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Abstract

Heat equations with memory of Gurtin-Pipkin type (i.e. Eq. (1) with
α = 0) have controllability properties which strongly resemble those of the
wave equation. Instead, recent counterexamples show that when α > 0
the control properties do not parallel those of the (memoryless) heat equa-
tion, in the sense that there are square integrable initial conditions which
cannot be controlled to zero. The proof of this fact, in previous papers,
consists in the construction of two quite special examples of systems with
memory which cannot be controlled to zero. Here we prove that lack of
controllability holds in general, for every smooth memory kernel M(t).
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1 Introduction

The following integro-differential equation is often used to model thermal sys-
tems with memory, see [1, 8, 16]:

wt = αwxx +

∫ t

0

M(t− s)wxx(x, s) d s , w(x, 0) = ξ(x), . (1)

Here w = w(x, t). The variable x belongs to an interval which we normalize to
(0, π). The time t = 0 is the time after which a boundary control f is applied
to the system, i.e. we assume the boundary conditions

w(0, t) = f(t) , w(π, t) = 0 t > 0 .

Note that we implicitly assume that the system is at rest for negative times,
w(t) = 0 if t < 0.

The number α is nonnegative. If α is zero then we get a model proposed by
Gurtin and Pipkin in [13]. The controllability, when α = 0, has been studied in
several paper, see references below. So, here we explicitly assume

α > 0

and we call Eq. (1) the (CGM) model (after Colemann and Gurtin).
It appears that (CGM) has been rarely studied from the control point of

view. Our goal in this paper is to understand whether the point ξ0 = 0 can
be hit at time T > 0, as in the case for the memoryless heat equation, i.e. the
special case of (CGM) obtained when M(t) ≡ 0.

The precise definition of controllability requires that we specify the proper-
ties of the solutions. The following results are proved in Section 2, where the
definition of “solution” can be found:

Theorem 1 Let M(t) ∈ C1(0,+∞). For every f ∈ L2(0, T ) and for every
initial condition ξ ∈ L2(0, π) there exists a unique solution w(·, T ) = wf,ξ(·, T ) ∈
L2(0, T ;L2(0, π)).

The solution is not continuous in time (see, when M = 0, the example in [20,
p. 217]), unless f(t) is smooth. So, pointwise computation of w(·, t) in L2(0, π)
is meaningless in general. However, let A be the operator in L2(0, π):

domA = H2(0, π) ∩H1
0 (0, π) , Aφ = φ′′ . (2)

Note that A−1 exists and it is bounded. Then we have:

Corollary 1 Let M(t) ∈ C1(0,+∞). For every function f ∈ L2(0, T ) and for
every initial condition ξ ∈ L2(0, π), the function t 7→ A−1wf,ξ(·, t) is continuous
from [0,+∞) to L2(0, π).

Thanks to this result, the following definition makes sense:
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Definition 2 We say that the initial condition ξ is controllable to 0 at time T
if there exists f ∈ L2(0, T ) such that A−1wf,ξ(·;T ) = 0.

We say that (CGM) is null controllable at time T if for every ξ ∈ L2(0, π)
there exists f ∈ L2(0, T ) such that A−1wf,ξ(·;T ) = 0.

In the memoryless case, M(t) ≡ 0, the system is null controllable at any
time T > 0. When M(t) 6= 0 but M(t) = 0 for 0 ≤ t ≤ T0 then Eq. (1) for
t ≤ T0 coincide with the memoryless heat equation wt = αwxx and any initial
condition can be controlled to 0 at any time T < T0. Keeping this fact in mind,
our main result is:

Theorem 2 Let α > 0 and let M(t) ∈ C1(0, T ), not identically zero. Let T be
any time such that R(T ) 6= 0, where R(t) is the resolvent kernel of M(t).

There exist initial data ξ which cannot be controlled to 0 at time T .

1.1 Comments and references

Under smoothness assumption on the kernel M(t), when α = 0 and M(0) > 0,
Eq. (1) can be seen as a perturbation of the wave equation and its properties
resemble those of the wave equation. In particular, the solutions belong to
C(0,+∞;L2(0, π)) for every f ∈ L2

loc(0,+∞) and every initial condition ξ ∈
L2(0, π). Furthermore, there exists T such that the reachable set{

wf,0(·, T ) , f ∈ L2(0, T )
}

is equal to L2(0, π). Several different techniques have been used in the proof,
but the basic idea is always to compare with the wave equation, see [2, 17, 23,
24, 26, 28]. Furthermore, the infimum of the control times is the same as that
for the (memoryless) wave equation (see [4, 10, 17, 25, 27]).

Instead, when α > 0 the properties of Eq. (1) strongly resemble those of the
standard, memoryless, heat equation in spite that it is not possible to control an
initial condition to be identically zero for every t > T , where T is a preassigned
time, see [15]. So, it is a natural conjecture that the controllability properties
of system (1) with α > 0 should be similar to those of the (memoryless) heat
equation. Along this line of thought, it was proved in [5] that, for a suitable class
of completely monotonic kernels, the reachable states at every time T > 0 are
dense in L2(0, π) and this supports the conjecture that every initial condition
ξ ∈ L2(0, π) can be controlled to hit the target ξ0(x) ≡ 0 at a certain time T , of
course without remaining equal to zero in the future, due to the negative results
in [15]. This conjecture was disproved in [12, 14, 29]. These papers show that
there exist kernels M(t) which are even of class C∞, and such that for every
T > 0 there exist initial data which cannot be controlled to hit 0. The proofs
in these papers exibits particular counterexamples to controllability. The goal
of this paper is the proof that in the presence of memory, i.e. for every smooth
kernel M(t) not identically zero, there exist initial conditions which cannot be
controlled to zero, as stated in Theorem 2.
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We mention that the papers [21, 7] proves controllability for the system
studied in [29] (a generalized telegraph equation) if the control is distributed
and if the subset on which the control acts is not constant in time.

2 Preliminaries

The number α has to be positive and so, changing the time scale, i.e. replacing
w(x, t) with w(x, t/α), we can assume

α = 1 .

This transformation changes M(t) to M(t/α) which is renamed M(t).
We present a transformation which simplifies the computations in this paper.

We consider a Volterra integral equation on t ≥ 0

y(t) +

∫ t

0

M(t− s)y(s) d s = f(t) .

It is known (see [11, Ch. 2]) that it is uniquely solvable for every square
integrable f(t), and that the solution is given by

y(t) = f(t)−
∫ t

0

R(t− s)f(s) d s .

The function R(t), the resolvent kernel of M(t), solves

R(t) = M(t)−
∫ t

0

M(t− s)R(s) d s .

We apply formally this transformation, “solving” Eq. (1) with respect to the
“unknown” wxx. We get

wt = wxx +

∫ t

0

R(t− s)ws(s) d s .

Integrating by parts we get

wt = wxx + aw(t) +

∫ t

0

L(t− s)w(s) d s−R(t)ξ , w(0) = ξ . (3)

Here,
a = R(0) = M(0) , L(t) = R′(t) .

By definition, a solution of Eq. (1) is a solution of the Volterra integro-
differential equation (3) (solutions can be defined in several different but equiv-
alent ways).

We recall that the operator A in (2) is a selfadjoint operator with compact
resolvent, which generates a holomorphic semigroup eAt.
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We introduce the following transformation D ∈ L(R;L2(0, π)):

u(x) = (Dr) (x) =
(π − x)r

π
so that u solves

{
uxx = 0 in (0, π)
u(0) = r , u(π) = 0 .

A known fact (see [18, p. 180]) is the following:

Theorem 3 Let f ∈ L2(0, T ), g ∈ L2(0, T ;L2(0, π)) and ξ ∈ L2(0, π). The
solution of the heat equation

θt = θxx + g , θ(x, 0) = ξ(x) , θ(0, t) = f(t) , θ(π, t) = 0

is given by

θ(·, t) = θf,ξ,g(·, t) = eAtξ +

∫ t

0

eA(t−s)g(s) d s−A
∫ t

0

eA(t−s)Df(s) d s . (4)

The solution is unique in L2
loc(0,+∞;L2(0, π)) and A−1θ(·, t) ∈ C(0,+∞;L2(0, π)).

Furthermore, if ξ = 0 then θ(·, t) ∈ L2
loc(0,+∞, H1/2(0, π)).

We apply formula (4) to (3) with

g(t) = aw(t) +

∫ t

0

L(t− s)w(s) d s−R(t)ξ

and we find the following Volterra integral equation for w(x, t):

w(x, t)−
∫ t

0

eA(t−s)
[
aw(s) +

∫ s

0

L(s− r)w(r) d r

]
d s

=

{
eAtξ −

∫ t

0

eA(t−s)R(s)ξ d s

}
−A

∫ t

0

eA(t−s)Df(s) d s (5)

Theorem 1 and Corollary 1 follow from this formula, thanks to the properties
of the solutions of the (memoryless) heat equation stated in Theorem 3.

See [19] for the theory of Volterra integral and integro-differential equations
in Banach spaces, and [6] for further information on the semigroup approach to
boundary value problems for parabolic equations.

2.1 Projection of the system on the eigenspaces

The previous results allows us to project system (3) on the eigenvectors of the
operator A. Let

φn(x) =

√
2

π
sinnx , n ∈ N .

So, {φn} is an orthonormal basis of L2(0, π), whose elements are eigenvectors
of the operator A in (2):
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φ′′n = −n2φn , φn(0) = 0 , φn(π) = 0 .

Let

wn(t) =

∫ π

0

w(x, t)φn(x) dx ξn =

∫ π

0

ξ(x)φn(x) dx .

Then wn(t) solves

w′n(t) = (a−n2)wn+

∫ t

0

L(t−s)wn(s) d s−R(t)ξn+ng(t) , g(t) =

√
2

π
f(t)

and
w(x, t) =

∑
φn(x)wn(t) . (6)

We introduce
µ2
n = n2 − a

(we have µn > 0 for large n) so that

wn(t)−
∫ t

0

e−µ
2
n(t−τ)

∫ τ

0

L(τ − s)wn(s) d s d τ

=

(
e−µ

2
nt −

∫ t

0

e−µ
2
n(t−s)R(s) d s

)
ξn +

∫ t

0

(
ne−µ

2
n(t−s)

)
g(s) d s . (7)

Let T > 0. We define a transformation L in L2(0, T ;L2(0, π)), as follows:

L
(∑

φn(x)hn(t)
)

=
∑

φn(x) (Lnhn) (t)

where

(Lnh) (t) =

∫ t

0

e−µ
2
n(t−s)

∫ s

0

L(s− r)h(r) d r d s .

Then we have

(I − L)w =
∑

φn(x)

{(
e−µ

2
nt −

∫ t

0

e−µ
2
n(t−s)R(s) d s

)
ξn

+

∫ t

0

(
ne−µ

2
n(t−s)

)
g(s) d s

}
. (8)

We prove:

Lemma 3 The transformation L in L2(0, T ;L2(0, π)) is linear and continuous.
The transformation (I − L) is invertible and its inverse is continuous.

Proof. Linearity is clear. We prove the continuity of L, using the fact that
{φn} is an orthonormal basis of L2(0, π). This implies that∥∥∥(∑hn(t)φn(x)

)∥∥∥2
L2(0,T ;L2(0,π))

=
∑∫ T

0

|hn(t)|2 d t .
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Then we have:∫ T

0

|(Lnh) (t)|2 d t =

∫ T

0

∣∣∣∣∫ t

0

e−µ
2
n(t−s)

∫ s

0

L(s− r)h(r) d r d s

∣∣∣∣2 d t

≤ T 2

(∫ T

0

e−2µ
2
ns d s

)(∫ T

0

L2(s) d s

)(∫ T

0

h2(r) d r

)
d s

≤ C
∫ T

0

|h(s)|2 d s .

We can chose the constant C independent of n thanks to the fact that µ2
n > 0

for large n. So, we have∥∥∥L(∑hn(t)φn(x)
)∥∥∥2

L2(0,T ;L2(0,π))
=

∫ T

0

∫
0

, π
∣∣∣∑ (Lnhn) (t)φn(x)

∣∣∣2 dx d t

=

∫ T

0

∑
|(Lnhn) (t)|2 d t ≤ C

∑∫ T

0

|hn(s)|2 d s

= C
∥∥∥(∑hn(t)φn(x)

)∥∥∥2
L2(0,T ;L2(0,π))

.

This proves continuity of the transformation L and so also of I −L. In order to
prove that this last transformation has a bounded inverse, we exibit explicitly
its inverse.

To compute the inverse, we must solve, for every k(x, t) =
∑
φn(x)kn(t),

(I − L)
(∑

φn(x)fn(t)
)

= k(x, t) =
∑

φn(x)kn(t)

i.e.∑
φn

{
fn(t)−

∫ t

0

fn(τ)

∫ t−τ

0

L(t− τ − s)e−µ
2
ns d s d τ

}
=
∑

φn(x)kn(t) .

We introduce Hn(t), the resolvent kernels of

Zn(t) = −
∫ t

0

L(t− s)e−µ
2
ns d s . (9)

Then we must choose

fn(t) = kn(t)−
∫ t

0

Hn(t− s)kn(s) d s

and so

(I − L)
−1∑

φn(x)kn(t) =
∑

φn(x)

{
kn(t)−

∫ t

0

Hn(t− s)kn(s) d s

}
.
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Continuity of this transformation is seen as above, using the fact that µ2
n > 0

for large n, so that |Zn(t)| ≤M/µ2
n (for large n) where M = MT . So, Gronwall

inequality applied to

|Hn(t)| ≤ |Zn(t)|+
∫ t

0

|Zn(s)| · |Hn(s)| d s

gives

|Hn(t)| ≤ M

µ2
n

, M = MT . (10)

Continuity now follows as above.

Using (8) we find that

w(x, t) = (I − L)
−1∑

φn(x)

{(
e−µ

2
nt −

∫ t

0

e−µ
2
n(t−s)R(s) d s

)
ξn

−
∫ t

0

e−µ
2
n(t−s)gn(s) d s

}
=
∑

φn(x)

{
−
[∫ t

0

e−µ
2
n(t−s)gn(s) d s

+

∫ t

0

Hn(t− τ)

∫ τ

0

e−µ
2
n(τ−s)gn(s) d s d τ

]
+

[
e−µ

2
nt −

∫ t

0

e−µ
2
n(t−s)R(s) d s

−
∫ t

0

Hn(t− τ)

(
e−µ

2
nτ −

∫ τ

0

e−µ
2
n(τ−s)R(s) d s

)
d τ

]
ξn

}
(11)

Now we recall the definition of controllability at time T and we can state:

Theorem 4 Equation (1) is controllable to 0 at time T if for every sequence
{ξn} ∈ l2 there exists a function g ∈ L2(0, T ) which solves the following moment
problem: [∫ T

0

(
ne−µ

2
n(T−s)

)
g(s) d s

−
∫ T

0

Hn(T − τ)

∫ τ

0

(
ne−µ

2
n(τ−s)

)
g(s) d s d τ

]

= −

[
e−µ

2
nT −

∫ T

0

e−µ
2
n(T−s)R(s) d s

−
∫ T

0

Hn(T − τ)

(
e−µ

2
nτ −

∫ τ

0

e−µ
2
n(τ−s)R(s) d s

)
d τ

]
ξn . (12)

The proof of Theorem 2 is then reduced to the proof that this moment
problem is not solvable.
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3 The proof of Theorem 2

Let N0 be such that
n ≥ N0 =⇒ µ2

n > 0 .

We shall consider the moment problem in Theorem 4 only for the indices n ≥ N0

and we shall prove that it can’t be solved.
We first examine the right hand side of (12). We recall that Hn(t) is the

resolvent kernel of Zn(t) in (9) so that the following equality holds:

Hn(t) = −
∫ t

0

L(t− s)e−µ
2
ns d s+

∫ t

0

[∫ t−τ

0

L(t− τ − s)e−µ
2
ns d s

]
Hn(τ) d τ

The function L(t) is bounded on [0, T ] for every T > 0 and µ2
n > 0, so, using

Gronwall inequality, there exists C (which depends on T but not on n) such
that

|Hn(t)| ≤ C 1

µ2
n

(a fact already used in the proof of Lemma 3).
We fix T such that R(T ) 6= 0. On every compact interval, using boundedness

of M ′(t) hence of R′(t), we have:∫ T

0

R(s)e−µ
2
n(T−s) d s =

1

µ2
n

(
R(T )− e−µ

2
nTR(0)−

∫ T

0

e−µ
2
n(T−s)R′(s) d s

)
,∣∣∣∣∣

∫ T

0

e−µ
2
n(T−s)R′(s) d s

∣∣∣∣∣ ≤ const

µ2
n

,∣∣∣∣∣
∫ T

0

Hn(T − τ)

∫ τ

0

eµ
2
n(τ−s)R(s) d s d τ

∣∣∣∣∣ ≤ const

µ4
n

,∣∣∣∣∣
∫ T

0

Hn(T − τ)e−µ
2
nτ d τ

∣∣∣∣∣ ≤
(∫ T

0

e−µ
2
nτ d τ

)
sup
[0,T ]

|Hn(t)| ≤ const

µ4
n

(inequality (10) is used in the last row).
So, we have also∣∣∣∣∣

∫ T

0

Hn(T − τ)

(
e−µ

2
nτ +

∫ τ

0

eµ
2
n(τ−s)R(s) d s

)
d τ

∣∣∣∣∣ ≤ const

µ4
n

.
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Let

dn =

[
e−µ

2
nT −

∫ T

0

e−µ
2
n(T−s)R(s) d s

−
∫ T

0

Hn(T − τ)

(
e−µ

2
nτ −

∫ τ

0

e−µ
2
n(τ−s)R(s) d s

)
d τ

]
ξn

=

[
e−µ

2
nT − 1

µ2
n

(
R(T )− e−µ

2
nTR(0)−

∫ T

0

e−µ
2
n(T−s)R′(s) d s

)

−
∫ T

0

Hn(T − τ)

(
e−µ

2
nτ −

∫ τ

0

e−µ
2
n(τ−s)R(s) d s

)
d τ

]
ξn .

Using the existence of C such that

µ2
ne
−µ2

nT <
C

µ2
n

the previous equalities, with R(T ) 6= 0, give

µ2
ndn =

(
−R(T ) +

Mn

µ2
n

)
ξn

where {Mn} is a bounded sequence. Hence, we get:

Lemma 4 Let R(T ) 6= 0. There exists N > N0 with the following property: for
every {cn} ∈ l2([N,+∞)) the equation in l2([N,+∞))

µ2
ndn =

(
−R(T ) +

Mn

µ2
n

)
ξn = cn

admits a solution {ξn} ∈ l2([N,+∞)).

We go back to the moment problem (12) for n ≥ N . If equation (1) is
controllable to 0 at time T , then the moment problem[∫ T

0

(
nµ2

ne
−µ2

n(T−s)
)
g(s) d s

−
∫ T

0

Hn(T − τ)

∫ τ

0

(
nµ2

ne
−µ2

n(τ−s)
)
g(s) d s d τ

]
= cn

is solvable for every sequence {cn} ∈ l2 = l2(N,+∞). We exchange the order
of integration and we rewrite this equalities as∫ T

0

En(s)g(T − s) d s = cn , n ≥ N (13)
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where

En(s) = nµ2
n

[
e−µ

2
ns −

∫ s

0

e−µ
2
n(s−τ)Hn(τ) d τ

]
We recall from [3, Theorem I.2.1] that if the moment problem (13) is solvable for
every l2-sequence {cn} (n ≥ N) then the sequence {En(t)} admits a bounded
biorthogonal sequence {χn(t)} in L2(0, T ); i.e. if and only if there exists a
bounded sequence {χn(t)} in L2(0, T ) such that∫ T

0

En(t)χk(t) d t = δn,k =

{
1 if n = k
0 if n 6= k .

We are going to prove that this sequence does not exist, relying on known
properties of the (memoryless) heat equation (for a positive result on the same
lines, for Schroedinger equation, see [22]). We proceed in two steps: the first
step computes “explicitly” Hn(t). The second step, using this expression of
Hn(t), shows that a bounded sequence {χn(t)} does not exist, i.e. the moment
problem is not solvable.

We proceed with the proof.

Step 1: a formula for Hn(t). Here we find a formula for Hn(t), for
every fixed index n. So, for clarity, the fixed index n is not indicated in the
computations and Hn(t) (any fixed n) is denoted H(t). Analogously, µ2

n, with
n fixed, is indicated as µ2. Furthermore, we use ? to denote the convolution,

f ? g = (f ? g)(t) =

∫ t

0

f(t− s)g(s) d s .

We shall use the commutativity and the associativity of the convolution:

f ? g = g ? f , f ? (g ? h) = f ? (g ? h) .

The convolution of a function with itself is denoted as follows:

f?1 = f , f?2 = f ? f , f?k = f ? f?(k−1) .

We introduce

ek(t) =
tk

k!
e−µ

2t so that e0 ? ek = ek+1 .

By definition, H(t) is the resolvent kernel of

Z(t) = −
∫ t

0

L(t− s)e−µ
2s d s = −L ? e0 .

We shall use:

Lemma 5 Let G(t) be any (integrable) function and G̃ = G ? ek. Then,

Z ? G̃ = ek+1 ? (−L ? G)

11



In fact:

Z ? G̃ = (−L ? e0) ? (G ? ek) = (e0 ? ek) ? (−L ? G) = ek+1 ? (−L ? G) .

The previous lemma shows that

Z?k = (−1)kL?k ? ek−1 .

The known formula of the resolvent ([11, p. 36]) gives

H(t) =

+∞∑
k=1

(−1)k−1Z?k = −
+∞∑
k=1

L?k ? ek−1 =

= −
∫ t

0

(
+∞∑
k=1

L?k(t− s) sk−1

(k − 1)!

)
e−µ

2s d s . (14)

The series converges uniformly since the following holds:

|L(t)| < M 0 ≤ t ≤ T =⇒ |L?k(t)| ≤ T kMk

k!
0 ≤ t ≤ T .

Step 2: the bounded biorthogonal sequence does not exist. We
reintroduce dependence on the index n. So

ek(t) =
tk

k!
e−µ

2
nt .

We go back to the moment problem (13). We prove that it is not solvable as
follows: we prove that if the sequence {En(x, t)} admits a biorthogonal sequence
{χk(t)}, then this sequence cannot be bounded. So, let

δn,k = (nµ2
n)

[∫ T

0

χk(t)

(
e−µ

2
nt −

∫ t

0

Hn(t− τ)e−µ
2
nτ d τ

)
d t

]
. (15)

We have, using (14):

∫ t

0

Hn(t− τ)e−µ
2
nτ d τ = e0 ? Hn = −e0 ?

(
+∞∑
k=1

L(?k) ? ek−1

)
= −

+∞∑
k=1

L(?k) ? ek

= −
∫ t

0

[
+∞∑
k=1

L(?k)(t− s)s
k

k!

]
e−µ

2
ns d s =

∫ t

0

G(t, s)e−µ
2
ns d s .

Note that G(t, s) does not depend on n and equality (15) can be written as

δn,k =

∫ T

0

(
nµ2

ne
−µ2

nr
)[

χk(r)−
∫ T

r

G(s, r)χk(s) d s

]
d r . (16)

12



If {χk(t)} is bounded in L2(0, T ) then the sequence of the functions in the

bracket is a bounded biorthogonal sequence of
{
nµ2

ne
−µ2

nt
}

. We proved in [14]

that for every T > 0 the sequence {µ2
nλne

−µ2
nt} does not admit any bounded

biorthogonal sequence in L2(0, T ) and so {χk(t)} cannot be bounded. This com-
pletes the proof of Theorem 2.

For completeness, we sketch the proof of the absence of bounded biorthogonal
sequences (see [14] for additional details):

Lemma 6 Any sequence {Ψn(t)} which is biorthogonal to {µ2
nλne

−µ2
nt} in L2(0, T )

is unbounded.

Proof. Let en be the function e−µ
2
nt in L2(0,∞) and denote by eTn its restriction

to (0, T ).

E(∞) = cl span{en} ⊆ L2(0,∞) , E(T ) = cl span{eTn} ⊆ L2(0, T ) .

E(∞) is a proper subspace of L2(0,∞) (Müntz Theorem, see [30]). Let PT :
L2(0,∞) → L2(0, T ) be the operator PT f = f |(0,T ). The operator PT is an
isomorphism between E(∞) and E(T ) (see [30, formula (9.a) p. 55]).

Suppose that {ψ̃n} is biorthogonal to {eTn} in L2(0, T ). We prove that the
sequence {ψ̃n} is exponentially unbounded.

Let ψn be the orthogonal projection of ψ̃n on E(T ). Then, {ψn} is biorthog-
onal to {eTn} too and

‖ψn‖L2(0,T ) ≤ ‖ψ̃n‖L2(0,T ) .

We have ( (·, ·) is the inner product in the indicated spaces)

δjn = (ψj , e
T
n )L2(0,T ) = (ψj , e

T
n )E(T ) = (ψj , PT en)E(T ) = (P ∗Tψj , en)E(∞) .

Hence {P ∗Tψn} is biorthogonal to {en} and furthermore ϕn = P ∗Tψn ∈ E(∞)
since PT ∈ L(E(∞), E(T )). Hence, {ϕn} is the biorthogonal sequence of {en}
whose L2-norm is minimal.

Using [9, Lemma 3.1] we have:

||ϕn||L2(0,∞) =
2

n2
e[π+O(1)]n, n→∞ . (17)

Since P ∗T ∈ L(E(T ), E(∞)) is boundedly invertible, there exist positive num-
bers m and M such that for every n we have

m‖ψn‖L2(0,T ) ≤ ‖P ∗Tψn‖L2(0,+∞) ≤M‖ψn‖L2(0,T )

since P ∗Tψn = ϕn. It follows that

‖ψ̃n‖L2(0,T ) ≥ ‖ψn‖L2(0,T ) ≥
1

M
‖ϕn‖L2(0,∞) ∀n . (18)

So, any biorthogonal sequence of {e−µ2
nt} in L2(0,+∞) is exponentially un-

bounded and from (18) we see that any biorthogonal sequence of {e−µ2
nt}n≥NT

in L2(0, T ) is exponentially unbounded too.

13



Let us go back to the sequence {Ψn(t)}. This sequence cannot be bounded.

Otherwise, the sequence {µ2
nλnΨk(t)} is a biorthogonal sequence to {e−µ2

nt}
such that

‖µ2
nλnΨk(t)‖L2(0,T ) ≤ Cµ2

nλn ≤ Cn3

a contradiction to (17) and (18).

This result can be applied to the sequence {Ψn(t)},

Ψn(t) =

[
χn(t)−

∫ T

t

G(s, t)χn(s) d s

]

which appears in (16). Lemma 6 shows that this sequence is unbounded, as we
wished to prove.

Remark 7 Instead of a time T in which R(T ) 6= 0 we might have used a time
T at which R(k)(T ) 6= 0 and R(m)(T ) = 0 for m < k, but this does not change
the content of Theorem 2 in an essential way.
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