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Chapter 1

Introduction

Smart environment is “a physical world that is richly and invisibly interwo-
ven with sensors, actuators, displays, and computational elements, embedded
seamlessly in the everyday objects of our lives, and connected through a con-
tinuous network.”

Mark Weiser[1]

Smart environment is “a small world where different kinds ofsmart device
are continuously working to make inhabitants’ lives more comfortable.”

Diane J. Cook and Sajal K. Das[2]

Smart Environments (SmE) are digital worlds which are highly sensitive, adaptive and
responsive with the users’ activities [3,4]. The roots of SmE come from multi-disciplinary
fields; computer science, electrical engineering, industrial design, human-computer inter-
action and cognitive sciences [5]. Thanks to the advancements in sensor functionalities,
artificial intelligence, ubiquitous and pervasive computing technologies, SmE have gained
the capacity to deliver various services in intelligent manner by considering the presence
and actions of users [1,3,6]. For specific services, users can interact with the system in
any manner and at any time. The system consists of various heterogeneous devices, which
range from simple sensors to multi-feature devices, and participate to achieve desired ser-
vices.

The basic objective of SmE is to provide intelligent services, such as energy man-
agement, temperature management, assisted living or theftprevention [7–9]. The safety
and security services are also some of the essential requirements for many SmE, and de-
pend upon the context (interchangeably mentioned as ‘environment’) and domains of the
application [4,10]. For example, the safety service in case of fire is to switch on the secu-
rity alarms, unlock and open the emergency exit doors, turn on the emergency and path-
pointing lights directing people towards the emergency exit, make recorded calls to the
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1 – Introduction

nearby fire and rescue offices and other key officials of respective environment; whereas
the security requirement for accessing the bank is achievedby crossing two automatically
locked doors in which one door will not open until the other isclosed.

Figure 1.1. A Framework for Smart Environments

For providing the services automatically and in intelligent way, some computation is
added through which the functionalities of these associated heterogeneous devices can be
controlled [11, 12]. These computational components are also known as Control Algo-
rithms and use artificial intelligence (e.g. fuzzy logics, decision trees, machine learning,
case-based reasoning and temporal reasoning) or database (e.g. event-condition-action
rules and SQL-based data management) techniques for decision making in an intelligence
manner.

The basic elements of SmE are users, devices, control algorithms and environment,
as represented in Figure1.1. With their interactions, the desired functionalities canbe
achieved. A generic execution flow in SmE can be classified in four layers: goals, actions,
decisions and operations. Goals are the desires of the userswhich they want to achieve
from SmE (such as turn on the TV, turn off all the lights exceptthose of TV lounge, switch
the home in sleeping mood, etc.). For achieving a certain goal, users have to perform some
specific action. The actions can be sensed through sensors orthey can be input by directly
performing them on the devices, or can also be commanded by using the designed APIs
of the SmE (through various handheld devices).

When user performs any action, a notification message (or a setof messages) is sent to
the control algorithms. Control algorithms reside at gateway levels, where the concerning
devices are also connected by using some wired or wireless medium, and the requirements
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1.1 – Motivation

related to the safety, security and reliable behavior of SmEare incorporated and enforced
through them. Control algorithms act as sophisticated bridge between the input actions
and the output operations. Against each incoming message, the current configuration
of the system and devices is considered, and according to theincorporated constraints,
a decision for the specific operations (services) is made. Further, on the basis of these
decisions, control algorithms send the relevant commands to the devices for performing
the decided operation. The devices, according to their current configuration and internal
constraints, perform the specific operations and acknowledge back about the status of
the operation to the control algorithms (these acknowledgments are also considered as
notifications).

By having these sophisticated controlling features, SmE arecurrently being intro-
duced in homes, hospitals, offices, industries, airports, railways, transportation mediums
and many other important (industrial and public) places [4]. On the basis of adopted
technologies and their various application scenarios, in literature, such environments are
mostly referred as Smart Environments (SmE), Smart Space, Intelligent Environments
(IEs), Ambient Intelligence (AmI), Smart Home and Intelligent Domotic Environments
(IDE).

1.1 Motivation

A service offered by SmE can consist (of controlling the functionalities) of more than
one device. The devices are of heterogeneous nature and self-independent with their own
working functionalities and internal behaviors. For achieving the desired functionalities,
some specific relevant commands are required to post on thesedevices. For a night mood
service, as depicted in Figure1.2, in which various devices, such as windows, window
shutters, lights, doors, burglar alarm and many other, are required to be controlled, and
each device accepts its relevant commands.

Figure 1.2. Night Mood: A Service

3



1 – Introduction

The devices which are used in SmE can also be complex by havingmultiple features,
such as a service can be requested against which the TV is required to be switched “ON”
with channel “22”, volume “60”, brightness “70”, contrast “60” and sharpness “50”. De-
pending upon the current configuration of the TV, different sets of commands can be
posted (the commands when the TV is in “OFF” state are different from the commands
when it is in “ON” state). Further, the system level constraints (related to the overall
safety, security and reliable behavior) add innumerous details in the system. Due the their
control (of heterogeneous devices), various system level constraints, distributed and par-
allel state information, synchronous and asynchronous interactions, multiple sources of
control (as one device can be associated with more than one services) and different evo-
lution paths (depending upon the current configurations), the behavior of SmE becomes
difficult to predict (by the designers of SmE) and may even lead to error-prone scenarios.

SmE systems can be implemented in sensitive environments (like fire control units,
theft or traffic control systems, nursing care houses and others) where the occurrence
of errors may cause critical/unwanted situations. For avoiding the errors, their thorough
verification is very important. The verification process canbe performed at design or
implementation time. Based on the complexities and their application scenarios, it is
advisable to verify SmE models at design time for reducing criticality, time, cost and
energy, and achieving reliability [13–16].

For the design time verification, simulation or formal (mathematical) methods (strate-
gies and structured approaches) are commonly used with their own strengths and limita-
tions. As complexity and ambiguity are usually the common features of such systems,
and it may not be effective to verify the accuracy on all possibly reachable paths through
simulation [17,18]. Therefore a technique is required which may ensure the exhaustive
verification of various requirements. Thus, the use of formal methods helps to root them
out, and, in result, a reliable secure system can be designedwhich has all the desired
features and consistency among its integrated components with the environment [14].
Moreover, formal methods promise holistic design time verification based on the follow-
ing strengths:

• they are strongly based on mathematical evidence and increase the understandabil-
ity of the modeled system;

• they are used for reliably modeling a system at design time;

• they can model the concerning requirements in the form of properties by using logic
based on mathematics;

• they can formally verify the modeled system against the requirements (reliable be-
havior, along with other requirements of the system);

• they can trace back the errors and can help in fixing them at early design stages.
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1.2 – Problem Statement

1.2 Problem Statement

The SmE are the integration of hardware (devices) and software (control algorithms) com-
ponents which continuously interact with each other in a requirement-accomplishing man-
ner according to the presences, locations, actions or behaviors of the user. The software
components have the information of the imposed constraintsand some form of intellectual
strategies for automatically controlling the functionalities of various devices.

The systems are huge as a number of heterogeneous devices areintroduced with added
functionalities. For automatically controlling the functionalities of each devices (as the
manufactures are also many), their associated commands arerequired for triggering them.
Their heterogeneous nature and complex parallel and hierarchical behaviour (depending
upon the offered functionalities), may introduce ambiguity. Similarly, for obtaining more
sophistication, various system level constraints are progressively added in SmE specifi-
cations, which also introduce complexity and ambiguity forcontrolling the SmE. The
wishes for facilitating the users at various levels, by considering their actions and behav-
iors, according to their context, also become a reason of increasing complexity.

The impact for these complexities at individual and collectively controlled level may
not allow the designers, developers or programmers to confidently claim about the correct-
ness, completeness and consistence reliable behaviour of SmE under all circumstances.
As the applicability of SmE is also in sensitive fields where any wrong decision or the
existence of bug may lead to unwanted or critical situation,therefor the reliance of these
systems strongly demands confirmations.

The confirmation of correctness, completeness and consistent behaviour regarding
the specifications is an essential concern of SmE stakeholders (designers, developers,
programmers as well as their users) and can be satisfied when thesystem is designed and
verified by adopting a suitable methodology: starting from lower level details to higher
level goals achievements.

1.3 Contribution

The major objective of this thesis is to resolve the incomplete, incorrect and inconsistent
behavioral issues of SmE. For ensuring the solution of theseissue, a design time method-
ology is proposed, which provides the guideline to the SmE designers and validators by
addressing and revaluing the important concerns and factors which are required to be
considered during the modeling and verification of SmE. Formal method techniques are
adopted for the modeling and verification purposes, due to their several advantages.

The process starts from the lower level formal modeling and verification of each com-
ponent to the higher level formal modelling and achievementof goals. A set of technolo-
gies are designed and developed by following the proposed guidelines. Different case
studies and experiments are conducted, the results ensure the reliability and adaptability
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1 – Introduction

Figure 1.3. Overall Contribution

of the proposed guidelines.
A collective view of the set of technologies used for achieving the desired objective

is presented in Figure1.3. The integration linkage flow, among each section (technique)
of the figure, shows the consistency and reusability of verified components. The abstract
level listing of the major steps carried out in this thesis isenlisted below:

1. an analysis of the existing state-of-the-art literature, related to the formal modelling
and verification of SmE, is performed by proposing a parameter-based empirical
methodology

2. lower level modeling of the acceptable actions and behaviors of the users

6
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3. lower level modeling of the devices according to their controlled and offered func-
tionalities

4. lower level modeling of the environment by considering the configurations of the
devices and users

5. lower level modeling of the intelligence strategy by which the interaction can be
controlled according to the imposed constraints and specified requirements

6. consistency verification among lower level formalisms, which may be adopted for
the modeling of components

7. verification of the requirement-accomplished reliable behavior at individual level
of the modeled component

8. verification of the reliable interactions among each component

9. verification of the overall imposed constraints of the system

10. design and development of a strategy by which the higher level goals can be achieved

1.4 Structure of the Thesis

The thesis is organized in seven chapters. Chapter2 presents an overview of the adopted
tools with their selection motivation. Chapter3 presents a parameter-based empirical
methodology which is used to analyze the surveyed literature for knowing the trends,
covered and uncovered areas by the SmE research community. Chapter4 presents the
proposed methodology used for the formal modeling and verification of SmE. Chapter5
presents a set of techniques which are designed to implementthe proposed methodology.
Moreover in this chapter, the reliance of the proposed methodology is confirmed with
results obtained by running the case studies (or examples) on these designed techniques.
Chapter6 proposes a methodology for the achievement of high-level SmE user require-
ments, referred as goals. Chapter7 concludes the thesis and offers possible directions
in which the research can be extended. At the end, in Chapter8 the list of publications
produced from the research explained in this thesis is presented.
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Chapter 2

Background

The implementation of the proposed methodology builds uponthe existing tools and tech-
niques. The state-of-the art along with the motivation of the selected tools and techniques
are explained in the following sub-sections.

2.1 Formal Modeling

Formal modeling is a way of describing the specification of the system by using the syn-
tax and semantics of the mathematically based language. It can be performed with the use
of black box and white box modeling conventions. As SmE are huge systems and consist
of a number of heterogeneous devices, therefor a generic dictionary and naming/commu-
nication convention mechanism may be required which works as a core reference point,
and the communication among various heterogeneous devicescan be performed by using
them. In our case, the generic (centralized) modeling of allthe involved devices is per-
formed by using black box technique and the modeling of theirinner details is performed
by using white box technique.

2.1.1 Black Box Modeling

Controlling and commanding the functionalities of electrical (low cost or smart) devices
is one of the main goals of SmE. These devices are of heterogeneous nature, having
some common and distinguish functionalities, commands, notification, states and others.
The desired functionality from the relevant devices is accessible by posting specific com-
mands, which is acceptable by them. The modeling of these maybe achieved by using the
object-oriented approaches [19,20], Unified Modeling Language (UML) artifacts [21,22],
ontologies or taxonomies [23–29], etc. Ontologies are one of the semantic web artifacts;
they provide a formal explicit modeling structure for representing different concepts, their
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2 – Background

relationships and their associations, and give a suitable reasoning power on such shared
and featured environments [30,31].

Different ontological solutions exist for the modeling of SmE, such as EHS1, Do-
moML [29], SOUPA [27], CoBra [28], DogOnt [23] and some other, each with their own
limitations. The EHS taxonomy classifies the Home appliances into white and brown
goods along with their placement in SmE. It provides the interaction information so that
all the devices can communicate with each other, but it does not provide the information
of capabilities, functionalities and desired operations of devices. DomoML ontology uses
the existing DomoML-core, DomoML-env and DomoML-fun ontologies. The DomoML-
core ontology is used for correlating the components of SmE (described in DomoML-env
ontology) and devices along their functionalities (described in DomoML-fun Ontology).
It uses different well know vocabularies for defining the concepts. The limitation of Do-
moML is the lack of state modeling and query functionalities.

SOUPA and CoBra ontologies describe SmE but their main focus ison modeling the
functionalities and capabilities of user/agent in the light of pervasive and ubiquitous com-
puting concepts. Their major limitations are the modeling of device functionalities and
commands, which are not permitted in SOUPA and CoBra ontologies. DogOnt [23] is an
ontology based solution, which is used for the modeling of SmE systems, especially for
the modeling of household appliances with their functionalities, commands, notifications,
states and placement in the environment. Moreover, for designing a complete context-
aware SmE, SOUPA and CoBra ontologies can be used on the upper level from DogOnt:
the device interoperability information can be collected with the use of DogOnt, and the
context and user/agent information are collected with the use of SOUPA and CoBra on-
tologies.

DogOnt

DogOnt is an ontology (a semantic web artifact) for the modeling of SmE with a focus
on the black box modeling of heterogeneous devices, their relationship with the other
devices and their installed location in the SmE [23]. For the modeling of SmE by targeting
these goals, DogOnt defines the following top level classifications which are graphically
represented in Figure2.1.

1. “Building Environment:” In this category, the physical environment of the SmE is
modeled according to its description, such as building, flat, garage, garden, room
(e.g. bathroom, bedroom and kitchen).

2. “Building Thing:” This category is further divided into two main classes: con-
trollable and uncontrollable. In the controllable classification, those devices are

1The European Home System, http://www.ehsa.com
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Figure 2.1. DogOnt Ontology

included which can be electronically controlled (e.g. boiler, cooker, fan, lamp, ac-
tuator and sensor), whereas in the uncontrollable categoryare the devices which are
part of the SmE but cannot be electronically controlled (e.g. table, sofa and bed).
Moreover, for electronically controlling these devices, other electrical devices (e.g.
door actuator or window actuator) are required.

3. “Functionality:” The controllable devices are capable of performing some specific
functionality. These functionalities can be related to their control (the main func-
tionalities of the devices which they can perform, e.g. a lamp can beON or OFF),
query (at which state the device is at a particular time, e.g.a lamp is inON state)
or notification (the messages/signals which the device sends back after performing
an operation, e.g.onNotificationwhen the lamp is switchedON)2.

4. “Command:” In this category are the commands which are required for triggering
the control functionalities of the devices.

5. “Notification:” In this category, those notification messages/signals are included
which devices send after the completion of task. In our case,the system is designed

2It is possible that the devices are not so sophisticated, butwith the help of relays, hardware (e.g.
Bitichno, Knx and ZeeBee) and software (e.g. Dog) gateways,these functionalities can be achieved.
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in such a manner that devices send some notification back after the completion of
each transition.

6. “State” and “State Values:” At any time the devices are in aparticular state, such as
a door actuator can be inmovingor not movingstate, and the TV can be inON state
with the volume30. TheseON, movingandnot movingare discrete state values,
whereas the30 is the continuous state value of thevolumestate. The discrete values
are referred asstatesand continuous values asfeature valuesduring the behavioral
modeling of the device. The functionalities associated with these continuous state
values are termed asfeatures.

7. “Domotic Network Component:” The communication among thedevices or gate-
way (details are given in Section2.3) is performed through the exchange of mes-
sages, which can be carried out by adopting some specific protocols (such as Kon-
nex, ModBus, ZigBee, ZWave and others). For performing actions on the devices
(without interacting with multi-interface provided by different manufactures), and
bypassing the user exposure to device complexity and variety, the gateway needs
to know about the manufacturer and its protocol informationso that the devices
can understand the messages and act accordingly. The modeling of the information
related to device manufacturer, its protocol characteristic and network addressing
scheme is performed in this category.

2.1.2 White Box Modeling

Black box information is important and useful for the applications/services, which are
required to interact with it. On the other hand, white box or behavioral modeling is re-
quired for analyzing the internal behaviour of the device model. Behavior modeling can
be performed by using the semantics of labeled-transition systems, in which the more
commonly used approaches are UML (a graphical modeling language in Software Engi-
neering) Statecharts, process algebra (like Calculus of Sequential Processes (CCP), Cal-
culus of Communicating Systems (CCS), Algebra of CommunicatingProcesses (ACP)),
Petri nets. Each of these can be applicable for the modeling (and verification) of different
domains.

Statecharts

Devices range from simple (lamp) to complex (TV) due to theiroffered features (de-
scribed in Section2.1.1under “State” and “State Values”). These features can be mod-
eled with the use of variables. For controlling them, valuesof the relevant variables are
required to change. For the behavioral modeling of such devices, a semantic is required
by which the modeling of multiple features can be achieved. Usually, the modeling of
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complex devices is performed with the use of hierarchical and parallel (or concurrent)
sub-state concepts.

In 1987, Harel introduced statechart diagrams for the modeling of reactive systems,
whose variant became a standard in the UML [32]. Statechart diagrams are used to rep-
resent the dynamic behavior, with the support of variables,guard conditions, hierarchical
and parallel states of the complex system. The behavioral modeling of devices is per-
formed with the use of statecharts, and the semantics is given below.

Let D be the set of installedcontrollable devicesin SmE. Each deviced, d ∈ D, is
characterized by adevice type(e.g. lamp, television or air conditioner). The behavioral
modelingM of each deviced can be defined by a tupleM(d) = {S, s0, C,N , V, Θ, T }
In which

1. S is a finite set non-empty of statess, that may be simple or composite states.

2. s0 ⊂ S is a finite set of initial states, including the initial states of the composite
states.

3. C is a finite set of triggered commands.

4. N is a finite set of notifications which a device can produce as anacknowledgment
about the status of the assigned task, or an indication message in the case of sensing
data by the sensors.

5. V is a finite set of variables, each variablev, v ∈ V, is used for controlling the
functionality of a device.

6. Θ is an interpretation overV, which is used to assign the values to a variable defined
in V.

7. T is a finite set of transitions. Each transitiont, t ∈ T , is a tuple(s, c, g, a, s′)

and can be represented ass
{c[g]/a}
−−−−→ s′, wheres ands′ ∈ S ands′ is the next state

to s, c ∈ C, g is a guard condition over the variablesvi ∈ V anda is an action
which may consist of (zero or more) notifications, the assignment statements for
some variables (Θ(v), v : v ∈ V) or both. Moreoverc, g anda of the transition
tuple are optional and the variablev affected by the transitiont will be considered
asv′ in states′.

Several transitions may be required to evolve from a source state,ss, to a destination

state,ds; ss
{ci[gi]/ai}
−−−−−−→ s′ {ci+1[gi+1]/ai+1}

−−−−−−−−−−→ s′′ ...
{cn[gn]/an}
−−−−−−→ ds. The sequence of these

transitions, from a source state to a destination state, is known as anevolutione.
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2.1.3 High-Level Goals Modeling

A fundamental aim of SmE is to provide intelligent services through which the user can
be supported. For the modeling of such services, several approaches are proposed that
include device centric perspectives [33–35], learning models [8,36] and abstract modeling
frameworks [35,37–39].

One such approach is the Domotic Effects framework [38, 40] which provides the
facility for the modeling of interesting goals (or desires)at high-level asDomotic Effects
(DE). The framework is organized in a three tiered architecture: Core Layer, AmI Layer
and Instance Layer. The core layer has the definitions of basic structure (classes with their
relations) by which the services’ goals (or DE) can be expressed. The AmI layer assists
the SmE designers for defining functional properties in terms of operators. The instance
layer has the detailed high-level description of the goals (or DE) based on the particular
devices with their desired destination states.

DogEffects

For providing a knowledge-base corresponding to the logical design of DE framework, a
three tiered “DogEffects” ontology is formalized [40] based on the OWL Web Ontology
Language [41]. By taking the advantages of the modular concepts of OWL (which allows
to integrate the ontology with others), the DogEffects is integrated with DogOnt [23] for
accessing the required devices (instances in the environment) and their states. A collective
graphical view of DogEffects with an example (explained in this following section) is
presented in Fig.2.2. The brief description of each layer is given below.

The core layer defines the three basic concepts of DE framework: Effect, Effect Op-
erator and Operand. The effect (DE) that depends upon a single device (with a specific
destination state or sub-state) is called asimple effect(SE) and this will be the terminal
point of the goal which ends upon the specific device instancename with a particular state
value. The DE which depends upon a combination of devices is called acomplex effect
(CE). A CE consists of the functional expressions of SEs or other CEs by using effect
operators. These operators can take one DE (called unary operator) or more DEs (called
non-unary operator) as operands. Sometimes, the order of operand become extremely
important for producing the results and sometimes it is of novalue; mathematically, cate-
gorized as non-commutative operator and commutative operator, respectively.

The AmI layer contains the operators by sub-classing the general operator classes de-
fined at the core layer. The results of these operators belongto Boolean domain (true or
false). Although Boolean logic has a smaller set of operators(e.g. or, and or not), de-
signers are allowed to define their own operators (e.g. alternate, conditional or greater).
Against each newly defined operator, the designer is required to provide the implementa-
tion details in-terms of Boolean sub-expression. These details are important for encoding
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Figure 2.2. An Example of defining Effects
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Figure 2.3. A use case for illuminating the Room

in java language and placed in the effect-operator-store with the implementation algo-
rithms of other operators.

The instance layer models the goals as the instances of the classes defined in the core
and AmI layers. The following example better clarifies the aforementioned concepts.
Consider a room “Illumination” goal, which is graphically represented in Fig.2.3(a) and
functionally represented in Fig.2.3(b). Depending upon the outside illumination value,
the room can be naturally illuminated (by moving the window shutter UP) or artificially
(by switching ON the ceiling lamp or the lamps placed at each side of the mirror). This
example is modeled at instance layer (instances of the SE, CE and Operators) of DogEf-
fects, in Fig.2.2, with the association to the device and state instances of the DogOnt.

2.1.4 Properties Modeling

A process, in which the specifications of the system are defined in the form of proper-
ties or axioms, by adopting the syntax of some formal language, can be known as formal
properties modeling. These properties or axioms are designed to represent behavioral and
non-behavioral aspects of the system. The behavioral aspects are related to reliable func-
tionalities (relation between event and action) and non-behavioral aspects are related to
security and safety policies, performance, and other characteristics of the system. For-
mal representation of the concerning specifications are often expressed with the use of
temporal logic.

Action-and-State based Temporal Logic

Temporal Logics are used for formally defining the specifications, and based on the set of
rules for reasoning with different propositional quantifiers (explicit, implicit) depending
on time conditions (Next, Future, Global, etc) [42]. There are two main classifications
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of temporal logic: Linear Time Temporal Logic (LTL) and Branching Time Temporal
Logic (BTTL). LTL deals with a single trace path at a time, whereas the BTTL deals
with multiple trace paths at a time, therefore BTTL is appropriate for the analyzing the
complex behaviour of such systems.

UCTL is a UML-oriented action-and-state based branching time temporal logic [43].
It has a combined power of ACTL (Action Based Branching Time Logic) [44] and CTL
(State Based Branching time logic) [45]. Due to the rich set of state propositions and
action expressions, UCTL is suitable for analyzing the behaviour the system which is
modeled in the form of state machines [46, 47]. With the help of UCTL, we can ana-
lyze different behaviour of the system like liveness (something good will eventually hap-
pen) or safety (nothing bad can happen) with or without the fairness restrictions. UCTL
uses the box[] (“necessarily”) and diamond<> (“possible”) operators from Hennessy-
Milner Logic [48] and temporal operators (Until, Next, Future, Globally, All, Exists) from
CTL/ACTL. By using these logics, the Absence, Existence, Universality and Responses
patterns of any predicate(s) can be analyzed.

2.2 Model Checker for UML Statecharts

Model checking [49] is a technique used for automatically analyzing/verifying the behav-
ior of the system, which is dynamic in its nature, according to the modeling. It is capable
of exhaustively considering all the states and the possiblepaths of the model from a par-
ticular state for analyzing/verifying the correctness of specifications. State explosion is
a major drawback in Model Checking technique; it can occur in complex systems with a
large number of states. Abstractions play a vital role for avoiding this issue by preventing
unnecessary information of states, variable values and messages from the original model
of the system [50, 51]. In-result, the original model is sufficiently reduced in abstract
model (the subset of relevant information, which designer want to observe) of the system,
which can be conveniently handled by a model checker.

2.2.1 UMC Model Checker

UMC [52,53] is an “on-the-fly” model checker tool, designed for the formal analysis/ver-
ification of the dynamic behavior of UML statecharts, by providing a user friendly envi-
ronment, for expressing the system and the properties. UMC is fast because it is based on
a linear time complexity model checking algorithm for the exact analysis/verification of
the system. Moreover, “on-the-fly” nature makes it efficientby not requiring to explore
the whole model, but it allows optimally exploring the modelbased on the given property
and return true or false depending upon the satisfaction of the property.

The statecharts semantic in UMC is defined in terms of Double Labelled Transition
System (L2TL), which can represent various system configurations on states and system

17



2 – Background

evaluation through edges [46, 47, 54]. An online version of the UMC model checker is
also available3.

The structure of the model analyzed by UMC consists of classes, instances and ab-
straction rules. Classes are used to represent the state machines in textual format. They
have states, operators (used for synchronous communication of messages) or signals (used
for asynchronous communication of messages), local variables and transitions. Further,
transitions are associated with states (source and destination), triggers, guards and actions,
and instances are the class objects.

2.3 Gateway

In SmE, devices are connected through a (wired or wireless) network with some dis-
tributed or central gateways. Dog (Domotic OSGi Gateway) [55] is one such gateway,
based on OSGi (Open Source Gateway initiative) [56,57] framework. It provides a neu-
tral generic interface (API) to the users for performing queries/actions on all the devices
(without distinguishing the manufacturers). Moreover, ithas additional computation ca-
pabilities for making itself technology independent, withthe use of DogOnt information
of the devices, by accessing the devices with their proper protocol and the suitable ad-
dressing mechanism.

Domotic
Network
Interface

Domotic
Network
Interface

Smart
Device

Interface

...........

Harmonization / Abstraction

House Model

API

Domotic Gateway

Intelligence

Figure 2.4. Domotic OSGi Gateway

As represented in Figure2.4, “House Model” contains the Black-Box modeling of
the Domotic system; in our case DogOnt provides all the vitalinformation at this stage.
The Control Algorithms, which are responsible for the intelligent working of the domotic
system, are also embedded in gateways, and represented as the “Intelligence” component.
The “Abstraction/Harmonization” layer hides the unnecessary detailed White-Box infor-
mation of devices/drivers (see Section2.2.1 for more details). All the instances of the
devices, with their behavioral modeling and drivers, are represented at the bottom layer.
Dog has additional computation capabilities for making itself technology independent,

3http://fmt.isti.cnr.it/umc/
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with the use of DogOnt information of the devices, by accessing the devices with their
proper protocol and the suitable addressing mechanism.
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Chapter 3

Survey and Analysis of State of the art

Due to a large variety of implementation scenarios and support for conditional behav-
ior/processing, the concept of SmE is applicable to diverseareas which calls for focused
research. As a result, a number of modeling and verification techniques have been made
available for designers. This chapter explores and puts into perspective the modeling and
verification techniques based on an extended literature survey.

The formal verification of all possible aspects of SmE is arduous and laborious un-
dertaking owing to the complex nature of these systems. Therefore, research seems to
have emphasized the specific aspects based on requirements and their specialized com-
petencies. As a result, this focused approach has deprived the academicians and new
researchers/designers from a generic and one-size-fits-all kind of modeling and verifica-
tion technique. In an attempt to collect the existing state-of-the-art, this chapter brings
together the techniques/approaches that are exploited in formal verification of SmE with
respect to different aspects with a few overlapping scenarios (such as user interaction, de-
vices interaction and control, context awareness, etc.). The techniques are categorized on
the basis of various factors and formalisms considered for the modeling and verification.
For this a parameter-based empirical methodology is proposed, which helps to under-
stand the verity of adopted modeling and verification techniques in different applications
and scenarios. The study expands upon the uncovered modeling and verification areas of
SmE. The findings of the research show that no surveyed technique maintains a holistic
perspective; each technique is used for the modeling and verification of specific SmE as-
pects. The results further help the designers select appropriate modeling and verification
techniques under given requirements and stress for more R&D effort into SmE modeling
and verification research.

The rest of the chapter is organized as following: the existing formal modeling and
verification process adopted for SmE are reported in Section3.1; the surveyed literature
is presented in section3.2; the proposed parameter-based empirical methodology is de-
scribed in section3.3with the overview of existing state-of-the art; and finally the analysis
and concluding remarks, on the surveyed literature againstthe proposed methodology, are
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presented in section3.4.

3.1 Modeling and verification processes

This section describes commonly adopted modeling and verification processes during
formal verification. These processes are classified according to their coverage of SmE
aspects and application domain, namely: 1) formal modeling, 2) component modeling,
3) formal verification, 4) Adopted Procedures/Tools. The details of each process are
described in the following subsections.

3.1.1 Formal Modeling

Formal Modeling is the process of describing a system (a set of interconnected com-
ponents performing desired operations) in a well defined formal syntax and semantics
language; the following are its different perspectives adopted in the modeling of SmE.

Black Box Modeling

Black Box or Interface modeling is the representation of the information required to in-
teract with the system. The black box modeling focuses on functionalities of the system
without any internal details.

Let consider a smart home where whenever a user enters in the bedroom, it will be il-
luminated depending upon the outside light intensity (usergoal– as depicted from Figure
1.1). The smart room senses through sensors the presence/entrance of the user (action).
The sensor will send the notification message to the control algorithm. The control al-
gorithm sends a request to the illumination sensor (placed outside the room) that replies
with the outside light intensity value. According to this value, the current configuration of
window-shutter and the lamp, a control algorithm decides how to illuminate the room (de-
cision): either by moving the window-shutter up or by switching the lamp on. Based on
the optimal decision, the control algorithm sends suitablecommands to the corresponding
devices, which perform the task (operation).

In this, the control algorithm sends a command to the window shutter to move up; the
command is fulfilled by the window shutter-actuator. The details about how the command
has been sent by control algorithm and how the operation is performed by the shutter-
actuator are not considered in the black box models. Instead, the modeling of which
message is sent and which action is performed against it are the main focus of the black
box.
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White Box Modeling

White Box or Behavioral modeling is a representation of a complete internal behavior
of the system. The details of how commands are issued, how operations are carried out,
and how the system (or individual component) requirements are fulfilled are taken care
of in white box modeling. In the running example, for instance, details about how the
control algorithm sends commands, how other devices perform their tasks: in other words,
complete flow of actions done by the system (or components) ismodeled in this category.

Intelligence Modeling

One of the basic objectives of SmE is to provide services in anintelligent way according to
the system-level specifications and constraints. To enrichSmE with intelligence, different
artificial intelligence and database techniques can be adopted, and their representation is
called intelligent modeling. For example, the decision logic of control algorithms either
to move window shutter up or to switch lamp off can be modeled by adopting different
techniques, such as fuzzy logic, decision trees, rules based, event-condition-action, etc.

Requirements Modeling

Requirements are the starting point of any formal verification process and are specified in
the form of properties or axioms by adopting the syntax of some formal language. These
properties or axioms are designed to represent behavioral and non-behavioral aspects of
the system. The behavioral aspects are related to reliable functionalities (relation between
event and action) and non-behavioral aspects are related tosecurity and safety policies,
performance, and other characteristics of the system. For instance, in the running exam-
ple, the requirements related to the events – when the outside light intensity is high then
the smart home has to move the window shutter up as well as switch off the lamp (if it is
found on) – are presented in formal way in this modeling approach. Formal representation
of the requirements is often expressed in temporal logic.

3.1.2 Component Modeling

The components of SmE are users, context/environment, devices and control algorithms.
Depending upon the application domain, covered features and the interested scenarios, the
(black-box or/and) white-box modeling of these componentsare accordingly performed.
Modeling of these components along with their interaction details are considered in this
classification.
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3.1.3 Formal Verification

The system correctness with respect to its specifications and constraints can be formally
(comprehensively) verified and this process is known as formal verification. During the
verification process, different aspects of the system are verified. The description of the
noted aspect is presented in the following sub-sections.

Consistency Verification

The consistency verification provides coherency of modeling when both black box and
white box processes are applied. It is important to verify that both of the formalisms are
consistent with each other; otherwise there is a fair chancethat one of the formalisms may
have some additional or missing information. Due to inconsistencies, each formalism may
behave differently and the access to desired functionalityin an independent way may be
difficult. For example, if the command to move window shutterup in black box is recog-
nized as “UP”, whilst the same command in white box is identified as “RISE”, this causes
inconsistency between the two modeling processes and will lead towards denial of the
desired outcomes [58]. Similarly, it is important to verify that the specified requirements
are incorporated in the designed model and will behave properly in all scenarios.

Entire SmE Verification

SmE are integrated environments and promise to deliver services in an intelligent requirements-
accomplished way. As mentioned in Section1, SmE covers different aspects of given
areas, the verification of the behavior of individual components along with their interac-
tion in the entire system can be formally performed by using model checking or theorem
proving techniques, for ensuring the specified SmE behavior, reliable interaction along
with the safety and security constraints.

3.1.4 Adopted Procedures/Tools

In this classification, the investigation of the verification processes is performed on the
basis of the adopted procedures (through which the comprehensive verification of cor-
rectness of system is analyzed with respect to specified requirements) and tools. During
the investigation, the maturity of surveyed technique is analyzed in terms of automation,
scalability, adopted tool and the examined scenario (case study).

3.2 Surveyed Literature

Various techniques regarding the modeling and verificationof SmE and their related com-
ponents are analyzed under the empirically derived parameters (explained in section3.3).
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Although various literature on SmE is available, the papersconsidered for this survey
encapsulate the formal modeling and verification techniques; providing the SmE devel-
opers and designers with a specific study material aimed at collecting SmE-centric work.
Though during survey a number of techniques were found whichextend the logic for
developing the tool ( [59–62]), verification of the protocols ( [63–65]) and modeling of
the cognition-based user behavior ( [66,67]), such techniques are out of the scope of this
chapter and therefore are not included.

In [68], the authors present static verification of security requirements for CSCW
(Computer Supported Cooperative Work) systems using finite state techniques (model
checking). They use a role based collaboration model for specifying coordination and
security constraints of CSCW systems. The completeness and consistency of the speci-
fication is ensured by verification within the global requirements. They have developed
a number of verification models for checking security properties (task-flow constraints,
information flow or confidentiality) and assignment of administrative privileges. Their
primary contribution is a methodology for verification of security requirements during
designing of collaboration systems. Finally, they have runa rather peculiar case study
of collaborative activities of academic nature. It is our understanding that replacing the
components of this case study with SmE devices, it can also beapplied on a complex
system.

In [69], the authors propose MIRIE (Methodology for Improving the Reliability of
Intelligent Environment) by focusing and motivating on theuse of formal methods for the
modeling and verification of the reliable behavior of the systems at early design states.
The focused components are Users, Devices (sensors, actuators), Control unit and Envi-
ronment (context) which are attempted to be modeled. The behavior modeling of the sys-
tem is performed with the use of Promela (Process Meta Language); a language through
which the synchronous and asynchronous communication among the components can
be modeled as non-deterministic automata and the resultantmodel can be verified with
the use of SPIN model checker. System requirements are specified with the use of LTL
temporal logic. Iteratively extending the system model, they explained/guided different
properties/features of SPIN model checker. The feasibility of proposed MIRIE is en-
sured on the Nocturnal (Night Optimized Care Technology for UseRs Needing Assisted
Livestyles) project.

In the first part of [10], the authors describe important characteristics, parenttech-
nologies and the applications of SmE in various domains. Then they present behavior
models of various components of SmE. The modeling of each component is performed
by using the semantics of finite state machines (network of automata). The controlling
component, known as coordinator system, detects the presence of home occupant with
the use of seven motion sensors, placed in kitchen, living room, bedroom and bathroom.
By sensing some activity, the system specified constraints are checked and the suitable
operations are performed. Also the TV component is modeled:the controller deactivates
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the TV when it is found unattended for a long time. Similarly,an alarm manager com-
ponent is modeled which continuously monitors the triggersfrom smoke alarms, burglar
alarm and emergency pull cord, and contacts fire brigade, security or nursing unit based
on triggers. Other controlling components, such as door-bell manager, telephone man-
ager, temperature system manager, environment manager andvital signs monitoring are
modeled in the form of state machines. After modeling these components, they design
different behavioral properties regarding the verification of specifications-accomplished
behavior, individual component behavior, safety and security with the use of Timed Com-
putation Tree Logic (TCTL) by considering the timing factor (real-time system). For
verifying these properties on the model, UPPAL is suggestedas model checking tool.
The process of system modeling and properties designing is performed manually.

In [70], the authors, having worked in the area of verifying AAL (Ambient Assisted
Living) systems, present a verification approach for checking the satisfaction of non-
functional requirements, such as timeliness and safety based on timed traces semantics
and UML-RT models (MEDISTAM-RT). They use a real-time system design and analysis
methodology based on the semi-formal UML-RT models (which are generally recognized
to be well suited for designing complex time-constrained systems) and the formal CSP+T
notation. In their methodology, the system is designed in a stepwise refinement manner,
where components are divided hierarchically into sub-components till the final level. The
behavior of these basic components are separately designedby Timed State Diagrams
(TSD) and the behavior of the whole is derived from the behavior of its constituent parts
by following a compositional specification process based onCSP+T. Their methodology
is aimed at ensuring safe deadlock-free communication between components. The authors
verify an Emergency Assistance System using this verification approach.

In [13], the authors present a formal verification environment forensuring the desired
behavior along with the ’safety’ and ’liveness’ properties. A case study of Computer
Based Railway Interlocking system is reported in which all thecommunication is con-
trolled through a sophisticated control unit. The system behavior is modeled by using
the formalism of Calculus of Communicating Systems (CCS). Just Another Concurrency
Kit (JACK) is used as a model checking tool and the properties are specified by using
ACTL logic. The model is abstracted by using the “Zooming” technique. In case of need
for more reduction, the “Testing signal values” and “Staticconfiguration parameters”
techniques can be applied on the model. The system modeling and properties designing
process is manually performed.

In [21], the authors present their work for the modeling and verification of SmE. In
their methodology, the design process is based on the Systems Engineering standards,
especially on EIA-632. In the design process, UML2 and SYSMLstandard diagrams
are used. They take the example of energy manager system (known as ERGDOM) for
home comfort. The ERGDOM is a self-configuring system, which identifies the users’
comfort patterns, habits and the current temperature of thehome, and accordingly makes
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the environment comfortable by controlling the functionalities of HVAC systems, shut-
ters, air-conditioning and convectors. The specification related to main functionalities
(e.g. Measurement of temperature, moisture, luminosity and air quality in each part of
the home for home comfort), the roles of each component (users or devices) and their
interaction with the system, is formalized by the use of context diagrams. Then with
the adoption of use-case diagrams, the use cases of the system for the desired services
(goals) by the users and devices are designed. Further, the behavior of each use case with
their interaction is formulated by using sequence diagrams. These sequence diagrams
are usually detailed due to the controlling aspects and are then summarized into the con-
cise activity diagrams. These activity diagrams, based on the automatic translation of
the ERGDOM model and their relation, are converted into Petri-net by adopting HiLes
functional formalism. Various temporal properties, related to the structure and dynamic
behavior verification of the control model of ERGDOM, are verified by using TINA (a
model checking tool for Petri-net formalism).

In [71], the authors propose a method for the verification of the context and situa-
tion in pervasive computing environments. As devices are the basic elements of SmE
and each device has some capabilities (features), which canbe controlled by changing its
value. These values can be non-numeric (a lamp can beon or off ) or numeric (the light
intensity of dimmer lamp can be controlled from0% to 100%). During the verification
of the context/situation of SmE, it is essential to confirm the particular feature values of
concerning devices. A context/situation (defined by some experts) may be associated,
through the relation of generalization, composition, dependence or contradiction, with
other contexts [72]. The modeling of the context is performed with the use of Context
Space Theory (CST) which is further formalized in property format by using Situation
Algebra Expression. On the basis of the rules defined in [72–74], they designed 3 algo-
rithms by which the context modeling can be converted into the Orthotope-based situation
space and situation algebra expressions [71]. These expressions are further checked on
the Orthotope-based situation space for identifying the emptiness or counterexample in
case of validation. The feasibility of the proposed methodology is confirmed with the
example of Smart Office Environment. It is opportune to note that this paper does not
refer the context as the user location.

In [15, 75, 76], the authors present their work for the modeling and verification of
ambient intelligence applications. The authors’ key focusis on the location dependent
movement of users (also referred as ambient) by incorporating the concepts of Pervasive
and Ubiquitous Computing. They propose a seven step process for the interface, be-
havioral and constraints modeling of SmE. The Ontology is used for interface modeling
where ambient calculus (AC) (a process calculus formalism derived from pi-calculus) is
used for behavioral modeling. They theoretically extend ACby borrowing the concepts
from different formal modeling techniques for incorporating the real-time constraints and
conditional movements which are among the limitations of AC.The properties related to
the pervasive and ubiquitous concepts are specified in termsof Ambient Logic (AL) –
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having a combined power of propositional logic, first-order-logic, temporal logic, some-
where and everywhere operators– the properties related to explicit real-time constraints
are specified in terms of Real-Time Temporal Logic (RTTL) and the properties related
to the pre-and-post conditions are specified by using Design-By-Contract (DBC). A case
study of a patient monitoring system is modeled according tothe above mentioned for-
malisms. The patient’s movements among different rooms, their activities and operations
are identified with the use of RFID Tag. For the modeling and verification, they develop
a tool, known as Ambient Designer which can visually model the system in the form of
AC and AL. It has an additional functionality of translatingthe model in the acceptable
language of NuSVM model checker. The designed model can be verified by implement-
ing the model checking algorithm for AC in the designed tool or by using NuSVM model
checker tool. By this, the properties related to the functional correctness, reliability, avail-
ability, safety and security of the system can be verified.

In [77], the authors present a branching time model-checking approach for the formal
verification of dynamic aspects of complex systems. Authorsdefined some formal seman-
tics, based on the work of [78] and JACK (model checker), for considering the dynamic
aspects of the system (described in the form of HierarchicalAutomata). For the verifica-
tion, authors consider the Statechart modeling of user interaction with TV system. The
dynamic behavioral properties are specified in ACTL logic andverified on the model with
the help of JACK model checking tool. The syntax and static semantics of Statecharts are
formally defined; however their dynamic aspects are informally defined.

In [79], the authors present the UMC model checker tool for the formal verification
of the dynamic behavior of complex systems. The systems which can be verified through
UMC are required to be specified in the form of UML communicating Statecharts which
can interact with others. The system requirements are formalized by using the syntax
and semantics of mu-ACTL logic (ACTL logic with the complete power of mu-calculus
as well) and verified on the model with the use of UMC. A case study of the system,
consisting of two airports, two passengers and an airplane,is considered for showing the
satisfactory outcomes of the model checker.

In [80,81], the authors present an agent based ambient system for the formal model-
ing and verification of the interaction among multi-agents.For the generic and domain
specific behavior modeling of the interaction, they used predicate logic. And for the ver-
ification of the specification, they used rule based TemporalTrace Language (TTL) [82],
which is specially designed for the formal specification andanalysis of dynamic prop-
erties, regarding the qualitative and quantitative (in-term of time) interaction aspects of
the systems belonging to biological, cognitive and social domains. They have modeled
the Medicine Usage Management system, in which patient takes medicines from the in-
telligent Medicine box (which has the ability of knowing thequantity of the dosage and
the time of previously taken medicine). On crossing the threshold values (maximum and
minimum quantity of dosage and time), the system notifies with beep and by automati-
cally sending the SMS to the patient. In case of no reply (or response) from the patient,

28



3.2 – Surveyed Literature

the system sends a history SMS to relevant doctor. For the modeling of each component
(agent), input, internal and output states are considered in predicate logic format (referred
as Ontology). A stochastic model of the patient is considered, and interaction of the model
system is sent to the LEADSTO [83], which executes and simulates the traces of the sys-
tem. The TTL properties are also analyzed on the modeled system (by using these traces)
through TTL checking tool [82] or by using SMV model checker1.

In [86], the authors present a theoretical framework for the formal modeling of SmE
by concentrating upon the concepts of Pervasive computing.They perform the formal
modeling of requirements, assumptions and behaviors of application software with re-
spect to the user (identification, movements, scopes) and the accessible features of the
surrounding devices. According to the requirements and assumptions, the abstract inter-
action modeling of the accessible features of the devices (by the users at some certain
time) is performed, which is further analyzed and formally verified. For the behavioral
modeling of such system, Event Calculus is used; a formalism for expressing and reason-
ing the effects of any action [87]. According to the scopes (the direct interaction of the
users with the accessible devices) and duration, the requirements along with the imple-
mentation of assumption are modeled in the form of axioms (rules). A theorem proving
inference approach is used by adopting Discrete Event Calculus Reasoner [88] as a tool
for formally satisfying the system requirements. DiscreteEvent Calculus is for represent-
ing the requirements in the properties format. Discrete Event Calculus is converted into
the (well-known) SAT problem and inference is made on the model. With the example of
Meeting Support System, they justify the feasibility of their proposed framework.

In [19], the authors present their work related to the modeling andverification of the
integrated services in the home network system (HNS). They described and modeled the
HNS by using the semantic of Object Oriented modeling in which the environment, ap-
pliances, properties, methods, states and other relevant information are considered. After
that, they presented a descriptive language for the modeling of the HNS. Then the ser-
vices’ reliability of HNS is verified. Authors used a case study of a home system in which
air conditioner, inside and outside thermometers, smoke sensor, ventilators and windows
are modeled. The appliances and their integrated services are verified with respect to
different CTL specified properties by using SMV model checking tool.

In [89], the authors propose the use of formal methods to analyze the pervasive com-
puting systems. They start with proposing a formal modelingframework for covering the
main characteristics of pervasive computing systems. Theyadopt CSP# for modeling and
verification as it is rich in the syntax for modeling concurrent system with hierarchies.

1Moreover, Jan Treur (one of the authors of [80, 81]) extended the work by covering other aspects of
the agent based ambient system, with the collaboration of other researchers [84,85]. In his work [85], the
cognitive analysis is performed through simulation (therefore is not including in our survey). The purpose
of mentioning this is that it is the only found work which performed cognitive analysis for the ambient
system.
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Later, the safety requirements are identified and the specification patterns for safety and
liveness properties are provided as they have classified theimportant requirements into
these categories. By doing so, the critical properties against the system model can be ver-
ified by using model checking to detect the design flaws at the early design stage. Finally,
a case study of a smart health care system for mild dementia patients (AMUPADH) is run
to demonstrate the practicality of proposed framework.

In [90–92], the authors’ main goal is to verify the (software of) medical devices by us-
ing their UIs. They verify the devices by adopting differentstrategies. They investigate the
user’s actual behavior in the field and verify it with the prescribed one as mentioned in the
user manual [90]. Similarly, they provide a solution to the investigation authorities for ver-
ifying as to which specified user-interface requirements are satisfactorily incorporated in
the medical device after their implementation [91]. Moreover, they extend their work and
investigate the interaction design issues in the implementation by generating the keying
sequences (data entry task) and analyzing them with the user-interaction behavior [92].
For the verification purpose, they adopt theorem proving approach. The Prototype Verifi-
cation System (PVS) is adopted as a theorem proving tool, andthe model of the system is
designed by using the reverse engineering processes. The designed model is further trans-
lated into the acceptable format of PVS, which is based on higher ordered-typed logic and
equipped with similar features of various languages (like C++). The requirements which
are required to verify are formalized into axioms (according to the template for proper-
ties) and then verified on the model. The verification processis performed in [90,91] by
using proof obligations component of PVS and in [92] by using configuration diagrams (a
labeled graph of the modeled system/device in which nodes represent configurations and
edges represents transition with guard conditions). Theseconfiguration diagrams help in
generating the test cases for exposing the interaction issues in the model. With the case
study of glucose monitoring procedure in oncology ward [90], infusion pump [91] and a
layout of medical device [92], they proved the authenticity of their work.

In [93], the authors present their theoretical contribution for the modeling and ver-
ification of pervasive computing environment. They consider the software controlling
components, devices, users, environment and other physical objects in the environment
as ambient which are spatially interrelated with other objects. Along with the movement,
an ambient can enter or leave the environment and can be part of other environments.
The modeling of these ambient along with their operations and activities are performed
with the use of Ambient Calculus. The properties related to verifying the availability
of the services at anytime and anywhere, and devices mobility in case of changing their
context (entering and existing of ambient in other environment) are performed with the
use of ambient logic. A case study (named as Gaia) of university is considered which is
equipped with multiple sensors, computers and actuators. Students can enter with their
digital devices (mobiles, PDAs, laptop) and can perform various pervasive activities. Dif-
ferent model checking algorithms/tools, such as specified in [94], can be used for the
verification of the pervasive properties.
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3.3 Empirically-derived Parameter-based Methodology

For the development of SmE, it is evident from the literatureto firstly design and verify
the system (motivation is given in Section1). Practically, project manager (along with the
team) may have many questions regarding the modeling and verification of the system.
As SmE has the capacity to cover various domains with different perspective, different
techniques and tools are used – according to their application areas and covered aspects –
for the modeling and verification. On the basis of our experiences and surveyed literature,
we try to identify and classify the emerging concerns (listed below) into four groups.

• Among the basic components of SmE (mentioned in Section1), which components
are required to be modeled for this specific application area;

• For the modeling of the selected components, which aspectsare required to be
covered;

• How the modeling of each selected component is performed byconsidering the
level of details necessary to be achieved?

• How the intelligence/computation is modeled by considering the system constraints?

• How the requirements of different perspectives are modeled, for confirming the
correct incorporation in the system model?

• How the verification of the different aspects/perspectives of the components or sys-
tem is performed?

• Which techniques and tools are used for the modeling and verification of the sys-
tem?

• Which application area is selected for proving the reliability of the proposed ap-
proach?

• Which abstraction technique is employed/adopted for reducing the size of the model
so that the verification can be easily performed by focusing on the interested per-
spective?

During the first course of the literature survey, these questions were identified and
classified according to criteria mentioned in Section3.1. A deep analysis of each classi-
fication with the internal categorization is carried out in the second round, and termed as
parameter. In the third round of survey, the existing state-of-the-art against each param-
eter is identified and analyzed according to its modeling/verification capacity, termed as
parameter values.
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To the best of our knowledge, the existing state-of-the-artof formal modeling and veri-
fication processes (as described in Section3.1), with respect to their level of adoption and
application scenarios, may be comprehensively represented in a tabular form, in which
each formal parameter is represented by the adopted state-of-the-art (parameter values)
against the surveyed literature. The complete procedure ofdesigning tabular form (from
extracting parameters to their corresponding values against each surveyed literature) is
referred as empirically-derived parameter-based methodology.

In order to perform an in-depth analysis of the surveyed literature, an overview of the
existing state-of-the-art techniques has been performed.The details of their application
domains, level of adoption, and their corresponding scenarios are presented in the subse-
quent sections. Moreover, uncovered areas by the existing state-of-the-art processes and
commonly used ones are also investigated.

The following subsections are the main classification, against each of which, a table
is designed that provides the adopted tools/techniques information against each surveyed
literature. The inner subsections of this classification work as parameters of these tables.
These inner subsections represent different perspectiveswhich may be adopted during the
formal modeling and verification, in the surveyed literature. The values of the parameter
represent the formalism (existing state-of-the art) or theadoption of perspectives in the
surveyed literature.

3.3.1 Formal Modeling

Black Box Modeling

Different formalisms are used for Black Box modeling such as Structure diagrams (Class
diagrams, Object diagrams) [95] and Ontologies [96]. Structure diagrams are Unified
Modeling Language (UML) artifacts that model the Object Oriented systems, whereas
Ontologies are the semantic web solution for describing thedata as complete data model,
formal semantics, knowledge discovery and sufficient reasoning power; due to these ad-
vantages, Ontologies are often preferred for the modeling of SmE.

Black box, as a parameter in our methodology, is used for representing the explicitly
adopted formalism of modeling information. In tabular format, this parameter is either
represented with the name of the employed formalism or with across mark (✘), indicating
that it is not adopted (as represented in Table3.1).

White Box Modeling

The behavioral modeling of SmE can be performed through UML behavioral diagrams
[95], process calculus [97,98] and petri-nets [21,99].

UML behavioral diagrams consist of Use Case, Activity, Sequence, Statecharts and
other diagrams. Statecharts (Automata or labeled transition systems) are commonly used
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Researchers
Black Box White Box Intelligence Requirements
Modeling Modeling Modeling Modeling

Ahmed and Tripathi [68] ✘ Role based collaboration
model

Role based LTL

Augusto and Hornos [69] ✘ Activity Modeling
Through Promela pro-
cesses

Event (Activity detection),
Condition(location identi-
fication), Action (opera-
tion graded)

LTL

Augusto and McCullagh
[10]

✘ Finite State Machine Event Condition Action TCTL

Benghazi et al. [70] ✘ UML-RT (Timed Se-
quence Diagram, Timed
State Diagram), CSP+T

Event Condition (previous
history) Action

FT T (Common Formal
Semantic Domain)

Bernardeschi et al. [13] ✘ CCS/MEIJE Process Al-
gebra

Event Condition Action mu-ACTL

Bonhomme et al. [21] System Engineering Stan-
dards, EIA-632, Use Case,
Sequence, Activity and
Dynamic Context Dia-
grams, UML2, SYSML

Petri-Nets, HiLes Decision Logic Temporal Properties

Boytsov and Za-
slavsky [71]

Context Space Theory
(CST)

Orthotope-based Situation
Space

Weighted Rule Based Situation Algebra Expres-
sion

Coronato and Pietro [15,
75,76]

Ontology Ambient Calculus Ambient movement, Pre-
and-Post conditions

Ambient logic + RTTL

Gnesi et al. [77] ✘ Hierarchical Statecharts Event Condition Action ACTL
Gnesi and Mazzanti [79] ✘ Communicating State Ma-

chines
Event Condition Action mu-ACTL

Hoogendoorn et al. [80,
81]

✘ Predicate logic Rule Based TTL

Ishikawa et al. [86] ✘ Event Calculus Rule Based Axioms Based through
Discrete Event Calculus

Leelaprute et al. [19] Object Oriented Model-
ing, System description

Object Oriented Model-
ing, Service description

Event Condition Action CTL

Liu et al. [89] ✘ CSP# Rule Based LTL
[90–92] ✘ PVS Logic, a Typed

higher-ordered Logic
✘ Axioms Based (according

to property template)
Ranganathan and Camp-
bell [93]

✘ Ambient Calculus Rule Based, DL-Based,
Relational Algebra

Ambient Logic

Table 3.1. Modeling Evaluation
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artifacts for specifying the system in a formal way. Different variants of state diagrams for
modeling different aspects of behaviors, with each varianthaving its own limitations, are
designed. The more famous and exploited variants are Harel Statecharts [32], Commu-
nicating Statecharts [79], Automata [10,100] and Hierarchical Automata [77,101]. The
probabilistic and timed behavior of the complex system can be modeled with the use of
Probabilistic Statecharts [102] and Timed Automata [16], respectively.

Process algebras can also be represented as labeled transition systems for specifying
the behavior of the system. In process calculus, the most commonly used formalism are
Calculus of Communicating Systems (CCS) [13, 103], Communicating Sequential Pro-
cesses (CSP) [104,105] and Pi-calculus [106], whereas their extension with the context-
aware (mobility) modeling information is known as Ambient Calculus (AC) [15, 107].
The probabilistic modeling of the system is mostly performed by enhancing the seman-
tics of process calculus formalisms.

Petri nets are used as framework for specifying the concurrent systems with detailed
(mathematical and conceptual) basic semantic for their modeling. Timed-petri-nets is
an extension of petri-nets, in which the concurrent behavior of the system is formally
specified in terms of time.

White box, as a parameter in our methodology, is used for representing the adopted
formalism of modeling information. In tabular format, the value of this parameter is
represented with the name of the employed formalism.

Intelligence Modeling

For providing services intelligently, different techniques are adopted among which artifi-
cial intelligence (e.g. fuzzy logics in [108,109], decision trees in [110], machine learn-
ing in [111], case-based reasoning in [112], rule-based reasoning in [71], databases (e.g.
event-condition-action in [113] and SQL-based data management in [114]) are some of
the mostly adopted approaches. Based on these approaches, control algorithms decide
feasible operations and send commands accordingly to corresponding devices.

In empirically-derived parameter-based methodology, intelligence modeling is used as
a parameter (see Table3.1). The value represents the name of the employed formalism by
the surveyed technique and cross mark (✘) indicates that it is not observed in the surveyed
technique (as represented in Table3.1).

Requirements Modeling

Temporal Logics are widely used in formal verification in order to formalize and specify
the requirements of complex systems [42,44,45,54]. The truth value of these specified
requirements depend upon time; whether the specific requirement will be true at any path
(Exists), or on all the paths (All) of the complex systems. Inaddition to Exists and All,
there are other temporal quantifiers like Global, Next, Future, Until, Implies, which help
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in verifying the complex requirements on different branches from some specific state at a
certain time.

Linear-Time Temporal Logic (LTL) is used to represent the requirements for linear
time model of the system, whereas Action Based Branching Time Logic (ACTL) [44]
and State Based Branching Time Logic (CTL) [45] are used for representing the require-
ments for computational time temporal logic of the system. Several logics are designed
for handling different aspects of requirements, many are formulated by integrating the
already designed languages addressing a wider range of requirements like UCTL [115],
SocL [116]. Time based requirements are usually handled by TCTL, RTL, RTTL, TPTL,
RTCTL [117] whereas probabilistic requirements are handled by using PLTL and PCTL
logics [118].

In our methodology, requirements modeling is used as a parameter and the value (in
Table3.1) reports the adopted logic by the surveyed technique.

3.3.2 Component Modeling

User Modeling

Users interact with the SmE in their own ways which, in turn, responds according to
the specified and modeled behaviors. The level of details andsophistication varies from
system to system, context to context and goals to goals. Among different perspectives,
some of the behavioral aspects which are considered for usermodeling are:

• User identification (UI): the identification of the user through sensing and/or input
devices;

• User actions history (UH): the stored history of previous user actions;

• User privileges –on the basis of their roles– (UPr): based on the role categorization,
the system functionality provision granted to the user;

• User position –pre- and post-action execution– (UP): the geographical location of
the user within the system boundaries with respect to a specific action;

• User’s possible actions (UA): the actions of the user whichcan be contemplated
and facilitated by the system;

• User’s possible behaviors (UB): the behavior (related to movement and context-
approved actions) of the user which can be contemplated and facilitated by the
system;

In Table3.2, the values at the end of listed items (placed in parenthesis) are used as pa-
rameter values for representing the modeling aspects covered by the referring technique.
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Users Devices Control Context Interaction
Modeling Modeling Modeling Modeling Modeling

Ahmed and Tripathi [68] UPr, UA ✔ UI, IC, CO
Augusto and Hornos [69] UI, UP, UA,

UB
✔ ✔ US, UC, SC, CO

Augusto and McCullagh
[10]

UA Behavior ✔ US, UI, SC, IC, CO

Benghazi et al. [70] UH, UA ✔ US, UI, SC, IC, CO
Bernardeschi et al. [13] ✔ IC, CO
Bonhomme et al. [21] UI, UH, UA ✔ US, UI, SC, IC, CO
Boytsov and Za-
slavsky [71]

✔ IC

Coronato and Pietro [15,
75,76]

UI, UP, UB ✔ ✔ US, UC, SC, CO

Gnesi et al. [77] UA Behavior UI
Gnesi and Mazzanti [79] UA, UB Behavior ✔ UC, UI
Hoogendoorn et al. [80,
81]

UH, UA ✔ UI, IC, CO

Ishikawa et al. [86] UI, UPr, UP,
UA

✔ ✔ US, UC, UI, SC, CO

Leelaprute et al. [19] Behavior ✔ IC, CO
Liu et al. [89] UI, UA ✔ ✔ US, UC, UI, SC, IC,

CO
[90–92] UI, UPr, UA Behavior UI
Ranganathan and Camp-
bell [93]

UI, UA ✔ ✔ US, UC, UI, SC, IC,
CO

Table 3.2. Component Modeling
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Devices Modeling

Device modeling can be done by two methodologies: interfaceand behavior. In inter-
face modeling, we usually consider commands (triggers) a device may receive; associ-
ated functionality (operation) it may perform; constraints (rules) it has to follow; states
at which it will be at any time; notifications that it sends after the completion of task.
Whereas in behavior modeling, acceptance of specific commands on a particular state,
implementation of constraints, operations which may be performed on that state after the
satisfaction of constraints are considered.

Referring to Table3.2, the value “Behavior” under this category show the modeling
of internal behavior of the devices in the surveyed technique.

Control Algorithms Modeling

The overall sophisticated control strategy of SmE is implemented through control algo-
rithms. Control algorithms take input from the input/sensing devices and according to the
system specifications and imposed constraints, decide for the reliable functionality. For
the fulfillment of the desired functionality, they send commands to the relevant operating
devices for performing required task/operation (as presented in Figure1.1).

In Table3.2, a tick mark (✔) under this parameter show that the referred technique
takes decision by implementing the mentioned pattern.

Context/Environment Modeling

The identification of the user location is grouped in this category, and termed as Context
modeling. Referring to Table3.2, a tick mark (✔) under this category shows the referring
technique performed this type of modeling.

Interaction Modeling

SmE components can interact with each other for the achievement of desired goals. In
the surveyed literature, researchers are found focusing ondifferent interaction levels and
accordingly building the system. On the basis of these focuses, we categorized the inter-
action levels into the following groups:

• User interaction with the environment through sensors (US): the considerable user
actions in the environment are monitored or noticed with theuse of sensors;

• User interaction according to its context (UC): the user actions are recognized ac-
cording to user’s movements in the environment; although these are usually mon-
itored by sensors, the focus point is that with a change in theposition, the system
will able to consider the activities;
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• User action performance on input devices (UI): user interacts with the system through
handheld devices, or by directly performing action on the real inputting devices;

• Sensor interaction with the control algorithms (SC): the sensed data is sent by the
sensors to the control algorithms, on the basis of which control algorithms decide
for the preferable action;

• Input device interaction with the control algorithms (IC):the handheld devices or
real devices send the commands to the control algorithms forperforming the spe-
cific task;

• Control algorithms interaction with the operating devices(CO): control algorithms
incorporate the intelligence strategies and on the basis ofincoming commands, de-
cide for the preferable action and accordingly send messages to the relevant devices.

In Table3.2, the values presented at the end of each listing item are usedas the pa-
rameter values for informing that the referred technique isfocusing/performing on which
type of interaction modeling.

3.3.3 Formal Verification

The system correctness with respect to its specifications and constraints can formally
(comprehensively) be verified and this process is known as formal verification. Different
aspects are verified during the verification process. The description of each aspect is
presented in the following subsections.

Consistency Verification

Consistency verification, as a parameter in our methodology,is used for representing
whether applied modeling formalisms are consistent with respect to their vocabulary and
functionalities, and the specified requirements are properly incorporated in the designed
system (as mentioned in Section3.1.3). In Table3.3, a tick mark (✔) shows it is consid-
ered and performed in surveyed literature.

Entire SmE Verification

In order to verify entire system, different aspects are covered, which can be classified as
the following: Users Behavior Verification, Context Verification, Device Behavior Veri-
fication, Devices Interaction and Control Verification, Real Time Verification and Proba-
bilistic Verification.
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Entire System Verification
Authors Consistency Users Context Device Devices Real Probabilistic

Verification Behavior Verification Behavior Interaction Time Verification
Verification Verification Control Verifi-

cation
Verification

Ahmed and Tripathi [68] ✔ ✔

Augusto and Hornos [69] ✔ ✔ ✔

Augusto and McCullagh
[10]

✔ ✔ ✔

Benghazi et al. [70] ✔ ✔ ✔

Bernardeschi et al. [13] ✔

Bonhomme et al. [21] ✔(Behavioral
Analysis)

✔

Boytsov and Za-
slavsky [71]

✔

Coronato and Pietro [15,
75,76]

✔ ✔ ✔

Gnesi et al. [77] ✔

Gnesi and Mazzanti [79] ✔ ✔

Hoogendoorn et al. [80,
81]

✔ ✔

Ishikawa et al. [86] ✔ ✔ ✔ ✔

Leelaprute et al. [19] ✔ ✔

Liu et al. [89] ✔ ✔ ✔

[90–92] ✔ ✔

Ranganathan and Camp-
bell [93]

✔ ✔ ✔

Table 3.3. Formal Verification Evaluation
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• Users Behavior Verification:The key concern while designing SmE is to facili-
tate the environment with integrated technologies to benefit users, who have certain
goals/desires and a complex web of behaviors which can be adopted during inter-
action with the system. In this classification, accomplishment of user goals against
the specified actions with the input devices (or sensors) andthe understanding of
the possible behavior (moves) of the users are verified. The tick (✔) sign under this
category shows its application in verification of users actions and behavior.

• Context Verification:Users interact with the SmE through the environment. Ac-
cording to location (also referred as Context), users can access services (mostly
concerned with safety and security) from the environment. The environment mod-
els of SmE have extra computational power for determining the current state of the
corresponding objects/devices/users and providing specified services accordingly.
For instance, room illumination services are only accessible when residents are
awake and/or present in room. Table3.3 reports whether the surveyed technique
performs context verification or not; the tick (✔) sign shows context verification is
performed.

• Device Behavior Verification:The devices in SmE are of heterogeneous nature with
some common and distinct features. They are self-dependentcomponents with their
own internal specified behavior that may be complex based on the device features
(smart devices). In this classification, the specified internal behavior of devices is
explicitly confirmed on their models. The tick (✔) sign in Table3.3shows scenarios
in which this verification is performed.

• Devices Interaction and Control Verification:The system level requirements are
implemented through control algorithms which regulate interaction among devices.
In this classification, the system level constraints and thereliable interaction among
devices under control algorithms are confirmed. The tick (✔) sign under this cate-
gory shows it has been applied.

• Real Time Verification:The application areas of SmE are almost in every domain.
Some applications can be time dependent such as traffic control system, where time
factors are also considered in modeling and verification stage. In this classifica-
tion, real-time verification of the system is ensured. The tick (✔) sign in Table3.3
indicates real time verification is performed.

• Probabilistic Verification: The system being large along with possibilities of its
multi-tasking nature make it more complicated. Probabilistic modeling, in this re-
gard, can be adopted to ensure its smooth behavior with respect to possible actions
the system can perform at a given time. SmE may encounter challenging conditions
such as versatile user behaviors, malfunctioning sensors,broken or out-of-order de-
vices, which may compromise reliable response of the system. To cater to such
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scenarios, probabilistic modeling and verification is usually performed. In this clas-
sification, checking of probabilistic verification in surveyed literature is taken into
consideration (see Table3.3).

3.3.4 Adopted Procedures/Tools

In this category, analysis of verification procedures/tools is considered. The following
subsections explain in details.

Formal Verification Techniques

Model checking is suitable for the system in which the state space is finite [122] but it
can also work for infinite state space models represented as afinite state space by adopt-
ing some reduction technique (such as abstraction, inactive variable elimination, inter-
nal transition by passing, approximation). Several model checking tools are available
for the formal verification of SmE related systems. The verification can be performed
using Linear-Temporal Logics or Branching-Time Temporal Logics. Some of the re-
ported model checkers that use Linear-Temporal Logics are in [119–121], HEGO [123],
vUML [ 124] based on SPIN [125], whereas JACK, [77], SMV [126], CMC [127] and
UMC [79] are used for verifying state and action based branching time temporal behav-
ior. For the verification of real-time systems, UPPAL [128] and nuSVM [129] model
checkers are used, while TINA [130], TAPAAL [ 131], ROMEO [132], DREAM [133]
are exploited when model is specified in terms of Petri-Nets.Time based verification can
be performed with the use of UPPAL, TAPAAL, ROMEO, DREAM, CWB [134] and
other model checkers, whereas probabilistic model checking can be performed with the
use of CADP [135], PAT [136], PRISM [137] and others.

The formal verification on the system can also be performed with the use of theorem
proving techniques, in which the system is modeled using invariants and set-theoretical
structures. Different logical inference rules, linear andtemporal properties can be ap-
plied for checking correctness of the system. Inference canbe semi-automatic (with
user involvement) or fully-automatic (by providing full power of inference to theorem
prover). The commonly used semi-automatic theorem prover are HOL [138], Coq [139],
ACL2 [140] PVS [141] and Isabelle [142], whereas fully-automatic theorem prover are
Perfect Developer [143] and Escher C [144]. The possible scenarios, where these model-
ing techniques are applied, are described in Table3.4.

Abstraction

In case of model checkers, abstraction techniques are frequently used for reducing the
size of the system model. The abstraction can be applied on states, actions and variables
of the model. Under this parameter, either the name of the abstraction technique explicitly
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Researchers Verification Abstraction Automatic Scalability Verification Case
Technique Tool Study

Ahmed and Tripathi [68] Model Checking incremental modeling with
separation of concerns and
property specific abstractions

Automatic SPIN Computer Supported Coopera-
tive Work (CSCW) system for
Monitoring Exam Activities

Augusto and Hornos [69] Model Checking ✘ Manual ✔ SPIN Nocturnal (Night Optimized
Care Technology for UseRs
Needing Assisted Livestyles)

Augusto and McCullagh
[10]

Model Checking ✘ Manually ✔ UPPAL Smart Home

Benghazi et al. [70] Transformation
and Mapping
rules

✘ Semi-
automatic

✔ ✘ Emergency Assistace System
for Cardiac patient

Bernardeschi et al. [13] Model Checking Testing Signal Values, Static
configuration parameters,
Zooming

Manually JACK Computer Based Railway In-
terlocking System

Bonhomme et al. [21] Model Checking ✘ Semi-
automatic

TINA Smart Energy Management
System for Home Comfort
(EDGDOM)

Boytsov and Za-
slavsky [71]

Rule Based ✘ Manual Self-designed
Algorithms for
Emptiness Check

Smart Office Environment

Coronato and Pietro [15,
75,76]

Model Checking ✘ Semi-
automatic

✔ Ambient De-
signer, Nu-SMV

Pervasive Healthcare Applica-
tion for Monitoring the Patient

Gnesi et al. [77] Model Checking Refinement Function Manually JACK User and TV System
Gnesi and Mazzanti [79] Model Checking not generating the global

model of the system
Manually ✔ UMC Plane and Passenger in Airport

System
Hoogendoorn et al. [80,
81]

Model Checking ✘ Semi-
automatic

TTL Checker,
SMV

Medicine Usage Management

Ishikawa et al. [86] Theorem Proving ✔ Manual Discrete Event
Calculus Rea-
soner

Meeting Support System

Leelaprute et al. [19] Model Checking Symbolic representation of
the State space

Semi-
automatic

SMV Air Cleaning Service in Home
Network System

Liu et al. [89] Model Checking ✘ Semi-
automatic

✔ PAT Heath care system for Demen-
tia patient

[90–92] Theorem Proving ✘ Semi-
automatic

PVS Glucose monitoring procedure
in oncology ward, Infusion
pump, a real medical device

Ranganathan and Camp-
bell [93]

Model Checking ✘ Manually specified in [119–
121]

Gaia (pervasive environments
with digital devices)

Table 3.4. Adopted Procedures/Tools
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3.4 – Discussion

adopted by the surveyed literature is mentioned or the cross(✘) sign indicating that it is
not performed.

Automated

This parameter is used to represent that the surveyed technique generates the model and
the properties “automatically”, or it performs some manualinstruction and some part is
automatically generated (“semi-automatically”), or all work is performed “manually”.

Scalability

Scalability is among the important factors which are considered for the evaluation of tech-
niques. It is a broader term and can be used in many dimensions. Here the scalability is
referred as the ability of the surveyed technique to enhanceitself by adding more compo-
nents of same or different nature in the system. Under this parameter, the tick (✔) sign
indicates our observation that the technique can be enhanced by adding other components
with their inner aspects and details.

Verification Tool

This parameter indicates that among the several model checking/theorem proving tools
(as listed in section3.3.4), which tools are adopted and in which domains and scenarios.
In Table3.4, this parameter (verification tool) contains the name of theapplied approach-
es/processes/tools in verification process.

Example/Case Study

This parameter has the name of the application area, which isselected by the surveyed
literature as a case study/example, for proving the satisfactory outcomes.

3.4 Discussion

In this chapter, a survey of SmE modeling techniques is empirically conducted. In sur-
vey, the modeling techniques which also perform formal verification for confirming their
correct behavior are considered.

As evident in the Table3.1, the analysis shows that most of the techniques do not
perform black box modeling, but white box modeling is globally performed. The rea-
soning behind this trend can be attributed to the fact that atleast behavior modeling is
performed in any case due to the minimum formalism requirement. Black box modeling,
on the other hand, plays more of a foundational role (in form of common dictionaries and
conventions). This role nevertheless has a considerable planning and development cost.
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Owing to shortage of time and resources, researchers seem tobe in a hurry to furnish the
obvious functioning aspects of formal verification rather than the foundation. For white
box modeling, most of the techniques consistently use Statecharts (or their variants) due
to their maturity and ready availability other than mathematical-oriented wide coverage
of all possible paths. Intelligence modeling, mostly provided through Event-Condition-
Action technique, is almost globally performed by all the techniques. It is imperative to
mention that artificial intelligence (fuzzy logic, decision tree) is not diffused in formal
verification practice. Finally, using the variants of temporal logic, most of the surveyed
techniques perform requirements modeling.

The analysis of Table3.2shows that minimal user modeling is performed by almost all
the surveyed techniques. However, it is opportune to mention that most of the techniques
acquire the knowledge of user identification and actions to perform user modeling. The
real user behavior modeling is performed by a minority of techniques and a majority does
not do so due to pertinent complexity of behavior versatility and uncertainty. Further,
all surveyed techniques in device modeling are consideringthe interaction between the
devices. But the behavior of individual devices is only modeled by a very few techniques.
Further the table shows that almost all the techniques perform control modeling, but their
point of reference is different: some involve the user’s perspective, some involve device’s
perspective and some involve the environment’s/context’sperspective. 6 of the surveyed
techniques consider the user movements before taking any decision in context modeling.
Further, the interaction modeling seems to be largely covered by the techniques; user
identification and action, and based on them the operations which could be performed are
major focus of interaction modeling. Leaving aside Liu et al. ( [89]), no other technique
seems holistic and global in its nature. They consider one orthe other component of
SmE with the control and model it; mostly the user. Three of the techniques are some-
what holistic as they model 3 out of 4 SmE components. There isdefinitely scarcity of
techniques covering all areas of components modeling.

The analysis of Table3.3 shows that only 3 techniques perform holistic consistency
verification (between black box and white box), whereas Ahmed and Tripathi ( [68]),
though not having performed a black box modeling, still adopt a consistency verification
strategy by validating the successive formalisms with the previous ones. Since most of
the techniques have not performed black box modeling, therefore it seems appropriate
that they (other than Ahmed and Tripathi) do not perform consistency verification. It is
also observed that 6 techniques perform user behavior verification. This shows a lack of
interactivity and liveliness of SmE modeling and verification practices.

Similarly, the situation is equally alarming in context verification with 6 out of 16
surveyed techniques performing this verification. It can beargued that SmE are context
critical systems and demand an understanding of their physical and location-based modal-
ities, therefore such a modeling is highly required and the research impetus is too strong
to ignore in future works.

Also, some of the techniques are found to perform device interaction verification. The
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increasing complexity of devices and intricate nature of their behavior within the system
impede this type of verification. But, based on mounting needs, it is imperative to perform
this type of modeling.

The analysis further reveals that device interaction and control verification is per-
formed by almost all the techniques. It is grounded on the fact that most of the surveyed
techniques use control algorithms for accomplishing the system requirements, therefore
it seems natural that all these techniques do perform this kind of verification. Finally, real
time verification and probabilistic verification are not found so diffused in the surveyed
techniques. These seem to be highly neglected areas of SmE verification and owing to
their importance, it is necessary that SmE researchers alsodivert some effort to these
areas.

The analysis of Table3.4shows abstraction is performed by less than half of the sur-
veyed techniques, whereas others do not perform the abstraction. It can be said that those
techniques which perform abstraction do so based on their large size and focus. According
to the observation, it is found that some techniques are scalable, which can be enhanced
by adding the other components and their aspects in more details. Further, it is found that
8 techniques are manual, 7 are semi-automatic and only 1 technique claims to be fully
automatic (as it is rule-based). It can be argued there that the complex nature of SmE and
correspondingly complex modeling and verification requirements hinder the automation
of these techniques, as the only fully automatic techniquesis also not truly automatic in
its nature and is based on rules. All but two surveyed techniques use verification tools of
different nature. Finally, all the surveyed techniques aretested on one or the other case
study of varying nature, scope and level of complexity.
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Chapter 4

Proposed Methodology

A comprehensive methodology is proposed for the design and verification of SmE. The
methodology entails all the major components of SmE; users,devices, environment and
control algorithms. It is advisable that for designing the SmE, the detailed specifications
of these components are listed at requirement gathering phase. The organized specifica-
tions provide a better understandability of the system (andits related components) through
which the ambiguities during modeling can be sufficiently reduced. Further, these orga-
nized specifications help in designing the properties related to the verification of reliable
behavior (consisting of safety, security and other major aspects) of the system. For the be-
havioral modeling of each component, the methodology adopts Statecharts. The method-
ology provides ten steps, which are briefly explained in withthe following case study of
Bank Door Security Booth System.

4.1 Bank Door Security Booth System (BDSB): A Case
Study

The Bank Door Security Booth System (BDSB) is our real world example of a SmE
system [113], which is extended with the concept of users’ and environment (context)
modeling. Although BDSB is an initial level small SmE system,it exhibits a complex
behavior due to the interaction of multiple users with the system and performs a complex
communication between different hardware (e.g. devices) and software (e.g. control
algorithms) components according to user interaction. A graphical layout of the BDSB
environment is presented in Figure4.1.

The BDSB is designed in such a way that multiple users can interact with the sys-
tem; ideally, the security and safety measures of the BDSB system should never fail. The
system is composed of two electronically controlled doors,located outside (known as ex-
ternal door (DExt)) and inside the bank (known as inner door (DInner)). For electronically
controlling a door, actuators are installed. DExt and DInner are controlled by DAExt and
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DAInner door actuators respectively.

Figure 4.1. Bank Door Security Booth System

There is an isolated space between both doors, where users have to wait so that the
opened door is closed first and then the other door may be opened. The user request for
door opening is only possible through touch sensors (TS), which are installed near each
side of each door. The Touch sensor attached outside the DExtis called T1, and the one
attached within the isolated space is called T2. Similarly,the touch sensor attached to the
DInner from within the isolated side is called T3 and the one attached from inside of the
bank is called T4.

The Door sensors (DSExt and DSInner) are used for querying the status (whether it is
open, close or in moving states) of the door; DSExt is attached with DExt and DSInner is
attached with DInner. Similarly, two obstacle detection sensors are used for reopening the
door when it is in closing state and any object (e.g. person) is held in between the closing
path of the door, ODSExt is attached with DExt and OSDInner isattached with DInner. A
control algorithm, known as Door Lock Control (DLC), manages all the communication
and functionalities of these devices in a safe and secure way.

4.2 Methodology

The explanation of the proposed methodology with the designdetails is given in the fol-
lowing sections.
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4.2.1 Step 1: SmE Specification Identification

Requirements gathering and listing in a suitable way is normally the first step from where
any complex project begins [95]. The same process is adopted for the design of SmE
where the system level specifications are identified. These are related to the physical
components of the system, their functional behavior (alongwith their interaction details)
and the overall constraints (e.g. Security, Safety) for thedesigned SmE. A graphical view
of the activities carried out in this step is explained in Figure4.2.

Figure 4.2. SmE Specification Identification

The devices which are used in SmE are of two types: Controllable and Uncontrollable.
Controllable devices can be divided into two main categoriesbased on their usage: input
and output devices. Input devices are used for taking the input from the environment, by
observing the actions of the users (e.g. sensors) or with thedirect interaction of the users
to the devices (e.g. touch sensors); whereas the output devices (e.g. actuators) are used
for performing the required operations, they can be self-operating or they can be attached
with some other uncontrollable devices (e.g. doors, windows and gates) for controlling
their functionalities. As these uncontrollable devices are used as an interface in the en-
vironment but they cannot be directly controlled through messages, for controlling them
controllable devises are required to associate with them.

For the design of any SmE, it is required to identify the list of these devices with
their positioning details. Also, the list of services, which are to be accomplished by using
these devices, is created. Each service is associated to some devices in some relationship
and against each service, SmE perform some certain functionality. At this step, it is also
required to identify these relationships and the desired functionalities. Then, the overall
constraints on the system are required to be identified so that they can be considered
while modeling the SmE, such as the security constraints is to close all the entry points
(e.g. main door, windows, rear door) when a smart home goes in“sleep mode” and the
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safety constraint is to open all the entry and exit points in case of fire.
After this step, a clear picture of the SmE will be obtained. Caution is advised at this

stage because reliable, secure and safe implementation of the system will closely follow
these specifications.

The design specifications, the internal constraints and desired behavior of the BDSB
systems are given bellow:

Design Specification

1. two doors (external and internal) are used for ensuring the security measures from
the harmful access (direct access should not be possible) tothe bank;

2. there is an isolated space between external and internal doors;

3. doors can be controlled from the outside and inside of the isolated space through the
associated touch sensors installed at each side of the door (by sending the door-open
request), so that the people can cross the door without beingstuck;

Internal constraints and desired behavior

1. doors will remain open for a fixed time after opening and before closing so that the
users can cross;

2. when one door is in the process of opening-and-closing andthe same door-open
request from the associated TS arrives, BDSB checks the stateat which the request
is received and accordingly performs the following action:

(a) if the same door-open request arrives when the door is in the opening process,
BDSB just holds this request and will not open the door again;

(b) if the same door-open request arrives when the door is in the closing process,
BDSB will re-open the door;

3. if one door is in the opening-and-closing process and the door-open request from
the other door arrives, the BDSB will hold the request and waitfor the closing of
other door. As soon the other door will be closed, BDSB will open the requested
door.

4.2.2 Step 2: Users Modeling

Users play a key role in the operations of SmE. According to their presence (observed
from different sensing devices) and actions (performed on devices), SmE perform specific
operations. For the identification and modeling of such requirements, a two steps process
is adopted: goal modeling and behavior modeling. In goal modeling, the Goals, Actions
and Roles of the users which they can achieve from SmE are described. Goals are the
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set of objectives which can be performed/demanded by the users. For achieving these
goals, users have to perform specific actions. Roles establish a relationship between the
user actions and the environment, which allows the users forperforming specific task
according to the environment configurations. The flow of the task carried out in this step
is shown in Figure4.3.

Figure 4.3. Users Modeling

The users have complex web of behaviors which they can adopt during the interaction
with the system. In behavior modeling, the analysis of theirall possible moves are iden-
tified and modeled by incorporating their organized goal information. Among different
perspectives, some of the behavioral aspects, which we considered for users modeling in
this thesis, are following:

1. How the users can interact with the system?

2. Which user actions are considerable for the system?

3. Where a user can be positioned after performing an action?

4. What are the set of possible user behaviors which they can adopt?

Some other aspects of the users, though not considered for this thesis, are the follow-
ing: 1) Actions history of the users 2) Division of users on the basis of their roles

The following is the list of users’ activities, behaviors and observations which are
considered for the users’ modeling in BDSB system:

1. user can access and return from the bank by crossing the doors;
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2. users can press the associated touch sensors (at each sideof the door) for opening
the doors;

3. users can press touch sensors more than one time;

4. users observe the states of the doors and when a door is found open, they can act in
following ways:

(a) they may cross the door;

(b) their mind may change and they stay there without crossing the door;

(c) they cross the door, but sooner their mind may change and they cross-back
and come to their previous location.

5. users can change their mind from the isolated space and exit from there without
entering into the bank; similarly they can re-enter in the bank without exiting.

4.2.3 Step 3: Devices Modeling

Controlling and commanding the functionalities of electrical (low cost or smart) devices
are main goals of SmE. These devices are of heterogeneous nature with some common
and distinguish features (such as functionalities, commands, notification, states and oth-
ers). The desired functionality from the relevant devices is accessed by inputting some
specific commands or by interacting with them depending uponthe type of the devices.
For the sensor, the input is received by sensing the environment and its output is usually
a notification message; whereas for other devices, the inputcan be a command and the
output can be a physical operation. The input and output depend on the category of the
devices; further the devices can be smart by having some internal constraints. These ele-
ments (input, constraints, output) are required to be gathered, organized and described at
requirement gathering phase.

For the design and verification of complete interaction among SmE components, it is
also required to model the attached devices at design time. The modeling of these devices
can be performed by adopting interface (black box) and behavioral (white box) modeling
schemes. Before modeling a device it is first required to collect their detailed relevant
information, which includes the interface information – the commands (triggers) it may
receive, the associated functionality (operation) it may perform, the constraints (rules) it
has to follow, the states at which it will be at any time, the notifications which it sends
after the completion of task – and behavioral information – the acceptance of specific
commands on a particular state, the implementation of constraints, the operations which
may be performed on that state after the satisfaction of constraints – of the particular
devices. A graphical flow of the task carried out at this step is presented in Figure4.4.

Touch sensors, door actuators, door sensors and obstacle detection sensors are used as
controllable devices in BDSB. The modeling of each device is performed according to the
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Figure 4.4. Devices Modeling
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Figure 4.5. Statechart modeling of Door Actuator
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activities specified in the methodology (from requirement gathering to their behavioral
modeling); such as the door actuator component of BDSB systemis described to have
open-close functionality by which it provides force to openor close the door. The door
actuator, at any specific time, can be in moving (opening-closing) or in non-moving (open-
close) state. For activating the desired functionality, itaccepts open or close command
and, accordingly, performs its operation. It can also send the notification back after the
state has changed. The behavioral modeling of door actuator, in Statechart format, is
represented in Figure4.5.

4.2.4 Step 4: Individual Device Verification

Every SmE (from simple to complex, based on the feature set offered) makes use of vari-
ous devices of heterogeneous nature. The intelligence in SmE is provided by controlling
the functionalities of these devices. Other components of SmE directly or indirectly in-
teract with these devices. The modelling of these devices can be performed by adopting
both black box and white box formalisms. The black box formalism will help other com-
ponents to interact with them, whereas whenever their reliable behavior is required, the
white box formalism is considered.

Figure 4.6. Individual Device verification

Before verifying the complete SmE, which may consist of a listof devices, it is best
to verify the requirement accomplished behaviour along with the consistency verification
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among the adopted black box and white box formalisms at earlydesign stages. By this,
at the time of entire system verification, the abstraction can be applied on the interaction,
control strategy and the inner details of other components;and concentrating on the device
behavior becomes challenging, which may cause the exploration of the graph (as a number
of devices are used in SmE). In result, the drawback of using model checker technique,
state-space-exploration problem, can be sufficiently controlled. The task carried out in
this step is graphically represented in Figure4.6.

The verification process can be performed with the use of model checker technique in
which the model of each component is verified with the use of temporal properties related
to the consistency and behavioral verification. For the individual component verification,
it is required to convert the respective (device) model in the acceptable format of model
checker by establishing a system through which the commandscan be sent in any or-
der, the acceptable commands can be accepted at that particular state and the associated
functionality/operation be performed, the rest of the commands are ignored.

The requirements regarding the consistency (by considering one modelling formal-
ism as a reference and comparing it with the other) and reliable behavior, according to
the specifications, are firstly transformed into the format of temporal properties and then
these properties are verified on the model with the use of model checker. In the case of
unsatisfactory properties, the model is corrected and the verification process is repeated
until all the properties are satisfied.

Some devices of BDSB system are Touch sensors, door actuators, door sensors and
obstacle detection sensors. The implementation detail of this step is given in Chapter5
Section5.1

4.2.5 Step 5: Environment Modeling

In reality, users can observe the environment by seeing the current states of the concern-
ing devices and accordingly interact with them for achieving the desired goals. But at
design time, these features can be modeled by adding some extra computations through
environment models. The environment models can update their configuration when any
action or operation is performed by the concerning devices.Similarly, the environment
model can be capable of registering the actions, locations and interactions of the users. At
requirement gathering phase, the identification and listing of these computations, which
are considered to be in the real environment, are required tobe described. These descrip-
tions help for the reliable modeling of the environment. Theconcerning features which
are required to be considered for the environment modeling are graphically represented
in Figure4.7.

Considering the users’ modeling at design time, it is suggested that the modeling of
the environment component must also be done, as users may observe the environment
configurations and accordingly interact with the system. For this, a mechanism can be
designed which stores the state information of interestingdevices so that the users’ model
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Figure 4.7. Environment Modeling

can observe the environment configurations at design time. As the devices model states
change, the environment model updates the current state (ofthe particular device) with
the new values. Similarly, the users’ interaction with the sensors can be formalized with
the use of environment modeling; the environment model can also register the activities
of the user (so that the exact location of the users can be identified).

The users can view the states of the door, whether it is in open, close, opening or
closing state; and accordingly perform some actions (e.g. cross the door, press the cor-
responding touch sensor). For designing such a real environment, an environment model
is designed by having the ability to update it’s configuration as soon as the doors change
their states (taking advantage from State-Change-Notification message). Through this the
users can have the latest configuration of the environment and can behave accordingly.
Similarly, for knowing the proper location of users and accordingly providing access to
the relevant devices, environment model registers the actions of the users. Additionally,
the interaction with the obstacle detecting sensors can also be made through the envi-
ronment modeling. All these features are modeled with the help of parallel Statechart
formalisms.
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4.2.6 Step 6: Control Algorithms Modeling

Control algorithms aid the computation in the SmE. For achieving a goal, the user per-
forms an action which is forwarded to these controlling algorithms in the form of mes-
sages. According to these incoming messages, the current configuration of the whole
system and the implemented rules, control algorithms make certain sophisticated deci-
sions and send triggering messages to the associated devices for performing the required
operations.

Figure 4.8. Control Algorithms Modeling

The desired behavior of SmE (listed in Step 1: SmE Specification Identification
Stage), related to providing the required services, reliable behavior, security, safety and
other constraints, is achieved through control algorithms. The control algorithms accom-
plish the required behavior by controlling the functionalities of the concerning devices.
For an effective communication, control algorithms have touse the devices interface in-
formation (which are modeled in step 3: Devices Modeling). Agraphical task flow of this
step is given in Figure4.8.

Door Lock Control (DLC) is an intelligent component of a BDSB system. It takes in-
puts from Touch Sensors (TS), Door Sensors (DS) and obstacledetection sensors (ODS),
and according to the designed requirements, instructs the Door Actuators for opening/-
closing the doors. All the computation requirements (mentioned in SmE Specification
Identification Stage) are achieved through DLC. For achieving the desired computational
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requirements (what to do when the door-open request arrives? when the requested door
will be opened? when to send the acknowledgment?), different guards (constraints) are
designed with the use of relational and logical operators. These guards work on the basis
of incoming messages and the variable values.

4.2.7 Step 7: Temporal Properties Designing

It is important for any complex and critical system to ensurethe successful modeling of all
the desired behavior (related to the safety, security), functionalities and other constraints
is performed. For the verification of these features, the modeling of the temporal proper-
ties is required so that they can be confirmed at the formal verification step. During the
formal verification, some properties may likely be ignored due to system complexity. For
reducing the chances of ignoring important properties, therequirements described so far
are used. These requirements are further formulated by using the syntax and semantics of
temporal logics.

Figure 4.9. Temporal Properties Designing

The temporal logics are mostly used for the verification of the reachability of certain
states, satisfaction of sequence, absence or existence of any predicate (at any state) and
the boundary checking or the universality of any state or action. By using these features
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of temporal logic, the properties can be designed by which the reliable specified behavior,
safety, security and other constrains of the SmE can be verified. Tasks carried out in this
step are graphically represented in Figure4.9.

As mentioned, the requirements related to the reliable behavior of BDSB along with
the safety, security and other constraints are formalized by using the syntax and semantics
of UCTL temporal logic. The detailed description of these requirements with designed
properties are given in Section5.2.2: one of the requirements of BDSB system (in UCTL
format) is that the external door will be opened when the userreleases any touch sensor
associated at each side of the external door.

EF{extDoorCrossed}A
[

⊤ {¬extDoorOpened}U{T 1ReleaseorT 2Release} ⊤
]

The touch sensor associated with the external door from the isolated space can only
be accessed when user crosses the external door; therefore the first part of the property
ensures that one user has crossed the door, now the door-openrequest of both sensor can
arrive. The next path of the property is related to that scenario that the extDoorOpened
request will not arrive until the associated touch sensors are pressed.

4.2.8 Step 8: Integrated SmE model

As control algorithms govern all the interaction among devices (and affect the environ-
ment), they receive a lot of messages (commands or notifications) from the connected
devices. The devices models can send and receive nearly all possible messages related
to their functionalities. But among these messages, some messages are of interest for the
current system and should be modeled in control algorithms.The rest of the messages
are useless for the current system, but it’s a good practice that all the incoming messages
must be received. If the modeling of all possible messages isperformed in the control
algorithms, then the size, complexity and ambiguities of control algorithms grow higher.

For curbing these issues, it is suggested to introduce a firewall around control algo-
rithms which, at the initial level, checks the suitability of a received message and sends
forward only those messages which concern the current system. Similarly, the received
messages can have different parameters; therefore they canalso be modified at this stage
if required. This helps in optimizing the control algorithms: the processing load is re-
duced and the “lost-event” errors don’t occur (during modelchecking) due to failure of
acceptance at receiver’s side.

Up to this stage, all the prerequisites for the modeling of SmE process are completed.
Now it is required to convert them into the acceptable language of the model checker and
then combine them so that a complete SmE model can be prepared. For the translation,
the behavior models of the users, connected devices, environment, control algorithms,
firewall (with messages filter and converter) are required, along with the proper abstrac-
tion and list of their instances (connected in the SmE). After converting them the whole
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integrated SmE model is designed in the acceptable format ofmodel checker. The task
carried out in this step are graphically presented in Figure4.10.

Figure 4.10. Integrated SmE model

The firewall is added so that the all the messages can be received and only the use-
ful messages and notifications can be passed. Then, along with the firewall component,
the individual behavior model of users, devices, environment and control algorithm are
converted into the acceptable format of UMC. Further, the abstractions and instances in-
formation is added for completing the holistic integrated BDSB model.

4.2.9 Step 9: Formal verification of SmE Model

The whole integrated SmE model, in the acceptable format of model checker, designed
at Step 8 is sent to the model checker, and the temporal properties (designed in Step 6)
are verified on the model. On finding any unsatisfactory property, the SmE model is
updated with the required modifications, and the verification process is repeated until all
the properties are satisfied. The task carried out in this step are graphically presented in
Figure4.11.

All the temporal properties, included the one mentioned above, are verified on the
BDSB model and the satisfactory results confirmed the successful exhaustive verification
of our tested SmE, with the explicit focus on safety and security requirements.
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Figure 4.11. Formal verification of SmE Model

A brief description and implementation details of this stepis presented in Chapter5
Section5.2.

4.2.10 Step 10: Development Phase

When all the properties are verified, it is implied that the SmEmodel is according to the
specification and will behave reliably, surely and safely under the verified properties in all
scenarios. It is time to safely start the development and implementation phases.
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Chapter 5

Designed Techniques

A set of two techniques is designed and implemented by employing DogOnt, SCXML,
UCTL and UMC as tools and follows the steps of proposed methodology (given in Chap-
ter4). In the first technique the reliable behavior of individualdevices model, with respect
to specifications, and the consistency among both black box and white box modeling for-
malizes are verified (step 4). Then, in the second technique,these verified behavioral
models are integrated with other models and control strategy for verifying the entire SmE
(step 9). The following sections briefly explain these techniques with examples (or case
study) and their results.

5.1 Individual Device Verification

In the components verification phase, the consistency checking among their interface
and behavioral modeling formalism is confirmed by automatically designing the tem-
poral properties and, the behavioral verification with respect to the listed specifications
are confirmed by manually designing the temporal properties.

The interface model of the device is known as “Device Interface Model” (DIM) and
the behavioral model is known as “Device Behavioral Model” (DBM). In the device veri-
fication process, the consistency and behavioral verifications of the device are performed
for resolving the following issues:

1. The DBM should perform the functionalities which are specified in DIM, so that,
the device model can perform all its functionalities which it is capable of.

2. The DBM should perform the specified task against the specified commands which
are mentioned in DIM, so that, all the associated task can be in the device model.

3. The DBM should send all the notifications back (as an acknowledgment about the
completion of tasks) which are specified in DIM, so that the further activities, which
are dependent on the arrival of notifications, can be performed.
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4. The DBM should contain all states which are available in DIM, so that, the associ-
ated actions against such states can be performed by the device model.

5. The DBM should be modeled according to the specification, sothat, the device
model can perform its reliable functionalities.

6. The DBM should be modeled in such a way that a deadlock may never occur in any
scenario.

5.1.1 Device Model Verification Technique

A technique is designed for the consistency and behavioral verification of devices and
graphically represented in Figure5.1. All the specifications are listed and written in an
understandable natural language format. By considering these specifications, the interface
modeling is performed with the use of DogOnt and the behavioral modeling is performed
with the use of statecharts, know as Devices Statecharts (DSCs), in SCXML [145] format.

In the consistency verification phase, it is required to ensure that all the modeled com-
mands, notifications and states (modeled in DIM) are incorporated in the DBM. As, the
device can accept some specific commands at particular states (others are rejected on
that state); for checking the existence of commands, by not knowing the command se-
quence structure in DBM. For achieving this constraint, a Closed Environment strategy
is adopted, through which DBM can asynchronously accept commands and send notifi-
cations back after the completion of task. If the command/notification is implemented on
a reachable state in the DBM, then the existence property of itgives a satisfactory result.
Similarly, the reachability of the state can also be verifiedthrough Closed Environment
strategy (if the state is in DBM but can not be reached, then itsexistence is meaningless,
therefor reachability verification is performed).

The Environment Designer component, represented in Figure5.1, automatically gen-
erates “Environment Generate Commands” (EGC) and “Environment Receive Notifica-
tions” (ERN), by considering DogOnt, in a form acceptable by Model checker (which is
UMC in our case), graphically represented in Figure5.2. EGC is responsible for gener-
ating all the commands specified in DogOnt against the devicebeing currently checked,
whereas ERN is responsible for accepting all the notifications specified in DogOnt against
it.

The EGC and ERN are sent to Model Builder (MB), where MB performs the following
activities:

1. It automatically obtains the DBM, which is in the form of SCXML, from “Library
File” container.

2. It automatically converts the SCXML model into the format acceptable by model
checker (in our case UMC)

64



5.1 – Individual Device Verification

Figure 5.1. Device Model Verification Technique

3. It automatically combines the statecharts of EGC, ERN and the converted SCXML
model.

4. It automatically adds some abstractions rules.

5. It, in last, saves all the gathered and designed information in a file, known as Closed
Model.
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Figure 5.2. Closed Environment Strategy

Temporal Property Generator (TPG) is responsible for automatically generating the
Temporal properties, in the form of UCTL, to verify the consistency between the DIM
and DBM models. As, there is no direct way to match them, because both are used for
different purposes, but it is important that both have same information. For this, TPG
automatically designs three types of action-and-state based temporal properties by con-
sidering the information available in DogOnt. The properties are related for checking that
the system can send all the mentioned commands and the devicecan received these as-
sociated commands, similarly after completing the task, the device send the notifications
(as an acknowledgment) and the system can accept them, alongwith the verification of
the reachability of the specific states.

The temporal properties, related to “sending” of messages,are required because of
the possibility of some notifications being available in DogOnt but not being modeled
in DSCs. The “accepting” message properties are required because of the possibility of
DSCs missing to model some functionality which is accessiblethrough a specific com-
mand. The last type of temporal properties is responsible tocheck the reachability of
states, which are modeled in DogOnt.

The closed model and the temporal properties, designed by the TPG, are verified
through the model checker. On finding any unsatisfactory property, it is required to update
the DSCs by fixing the problem. When all the properties are satisfied, the verifier may
manually generate temporal properties for verifying the correct behavior of the device.
In the behavior verification phase, these behavioral properties are designed manually, by
considering the device specifications. In the case of any incorrect property, it is required
to update the DSC by fixing the issue and regenerating the close model. The behavioral
properties are verified until all the properties (behavioral) are satisfied. After this process,
the DSC is verified and can be used in the driver development process or for verifying the
system through simulation, emulation, model checking and others.

Dimmer Lamp: A Case Study

A case study of a dimmer lamp is presented here in which consistency and behavioral
issues are found. We consider the interface modeling (through DogOnt) of the Dimmer
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Lamp, as presented in table5.1, in which all the, direct and inherited, functionalities and
states which a dimmer lamp can hold are summarized.

Table 5.1. Dimmer Lamp details available in DogOnt

With the use of information, provided in table5.1, “Environment Generate Com-
mands” (EGC) and “Environment Receive Notifications” (ERN) automatically generate
the sending commands and receiving notifications models (inthe acceptable format of
model checker) from DogOnt. Then “Model Builder” (MB) obtain DSC of the device
and automatically convert the DSC in the format acceptable by the model checker, it then
combines this converted model with the models generated by EGC and ERN, further it
automatically adds the required abstractions and generates the instances of these model.
After this, the combined model is ready for verification, we save this model in the file,
know “Closed Model”, as represented in Figure5.3and passed it to the model checker.

“Temporal Property Generator” (TPG) automatically generates all the related interface
properties from DogOnt. The designed properties related tofunctionalities and notifica-
tions are of two types, one is used for checking the “sending”of the commands/notifi-
cations, whereas the other is related to the “accepting” of these commands/notifications.
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Class State is
end State;
Class EGC is

Vars: RandomValue:int=35
State top = E
Transitions:
E -> E {-/DimmerLampInstance.set(RandomValue)}
E -> E {-/DimmerLampInstance.stepDown()}
E -> E {-/DimmerLampInstance.stepUp()}
E -> E {-/DimmerLampInstance.off()}
E -> E {-/DimmerLampInstance.on()}

end EGC;
Class ERN is

Operations: stateChanged(newState:State)
State top = N
Transitions:
N -> N {stateChanged(newState)/}

end ERN;
Class DimmerLamp is

Operations: on(), off(), set(value:int), stepUp(), stepDown()
Vars: lightIntensity:int=50, lightStep:int=10
State top = off, on
State on = lightIntensityState
Transitions:
off-> on{on()/ }
off-> lightIntensityState{set(value)/ lightIntensity:=value}

on -> lightIntensityState{-/}
on-> off{off()/ }

lightIntensityState -> lightIntensityState{stepUp() /
if (lightIntensity < 100 )then
{lightIntensity := lightIntensity + lightStep} else {lightIntensity := 100}; }

lightIntensityState -> lightIntensityState{stepDown() /
if (lightIntensity > 0)then
{lightIntensity := lightIntensity - lightStep} else {lightIntensity := 0}; }

lightIntensityState -> lightIntensityState{set(value)/ lightIntensity:=value}
end DimmerLamp
Objects:
ec: EGC
en: ERN
DimmerLampInstance: DimmerLamp
Abstractions{
Action $1($*) -> $1($*)
Action $1 -> sending($1)
Action accept($1) -> accepting($1)
Action lostevent($1) -> discarding($1)

State inState(DimmerLampInstance.lightIntensityState) -> LightIntensityState
State inState(DimmerLampInstance.off) -> offState
State inState(DimmerLampInstance.on) -> onState
State DimmerLampInstance.lightIntensity < 0 -> underFlow
State DimmerLampInstance.lightIntensity > 100 -> overFlow
State DimmerLampInstance.lightIntensity >= 0 and DimmerLampInstance.lightIntensity

<= 100 -> inRange
}

Figure 5.3. Closed Model of Dimmer Lamp
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--Action Properties
--the acceptance of all the commands in DSC

EF {sending(stepDown)} true
EF {sending(stepUp)} true
EF {sending(set)} true
EF {sending(off)} true
EF {sending(on)} true

--
EF {accepting (stepDown)} true
EF {accepting (stepUp)} true
EF {accepting (set)} true
EF {accepting (off)} true
EF {accepting (on)} true

--the generation of all the notifications in DSC
EF {sending(stateChanged)} true
EF {accepting(stateChanged)} true

--State Properties
--the reachability of all the states in DSC

EF (offState)
EF (onState)
EF (LightIntensityState)

Figure 5.4. Temporal Properties for Interface Verification

E [true {not accepting(off)} U {accepting(on) or accepting(set)} true]
E [true {not (accepting(stepDown)or accepting(stepUp))} U {accepting(on) or
accepting(set)} true]

EF (not underFlow)
EF (not overFlow)
EF (inRange)

Figure 5.5. Temporal Properties for Behavioral Verification

The properties related to the reachability of states are also generated by TPG. The auto-
matically generated properties related to the interface verification of Dimmer Lamp are
presented in Figure5.4.

Results of Dimmer Lamp

The automatically generated properties, presented in Figure5.4, are verified on the Closed
model. It is found that the sending property related to the “stateChanged” notification is
not satisfied, which shows that in designing DSCs this notification is ignored and not
modeled in DSCs of Dimmer Lamp. The error is fixed by modifying the DSC and the
verification process is repeated, which shows the verification of all interface properties.

The behavioral properties related to the verification of Dimmer Lamp are manually
formalized, as shown in Figure5.5, according to device specifications. When these prop-
erties are verified on the model, it is found that the last three properties related to bound
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checking (as light intensity of Dimmer Lamp must be in-between 0% to 100%) are vi-
olated. The model is analyzed, and the conditionlightIntensity < 100is replaced by
lightIntensity + lightStep <= 100; similar action is taken for the decrement condi-

tion, too. After this the behavioral properties are verifiedagain and all the properties are
found satisfactory.

The modifications made in the DSC and accordingly the Closed model is regenerated
and verified. Now, the both (interface and behavioral) modeling formalisms will be con-
sistent and according to the specification (mentioned in activity 1). After this process, the
following goals will be achieved regarding the specific verified device:

1. All the interaction commands which are modeled in DogOnt,for triggering the
specific task, are also modeled in DSC.

2. All the notifications which are modeled in DogOnt, as acknowledgments about the
task completion, are also modeled in DSC.

3. All the states which are modeled in DogOnt, for performingspecific actions, are
also modeled in DSC.

4. All the functionalities which are modeled in DogOnt, for knowing the capabilities
of the device, are modeled in DSC.

5. The DSC model is also verified for the existence of any deadlock.

5.1.2 Experiments and Results

The feasibility of the “Individual Device Verification” process is checked by selecting
and verifying thirteen devices among the 143 devices modeled in dogOnt. During this
verification process the consistency errors and the behavioral issues are found in some
DSCs. In table5.2 the interface information of these devices are presented, with the
additional information of the results of the Automaticallydesigned and satisfied interface
properties (are shown in last two columns of the table5.2), by the model checker.

5.2 SmE Verification

The desired SmE model is verified by integrating the behavioral models of each compo-
nents, control strategy, the required firewall with the desired abstractions. The technique,
based upon the steps of proposed methodology, is presented in the following subsection
with the results of the BDSB case study (presented in Chapter4).
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Number of Number of Number of Number of Number of Number of Number of
Device External DogOnt DogOnt DogOnt Explored Automatically Satisfied

Commands Commands Notifications States States (max) designedTPs Properties

Button 1 0 3 2 16 8 8

Dimmer Lamp 0 5 1 3 417 15 13

Door Actuator 4 2 1 4 65 10 8

Door Sensor 2 0 3 2 16 8 8

Infrared Sensor 2 0 3 2 16 8 8

Mains Power Outlet 0 6 1 2 30 16 12

On Off Switch 1 0 3 2 12 8 8

Shutter Actuator 2 3 1 5 50 13 11

Simple Lamp 0 2 1 2 14 8 8

Smoke Sensor 2 0 3 2 16 8 8

Toggle Relay 0 1 3 2 12 10 10

Touch Sensor 2 0 3 2 16 8 8

Window Actuator 4 2 1 4 65 10 8

Table 5.2. List of Verified Device Models (DSCs)
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5.2.1 Designed Technique

A graphical view of the technique is represented in Figure5.6. It works by adopting the
following activities:

1. SmE and its related components requirements are organized according to the oper-
ational flow and various Steps of the proposed methodology;

2. the behavioral components of SmE are collected;

3. according to the specifications, the control strategy is designed in the form of
SCXML statechats;

4. the firewall component (for filtering and converting the messages) is represented in
SCXML semantics;

5. the behavioral models of the SmE components and firewall are converted in the
acceptable format of model checker;

6. the required abstractions with the device instances information are queried from
DogOnt and added at the end of converted model (in the acceptable form of model
checker);

7. the computation requirements in the form of properties are formalized by adopting
the following steps:

(a) according to the modeled requirements, the possible computational properties
are identified;

(b) for designing the properties, the system configurations(such as the informa-
tion of all the associated instances of devices with their location, states, func-
tionalities, commands, notifications and others) are queried with the use of
DogOnt;

(c) the Statecharts modeling of the corresponding components are used for query-
ing the sequences of commands, notifications and states;

(d) properties are designed based on above mentioned information, by using the
syntax and semantics of temporal logic acceptable by model checker (UCTL
in our case);

8. the designed properties and the complete SmE model are passed to the model
checker (UMC in our case), which verifies these properties onthe model and re-
ports about their satisfaction:

(a) in the case of finding unsatisfactory properties, the corresponding behavioral
models are updated with the required modifications;
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Figure 5.6. Designed Technique

(b) the verification process is repeated until all the properties are satisfied

When all the properties are satisfied, then the system can be declared as reliable, safe
and secure, and will behave well according to the verified requirements in all scenarios.
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As a result, the implementation phase can be started.

5.2.2 Experiment and Results

In this Section, the requirements related to the safety, security and reliable behavior of
BDSB and its related components are formalized according to the categories (users’ be-
havior modeling, users and their interaction modeling withthe devices, device modeling,
devices interaction and their control modeling and contextmodeling), by considering the
message exchange behavior of BDSB and its components. These properties are then
specified in UCTL format. All the properties are individuallyverified on BDSB model.
The abstracted evolution graph (generated by UMC) of BDSB model consists of 2,79,119
states with the depth at 30 levels. The time taken for verifying each property was usu-
ally less than a minute in the on-line version of UMC. In Table5.3, the reference of these
properties is given with their evaluation time, the number of states and computations frag-
ments generated for evaluating them. During the verification process at first stage, it was
found that the designed model did not satisfy all the properties. UMC provides an error
trace tree through which the errors have been located and themodel was updated by fixing
the bugs. The verification process has been repeated until all the properties were proven
TRUE against the BDSB model.

Properties related to Users behavior

The user modeling is performed according to the specifications; all the users can enter
the bank by crossing the external door, the isolated space and the internal door. It is also
possible that users may change their mind and stay out without crossing the external door.
Therefore, path ’Existence’ quantifier is used in the property instead of ’All’ quantifier
for the verification. Similarly, users’ mind may change and they may go back from the
isolated space without crossing the internal door. For verifying that users can access the
places, the following set of state properties (by using state abstraction) is formalized.

P1) EF(u1AtOutsideT heBank)

P2) EF(u1AtIssolatedSpace)

P3) EF(u1AtInnerSideOfT heBank)

P4) EF{extDoorCrossed}⊤

P5) EF{extDoorCrossed}⊤
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Property Evaluation Time States Computations Fragments
(in Sec.) Generated Generated

P1 < 1 ms 2 2
P2 < 1 ms 63 110
P3 0.33 3778 7461
P4 < 1 ms 62 52
P5 0.48 3791 3826
P6 < 1 ms 2 2
P7 0.03 389 593
P8 0.03 388 384
P9 0.50 3940 4310
P10 < 1 ms 2 2
P11 0.02 286 310
P12 0.51 4310 5511
P13 6.91 77397 81725
P14 0.50 3936 3993
P15 0.74 6252 6782
P16 < 1 ms 37 63
P17 0.26 2770 3039
P18 0.26 2770 2976
P19 6.76 77083 80043
P20 0.08 821 1005
P21 0.83 6935 7966
P22 0.07 819 819
P23 0.14 1388 2169
P24 0.52 4117 4281
P25 0.74 6252 6782

Table 5.3. The properties with their evaluation details
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Properties related to actions performed by the Users

For achieving any goal, users have to perform some action. Toknow that users can press
and release the respective touch sensors, the following setof properties is formalized.
Although all the users can access the outside touch sensor ofexternal door, the other
sensors (T2 and T3) can only be accessed when the user has crossed the external door,
whereas T4 can only be accessed when user has also crossed theinner door. Therefore,
’Existence’ quantifier is used with the properties of other touch sensors.

P6) AF{T 1Release}⊤

P7) EF{T 2Release}⊤

P8) EF{T 3Release}⊤

P9) EF{T 4Release}⊤

Properties related to Users and Device Interaction

The external door will be opened when the user releases any touch sensor associated
at each side of the door. Same will happen with the inner door.The following set of
properties is used to verify such type of users’ interactionwith the devices.

P10) A
[

⊤ {¬extDoorOpened}U{T 1Release} ⊤
]

P11) EF{extDoorCrossed}

E
[

⊤ {¬extDoorOpened}U{T 2Release} ⊤
]

P12) EF{extDoorCrossed}

A[⊤ {¬extDoorOpened}

U{T 1ReleaseorT 2Release} ⊤]

P13) EF{innerDoorCrossed}

E
[

⊤ {¬innerDoorOpened}U{T 3Release} ⊤
]

P14) EF{innerDoorCrossed}

E
[

⊤ {¬innerDoorOpened}U{T 4Release} ⊤
]

P15) EF{innerDoorCrossed}

A[⊤ {¬innerDoorOpened}

U{T 3ReleaseorT 4Release} ⊤]
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Properties related to Safety Constraints

One of the safety constraints is to ensure no user is stuck inside the isolated space. In any
case, the user may exit the space by either entering inside the bank of exiting out. The
following set of properties is used to verify this type of safety constraints.

P16) AF{T 1Release}AF{DoorResponse(open,DAExt)}⊤

P17) EF{T 2Release}AF{DoorResponse(open,DAExt)}⊤

P18) EF{T 3Release}AF{DoorResponse(open,DAInner)}⊤

P19) EF{T 4Release}AF{DoorResponse(open,DAInner)}⊤

Properties related to individual Devices

When the command for opening the door is passed to any door actuator, it will open the
respective door as a result. These properties are used to verify the functionalities of the
door actuators that, when they receive the open command, after opening the door, they
will also close it.

P20) AF{OpenExtDoor}

AF{DoorResponse(close,DAExt)}⊤

P21) EF{OpenInnerDoor}

AF{DoorResponse(close,DAInner)}⊤

Properties related to Security Constraints

Ideally, both of the doors should not be opened at a same time,the open door must be
closed first and then the other requested door will be opened.

P22) A[⊤ {¬DoorResponse(open,DAInner)}

U{DoorResponse(close,DAExt)} ⊤]

P23) EF{extDoorCrossed}

A[⊤ {¬DoorResponse(open,DAInner)}

U{DoorResponse(close,DAExt)} ⊤]

P24) EF{innerDoorCrossed}

A[⊤ {¬DoorResponse(open,DAExt)}

U{DoorResponse(close,DAInner)} ⊤]

77



5 – Designed Techniques

Properties related to Context Awareness

The users can access the touch sensors only when they are at a proper location. When
users are inside the bank, they can come out from the bank by pressing the touch sensor
attached at the inner side of the bank.

P25) EF{innerDoorCrossed}

A[⊤ {¬innerDoorCrossed}U{T 4Release} ⊤]

5.3 Discussion

The Table5.3shows the temporal values of verification of various tested properties. The
average time for verifying all the 25 properties is 0.79 sec., with the standard deviation
1.83. As a general rule, the superficial properties (for which the on-the-fly model checker
didn’t have to go deeper inside the system for verification and a smaller number of states
are generated) are verified in relatively lesser time, such as P1, P2, P4, P6, P10 and P16
(takes less than 1 millisecond (< 1 ms)). Whereas the complex properties (for which the
on-the-fly model checker had to go deeper inside the system for verification and a larger
number of states are generated) are verified using more time,such as P13 and P19.

The proposed design time verification methodology, aided byuser behavior model-
ing, device modeling, environment/context modeling, control algorithm modeling, and
their interaction modeling, has demonstrated successful results for verifying the correct-
ness, reliability, safety, security and desired behavior of SmE systems. The methodology
proceeds sequentially from requirement listing to modeling and formal verification. The
probability of missing any properties has been efficiently controlled by requirement list-
ing. The methodology is implemented through the designed technique and implemented
on a small but not so simple real life SmE system. The first run of verification process did
not achieve all the properties as satisfactory against the model. After appropriate modifi-
cations to the model, it was then proven to conform to design requirements. This verified
model can be used safely at the implementation phase.
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Chapter 6

Achievement of High Level Goals

Modern Smart Environments (SmE) are equipped with a multitude of devices (e.g. sen-
sors, actuators, lamps or TV) aimed at intelligent services. The services are associated
with a multitude of resources and can relate to acquiring thefunctionalities of a single
device or a group of devices. With the growth in the heterogeneous nature of devices
regarding their controlled (various among manufactures) and offered functionalities, the
issue of effectively managing the SmE is being raised. The trend of device-centric man-
agement [33–35] is going to shift with abstract modeling approaches [35,37–39]. These
approaches are aimed at providing the High-Level description of the goals of SmE ser-
vices for interacting and controlling the functionalitiesof the associated devices.

It is imperative to note that the accomplishment of device functionality is subject to
their required states [146,147]. Thus a goal ofilluminating the bedroomcan be achieved
when a lamp placed inside the bedroom is inON state; whereas,sleeping modecan be
achieved by rendering all the lamps and cooking appliances in OFF state, entrance doors
in LOCK state, windows inCLOSEstate, bedroom window shutter inHalf-Openstate,
burglar alarms inACTIVEstate and the room temperature adjusted to25 ◦C.

The devices are wide-ranging: simple (like lamp) to complex(like TV) based on their
inherent functionalities. A complex device can have a composite state at any point in time
according to the functionalities offered. For example, a switchedON TV, with volume
level at60%and channel value at7, represents a composite state. The composite states
can be modeled as parallel (or concurrent) sub-states of a device. In the remainder of
chapter, the termstaterefers to the composite state of a single device.

Before serving a goal, a device can be in any state which is referred assource state.
Later, when it successfully fulfills a goal, it reaches indestination state. Thus, a goal
consists of a list of the corresponding devices along with their desired destination states.
The deterministic process of traversing the states (from source to destination) of a single
device is called anevolutionand of all the devices involved in fulfilling the goal as a
global evolution.

The evolution consists oftransition(s), as depicted in Figure6.1. Depending upon
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Figure 6.1. Evolution from Source State to Destination State

the source state, the destination state and the nature of thedevices, the transitions can
be entirely sequential (parts a & b of Figure6.1) or partially-ordered (parallel state in
part c of Figure6.1). A transition consists of acommand(to trigger the devices), against
which the device performs its specified functionality and sends back (one or more)notifi-
cation(s)(acknowledgment about the status of the assigned task). On receiving specified
notification(s), the following command may render the device in the next state.

For the automatic generation of global evolution – in accordance with the goals – the
task of finding certain transitions and their correct sequence for each device is detailed
and complicated due to possible variance in the specific commands and their sequences
according to the source and destination states of each device. This chapter addresses the
issue of automatically finding and enforcing the correct sequence of commands required
for the global evolution to achieve the high-level goals. For this, a comprehensive method-
ology is proposed which can be adopted across different SmE.The methodology works at
two levels: design-time and runtime, and is applied on top oftheDomotic Effectsframe-
work [38]. The implementation and experimentation details encourage the applicability
and effectiveness of the proposed approach for the SmE.

The remaining chapter is organized into following sections: Section6.1 provides an
overview of the existing literature; Section6.2 formally defines the addressed problem;
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Section6.3presents an example carried out in this chapter; Section6.4explains the pro-
posed methodology with the implementation details; Section 6.5describes the experimen-
tation; and Section6.6contains the discussion on the results.

6.1 Related Work

The related work is divided into two main areas: Goals Modeling and Evolution Find-
ing. The related work regarding the goals modeling is presented in Section6.1.1and the
discovery of evolutions is presented in Section6.1.2.

6.1.1 Goals Modeling

The Smart environments (SmE) offer the service delivery in intelligent manners. These
services are accomplished by transforming the states of their associated devices into their
desired destination states. The modeling of these servicesat abstract level can be referred
as High-Level goals modeling. The objective of goals modeling is to define the possible
ways, at high level, by which the services can be intelligently achieved. During the liter-
ature survey, the goals modeling in various domains is found(e.g. artificial intelligence,
agents’ goals or policy language) with their specific functions and concerns. This type
of modeling is different from others due to a direct focus on the devices, their required
states and possible ways by which the goals can achieved. Therefore, in this section, only
high level modeling is covered. Moreover, some works related to the interaction modeling
among goals, focusing on their conflicts, are found [148–150] but they are not entertained
in this thesis due to our limited focus.

Our solution “Domotic Effects” provides the ability to the application designers to de-
sign the goals at higher level of abstraction, define their own operators for more complex
goals and apply the required heuristics for selecting a suitable configuration among the
set of possible configurations at runtime.

Katasonov [35] proposes high-level abstraction mechanism for easily managing the
SmE by concentrating on the devices and software componentsat runtime. The abstrac-
tions are based on task (or sub-task). However the focus of this work seems limited due
to author’s disregard for the mechanism by which the organization of the task (their hier-
archical nature) can be stored and achieve at run time. To counter and improve upon this
identified weakness, our work not only provides the way how the tasks (goals) are stored
but also goes one step ahead and illustrates how they can be achieved and enforced on the
devices at run time.

Amigoni et al. designed a planning system, named as D-HTN [37], by involving the
concepts of centralized and distributed planning from agent theory. For storing and using
the list of actions associated with the respective goal, they used hierarchical task network
(HTN) approach. The language “Task network” [151] on which HTN is based is static in
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nature, and therefore does not allow the designers for defining new operators (which may
vary from domain to domain). In this case, our solution capitalizes upon this limitation by
not only modeling the goals in hierarchical structure, along with the sequences of actions,
but also provides facilitates the designer for defining their own operators of interest.

Kaldeli et al. [39] propose an architecture for defining the goals in SmE. They also
predefined the goals in declarative pattern, which is used byCSP (Constraint Satisfaction
Problem) based planner for computing the plan (selection ofconfiguration from the goal).
In comparison with our solution, they do not facilitate the designers for defining their
own operators according to their need for satisfying the requirements in intelligent way.
Moreover, the planner is comparatively slower; it takes time in seconds whereas ours
takes time in milliseconds for finding a solution.

Cheng et al. [33] propose a reasoning system for SmE, named as ASBR. By recording
the history in form of scenarios, the system derives the preferences or habits of the resi-
dents and stores them in ontology. The apparent limitation of their work is their disregard
for providing the storage mechanism; moreover the system isbased upon the historical
data and extensive coverage of all possible scenarios in theknowledge base can not be
guaranteed. Our solution is capable of storing all possibleconfiguration with the flexibil-
ity of imposing any type of constraints (e.g. energy optimization or context aware).

6.1.2 Evolution Finding

Our work aims at finding the evolution (path from source to destination) which is a com-
bination of one or more individual transitions. There is a body of knowledge pertaining
to similar generalized framework for evolution finding withprocedural differences as part
of their operation: state space search, path finding and testcase generation are some of
the methodologies in which the sequence of transitions frominitial to destination states
is extracted. On the other hand, target achievement is another foundation for a couple of
methodologies in the body of knowledge which aims at finding the target state in which
the device must be in order for a command to execute.

Rouillard and Tarby [152] present a solution to communicate with a home automation
system using speech recognition. All actions that can be performed by residents are mod-
eled with the help of a statechart (SCXML). The statechart consists of three basic entities,
i.e. action, object and place. The action entity representsan action/operation requested
by a user. The object entity represents a device on which the action is requested. The
place entity indicates the location of the device. All entities are represented as concurrent
substates in the statechart. When the user requests any operation, a message structure is
filled with information regarding all three entities and themessage is executed by the in-
stalled automation system. It is assumed that an action is equivalent to a command which
may be used to perform the action. However, it may not be fullysupportable in real smart
spaces where not only the user intention may map to multiple devices (objects) but also,
within each device, a sequence of commands may be needed to provide a specific utility.
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Our work, on the other hand, takes into account the aforementioned issues by finding the
evolution of each device and then enforcing it to achieve theuser intentions.

For the automatic generation of test cases, it is important that the source state, the
destination state and the correct sequence of events/actions are obtained from the state-
charts [153–157]. Initially, it is required to flatten/normalize or expand the statecharts
into a suitable format (such as Extended Finite State Machine (FSM), Kripke Strucure,
Markov Chain, reachability tree or flowchart) according to the coverage criteria on the
basis of variables and events (such as all-nodes, all-edgesand all-paths) so that a detailed
view can be obtained. Then, by using different FSMs or statechart based methods the
test cases can be designed [157]. Compared to this, our work generates the abstracted
action and state based behavioral state space graph using a model checker, which helps in
finding the correct sequence of events/actions from any source to destination state.

In [155], Kansomkeat and Rivepiboon propose a technique for the automatic gener-
ation of test cases from statecharts. For this, statechartsare initially transformed into a
Testing Flow Graph (TFG). On the basis of states, events (triggers), guards (conditions)
and actions, an algorithm is designed through which the hierarchical structure and explicit
control flow of the statecharts are transformed into a flattened TFG. Then, going from the
root (initial) node of TFG to each leaf node, test sequences are designed which are further
implemented for proving the correct behavior of the developed system. Compared to our
work, this technique does not support the statechart parallelism concepts.

In [158], Hong et al. describe a method for the automatic generationof test cases from
the specification of the system, modeled using statecharts.They adopt a model checking
approach for the generation of test cases. Firstly, the semantics of statecharts using Kripke
structures (a variant of automata used in model checking) are defined, then the statecharts
are translated into the SMV model checker program. SMV is a CTL(State Based Branch-
ing time logic) [45] model checking approach, therefore the CTL temporal properties are
designed by using the statecharts specifications; thus, theproposed control and data flow
meet the coverage criteria. Each CTL formula contains one test case which returns true in
the case of not matching with the specification; otherwise the model checker provides a
counterexample, by following which a feasible (and executable) test case is designed with
the observable events. Although both techniques have the advantages of model checking,
compared to our work, this technique does not manage multiple states (as a single com-
posite state or distinguished states) according to the feature value used for representing
source and destination states, and it cannot find a compound transition through which
such states can be reachable.

In [154], Hong et al. present their work for the selection of test sequences from
statecharts. For this, the statecharts are initially normalized into Extended FSM format
and then, by following the methods of Ural et al. [159], Extended FSMs are transformed
into a flow graph which has the data and control flow of the system. The test sequences
are designed by following all possible paths starting and ending with the initial state
(configuration). Compared to our work, this technique does not support the filtering of
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uninteresting events and features.
Stone et al. [147] describe an approach to support the modeling and validation of

command sequences for space missions. They propose aCheckable Sequence Language
(CSL) to model spacecraft components, sequences of commands and the assertions of
flight rules. Given a sequence of commands, they validate whether any command violates
the flight rules (represented as a future state) or not. For this purpose, they adopt a model
checking approach. They try different sequences of commands and check whether or
not the required destination state is reachable. In comparison, our work is capable of
furnishing the correct sequence of commands from source to destination states instead of
checking their suitability repeatedly. This, in turn, enhances the optimization of resources
and implementation.

In the context of personalized remote/appliance control, the concepts of “Task-based
button grouping” and “Macros” are proposed in the literature [160–162]. By using dif-
ferent techniques, such as machine learning or fuzzy logic,the set of commands (for
accomplishing the task) are extracted and stored as user logfiles. In these concepts, the
recorded data of a user command is used. Compared to our work, these techniques work
with log files by maintaining a copy of the file for each user or machine. Moreover, these
techniques can only address those destination states whichare visited by the users/ma-
chines.

Due to the following collective advantages over the above mentioned techniques, our
work is one step further and simpler:

• Most of the techniques spend more of their energy in definingthe semantics to
explicitly flatten/normalize the statechart of the system;whereas in our work, for
obtaining the control and data flow graph of the system, a model checking technique
(based upon theory of graph algorithms, data structures andlogic) is used.

• The model checking technique (especially on-the-fly) has acapacity for covering
and designing the exhaustive graph of the system.

• With the use of action abstraction, the unwanted events/actions can be ignored by
model checking.

• The composition of states – not found in the above techniques – can be performed
with the use of state abstractions.

• The sequence of minimum composite events/actions, through which the destination
composite state from where the source is reachable (by only considering the inter-
esting events/actions) can be obtained with the use of the abstracted graph generated
by the model checking technique.
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6.2 Problem Statement

A collective view of the states of all SmE devices at any pointin time is referred as the
global stateG (of the environment). A change of state in any device has an effect on
G and a new stateG ′ will be produced. The goalg is associated with some devices and
their corresponding destination states, and has an effect on G. For achievingg, a global
evolutionE(g) is required by whichG evolves toG ′, as expressed below:

G
E(g)
−−→ G ′

The global evolutionE(g) is a set of evolutions of each concerned device1, e(di), help-
ing to realize the goalg. If m devices are involved, then the global evolution for satisfying
g can be represented as below:

E(g) = {e(d1), e(d2) . . .e(dm)}

The chapter addresses the problem of finding and enforcing aglobal evolutionE which
aims at satisfying the high-level goalg by evolving the entire environment fromG to G ′.

6.3 TV Model: An Example

In the context of this chapter, it is assumed that the devicesare independent: the working
of one device will not depend/effect on the working of other devices in the environment.
The interface modeling of the devices is performed by using the DogOnt ontology [23],
whereas the behavior of each device (according to the information modeled in DogOnt)
is textually encoded by using the semantics of State Chart Extensible Markup Language
(SCXML) [145].

The TV model is used as a running example in the rest of this chapter. A tabular
view of the interface modeling of TV in DogOnt is representedin Figure 6.2, and its
behavioral modeling is represented in Figure6.3. For the behavioral modeling of the
devices, an assumption is made: the internal heuristics of the devices are ignored, such
assetChannelandsetVolumecommands although modeled in DogOnt. AssetChannelor
setVolumecommands directly move the TV to the required destination state by generating
a single transition, these commands are excluded for the sake of detailed experimentations
(finding more transitions in an evolution).

1An evolution for a single device may consist of more than one transition for evolving the device from

a source state,ss, to a destination state,ds; ss
{ci[gi]/ai}
−−−−−−−→ s

′ {ci+1[gi+1]/ai+1}
−−−−−−−−−−−→ s

′′ ...
{cn[gn]/an}
−−−−−−−−→ ds. The

sequence of these transitions, from a source state to a destination state, is known as anevolutione. For
more details, consider Chapter2 Section2.1.2
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Figure 6.2. Interface Modeling of TV in DogOnt

In the behavioral modeling of a TV,off is considered as the initial state of TV, as
represented in Figure6.3. With theon() command, it moves fromoff to on state and, as
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Figure 6.3. Behavioral Modeling of TV

a result, the TV will be on. Theon state is a composite state in which thechanneland
volume(features of the TV) can be controlled. The initial value of channel is set to6
and volume is set to50%. By usingup() anddown()commands, channel values can be
adjusted with step1. The channel values are set in a loop and range from1 to 12. With
the up() command at its maximum value, it wraps around and vice-versawith down()
command. Theinc() command is used for increasing the volume anddec()command
for decreasing it, with a step of10%. The possible values of volume range from0% to
100%. After completion the task, at each state, the device sends astateChanged(newState)
notification back as an acknowledgement about the status of task.
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6.4 Goals Achievement Methodology

For finding and enforcing global evolutionE(g), this chapter proposes a comprehensive
methodology which attains its purpose in two steps: design-time and runtime. The frame-
work of the proposed methodology is presented in Figure6.4. At design-time, it generates
the expanded behavioral graphs of all the devices with the help of a model checking tech-
nique. Then at runtime, the individual evolutions for the relevant devices are extracted by
using these graphs and enforced with the help of different OSGi [56] services.

Figure 6.4. Framework of the Proposed Methodology

The following subsections explain the design-time and runtime methodologies. Each
section contains a technique by which the methodology is implemented and an example
is shown to demonstrate the proposed methodology.
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6.4.1 Design-Time Methodology

The global evolutionE(g) consists of a set of evolutions of various individual and indepen-
dent devicese(di). For finding the evolutions, their deterministic behavioral models are
required which can behave likereal devices in thereal environment at design-time. As in
thereal environment, the commands can arrive in any order. Depending upon the current
state, which is the manifestation of device configuration (ajuxtaposition of feature and
state values (defined in Section2.1.1)), the commands which are acceptable at that par-
ticular state are considered and the rest are ignored (e.g. mute command, when the TV is
in off state, is ignored). And when a device is performing any action against a command,
and meantime another command arrives, depending upon the nature of the command and
(device or system) specification, it can be immediately responded to (obstacle detected
when the elevator door was in closing position), pushed intoa stack/queue (elevator call
request from the fourth floor when it is descending from second) or ignored/locked (ele-
vator request from the same floor when it is already in the stack/queue).

A modeling framework is the work through which the devices can be synchronized
with the environment by accepting the commands and sending the notifications back to
the environment. Building upon the concept of such a closed environment from Chapter
5 Section5.1.1, this chapter embeds the device in a synthetic environment as depicted
in Figure 5.2. Similarly, the Environment Generates Commands (EGC) component is
designed to send all possible commands to the device in any order. Based on the current
state, which is a manifestation of device configuration (a juxtaposition of feature and state
values (see Section2.1.1) of Chapter2), the relevant commands are accepted. Against the
accepted command, the device model performs the relevant task and sends one (or more)
notification message(s) which are received by the Environment Receives Notifications
(ERN) component.

The current configuration of the device is updated with the change in any state or
feature values, with which different transitions may precede the next configurations. The
state-space of the system can be represented with a graph where all possible configura-
tions are represented as different states (data flow by whichthe change in state or feature/-
variable values can be identified) and the transitions by which the next configuration can
be accessed are represented with edges (control flow). By traversing such graphs from
one configuration to other, the complete sequence of transitions (labeled at edges) can be
identified. This sequence of transitions is the required evolution. A graphical view of
such an expanded behavioral graph is presented in Figure6.5.

In the proposed framework, as the device modeling is kept enclosed in the environ-
ment, the expanded behavioral graph of the system (device interaction with the environ-
ment) exhibits the actual (data and control) flow of information when the device partic-
ipates in the real environment. But the graph may contain morethan one state with the
same configuration. This is due to the collective nature of the graph in which the device
model interacts with the environment model and the current configuration of the device
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Figure 6.5. System Expansion

will reflect the states of EGC and ERN, and thus are annotated with these state as well.
At the time of traversing the graph, it is required to know theexact source and desti-

nation states so that the sequence of control flow can be identified. But due to the same
configuration at more than one state, it becomes difficult to find the exact source and
destination. For this, a solution is proposed: EGC sends thecommands, some of which
are accepted by the device based on its current configuration. Thus the edges on which
the commands are accepted by the device model have been annotated (with the use of
action/event abstraction). Similarly, the resultant configurations are also annotated (with
the use of state abstraction). Since the command is initiated by the environment, the edge
annotated with the command trailed by the annotated state (the annotated state which is
before this annotated edge) is considered as the source state. After the completion of the
task, the current configuration of the device is updated and one (or more) notification(s)
are sent to the ERN. This, in return, discards the notificationmessage and the discarding
event is annotated on the edge. The annotated state trailed by the discarded message is
considered as the destination state.

The model checking technique, due to the following advantages, provides the facility
to generate such an expanded behavioral annotated data and control flow graph of the
modeled system:

• It is strongly based on mathematics by underpinning the theory of graph algorithms,
data structures and logic.
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• Exhaustive coverage of all the possible scenarios, which adevice/system may have
to deal with, can be explored through it.

• It provides abstraction facilities by which the importantconcerns can be annotated
with simple keywords and the rest of the information may remain hidden.

– With the use of action/event abstraction, the more considerable commands/no-
tifications can be annotated on the edges of the graph.

– With the help of state abstraction, the resultant configurations can be annotated
on the states of the system.

Design-Time Technique

For the implementation of the above design-time methodology, a technique is designed
which is graphically represented in Figure6.6 in which DogOnt (for the interface model-
ing of the devices), SCXML (for the behavioral modeling of devices) and UMC (a model
checker used for generating the abstracted graph) are used as tools.

With the help of DogOnt, environment modeling for the concerned device is per-
formed to automatically generate Environment Generate Commands (EGC) and Environ-
ment Receive Notifications (ERN) as components in the acceptable format of the model
checker (UMC in our case). The EGC contains all the commands which a device can
accept and ERN is capable of receiving all the notifications which a device can send. The
model designer component converts the behavioral model of the device into the format
of a model checker and concatenates it with the EGC and ERN. It also generates the
instances of these components and stores the semi-completed model in a file.

The abstraction generator component takes the semi-completed model file, the list of
(discrete type) states, the abbreviation of the offered features with their minimum, max-
imum, step values and the variable names which are used for representing these features
in the behavioral modeling. Then it automatically generates all possible configurations
based on the principle of Markov chains [163], in which permutations are performed
starting from the list of states, the feature minimum to maximum values, along with their
abbreviated characters (such as channel is abbreviated as Cand volume is abbreviated as
V) and increased by their step values.

Referring to the TV Model where the total number of discrete statesT (S) are2 (on
andoff), and offered featuresT (F ) are2 (channel and volume). The channel has total12
possible valuesT (V1) (ranges from1 to 12 with a step of1) and volume has11 possible
valuesT (V2) (ranges from0 to 100with a step of10). So, the total number of possible
configurations which can be annotated with the use of state abstractions,T (SA), are cal-
culated by the formula:
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Figure 6.6. Methodology for Transition Finding

T (SA) = T (S)
∏T (F )

i=1
T (Vi)

According to the formula (T (SA) = 2 (12 * 11)), 264 possible configurations are
generated by the abstraction generator. A configuration in which the device will be at
on state, the channel value at10 and volume value at50, is annotated asonC10V50,
with the help of (State inState(tv.on)and tv.channelValue=10 and tv.volumeValue=50 ->
onC10V50) state abstraction.

After the state abstraction, the abstraction generator component automatically gen-
erates both action abstractions (one is used for the identification of source state and the
other is used for the identification of destination state) byincorporating the instance name
of the devices (example is given in Figure5.3). These state and action abstractions are
added in the file. A complete file is known as a closed model, which is passed to the
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model checker. The model checker has the power of generatingthe expanded abstracted
data and control flow behavioral graph of this closed model.

For this purpose, UMC is used as a model checker tool which cangenerate the ex-
panded abstracted data and control flow behavioral graph of the model. It also provide
the facility to store the graph locally, for which it can export the graph in Scalable Vec-
tor Graphics (SVG) format. SVG is an open standard for designing the vector images in
XML format, developed by the W3C. The images designed by SVG caneasily be con-
structed, parsed and indexed. By this, the graph can be easilyconstructed and parsed for
finding the source state, destination state and the evaluation by which the destination state
can be reached.

The SVG graph of the closed model against the respective device name is stored in
the repository for the further use at runtime.

Example

The closed model of the running TV example is represented in the UMC format in Figure
6.72. A total number of264 state abstractions are in this section, but due to limited
space only two state abstractions with both action abstraction are represented in Figure
5.3. A fragment of the TV expanded abstracted data and control flow behavioral graph is
presented in Figure6.8.

The action abstraction(Action tv.accept($1) -> $1)is used for the identification of the
source state. The $1 represents the name of the command whichis accepted by the TV
model (asdown, upandoff commands are annotated on the edges of Figure6.8). The ab-
stracted state trailed by the edge having command name is considered as the source state.
Similarly, the(Action $1:ec.return -> discardingReturn(ec))is used for the identification
of the destination state. The abstracted state trailed by the edge havingdiscardingRe-
turn(ec)annotation (as shown on the edges of Figure6.8) is identified as the destination
state (the internal logic for identification is presented inSection6.4.1).

6.4.2 Runtime Methodology

The request for fulfilling a high-level goalg comes to the gateway. According tog, the
gateway calls a functionFDS(g), in-result a configuration is obtained which consist of a
list of the devices with their desired destination states required for satisfyingg. Realizing
this function will take the global state toG ′.

2It is divided into three sections: the first section has the statechart of the environment (EGC and ERN)
components and the device; the second section (Objects) hasthe information of the instances of these
statecharts; and the third section (Abstractions) has a list of abstractions.
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Class State is
end State;
Class EGC is
State top = E
Transitions:
E -> E {-/tv.down()}
E -> E {-/tv.up()}
E -> E {-/tv.off()}
E -> E {-/tv.on()}
E -> E {-/tv.inc()}
E -> E {-/tv.dec()}

end EGC;
Class ERN is
Operations: stateChanged(newState:State)
State top = N
Transitions:
N -> N {stateChanged(newState)/}

end ERN;
Class TV is
Operations: on(),off(),up(),down(),inc(),dec()
Vars:channelValue:int=6, channelStep:int=1,channelMin:int=1, channelMax:int=12,

volumeValue:int=50, volumeStep:int=10,volumeMin:int=0 , volumeMax:int=100
State TVState = off, on
State on = channel/volume
State channel = channelState
State volume = volumeState
Transitions:
off->on{on()/ notification.stateChanged(onState)}
channelState->channelState{up()/
if(channelValue<channelMax)then {channelValue:=channelValue+channelStep}

else{channelValue:=channelMin};notification.stateChanged(channelState)}
channelState->channelState{down()/
if(channelValue>channelMin)then {channelValue:=channelValue-channelStep}

else{channelValue:=channelMax}; notification.stateChanged(channelState)}
volumeState->volumeState{inc()/

if(volumeValue<volumeMax)then {volumeValue:=volumeValue+volumeStep}
else{volumeValue:=volumeMax}; notification.stateChanged(volumeState)}

volumeState->volumeState{dec()/
if(volumeValue>volumeMin)then {volumeValue:=volumeValue-volumeStep}

else{volumeValue:=volumeMin}; notification.stateChanged(volumeState)}
on->off{off()/notification.stateChanged(offState)}

end TV
Objects:

ec: EGC
notification: ERN
tv: TV
channelState:State
volumeState:State
onState:State
offState:State

Abstractions{
Action tv.accept(\$1) -> \$1
Action \$1:ec.return -> discardingReturn(ec)
State inState(tv.on) and tv.channelValue=1 and tv.volumeValue=0 -> onC1V0
State inState(tv.off)and tv.channelValue=7 and tv.volumeValue=40 -> offC7V40
...

}

Figure 6.7. Closed Model of TV in UMC format
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Figure 6.8. A Fragment of TV Graph

Let there bem devices involved for fulfillingg, thenFDS(g) returns to the gateway
the list of all devices (specific instances of the device type) with the corresponding desti-
nation states (ds(di), 1 ≤ i ≤ m), as represented below:

FDS(g)← { ds(d1), ds(d2) . . .ds(dm)}

Against the list of these devices returned fromFDS(g), the functionFSS(g) is activated
by the gateway to attain the current states (globally representingG) (di(ss), 1 ≤ i ≤ m)
of these devices, as represented below:

FSS(g)← { ss(d1), ss(d2) . . .ss(dm)}

On getting this list with the corresponding source and destination states (di(ss, ds), 1 ≤
i ≤ m), a functionFDT (g) will be called by the gateway, which returns the type of each
device associated withg. Then, a functionFe(g) will be modeled. The objective of the
function is to arrange the source and the destination statesalong with the device identifi-
cation, as represented below:
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FDT (g)← { dt(d1), dt(d2) . . .dt(dm)}

Fe(g) = {d1(dt, ss, ds), d2(dt, ss, ds) . . .
dm(dt, ss, ds)}

According to thedevice type information returned by functionFDT (g), the function
Fe(g) firstly accesses the relevant expanded behavioral graphs ofeach device. Then the
graph traversal algorithm is executed with the aim of identifying the source and destina-
tion states. The complete evolution against each device (e(di), 1 ≤ i ≤ m) is returned.
The set of evolutions is referred to as theglobal evolutionE(g) and is represented below:

Fe(g)← { e(d1), e(d2) . . .e(dm)}

E(g) = {e(d1), e(d2) . . .e(dm)}

Further, theglobal evolutionE(g) is enforced on the relevant devices for fulfilling the
request of selected goalg; as a result, the global configurationG of the environment will
evolve toG ′, as represented below:

G
E(g)
−−→ G ′

Runtime Technique

For the implementation of the runtime methodology, a technique is designed which is
graphically represented in Figure6.9.

In this technique, the high-level goal modeling is obtainedby using the DogEffects
ontology (see Section2.1.3of Chapter chap:Background) and device interface modeling
is adopted from the DogOnt ontology [23]. A new moduleDomotic Effects Executor
was built as an OSGi [56] bundle so that it can be integrated with the Domotic Effects
framework [38, 40] and can communicate with the devices according to the desired re-
quests/commands. The DE framework approach is generic in nature, but currently its
implementation is built on top of Domotic OSGi Gateway (Dog)[55]. The expanded ab-
stracted data and control flow behavioral graphs of the devices (which are in SVG format)
are obtained and constructed at start-up of the SmE. The sequence and the steps performed
for the implementation by using these tools are elucidated below:

1. A goal g can selected from the goals modeled in DogEffects ontology.Against
which the enforcement request for the selected goals arrives at the Domotic OSGi
Gateway (Dog), where the Domotic Effects (DE) framework is implemented.
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Figure 6.9. Steps of Domotic Effects Executor

2. The DE framework queries the DogEffects ontology and receives the complete tree
along with the device names and their state, from the instance layer, associated with
g (as presented in Fig.2.2).

This tree is transformed into Boolean satisfiability problem(SAT) [164]. The DE
(SE or CE) are mapped as Boolean variables, and the expressionsassociated to the
operator (defined in AmI layer) are firstly converted into theexpression of basic
logical operators (by the designed algorithms, mentioned in Section2.1.3) and then
mapped in terms of Boolean sub-expression. The heuristics/algorithms are designed
for the expression associated to the operators which can notbe converted into basic
logical operators.

These Boolean expressions are passed to the SAT solver. In ourcase, Sat4j solver
is used, which is mature, open source, Java based and reasonably fast (as the results
of our energy optimization work also show [38]) [165]. The SAT solver returns
the possible configurations (devices with the desired destination states), then for
the uncovered operators, their corresponding algorithms are run and the possible
configurations are heuristically designed. Finally, a configuration is selected from
them (the selection can be based on any constraints or factors of interest: energy
optimization, context awareness or security demand). The selected configurations,
against selectedg, consists of a list of specific instances of the devices with their
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required destination states.

3. According to the obtained list of device instances, theircurrent state (source state)
is queried by using theDogStatebundle of Dog [55].

4. Thereafter, the device type of each instance is obtained by using the DogOnt on-
tology and accordingly its associated expanded behavioralgraph is traversed with
the help of the Djisktra shortest path (referred as evolution in this chapter) algo-
rithm [166], which is a renowned algorithm for finding shortest path andcompared
to other algorithms, takes less time. Theoretically, the time complexity of the algo-
rithm, when Fibonacci heap is used as a priority queue, isO(|S| + |E| log |E|) (in
it S is total number of States and E is total number of edges) [167].

The source and destination states are identified by using thelogic presented in Sec-
tion 6.4.1. The algorithm returns the shortest evolution from the source state to the
destination against the instances of these device types.

5. The newDomotic Effects Executormodule uses these evolutions and enforces them
to the devices. These evolutions are enforced in parallel pattern.

After the enforcement of the global evolution, the configuration of the environment is
updated. The new configuration is the required configurationwhich is associated with the
goal.

In the case of selecting multiple goals at a time, the DE framework considers them as
a single (complex) goal. In sequential pattern, it enforcesthem on the devices, and upon
the successful enforcement of these goals, the required configuration of the environment
will be obtained.

Example

The “Morning Wakeup” high-level goal is represented as an example. It is a combina-
tion of multiple individual activities: illuminating the bedroom, kitchen and bathroom;
switching off the gas heater inside the bedroom; closing down the windows and raising
their shutters; switching on the radio inside the bathroom;and switching on the TV inside
the kitchen with volume configured to70and the channel to8.

As soon as the goal is selected, the appropriate request message was received at the
gateway. The gateway queries the goal details from DogEffects which in turn returns the
“Device Identification” and “Destination State” as mentioned in Table6.1. The gateway
further consults the identified devices to find out their source states as given in the column
“Source State”. Later, the DE Executor queries the DogOnt for the device type from
which it extracts the evolution path after traversing from the source state of the graph as
given in column “Extracted Evolution”. A total of17 devices participated to achieve the
“Morning Wakeup” goal of which8 were already in the required destination states and the

98



6.4
–

G
oals

A
chievem

entM
ethodology

# Device Source Destination Total Number Total Number Extracted
Identification State State of Commands of Notifications Evolution

1 SimpleLamp_lamp6_kitchen offState offState
2 ShutterActuator_kitchen upState upState
3 ShutterActuator_sh1_bedroom upState upState
4 DoorActuator_d5_kitchen closeState closeState
5 Radio_BathRoom offState onState 1 1 on, stateChanged
6 WindowActuator_w4_kitchen openState closeState 1 2 close, stateChanged,

stateChanged
7 SimpleLamp_lamp2_bath offState onState 1 1 on, stateChanged
8 SimpleLamp_lamp9_bath offState onState 1 1 on, stateChanged
9 ShutterActuator_sh2_bedroom upState upState
10 DoorActuator_d7_kitchen closeState closeState
11 Tv_Kitchen offC6V20 onC8V70 8 8 on, stateChanged, inc,

stateChanged
inc, stateChanged, inc,

stateChanged
up, stateChanged, inc,

stateChanged
inc, stateChanged, up,

stateChanged
12 exhaustfan1 offState onState 1 1 on, stateChanged
13 ShutterActuator_bath upState upState
14 SimpleLamp_lamp8_bath offState onState 1 1 on, stateChanged
15 WindowActuator_w2_bedroom openState closeState 1 2 close, stateChanged,

stateChanged
16 GasHeater_BedRoom offState offState
17 WindowActuator_w1_bedroom openState closeState 1 2 close, stateChanged,

stateChanged

Table 6.1. Morning Wakeup Goal Enforcement at Runtime

9
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remaining9 needed to follow the evolution. At successful completion ofthe individual
activities, the high-level goal was fulfilled, the evolution was attained, and the global state
was updated.

6.5 Experiment and Results

To prove the validity of the proposed methodology and measure different performance
parameters, a set of experiments were carried out. In the research lab, we have some
simple devices (switch, buttons, lamp and sensors) but for the experimentation purpose,
the complex devices are also required, therefor in the absence of a real inhabited house, the
emulation capabilities of the Dog gateway to simulate the behavior of devices was used.
The complete house environment was simulated whose domoticstructure was modeled
as an instance of DogOnt ontology. The underlying domotic equipment may be handled
by BTicino MyOpen, Z-Wave, ModBus and/or Knx.

In fact Dog simulates domotic environments thanks to the DogSim [168] library. A
new test bundle was developed to test the validity of the approach and measure different
performance parameters. Domotic effects, corresponding to generic goals (like securing
or illuminating the house), were defined over the house.

The experiments ran on a standard personal computer with a quad-core Intel i5 pro-
cessor and 4GB of RAM.

Tables6.2and6.3show the design-time experiment details, while Tables6.4and6.5
show those of runtime.

The values underTime to Construct a Graph (in Millisecond)against each parameters
of Device Typein Table6.2represent the time taken to access the files stored in repository
in the SVG format and construct the graph of the devices (usedin SmE). TheTotal Num-
ber of StatesandTotal Number of Edgesparameters represent the number of nodes and
edges used to construct the graph. TheTotal Number of Abstracted StatesandTotal Num-
ber of Abstracted Edgesparameters show the number of abstracted nodes (which may
occur more than once) and edges which are annotated according to the criteria defined in
Section6.4.1(by the UMC model checker). TheTotal Number of Possible Evolutions,
T (E), are the maximum evolutions from any possible (selected abstracted) source state
to any destination state of a device, and can be calculated bythe given formula (from
Section6.4.1; T (SA) represents the total number of Abstracted states):

T (E) = T (SA)2 - T (SA)

In the example of the TV model, there are264 abstracted states therefore the pos-
sible evolutions for TV model according to the formula are69432. The average time
taken for computing all possible evolutionsT (E) against each device are given under the
parameterAverage Time to compute all Possible Evolutions (in Millisecond). Given the
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Device Time to Total Total Total Total Total Average Time
Type Construct Number Number of Number Number of Number of (in Millisecond) to

a Graph of Abstracted of Abstracted Possible compute all
(in Millisecond) States States Edges Edges Evolutions Possible Evolutions

Dimmer Lamp 681.47 48 12 70 58 132 1.6
Door Actuator 659.28 16 4 17 13 12 2.89

Shutter Actuator 712.69 20 5 24 19 20 1.92
Simple Lamp 586.36 8 2 8 6 2 0.69

TV 3455.04 1320 792 1848 1584 69432 7.66
Window Actuator 740.57 20 5 23 18 20 1.84

Table 6.2. Device Type Graph Contents
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Device Source Destination Length of Number of Number of Time (in Millisecond)
Type State State Path Commands Notifications for each Evolution

Dimmer Lamp on50 on100 30 5 5 2.53
offState on80 24 4 4 1.77

Door Actuator closeState openState 12 1 2 0.69
closingState openingState 6 1 1 2.00

Shutter Actuator downState upState 12 1 2 1.07
upState HalfOpenState 12 2 2 1.08

Simple Lamp offState onState 6 1 1 0.72
onState offState 6 1 1 0.50

TV onC8V60 offC12V0 66 11 11 6.27
onC10V20 onC9V100 54 9 9 3.10
onC9V100 onC7V40 48 8 8 3.09
onC12V80 onC1V90 12 2 2 0.82

Window Actuator openState closeState 12 1 2 0.86
closingState openingState 12 1 2 1.14

Table 6.3. Evolution Construction Details from Each Device Type (Some Samples)
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space constraints, the detailed representation ofT (E) is not possible, therefore a sam-
ple set of few evolutions is presented in Table6.3. TheLength of Pathparameter shows
the total number of (abstracted or unabstracted) states, bypassing which theDestination
Statewill be reachable from the correspondingSource State. The respective evolution
consists of commands and notifications, theNumber of CommandsandNumber of Noti-
ficationsparameters show their total number (along with their sequences). TheTime for
each evolution (in Millisecond)represents the time of each evolution which is taken (by
the Djisktra shortest path algorithm) to identify it.

High-Level Secure Home Morning Air Afternoon Bath
Goal Number Home Illumination Wakeup Passage Lunch Illumination

1 ✗ ✗ ✗ X ✗ ✗

2 ✗ ✗ X ✗ ✗ ✗

3 ✗ X ✗ ✗ ✗ ✗

4 ✗ ✗ X ✗ ✗ X

5 ✗ ✗ ✗ X ✗ X

6 ✗ X ✗ ✗ ✗ X

7 ✗ X ✗ ✗ X X

8 X ✗ ✗ ✗ ✗ ✗

9 X X ✗ ✗ ✗ ✗

10 X X ✗ ✗ X ✗

11 X ✗ ✗ ✗ ✗ X

12 X X ✗ ✗ ✗ X

13 X X ✗ ✗ X X

Table 6.4. Selected High-Level Goals for 6 Use Cases

For enforcing high-level goals on the SmE at runtime, a random selection of13 use
cases is made from the possible combinations of6 use cases (26 = 64, or 63 if the
trivial case is omitted, where no DE is enforced on the environment). These areSecure
Home, Home Illumination, Morning Wakeup, Air Passage, Afternoon Lunchand Bath
Illumination.

The “Secure Home” use case secures all the exit points of the house, i.e. all exit
doors and windows. This use case consists of several DEs providing the ability to secure
different rooms of the house. It can be used in case of emergency, theft and robbery.

The “Home Illumination” use case requires that all the roomsof the house be illumi-
nated. Illumination can either be natural or artificial. Fornatural illumination window
shutters (depending upon outside illumination) can be opened. For artificial illumination
lights and lamps can be switched on.

The “Morning Wakeup” use case represents a typical scenariowhen a resident wants
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High-level Total Total Number of Total Number of Total Total Enforcement
Goal Number of Active Devices in Number of Number of Time

Number Devices Devices Destination State Commands Notifications (in Millisecond)

1 15 9 6 18 18 95.40
2 17 11 6 19 19 87.01
3 24 9 15 12 12 58.64
4 17 3 14 5 5 38.53
5 19 8 11 15 15 66.66
6 24 6 18 11 11 48.55
7 27 6 21 9 9 63.14
8 20 8 12 19 19 25.47
9 28 2 26 2 2 29.52
10 31 3 28 6 6 79.38
11 23 3 20 5 5 48.50
12 28 5 23 8 8 51.75
13 31 0 31 0 0 44.42

Table 6.5. Device Activation Statistics
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to perform a sequence of activities after waking up in morning, like illuminating the bed-
room, the kitchen and the bathroom, switching off the gas heater inside the bedroom, and
switching on the kitchen television and the bathroom radio (More details and formulation
of each use cases are given in [40].

The “Air Passage” use case regulates the passage of natural air inside the home by
controlling the windows and their shutters.

The “Afternoon Lunch” use case heats the oven, closes the kitchen door to prevent
the cooking odor from entering inside the home and switches on the kitchen TV. The
“Bathroom Illumination” use case lights up the bathroom using natural or artificial lights
based on time of the day and external conditions.

These use cases are tabulated in Table6.4 in such a way that the first goal considers
the home in its “initial” state (as a source state), where allthe appliances are switched off.
Moving on, every preceding goal (destination state) treatsthe previous one as the source
state. Also, every goal is a complex combination of previously described six user cases:
tick (X) denotes the use case as “selected” and the cross (✗) as “not selected” (which does
not necessarily mean “inactive”).

For the selected goals, Table6.5 shows the number of devices involved in enforcing
the DE under the parameterTotal number of Devicesagainst the reference number of the
selected goal (mentioned in Table6.4). In the selected goal, chances are that some de-
vices are already in their required destination states and some are required to evolve for
reaching there. The value underTotal Number of Active Devicesrepresents the number
of devices which are required to evolve, whereasTotal Number of Devices in Destination
Statementions the number of devices which are already in the specified destination state.
For the devices which should evolve, the number of commands to be executed (Total
Number of Commands) and the number of notification received (Total Number of Notifi-
cations) for enforcing the selected goals are given under these parameters. The time taken
for enforcing the overall selected goal is given under the parameterEnforcement Time (in
Millisecond).

A thorough analysis of Table6.2 shows that the TV device type has the maximum
number of states and accordingly the times to construct the graph and compute all possible
evolutions are the maximum among all the tested device types. The reason for a larger
time span for computing all possible evolution is attributed to the high number of states
and the longer length of paths due to continuity of long rangevalues. Whereas the other
device types, which mostly offer limited functionality, have lower number of states and
accordingly lower time requirements.

Further, analyzing Table6.3, it can be observed that TV device type takes the max-
imum time for single evolution. As mentioned in the previousdescription as well, the
TV has a lengthy path with a higher number of commands and notifications. This results
in consumption of more time. Whereas Door Actuator, Shutter Actuator, Simple Lamp
and Wind Actuator, with only 1 command to execute and shorterpaths, take less time for
individual evolutions.
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Moving on, the analysis of Table6.5 shows that the enforcement time is highly de-
pendent on the number of devices to be activated. For consequent goals, where one (or
many) devices have already reached their desired state, theenforcement time is consider-
ably lower. But in cases where a majority of devices are required to switch their states,
the enforcement time is understandably higher. Also, it is imperative to consider the se-
quence of operations; for the consequent goals, if the device activation is already done by
the previous goal, the enforcement operation is usually light.

6.6 Discussion

The experiments allow the evaluation of the overall methodology proposed here. The
time consumption in the case of complex devices is observed to be higher owing to the
higher number of states, commands, notifications and the continuous type of long ranging
values of these devices. Simple devices, on the other hand, demonstrate a rather light and
insubstantial time and processing load. Also the sequence of operation plays important
role in minimizing the time as the methodology is designed toavoid any redundancy of
operations.

The integration with Dog and the results prove the applicability of the proposed
methodology to real systems. In addition, it shows that the approach satisfies the re-
quirement of performing most operations in real time. Notwithstanding the strengths of
this research, it disregards the possible conflicts arisingin goals due to complex scenarios.
Further, a typical user is not necessarily over-incentivized due to lack of goal personal-
ization with the help of user-friendly GUI environment. Thus, the future research aims
at resolving the potential conflicts and deadlocks of user goals in complex scenarios and
providing user-friendly graphical environment where users may take the liberty of per-
sonalizing the system according to his/her needs and desires.
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Chapter 7

Discussion and Conclusion

Smart Environments (SmE) are a growing field which provides implicit computation fa-
cilities in the environment so that they behave in a sophisticated and desired manner. This
sophistication is achieved with the interaction of users with the sensors, actuators, elec-
trical appliances and hidden computation. The versatile nature of these components and
their interaction render the systems huge, complex and ambiguous, motivating to use the
formal verification for validating the desired behavior. Asformal methods, especially
model checking, have various advantages over other techniques, which are (also listed in
the thesis) given below:

• they are strongly based on mathematical evidence and increase the understandabil-
ity of the modeled system;

• they are underpinning the theory of graph algorithms, datastructures and logic;

• they are used for reliably modeling a system at design time;

• they can explore the exhaustive coverage of all the possible scenarios, which a
device/system model may have to deal with;

• they can model the concerning requirements in the form of properties by using logic
based on mathematics;

• they can formally verify the modeled system against the requirements (reliable be-
havior, along with other requirements of the system);

• they provides abstraction facilities by which the important concerns can be anno-
tated with simple keywords and the rest of the information may remain hidden.

– With the use of action/event abstraction, the more considerable commands/no-
tifications can be annotated on the edges of the graph.

107



7 – Discussion and Conclusion

– With the help of state abstraction, the resultant configurations can be annotated
on the states of the system.

• they can trace back the errors and can help in fixing them at early design stages.

Formal verification of SmE (and its related components) is performed by various re-
searchers but it is found that there is a sizable research gapin SmE modeling and veri-
fication area. Mostly complex modeling and verification scenarios and components are
given less or no attention partly due to the inherent complexity and partly due to personal
inclination of current researchers towards areas of their interest. This hinders in provid-
ing holistic solutions leaving behind the industry and users with their specific needs and
demands.

For this, an in-depth survey of existing literature and state-of-the art techniques is per-
formed. In which, the techniques which are used for the modeling of SmE and its related
components, along with the conformance of reliable behavior through formal verification
approaches, are considered.

These techniques are analyzed by empirically driving some parameters related to the
focused area, modeling formalism, formal verification and other important factors. The
analysis conclude that the techniques mostly follow Statecharts for the modeling pur-
pose. It was also observed that the black box modeling, owingto lack of its visibility, is
scarcely diffused in the techniques. Nevertheless, it assumes a fundamental role by pro-
viding generic dictionaries and naming/communication conventions which help broadly
at the time of implementation. It is also observed that very few techniques model and
verify – at a deeper level – all basic components of SmE (user,devices, control algorithm,
environment/context). The model checking technique is used for the formal verification.
Some techniques also use abstractions for reducing the state-space of the model. Results
of the survey show that no technique is fully automatic in true nature and covers all the
dimensions (e.g. modeling of context, user, devices) of SmE. Therefore, it is deduced
that more R&D effort, impartial and objective in its nature, needs to be put into the SmE
modeling and verification research.

A comprehensive methodology is required which may entail all the major compo-
nents, for the design and verification, of SmE; users, devices, environment and control
algorithms. On the basis of the analysis of the literature survey and the empirically de-
duced parameters, a methodology is proposed. The proposed methodology consists of ten
steps, starting from the requirement organization of each component, with the elabora-
tion of important aspects, to the verification of entire SmE.The organized specifications
provide a better understandability of the system through which the ambiguities (during
modeling and verification) can be sufficiently reduced. Further, the probability of missing
any properties has been efficiently controlled by requirement organization.

It is attempted to bridge the discovered research gap from the literature survey in the
proposed methodology. By keeping in view the covered and uncovered modeling areas
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of other surveyed methodologies/techniques, their focused concerns, and the verification
aspects, a methodology is proposed. In the proposed methodology, it is tried to integrate
the advantages, covered and uncovered areas, of survey techniques with the use of mostly
adopted and richer semantic tools.

The proposed methodologies use both type of formalisms for the modeling purpose:
black box and white box. The black box modeling is performed with the use of Ontol-
ogy where white box modeling is performed by using the semantics of Harel statechart.
The intelligence is modeled with the use of event-condition-action strategy. The desired
behavior/aspects which are required to verify, on the modelÂ¸ is formatted in properties
by using the syntax and semantic of Action-and-State based temporal logic, known as
UCTL. For the modeling of SmE all basic components: Users devices, control strategy,
context and their interaction are considered. All the behavioral aspects of the users are
considered except the action history and their division on the basis of roles are not consid-
ered. The interaction among various components of SmE, at various levels, is considered
in the proposed methodology. The verificational aspects related to different components
and levels are considered except the real time and probabilistic verification (as such type
of modeling is not performed).

The methodology is implemented through a set of designed techniques (individual de-
vice verification and entire system verification) and implemented on (small but not so sim-
ple) real life systems. Almost 80% work, including the conversion of device behavioral
models into the accepted format of model checker, the generation of temporal properties
related to verify the consistency, the generation of environment component, abstractions,
instances, the integration of these models into the acceptable format of model checker,
and saving the complete model in a file are automatically performed. The rest of the task,
the interface and behavioral modeling of devices, the modeling of control strategy, the de-
signing of complex temporal properties related to behavioral verification and checking of
these properties on the model are manually performed. Moreover, with the use of action
and state abstraction the unnecessary details are kept hidden; in result the only limitation
of model checking technique is sufficiently reduced.

The first run of verification processes did not achieve all theproperties as satisfactory
against the models. After appropriate modifications to the models, it was then proven to
conform to the organized requirements. The successful results demonstrate the consis-
tency, correctness, reliability, safety, security and desired behavior of the modeled SmE
system and its related modeled components: user behavior modeling, device modeling,
environment/context modeling, control algorithm modeling and their interaction. These
behavioral verified models can be used safely, for any purpose, in various design and im-
plementation phases. A closer look of the proposed methodology with the reference of
surveyed techniques are presented in Table7.1and7.2.

More advanced SmE requirements, related to High Level description of various user
goals, are also achieved by automatically activating the devices with the use of their ver-
ified behavioral models. As, the goals are associated with a multitude of resources and
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Researchers Black Box White Box Intelligence Requirements Users Devices Control Context Interaction
Modeling Modeling Modeling Modeling Modeling Modeling Modeling Modeling Modeling

Ahmed and Tripathi
[68]

✘ Role based col-
laboration model

Role based LTL UPr, UA ✔ UI, IC, CO

Augusto and Hornos
[69]

✘ Activity Mod-
eling Through
Promela pro-
cesses

Event (Activity
detection), Con-
dition(location
identification),
Action (operation
graded)

LTL UI, UP,
UA, UB

✔ ✔ US, UC,
SC, CO

Augusto and McCul-
lagh [10]

✘ Finite State Ma-
chine

Event Condition
Action

TCTL UA Behavior ✔ US, UI,
SC, IC, CO

Benghazi et al. [70] ✘ UML-RT ,
CSP+T

Event Condition
(previous history)
Action

FT T (Common
Formal Semantic
Domain)

UH, UA ✔ US, UI,
SC, IC, CO

Bernardeschi et
al. [13]

✘ CCS/MEIJE Pro-
cess Algebra

Event Condition
Action

mu-ACTL ✔ IC, CO

Bonhomme et al. [21] System Engineer-
ing Standards,
EIA-632

Petri-Nets, HiLes Decision Logic Temporal Proper-
ties

UI, UH,
UA

✔ US, UI,
SC, IC, CO

Boytsov and Za-
slavsky [71]

Context Space
Theory (CST)

Orthotope-based
Situation Space

Weighted Rule
Based

Situation Algebra
Expression

✔ IC

Corno and
Sanaullah
[58,113,169]

Ontology Statecharts Event Condition
Action

UCTL UI, UP,
UA, UB

Behavior ✔ ✔ US, UC,
UI, SC,
IC, CO

Coronato and Pietro
[15,75,76]

Ontology Ambient Calcu-
lus

Ambient move-
ment, Pre-and-
Post conditions

Ambient logic +
RTTL

UI, UP, UB ✔ ✔ US, UC,
SC, CO

Gnesi et al. [77] ✘ Hierarchical Stat-
echarts

Event Condition
Action

ACTL UA Behavior UI

Gnesi and Mazzanti
[79]

✘ Communicating
State Machines

Event Condition
Action

mu-ACTL UA, UB Behavior ✔ UC, UI

Hoogendoorn et al.
[80,81]

✘ Predicate logic Rule Based TTL UH, UA ✔ UI, IC, CO

Ishikawa et al. [86] ✘ Event Calculus Rule Based Axioms Based
through Discrete
Event Calculus

UI, UPr,
UP, UA

✔ ✔ US, UC,
UI, SC, CO

Leelaprute et al. [19] Object Oriented
Modeling, Sys-
tem description

Object Oriented
Modeling, Ser-
vice description

Event Condition
Action

CTL Behavior ✔ IC, CO

Liu et al. [89] ✘ CSP# Rule Based LTL UI, UA ✔ ✔ US, UC,
UI, SC, IC,
CO

[90–92] ✘ PVS Logic, a
Typed higher-
ordered Logic

✘ Axioms Based
(according to
property tem-
plate)

UI, UPr,
UA

Behavior UI

Ranganathan and
Campbell [93]

✘ Ambient Calcu-
lus

Rule Based, DL-
Based, Relational
Algebra

Ambient Logic UI, UA ✔ ✔ US, UC,
UI, SC, IC,
CO

Table 7.1. Formal Modeling analysis with the Proposed Methodology

1
1
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Entire System Verification
Researchers Consistency Users Context Device Devices Real Probabilistic Abstraction Automatic Scalability Verification

Verification Behavior Verification Behavior Interaction Time Verification Tool
Verification Verification Control

Verifica-
tion

Verification

Ahmed and Tri-
pathi [68]

✔ ✔ ✔ Automatic SPIN

Augusto and
Hornos [69]

✔ ✔ ✔ ✘ Manual ✔ SPIN

Augusto and Mc-
Cullagh [10]

✔ ✔ ✔ ✘ Manually ✔ UPPAL

Benghazi et al.
[70]

✔ ✔ ✔ ✘ Semi-
automatic

✔ ✘

Bernardeschi et
al. [13]

✔ ✔ Manually JACK

Bonhomme et al.
[21]

✔(Behavioral
Analysis)

✔ ✘ Semi-
automatic

TINA

Boytsov and Za-
slavsky [71]

✔ ✘ Manual Algorithms

Corno and
Sanaullah
[58,113,169]

✔ ✔ ✔ ✔ ✔ ✔ Semi-
automatic

✔ UMC

Coronato and
Pietro [15,75,76]

✔ ✔ ✔ ✘ Semi-
automatic

✔ Ambient
Designer,
Nu-SMV

Gnesi et al. [77] ✔ ✔ Manually JACK
Gnesi and Maz-
zanti [79]

✔ ✔ ✔ Manually ✔ UMC

Hoogendoorn et
al. [80,81]

✔ ✔ ✘ Semi-
automatic

TTL
Checker,
SMV

Ishikawa et
al. [86]

✔ ✔ ✔ ✔ ✔ Manual Discrete
Event
Calculus
Reasoner

Leelaprute et al.
[19]

✔ ✔ ✔ Semi-
automatic

SMV

Liu et al. [89] ✔ ✔ ✔ ✘ Semi-
automatic

✔ PAT

[90–92] ✔ ✔ ✘ Semi-
automatic

PVS

Ranganathan and
Campbell [93]

✔ ✔ ✔ ✘ Manually specified in
[119–121]

Table 7.2. Formal Verification analysis with the Proposed Methodology

1
1

1



7 – Discussion and Conclusion

can relate to acquiring the functionalities of a single device or a group of devices (e.g.
sensors, actuators, lamps or TV). The variety of devices hasraised a major problem of
managing SmE. An increasingly adopted solution to the problem is the modeling of goals
and intentions, and then using artificial intelligence to control the respective SmE accord-
ingly. Generally, the solution advocates that the goals canbe achieved by controlling the
evolution of the states of the devices. In order to reach a particular state, an automatic
device activation methodology is proposed, which uses the verified behavioral models of
the concerning devices and considersa) the composite nature of the state of an individual
device;b) the possible variation of specific commands, notificationsand their sequence
based on the current states of the devices.

The methodology works at two levels: design-time and runtime. At design-time, it
constructs a data and control flow behavioral graph of the verified device models, based
upon the concepts of a model checking approach. Then at runtime, on the arrival of any
request for the enforcement of a goal, it accordingly consults these graphs and extracts
a reliable shortest evolution for all the devices which haveto be affected by the desired
goal. Then, these extracted evolutions are enforced on the corresponding devices and, as
a result, the desired high-level goal will be automaticallyaccomplished.

A detailed experimentation is conducted which shows that the time consumption in the
case of complex devices is observed to be higher owing to the higher number of states,
commands, notifications and the continuous type of long ranging values of these devices.
Simple devices, on the other hand, demonstrate a rather light and insubstantial time and
processing load. Also the sequence of operation plays important role in minimizing the
time as the methodology is designed to avoid any redundancy of operations. In addition,
it shows that the approach satisfies the requirement of performing most operations in real
time. Notwithstanding the strengths of the research, it disregards the possible conflicts
arising in High Level goals due to complex scenarios. Further, a typical user is not neces-
sarily over-incentivized due to lack of goal personalization with the help of user-friendly
GUI environment. Thus, the future research aims at resolving the potential conflicts and
deadlocks of user goals in complex scenarios and providing user-friendly graphical envi-
ronment where users may take the liberty of personalizing the system according to his/her
needs and desires.
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