Millimeter-wave load-pull techniques

Original

Availability:
This version is available at: 11583/2536696 since:

Publisher:
IEEE / Institute of Electrical and Electronics Engineers Incorporated:445 Hoes Lane:Piscataway, NJ 08854:

Published
DOI:

Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

01 May 2024
Millimeter-wave load-pull techniques

Valeria Teppati
ETH Zürich

This work was supported in part by the Swiss National Science Foundation (SNSF) under Grant R’Equip 206021_144952/1 and Grant PMPDP2_139697 and by ETH Zürich under Scientific Equipment Program 03721

Outline

- Introduction
 - Basics of large signal characterization
 - Applications
- Large Signal Characterization at high frequency
 - Existing solution examples
 - Pros and cons
- A W-band on-wafer load-pull system
 - Block scheme
 - Calibration and accuracy verification
- Measurement examples
- Conclusions
Large signal Characterization

<table>
<thead>
<tr>
<th>Basics</th>
<th>Applications</th>
</tr>
</thead>
</table>
| • Linear characterization (small signal) provides full information as long as the device under test (DUT) can be considered linear
 e.g. passive components, transmission lines
 • Active devices show nonlinear behavior when excited in realistic (large signal) conditions
 • The extension of S-parameters to X-parameters might be too complicated
 • What information do we really need? | • Many applications require measuring a few device performances in CW, while exciting its nonlinearities
 • Examples:
 • Performance/technology evaluation
 • Circuit design
 • Large signal models refinement
 • Reliability/failure tests
 • Production tests |

Introduction | Large signal characterization | A W-band on-wafer load-pull system | Measurement examples

Basics of Large signal Characterization

• We focus on the simplest example: a two port active device (a transistor in common source configuration) fed with a single CW tone @ \(f_0 \)

• Interesting performances:
 • DC power, \(P_{DC} = V_{GS} I_G + V_{DS} I_D \)
 • Output power: \(P_{OUT} = |b_2|^2 - |a_2|^2 \) @ \(f_0, 2f_0, \ldots, n\ell \)
 • Gain = \(P_{OUT}/P_{IN} \) @ \(f_0 \)
 • Power added efficiency, PAE = \((P_{OUT} - P_{IN})/P_{DC} \) @ \(f_0 \)

• Influence parameters:
 • Bias point (DC supply)
 • Frequency \(f_0 \)
 • Input power: \(P_{IN} = |a_1|^2 - |b_1|^2 \)
 • \(\Gamma_L = a_2/b_2 \) @ \(f_0, 2f_0, \ldots, n\ell \)
Load-pull measurements

- A simplified block scheme of an on-wafer load-pull measurement system

- On-wafer “environment” adds complications
 - calibration
 - additional losses

Load-pull calibration – vector calibration

- Vector “VNA-like” calibration

On-wafer or calibration substrate standards
Load-pull calibration – vector calibration

- Vector “VNA-like” calibration

![Diagram of vector calibration setup]

On-wafer or calibration substrate standards

Load-pull calibration – power calibration

- Power calibration

![Diagram of power calibration setup]

On-wafer or calibration substrate thru

WG or coax standards + power meter

| Introduction | Large signal characterization | A W-band on-wafer load-pull system | Measurement examples |
Load-pull calibration

- After calibration it is possible to modify the setup at the right of reflectometer 2 and at the left of reflectometer 1, without affecting calibration.

Solutions for tunable loads

- Main issue: gamma limitation
 - Losses cannot be compensated
 - 2.5 dB losses reduce $|\Gamma|=1$ to $|\Gamma|=0.56$
 - 0.2 dB losses reduce $|\Gamma|=1$ to $|\Gamma|=0.95$

- Main issue: gamma varies with P_{out}
 - Compensated by iterations
Solutions for tunable loads

Mechanical Tuners

- **Main issue:** gamma limitation
 - Losses cannot be compensated
 - 2.5 dB losses reduce $|\Gamma| = 1$ to $|\Gamma| = 0.56$
 - 0.2 dB losses reduce $|\Gamma| = 1$ to $|\Gamma| = 0.95$

Active Load – closed loop

- **Main issue:** possible oscillations
 - Reduced risk when losses are reduced

Introduction

A W-band on-wafer load-pull system

Large signal characterization

- Mechanical tuners exist (sold by main vendors) in the millimeter-wave range, up to 110 GHz
 - require pre-calibration
 - Including probe and set-up losses, 0.5-0.6 gamma is reachable on-wafer

A W-band on-wafer load-pull system

Measurement examples

Load-pull measurements above 60 GHz

References

Load-pull measurements above 60 GHz

Active Loads
- Open loop active loads combined with
 - 6-port measurements
 - Mixed signal measurement technique

References

Load-pull measurements above 60 GHz

In Situ Tuners
- "In-situ" (integrated)
 - Still gamma limited
 - Integration required
 - no real-time

References
94 GHz on-wafer active-loop load-pull system

- Mechanical tuners with pre-calibration: less accurate than real-time

- Mechanical tuners with real-time measurements: reduced gamma (0.5 maximum is typical)

- In situ tuners: integration with the device / highly developed fabrication capabilities

- Active loads with real-time measurements are a good solution, not yet widely diffused
94 GHz on-wafer active-loop load-pull system

- Simplified block diagram (*)

- **Novelty** – the *down-conversion-based* active loop
 - Similar techniques exist to realize IF loads, at a few hundreds of MHz

Load-pull system calibration – step 1

- SW1 and SW2 in position 1
- On-wafer (or calibration substrate) standards are connected and measured
Load-pull system calibration – step 2

- SW1 in position 2 and SW2 in position 1, thru connection

Measurement Phase

- SW1 in position 1 and SW2 in position 2
- It is possible to modify the set up (add a circulator, or a spectrum analyzer) at the right of reflectometer 2 and at the left of reflectometer 1, without affecting calibration
Residual error comparison

- A “thru” (on-wafer direct connection) should have 0 dB gain
- Its gain variation vs. Γ_L is taken as an estimation of the accuracy of the measurement

![Graph showing residual error comparison.](image)

Measurement examples

- 0.1x100µm² GaN HEMT
 - $V_{DS}=5\,V$, $V_{GS}=-3\,V$ (class A)

![Measurement example graph.](image)
Measurement examples

- 0.3x8.4 μm² InP/GaAsSb DHBT
 - $V_{CE} = 1.6$ V, $V_{BE} = 0.75$ V (class AB)

Introduction

A W-band on-wafer load-pull system

Large signal characterization

Conclusions

- Basics of large signal characterization
 - Mechanical tuners vs. active loads

- Existing solutions for large signal characterization at high frequencies

- W-band, down-conversion active loop, on-wafer load-pull system

- Accuracy
- Measurement examples