManagemenComputers in Biology and Mediciné3(5):444 — 457, 2013.

[82] T. Bosse, C.M. Jonker, L.V.D. Meij, A. Sharpanskykh, and@r&ur. Specification
and Verification of Dynamics in Agent Modelmternational Journal of Coopera-
tive Information System48(01):167-193, 2009.

[83] T. Bosse, C. M. Jonker, L.V.D. Meij, and J. Treur. A Langaamnd Environment
for Analysis of Dynamics by Simulatiorinternational Journal on Atrtificial Intel-
ligence Tools16(03):435-464, 2007.

118



Bibliography

[84] A.A. Aziz, M.C.A. Klein, and J. Treur. An Integrative Andnt Agent Model
for Unipolar Depression Relapse Preventidournal of Ambient Intelligence and
Smart Environmeni(1):5-20, 2010.

[85] Alexei Sharpanskykh and Jan Treur. An Ambient Agenthitecture Exploiting
Automated Cognitive AnalysisJournal of Ambient Intelligence and Humanized
Computing 3(3):219-237, 2012.

[86] Fuyuki Ishikawa, Basem Suleiman, Kayoko Yamamoto, ahahi€hi Honiden.
Physical Interaction in Pervasive Computing: Formal MaagliAnalysis and Ver-
ification. In Proceedings of the international conference on Pervasergices
pages 133-140. ACM, 20089.

[87] Murray Shanahan. The Event Calculus ExplainedAtiificial intelligence today
pages 409-430. Springer, 1999.

[88] IBM. Commonsense Reasoning with the Discrete Event CaddReasoner, 2005.

[89] Y. Liu, X. Zhang, J.S. Dong, Y. Liu, J. Sun, J. Biswas, andMbkhtari. Formal
Analysis of Pervasive Computing Systems. 1Ifih International Conference on
Engineering of Complex Computer Systepagjes 169-178. IEEE, 2012.

[90] Paolo Masci, Dominic Furniss, Paul Curzon, Michael Dititam, and Ann Bland-
ford. Supporting field investigators with pvs: a case studye healthcare domain.
In Software Engineering for Resilient Systepages 150-164. Springer, 2012.

[91] Paolo Masci, Paul Curzon, Michael D Harrison, Anaheedwy, Insup Lee, and
Harold Thimbleby. Verification of interactive software foiedical devices: Pca in-
fusion pumps and fda regulation as an examplkCS2013. ACM Digital Library
2013.

[92] Paolo Masci, Yi Zhang, Paul Curzon, Michael D HarrisoayPJones, and Harold
Thimbleby. Verification of software for medical device useterfaces in PVS.
Submitted paper, School of Electronic Engineering and Cdergcience, Queen
Mary University of London, United Kingdom, 2013.

[93] A. Ranganathan and R.H. Campbell. Provably Correct Perwv&omputing Envi-
ronments. IrSixth Annual International Conference on Pervasive Compguimd
Communicationspages 160-169. IEEE, 2008.

[94] Witold Charatonik and Jean-Marc Talbot. The Decid&pitf Model Checking
Mobile Ambients. In Laurent Fribourg, editaomputer Science Logizolume
2142 ofLecture Notes in Computer Scienpages 339-354. Springer Berlin / Hei-
delberg, 2001.

[95] G. Booch, J. Rumbaugh, and I. JacobsOnified Modeling Language User Guide,
The Addison Wesley., October 1998.

[96] D. Fensel.Ontologies: A Silver Bullet for Knowledge Management and e
Commerce Springer-Verlag, New York, NY, USA, 2001.

[97] J.C.M. Baeten. A Brief History of Process Algebr&heoretical Computer Sci-
ence 335(2-3):131-146, 2005.

119



Bibliography

[98] J.A. Bergstra and J.W. Klop. Process Algebra for Syncbus Communication.
Information and contrql60(1-3):109-137, 1984.

[99] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, e@vetinuctures and domains,
part i. Theoretical Computer Sciencg3(1):85-108, 1981.

[100] J.E. Hopcroft, R. Motwani, and J.D. Ullmarintroduction to Automata Theory,
Languages, and Computatiovolume 2. Addison-wesley Reading, MA, 1979.

[101] Erich Mikk, Yassine Lakhnechi, and Michael Siegel. eHirchical automata as
model for statecharts. In R.K. Shyamasundar and K. Uedayregidvances in
Computing Science— ASIAN'9Volume 1345 of_ecture Notes in Computer Sci-
ence pages 181-196. Springer Berlin Heidelberg, 1997.

[102] D.N. Jansen, H. Hermanns, and J.P. Katoen. A ProB#bikExtension of UML
Statecharts. Ikormal Techniques in Real-Time and Fault-Tolerant Sysi@ages
355-374. Springer, 2002.

[103] M. Hennessy and R. Milner. Algebraic Laws for Nondetgism and Concur-
rency. Journal of the ACM32(1):137-161, 1985.

[104] C.A.R. Hoare. Communicating Sequential Process€smmunications of the
ACM, 21(8):666—677, 1978.

[105] S. Brookes. On the Relationship of CCS and C$Ritomata, Languages and
Programming pages 83-96, 1983.

[106] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobilepesses, lInforma-
tion and computation100(1):1-40, 1992.

[107] L. Cardelliand A. Gordon. Mobile Ambients. Foundations of Software Science
and Computation Structurepages 140-155. Springer, 1998.

[108] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds#ixih, and H. Duman.
Creating an Ambient-Intelligence Environment Using Emlestidgents. Intelli-
gent Systemd4.9(6):12—-20, 2004.

[109] Witold Pedrycz. Human Centricity in Computing with Fyz3ets: an Inter-
pretability Quest for Higher Order Granular Construc&urnal of Ambient In-
telligence and Humanized Computjrig1):65—74, 2010.

[110] V. Stankovski and J. Trnkoczy. Application of Decisidrees to Smart Homes.
Designing Smart Homepages 132-145, 2006.

[111] D. Cook, M. Youngblood, and S. Das. A Multi-Agent Appobato Controlling a
Smart EnvironmentDesigning smart homepages 165-182, 2006.

[112] A. Kofod-Petersen and A. Aamodt. Contextualised Amblatelligence Through
Case-Based ReasoningAdvances in Case-Based Reasonipgges 211-225,
2006.

[113] F. Corno and M. Sanaullah. Design time Methodology Ifer Eormal Verification
of Intelligent Domotic Environments. Imternational Symposium on Ambient In-
telligence Springer, April 2011.

[114] L. Feng, P. Apers, and W. Jonker. Towards Context-Avizata Management for

120



Bibliography

Ambient Intelligence. IrDatabase and Expert Systems Applicatiqueges 422—
431. Springer, 2004.

[115] M.H.T. Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. &t&Event-Based Model-
Checking Approach for the Analysis of Abstract System Pridpgr Science of
Computer Programming/6:119-135, February 2011.

[116] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. lasgl, and F. Tiezzi. A
model checking Approach for Verifying COWS Specificatiofrsindamental Ap-
proaches to Software Engineeringages 230-245, 2008.

[117] R. Alur and T. Henzinger. Logics and Models of Real TimeSérvey. InReal-
Time: Theory in Practicepages 74-106. Springer, 1992.

[118] M. Reynolds. An Axiomatization of PCTL*. Information and Computatign
201(1):72-119, 2005.

[119] D. Latella, I. Majzik, and M. Massink. Automatic vegétion of a behavioural
subset of uml statechart diagrams using the spin modekendermal Aspects of
Computing 11(6):637—664, 1999.

[120] M.D.M. Gallardo, P. Merino, and E. Pimentel. DebuggidML Designs with
Model Checking.Journal of Object Technology(2):101-117, 2002.

[121] E. Mikk, Y. Lakhnech, M. Siegel, and G.J. Holzmann. Ierpenting Statecharts in
PROMELA/SPIN. InProceedings in 2nd Workshop on Industrial Strength Formal
Specification Techniquggages 90 —101. IEEE, 1998.

[122] E. Clarke, O. Grumberg, and D. Long. Verification Toads Finite-State Con-
current Systems A Decade of Concurrency Reflections and Perspectivages
124-175, 1994.

[123] T. Schafer, A. Knapp, and S. Merz. Model Checking UMLt&tiachines and
Collaborations. Electronic Notes in Theoretical Computer Sciegn68(3):357—
369, 2001.

[124] J. Lilius and I.P. Paltor. vUML: A Tool for Verifying UM Models. In 14th
IEEE International Conference on Automated Software Engingepages 255—
258. IEEE, 1999.

[125] G.J. Holzmann. The Model Checker SPIIREE Transactions on Software Engi-
neering 23(5):279-295, 1997.

[126] K.L. McMillan. Symbolic Model Checking: An Approach the State Explosion
Problem. Technical report, DTIC Document, 1992.

[127] M.H. ter. Beek, F. Mazzanti, and S. Gnesi. Cmc-umc: a &aork for the veri-
fication of abstract service-oriented properties.Phoceedings of the 2009 ACM
symposium on Applied Computimgages 2111-2117, New York, NY, USA, 2009.

[128] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a reitsmternational Journal
on Software Tools for Technology Transféfl):134-152, 1997.

[129] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,.\istore, M. Roveri, R. Se-
bastiani, and A. Tacchella. Nusmv 2: An Opensource Tool fonisolic Model
Checking. InComputer Aided Verificatigrpages 241-268. Springer, 2002.

121



Bibliography

[130] B. Berthomieu and F.Vernadat. Time Petri Nets Analysith WINA. In Third
International Conference on Quantitative Evaluation oft8ys pages 123-124.
IEEE, 2006.

[131] J. Byg, K. Jgrgensen, and J. Srba. TAPAAL: Editor, Satad and Verifier of
Timed-arc Petri NetsAutomated Technology for Verification and Analypiages
84-89, 20009.

[132] G. Gardey, D. Lime, M. Magnin, and O. Roux. Romeo: A toaslAmalyzing Time
Petri Nets. InComputer Aided Verificatigrmpages 261-272. Springer, 2005.

[133] G. Madl, S. Abdelwahed, and D.C. Schmidt. Verifying fiilsuted Real-Time
Properties of Embedded Systems via Graph Transformatmmh®adel Checking.
Real-Time System33(1):77-100, 2006.

[134] P. Stevens and C. Stirling. Practical Model-Checkingngssames. Tools and
Algorithms for the Construction and Analysis of Systgmages 85-101, 1998.

[135] H. Garavel, F. Lang, R. Mateescu, et al. An Overview of GAPDO1. Research
Report RT-0254, INRIA, 2001.

[136] Jun Sun, Yang Liu, JinSong Dong, and Jun Pang. PAT: TasvBlexible Verifica-
tion under Fairness. In Ahmed Bouajjani and Oded Maler, esli@mputer Aided
Verification volume 5643 oL ecture Notes in Computer Scienpages 709-714.
Springer Berlin Heidelberg, 2009.

[137] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Pralstic Symbolic
Model Checker. Computer Performance Evaluation: Modelling Techniques and
Tools pages 113-140, 2002.

[138] J. Harrison. HOL Light: A Tutorial Introduction. IFormal Methods in Computer-
Aided Designpages 265-269. Springer, 1996.

[139] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. FilliatreGGienez, H. Her-
belin, G. Huet, C. Munoz, C. Murthy, et alThe Coq Proof Assistant Reference
Manual: Version 6.1 INRIA- Institut National De Recharche En Informatique Et
Automatique, May 1997.

[140] B. Brock, M. Kaufmann, and J. Moore. ACL2 Theorems about @encial Mi-
croprocessors. Ifformal Methods in Computer-Aided Desjgmages 275-293.
Springer, 1996.

[141] Sam Owre, Sreeranga Rajan, John M Rushby, Natarajark&hamd Mandayam
Srivas. Pvs: Combining specification, proof checking, andl@h@hecking. In
Computer Aided Verificatigrpages 411-414. Springer, 1996.

[142] Lawrence C Paulson. The Foundation of a Generic Tmed?tsover. Journal of
Automated Reasonin§(3):363—397, 1989.

[143] D. Crocker. Perfect Developer: A Tool for Object-Otieth Formal Specification
and RefinemenftTools exhibition notes at formal methods Eurpp@03.

[144] D. Crocker and J. Carlton. Verification of C Programs ggwtomated Reasoning.
In Fifth International Conference on Software Engineering andal Methods
pages 7-14. IEEE, 2007.

122



Bibliography

[145] J. Barnett, R. Akolkar, R.J. Auburn, et al. State chart ggokml): State machine
notation for control abstractioWw3C Working Draft2007.

[146] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser.ofwtic device driver
synthesis with Termite. IRroceedings of the ACM SIGOPS 22nd symposium on
Operating systems principlegages 73-86. ACM, 2009.

[147] C.A. Stone, A. Carter, H.L. Justice, R.M. Keller, and YTng. Improved mod-
eling and validation of command sequences using a checkahlgence language.
In Aerospace Conference, 2012 IEFtages 1-11. IEEE, march 2012.

[148] T.Heider and T. Kirste. Supporting goal-based intéoa with dynamic intelligent
environments. IEECAI, pages 596-602. Fraunhofer Publica (Germany), 2002.

[149] J.L. Encarnacao and T. Kirste. Ambient intelligend@wards smart appliance
ensemblesFrom Integrated Publication and Information Systems t@infation
and Knowledge Environmenfsages 261-270, 2005.

[150] M. Hellenschmidt. Distributed implementation of dfseganizing decentralized
multimedia appliance middleware. In N. Davies, T. Kirsted &l. Schumann, ed-
itors, Mobile Computing and Ambient Intelligence: The Challenge oftivhedia
number 05181 in Dagstuhl Seminar Proceedings, Dagstuhin&we, 2005. IBFI,
Germany.

[151] K. Erol, J. Hendler, and D.S. Nau. Complexity resultséid N planning. Annals
of Mathematics and Artificial Intelligenc@&8(1):69-93, 1996.

[152] J. Rouillard and J.C. Tarby. How to communicate smarity wour house?nter-
national Journal of Ad Hoc and Ubiquitous Computji@3):155-162, 2011.

[153] K. Bogdanov and M. Holcombe. Statechart testing metfoochircraft control
systems Software testing, verification and reliabiljt§1(1):39-54, 2001.

[154] H.S. Hong, Y.G. Kim, S.D. Cha, D.H. Bae, and H. Ural. A testjuence selection
method for statechartsSoftware Testing, Verification & Reliabilityl0(4):203—
227, 2000.

[155] S. Kansomkeat and W. Rivepiboon. Automated-geneagatst case using umi
statechart diagrams. IRroceedings of the 2003 annual research conference of
the South African institute of computer scientists andrmfdion technologists
on Enablement through technolggyages 296-300. South African Institute for
Computer Scientists and Information Technologists, 2003.

[156] Z. Pap, I. Majzik, and A. Pataricza. Checking generdtyacriteria on UML
statechartsComputer Safety, Reliability and Securipages 46-55, 2001.

[157] V. Santiago, N.L. Vijaykumar, D. Guimaraes, A.S. Amland E. Ferreira. An en-
vironment for automated test case generation from statebhaed and finite state
machine-based behavioral models. Software Testing Verification and Valida-
tion Workshop, 2008. ICSTW'08. IEEE International Confeesog pages 63—72.
IEEE, 2008.

[158] H.S. Hong, I. Lee, and O. Sokolsky. Automatic test gatien from statecharts
using model checkingn FATES '01.BRICS Notes Serj@&S-01-4(4):1-21, 2001.

123



Bibliography

[159] H Ural, K Saleh, and A Williams. Test generation basedcontrol and data
dependencies within system specifications in s@omputer Communications
23(7):609-627, 2000.

[160] C.L. Isbell Jr, O. Omojokun, and J.S. Pierce. From devio tasks: automatic task
prediction for personalized appliance contréersonal and Ubiquitous Comput-
ing, 8(3-4):146-153, 2004.

[161] O. Omojokun, C. Isbell, and P. Dewan. Towards automagisonalization of de-
vice controls.IEEE Transactions on Consumer Electroni65(1):269-276, 2009.

[162] O. Omojokun, S. Pierce, L. Isbell, and P. Dewan. Conmgpend-user and intel-
ligent remote control interface generatioRersonal and Ubiquitous Computing
10(2-3):136-143, 2006.

[163] W.R. Gilks, S. Richardson, and D.J. Spiegelhaldarkov chain Monte Carlo in
practice volume 2. CRC press, 1996.

[164] S.A. Cook. The complexity of theorem-proving proceziur InPProceedings of
the third annual ACM symposium on Theory of compytpages 151-158. ACM,
1971.

[165] D. Le Berre and A. Parrain. The Sat4j library, release ®stem description.
Journal on Satisfiability, Boolean Modeling and Computatio®»9-64, 2010.

[166] E.W. Dijkstra. A note on two problems in connexion wdhaphs. Numerische
mathematik1(1):269-271, 1959.

[167] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and thsss in improved net-
work optimization algorithmsJournal of the ACM (JACM)34(3):596-615, 1987.

[168] D. Bonino and F. Corno. DogSim: A State Chart SimulatorDemotic Envi-
ronments. InPervasive Computing and Communications Workshops (PERCOM
Workshops), 2010 8th IEEE International Conference meges 208-213. IEEE,
2010.

[169] Fulvio Corno and Muhammad Sanaullah. Modeling and Edbrverification of
Smart EnvironmentsSecurity and Communication Networksiges n/a—n/a, 2013.

124



Chapter 8

Publications

8.1

1.

International Journals

Muhammad Sanaullah, Fulvio Corno, Faisal Razzak, (2@14pmatic Device
Activation Regarding User Goals in Smart Environmentsin: “Journal of Am-
bient Intelligence and Smart Environments”. pages 23 (pta).

. Fulvio Corno, Muhammad Sanaullah (20D&sign-Time Formal Verification for

Smart Environments: An Exploratory Perspective In: “Journal of Ambient In-
telligence and Humanized Computing”, pages 22, DOI: 10.12652-013-0209-
4.

. Fulvio Corno, Muhammad Sanaullah (20Mddeling and Formal Verification

of Smart Environments In: Hangbae C, Lee D, Overill R (ed) Special Issue:
Human-centric Security Service and Its Application in Sn&pace, “Security and
Communication Networks”, pages 17, DOI: 10.1002/sec.794.

8.2 Proceedings

1.

Fulvio Corno, Muhammad Sanaullah (20Ebymal Verification of Device State
Chart Models In: IEEE Computer Society (USA), “The 7th International Con-
ference on Intelligent Environments”, Nottingham (UK),-28 July, pp.66 to 73,
ISBN: 9780769544526, DOI:10.1109/IE.2011.36.

Fulvio Corno, Muhammad Sanaullah (2011¢sign time Methodology for the
Formal Verification of Intelligent Domotic Environments In: Ambient Intelligence—
Software and Applications, Springer Berlin (DEU), “Intetioaal Symposium on
Ambient Intelligence”, Salamanca (ES) 6 - 8 April, vol. 9.9 to 16, ISBN:
9783642199363, DOI:10.1007/978-3-642-19937-0_2

125



	Acknowledgements
	Introduction
	Motivation
	Problem Statement 
	Contribution 
	Structure of the Thesis

	Background
	Formal Modeling
	Black Box Modeling
	White Box Modeling
	High-Level Goals Modeling
	Properties Modeling

	Model Checker for UML Statecharts
	UMC Model Checker

	Gateway

	Survey and Analysis of State of the art
	Modeling and verification processes
	Formal Modeling
	Component Modeling
	Formal Verification
	Adopted Procedures/Tools

	Surveyed Literature
	Empirically-derived Parameter-based Methodology
	Formal Modeling
	Component Modeling
	Formal Verification
	Adopted Procedures/Tools

	Discussion

	Proposed Methodology
	Bank Door Security Booth System (BDSB): A Case Study
	Methodology
	Step 1: SmE Specification Identification
	Step 2: Users Modeling
	Step 3: Devices Modeling
	Step 4: Individual Device Verification
	Step 5: Environment Modeling
	Step 6: Control Algorithms Modeling
	Step 7: Temporal Properties Designing
	Step 8: Integrated SmE model
	Step 9: Formal verification of SmE Model
	Step 10: Development Phase


	Designed Techniques
	Individual Device Verification
	Device Model Verification Technique
	Experiments and Results

	SmE Verification
	Designed Technique
	Experiment and Results

	Discussion

	Achievement of High Level Goals
	Related Work
	Goals Modeling
	Evolution Finding

	Problem Statement
	TV Model: An Example
	Goals Achievement Methodology
	Design-Time Methodology
	Runtime Methodology

	Experiment and Results
	Discussion

	Discussion and Conclusion
	Bibliography
	Publications
	International Journals
	Proceedings


