Millimeter-wave load-pull techniques

Original

Availability:
This version is available at: 11583/2536696 since:

Publisher:
IEEE / Institute of Electrical and Electronics Engineers Incorporated:445 Hoes Lane:Piscataway, NJ 08854:

Published
DOI:

Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Millimeter-wave load-pull techniques

Valeria Teppati
ETH Zürich

This work was supported in part by the Swiss National Science Foundation (SNSF) under Grant R’Equip 206021_144952/1 and Grant PMPDP2_139697 and by ETH Zürich under Scientific Equipment Program 03721

Outline

- Introduction
 - Basics of large signal characterization
 - Applications
- Large Signal Characterization at high frequency
 - Existing solution examples
 - Pros and cons
- A W-band on-wafer load-pull system
 - Block scheme
 - Calibration and accuracy verification
- Measurement examples
- Conclusions
Large signal Characterization

<table>
<thead>
<tr>
<th>Basics</th>
<th>Applications</th>
</tr>
</thead>
</table>
| - Linear characterization **(small signal)** provides full information as long as the device under test (DUT) can be considered linear
 - e.g. passive components, transmission lines
- Active devices show nonlinear behavior when excited in realistic **(large signal)** conditions
- The extension of S-parameters to X-parameters might be too complicated
- What information do we really need? | - Many applications require measuring a few device performances in CW, while exciting its nonlinearities
 - Examples:
 - Performance/technology evaluation
 - Circuit design
 - Large signal models refinement
 - Reliability/failure tests
 - Production tests |

Introduction

Large signal characterization

A W-band on-wafer load-pull system

Measurement examples

Basics of Large signal Characterization

- We focus on the simplest example: a two port active device (a transistor in common source configuration) fed with a single CW tone @ f_0

- Interesting performances:
 - DC power, $P_{DC} = V_{GS} I_G + V_{DS} I_D$
 - Output power: $P_{OUT} = |b_2|^2 - |a_2|^2 @ f_0, 2f_0, \ldots, nf_0$
 - Gain = $P_{OUT} / P_{IN} @ f_0$
 - Power added efficiency, $\text{PAE} = (P_{OUT} - P_{IN}) / P_{DC} @ f_0$

- Influence parameters:
 - Bias point (DC supply)
 - Frequency f_0
 - Input power: $P_{IN} = |a_1|^2 - |b_1|^2$
 - $\Gamma_L = a_2 / b_2 @ f_0, 2f_0, \ldots, nf_0$

Load-pull measurements

- A simplified block scheme of an on-wafer load-pull measurement system

- On-wafer “environment” adds complications
 - calibration
 - additional losses

Load-pull calibration – vector calibration

- Vector “VNA-like” calibration

On-wafer or calibration substrate standards
Load-pull calibration – vector calibration

- Vector “VNA-like” calibration

On-wafer or calibration substrate standards

Load-pull calibration – power calibration

- Power calibration

On-wafer or calibration substrate thru

WG or coax standards + power meter
Load-pull calibration

- After calibration it is possible to modify the set up at the right of reflectometer 2 and at the left of reflectometer 1, without affecting calibration.

![Diagram of load-pull setup]

Introduction
A W-band on-wafer load-pull system
Measurement examples

Solutions for tunable loads

- Mechanical Tuners
 - Main issue: gamma limitation
 - Losses cannot be compensated
 - 2.5 dB losses reduce $|\Gamma|=1$ to $|\Gamma|=0.56$
 - 0.2 dB losses reduce $|\Gamma|=1$ to $|\Gamma|=0.95$

- Active Load – open loop
 - Main issue: gamma varies with P_{OUT}
 - Compensated by iterations

![Diagram of mechanical tuner and active load]
Solutions for tunable loads

Mechanical Tuners

- Main issue: gamma limitation
 - Losses cannot be compensated
 - 2.5 dB losses reduce $|\Gamma| = 1$ to $|\Gamma| = 0.56$
 - 0.2 dB losses reduce $|\Gamma| = 1$ to $|\Gamma| = 0.95$

Active Load – closed loop

- Main issue: possible oscillations
 - Reduced risk when losses are reduced

Introduction

Load-pull measurements above 60 GHz

Mechanical Tuners

- Mechanical tuners exist (sold by main vendors) in the millimeter-wave range, up to 110 GHz
 - require pre-calibration
 - Including probe and set-up losses, 0.5-0.6 gamma is reachable on-wafer

References

Load-pull measurements above 60 GHz

Active Loads
- Open loop active loads combined with
 - 6-port measurements
 - Mixed signal measurement technique

References

Load-pull measurements above 60 GHz

In Situ Tuners
- “In-situ” (integrated)
 - Still gamma limited
 - Integration required
 - no real-time

References

References
94 GHz on-wafer active-loop load-pull system

- Mechanical tuners with pre-calibration: less accurate than real-time

- Mechanical tuners with real-time measurements: reduced gamma (0.5 maximum is typical)

- In situ tuners: integration with the device / highly developed fabrication capabilities

- Active loads with real-time measurements are a good solution, not yet widely diffused

Introduction

Large signal characterization

A W-band on-wafer load-pull system

Measurement examples

Realized at MWE laboratory, D-ITET, ETH Zürich, Switzerland
94 GHz on-wafer active-loop load-pull system

- Simplified block diagram (*)

![Block Diagram Image]

- **Novelty** – the *down-conversion-based* active loop
 - Similar techniques exist to realize IF loads, at a few hundreds of MHz

Load-pull system calibration – step 1

- **SW1 and SW2 in position 1**
- On-wafer (or calibration substrate) standards are connected and measured
Load-pull system calibration – step 2

- SW1 in position 2 and SW2 in position 1, thru connection

Measurement Phase

- SW1 in position 1 and SW2 in position 2
- It is possible to modify the set up (add a circulator, or a spectrum analyzer) at the right of reflectometer 2 and at the left of reflectometer 1, without affecting calibration
Residual error comparison

- A “thru” (on-wafer direct connection) should have 0 dB gain
- Its gain variation vs. Γ_L is taken as an estimation of the accuracy of the measurement

![Residual error comparison graph]

Measurement examples

- 0.1x100µm² GaN HEMT
 - $V_{DS}=5 \text{ V}, \ V_{GS}=-3\text{V}$ (class A)
Measurement examples

- 0.3x8.4 \mu m^2 InP/GaAsSb DHBT
 - \(V_{CE} = 1.6 \) V, \(V_{BE} = 0.75 \) V (class AB)

Conclusions

- Basics of large signal characterization
 - Mechanical tuners vs. active loads
- Existing solutions for large signal characterization at high frequencies
- W-band, down-conversion active loop, on-wafer load-pull system
 - accuracy
 - measurement examples