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 

Abstract—This paper describes the Hardware-In-the-Loop (HIL) simulation methodology used for the verification of functional 

requirements of e-st@r-I CubeSat. The satellite’s behavior has been investigated via HIL simulation and the results obtained are 

consistent with the expected values in any operative conditions. It has been proven that HIL simulation is a valuable means for 

supporting the verification process of small satellites, and may help reducing time and cost of the development phase and increasing 

mission reliability. 

 

Index Terms—CubeSat, Hardware in the Loop, HIL architecture, Model & Simulation, Space Systems Verification 

 

I. INTRODUCTION 

HE design and verification processes of any engineering system make use of modeling and simulation solutions. Several 

techniques have been developed in this field thanks to the dramatic progress of technology in the last decades. One effective 

modeling and simulation method is the Hardware-In-the-Loop (HIL) approach. This methodology consists in the 

combination of computer simulation and hardware in a single coherent platform [1].  

Typically, HIL simulation is the last stage of the testing and integration process of an engineering system. We can define a few 

important stages of interaction between the elements of the system along this process, as detailed by Eickhoff in [2]:  

1) Algorithm in the loop (AIL). The algorithms of interest are added to the pure numerical simulation. They are not yet 

written in the formal language that will be used on the final hardware and are not run on it. AIL is mainly used at design 

stages with the objective of testing the algorithms 

2) Software in the loop (SIL). Algorithms are translated into the final programming language, but they run on ground 
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hardware. The software carries out all the required functions, but in general its performance is different with respect to 

running it on a flight unit architecture (e.g. PC vs embedded-PC) 

3) Hardware in the loop (HIL). Real hardware is included in the simulation loop, and consists typically of sensors and/or 

actuators. HIL is a hybrid software-hardware simulation architecture, in which the hardware part can vary from a few 

pieces to the fully integrated system. HIL technique is particularly useful for the verification of all those elements that 

operate in special environments and conditions which are difficult to reproduce in a laboratory. It may help to detect 

unexpected behaviors and/or failures arising from the integration of the component in the global system. 

In the literature there are some examples regarding simulation based on HIL technology. A wide range of options exists in terms 

of level of complexity. An example of a complex HIL architecture is the simulation of on-orbit docking between two spacecraft 

at the Spacecraft Robotic Laboratory of the Naval Post Graduate School in Monterey, CA [3]. In this facility, the target and the 

chaser are physically reproduced, while the rest of the system is simulated on a real-time simulation computer. In [4], the authors 

show the verification campaign carried out for the Special Purpose Dextrous Manipulator installed onboard the International 

Space Station. In this case, the space hardware is simulated and the contact dynamics is emulated using a rigid robot. In [5], the 

authors describe a ground-based HIL simulation facility for Rendez-Vous and Docking (RVD), called European Proximity 

Operations Simulator (EPOS), at German Space Center. The laboratory is aimed at providing test and verification capabilities for 

complete RVD processes of on-orbit servicing missions using two robots for the physical real-time simulation of the maneuvers. 

Other examples of HIL simulation can be found in literature applied to non space-related systems, as described in [6] – [10]. HIL 

technique can be applied for verification from component to element level. In [11], HIL simulation is used for the development 

of a network of sensors for pico-satellite missions. This work underlines how special features of the network are investigable 

only via the HIL approach. Another interesting example is the development of a HIL simulator for the simultaneous test of an 

Attitude Heading Reference System and an Attitude Control System based on momentum wheels [12]. Finnset et al. dealt with 

the simulation of the attitude control system of a small satellite, the European Student Moon Orbiter, using a hybrid SIL-HIL 

architecture [13]. All these applications show the effectiveness of a test campaign conducted via HIL simulation. 

In this paper, the use of the HIL approach to support the engineering team during CubeSat missions development is 

documented. CubeSats are small satellites which share a common interface and equipment standardization [14]. The basic 

CubeSat is a 10cm-side cube-shaped platform whose mass is less than 1.33 kilograms [15]. By its nature, a CubeSat is a cheap 

spacecraft which can be produced in only a few months. CubeSats have been mainly developed for educational purposes, but 

they are increasingly being used for real science and service missions [16]. CubeSats can be useful for the attainment of a broad 

set of mission goals, including science, technology demonstration, communications, and Earth observation [17] [18]. This will 

require the development of adequate technology to increase CubeSat performance. Furthermore, it is necessary to improve 
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mission reliability, because educationally-driven missions have often failed. The failure of CubeSats is dominated by infant 

mortality, which can be traced back to design weakness and/or ineffective Assembly-Integration-Verification (AIV) planning 

and execution. An effective and exhaustive Verification and Validation (V&V) process may help to increase the reliability of 

small-scale satellites, as claimed also by Dubos et al. [19]. 

The AeroSpace System Engineering Team (ASSET) has been working on small satellite missions of Politecnico di Torino 

since 2003 [20]. One of the main research fields deals with defining and implementing effective and efficient methodologies to 

support the satellite development during all phases of its life cycle. To this purpose, a Model&Simulation-based tool has been 

developed to support and improve the AIV activities within a CubeSat project. In this paper, the description of a V&V process 

based on HIL architecture is provided. A HIL simulator has been designed and implemented for a case of interest to demonstrate 

the feasibility of the approach. The application of HIL simulation improves the understanding of the actual behavior of the 

onboard devices as well as the interaction among pieces of hardware included in the test. The same results are not achievable 

with AIL and SIL simulation. The HIL approach also simplifies the modeling activity with respect to AIL and SIL techniques. 

The real hardware can then be tested under several mission conditions without the need of sophisticated experimental facilities. 

Furthermore, results from HIL simulation may be used to refine the models used in the AIL/SIL simulations of future projects. In 

this paper, main opportunities are highlighted together with challenges peculiar to CubeSat applications. 

Section II presents the rationale for the research and potential advantages stemming from the application of the HIL technique 

to CubeSat projects. In Section III, the CubeSat project assumed as test-case is briefly described. Section IV represents the main 

content of the article. It includes the description of the HIL simulator’s architecture, the working principle, test settings and run. 

In Section V the results of the tests are illustrated and discussed, then conclusions and final remarks are suggested in Section VI. 

 

II. CUBESAT VERIFICATION AND HIL SIMULATION  

Mission success is highly influenced by a robust design on the one hand, and by an effective verification and validation 

campaign on the other hand. With respect to the V&V activity, it shall be noticed that a major difference between CubeSats and 

traditional spacecraft exists. To date, the main objective of CubeSat V&V campaigns has been the demonstration of the 

satellite’s capability to survive the launch phase without jeopardizing the launch vehicle and other spacecraft in the payload bay. 

This implies that CubeSats have been extensively tested against launch environment requirements upon request of launch 

authorities. Unfortunately, minor effort was committed to the verification of functional and operational requirements. These 

verifications are fully demanded to CubeSats developers, and no guidelines exist. 

The International Organization for Standardization (ISO) is working on the definition of a new standard devoted to the 
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verification of small-scale satellites. The standard is meant to improve the reliability of this class of satellites, while keeping its 

nature of low-cost and fast-delivery. In fact, some tests are necessary to improve the reliability of small-scale satellites to a level 

acceptable as a subject of commercial investment. At the same time, applying the same test requirements and methods as the 

ones for traditional large/medium satellites would undermine the advantage of low-cost and fast-delivery. The new ISO standard 

will reflect the work done within the Nano-satellite Environmental Tests Standardization project described in [21]. The European 

Space Agency (ESA) has recently launched the Fly Your Satellite! initiative: selected university teams from EU and Canada are 

supported by ESA’s experts for the development of their CubeSats. The project aims at increasing CubeSat mission reliability 

through several actions: to improve design implementation, to define best practice for conducting the verification process, and to 

make the CubeSat community aware of the importance of verification.  

The activity discussed in the paper is located within this framework and it is aimed at improving the effectiveness of the 

functional verification of CubeSat. It is worth mentioning that for CubeSat programs the functional verification is usually carried 

out via simulation with no hardware in the loop. In most cases, CubeSats are tested against functional requirements in ambient 

condition, then they undergo the environmental tests, followed each by a reduced functional test. Rarely CubeSat’s 

functionalities are tested in orbit-like conditions mainly because of two reasons. First, this test would require resources, facilities 

and costs usually unsustainable for a student initiative. The facilities devoted to these purposes are few and not appropriate for 

the test of so-small objects; they are expensive to hire, and inaccessible for unqualified users, i.e. the students. Second, it often 

occurs that the operational orbit is still unknown when the CubeSat is designed, integrated and tested. To reproduce physically 

the whole set of orbit conditions would result in a tremendous effort, in terms of both budget and testing time. The HIL approach 

represents the right balance between performance and cost of the testing activity. 

From the available literature and the authors’ experience, HIL simulation is a methodology which has not been largely used 

for small satellites, and in particular for CubeSats. HIL applications for small space platforms are quite recent and they are 

mainly oriented to the verification of Attitude Determination and Control System (ADCS) performances [22] or, more in general, 

the dynamic behavior of satellites [23]. It is the authors’ opinion that CubeSat projects may benefit to a great extent from the 

application of HIL technology in V&V activity for the following reasons: 

1) HIL simulation guarantees that we get the actual response from the real hardware included in the loop. HIL testing results 

much more authentic if compared with other simulation techniques. The presence of the hardware allows for example the 

accurate measurement of lag, signal noise, signal dropout, actuator saturation, and other parameters 

2) Including the real hardware in the simulation loop simplifies the modeling activity. It may happen that accurate 

mathematical models of some devices are too complex to build or they are not readily available. This is particularly true 

in case of a CubeSat project, which makes extensive use of Commercial Off The Shelf components 
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3) Unpredictable interactions among pieces of hardware can be detected and eventually straightened out. A better 

understanding of the integrated system’s behavior can be achieved early in the development process 

4) The hardware can be easily tested in several orbit conditions, as these are virtually reproduced. This is particularly useful 

for CubeSat platforms which shall be flexible enough to adapt to different mission conditions. 

Notwithstanding these opportunities, using HIL simulation for CubeSat projects entails a couple of concerns. First, the HIL 

approach necessitates test facilities equipped with flight hardware and dedicated support equipment. On the one hand, this means 

additional cost and longer test preparation time if compared with pure, AIL, or SIL simulations. On the other hand, the increased 

cost and time can be justified taking into account that HIL simulation yields greater insight into system’s performance than other 

simulations. Second, traditional space systems have been tested via the HIL technique for decades in the industry. CubeSats are 

usually developed by universities, research centers, and small medium enterprises, which are not generally provided with 

certified simulators. Brand-new simulators require to be validated and the process may represent an issue for CubeSat programs, 

for example in terms of budget constraints and return of the investment. If the simulator’s architecture is flexible enough, it can 

be used for several projects and not only for a specific mission, thus justifying the investment. 

The abovementioned challenges could be overcome by the standardization of ground support equipment and facilities devoted 

to HIL testing of CubeSats. The cooperation within the CubeSat Community plays a major role to this purpose. 

 

III. E-ST@R PROGRAM 

The e-st@r (Educational SaTellite @ politecnico di toRino) project is a structured hands-on education and research program 

based on CubeSats development. The main objective is to prepare future generation of space professionals. University programs 

shall take up the technological challenges issued by the scientific community and the industry, and they must help to improving 

knowledge necessary to build future space missions.  The big challenge is doing space missions at low cost while keeping 

reliability as high as possible. For these reasons, one of the main tasks of the e-st@r project is the development of methodologies 

to support both effectively and efficiently the entire satellite lifecycle. 

E-st@r-I is the first element of the CubeSats family we are working on. It is a 1U satellite developed by students with the aim 

of testing in space new technologies and design solutions. The CubeSat was chosen by ESA within the “Educational Payload on 

the Vega Maiden Flight” initiative. The launch took place in 2012, February 13
th

, from Europe’s spaceport in French Guyana. 

The second 1U CubeSat (e-st@r-II) is under test at the Systems and Technologies for Aerospace Research Laboratory (STAR 

Lab) of the Department of Mechanical and Aerospace Engineering. The team is also working at the development of a 3U 

CubeSat for Earth Observation based on remote sensing techniques. 
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A. CubeSat Configuration 

CubeSats included in the e-st@r program are equipped with a set of subsystems for supporting the mission and the payload.  

The payload of the first two CubeSats is constituted by an Active Attitude Determination and Control System (A-ADCS). The 

attitude is determined by algorithms and Kalman filter in the A-ADCS software using data sensed by an Inertial Measurement 

Unit (IMU), a magnetometer and the solar panels used as coarse sun sensors. The actuation is accomplished by three magnetic 

torquers (MT). The A-ADCS is controlled by a dedicated micro-controller (ARM9), on which the algorithms for determination 

and control run [24]. 

The spacecraft bus is constituted by the Electrical Power System (EPS), the Communication System (COMSYS), the Onboard 

Computer (OBC), and the Structure and Mechanism System (S&M). The EPS collects and transforms solar radiation energy by 

means of five solar panels made of GaAs cells. Electrical power is stored in two battery packs, then regulated and distributed to 

other subsystems through two power buses at 3,3 Volt and 5 Volt. The COMSYS is an in-house developed design and manages 

downlink and uplink signals. It exchanges information with the OBC by a piece of equipment based on commercial components: 

a PIC16 modulates/demodulates and checks the signal, a radio transceiver amplifies the signal and a dipole antenna 

transmits/receives the signal to/from Earth. The OBC performs all onboard activities related to the command and data handling 

functions, the data storage in the SD memory card, and time synchronization. The structure is an aluminum alloy box designed to 

endure launch loads, and to host and protect the electronics from the harsh space environment. It also includes the deployment 

system of the antenna. The CubeSat flight unit and the blocks scheme are shown in Fig. 1. The main bus represents the common 

interface among subsystems, for both the data flow and the power line. 

 

B. E-st@r-I verification campaign 

The CubeSat verification campaign has been designed according to ECSS (European Cooperation for Space Standardization) 

rules. It includes environmental, functional and miscellaneous verifications at different levels in different project phases. The 

following functions of the CubeSat can be verified in the HIL simulator at qualification stage [25]: 

1) to transmit/receive telemetry/commands 

2) to determine and control attitude 

3) to charge/discharge batteries 

The electric power consumption is also monitored and verified during the test. 

Requirements related to operations can also be demonstrated, such as: 
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1) the capability of the CubeSat to change mode of operation upon command from GCS 

2) the autonomous deployment of the antenna 

3) the execution of the activation sequence, i.e. the start-up sequence which runs once the CubeSat is powered immediately 

after the deployment from the P-POD (Poly Picosatellite Orbital Deployer). 

In order to verify the correct behavior of the satellite with respect to requirements and constraints, the remarkable mission and 

housekeeping telemetry parameters have been individuated: 

1) Status bytes: operative modes tag, mission time, packet ID number 

2) EPS telemetry: voltage, current and temperature of the batteries; battery bus voltage; current of the 5V and 3.3V buses; 

and voltage, current and temperature of the solar panels 

3) ADCS telemetry: quaternions, angular velocities and Earth Magnetic Field (EMF) 

 

Fig.  1. e-st@r-I picture and blocks scheme. Main subsystems and components are indicated in the boxes: EPS (Electrical 

Power System), OBC (On Board Computer), COMSYS (Communication System), and ADCS (Attitude Determination 

and Control System). All subsystems interface through the e-st@r-I main bus block. 
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IV. HARDWARE IN THE LOOP SIMULATOR 

This section describes the HIL simulator used for the test campaign carried out on the e-st@r-I CubeSat. The simulator has 

been designed to adapt to other missions and CubeSat configurations. It can be used throughout the verification process of the 

system, from design stage to qualification. For these reasons, it is characterized by an intrinsic modular architecture, as described 

hereafter. The design of the simulator follows the guidelines given by Eichkoff in [2]. A key feature of the simulator is the use of 

freeware. However, well known commercial products have been used to “validate” the HIL simulation results wherever possible. 

 

A. Simulator architecture 

Fig. 2 illustrates the global architecture of the HIL simulator. The two main blocks represent the simulation station and the test 

object, on the left hand side and on the right hand side respectively. The blocks are connected by the GSE (Ground Support 

Equipment) box. The simulation station includes a user interface represented by the Control Console block, whereas the test 

object interfaces also with the Ground Control Station (GCS) via Radio Frequency. 

The simulation unit is constituted by four main elements: 1) the simulator core, 2) the mission models, 3) the equipment 

models, and 4) the interface unit. 

The simulator core is constituted by a network of computers (PCs) with Linux as Operating System (OS). All the OS’s 

unnecessary functionalities are inhibited in order to guarantee as much as possible the real time activity of the simulator. This 

C++ program is able to: 1) schedule all tasks according to priorities, and time and logical sequence, 2) manage the logical 

interfaces with the test-object, i.e. the e-st@r-I CubeSat, 3) manage the I/O with the user through the Control Console (display, 

keyboard and mouse), and 4) save all the information related to the simulation session. Moreover, ad hoc kernels are defined to 

allow different types of simulations (real-time or off real-time) for several arrangements of the test object hardware. The 

interface unit must guarantee communications between the simulation unit and the satellite. The communication between the 

simulation unit and two programmable power packs (ISO-TECH IPS 3202), which are part of the GSE, is made through a RS232 

serial interface. The power units provide the correct values of currents and voltages to the solar panels connectors on the Power 

Control and Distribution Unit (PCDU) of the EPS, as if the five solar panels were in orbit. The communication to and from the 

A-ADCS ARM9 is provided by a serial cable; this communication is also used for debug purposes. The physical interfaces of the 

HIL test bench are shown in Fig. 3. 
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Fig.  2. Simulator architecture.  

 

Channel 0 (ttyUSB0) connects the simulation unit to MAX232 and MAX232 to ARM9’s debug port on the A-ADCS board. 

The A-ADCS board returns the Pulse Width Modulation (PWM) commands to the simulation unit. Through this channel, the 

operator controls  the A-ADCS’s behavior in real time. 

Channel 1 (ttyUSB1) connects the simulation unit to power pack N1. The simulation software conveys solar panels current 

and voltage values to set power pack N1 in order to simulate solar panels +x, +y, -y. The three power pack’s outputs are 

connected directly to the six-pin connectors on the PCDU. 

Channel 2 (ttyUSB2) connects the simulation unit to power pack N2. The simulation software conveys solar panels current 

and voltage values to power pack N2 in order to simulate solar panels +z and -z . Two out of the three power pack’s outputs are 

connected directly to the six-pin connectors on the PCDU. 

Channel 3 (ttyUSB3) connects the simulation unit to the IMU on the A-ADCS board. Simulated IMU’s raw data are 

transmitted to the A-ADCS board in terms of angular velocities and local EMF, formatted as specified in the IMU data-sheet. 

The simulation unit also includes electrical emulation of sensors and actuators. The output value of each sensor is computed 

by the simulator and it is read by the embedded system under test. In the same way, the embedded system commands the 

actuators by means of proper control signals and it sends back to the simulator the control values. 

 

 

Fig.  3. Simulator interfaces. See text for discussion. 
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The fundamental part of any simulation is the ability of modeling the elements of the system under study. A database with 

different mathematical and stochastic models, divided in several categories, has been built and is periodically updated. The 

simulator has been designed according to the principle that any simulated system should behave as the real one not only in terms 

of numerical or physical outputs, but also in terms of interface with the other elements in the simulation loop. Potential 

anomalies in actual sensor’s measurements shall also be reproduced in the virtual sensor. The level of models’ detail shall be 

carefully evaluated taking into account the accuracy of the simulation on the one side, and the computational cost on the other 

side. Usually, increasingly more detailed models are used according to the advancement of the design.  The models come from 

literature when available, or they are derived from information given by the manufacturers, or they can be obtained from data 

acquired during open-loop testing of the specific equipment. 

The simulated satellite’s equipment are: 

1) solar panels and EPS’s temperature sensors. Their models have been developed from data according to [26]. Using the 

simulated information of Sun position, satellite attitude, and thermal conditions, the voltage and current supplied by each 

panel are computed. These information are used to set the power units that are connected to the EPS board to power the 

CubeSat with the desired voltages and currents 

2) IMU. The models of the gyroscopes and of the tri-axial magnetometer are included in the simulator [27]. These models 

are used in the attitude determination loop 

3) MT. The models of the magnetic actuators [27] and the PWM drivers [28] are used to calculate the magnetic dipole that, 

together with the EMF simulated data, generates the control torque. 

The orbital conditions are simulated through the models of: 1) the orbit by a Simplified General Perturbation propagator 

(SGP4); 2) the rotational dynamics and kinematics of the satellite; 3) the thermal flows hitting the satellite [29]; and 4) the EMF 

[30]. The orbital position is necessary for obtaining the local sun vector and the local magnetic field. The sun vector is used to 

calculate thermal flows and temperatures on solar panels. All these models are implemented in the simulation unit of the HIL 

simulator. The test object used for the simulation described in this paper is the e-st@r-I CubeSat. It can be split into two main 

parts, as shown in Fig. 3. The “equipment” block includes D-PCDU, batteries and antenna, i.e. all those devices without 

processing units and which need only to be powered. The “embedded system” block encompasses EPS PCDU, COMSYS board, 

A-ADCS board and OBC, i.e. all those units with micro-processors. Sensors and actuators of the CubeSat are electrically 

connected to the power bus, but only for verification of total power consumption. They are not used for sensing data nor for 

generating torques. 
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B. Working principle 

This section explains how the simulator works. The working cycle is a closed loop illustrated in Fig. 4.  

After the simulation is initialized, PWM commands are calculated in terms of duty cycles. These commands are sent to the 

simulation unit through Channel 0. The simulation software calculates the applied voltages, and the currents flowing into the 

MTs. In the end, the generated dipole moment is determined. 

The dipole moment together with the Earth’s magnetic field (measured by the modeled magnetometer) generate the value of 

the magnetic control torque. Using the dynamics and kinematics models of the CubeSat it is possible to obtain the values of the 

angular velocities around the satellite’s body axes with respect to the inertial reference frame. 

The angular velocities values (measured by gyros) and EMF values (measured by magnetometer) are converted in data strings 

in order to emulate the actual IMU’s behavior; they are finally transmitted to the A-ADCS board through Channel 3. 

Similarly, the simulation software determines the heat fluxes on each face of the CubeSat and the temperatures on each solar 

panel. Values of heat fluxes and temperatures enter the solar cells model in order to get the power generated by solar panels in 

terms of voltage and current. These information are transmitted to the two 3-channels power packs which supply the onboard 

PCDU. The onboard software calculates the Sun vector which, together with EMF and angular velocities, allows to determine 

the satellite’s attitude. These information are used by the A-ADCS board to control the attitude of the satellite computing the 

new PWM duty cycles and finally sending them back to the simulation unit. Telemetry is also radio-transmitted by the CubeSat 

to the GCS where it can be visualized and saved for further analysis. The CubeSat may also receive commands from GCS during 

a simulation session. 

 

C. Test settings 

Key parameters are defined before the simulation starts, such as the duration of the simulation, the time step, and the models to 

be used. CubeSat’s characteristics are also chosen and their values (peak or trends) are continuously monitored as they shall be 

verified against requirements. For e-st@r-I, the parameters are the EPS and ADCS telemetries and other system’s health and 

status data. 

The analysis of simulation results is made from data collected through three independent sources: 1) GCS log files: updated 

every time that a radio communication between the satellite and the GCS occurs and a new packet, containing the telemetry data, 

is received; 2) Satellite SD card files: updated every 2 minutes; they contain the same telemetry strings received by the GCS but 

they are free of transmission errors; 3) Simulator log files: upated every 0.5 seconds; they hold all data about the environmental 

and system simulation and not only the telemetry data. 

At the present moment, data analysis is performed off real time, following a procedure that consists of importing data from 
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files, handling, converting and interpreting them. The most meaningful parameters are chosen and the respective graphs are 

plotted and evaluated. 

 

 

Fig.  4: simulation software flow chart 

 

V. RESULTS AND DISCUSSION 

In this section, the results of a simulation session are presented and discussed. The global objective of the campaign was the 

study of the satellite’s behavior in the first day of in-orbit operations. The test aims at demonstrating that the CubeSat performs 

according to a reference mission as described hereafter. Mission and orbit data are given in Table 1. 

 

TABLE I 

MISSION AND ORBIT DATA 

 
 

The CubeSat is released into orbit at time T0. It enters the detumbling mode during which the A-ADCS reduces the angular 

velocities until threshold values are reached. For the purpose of the HIL simulation, the value of 0.5 rad/s has been assumed as 

To set-up the simulation:
Models choice, parameters 

definition, interface inizialization

Start

To initialize the 
simulation variables

To save data on log file
To visualize data on 

Graphical User Interface

To acquire data from ADCS through 
ttyUSB0: Duty Cycle command

To compute Earth 
Magnetic Field

To compute satellite on 
orbit position

To compute Magnetic 
Dipole generated by MT

To compute the Control 
Torque

To compute the disturbance torques: 
aerodyn, internal residual magnetic 

moment, gravity gradient

To compute Dynamics and 
Kinematics of the satellite

To determine IMU/MAG 
measurements

To format data 
according IMU protocol

To send data to ADCS 
board through ttyUSB3

To compute thermal 
environment data

To compute solar 
panels output

To format data according 
power suppliers protocol

To send data to power 
suppliers through ttyUSB1 

and ttyUSB2

To update simulation 
variables

End

Simulation 
stop?

yesno

Semi-major axis [km] 7359.46 
Eccentricity 0.06664 

Inclination [deg] 69.5 
RAAN 0 

Argument of perigee [deg] 130 
Mean anomaly [deg] 0 

Epoch 1 Jan 2012 
Date of launch 13 Feb 2012 

Launch site Kourou, French Guyana 
Launch Vehicle Vega 
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initial angular velocity of the CubeSat after release from the deployer (typical reference values are in the range 0.1-1.0 rad/s). 

The detumbling phase is considered completed when the rotation rate decreases below 0.005 rad/s. The CubeSat remains in this 

mode of operations for about 2 hours. At T0 + 2 hours: 1) the antenna deploys autonomously, 2) COMSYS is activated by OBC, 

and 3) the communication link from/to Earth is established. In the nominal mission, telemetry packets are sent to GCS every 2 

minutes. According to the test plan, commands from the GCS are sent to the CubeSat to update mission parameters and to 

change modes of operations. At the end of the simulation session, the log files are analyzed to evaluate the CubeSat’s behavior, 

and to verify if the requirements are met. In the following graphs, most interesting parameters’ trends are plotted from data in the 

GCS log file. The simulation has been running for 100000 seconds. 

In Fig. 5, battery-bus voltage, 5V-bus current, and 3.3V-bus current trends are shown. The battery bus voltage graph shows 

that the batteries are recharged during the orbits, reaching the maximum voltage value equal to 8.17 V in less than 10 hours 

(given a starting value of 7.80 V). Power consumption on the 5V-bus is almost constant. The peak in the plot is due to a wrong 

data acquisition; power consumption on the 3.3V-bus varies depending upon the use of OBC and A-ADCS boards. 

 

 

Fig.  5. (a) Battery-bus voltage as a function of time, (b) 5V-bus current as a function of time, and (c) 3.3V-bus current as 

a function of time 

 

In Fig. 6, the trends of relevant parameters of one battery cell are shown. Each battery pack is constituted by two Li-Ion 

(Lithium Ions) cells. As far as voltage of cell is concerned, the graph confirms the trend seen in Fig. 5 for the battery-bus voltage. 

The plot of the current shows consumption peaks which depend on the variable instantaneous operations of the subsystems. 

Since the test was performed in laboratory conditions, the temperature is almost constant and is equal to about 27 °C (which is 

higher than the room temperature, due to the fact that the battery heats up during operations, in particular during charge). 

Fig. 7 illustrates the plots of solar panels voltages during the one-day mission, showing the sunlight/eclipse cycles. The graphs 

show that the satellite experiences, within the same day, both orbits with short-eclipse/long-sunlight periods and orbits with no 

eclipse. This is due to the combination of orbit geometry and launch date. It represents a transition condition toward a one-week 

period of full sunlight. During the simulated mission, the power consumption of the CubeSat is quite low, as only vital functions 
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are executed. Moreover, Fig. 7 shows very short-duration eclipses. For these reasons, we can see very light voltage drops in Fig. 

5(a). 

 

 

Fig.  6. Telemetries of battery pack no. 1 as a function of time. (a) Voltage, (b) current, and (c) temperature of one cell of 

battery pack.  

 

 

 
Fig.  7. Solar panel voltages. (a) panel +x, (b) panel +y, (c) panel –y, (d) panel +z, and (e) panel –z. Panels are named after 

the perpendicular vector of the face they lie on, in body axes. 

 

After the detumbling phase ends, the angular velocities of the CubeSat remain constant with respect to the inertial frame, 

therefore the satellite is not spinning anymore. In Fig. 8, it is possible to notice that the angular velocities with respect to the 

orbital frame is close to 0. The trends of the angular velocities during the detumbling phase are not visible in Fig. 8 because the 

graphs have been plotted from the GCS log file which does not record any data before the detumbling phase is completed. The 

peak in the x plot is ascribable to an acquisition error. 

Fig. 9 shows that the desired attitude (antenna pointing to the ground, reference quaternion [0 0 0 1]) is achieved with the 
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expected accuracy in the first day of the mission. The pointing error measured at the end of the test is less than 10 deg. 

 

 

Fig.  8. Angular velocities as a function of time. (a) angular velocity along x axis, (b) angular velocity along y axis, and (c) 

angular velocity along z axis. 

 

 

Fig.  9. Quaternion. (a) first component of quaternion vector part, (b) second component of quaternion vector part, (c) 

third component of quaternion vector part, and (d) quaternion scalar part. 

 

Moreover, from all graphs, it is possible to see that no data are received at GCS during the first 2 hours after injection into 

orbit. This was one of the operational requirements to be verified. The set of requirements and constraints verified in the same 

HIL simulation session is reported in Table 2. In addition to the closeout of these requirements, other interesting information are 

obtained from the test: 

1) No packet is lost (not saved and/or not received) in one-day length simulation 

2) One system reset occurred over one-day length simulation, demonstrating the robustness of the software design 

3) 3 out of 720 packets contain no-coherent data (comparison between data saved on the onboard SD card and data recorded 

in the GCS log file). The data error rate (measured in terms of packets per day) is less than 5x10
-3

. 
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VI. CONCLUSION 

The paper shows an application of the HIL simulation technique based on a custom simulator which is under development at 

Politecnico di Torino. The simulator has been developed to provide the engineering team with a versatile tool which can be used 

throughout the design and development process of a space system. Thanks to its modular architecture, the simulator shows a 

good flexibility with respect to project phases and types of missions/systems. It may be tailored for different applications without 

major changes and, in principle, it can handle simulation of several kinds of space missions and systems. Simulation models may 

be loaded in the simulator according to the specific design stage: models with different levels of detail and complexity are 

available and new models can be implemented and integrated in the simulator in the future. The type of mission of interest can 

also be chosen by setting the simulator in terms of specific mission parameters and systems involved in the simulation session. 

At the present moment, only simple designs can be investigated through this platform, but it can be extended for testing more 

complex mission without re-designing the simulator’s architecture. Some improvements can be done in order to enhance the 

simulator performance and accuracy, as well as to simplify the test bench and to reduce the time for test set up. Most common 

interfaces are already implemented in the simulator, but we are working to include other protocols. For example, the integration 

of the CAN bus interface could make the simulator suitable for testing pieces of hardware not supported at present. The addition 

of a robotic arm for improving attitude simulation capability is also planned.  

The  HIL simulator has been used for the verification of the functional and operational requirements of the e-st@r-I CubeSat. 

A one-day mission has been simulated during which the CubeSat demonstrated to be able to accomplish the required functions 

and to operate as expected. 

The whole mission simulation has been carried out without relevant errors, showing that the HIL simulator can support the 

verification process of a CubeSat. A large number of requirements have been verified within a single simulation session, thus 

saving resources in terms of time for test set-up and running, man-hours and costs if compared to other testing techniques. 

Moreover, the test allowed to follow out the behavior of the equipment included in the simulation loop. For example, the actual 

power consumption of each piece of hardware has been measured and used to refine the power budget.  

The HIL testing results have been compared with AIL and SIL simulations. These comparisons showed a good correlation 

between the different simulations, even if some differences have been noticed. For example, using the HIL facility helped to 

identify unexpected interactions between different devices during the integration of the CubeSat. The design has been reviewed 

to eliminate these potential failure causes using the information given by the HIL simulations. In particular, the onboard software 

has been adjusted as the HIL simulation unveiled synchronization conflicts between processes running on different onboard 

microcontrollers. A few tasks have then been re-scheduled in the ADCS and OBC software taking into account communication 

delays or overlapping between the two systems. Another interesting result of the HIL test has been the verification of the 
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conversion equations used to obtain the housekeeping telemetry of the EPS. In fact, this is a COTS equipment for which the 

conversion relationships were given by the supplier, and the HIL simulation allowed to refine these equations. In the case of in-

house developed systems, the HIL simulation has been used for calibration of sensors, such as for example the gyros, after their 

integration in the CubeSat. 

In conclusion, it has been proven that HIL simulation can effectively support the AIV process of a CubeSat. Improving the 

verification activity of CubeSats is a key factor for the development of innovative CubeSat missions. It has been demonstrated 

that a simple HIL architecture can serve well the purpose, even if some limitations exist. The HIL simulator’s capability can be 

further extended to support a broader class of applications. Over one hundred CubeSats have been launched into orbit in the last 

decade and exciting missions are under development. The definition and standardization of methods and tools for supporting the 

development of CubeSat projects could be a key element to increase mission success while maintaining their peculiar features of 

low cost and fast delivery. This paper is intended to share our experience on the verification process of the e-st@r platform with 

other universities which are running or want to start CubeSat programs, and to show how university projects can contribute to the 

advance of science and technology while educating students.  

 

TABLE II 

REQUIREMENTS AND CONSTRAINTS (VERIFIED BY HIL SIMULATION) 
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