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Introduction 

Natural or artificial materials used for replacement or supplement the functions of living tissues, 

termed as biomaterials, may be bioinert (i.e. alumina and zirconia,) resorbable (i.e. tricalcium 

phosphate), bioactive (i.e. hydroxyapatite, bioactive glasses, and glass-ceramics) or porous for 

tissue ingrowth (i.e. hydroxyapatite-coated metals). Among all the biomaterials, bioactive glasses 

and glass-ceramics are widely used in orthopedic and dental applications and are being developed 

for tissue engineering. However, to a large extent, the behavior and overall performance of 

biomaterials are governed by surface properties. Surface modifications therefore provide unique 

possibilities to control the subsequent surface interaction and response which are required for 

particular application. By tailoring the material surface, a wide portfolio of additional 

functionalities is enabled to overcome material deficiencies while maintaining its bulk material 

properties. As a consequence, the surface functionalization of materials has become pivotal for 

academic research as well as industrial product development. 

Plant-derived polyphenols are compounds possessing one or more aromatic rings with one or 

more hydroxyl groups. They are broadly distributed in the plant kingdom and are the most 

abundant secondary metabolites of plants, with more than 8,000 phenolic structures currently 

known, ranging from simple molecules such as phenolic acids to highly polymerized substances 

such as tannins. Numerous researches and investigation reported the notable biological activities 

of polyphenols, such as cardiovascular protection, cancer prevention and treatment, antiaging 

activity as well as applications in Alzheimer’s disease, oral health, immune function diabetes and 

other neurodegenerative disorders. 

Till now, numerous investigations provide a number of surface functionalization techniques and 

make it possible to graft various kinds of biomolecules such as proteins, growth factors and 

enzymes to the surface of bioactive glass and glass-ceramics. However, very few researches have 
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been focused on the coupling of natural bioactive polyphenols on surface of bioactive glasses and 

glass-ceramics.  

As a conclusion, the aim of this thesis is to combine bioactive glasses and glass-ceramics with 

natural polyphenols, in this case they are grape polyphenol and tea polyphenol extracted from 

grape skin and green tea respectively, in order to make it possible to immobilize biomolecules as 

well as prepare smart biomaterials with both typical inorganic activity and specific biological 

benefits from natural molecule. Surface functionalization of the same substrates with gallic acid 

as model molecule for polyphenols has been carried out in order to investigate more in depth the 

mechanisms of surface modification with a simple molecule. 

This thesis can be divided into five chapters. The first chapter introduces the composition, 

chemical structure, biological properties and potential applications of plant polyphenols. In 

chapter II, the extraction methods and analysis techniques involved in polyphenol investigation 

are reviewed. Chapter III mainly illustrated the structure, property and biomedical application of 

biomaterials as well as methodologies and evaluation of surface functionalization. Materials and 

techniques related to this thesis are demonstrated in chapter IV. The last chapter, also the core 

chapter of this thesis, describes the results and discussions in five separate sections: i) surface 

functionalization of SCNA and CEL2 with gallic acid; ii) surface functionalization of SCNA and 

CEL2 with polyphenol extracted from grape skin; iii) surface functionalization of SCNA and 

CEL2 with polyphenol extracted from green tea; iv) surface functionalization of SC-45 with 

gallic acid and buffered gallic acid and v) surface functionalization of SC-45 with folic acid. 

 



Functional polyphenols from plants 

-3- 
 

Chapter I 

Functional polyphenols from plants: composition, chemical structure, 

biological properties and potential applications 

1 Introduction 

Phenolics are the most abundant secondary metabolites present in the plant kingdom. In plant, 

phenolic compounds participate in growth, fertility and reproduction and play a role in various 

defense reactions to protect against abiotic stress like UV-light, or biotic stresses such as predator 

and pathogen attacks [1, 2]. They also constitute the basic component of pigment, essences and 

flavors. At the tissue, cellular and sub-cellular level, soluble phenolics are found within plant cell 

vacuoles, while insoluble phenolics such as lignins and hydroxycinnamic acids are the 

components of cell wall [3, 4] and these compounds contribute to the mechanical strength of cell 

walls and plant growth and morphogenesis by linking with carious cell components [5-8]. It was 

reported that the ferulic and p-coumaric acids may be esterified to pectin and arabinoxylans or 

cross-linked to cell wall polysaccharides and this cross-links may play a role in adhesion among 

cells, serve as a lignins formation site and do contributions to the thermal stability of plant texture 

[9-13]. 

For decades, plant polyphenols have interested researchers for their essential contribution to plant 

physiology, providing plants with resistance to pathogens and predators and their abilities of 

antioxidant, free radical scavenging capacities and their potential effects on human health. 

Nowadays, polyphenol gets an increasing recognition not only by the scientific community but 

also by the general public due to the presence and abundance of polyphenol in fruits, vegetables, 

seeds and derived foodstuffs and beverages, whose daily consumption has been claimed to be 

beneficial for human health. Their ability to scavenge oxidative generated free radicals, such as 

lipids and nucleic acid free radicals, has often been underlined as the fundamental chemical event 

that emphasizes their utility in reducing the risk of certain age-related degeneration and diseases. 
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Due to the great benefits of polyphenols for human health, nowadays, it is highly recommended 

and heavily advertised to eat five servings of fruits and vegetables per day and drink green tea on 

a regular basis as well as a couple of glasses of red wine per day. As a result, this chapter includes 

contents such as a short history of polyphenol, chemical structure and composition as well as 

biological activities of phenolics. 

2 The history of polyphenols 

Before being termed polyphenols, these plant-derived natural products were globally referred to 

as vegetable tannis for the original application of various polyphenol extracts in leather-making 

process during which the animal skins or furs were converted into leather. Literature verified that 

the Ancient Greeks of archaic period (ca. 800-500 BC) firstly developed this technology by using 

oak galls in Europe [14].  

It was until second half of the 20
th

 century that research about polyphenols starts to address 

objectives beyond the leather manufacture, accompanied with the first glimpse of the definition of 

plant polyphenols. In 1957, White mentioned that the term “tannin” should strictly refer to the 

plant polyphenols with molecular masses between 500 and 3000 Da and to be capable of forming 

cross-linked hydrogen group with collagen molecules. In brief, he indicated that all tannins belong 

to polyphenols while the reciprocal is not necessarily true [15-17]. The definition of plant 

polyphenols was given by Bate-Smith and Swain in their own proposal in 1962, as“water-soluble 

phenolic compounds having molecular weights between 500 and 3000 (Da) and, besides giving the 

usual phenolic reactions, they have special properties such as the ability to precipitate alkaloids, 

gelatin and other proteins from solution [18] ”, which was a slight variation of White’s earlier 

proposal. Then the scientist Edwin Haslam refined the definition at the molecular level. He 

expanded the definitions of Bata-Smith, Swain and White as descriptor for water soluble plant 

phenolic compounds possessing molecular masses ranging from 500 to 3000-4000 Da and having 

12-16 phenolic hydroxyl groups on five to seven aromatic rings per 1000 Da of relative molecular 

mass. Furthermore, the compounds should have the common phenolic reaction and the ability to 

precipitate some alkaloids, gelatin or proteins in solution [19]. 
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3 Phenolic compounds and their structures 

Polyphenols or phenolic compounds constitute one of the most abundant and ubiquitous groups of 

plant metabolites and an integral part of both human and animal diets. Chemically, phenolics can 

be defined as substances possessing an aromatic ring linked with one or more hydroxyl groups, 

including their functional derivatives [20]. Until now, more than 8000 phenolic structures have 

been known and there were two main biogenetical synthetic pathways: the shikimate pathway and 

the acetate pathway [21, 22]. Natural polyphenols always include simple phenols, phenolic acid 

(both benzoic and cinnamic acid derivatives), coumarins, flavonids, stibenes, hydrolysable and 

condensed tannins, lignans and ligins [23]. According to literature [22], polyphenols can be 

divided into at least 10 classes (Table 1) based on their molecular structure and flavonoids 

considered as the most important single group, can be subdivided into 13 classes (Table 2). In food 

science research, polyphenol found are usually divided into four main classes: phenolic acid, 

flavonoids, lignans and stilbenes [24]. 

Table 1 Main classes of phenolic compounds 

Class  Basic skeleton Basic structure 

Simple phenols C6  

Benzoquinones  C6  

Phenoilc acids C6-C1  

Acetophenones  C6-C2  

Phenylacetic acids C6-C2  

Hydroxycinnamic acids C6-C3  

Phenylpropenes C6-C3  
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Coumarins, isocoumarin C6-C3           

Chromones C6-C3  

Naftoquinones  C6-C4  

Xanthones C6-C1-C6  

Stilbenes C6-C3  

Anthraquinones C6-C3  

Flavonoids  

Lignans, neolignans  

Lignins  

C6-C3-C6 

(C6-C3)2 

(C6-C3)n 

 

Table 2 Classification of food flavonoids 

Flavonoid  Basic structure 

Chalcones   

Dihydrochalcones               

Aurones                         

Flavones   

Flavonols   



Functional polyphenols from plants 

-7- 
 

Dihydroflavonol  

Flavanones                        

Flavanol                        

Flavandiol or leucoanthocyanidin  

Anthocyanidin   

Isoflavonoids   

Biflavonoids   

Proanthocyanidins or condensed tannins 

 

 

Simple phenols (C6) derivatives and flavonoids are the most common and important phenols 

among the low-molecular mass phenols. Simple phenols, such as phenol itself, cresol, thymol, 

orcinol, resorcinol and so on, widely exist in various species, while phenolics with a C6-C1 

structure, such as phenolic acid and aldehydes, are fairly common in higher plants and ferns. 

Phenolic acids are phenols which have one carboxylic acid functional group and are divided into 

hydroxycinnamic acids and hydroxybenzoic acid. The latter ones are less common than the 

former ones, which mainly include gallic acid, p-coumaric, caffeic, chlorogenic acid, ferulic acid 

and sinapic acids. These acids are usually present as the bound forms that are glycosylated 

derivative or esters of quinic acid, shikimic acid and tartaric acid [25]. 
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Phenylpropanoid derivatives (C6-C3) as another important group of low-molecular weight 

phenolics are usually covalently linked to cell wall polysaccharides (predominantly ester-linked 

to arabinose units of hemicellulose) or to the so-called core lignin. Chromones, coumarin, and 

cinnamyl alcohols etc are the common members in this group [26, 27]. 

Flavonoids, as one of the most abundant phenolic compounds, possess a common 

C6-C3-C6-skeleton composed of three rings (Figure 1) including two aromatic rings linked 

through three carbons. This molecules family is constituted by different sub-classes, flavones, 

flavonols, flavanones, flavanols and anthocyanins differing by the insaturation degree and 

substituent of ring C. Biogenetically, the A ring is usually from a molecule of resorcinol or 

phloroglucinol synthesized in the acetate pathway, whereas B ring is synthesized from the 

shikimate pathway [28]. 

 

Figure 1: Basic structure of flavonoids 

Tannins are compounds of intermediate to high molecular weight. According to literature, the 

molecular weight of tannins found in carob pods was up to 30,000 Da [29]. Tannis are highly 

hydroxylated molecules and can precipitate carbohydrates and protein. Plant tannins can be 

subdivided into two main catagories: i) hydrolysable and ii) condensed tannins. Hydrolyzable 

tannins are composed gallic acid and its dimeric condensation products hexahydroxydiphnic acid 

[30]. The best known hydrolyzable tannin is tannic acid (Figure 2). 

Major stilbenoids found in foods of plant origin are resveratrol (Figure 3) and its glucosiders. 

Resveratrol (3, 4’, 5-trihydroxystibene) as one kind of phytochemicals is a low molecular mass 

natural product and an early product from the biosynthesis of phenyalanine. It is also taken as an 

intermediate leading to some polyphenols and flavonoids with more complicated structures [31]. 
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Figure 2: Chemical structure of tannic acid [29] 

   

Figure 3: The chemical structure of resveratrol and trans-resveratrol 

3.1 The composition and structure of grape polyphenol (GP) 

Grapes as table food and winemaking sources had a long and abundant history, dated to the 

Ancient Greek and Roman civilizations. Due to the various nutrient elements in grape, such as 

vitamins, minerals, carbohydrates, edible fibers and phytochemicals, nowadays substantial 

scientific attention has been focused on the potential biomedical effect of grapes and grape 

products [32]. Furthermore, as one of the main sources of bioactive components, grapes are rich 

in phenolic compounds in its skins, short stems, seeds, leaves, even in grape pomace after 

wine-making industry [33, 34]. The total phenolic content in grape seed, skin, flesh and leaf has 

been estimated as 2178.8, 374.6, 23.8, 351.6 mg/g respectively, with gallic acid as the equivalent 

[35]. Anthocyanins, catechins, proanthocyanidins, flavonol glucosides, stilbenes and phenolic 

acids are the principal phenolic constituents found in GP [34, 36]. Chemical structures of a 

number of phenolic compounds from grape have been reported in the literature, the most 

important ones are shown in figure 4.  
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 R1 R2 R3 R4 

Quercetin  OH OH OH H 

Rutin  OH O-Rutinose OH H 

Morin  OH OH H OH 

Myricetin  OH OH OH OH 

Fisetin  OH OH OH H 

 

 

 

 

 

 

Figure 4: Chemical structures of some phenols from grapes 

 R1 R2 

Cyaniding-3-O-gluc OH H 

Delphindin-3-O-gluc OH OH 

Peaonidin-3-O-gluc OCH3 H 

Petunidin-3-O-gluc OCH3 OH 

Malvidin--3-O-gluc OCH3 OCH3 
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The polyphenol composition and quantity of GP usually vary with grape cultivars, soil 

composition, geographic origin, climate and cultivation practices or exposure to diseases, such 

as fungal infections [37]. For instance anthocyaninins are abundant in red grapes but neglected 

in white varieties. Xia [38] has reviewed the phenolic compound distribution in different parts of 

grapes (Table 3) and it was proved that the grape skin was rich in anthocyanins, 

hydroxycinnamic acids, flavanols and flavonol glysides. Overall, grape seeds contained lower 

amount of phenolic acid than grape skin, but higher amount of catechins and procyandins [39, 

40]. 

Table 3 The phenolic compounds in different parts of grape and its products [38] 

Resource Phenolic compounds 

Seed Gallic acid, catechin, epicatechin, dimeric procyanidin, proanthocyanidins 

Skin Proanthocyanidins, ellagic acid, myricetin, quercetin, kaempferol, 

trans-resveratrol 

Leaf Myricetin, ellagic acid, kaempferol, quercetin, gallic acid 

Stem Rutin, quercetin 3-O-glucuronide, trans-resveratrol, astilbin 

Raisin Hydroxycinnamic acid, hydroxymethylfurfural 

Red wine 

Malvidin-3-glucoside, catechin, resveratrol, hydroxycinnamic acid, 

peonidin-3-glucoside, petunidin-3-glucoside, cyaniding-3-glucoside, 

quercetin, 

Scientists all over the world have intensively investigated the phenolic profile of grape skins and 

seeds of European variety (vitis vinifera). Among the scientists, Montealegre et al. [34] has 

studied the composition and quantity of polyphenols of ten grape species (including six white 

grape varieties and four red grape varieties) grown in warm climate of Spain. They found that 

the red grape skin contained higher amount of hydroxycinnamates than white grape, but lower 

amount of catechins, procyandiin dimmers and total flavonols. Furthermore, the composition of 

polyphenol of same grape variety was influenced by the growing location, climate, maturity and 

the time of fermentation [41, 42]. Elías et al. [43] evaluated the phenolic compositions of grape 

seeds extracts from four different grape varieties (Carménère (CA), Merlot (M), Cabernet Franc 
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(CF) and Cabernet Sauvignon (CS)) by HPLC -DAD and spectrophotometric analysis during 

four ripening stages. Significant differences between CA and CF were observed in seed weights, 

total tannins and polymeric flavanol fraction. Besides, M seeds showed higher concentration of 

(+)-catechin and (-)-epicatechin and CA seeds presented higher concentrations of a series of 

other proanthocyanidins. In their other research [44], the phenolic composition of skin extracts 

of these four grape varieties was investigated. Cabernet Sauvignon skins showed the highest 

contents of monomeric, oligomeric and polymeric flavan-3-ols with respect to other varieties at 

harvest maturity. Likewise the sum of glucoside and cumarilglucoside anthocyanins in 

Carménère was higher than in Cabernet. Franc and Cabernet Sauvignon in some sampling date. 

According to the study of Yu et al. [45], the Muscadine (one native grape variety grown in the 

United States) grape had more skin (5%) and less seeds (8%) than Cabernet (one European grape 

variety). Moreover, the polyphenol compostion of Muscadine and Cabernet was different. The 

total extractable polyphenol, total anthocyanin content and total flavonoid content were 36.4, 

0.88 and 21.02 mg/g DM in Muscadine seeds, 19.39, 8.15, 4.78 mg/g DM in Muscadine skin, 

respectively.  

3.2 The composition and structure of tea polyphenol (TP) 

Tea, the second popular beverage in the world next to water has been consumed for thousands of 

years and has attracted attention in recent years due to its numerous health benefits such as 

antioxidant, antimicrobial, anti-carcinogenic and anti-arteriosclerotic properties [46, 47]. Tea is 

produced by brewing the dried tea leaves and buds of the plant Camellia sinensis, which was 

first cultivated in China and later in Japan. During the 15
th

 to 17
th

 centuries, the commercial 

cultivation gradually expanded to Indonesia and then to the Indian subcontinent with the opening 

of ocean routes to the East [48]. Annual production of about 1.8 million tons of dried leaf 

provides world per capita consumption of 40 L of beverages [49]. Based on the different degree 

of fermentation during manufacturing process, tea can generally be classified into three types, 

specifically, green tea (no fermented tea), oolong tea (partially fermented tea), and black tea 

(fully fermented tea) [50]. 

The chemical composition of tea is complicated, including polyphenols, alkaloids (caffeine, 
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threobromine, theophylline), polysaccharides, amino acids, volatile oils, lipids, vitamin C 

minerals and other uncharacterized constituents [51]. The main polyphenols in tea are flavonoids, 

particularly flavanols (i.e., catechins), and phenolic acids. Catechins (figure 4) are colorless 

water-soluble compounds which impart bitterness and astringency to green tea infusions [52]. 

These catechins are synthesized in tea leaves through malonic acid and shikimic acid metabolic 

pathways with gallic acid as an intermediate derivative [53]. The total content of catechin in 

green tea infusion is 420 mg/L [54] and catechin constitute 15-30% of dry weight of green tea 

leaves, compared with 8-20% of oolong and 3-10% of black tea [55]. Green tea extracts are 

mainly constituted of four primary catechins (figure 5): (-)-epicatechin (EC), 

(-)-epicatechingallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechingallate (EGCG) 

[56]. Among them, EGCG is the most important and wildly studied tea catechin due to its high 

content (up to 50%) [57]. Additionally, EGCG, in particular, is known to inhibit tolemerase, 

urokinase, nitric-oxide snthase, tumor necrosis factor alpha, the proteasome and so on [58-62]. 

Later， 3-galloylquinic acid, 4-galloylquinic acid, 1,3,5-trigalloylquinic acid, 4-(di-galloyl) 

quinic acid, 5-(digalloyl) quinic acid, and either 3-galloyl-5-( d igalloyl) quinic acid or 

3-( digalloyl) -5-galloylquinic acid were also identified in green tea [63]. Tea is also an 

important source of gallic acid (hydroxybenzoic acid). It is reported that the content of gallic 

acid in Chinese Pu-er teas is highest (about 15 g/kg of dry weight) as opposed to other types of 

tea [58]. 
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Figure 5: Structure of major tea catechins present in green tea extracts 

As for black tea, during the fermentation process, some important chemical changes happen; 

polyphenol oxidase and peroxidase are the responsibles for the oxidation of flavanols oxidize 

pyrogallol and cathchol into their form of o-quinones. Two characteristic black tea polyphenols, 

theaflavins and thearubigins are generated during fermentation. Till now, four major theaflavins 

(shown in figure 6) have been identified from black tea, including theaflavin, 

theaflavin-3-gallate, theaflavin-3’-gallate and theaflavin-3, 3’-digallate [64]. Takino et al. [65] 

revealed that theaflavin was the coupling oxidation product of EC and EGC.  

 

  R1 R2 

Theaflavin  TF H H 

Theaflavin-3-gallate TF3G Gallate  H 

Theaflavin-3’-gallate TF3’G H Gallate  

Theaflavin-3, 3’-digallate TFDG Gallate  Gallate  

Figure 6: Chemical structures of theaflavins 
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4 Biological properties of polyphenols 

Numerous studies have demonstrated that plant polyphenols have many health benefits such as 

antioxidant and anti-inflammatory properties, antimutagenic and anticarcinogenic activities, 

prevention and delay of cardiovascular diseases, increase in lifespan and retarded the onset of 

age-related markers. Among all the sources for phenolics extraction, grape and tea are the most 

important two plant materials and have been widely investigated due to their great contribution to 

human health care. Grape and its products have been consumed for centuries and since the 

ancient Greece and Roma age, grapes have served for the winemaking. And from the clue of 

“French paradox”, lots of investigations have been carried out and found the evidences of grape 

beneficial health effects, including inhibiting some degenerative diseases and reducing plasma 

oxidation stress and slowing ageing [66, 67]. Some recent studies showed that taking grape seed 

extract can reduce food intake in rats and the energy intake of human [68]. As for tea, the famous 

beverage all over the world, in the past few years, numerous evidences associated with tea 

consumption and health benefits come from epidemiological studies, in vitro studies, animal 

studies as well as an increasing number of human intervention studies [38]. 

4.1 Basic physicochemical properties of the phenol functional group 

There are numerous reasons to investigate plant polyphenols. Plant phenolics, one kind of the 

secondary metabolisms of plants, deserve a special mention considering the wide-raging benefits, 

such as plant resistance against microbial pathogens and animal herbivores, protection against 

solar radiation as well as reproduction, nutrition, and growth, they offer to plants and to other 

living organisms. These characteristics are essentially a result of their inherent physicochemical 

properties deriving from the phenol functional group [69] (figure 7). 

A phenyl ring bearing a hydroxyl group (Ph-OH), as the most elementary structural form of 

polyphenol, determines a phenol function of amphiphilic moiety which combines the 

hydrophobic character of the planar aromatic nucleus with the hydrophilic character of the polar 

hydroxyl substituent, which can act as a hydrogen-bond donor or an acceptor. Moreover, 

hydrophobic π-stacking (van der Waals) interactions and the formation of hydrogen bonds are 
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often complementary effects that plant phenolics can use to interact physically with other 

biomolecules [70]. 

 

Figure 7: Basic physicochemical properties and reactivities of the phenol functional group 

[69] E = Electrophile, Nu = Nucleophile 

When there are at least two adjacent hydroxyl groups on a phenyl ring, the main reaction of 

phenolics is metal chelation, which plays an important role in the plant pigmentation [71, 72] 

and cationic nutrient such as Ca, Mg, Fe, Cu, Mn [73, 74, 75] through the plant-litter-soil 

interaction. In addition, the secondary maximum absorption of polyphenol aqueous solution is 

red-shifted to 270 nm, compared to benzene at 254 nm. The presence of an additional hydroxyl 

group and/or an electron-withdrawing group (carbonyl or propenoyl ester group et al.) on the 

para-position can also shift the maximum absorption into the UV-Blight range (280-320 nm). 

Otherwise, the adjunction of a single hydroxyl group on a benzene (phenyl) ring can also change 
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the chemical properties of its quasi-inert aromatic system. Phenols can be taken as the stabilized 

enol tautomers with a soft nucleophilic character, while it can be transformed into harder 

nuclephilic character by deprotonation into phenolate anions (PhO
-
), if the moderate and 

exploitable acidic phenolic O-H bond is in biological system. Phenols and phenolate anions are 

also sensitive to oxidation processes. The relatively weak bond dissociation energy (BDE) of the 

phenolic O-H bond enables the production of phenoxy radicals (PhO•) by hydrogen abstraction 

[76-78].  

4.2 Antioxidant properties 

When it refers to polyphenols and plant phenolics, their most notable biological activity should 

undoubtedly be antioxidant characteristics.Antioxidant ability refers to the capability to 

scavenge reactive oxygen species (ROS), which include radical and non-radical oxygen species, 

such as O2
-
, HO•, NO•, H2O2，HOCl, as well as oxidatively generated free radicals RO• and 

ROO•, like those derived from biomolecules such as low-density lipoproteins (LDLs) [79-83], 

proteins and oligonucleic acids (DNA and RNA) [84, 85]. This so-called antioxidant capability 

is cited to be the key property emphasizing the prevention and/or reduction of oxidative 

stress-related chronic diseases and age-related disorders such as cardiovascular diseases (for 

example, atherosclerosis), neurodegeneration (for example, Alzheimer’s disease, Parkinson’s), 

carcinogenesis, as well as skin deterioration, by intake plant phenolics and other plant 

polyphenol-containing products. Furthermore, several methods have been developed to evaluate 

the antioxidant capacities of phenolic compounds, such as the 1, 1-dipheyl-2-picryhidrazyl 

(DPPH) assay, crocin bleaching assay (CBA), oxygen radical absorbance capacity (ORAC) 

assay, Trolox equivalent antioxidant capacity (TEAC) assay, the thiobarbituric acid reactant 

substances (TBARS), lipid peroxidation (MDA) colorimetric/fluorometric assay and the ferric 

reducing antioxidant power (FRAP) assay. 

4.2.1 Mechanism of antioxidant properties 

4.2.1.1 Mechanism of free radical scavenging  
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In food products, lipid oxidation is considered as one of the main factor limiting commodity 

quality and acceptability due to the generation of reactive oxygen species and off-flavors 

from unsaturated fatty acids [86, 87]. Scheme 1 showed the mechanism involved in lipid 

oxidation in foods. Step one illustrates that in the initiation reaction, the unsaturated fatty acid 

(RH) loses hydrogen radicals (H) then reacts with oxygen in the presence of light, heat or 

trace metals and finally forms the peroxyl radicals (ROO•). In the propagation process, 

peroxyl radicals react with more unsaturated fatty acids to obtain lipid hydroperoxides 

(ROOH). In the end, the oxidation chain reaction terminates when two proxyl radical reacts to 

generate a non-radical species (ROOR or RR). In this situation, the function of antioxidants is 

to delay or inhibit the oxidation of lipids or other molecules by inhibiting the initiation or 

propagation step of the oxidative chain reactions [88]. 

 

Scheme 1: the mechanism of lipid oxidation production 

As for human being, lots of factors (figure 8) can increase the production of free radicals and 

reactive oxygen species which are the sources of oxidative stress in cells, damaging proteins, 

lipids and DNA [89]. The antioxidants can put an end to the oxidative stress and stop the 

cycle of free radical cell damage by donating one of their electrons to the unstable free radical 

and replace them by relatively stable radicals. 

Step 1: Initiation         RH → R• + H• 

R• + O2 → ROO• 

Step 2: Propagation      ROO• + RH → ROOH + R• 

Step 3: Termination      ROO• + ROO• → ROOR + O2 

                      ROO• + R• → ROOR 

                      R• + R• → RR 
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Figure 8: Formation of free radicals [90] 

According to literature, two main antioxidant mechanisms (scheme 2) have been proposed 

[91]. The first one is named as hydrogen-atom transfer (HAT) which is based on the 

capability of the phenol functional group to donate a hydrogen atom to a free radical R•, such 

as the aforementioned peroxyl radicals ROO•. In this case, phenol plays a role as the chain 

breaking antioxidant and after reacting with free radicals, phenol itself becomes a free radical 

(PhO•). The efficiency of the antioxidant action depends on the transfer speed of the 

hydrogen atom to ROO• and the stability of the new formed phenoxyl radical PhO•, since 

the PhO• may react with ROOH or RH and as a result terminates the propagating radical 

chain reaction. The factor that influences the formation and stability of PhO• is the structural 

features of the phenol parent compound. The most important factors playing a determining 

role include the number, presence and relative position of additional phenolic hydroxyl 

groups, their implication in the formation of intramolecular hydrogen bonds, and the 

conformationally dependent possibility of allowing electronic delocalization throughout the 

largest part of the molecule [69]. All the factors affect the bond dissociation energy (BDE) of 

phenol O-H bond: the weaker the O-H bond, the easier the H-atom transfer and more stable 

the PhO• will be. The second one is the single-electron transfer (SET) mechanism based on 

the transfer of electron from PhOH to free radical R• with the formation of a stable radical 

cation PhOH
•+

 (scheme 2). 
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Scheme 2: Two main mechanisms (HAT and SET) of phenol radical-scavenging-based 

antioxidant action 

4.2.1.2 Mechanism of iron bonding  

Plant phenolic compounds can also show their antioxidant activity by chelating metal ions 

such as iron (II)/copper (I), and iron (III)/copper (II) ions that participate in the conversion of 

O2
-
 and H2O2 in to highly aggressive HO• through Haber-Weiss/Fenton-type reactions 

[92-96]. Hydroxyl radicals (HO•) which is known as the most reactive ROS can abstract a 

hydrogen atom from biological substrates[97] and can be generated by multiple pathways, 

such as decomposition of peroxynitrous acid [98] and the metal-mediated reduction of 

peroxide. For the first pathway, for example, O2•
-
 and NO• can react to form OONO

-
 [99, 

100], which can decompose into HO• [98] later. H2O2 as a biological peroxide can be 

produced in the process of cellular respiration [101] and cell signaling mechanism. However, 

the amount of H2O2 is commonly reduced in vivo by Fe
2+

 or Cu
+
 through Fenton-type 

reaction.  

Fe
2+

 (Cu
+
) + H2O2 + H

+
 → Fe

3+
 (Cu

2+
) + HO•+ H2O 

Research showed that DNA can be directly damaged by HO•[102-104], and indirectly by the 

oxidation of [4Fe-4S] iron-sulfur cluster by O2•-
 to form H2O2 [105]. 

[2Fe
2+

2Fe
3+

-4S] + O2•
- 
+2H

+
 → [Fe

2+
3Fe

3+
-4S] + H2O2 

In addition, the Haber-Weiss reaction was thought to be another source for cellular HO• [106, 

107]. 

HAT mechanism      R• + PhOH → PhO• + RH 

SET mechanism       R• + PhOH → R
-
 + PhOH

•+
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O2•
-
 + H2O2 + H

+
 → O2 + HO• + H2O 

The radical-induced damage to DNA usually happens to both the phosphate backbone (strand 

breakage) and the nucleotide bases, because DNA backbone is composed of negatively 

charged phosphate groups as well as electron-rich nucleotide bases with the localization of 

metal ions such as Na
+
, Mg

2+
, Fe

2+
, Fe

3+
, Cu

+
, Cu

2+
, by electrostatic interaction near the 

phosphate backbone and transition metal ions. With the presence of H2O2 as a result of 

oxidative stress, redox active metal ions like Fe
2+

 or Cu
+
 bonded to DNA can react with H2O2 

to form highly reactive HO• in immediate proximity to DNA. Then HO• abstracts hydrogen 

atom from the deoxyribose sugar backbone leaving a DNA radical adduct that rearranges, 

cleaves the phosphodiester backbone and ultimately leads to a strand scission [102, 103, 108, 

109]. Alternatively, HO• may damage the nucleotide bases and produce oxidized base 

products such as 8-oxo-guanine and fragmented or ring-opened derivatives [110-112]. As a 

result, both damages to DNA can cause genetic mutations, cancers or cell death [110]. Even if 

the iron-mediated oxidative damage of DNA by HO• is the primary reason for cell death, the 

intracellular non-protein-bond iron [113] generated during this damage process exists as 

Fenton-active iron Fe
2+

 [114] investigated by electron paramagnetic resonance (EPR) is 

associated with both Alzherimer’s and Parkinson’s [115, 116], and cardiovascular disease 

[117]. 

To summarize, iron plays an important role in the generation of ROS in vivo, for example, 

HO• and H2O2, and due to its pivotal contributions to oxidative stress, DNA damage and cell 

death, iron becomes the target of many antioxidant therapies. Polyphenol, because of its 

ability to coordinate iron, is extensively examined and as antioxidant for prevention of 

conditions associated with iron-generated ROS and oxidative stress.  

Catechol and gallol (figure 9) as well as many functionalized derivatives thereof are well 

known as effective metal chelators. After deprotonation required for metal bind, catechol and 

gallol are named as catecholate and gallate groups, respectively.  
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Figure 9: chemical structure of catechol and gallol 

Metal ions prefer octahedral geometry and can coordinate up to three catecholate or gallate 

groups. For instance, Fe
2+

 and Fe
3+

 might bind with catechol or gallol in a 3:1 fashion [118] 

(figure 10).  

 

Figure 10: Expected octahedral coordination between iron and polyphenol. (gallol, R=OH; catechol, R=H) 

[118] 

Because Fe
3+

 is great prior to Fe
2+

 in the stabilization with polyphenol ligands, one process 

called autooxidation carries out, during which the catecholate or gallate complexes of Fe
2+

 

can be oxidized rapidly to Fe
3+

-complexes with the presence of O2 (figure 11a). Otherwise, 

binding of a catecholate or gallate ligand to Fe
3+

, polyphenols can reduce the iron to Fe
2+

 and 

at the same time polyphenol is oxidized into semiquinone (figure 11b). [118] 



Functional polyphenols from plants 

-23- 
 

 

Figure 11: a) Coordination between Fe
2+

 and polyphenols and subsequent by electron transfer reaction with 

the presence of oxygen and generation of the Fe
3+

-polyphenol complex; b) Coordination between Fe
3+

 and 

polyphenols, subsequent iron with reduction of Fe
3+

 and semiquinone formation (gallol, R=OH; catechol, 

R=H) [118] 

Till now, researches have been done on the cytoprotective effects of polyohenols related to 

iron-binding. Kawabata et al. and Yoshino and Murakami have indicated that iron chelation 

by several different polyphenols protects rat microsomes from lipid proxidation by blocking 

the Fenton reaction [119, 120]. Morel et al. [121, 122] showed that the ability of polyphenols 

to chelate and remove iron from iron-loaded hepatocytes correlates with cytoprotective 

effects of those compounds. Ferrali et al. [123] have found quercetin can protect mouse 

erythrocytes from iron-mediated lipid peroxidation by binding irons. Similarly, Anghileri and 

Thouvenot [124] have investigated that polyphenols from mate tea, green tea and red wine 

extracts can prevent against the iron-induced lipid peroxidation of mouse liver tissue 

suspensions (MDA assay) as well as the iron-dependent calcium uptake in this suspensions 

due to the inhibition of iron bioavailability.  

Attentions are also paid to protective effects of polyphenols in blood and plasma. Polyphenols 

from green and black tea are reported to have protective effects by iron-chelation against red 

blood cell lipid peroxidation, with a concentration-dependent inhibition on the generation of 

HO•, and cytoprotection of red blood cells in vitro from primaquine-induced oxidative stress 

due to the production of O2•
-
 and H2O2 [125]. Similar results have been achieved by 

Srichairatanakool et al [126]. They found that green tea polyphenols enabled prevent 

β-thalassemia patients from iron-overload symptoms by chelating iron, with non-protein-bond, 
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in thalassemic plasma and radical scavenging measured by TEAC assay. 

Some animal experiments showed that green tea catechins are able to cross the highly 

selective blood-brain barrier (BBB) and inhibit the iron-induced neuro-degeneration in mice 

by measuring the down-regulation of the amyloid precursor protein (APP) in the 

hippocampus region of the brain [127, 128]. Polyphenols from green tea and wine have 

shown a great inhibition to aggregation and accumulation of amyloid beta (Aβ) fibrils [129] 

and Aβ neurotoxicity [130], which may be a direct result of the iron-chelation ability. 

Since whole-cell assays involve many variables and make it difficult to evaluate the 

attribution of polyphenol antioxidant activity to metal binding, many in vitro methods have 

been employed to examine the iron-binding antioxidant mechanism of polyphenols, for 

instance the quantification of the inhibition of iron-mediated DNA damage by polyphenols. 

Two common methods for this kind of quantification are DNA gel electrophoresis and the 

deoxyribose assay, which employs UV-visible spectroscopy to quantify malonaldehyde (a 

production from OH•induced degration of 2-deoxyribose) by its condensation reaction with 

thiobarbituric acid [131-133]. For gel electrophoresis, Zhao et al. observed that verbascoside 

can inhibited DNA damage by blocking the Fenton reaction with a dose-dependent manner, 

by iron-bind with polyphenols [134]. To extend this research, Perron et al. [135] investigated 

12 different phenolic compounds and achieved the results that all of the compounds with 

catechol or gallol groups can inhibit 50% of the DNA damage from Fe
2+

 and H2O2 (IC50) at 

concentrations between 1-59 μM. 

4.2.1.3 Mechanism of pro-oxidant activity  

Under certain conditions, some phenolic antioxidants can initiate an autoxidation process and 

act as prooxidants [136]. The phenoxyl radical (PhO•) may also interact with oxygen and 

form quinones (Ph=O) and superoxide anion (O2•
-
) instead of blocking a free radical chain 

reaction by react with a second radical [137].  

PhO• + O2 → Ph=O + O2•
-
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Additionally, in some cases, prooxidant activity of phenolic antioxidants can be induced by 

transition metal ions as demonstrated by the following reactions [88]: 

Cu
2+

 (Fe
3+

) + PhOH → Cu
+
 (Fe

2+
) + PhO• + H

+
 

PhO• + RH → PhOH + R• 

R• + O2 → ROO• 

ROO• + RH → ROOH + R• 

ROOH + Cu
+
 (Fe

2+
) → Cu

2+
 (Fe

3+
) + RO• + OH

-
 

When phenolic antioxidants are under the condition that favors their autoxidation, they tend 

to behave like prooxidants, for instance, at high pH with high concentration of transition 

metal ions and with the presence of oxygen. It is reported that small and simple phenolics are 

easily oxidized and show pro-oxidant activity such as quercetin and gallic acid, while high 

molecular weight phenolics, such as condensed and hydrolysable tannins, barely show 

pro-oxidant activity [138]. 

4.2.2 Antioxidant properties of grape polyphenol (GP)  

With the methods mentioned previously, notable antioxidant activities were evaluated in 

grape polyphenol extracted from grape seeds, skins, leaves as well as grape juice, wine and 

pomace after winemaking industry. The values of antioxidant capacities have great 

differences among different assays and polyphenol sources. Xia [38] et al reviewed the 

antioxidant capacities of the extracts from different parts of grape and its products (Table 4). 

Numerous publications are associated with the antioxidant activities of grape phenols, such as 

grape seeds with the capacity of decreasing of oxidated LDL in plasma [139], grape juice 

reducing oxidative stress in serum [140], the protection from grape red wine against 

membrane oxidation os Sacchiaromyces cerevisiae induced by H2O2 [141], as well as the 

antioxidation of white grape dietary fiber concentrate for polyunsaturated fatty acid in oil 

[142]. 
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Table 4 Antioxidant capacities of the extracts from different parts of grape and its products 

Resource  TEAC FRAP DPPH ORAC 

Grape pomace 0.91 g/L (EC50)  0.20 g/L (EC50) - 

Defatted grape seed  36.36 mol TE/100g 21.6mol TE/100g - - 

Whole seed 76.3 mol TE/100g 58.04mol TE/100g - - 

Grape seed 1 - - > 663 μmol TE/g - 

Grape seed 2 - - 16.8-92mmol TE/g 42.18 mmol TE/g 

Grape seed 3 281.3μmol TE/g - - - 

Grape skin 1 - - 15.7-113.3mmol TE/g 36.40 mmol TE/g 

Grape skin 2 12.8μmol TE/g - - - 

Grape leaf 236.1 μmol TE/g - - - 

Grape fresh 2.4μmol TE/g - - - 

Grape juice 25 mmol TE/L 32 mmol Fe2+/L 15 mmol TE/L - 

Grape wine 1 - 8.8μmol TE/g 22.9-26.7μmol TE/g - 

Grape wine 2 - 3.098 mg TE/L 70.7 % inhibition 10.724μmol /L 

Some studies showed the antioxidant activity of phenol is not highly concentrate-dependent 

but with a concentration saturation limit above which the antioxidant capacity may not 

increase further [143]. Pinelo et al. [144] revealed the impact of solvent on the antioxidant 

activity of catechin, resveratrol and grape extracts dissolved in ethanol, methanol and water, 

respectively. The maximum radical scavenging capacity was the phenol in ethanol while the 

minimum was in water. Besides, Arora et al. [145] found that flavonoids showed higher 

antioxidant capacity against metal-ion-induced peroxidation than peroxyl-radical 

peroxidation due to the direct reaction to generate phenoxyl radicals, which was stable and 

could cut off the reaction chain [146]. 

4.2.3 Antioxidant properties of tea polyphenol (TP) 

Tea is particularly rich in polyphenols, including catechins, theaflavins and thearubigins, 

which do contributions to the health benefits of tea, especially antioxidant property. Tea 

polyphenols take a role as antioxidants in vitro mainly by scavenging reactive oxygen and 
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nitrogen species as well as chelating redox-active transition metal ions. The possible indirect 

function pathways of tea polyphenol are: 1) inhibition of the redox-sensitive transcription 

factors, nuclear factor-κB and activator protein-1; 2) inhibition of “pro-oxidant” enzymes, 

such as inducible nitric oxide synthase, lipoxygenases, cyclooxygenases and xanthine oxidase; 

and 3) induction of phase II and antioxidant enzymes, such as glutathione S-transferases and 

superoxide dismutases [147]. 

In brief, five potential mechanisms for the antioxidant capacity of tea have been summarized 

as follows: 

i. Radical and oxidant scavenging 

ii. Metal chelation 

iii. Inhibition of redox-sensitive transcription factors 

iv. Inhibition of “pro-oxidant” enzymes 

v. Induction of phase II enzymes 

The standard one-electron reduction potential (E°’) of a compound acting as a free radical 

scavenger can be employed to measure the reactivity of an antioxidant as hydrogen or 

electron donor under standard conditions. Under nonstandard conditions, such as in vivo, the 

Nernst equation can be used to correctΔ E°’ of a redox reaction for the actual concentrations 

encountered in vivo [148].  

Nernst equation: Δ E=Δ E°’﹣60 mV log10
          

           
 

A lower E°’ value means that less energy is required for hydrogen or electron donation. Tea 

catechins and theaflavins have higher E°’ values (Table 5), compared to α-tocopherol (vitamin 

E) and ascorbate (vitamin C) which is a superior hydrogen donor to tea polyphenol [149, 

150]. 
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Table 5 E°’ value of tea catechin, TP and other physiological antioxidants 

Antioxidant  Reduction potential* (mV) 

Ascorbate  280 

α-tocopherol 480 

Uric acid 590 590 

Glutathione (Cysteine) 920 

(-)-Epigallocatechin gallate 430 

(-)-Epigallocatechin 430 

(-)-Epicatechin 570 

(-)-Epicatechin gallate 550 

Theaflavin 510 

Theaflavin digallate 540 

*standard reduction potential at pH 7.0, 20℃ 

When referred to the inhibition of pro-oxidant enzymes, green tea catechin can limit the 

activity of xanthine oxidase in vitro [151] and similar results demonstrated the inhibition 

effects of EGCG from green tea and theaflavin from black tea in cultured human leukemia 

cells [152]. In addition, numerous animal models were developed to analyze the antioxidant 

activities of tea and tea polyphenols. Green tea extract, provided to male rats in their drinking 

water, prevented decreases in liver glutathione (GSH) concentrations induced by ethanol 

administration [153]. Oral administration of green tea extract to mice infected with M. 

tuberculosis attenuated inhibits erythrocyte superoxide dismutase (SOD) activity [154], on 

the other hand, oral administration of black or green tea extract increased serum SOD activity 

in mice exposed to the carcinogen, 3-methylcolanthrene [155]. Feeding green tea polyphenols 

dose-dependently decrease the concentration of TBARS (thiobarbituric acid-reacting 

substances) in LDL from cholesterol-fed rats after 4h of copper-mediated oxidation [156]. 

Feeding red wine, quercetin or catechin in their drinking water to ApoE-deficient mice can 

decrease the Basal levels of lipid hydroper-oxides (LOOH) by measuring iodometrically in 

LDL [157]. Tea polyphenol can also act as a biomarker of oxidative damage to proteins and 

this damage may result in chemical modifications of amino acids, aggregation or cross 

linking of proteins or protein fragmentation. Providing old rats (up to 22 age of mouse) with 



Functional polyphenols from plants 

-29- 
 

green tea extract in their drinking water can decrease aortic collagen-linked Maillard-type 

fluorescence, a marker for advanced glycation endproducts [158]. The most commonly 

analyzed oxidated DNA base in animal models of tea administration is 8-OHdG (8-hydroxy 

2’-deoxyguanosine). Topical EGCG prevented the epidermal formation of the oxidized DNA 

bases, 5-hydroxymethyl-2-deoxyuridine and 8-OHdG and thymidine glycol in mice induced 

by phorbol ester-type tumor promoters [159]. Providing green tea or EGCG to mice in their 

drinking can not only decrease lung adenomas, but also significantly inhibit increases in lung 

DNA level of 8-OHdG induced by tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)- 

1-butanone [160]. 

4.3 Anticancer activities 

Cancer, known medically as a malignant neoplasm, is a broad group of diseases involving 

unregulated cell growth. The cancer cells divide and grow uncontrollably result in forming 

malignant tumors and invading nearby parts of the body. There are over 200 different known 

cancers that affect humans. Various factors like environmental, chemical, physical, metabolic, 

and genetic factors can directly or indirectly induce cancers. Strong and consistent epidemiology 

evidence indicates a diet with high consumption fruits and vegetables, rich in antioxidants agents, 

can reduce the risk of many cancers and decrease cancer incidence and mortality [161]. As a 

result, in recent years, experimental cancer researchers focus on the identification and 

development of these compounds, among which polyphenols, as one of the most numerous and 

ubiquitous group of plant metabolites, are an integral part of the human diet due to their safety 

and low toxicity [162]. In addition to their primary antioxidant capacity, phenolic compounds 

display a wide variety of biological activities related to the anticarcinogenic and anticancer 

potential. 

4.3.1 Anticancer effects of phenolics in vitro 

Phenolic extracted or isolated from different plants have been investigated with in vitro 

models in a number of cancer cell lines representing different evolutionary stages of cancer. 

For example, berry extracts isolated from blackberry, raspberry, blueberry, cranberry, 

http://en.wikipedia.org/wiki/Malignancy
http://en.wikipedia.org/wiki/Neoplasm
http://en.wikipedia.org/wiki/Cell_(biology)
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strawberry and the phenolic compounds isolated from strawberry including anthocyanins, 

quercetin, kaempferol, esters of coumaric acid and ellagic acid, showed a significant 

inhibition of the growth of human oral (KB, CAL-27), breast (MCF-7), colon (HT-29, 

HCT-116), and prostate (LNCaP, DU-145) tumor cell lines in a dose-dependent manner with 

different sensitivity between cell lines [163, 164]. The antiprolierative activity of ethanol 

extracts from 10 edible berries on HL-60 human leukemia cells and HCT-116 cells is 

compared by Katsube et al [165], and the bilberry showed the highest activity. Extracts and 

phenolic compounds isolated from wine, such as resveratrol, quercetin, catechin, and 

epicatechin [166, 167], as well as green tea polyphenols (epicatechin, epigallocatechin, 

epicatechin-3-gallate) [168-170], also display notable antiprolierative activity in different 

cancer cell line systems. In addition, although a number of polyphenols such as flavones 

(apigenin, baicalein, luteolin and rutin), flavanones (hesperidin and naringin) and sesame 

lignans (sesaminol, sesamin, and episesamin), are not widely studied previously, they had 

growth inhibitory effects in different cancer cell lines like colon [117], prostate [172, 173], 

breast [174], stomach, liver [175], cervix, leukemia [176] and pancreas. 

4.3.2 Anticancer effects of phenolics in vivo 

Additionally, a number of in vivo animal experiments have been performed to study the 

antitumor effectiveness of plant-derived phenolic extracts or phenolic compounds on tumor 

incidence and multiplicity [177-180]. The animals were induced to have tumor by chemical, 

genetically or ultraviolet light methods as well as xenograft methods in colon, breast, lung, 

liver, stomach, prostate, esophagus, pancreas mammary gland, small intestine and skin. For 

instance, Ding et al. [181] investigated the major anthocyanin (cyanidin-3-glucoside (C3G)), 

from blackberry for its potential ability to inhibit 7, 12-dimethylbenz[a]anthracene 

(DMBA)-12-O-tetradecanolyphorbol-13-acetate (TPA)-induced skin papillomas in animal 

skin model. After 20 weeks of TPA promotion, the inhibition of papillomagenesis by C3G 

was observed. 22 weeks later, four tumors greater than 4-5 mm in diameter in the TPA-treated 

group were observed, whereas no large tumors were found in the C3G plus TPA-treated 

group. Martin et al. [182] summarized the contribution of cocoa and phenolic components 

from cocoa to prevention of cancer through different models of carcinogenesis (Table 6). 
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Table 6 summary of cancer prevention effect of cocoa and cocoa flavonoids in animal models 

[182] 

 

4.3.3 Anticancer activity of grape polyphenols 

Numerous evidences have proved that the extracts from grapes and its products had great 

anticancer activity. Hudson et al. [183] reported that the extract from grape skins could lead 

to apoptosis of prostate tumor cell lines with a high rate. The extracts from grape pomace 

after winemaking industry inhibited activities of matrix metalloproteinases-2 and -9, and 

showed a significant antiproliferative effect on human colon adenocarcinoma cells (Caco-2) 

[184, 185]. In the study of Bagchi et al. [186], the grape seed procyanidin extract (GSPE) 

showed greater protection against lipid oxidation and DNA damage than vitamin C and E. 

GSPE also displayed protection against skin cancer by inhibiting UV-radiation-induced 

oxidative stress and activation of mitogen-activated protein kinase and NF-κB signaling in 

human epidermal keratinocytes [1187, 188]. An in vitro study [189] demonstrated that GSPE 

inhibited pancreatic carcinoma cells MIA PaCa-2 and BxPC-3 proliferation in a 

dose-dependent manner and induced G1-phase arrest of the cell cycle in BxPC-3 or 

mitochondria- mediated apoptosis in MIA PaCa-2. GSPE also induced apoptosis of non-small 

cell lung cancer (NSCLC) cells, A549 and H1299 in vitro [190]. Recent findings suggest that 

grape seed extracts (GSE) may be an effective alternative and complementary medicine 

against colorectal cancer due to its strong growth inhibitory and apoptosis-inducing effects. 

For example, Kaur et al [191] found that GSE could strongly inhibit the growth of LoVo, 

HT29 and SW480 cells as well as the apoptosis in all three cell lines. Moreover, phenolics 
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from grape juice significantly inhibited carcinogen-induced DNA adduct formation in rat 

model [192], and limited DNA synthesis in breast cancer cells [193]. 

4.3.4 Anticancer activity of tea polyphenol 

The cancer-preventive effect of tea and its main constituents has been demonstrated in 

epidemiological, cell culture, animal and clinical studies in the recent decade. Numerous 

mechanisms have been proposed to account for the cancer preventive effects of green tea and 

EGCG in laboratory animal models, including the inhibition of growth factor signaling, 

inhibition of key cellular enzymes, inhibition of gene transcription, as well as induction of 

tumor suppressor genes [194]. 

In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and 

cell cycle arrest in tumor cells but not in their normal cell counterparts [19532]. In one 

experiment, SKH-1 mice were exposed to UVB light twice a week for 22 weeks and fed with 

green tea (6 mg solid/mL) for another 23 weeks by oral administration. It was found that 

green tea could decrease the incidence of skin tumor formation compared to the control group 

(water-fed) [196]. It was reported [197] that the incidence of hepatocellular tumors was 73.3% 

if mice were chemically induced by pentachlorophenol (PCP, 600 ppm) after treatment with 

the initiator diethylnitrosamine (DEN). The incidence of hepatocellular tumors could be 

decreased to 33.3% if the mice were given green tea infusion before the chemical treatment 

and during the treatment period. A study of the inhibitory effect of green tea on lung cancer 

demonstrated that mice given 1 % green tea infusion exhibited a significantly lower lung 

tumor multiplicity from 0.72/mouse to 0.41/mouse [198].  

Among all the compounds of tea polyphenol, EGCG (epigallocatechin-3-gallate) is the most 

abundant one in tea and one of the most well studied polyphenolics in relation to HCC 

(hepatocellular carcinoma), which is one of the most frequent tumors representing the fifth 

commonest malignancy worldwide and the third cause of mortality from cancer [199]. 

Evidences from in vitro studies showed that EGCG could inhibit the growth of different 

human hepatoma cell lines, such as HepG2, HuH-7, Hep3B and HLE [200, 201]. Also, in 
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vivo study reported that EGCG could enhance the activity of the anticancer drug doxorubicin 

in a murine model for chemo-resistant HCC by inhibiting the P-glyco-protein (P-gp) efflux 

pump activity and reducing the expression of multidrug resistance (MDR)1 protein [202].  

4.4 Antimicrobial effects 

In addition to antioxidant activities, lots of plant-derived phenolic extracts have been 

demonstrated potential antibacterial, antifungal and antiviral activities. Some studies showed 

that phenolic extracts have inhibitory effects against specific strains of bacteria such as 

Streptococcus Mutans, Staphylococcus aureus, Escherichia coli and Candida albicans [203]. 

Various bacterial species exhibit different sensitivities to polyphenols. For example, 

Staphylococcus aureus have the highest sensitivities towards grape wine extracts, followed by 

Escherichia coli and the lowest sensitivities was detected in Candida albicans [204]. The time of 

reaction also affect the antibacterial activities of phenolic compounds. Karapinar et al. [205] 

demonstrated that a kind of grape juice immediately acted against Salmonella typhimurium at the 

concentration of 1-3.5 log cfu/g while in study of Baydar et al. [206], it took the grape seed 

extracts 48 hours to show the inhibition against Staphylococcus aureus. The phenolic 

compounds from different parts of grape showed different antimicrobial activities. The 

increasing order of the antimicrobial activity was flesh, whole fruit grape extracts, fermented 

pomace, skin, leave and seed [38]. Study indicated that the minimum inhibition concentration 

(MICs) of grape seed was 0.26 mg/L (gallic acid as the equivalent), while that of grape stem 

extract was 0.34 mg/L [207]. Brown et al. [208] verified that the grape skin exhibited the 

strongest inhibition against Helicobacter pylori, compared to grape synergy (skin and seed) and 

seed. Some researchers revealed the structure-activity relationship between polyphenol and its 

antimicrobial effects. Results indicated that the number of hydroxyl group and the degree of 

polymerization may influence the antimicrobial activities of phenolics [209. In addition, Rhodes 

et al. [210] found that the red pigmented polymeric phenolics from grape juice or skin showed 

pH-dependent antilisterial activity, while the antilisterial activity of unpigmented phenolics such 

as that from grape seed was independent of pH. 

Polyphenols isolated from green tea also exhibited great antimicrobial effects such as 
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Gram-positive and Gram-negative bacteria [211]. Among the catechins from green tea extracts, 

EGCG and ECG are the most potent in exhibiting antimicrobial activity due to the galloyl 

moiety present in their structures [212]. It is reported that EGCG possessed antibacterial effects 

on various strains of Staphylococcus (Gram positive cocci) and Gram negative rods such as E. 

coli, Klebsiella pneumonia and Salmonella and the concentration required for inhibiting the 

growth of Staphylococcus was 50-100 μg/mL, while for Gram-negative rods the concentration 

should be higher than 800μg/mL [213]. In vivo and in vitro experiments showed that a green tea 

extract inhibited caries formation in hamsters and increased the resistance of human enamel to 

acid [214]. Friedman et al. [215] evaluated the antibacterial effects on Ba. Cereus (a widely 

distributed foodborne pathogen that causes vomiting and diarrhea in mammals) of seven green 

tea catechins and four black tea theaflavins as well as infusions of 36 commercial green, black, 

oolong, white, and herbal teas. Results demonstrated that GCG, EGCG, CG, ECG, TF339 G, 

TF39G, as well as TF3G displayed antimicrobial activities at nanomolar levels and some of 

them had higher activities than medicinal antibiotics such as tetracycline or vancomycin. They 

also indicated that the bactericidal activities of tea could be roughly attributed to the levels of 

catechin and theaflavins.  

4.5 Anti-inflammation activities 

Inflammation is defined as part of the complex biological response of vascular tissues to harmful 

stimuli, such as pathogens, damaged cells, or irritants [216]. Due to the antibacterial, antioxidant 

properties of polyphenol, the phenolic compounds showed great potential in anti-inlfammation 

filed. Significant anti-inflammation effects of phenolics from grapes especially grape seeds have 

been exhibited on rats, mice and human, mainly attributed to molecules like flavonols, flavanols 

and procyanidins [38]. In the study of Bralley et al. [217], extracts from grape skins and seeds 

inhibited mouse ear inflammation, edema and polymorphonuclear leukocyte infiltration induced 

by 12-O-tetradecanoylphorbol 13-acetate. For grape phenolics, immunomodulation and 

antioxidative action are the two main pathways for the anti-inflammation effect. Panico et al. 

[218] proved the mechanism of anti-inflammation of procyanidins might be that they inhibited 

the release of proinflammation factors through human chondrocytes assays. Mejia et al. [219] 

summarized the anti-inflammation activities of tea and its bioactive components such as EGCG, 

http://en.wikipedia.org/wiki/Blood_vessel
http://en.wikipedia.org/wiki/Pathogen
http://en.wikipedia.org/wiki/Inflammation#cite_note-pmid17223962-1
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EGC, ECG, theaflavin, as well as tea extracts from green and green tea, in vitro and in animal 

models. Cytokines, such as tumor necrosis factor-α (TNF-α), IL-6, IL-1, GM-CSF, interferon-γ 

(IFN-γ), and IL-12, are a group of multifunctional proteins involved in several steps related to 

inflammatory responses. Almost all cell types, when exposed to TNF, can activate NF-κB 

(nuclear factor kappa B) leading to the expression of inflammatory genes such as 

cyclooxy-genase-2 (COX-2), lipoxygenase-2 (LOX-2), cell-adhesion molecules, inflammatory 

cytokines, chemokines, and inducible nitric oxide synthase (iNOS) [220]. Some investigation 

indicated that tea polyphenols could modulate at different targets (in this case, the targets are 

NOS and NF-κB) of the anti-inflammation effects related to arachidonic acid-dependent 

pathways such as COX inhibition [221]. 

4.6 Cardioprotection action 

Epidemiological studies suggest that consumption of grape products, wine, green tea and other 

foods rich in polyphenols is associated with decreased risk of cardiovascular disease, which is 

induced by modifications in fatty acid metabolism and excessive lipid peroxidation of LDL. 

Moreover, these oxidation products also cause the formation of thromboxane with the process of 

platelet aggregation, then the artery blockage and finally thrombosis [222]. Grape seed 

procyanidins had significant effectiveness in laser-induced thrombus formation in the carotid 

artery of mice through intravenous and oral administration [223]. Grape seeds extracts were 

found to exhibit higher inhibition in platelet adhesion, aggregation and generation of superoxide 

anion than pure resvertrol [224]. Dohadwala et al. [225] indicated that the mechanisms of grape 

polyphenol in reducing atherosclerosis included inhibition of oxidation of LDL, platelet 

aggregation and other favorable effects on cellular redox state, improvement in endothelial 

function, lowering blood pressure, anti-inflammation and activating novel proteins that prevent 

cell senescence. As for tea, Wolfram [226] found that the regular daily consumption of 5-6 or 

more cups of green tea, containing 200-300 mg of EGCG, had beneficial effects on 

cardiovascular and metabolic health. Recent research indicated that tea consumption improves 

endothelium-dependent vasodilation and that flava-3-ols increase nitric oxide (NO) generation 

and therefore could prevent cardiovascular disease (CVD). 
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4.7 Other biological properties 

In addition to the biological properties above, numerous evidences referred to the health benefits 

of phenolic compounds, such as anti-aging activity, improvement of immunity, weight 

management. For example, it is reported a synergistic interaction between caffeine and catechin 

polyphenols from green tea extract appears to prolong sympathetic stimulation of thermogenesis 

and therefore processes the weight management [227, 228]. Some researchers investigated the 

potential positive effect of L-theanine on immunity and found that the supplementation of 

capsules containing L-theaine and flavan-3-ols from tea can decrease the incidence of cold and 

flu [229].  

5 Bioavailability of polyphenols 

It is important and necessary to know the bioavailability of polyphenol, since their nutritional 

significance and potential systemic effects will greatly rely on their behavior in the digestive tract. 

The absorption and metabolism of food polyphenols primarily depend on their chemical structure, 

which may be influenced by the factors such as the degree of glycosylation/acylation or 

polymerization, the basic structure (for example, benzene or flavones derivatives), conjunction 

with other phenolic compounds, molecule size and solubility [230]. Several researches showed 

that phenolics such as procyanidins, quercetin and flavanols were rapidly absorbed from grapes 

to plasma, with plasma concentration peaking at two or three hours later after ingestion [231, 

232]. In order to detect digestion of polyphenol, some researchers employed the method to test 

the increase of lipid-bound polyphenols in serum as well as the decrease of lipid peroxidation in 

serum due to the antioxidant activity of polyphenol. It is found that after daily red wine 

consumption for two weeks, plasma levels of total phenolic concentration increased significantly 

and trace levels of metabolites were detected [233]. Ten healthy human subjects consumed 500 

mL of Choladi green tea (containing 648 mumol of flavan-3-ols) after which plasma and urine 

were collected over a 24 h period and analysed by HPLC-MS. Plasma contained a total of ten 

metabolites, in the form of O-methylated, sulphated and glucuronide conjugates of (epi)catechin 

and (epi)gallocatechin, with 29-126 nM peak plasma concentrations (C(max)) occurring 1.6-2.3 h 

after ingestion, indicative of absorption in the small intestine [234]. In some cases, 
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supplementations or additions can enhance the availability of polyphenol by improving the 

solubility. For example, addition of vitamin C and sucrose may improve bioaccessibility of 

catechin in stimulated human digestive condition and accumulation of catechin by human 

intestinal cells [235]. 

6 The stability of polyphenol 

Since polyphenols possess significant biological activities, great benefits for human health as 

well as potential applications such as food or medicine industry, the stability of phenolics plays 

an important role and should be taken into consideration. For example, in certain processing 

operations involving crystalline drugs, such as milling, lyophilization, spray drying, and wet 

granulation, the thermodynamical and chemical stability nature of the polyphenol should be 

understood well before the process. Experimental evidences demonstrated that several factors 

may influence the stability of polyphenol such as heat, pH and irradiation. Generally speaking, 

anthocyanins are highly susceptible to degradation during processing and storage of food 

products. The rate and extent of degradation depend on extrinsic factors such as processing and 

storage temperature, availability of oxygen, light etc. and the intrinsic properties of the product 

such as pH, the structure of the anthocyanins, the presence of metallic ions and oxidative 

enzymes [236]. It is reported that in food processing such as juice making, nut roasting and raw 

material drying, both polyphenol content and antioxidant activity decrease during the thermal 

processing and long-term storage [237, 236]. Li et al [239] found that the degradation of EGCG 

was concentration-dependent. After heating for 35 min, EGCG was more stable in solution with 

higher concentration (in this case, it is 5 mg/mL) than solutions with lower concentration. 

Biesaga et al. [240] investigated the influence of irradiation on stability of phenolic compound 

from honey, such as quercetin, kaempferol, luteolin, rhamnetin and myricet, and found that all 

compounds degraded during the extraction procedure with irradiation (ultrasonic and microwave). 

Research about the effect of pH on Galla chinensis extract’s (GCE) stability indicated that GCE 

solution was not stable at neutral and alkaline conditions and its anti-caries activity could be 

strong at about pH 5.5 [241]. In addition, pH may affect the biological properties of polyphenol. 

For instance, according to literature, the radical scavenger activity of polyphenols is strongly 

pH-dependent with higher pH values which significantly increase the capacity, and this increase 
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has been attributed to the deprotonation of the hydroxyl moieties present on the aromatic rings of 

the phenolic compounds [242]. 

7 Safety and toxicity of polyphenol 

Table 7 Summary of doses which were required for systemic toxicity in single in vivo studies 

[247] 

 

Even though plants rich in polyphenols are generally regarded as safe based on their long history 

of dietary usage, the potential toxicity and safety of polyphenol were investigated if for example, 

highly purified and standardized phenolic compounds are involved in drug development due to 

their great benefits in anti-cancer or antioxidant. Numerous human intervention studies proved 

that daily consumption of tea polyphenols with relatively high dose (600-1800 mg/day) showed 

no adverse reactions [243-245]. However, an increasing number of cases exhibited that 

hepatoxicity in humans was related to intake of green tea dietary supplements. Some reports 

demonstrated that green tea supplements with the dose range from 700 to 2100 mg/day may 

clinically present elevated serum transaminase and bilirubin levels, abdominal pain and 

occasionally jaundice [246]. Galati et al. [247] reviewed the potential toxicity of flavonoids and 

isoflavones and indicated that potential safety issues exist if megadoses (Table 7) of these 

phenolics were consumed daily. Phenol ring-containing flavonoids, if oxidized by peroxidases, 

generate phenoxyl radicals which are cytotoxic as well as co-oxidize unsaturated lipids, GSH, 
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NADH, ascorbate, and nucleic acids, and cause ROS formation and mitochondrial toxicity. 

8 Potential applications of polyphenols 

A number of natural products found in plant extracts possess a wide range of applications in food, 

textile, pharmaceutical and cosmetic and so on, due to their excellent biological capacity like 

antioxidant, antiaging, anticancer and antimicrobial activities etc. 

Green tea extracts have been employed in various food applications such as bread, extra virgin 

olive oil, meat, sausages, fish and biscuits [248]. Tea catechins showed higher antioxidant 

activities against lipid oxidation of cooked patties, compared to ginseng, mustard, rosemary, sage, 

butylated hydroxyanisole (BHA), butylated hydroxyl toluene (BHT), and vitamins C and E [249]. 

The inhibition of lipid oxidation in meats such as red meat, poultry and fish, was dose dependent. 

Addition of tea catechin (200-400 mg/kg) has significant inhibitory effects on lipid oxidation 

displayed in red meat and poultry patties [250]. Tea extracts also have the ability to inhibit the 

human salivary amylase and thus consuming tea could reduce cariogenic potential of starch rich 

foods such as crackers and cakes [251]. It is found that the antimicrobial activity of tea remains 

functional even at high temperatures (100 °C/60 min) or at pasteurization temperatures 

(121 °C/15 min) [252]. Moreover, green tea extract have shown inhibitory effects on bacteria 

causing dental caries Streptococcus mutans with a minimum inhibitory concentration of 250 μg/ 

mL [253]. 

Significant effort has been made over past decade to explore the potential of using GP to produce 

function al food ingredients, such as natural antioxidants for nutrition fortification and food 

preservation, health promoting grape seed oil and dietary fiber [222]. Grape phenols have been 

reported to use in the baked food products such as bread to increase the antioxidant activity of the 

bread and inhibit lipid oxidation of raw and cooked chicken [254]. Grape seed extract (GSE) at 

0.1% (w/w) is an effective radical scavenger in muscle tissues and shown to reduce the secondary 

oxidation products (TBARS and head space hexanal) in beef, chicken, and turkey during 

refrigerated storage [255, 256]. GSE can also be used in preventing periodontal diseases by 

exhibiting bacteriostatic effect on the oral anaerobes (Fusobacterium nucleatum and 
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Porphyromonas gingivalis) at a concentration of 2000 μg/mL [257]. 
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Chapter II  

Polyphenol: evolution of extraction and analysis 

1 Introduction 

Phenolic compounds are widely distributed in roots, leaves, flesh, and peels of plants like cocoa, 

tea, peanut, grape as well as other vegetables and fruits. The polyphenols are always constituted 

by simple phenols, phenolic acids (both benzoic and cinnamic acid derivatives), coumarins, 

flavonoids, stilbenes, hydrolysable and condensed tannins, lignans, and lignins. The chemical 

structure and properties of the molecule influence the extraction method employed as well as the 

extraction conditions such as time, temperature, pH, solvent, solid and liquid ratio etc. Since the 

chemical nature of plant phenolics varies from simple to highly polymerized substance and may 

exist as complex with carbohydrates, proteins and other plant components, phenolic extracts of 

plant materials are always a mixture of different classes of phenolics with different extraction 

system. The phenolic extracts from plant materials are always a diversified mixture of plant 

phenolics soluble in the solvent system used. Additional steps may be required to remove the 

unwanted phenolics and non-phenolic substances such aswaxes, terpenes, fats and chlorophylls. 

This chapter mainly focuses on the methodology that was employed by both total phenolic 

extract and the extraction of some specific molecules, and technologies involved in the analysis 

of polyphenols. 

2 Methodology of phenolic extraction 

Considering the variations among bioactive compounds and large number of plant species, it is 

necessary to build up a standard and integrated approach to screen out these compounds with 

great human health benefits. Farnsworth et al. [1] reported an integrated approach showing the 

sequence of medicinal plant study, which started from name collection of plants frequently used 

and terminated at industrialization. Works of particular order for medicinal plant study and the 
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position of extraction techniques are shown by a flow chart in Figure 1. 

 

Figure 1: The flow chart of medicinal plant study and position of extraction techniques [1] 

Only if an appropriate extraction process is carried out in advance, it is possible to process further 

steps such as separation, identification and characterization of bioactive compounds. Different 

extraction techniques should be used in diverse conditions for understanding the extraction 

selectivity from various natural sources. All these techniques have some objectives in common 

[2]:  
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i. Extract targeted bioactive compounds from complex plant sample 

ii. Increase selectivity of analytical methods  

iii. Increase sensitivity of bioassay by increasing the concentration of targeted compounds 

iv. Convert the bioactive compounds into a more suitable form for detection and separation,  

v. Provide a strong and reproducible method that is independent of variations in the sample 

matrix 

2.1 Conventional extraction techniques 

Bioactive compounds from plant materials can be extracted by various classical extraction 

techniques. Most of these techniques are based on the extracting power of different solvents in 

use and the application of heat and/or mixing. In order to obtain bioactive compounds from 

plants, the existing classical techniques are: i) soxhlet extraction, ii) maceration and iii) 

hydrodistillation.  

2.1.1 Soxhlet extraction 

Soxhlet extractor was first proposed by German chemist FranzRitter Von Soxhlet [3]. It was 

originally designed for the extraction of lipid from a solid test material, but now it can be 

used whenever it is difficult to extract any compound from a solid. The soxhlet extraction has 

widely been used for extracting valuable bioactive compounds from various natural sources. 

It is used as a model for the comparison of new extraction alternatives. Generally, a small 

amount of dry sample is placed in a thimble. The thimble is then placed in distillation flask 

which contains the solvent of particular interest. After reaching to an overflow level, the 

solution of the thimble-holder is aspirated by a siphon. Siphon unloads the solution back into 

the distillation flask. This solution carries extracted solutes into the bulk liquid. Solute is 

remained in the distillation flask and solvent passes back to the solid bed of plant. The 

process runs repeatedly until the extraction is completed. 
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Figure 2: Soxhlet extractor 

2.1.2 Maceration 

Initially, maceration was used in homemade preparation of tonic. Later, it became a popular 

and inexpensive way to obtain essential oils and bioactive compounds. In general, maceration 

is employed for small scale extraction and consists of several steps. Firstly, grinding of plant 

materials into small pieces or particles is carried out to increase the contact area between 

solid material and proper solvent when they are mixed together. Secondly, during maceration 

process, appropriate solvent named as menstruum is added in a closed vessel. Thirdly, the 

liquid is strained off but the marc which is the solid residue of this extraction process is 

pressed to recover large amount of occluded solutions. The obtained strained and the press 

out liquid are mixed and separated from impurities by filtration. Occasional shaking in 

maceration facilitates extraction by two ways: i) increase diffusion; ii) remove concentrated 

solution from the sample surface for bringing new solvent to the menstruum for more 

extraction yield. 

2.1.3 Hydrodistillation 

Hydrodistillation is a traditional method for extracting bioactive compounds and essential oils 

1. Stirrer bar/anti-bumping granules 

2. Still pot (extraction pot)- still pot should not be overfilled 

and the volume of solvent in the still pot should be 3 to 4 

times the volume of the soxhlet chamber 

3. Distillation path 

4. Soxhlet Thimble 

5. Extraction solid (residue solid) 

6. Syphon arm inlet 

7. Syphon arm outlet 

8. Reduction adapter 

9. Condenser 

10. Cooling water in 

11. Cooling water out 



Evolution of extraction and analysis 

-61- 
 

from plants. Organic solvents are not involved in this method and it can be performed for 

dehydration of plant materials. In hydrodistillation, first, the plant materials are packed in a 

still compartment; second, water is added in sufficient amount and then brought to boil. 

Alternatively, direct steam is injected into the plant sample. Hot water and steam act as the 

main influential factors to free bioactive compounds of plant tissue. Indirect cooling by water 

condenses the vapor mixture of water and oil. Condensed mixture flows from condenser to a 

separator, where oil and bioactive compounds separate automatically from the water [6]. 

Hydrodistillation involves the following main physicochemical processes: hydrodiffusion, 

hydrolysis and decomposition by heat. Diffusion of essential oils and hot water through plant 

membranes is known as hydrodiffusion. Hydrolysis in the present context is defined as a 

chemical reaction between water and certain constituents of essential oils. The reactions are 

not complete in either direction and the relationship between the molal concentrations of 

various constituents at equilibrium is written as:  

K = 
                  

                 
 

where K is the equilibrium constant. 

Almost all constituents of essential oils are unstable at high temperature. In order to obtain 

the best quality oil, distillation must be done at low temperatures. The temperature in steam 

distillation is determined entirely by the operating pressure, whereas in water distillation and 

in water and steam distillation the operating pressure is usually atmospheric. The same is true 

for the rate and extent of hydrolysis. However, it is possible to obtain better yield and quality 

of oils by: i) maintaining the temperature as low as possible, ii) using as little water as 

possible, in the case of steam distillation, and iii) thoroughly comminuting the plant material 

and packing it uniformly before distillation. According literature [5], there are roughly three 

types of hydrodistillation: i) water distillation, ii) water and steam distillation and iii) direct 

steam distillation. At a high extraction temperature some volatile components may be lost. 

This drawback limits its use for thermo labile compound extraction. 

2.1.4 Factors involved in conventional extraction  
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Considering the variety in food matrixes involved, there is surprisingly a great deal of 

coherency in the choice of solvents for extracting bioactive compounds. Solvents, such as 

methanol, ethanol, propanol, acetone, ethyl acetate, dimethylformamide and their 

combinations have also been used for the extraction of phenolics, often with different 

proportions of water. Extraction efficiency of any conventional method mainly depends on 

the choice of solvents [6]. The polarity of the targeted compound is the most important factor 

for solvent choice. Molecular affinity between solvent and solute, mass transfer, use of 

co-solvent, environmental safety, human toxicity and financial feasibility should also consider 

in selection of solvent for bioactive compound extraction. Some examples of bioactive 

compound extracted using different solvents are given in Table 1. 

Table 1Example of some extracted bioactive compounds by different solvents [6] 

Water Ethanol Methanol Chloroform Dichloromethanol Ether Acetone 

Anthocyanins Tannins Anthocyanin Terpenoids Terpenoids Alkaloids Flavonoids 

Tannins Polyphenols Terpenoids Flavonoids Terpenoids Tannins  

Saponins Flavonol Saponins     

Terpenoids Terpenoids Tannins     

 Alkaloids Flavones     

  Polyphenols     

Other factors such as extraction time, temperature as well as solid and liquid ratio also 

influence the yield of bioactive compounds extracted. In some cases, orthogonal test or 

response surface methodology are employed to optimize the extraction process and obtain the 

optimal combination of all involved factors. 

2.2 Ultrasonic-assisted extraction (UAE) 

Ultrasound is a special type of sound wave with a frequency greater than the upper limit of 

human hearing. Generally, in chemistry the frequency of ultrasonic is from 20 kHz to 100 MHz. 

Ultrasonic wave works like other waves and passes through a medium by creating compression 

and expansion. UAE has been developed based on the principle of cavitation, a phenomenon 
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generated during ultrasonic work process and only between liquid and liquid containing solid 

materials, which means production, growth and collapse of bubbles. At the same time, large 

amount of energy can be produced from the conversion of kinetic energy into heating the 

contents of the bubble which possesses temperature about 5000 K, pressure 1000 atm and, 

heating and cooling rate above 10
10

 K/s [7].  

The main benefit of UAE can be observed in solid plant samples because ultrasound energy 

facilitates organic and inorganic compounds leaching from plant matrix [8] and finally increases 

the yield of target products. The mechanism may be that ultrasound intensified mass transfer and 

accelerated access of solvent to cell materials of plant parts. The mechanism of 

ultrasonic-assisted extraction involves two types of physical phenomena: i) the diffusion across 

the cell wall and ii) rinsing the contents of cell after breaking the walls [9]. The advantages of 

UAE include reduction in extraction time, energy and use of solvent. Ultrasound energy for 

extraction also facilitates more effective mixing, faster energy transfer, reduced thermal 

gradients and extraction temperature, selective extraction, reduced equipment size, faster 

response to process extraction control, quick start-up, increased production and eliminates 

process steps [10]. 

Factors such as moisture content of sample, milling degree, particle size and solvent, greatly 

influence the efficient and effective extraction. Furthermore, temperature, pressure, frequency 

and time of sonication are factors governing the action of ultrasound. In some cases, UAE 

incorporated with various classical techniques as they are reported to enhance the efficiency of a 

conventional system.  

A large number of researches employed UAE to isolate phenolic compounds from plants. 

Tabaraki et al. [11] used ultrasonic-assisted extraction of natural antioxidants from rice bran and 

optimized the extraction condition by response surface methodology (RSM). Results showed 

that UAE temperature of 51-54℃, extraction time in the range of 40-45 min and concentrations 

65–67% of ethanol as modifier, can result in optimal total phenols (6.05 mg GA/g dw), 

antioxidant activity (54.14 μmol Fe
 2+

/g dw) and antiradical activity (52.83% inhibition) from 

rice bran. Gu et al. [12] employed UAE at 25 ℃ to extract the polyphenols present in tobaccos 
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into anhydrous methanol cooperated with novel filtration device. Cho et al. [13] compared the 

efficiency of UAE and conventional solvent extraction and found that the extraction yield of 

resveratrol from grape stems was increased by 24-30% when UAE was employed with 

ethanol/water (80:20%, v/v) maintained at 60 ℃ for 30 min. Anthocyanins and phenolic 

compounds were extracted from grape peel using UAE and the extraction process was optimized 

with reference to solvent, extraction temperature and time [14]. UAE technique was proved to 

have higher efficiency and shorter extraction time than conventional extraction methods in the 

extraction of phenolcarboxylic acids, carnosic acid and rosmarinic acid from Rosmarinus 

officinalis using Ionic liquid based UAE [15]. 

2.3 Microwave-assisted Extraction (MAE) 

Another novel method for extracting soluble products into a fluid is microwave-assisted 

extraction (MAE). Microwaves are electromagnetic fields in the frequency range from 300 MHz 

to 300 GHz and made up of two oscillating fields that are perpendicular such as electric field and 

magnetic field. The extraction mechanism of microwave-assisted extraction is supposed to 

involve three sequential steps described by Alupului [16]: i) separation of solutes from active 

sites of sample matrix under increased temperature and pressure; ii) diffusion of solvent across 

sample matrix; iii) release of solutes from sample matrix to solvent. According to Cravottoa et al. 

[17], MAE has several advantages such as quicker heating for the extraction of bioactive 

substances from plant materials; reducing thermal gradients; reducing equipment size and 

increasing extract yield. Compared to conventional extraction processes, MAE can shorten 

extraction time and extract organic and organometallic compounds that are more intact with its 

selectivity. In addition, MAE is considered as a green technology due to the reduction of organic 

solvent usage [16]. 

In the study of Pan et al. [18], MAE achieved higher extraction yield at 4 min than any 

extraction methods at room temperature for 20 h on extraction of polyphenols and caffeine from 

green tea leaves. MAE shortened extraction time from 10 h to 15 min in Ginsenosides extraction 

from ginseng root compared with conventional solvent extraction [19]. Dhobi et al. [20] showed 

increased extraction efficiency of MAE by extracting a flavolignin, silybinin from Silybum 
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marianum compared with Soxhlet and maceration extraction. MAE was applied to release bound 

phenolic acids from bran and flour fractions of sorghum and maize of different hardness by 

Chiremba et al. [21]. Spigno et al. [22] investigated influence of microwave power 

(450–600–900 W) and irradiation duration (30–210 s) on total phenols concentration and 

antioxidant activity and found that MAE allowed higher recoveries compared to conventional 

brewing technique, without altering the antioxidant potential of the extracts. Ballard et al. [23] 

used MAE to extract phenolic antioxidants from peanut skins and investigated the effects of 

microwave power (10%, 50%, 90% nominal), irradiation time (30, 90, 150 s) and sample mass 

(1.5, 2.5, 3.5 g) on total phenolic content (TPC), ORAC (oxygen radical absorbance capacity) 

level and resveratrol content cooperated with response surface method which optimized 

extraction conditions on the basis of TPC, ORAC level and resveratrol content. The maximum 

predicted TPC, under the optimized conditions (90% microwave power, 30 s irradiation time and 

1.5 g skins), was 143.6 mg gallic acid equivalent (GAE)/g skins.  

2.4 Enzyme-assisted extraction (EAE) 

Enzymatic pre-treatment has been considered as a novel and an effective way to release bounded 

compounds and increase overall yield [24]. The addition of specific enzymes like cellulase, 

α-amylase, and pectinase during extraction enhances recovery by breaking the cell wall and 

hydrolyzing the structural polysaccharides and lipid bodies [25]. Generally, two approaches are 

applied for EAE [26]: i) enzyme-assisted aqueous extraction (EAAE) and ii) enzyme-assisted 

cold pressing (EACP). Various factors including enzyme composition and concentration, particle 

size of plant materials, solid to water ratio, and hydrolysis time are key factors for extraction 

[27]. Dominguez et al. [28] reported that the moisture content of plant materials is also an 

important factor for enzymatic hydrolysis.  

Meyer et al. [29] employed EAE in phenolic antioxidants extraction from grape pomace during 

wine production and found a correlation between yield of total phenols and degree of plant cell 

wall breakdown by enzyme. In their further study [30], various enzymes showed the 

improvement on the release of phenolic compounds from Ribes nigrum pomace. Extraction of 

phenolic antioxidant from raspberry solid wastes was increased by application of enzyme in 
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hydro-alcoholic extraction compared with non-enzymatic control [31]. Another important 

finding of that study was that the extraction of phenolic antioxidants improved significantly with 

higher enzyme concentration. Maier et al. [32] used a mixture of pectinolytic and cellulolytic 

enzymes, in the ratio of 2:1, to extract bioactive compounds (phenolic acids, non-anthocyanin 

flavonoids and anthocyanins) from grape pomace; they obtained yields higher compared with 

the ones of sulfite-assisted extraction.  

2.5 Pressurized liquid extraction (PLE) 

The concept of pressurized liquid extraction was first proposed by Richter et al. [33] in 1996 and 

now it is known by several names such as pressurized fluid extraction (PFE), accelerated fluid 

extraction (ASE), enhanced solvent extraction (ESE), and high pressure solvent extraction 

(HSPE) [34]. PLE applied high pressure to maintain solvent liquids beyond their normal boiling 

point in order to facilitate the extraction process. The advantages of PLE include the decrease of 

extraction time and solvents requirement, compared with the traditional soxhlet extraction [33]. 

Recently, PLE has also been considered as a potential alternative technique to supercritical fluid 

extraction for extraction of polar compounds and useful for the extraction of organic pollutants 

from environmental matrices, those are stable at high temperatures. PLE extraction of flavonoids 

from spinach, using a mixture of ethanol and water (70:30) solvent at 50-150 ℃, was more 

effective than water solvent at 50-130 ℃ [35]. Individual phenolic compounds such as 

gallocatechin (GCT), epicatechin gallate, catechin, caffeic acid, chlorogenic acid, and myricetin 

and total phenolic contents were obtained from Anatolia propolis by PLE at optimum condition 

(40 ℃, 1500 psi for 15 min) [36]. Additionally, PLE is reorganized as a green extraction 

technique due to small amount organic solvent used [37]. 

2.6 Pulsed-electric field extraction (PEF) 

The pulsed electric field (PEF) treatment has been applied in improving the pressing, drying, 

extraction, and diffusion processes. The mechanism of PEF may be to destroy cell membrane 

structure for increasing extraction. On the basis of the dipole nature of membrane molecules, 

electric potential separates molecules according to their charge in the cell membrane. An electric 
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potential passes through the membrane of that cell and, at the same time, a living cell is 

suspended in electric field [38]. The effectiveness of PEF treatment strictly depends on the 

process parameters, such as field strength, specific energy input, pulse number, treatment 

temperature and properties of the materials to be treated [39]. The advantages of PEF include 

enhancing extraction yield and decreasing extraction time by increasing mass transfer and 

destroying the cell membrane structure. 

It has been found that PEF treatment, at a moderate electric field (500 and 1000 V/cm; for 

10
-4

-10
-2

 s), damage cell membrane of plant tissue with little temperature increase [40] and 

therefore, PEF can minimize the degradation of heat sensitive compounds [41]. PEF has been 

also applied on plant materials as a pretreatment process prior to conventional extraction to 

lower extraction effort [42]. Corralesa et al. [43] demonstrated that PEF was a better method to 

extract anthocyanins from grape by-product than other techniques. The application of a PEF 

treatment on grape skin before maceration step can reduce the duration of maceration and 

improve the stability of bioactive substances (anthocyanin and polyphenols) during vinification 

[44]. 

2.7 Supercritical fluid extraction (SFE) 

Supercritical fluid extraction is a process of extracting one component in to liquid by using 

supercritical fluid as the extracting solvent. The properties of a supercritical fluid can be altered 

by varying the temperature and pressure and therefore it allows selective extraction. 

Supercritical fluid possesses gas-like properties of diffusion, viscosity, and surface tension, as 

well as liquid-like density and solvation power. These properties make it suitable for extracting 

compounds in a short time with higher yields [45]. For SFE, carbon dioxide (CO2) is considered 

as an ideal solvent; since its critical temperature is close to room temperature and its low critical 

pressure (74 bars) offers the possibility to operate at moderate pressures (100-450 bar). Factors 

involved in SFE include temperature, pressure, particle size and moisture content of feed 

material, time of extraction, flow rate of CO2 and solvent-to-feed-ratio [46]. 
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3 Purification and fraction technologies 

Most of the extractions lead to a crude extract of polyphenols which can be stilled improved by 

purifying and specifying. Thus, further purification and fraction can be processed by liquid-solid 

phase procedures and liquid-liquid procedures. 

3.1 Liquid-solid phase procedures 

The application of ion exchange resins can partially purify phenolic extracts. Mullen et al. [47] 

employed both ion-exchange column (Diaion HP-20) and column containing 40μm C18 silica gel 

support to remove sugars and other contaminants from acidified extracts of raspberry. As for 

phenolics present in aqueous plant extracts, amberlite particles (XAD-2) can be a good choice 

for isolation and purification. Amberlite particles were stirred with aqueous extracts for up to 4h 

and then packed into a glass column. The column was first washed with water, or a combination 

of acidified water and water, to remove sugar and other polar constituents. Subsequently, the 

phenolics were washed out from the column with methanol [48, 49]. Moreover, Phenolics 

extracts can also be purified and fractionated using solid phase extraction or solid phase 

microextraction (SPME) on C18 cartridges. Salagoity-Auguste and Bertrand [50] as well as 

Jaworski and Lee [51] demonstrated that a C18 Sep-Pak cartridge may be used to separate grape 

phenolics into acidic and neutral fractions. Column chromatography has been also employed for 

fractionation of phenolics extracts. Souquet et al. [52] utilized a Fractogel (Toyopearl TSK 

HW-50(f) gel) column (35 cm× 8 cm) to separate the non-tannin phenolics and 

proanthocyanidins. The isolation of proanthocyanins (condensed tannins) is commonly carried 

out by employing Sephadex LH-20 column chromatography [53]. 

3.2 Liquid-liquid procedures 

Countercurrent chromatography (CCC) has recently been explored as an alternative to liquid 

chromatographic techniques for fractionation of various classes of phenolic compounds [54]. 

High speed centrifugal counter-current chromatography (HSCCC) was used for preparative 

isolation of anthocyanins from red wines and grape skins [55]. Degenhart et al. [56] found that 
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HSCCC can be employed for isolation of theaflavins, epitheaflavic acids, and thearubigins from 

black tea with hexane-ethylacetate-methanol-water (2:5:2:5 and 1.5:5:1.5:5, v/v/v/v) solvent 

system. In the study of Vitrac et al. [57], HSCCC was used for fractionation of red wine phenolic 

extracts first in ethyl acetate which were chromatographed using a 1.5 cm × 60 cm 

cation-exchange Dowex (Sigma) column and washing by water and 75% aqueous methanol 

successively. Afterwards, the phenolic extract was fractionated by HSCCC in both ascendant and 

descendant modes with water-ethanol-hexane-ethyl acetate in the ratios of 3:3:4:5 (v/v/v/v) and 

7:2:1:8 (v/v/v/v) solvent systems. 

4 Quantification of polyphenols 

A number of spectrophotometric methods for quantification of phenolic compounds in plant 

materials have been developed. These assays are based on different principles and are used to 

determine various structural groups present in phenolic compounds. Gas chromatographic (GC) 

and high performance liquid chromatographic (HPLC) techniques have been used widely for 

both separation and quantitation of phenolic compounds. Structure elucidation is often achieved 

using combination of GC and HPLC with mass spectrometric analysis, as well as other relevant 

techniques. 

4.1 Spectrophotometric techniques for determination of global phenolics (Table 2) 

The Folin-Denis assay [58] is the most widely used for quantification of total phenolics in plant 

materials. Reduction of phosphomolybdic-phosphotungstic acid (Folin-Denis) reagent to a blue 

colored complex in an alkaline solution occurs in the presence of phenolic compounds [59]. 

Another technique is the Folin-Ciocalteau assay used for determination of the total content of 

plant food phenolics [60]. Oxidations of phenolic compounds with the Folin-Ciocalteau reagent 

include reaction with the mixture of H3PW12O40 and H3PMo12O40 acids in the alkaline medium. 

At this reaction a mix of blue oxides is formed. The vanillin [61] assays has been utilized for the 

estimation of total proanthocyanidins. The vanillin test is specific for flavan-3-ols, 

dihydrochalcones and proanthocyanidins which have a single bond at the 2, 3-position and 

possess free meta-hydroxy groups on the B ring [62]. The 4-(dimethylamino)-cinnamaldehyde 
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(DMCA) assay has also been proposed for estimation of proanthocyanidins [63]. The formation 

of a green chromophore between catechin and DMCA was first reported by Thies and Fischer 

[64]. The proanthocyanidin assay has also been utilized for the estimation of total 

proanthocyanidins, which carried out in a solution of butanol and concentrated hydrochloric acid 

(95:5, v/v). In the presence of this acidic solution proanthocyanidins (condensed tannins) are 

converted to anthocyanidins [65]. The complexation of phenolic with Al (III) has been employed 

for determination of total caffeic acid, total flavonoids and total tannins [66-68]. The total caffeic 

acid was measured by adding a solution of AlCl3 to the methanol based extract of phenolics and 

adjusting the pH to 4.8 with a solution of NH4Cl. The absorbance of this solution was then 

measured at 355 nm with UV-visible spectrophotometry. On the other hand, the total content of 

flavonoids has been obtained by the complexation of flavonoids with AlCl3 at pH 3.1. The total 

content of flavonoids and tannins was determined by measuring the absorbance of the solution at 

407 and 323 nm, respectively [68]. 

Table 2 Spectrophotometric techniques for determination of global phenolics 

Technique Reagent  
Molecule 

determined 
Measurement Ref. 

Folin-Denis assay 

Folin-Denis reagent 

(phosphomolybdic-phos

photungstic acid) 

Total phenolic 

content 

UV absorbance 

at 725 nm 
[58,59] 

Folin-Ciocalteau 

assay 
Folin-Ciocalteau reagent 

Total phenolic 

content 

UV absorbance 

at 760 nm 
[60] 

Vanillin assay Vanillin reagent 

Flavan-3-ols 

dihydrochalcones 

proanthocyanidins 

UV absorbance 

at 500 nm 
[61, 62] 

DMCA assay 

DMCA reagent 

(4-(dimethylamino)-cinn

amaldehyde) 

Proanthocyanidin 
UV absorbance 

at 613 nm 
[63, 64] 

Proanthocyanidin 

assay 

Butanol and 

concentrated 

hydrochloric acid 

Proanthocyanidin 
UV absorbance 

at 550 nm 
[65] 
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4.2 Chromatographic techniques 

Various chromatographic techniques have been employed for separation, preparative isolation, 

purification and identification of phenolic compounds. Moreover, Chromatographic procedures 

have also been used to study the interaction of phenolics with other food components [69]. 

4.2.1 Liquid chromatography 

Many liquid chromatographic methodologies have been described in the literature for 

fractionation of polyphenols using Sephadex G-25 [63, 71, 72], Sephadex LH-20 [72-74]; 

Sepharose CL-4B [75], Fractogel (Toyopearl TSK-HW 40(s) gel) [76-78], Fractogel 

(Toyopearl) TSK 50(f) [79], inert glass microparticles [79] as well as C18 Sep-Pak cartridge 

[50, 51, 80]. Hoff and Singleton [75] developed a chromatographic procedure for separation 

of tannins from non-tannin materials using bovine serum albumin immobilized on Sepharose 

CL-4B as a column packing material. The preparative isolation of proanthocyanins is most 

commonly achieved by using Sephadex LH-20 column chromatography [72, 74]. 

Derdelinckx and Jerumanis [76] employed Fractogel (Toyopearl TSK HW-40(s) gel) for 

separation of malt and hop proanthocyanidin dimers and trimers after chromatography of 

polyphenols on Sephadex LH-20 with methanol. Recently, Labarbe et al. [79] employed an 

inert glass powder (Pyrex microparticles, 200-400μm) for fractionation of grape-seed or skin 

proanthocyanidins. Fulcrand et al. [81] fractionated wine phenolics into simple (phenolic 

acids, anthocyanins, flavonols and flavanols) and polymeric components using a Fractogel 

(Toyopearl) HW-50(f) col-umn (bed 12 mm × 120 mm). 

4.2.2 High-performance liquid chromatography 

Nowadays, High Performance Liquid Chromatography (HPLC) is widely used not only for 

the separation but also for the quantitation of phenolic compounds. Table 3 shows some 

HPLC procedures for determination of flavones and flavonols in some plant sources, while 

Table 4 exhibits some HPLC procedures for determination of catechins and 

proanthocyanidins (PA) in some plant sources. Plant phenolics are commonly detected using 
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UV-vis and photodiode array (DAD) detectors.  

Other methods used for the detection of phenolics include electro-chemical coulometric array 

(EC) detector, chemical reaction detection technique and fluorimetric detector [82]. Mass 

spectrometric (MS) detectors coupled to high-performance liquid chromatography (HPLCMS 

tandem) have been commonly employed for structural characterization of phenolics. In 

addition, electrospray ionization mass spectrometry (ESI-MS) has been applied for structural 

confirmation of phenolics in plums, peaches, nectarines [83], grape seeds [84], soyfoods [85] 

and cocoa [86]. Satterfield and Brodbelt [87] indicated that complexation of flavonoids with 

Cu
2+

 enhanced the detection of flavonoids by ESI-MS. 

Table 3 Some HPLC procedures for determination of flavones and flavonols in some plant 

sources [82] 
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Table 4 Some HPLC procedures for determination of catechins and proanthocyanidins (PA) in 

some plant sources [82] 

 

4.2.3 High-speed countercurrent chromatography 

High-speed countercurrent chromatography (HSCCC), a kind of centrifugal partitioning 

chromatography, is an all-liquid chromatography which is suitable for preparative isolation of 

pure compounds [88, 89]. Separation of compounds is based on their partitioning between 

two immiscible liquids [55]. According to Baumann et al. [90], HSCCC is a simple and 

efficient method for separation of catechin gallates from spray-dried tea extract. Tea phenolic 

extract was first subjected to liquid-liquid partitioning between ethyl acetate and water. The 

organic layer containing catechins was then submitted to high-speed centrifugal 

countercurrent chromatography operating in an ascending mode. Favorable partitioning was 

achieved using n-hexanes/ethyl acetate/water (1:5:5, v/v/v) or ethyl acetate/methanol/water 

(5:1:5 and 5:2:5, v/v/v). Sephadex LH-20 column with methanol as a mobile phase was used 
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for a final purification of catechin gallates. 

4.2.4 Other chromatographic techniques 

Additionally, other chromatographic techniques also play an important role in purification 

and separation of food polyphenols. For instance, paper chromatographic (PC) and thin-layer 

chromatographic (TLC) techniques are still widely employed for purification and isolation of 

anthocyanins, flavonols, condensed tannins and phenolic acids with different solvent systems 

[91, 92]. It is reported that PC on Whatman No. 3 was employed for separation of 

anthocyanins using butanol/acetic acid/water, chloroform/acetic acid/water, or butanol/formic 

acid/water as possible mobile phases [91]. Azar et al. [93] have identified phenolics of 

bilberry juice Vaccinium myrtillus by a two dimensional TLC. Various gas chromatographic 

(GC) methodologies have been used for separation and quantitation of phenolic acids, 

isoflavones, capsaicinoids, phenolic aldehydes and monomers of condensed tannins [94]. 

Novel high-temperature gas chromatographic columns, electronic pressure controllers and 

detectors have significantly improved the resolution and have also led to an increase in the 

upper range of molecular weights of substances that can be analyzed by GC [95]. 
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Chapter III  

Biomaterials and surface functionalization 

1 Biomaterials 

1.1 Introduction  

Biomaterials are known as the natural or man-made materials, which are used to replace or 

supplement the functions of living tissues [1]. First of all, the biomaterials should be 

biocompatible; this means that in vivo they must not induce adverse reaction (e.g. toxicity). In 

addition to this, biomaterials must possess features like bioinert behavior, bioactivity, biostability 

as well as biodegradibilty, depending on the intended activity of the material in the organism. In 

general, biomaterials are categorized as follows [2]: 

i. Natural or synthetic polymers 

ii. Metals  

iii. Composites  

iv. Bioactive glasses and ceramics  

Biomaterials have been successfully and widely applied [3] in the form of implants such as 

sutures, bone plates, joint replacements, ligaments, vascular grafts, heart valves, intraocular 

lenses, dental implants, etc. and medical devices like pacemakers, biosensors, artificial hearts, 

blood tubes, etc. in order to replace and/or restore the function of traumatized or degenerated 

tissues or organs, to assist in healing, to improve function, to correct abnormalities, and therefore 

improve the quality of life of the patients. 

1.2 Glasses and glass-ceramics 
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Glass is an amorphous (non-crystalline) solid material which exhibits a reversible glass 

transition from a hard and relatively brittle state into a molten or rubber-like state. The glasses 

are commonly obtained by the progressive cooling of a liquid; the result is similar to 

supercooled liquids with high viscosity without long-range order in the positions of the atoms. 

Figure 1 reports a schematic comparison between crystalline solids (ordered atomic arrangement) 

and amorphous ones (disordered atomic arrangement). The amorphous state is infrequent in 

nature due to the unstable structure in thermodynamics; under appropriate thermodynamic 

conditions, the amorphous state will transfer into crystals arranged with a long-range order [4, 

5]. 

 

Figure 1: A comparison of crystalline and amorphous solid [6] 

The general definition of “glass” refers to any substance that is in the amorphous state. The 

amorphous materials include several types: 

a) Ceramics-inorganic oxides (traditional glasses), inorganic fluorides (fluoride glasses), 

inorganic chalcongenides (chalcongenide glasses) 

b) Metals 

c) Organic compounds (glycerin, glucose…) 

javascript:void(0);
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d) Polymers  

 

Figure 2: The volume-temperature diagram for a glass-forming liquid [7] 

Most commercial glasses are obtained by rapid cooling of a viscous liquid below a typical 

“freezing” temperature, known as the glass transition temperature (Tg).  

The cooling process of a viscous liquid (figure 2) includes characteristic regions: 

a) T>Tg – viscous liquid. The glass structural units will slide due to the viscous behavior with 

creep [8] 

b) Tg<T< Tm (melting temperature) - supercooled liquid 

c) T<Tg – amorphous solid-Fragile material 

In addition, the glass transformation occurs over a range of temperature and cannot be 

characterized by any single temperature.  

According to Zachariasen [9, 10], the criterions of glass formation are described as: 

1) No oxygen atom may be linked to more than two cations. 

2) The number of oxygen atoms surrounding the cations must be small (e.g., less than six). 

3) The oxygen polyhedra shares corners with each other, but do not share edges or faces. 
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4) The polyhedra are linked in a three-dimensional network. 

5) Cooling rate ≈ 10
6
 K/s is required. 

The object which starts as a glass and ends up as polycrystalline ceramic is termed as 

glass-ceramic. The processing of glass-ceramics is accomplished by first quenching a melt to 

form the glass object. Then, the glass is transformed into a glass-ceramics in two steps: i) glass is 

heat treated at a specific temperature range (i.e. 500-700 
o
C) to generate a large concentration of 

nuclei from which crystals can grow; ii) When sufficient nuclei are present to ensure that a 

fine-grained structure will be obtained, the temperature is raised to a range (i.e. 600-900 
o
C) that 

promotes crystal growth until crystals impinge and up to about 100% crystallization is achieved. 

The resulting microstructure is nonporous and contains fine-grained, randomly oriented crystals. 

There may also be a residual glassy matrix depending on the duration of the creaming heat 

treatment. [11] 

1.3 Bioactive glasses  

Bioactive glasses are a class of reactive materials, which can chemically bond with bone. They 

were firstly discovered by Hench and his colleagues in 1969. The group of glasses with specific 

composition was termed as bioactive glass. A definition of a bioactive material has been 

proposed by Hench as “a bioactive material is one that elicits a specific biological response at 

the interface of material that results in the formation of a bond between tissues and the material” 

[12]. Bioactive glasses have numerous applications in repair and reconstruction of diseased and 

damaged tissue, especially hard tissue like bone. The possibility of controlling a range of 

chemical properties and rate of bonding to tissues makes bioactive glass different from other 

bioactive ceramics and glass-ceramics. The most reactive glass even could develop a stable and 

bonded interface with soft tissues. 

1.3.1 Parameters for bioactive glass design 

The first bioactive glass was synthesized 40 years ago by Hench et al. [13] and belonged to 

the SiO2-Na2O-CaO-P2O5 system with excellent biocompatibility as well as the ability to 
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bond bone. This invention led to a revolution in the development of biomaterials and doped 

system of bioactive glasses as well as the development of inert materials for implantation and 

natural tissue regeneration.  

In general, a bioactive material represents a material that is designed for inducing target 

specific biological activity. More specifically, a bioactive material represents a material, 

which follows a two-step process upon its implantation inside the body. In the first step it 

undergoes specific surface reactions with simulated body fluid (SBF) and during the second 

step it forms a HA-like layer, which is responsible for the interactions within hard and soft 

tissues [14].  

Bioactive glasses designed should posses the ability to provide appropriate structural 

compatibility without toxicity. Hence, some basic parameters should be desired to make 

bioactive glass function as a suitable material [15, 16]. These requirements are listed as 

follows: 

a) Biocompatibility of bioactive glasses, which is an indispensable property. They should 

be non-toxic and hence promote cell proliferation in addition to cell adhesion. 

b) The nucleation and growth of crystalline phases in a matrix of glass during the thermal 

treatment of making scaffolds from bioglass should not induce cytotoxic effect in cell 

tissues. 

c) A hydroxyapatite layer should be formed when bioglasses are immersed in SBF 

solution. 

d) It should not exhibit any inflammatory response, demonstrate cytotoxicity or 

immunogenicity. 

e) Bioglasses must meet the requirement for mechanical properties to withstand different 

kind of pressure depending on the implant site. 

f) Bioglasses should possess controllable porosity to support vascularization if cells 

growth into the required physical structure in bone engineering is needed. 
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g) If porous, the architecture aspect of bioglasses should be three-dimensional (3D 

scaffolds) to propomte cell proliferation, vascularization and diffusion of nutrients. 

h) For commercialization, the cost of bioglasses should be taken into consideration. 

In addition to those requirement mentioned above, composition is an important factor for 

bioactive glass design. In most bioactive glass, the base components include SiO2, Na2O, 

CaO, P2O5. Hench and co-workers studied a series of glasses in this four component system 

and summarized the ternary SiO2-Na2O-CaO diagram shown in figure 3, which demonstrates 

the bioactive bonding boundary of compositions. In region A, glasses are bioactive and able 

to bond to bone. In a smaller region in the middle of area A, soft tissue bonding appears. 

Glasses in region B are nearly inert. Compositions in region C are resorbed within 10 to 30 

days in tissue. In region D, the compositions are not technically practical [17]. 

 

Figure 3: Compositional dependence of bone bonding and soft-tissue bonding of bioactive 

glasses and glass-ceramics. All compositions in region A have a constant 6 wt% of P2O5 [17]. 

1.3.2 Bioactivity 
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The basis of bonding property between bone and bioactive glasses is the chemical bioactivity 

of the glass in body fluids. The surface chemical reactions lead to the formation of a 

hydroxycarbonate apatite (HCA) layer where the bone can bond. When immersed in an 

aqueous solution, three general reactions happed to bioactive glass and solution: leaching, 

dissolution and precipitation. Leaching indicated the ion release, usually the ion exchange 

between H
+
 or H3O

+
 and alkaline earth elements. This process is easy because these cations 

are not part of glass network; instead they just modify the network by forming non-bridging 

oxygen bonds (figure 4). The ion exchange process leads to an increase in interfacial pH (> 

7.4). 

 

Figure 4: a) Structure of random glass network composed of network modifiers and b) structure 

of crystalline silicate [18, 19] 

The second reaction process is network dissolution by breaking -Si-O-Si-O-Si- bonds and 

results in the release of silica into solution to form the silicic acid (Si (OH) 4). The rate of 

dissolution closely depends on the glass composition. For example, glass with compositions 

of > 60% SiO2 possesses an extremely low dissolution rate due to the formation of the large 

number of bridging oxygen bonds. In the end, this process leads to the formation of a silica 

gel layer.  
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The calcium and phosphate ions released from the glass or present in the solution (e.g. SBF) 

can precipitate on the glass surface to form a calcium-phosphate layer, which later crystallizes 

to a hydroxycarbonate aptatite structure.  

To summarize, bioactivity mechanism of bioactive glasses can be described in 12 stages [17]: 

1) Rapid ion exchange of network modifying Ca
2+

 and Na
+
 ions from the glass with H3O

+
 

ions from solution. This step increases the pH at the implant-bone interface. 

Si-O-Na
+
 + H

+
 + OH

-
 → Si-OH

+
 +Na

+
 (solution) +OH

-
 

2) Loss of soluble silica and formation of silanols 

Si-O-Si + H2O → Si-OH + OH-Si 

3) Condensation and repolymerisation of the SiO2-rich layer on the surface depleted in 

alkalis and alkaline-earth cations 

4) Migration of Ca
2+

 and PO4
3-

 groups to the surface through the silica-rich layer forming 

a CaO-P2O5-rich film on top of the silica-rich layer, followed by the growth of the 

amorphous calcium phosphate layer 

5) Crystallization of the amorphous calcium phosphate layer into biologically equivalent 

hydroxycarbonate aptatite (HCA) 

6) Adsorption of biological molecules in the hydroxyapatite layer 

7) Action of macrophages 

8) Attachment of stem cells 

9) Differentiation of stem cells 

10) Generation of matrix 

11) Crystallization of matrix 

12) Formation of new bone 

The first five reaction stages (figure 5) that occur on the material side of the interface do not 
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depend on the presence of tissues. They can take place in distilled water, tris-buffer solution 

or stimulated body fluids. In a living organism the organic component of body fluids and 

tissues play a key role for the development of bioactive behaviour allowing the subsequent 

steps (6-12). 

 

Figure 5: Bioactivity mechanisms in inorganic environment  

The rate of development of the interfacial bond between implant and bone can be referred to 

as the level of bioactivity. Hench introduced an index (IB) in order to measure the bioactivity 

level. The index is given by: 

IB = 100/t0.5bb 

where t0.5bb is the time for more than 50% of the implant interface to be bonded to bone. 

1.3.3 Types of bioglasses 

The generic name of glass is generally derived from its net work former. From the 

compositional aspect of glass, the glass structure is composed by the main oxide present in 

glass with various other oxides as dopants. In this section, some reported bioactive glasses 

and their structural components are introduced. 
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1.3.3.1 Silicate glasses 

Commonly, the structure of silica-based bioactive glasses has been well characterized in 

terms of the arrangement of the SiO4 coordination tetrahedron, a geometric unit in which a 

silicon atom, sitting in the center, is bonded to four oxygen atoms to form the four vertices of 

tetrahedron (figure 6).  

The 45-S5 Bioglass (Na2O-CaO-SiO2-P2O5) is a silica-based composition, widely 

investigated and used in medical field as a bone regenerative material because of the 

deposition of a layer of hydroxy carbonate apatite (HCA) on the surface of the glass when 

immersed in body fluid. Cerruti et al [20] investigated the effect of pH and ionic strength on 

the reactivity of 45-S5 Bioglass. Results demonstrated that only at pH 8 a total reconstruction 

of the glass can be observed, with the formation of both a silica and a calcium phosphate rich 

layers. At higher pH, selective dissolution of the glass was hindered by the immediate 

precipitation of a layer of calcium phosphate, whereas at lower pH a total breakdown of the 

glass occurred and no calcium phosphate precipitation was noted.  

  

Figure 6: The form of single SiO4 tetrahedron [21] 

Recent findings showed that controlled release of the ionic dissolution products of bioactive 

glasses results in regeneration of tissues. In the research of Hench and co-workers [12], in the 

presence of critical concentrations of Si and Ca ions, within 48 h, osteoblasts, that are capable 

of differentiating into a mature osteocyte phenotype, begin to proliferate and regenerate new 

bone. Moreover, controlled release of soluble Ca and Si from bioactive glass-resorbable 
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polymer composites leads to vascularised soft tissue regeneration. Gene activation by 

controlled ion release provides the conceptual basis for molecular design of a third generation 

of biomaterials optimized for in situ tissue regeneration [22]. Other research showed that 45 

S5 Bioglass exhibited an effect on promotion secretion of vascular endothelial growth factor 

in vitro [23]. 

Chen et al [24], synthesized 45-S5 Bioglass scaffolds by using the replication technique to 

obtain mechanically stable 3D scaffolds through a tailored sintering schedule and to assess 

the bioactivity and biodegradability of the scaffolds.  

SCK (SiO2-CaO-K2O), another silicate glass, is Na2O-free silica-based bioactive glasses and 

applied in making scaffolds in which the bioactivity phenomena involves H
+
/K

+
 exchange 

process [25]. The 13-93 glass (SiO2-Na2O-K2O-MgO-CaO-P2O5) proposed by Fu et al. [26] 

remained amorphous even after heat-treatment confirmed from X-ray analysis.  

Since silicon plays a significant role in bone mineralization along with gene activation, 

substitution of silicon for calcium into synthetic hydroxyapatites became an attractive area for 

many research groups [27].  

1.3.3.2 Borate glasses 

Bioactive borate glasses are a subset of the bioactive glass family that includes silicate, borate 

and phosphate glasses. In this case of bioactive borate glasses, the major glass former is B2O3 

instead of SiO2 or P2O5, and the compositions can include an array of alkali metal such as Li, 

Na, K etc and alkaline earth metal (Mg, Ca, Sr, Ba, etc) as well as transition-metal (Fe, Cu, 

Zn, Ag, Au) elements. The first borate glasses for biomedical application were proposed by 

Brink [28]. In order to get the desirable bioactive properties, the relative proportion of B2O3 

was tailored. 

Borate glasses are very reactive and have lower chemical durability, hence they convert more 

completely and rapidly to HA than their silica counterparts. The borate glasses, unlike silicate 
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glasses, form HCA (figure 7) directly on the surface of the underlying unreacted glass [29] 

without forming a borate-rich layer. The reason is that borate is readily soluble in body fluids. 

The degradation products of glass can be passed through the body naturally, predominantly 

through urine [30]. The complete degradation rate of the glasses can be controlled within a 

wide range of time periods by replacing silica with boron. In addition to this, the sintering 

behavior of borate/borosilicate glass is more controlled than silicate glasses. In vitro, borate 

glasses support cell proliferation along with differentiation while in vivo they are reported to 

enhance tissue infiltration [31]. 

However, (BO3)
3-

 ions are associated with a certain toxicity; in some reports, it indicate that 

certain compositions of borate glasses exhibited cytotoxicity under static conditions during in 

vitro culture testing, whereas non considerable toxicity was detected under more dynamic 

culture conditions [32-24]. 

 

Figure 7: SEM image of HCA formed on borate glasses in vivo [29] 

1.3.3.3 Phosphate glasses 

Phosphate glasses, as the name suggests, consist of P2O5 as the network former oxide and 

were proposed in 1980. For instance, the composition of calcium phosphate glasses is similar 

to the mineral phase of bone and makes it an interesting material as a synthetic bone graft 

[35]. 
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Same as silicate glasses, the structure of phosphate glass shows short-range order instead of 

any long-range order or significant symmetry of atomic arrangement. The basic unit in 

phosphate glass structure is the orthophosphate (PO4)
3-

 tetrahedron (figure 8a) with one 

phosphorus atom surrounded by four oxygen atoms. As one of the oxygen atoms is connected 

to the phosphorus atom by a double bond, the other three oxygen atoms can only act as 

bridges to other orthophosphate tetrahedral. In order to form the bridge, tetrahedral linked to 

each other by P-O-P bond (figure 8b). However, this tetrahedral is highly asymmetric in 

nature and this asymmetry results in low durability, along with the ease of P-O-P bonds 

hydration of phosphate glasses [36, 37]. 

(a) (b)  

Figure 8: (a) Basic phosphate tetrahedron in glass structure and (b) phosphate glass network 

[38] 

The main reason why phosphate glasses are taken as great potential biomaterials is their 

ability to dissolve completely in aqueous solutions, releasing safe and non-toxic dissolution 

products. The dissolution rate of phosphate glasses strongly depends on the glass composition. 

For example, adding appropriate metal oxide, such as TiO2, CuO, NiO, MnO, and Fe2O3 to 

the glass composition it is possible to tailor the dissolution rate effectively [39-43]. Moreover, 

the solubility is influenced by P2O5 content; lower P2O5 content presents lower solubility. 

Other factor like pH of the surrounding solution also affects glass dissolution. In an acidic 

environment, the dissolution of phosphate glass increased dramatically [36], while a basic pH 

also promotes glass dissolution although with a slower rate. On the other hand, during 

phosphate dissolution, pH of surrounding solution changes differently from silicate glasses. 

For instance, metaphosphate glasses tend to give an acidic pH, whereas pH increases towards 

neutral by decreasing phosphate content.  
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1.4 Magnetic biomaterials 

Magnetism is known to all as the phenomenon by which some materials attract or repel other 

materials from a distance; examples of such materials include iron, lodestone and some steels. 

Magnetism, which is an intrinsic property of every atom, has a profound influence on living 

organisms. For instance, the hemoglobin in our blood is an iron complex and is magnetic in 

nature. There is now substantial evidence that all living organisms, including animals and 

humans, contain magnetic particles and act as magnetic receptors [44]. It is established that the 

magnetism and magnetic materials have a strong role to play in health care and biological 

applications [45-48]. In some early applications, magnetic materials were used for removal of 

metallic objects from the body of animals and humans [49]. In the last decades, research 

interests were focused on the use of materials in biological environment for implantation or for 

replacement of a part or a function of the body in a reliable and physiologically acceptable 

manner [50]. Recently, the use of magnetic micro and nano particles in the field of biology and 

biomaterials has been found useful in sophisticated biomedical applications such as cell 

separation, drug delivery as well as magnetic intracellular hyperthermia treatment of cancer. [51, 

52] Moreover, the magnetically responsive microspheres were developed in vitro to direct the 

particle so that the remove bound cells and molecules and in vivo to target and hold the magnetic 

carriers at specific sites for protein and cell separation. In addition, the purification of bone 

marrow cells from tumor cells using immuno-magnetic beads is also applied in clinical therapy. 

The development of nano technology along with involvement of magnetism, opened new 

windows of sophisticated biomedical applications such as diagnostic, therapy and so on. [53] 

1.4.1 Cancer and hyperthermia  

Cancer is a term used for diseases in which abnormal cells divide without control and are able 

to invade other tissues (figure 9). Cancer cells can spread to various parts of the body through 

the blood and lymph systems. Cancer is not just one disease but it includes many diseases. 

There are more than 100 different types of cancer. Most cancers are named for the organ or 

type of cell in which they start. 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?term=lymph&version=Patient&language=English
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Nowadays, cancer is the second leading cause of death following heart disease, accounting 

for 23% of all deaths per year. The threat from cancer raised great challenges to investigation 

and development of new methods for cancer treatment, diagnosis and prevention. Four 

standard methods are commonly employed for cancer treatment including surgery, 

chemotherapy, radiation therapy as well as immunotherapy and biologic therapy. However, as 

all of treatments present limitations and drawbacks, new strategies need to be developed. 

 

Figure 9: Normal cell division and cancer cell division [54] 

 

Figure 10: Vessels in (a) normal tissue and (b) tumor [56] 

Hyperthermia (also called thermal therapy or thermotherapy) is a type of cancer treatment in 

which body tissue is exposed to controlled  high temperatures (41-46 
o
C) in order to kill 

cancer cells or to make cancer cells more sensitive to the effects of radiation and certain 

anti-cancer drugs with minimal injury of normal tissues [55]. By killing cancer cells and 
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damaging proteins and structures within cells [56], hyperthermia may shrink tumors. 

In normal tissues (figure 10a), during heating up to temperatures commonly used in clinical 

hyperthermia, the blood flow vastly increases and leading to an effective dissipation of heat. 

In contrast, at 41-42 
o
C, in most of the tumors (figure 10b) can lead to hemorrhage and cell 

damage because of a less efficient heat dissipation due to vascular occlusion and poorly 

organized blood vessels. The heat dissipation in the tumors is poor, particularly in the large 

tumors, due to the decrease in blood flow and vascular damage. Consequently, hyperthermia 

preferentially heats and causes greater damage in tumors than in normal tissues. 

Hyperthermia is seldom applied alone but always used with other forms of cancer therapy 

such as radiation therapy and chemotherapy. Numerous clinical trials have investigated 

hyperthermia in combination with radiation therapy and/or chemotherapy on many types of 

cancer, such as head and neck, brain, lung, breast, bladder, rectum, liver etc. a certain of 

studies have shown a significant reduction in tumor size [57]. In current study, hyperthermia 

is performed in local, regional area and the whole body.  

1.4.2 Categories of magnetic materials and factors affecting magnetic properties  

On the basis of magnetic response, magnetic materials are classified as diamagnetic, 

paramagnetic and ferromagnetic materials (figure 11). Antiferromagnetism and 

ferrimagnetism fall within the broad category of ferromagnetism. Diamagnetism is very weak 

and not permanent; it persists only as long as the external field is present. It occurs due to a 

change in the orbital motion of electrons due to the external field; the direction of the induced 

magnetic moment is opposite to the field. In paramagnetism, each atom has a permanent 

dipole moment because of incomplete cancellation of its electron magnetic moments. 

Ferromagnetism is the most familiar type of magnetism. Ferromagnetic materials, unlike dia- 

and para-magnetic materials, show permanent magnetic moments even in the absence of an 

external field. Some materials, including the magnetic biomaterial magnetite (Fe3O4), exhibit 

ferrimagnetic behavior. Hexagonal ferrites and garnets are other ceramic materials that fall in 

this category. [58, 59] 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?term=protein&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?term=tumor&version=Patient&language=English


Biomaterials and surface functionalization 

-97- 
 

Temperature will play an important role in determining magnetic properties, since entropy 

effects will be more dominant at high temperatures. The magnetic properties of both ferri- 

and ferro-magnets depend on the coupling forces between neighboring atoms; when 

temperatures are higher, entropy effects favor a random arrangement of spins, leading to a 

reduction in saturation magnetization. The saturation magnetization decreases with increasing 

temperature; at the Curie temperature Tc, it becomes zero and the material becomes 

paramagnetic above this temperature. 

 

Figure 11: Schematic of the flux density B as a function of H for various materials [60] 

 

Figure 12: Magnetic properties are affected by the particle size (DM = diamagnetic, PM = 
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paramagnetic, SPM = superparamagnetic, FM =ferromagnetic) [60] 

Manipulation of the magnetic properties can be performed by altering the composition, 

crystal structure, stress state and size of the material. Among these factors, size plays an 

important role in magnetic properties (figure 12). Large particles (greater than about 1 μm) 

with more magnetic domains which lead to a narrow hysteresis loop, are used in 

immunomagnetic separation of pathogenic microorganisms in microbiology. In drug delivery, 

gene delivery and hyperthermia, small magnetic particles are employed, since smaller particle 

sizes (less than about 1 μm) are energetically more favorable for only one domain to exist 

[60]. The response of such particles to a magnetic field is qualitatively different, resulting in a 

broader hysteresis loop. If the particle size is reduced further to about 20 nm, the material 

becomes superparamagnetic, which means that the magnetic moment of the particle fluctuates 

because of the thermal energy (∼kT); at the atomic level the individual atomic moments 

continue to be ordered relative to each other. 

1.4.3 Biomedical applications 

1.4.3.1 Magnetic bioseparation 

Bioseparation is an important phenomenon for the success of several biological processes. 

Magnetic separation of cells and biomolecules is based on the contrast of magnetic 

susceptibility between separand (magnetic) and medium (containing other nonmagnetic) 

materials. Magnetic bioseparation may be classified into two modes. For the first one, the 

separand may have sufficient intrinsic magnetic moment (e.g. red blood cells and 

magnetotactic bacteria) and can be directly separated by applying magnetic fields. For the 

other, the cells or biomolecules which are nonmagnetic in nature can be modified by 

attachment of magnetic responsive entity and thus can be manipulated using an external field. 

Entities that can be labeled include cells, bacteria and some types of vesicles. The first step is 

to label the entities with the particles followed by the separation of the labeled entities by 

magnetic separation (figure 13) [54]. This method has been applied to the selection of tumor 

cells from blood as well as to isolate enzymes, DNA and RNA from various sources including 

body fluids. Finely dispersed magnetic absorbent (ferro-carbon particle) has been used for 
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new methods of biological fluid detoxification. Magnetic bioseparation has been successfully 

used in the bioscience, biotechnology and biomedical fields, in both the laboratory and on a 

large scale.  

 

Figure 13: Magnetic separation [61] 

1.4.3.2 Drug delivery 

Since most methods of chemotherapy are relatively non-specific, they result in the waste of 

drug distributed to areas where they are not required with serious and undesirable side effects. 

The above problems may be solved by selectively and quantitatively accumulating the drug to 

the target site. Independent of the site and methods its administration, drug targeting at 

non-target sites should remain under certain minimum levels to avoid site reactions, whereas 

it should remain high at the disease sites. There are many different approaches to targeted 

drug delivery, e.g. direct application of drug into the affected zone, use of reactor molecules 

having high affinity to the affected site and physical targeting. Targeted drug delivery by 
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external physical force (magnetic field) is an innovative new approach, capable of effective 

drug targeting. [62] 

1.4.3.3 Hyperthermia for treatment of cancer 

Magnetic materials have been extensively used for hyperthermia of biological applications, 

based on the principle that the magnetization process determines the magnetic losses. These 

losses, depending upon the thermal conductivity and heat capacity of the surrounding 

medium, can be dissipated in the form of heat raising the temperature of the surrounding. The 

losses are of different kinds, which are determined both by the intrinsic and extrinsic 

properties and the particle sizes.  

 

Figure 14: Schematic diagram showing bone heating and corresponding temperature rise 

[63] 

Magnetic hyperthermia can be induced by two different methods. The first one is performed 

by surgically placing finite size magnetic implants within the tumor site, which absorbs 

energy from externally applied magnetic field and dissipates it in the form of heat to the 

surrounding tissue. The other one is to form bond on materials surface through the formation 
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of an apatite layer. In such a method, it is expected that temperature rise will be observed 

close to the implanted material and there will be non-uniformity in the temperature 

distribution in the tumor region. Figure 14 demonstrates a schematic diagram for application 

of alternating magnetic field to a bone packed with magnetic glass ceramics. The temperature 

of the glass ceramic and the outside of the bone is measured and reported in figure. 

2 Surface functionalization 

The properties of surface govern the behavior and overall performance of materials and therefore 

surface functionalization provide unique possibilities to control the subsequent surface 

interaction and biological response required for a particular application. Through tailoring 

material surfaces, a wide group of additional functionalities is enabled to overcome material 

deficiencies while maintaining its bulk properties. Hence, surface modification has become 

pivotal for academic research as well as industrial product development. Recently, numerous 

materials and commercial products with specific surface functionalities are readily available, and 

their usage in technical fields is potentially infinite. As a result, surface functionalization is 

considered of paramount importance for the development and design of new materials, as well as 

for prospective engineered systems [64, 65].  

2.1 Functionalization routes 

Multiple methods are used to modify material surfaces, which can be mechanical, physical, 

chemical, and biological (figure 15). 
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Figure 15: Substrate properties, modification routes and impact on material surface features [66]. 

2.1.1 Mechanical functionalization 

Mechanical functionalization is any machining, polishing, etc., which provides the surface 

with a different but specific roughness, the structure or amplitude of which can optimize cell 

proliferation and cell adhesion [67, 68]. 

Polishing is used to remove small quantities of materials in order to obtain a desired smooth 

surface or a flat surface for following treatment. Usually mechanical polishing can be 

obtained by the use of SiC abrasive papers with decreasing grain size. The mechanical 

polishing can obtain mirror-like smooth surface with Ra of 0.1 μm [69]. In addition to this, 

electropolishing is also widely used for providing fine finishes with R < 10 nm [70]. 

It is reported that surface roughness alters osteoblast proliferation, differentiation, and matrix 

production in vitro. The implant surface roughness may play a role in determining phenotypic 

expression of cells in vivo [71]. Kieswetter et al. [72] found that substrate surface roughness 

influences growth factors and cytokine production of MG-63 osteoblast-like cells, suggesting 

that surface roughness can modulate the activity of cells interacting with an implant, and 
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therefore affect tissue healing and implant success. 

2.1.2 Physical functionalization 

Physical functionalization includes processes such as oxidation (i.e. passivation of metals and 

alloy), as well as any surface coating leading to a protection or activation. Multiple methods 

have been described [73-75]: 

a) High temperature plasma sprays of Hydroxyapatite (HA), Tricalcium phosphate (TCP) 

or other metal oxides 

b) chemical vapour deposition and cold vapour deposition (CVD) 

c) Pulsed LASER Deposition (PL D) 

d) Sol-gel deposits 

e) Micro-arc oxidations 

f) Hydrothermal treatments 

g) Polyelectrolyte films and other electrochemical deposits 

2.1.3 Chemical functionalization 

Chemical functionalization consists mainly in the alteration of composition, energy and 

charge at the surface of a material. Popular methods for chemical modification are ion 

bombardment [76], treatment with acid or alkaline solutions [77, 78] and slurry-based 

techniques [79], as well as the attachment of organic functional groups to the material surface 

either by physisorption or covalent bonding [80]. 

The modification of inorganic substrates by anchoring organic molecules to the surfacec is a 

very powerful way to tailor surface properties, such as to control protein–material and 

cell-material interactions, to increase material biocompatibility and nanoparticle stabilization 

[81-83]. As for ceramic materials, surface functionalization through silanazation or poly 

(ethylene glycol) (PEG) is extensively investigated [84, 85]. Recently, organophosphorous 



Biomaterials and surface functionalization 

-104- 
 

compounds are becoming of great interest as coupling agents for the surface modification of 

metal oxides by forming mono-, bi-, tri- or multidentate attachments with material surfaces 

which are very stable to hydrolysis over a large pH range and under physiological conditions. 

[86-88]. Figure 16 demonstrates the schematic diagram of silanization process on ceramic 

substrate.  

 

Figure 16: Silanization of ceramic surfaces [66]. 

Silanization is the most widely used technique to introduce surface functional groups on 

inorganic surfaces due to its straightforwardness, as it can be carried out at moderate 

temperatures, and no particular conditions or expensive equipments are required. Furthermore, 

it is applicable to any type of material and support, such as colloidal particles, porous 

materials, nanoporous membranes as well as 2-D planar surfaces [66]. In general, for surface 

silanization, silane molecules must first be activated (hydrolysed) and then condensation 

reactions occur between the Si–OH groups of the silanol and the OH groups of the surface, 

leading to the formation of a stable bond with the surface and the release of free alcohols as 
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side products. 

Despite the wide variety of silane precursors available for surface modification, the majority 

of studies have employed aminosilanes, in particular 3-aminopropyltriethoxysilane (APTES). 

The popularity of APTES is related to its intrinsic chemical properties, since functional –NH2 

groups are employed to promote adhesion in glass–resin composites, for the attachment of 

negatively charged species (i.e. DNA and nanoparticles), or to promote and control 

biomolecular adhesion and enzyme stability, as well as cell adhesion and growth. [89-92] 

2.1.4 Biological functionalization 

Biological functionalization can be defined as the coupling of biological entities such as 

biomolecules, viruses, bacteria and cells and the material surfaces. Through this approach, 

unique properties and functionality of both the inorganic and biological entities are brought 

together to create an organic–inorganic hybrid material, often referred as ‘‘biohybrids’’ or 

‘‘biodoped’’ materials [93]. The definition of biomolecular modification can be described as 

the attachment (immobilization) of molecules to a surface, resulting in reduction or loss of 

mobility. Numerous immobilization techniques have been developed based on three basic 

mechanisms: (i) physical, (ii) covalent and (iii) bioaffinity immobilization [94]. In this field, 

two principal concepts are considered: the molecule delivery (mainly drug delivery systems, 

DDS) and the molecule tight binding to the surface.  

2.1.4.1 Functionalization with biomolecules by physisorption 

Physical immobilization can be considered as the simplest functionalization method, it can be 

carried out by just immersing the material into a solution containing the target biomolecules. 

For highly porous substrates [95], this approach is the particularly suitable functionalization 

method. Physical immobilization is performed on the basis of electrostatic interactions, van 

der Waals forces, as well as hydrogen bonds and/or hydrophobic interactions. In general, 

physisorption can be used in combination with most types of surfaces. Furthermore, this 

approach is generally considered non-destructive and thus more suitable for preserving the 
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biological activity to be widely applied in, for instance, drug release purposes. Biomolecule 

immobilization methods based on physisorption, or more generally on non-covalent 

techniques, suffer from the problem of biomolecule leaching, and thus are often considered 

unsuitable for long-term or continuous usage [96]. 

2.1.4.2 Functionalization with biomolecules by covalent immobilization 

 

Figure 17: Covalent immobilization of biomolecules by glutaraldehyde (GA) [66] 

Covalent immobilization of biomolecules on surfaces can improve the attachment to the 

material surface; they are particularly intended for enzyme immobilization due to the 

enhancement of enzyme stability or prevention of the enzyme from undergoing self-autolysis 

[97]. Covalent immobilization is potentially applicable to different materials and 

biomolecules. Recently researches have reported a range of applications of this approach: 

assay technologies, biosensors, medical imaging and therapy as well as biomaterials. The 

most common strategies for covalent immobilization of biomolecules are based on 

glutaraldehyde (GA) [98] or carbodiimide (EDC) [99] for immobilization of peptides, 

proteins and oligonucleotides [94]. Biomolecule attachment to inorganic carriers via 

glutaraldehyde (figure 17) is considered as the simplest coupling methods, through which 
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proteins, enzymes or amino-modified DNA molecules can be irreversibly immobilized on the 

activated surfaces via the covalent bond between the amino group on the biomolecule and the 

aldehyde [100]. The drawbacks are the potential toxicity, NPs cross-linking and aggregation 

[101]. 

2.2 Evaluation of modified surface 

2.2.1 Characterization of modified surface  

Since surface properties have a decisive effect on the applicability and efficiency of a 

material, an accurate and thorough analysis supported by an adequate set of different and 

complementary techniques is essential [102]. A comprehensive surface characterization must 

consider the evolution and changes of surface properties over time or in different 

environments. This is crucial for many systems, including NPs, biosensors, drug delivery 

systems and bioimplants, of which functionality and stability must be guaranteed for several 

days, months or years. 

Analysis of surface topography and morphology is commonly carried out using microscopic 

methods [103]. Scanning electron microscopy (SEM) [104] and transmission electron 

microscopy (TEM) [105] can be taken as the standard methods for direct imaging and 

dimensional measurements in the range of hundreds of microns to the nanometer. For the 

measurement of large ensembles of particles yielding statistical results like size distributions, 

SEM and TEM investigations must be combined with other non-imaging techniques, such as 

dynamic light scattering, X-ray diffraction as well as and specific surface area analysis 

(Brunauer–Emmett–Teller, BET) [106-108]. Fluorescence and confocal microscopy are 

widely used for the simultaneous 2- and 3-D visualization of both material surfaces and 

biological components, such as biomolecules, cells and bacteria or tissues. 

In order to obtain the information regarding the constituent elements, organic modifiers and 

chemical structure on the surface after modification, several standard spectroscopic methods 

such as energy-dispersive spectroscopy [109], secondary ion mass spectrometry [110], 



Biomaterials and surface functionalization 

-108- 
 

induced coupled plasma spectroscopy (ICP) [111], infrared spectroscopy (IR) or attenuated 

total reflection Fourier transform infrared spectroscopy [112] and X-ray photoelectron 

spectroscopy (XPS) [113] are generally used. Thermal gravimetric analysis (TGV) [114] is 

widely applied in the study of interaction strength between the attached organic groups and 

the surface with increasing temperature. 

In addition to the determination of surface functionalization, the characterization of the 

interaction of functionalized surfaces with the environment is necessary for drawing valuable 

conclusions on the surface characteristics and stability. It is popular to determine changes in 

surface charge after functionalization at a solid–liquid interface by means of electrokinetic 

analysis which is also used to determine the zeta potential and surface charge [115, 116], or to 

characterize the liquid phase adsorption processes as well as the interaction between surfaces 

and biomolecules [117]. 

Table 1 Characterization methods and techniques for detection of and quantification of organic 

surface modifiers [66]. 

Organic surface compounds are analyzed and quantified with simply and cost-efficient 

methods which are usually colorimetric and fluorescence-based assays. Through the 

combination with ultraviolet–visible (UV–Vis) and fluorescent spectrometry, these assays are 



Biomaterials and surface functionalization 

-109- 
 

able to perform a fast qualitative detection and a quantification of a wide range of reactive 

functional groups with high selectivity and good sensitivity. Some specific detection of amino, 

carboxy, hydroxyl, phosphate or thiol surface groups is listed in Table 1. 

2.2.2 Biomolecule detection and activity of biofunctionalized surfaces 

Determination of the quantity and conformation of biomolecules immobilized or adsorbed on 

a surface is still a great concern and fundamental to several applications, such as biomedical 

materials, drug delivery technologies, biosensors and imaging [118-120]. 

With the aim to measure the amount of adsorbed biomolecules, the depletion method, based 

on the decrease in biomolecule concentration in the solution after the solid surface has come 

into contact with the solution, is widely applied [121]. This approach is also widely employed 

for release studies and biomolecule concentration can be quantified by UV–Vis spectrometry 

[122] or by employing well-established colorimetric biochemical assays, such as the Lowry 

[123] and Bradford method [124]. The quantification of adsorbed biomolecules can be also 

performed by radioisotope-labelled proteins [120], which is a highly sensitive method used to 

study the competitive adsorption of various components of a mixture.  

Direct measurement of the amount of a biomolecule on the surface can be performed by using 

several techniques, such as enzyme-linked immunosorbent assays (ELISAs) [120] and 

radio-labelling [120]. In situ measurements on planar surfaces can be conducted with a quartz 

crystal microbalance [120] or by optical methods, such as optical waveguide lightmode 

spectroscopy (OWLS) [119], ellipsometry [125] or total internal reflectance fluorescence 

[119]. 

2.2.3 In vitro and in vivo testing 

In vitro and in vivo tests are considered powerful tools for screening the feasibility and 

functionality of devices. For functionalized, antibacterial materials, in vitro bacteria 

investigations are mainly aimed at determining bacteria viability by employing turbidity 
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measurements or agar-plate based tests (i.e. inhibition zone, diffusion test, colony-forming 

unit counting) [126-129]. Bacterial adhesion can be determined by microscopical methods, 

like SEM and/or fluorescence microscopy [130]. Moreover, specific fluorescence markers 

allow the simultaneous visualization and distinction between live and dead bacterial cells, and 

examine their interaction with material surfaces. 

In vitro assays are in dispensable as initial screens for acute toxicity, acute toxicity, 

cytocompatibility, genotoxicity amd inflammatory responses, and are required prior to in vivo 

and clinical testing. During last decades, increasing interest is raised in the development of in 

vitro cell assays for the characterization of materials before their clinical use. Through 

cultivating cells on a material surface and monitoring their interaction with surface, 

sequences of events in vivo can be simulated and the material cytocompatibility and acute 

toxicity are able to be screened rapidly. According to material specific purposes, several 

parameters such as cell proliferation, activity, adhesion, inflammatory response and cellular 

uptake can be monitored. Microscopic techniques, like light microscopy fluorescence 

microscopy and electron microscopy are widely employed to simultaneously survey cell 

response, cell adhesion, particle uptake and localization, as well as material surface properties. 

Cell viability is typically evaluated with cell-type-specific markers. For instance, for bone 

cells, the activity and differentiation are measured with alkaline phosphatase (ALP)-based 

assays [131] or assessed with specific bone proteins like collagen, or osteogenic markers 

[132]. Bone cell mineralization capability can be determined by specific histological staining 

(i.e. von Kossa or alizarin red). For bone tissue engineering applications, bioactivity of a 

surface is often evaluated by examining the ability of apatite forming on its surface in a 

simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood 

plasma. Kokubo et al. [133] concluded that examination of apatite formation in SBF is useful 

for predicting the in vivo bone bioactivity of a material, and the number of animals used in 

and the duration of animal experiments can be reduced remarkably by using this method. The 

ion concentration of SBFs and human blood plasma are reported in Table 2.  
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Table 2 Ion concentration of SBFs and human blood plasma [133] 

 

After the initial in vitro screening, functionalized materials for biomedical applications must 

undergo in vivo testing prior to clinical use in humans. By means of in vivo testing, the 

performance of materials can be evaluated under real physiological conditions and 

physiological loading. Moreover, in vivo tests allow longer time evaluation of a material’s 

behavior compared with in vitro testing. The in vivo material response and biocompatibility 

are typically assessed by histological examinations by means of different stains, such as 

haematoxylin–eosin, Masson’s trichrome stain [134], Stevenel’s Blue, Van Gieson’s 

picrofuchsin [75] as well as toluidine blue [135] and so on. 
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Chapter IV  

Materials and methods 

1 Introduction  

This chapter presents the preparation of materials involved in this thesis, such as the synthesis of 

bioactive glasses and glass-ceramics as well as polyphenols extraction from grape skin and green 

tea and their grafting onto bioactive glasses and glass-ceramics, the analysis technologies 

employed to characterize the material surface and to evaluate the changes of solution for 

functionalization, including XPS, FTIR, UV, and pH measurement etc. In addition, the 

instruments related to this research are introduced in this chapter as well. 

2 Preparation of bioactive glass and molecule for functionalization 

2.1 Synthesis of bioactive glasses  

Bioactive glasses are traditionally obtained by fusion of inorganic precursors of the final oxides 

and pouring of the molten glass in order to have rapid cooling. In this way it is possible to obtain 

a glassy structure avoiding crystallization. In fact, the formation of a glass requires the solid 

phase to be formed by rapid melt quenching. Glass is therefore cooled sufficiently rapidly below 

a typical “freezing” temperature, which is known as glass transition temperature, Tg, so that the 

supercooled disordered atomic configuration at Tg is frozen into the solid state. In general, the 

structure of glass is relative metastable compared to its crystalline countepart. The disordered 

structure of glass is defined as the amorphous network. 

2.1.1 Synthesis of SCNA and CEL2 

SCNA is a silica-based glass belonging to the quaternary SiO2-CaO-Na2O-Al2O3 system [1]; 
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its molar composition is reported in Table 1. The synthesis of SCNA follows the conventional 

melting and quenching route. Pure inorganic precursors, in this case, SiO2, CaCO3, Na2CO3, 

Al2O3 (Sigma-Aldrich), have been weighted according to the amount necessary for obtaining 

the molar percentages of the resulting oxides reported in Table 1. Reagents were mixed for a 

couple of hours and then introduced in a platinum crucible and molten at 1550 °C for 1 h in 

air. The molten glass was quenched on a brass plate to obtain a bar, which have been 

subsequently annealed in furnace at 600 °C for 10 hours in order to relax residual stresses. 

The selection of annealing condition is according to thermal analysis. 

In order to obtain powders the melted glass was poured in water. The so obtained frit was 

then milled and sieved up to a grain size lower than 20 µm.  

Table 1 Glass molar composition of SCNA and CEL2 and melting/annealing conditions 

Oxide 
SCNA CEL2 

Composition (Mol %) 

SiO2 57 45 

CaO 34 26 

P2O5 - 3 

K2O - 4 

Na2O 6 15 

Al2O3 3 - 

MgO - 7 

Melting 1 h, 1550 °C 1 h, 1400 °C 

Annealing  10 h, 600 °C 12h, 500 °C 

The composition of SCNA was chosen to impart high mechanical properties to the glass, 

especially compressive strength and hardness. The composition results also in a reduced 

bioactive behavior. In this case, the silica content is 57 % mol close to 60 % mol, according to 

Hench [2], which was the upper limit for allowing melt derived silicate glasses to show a 

bioactive behavior. Glasses with a silica content ranged from 53 %-58 % showed a decrease 

in the kinetics of an apatite layer formation on their surface, however, not all the material 
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bioactive behavior is suppressed. In the composition of SCNA, the presence of Al2O3 further 

inhibits the bioactivity of glass by stabilizing the glass network and as a result, inhibiting the 

potential ion exchange phenomena on the material/biological fluids interface. One the other 

hand, SCNA possesses remarkable mechanical features due to its major chemical stability. 

Moreover, the presence of CaO and Na2O, as the network modifier oxides, contributes to the 

decrease of melting temperature. 

CEL2 [3] is a silicate glass belonging to the complex SiO2-P2O5-CaO-MgO-Na2O-K2O 

system; its molar composition is reported in Table 1. The selection of molar composition aims 

to maximize the bioactivity and biocompatibility and meanwhile to avoid undesired effects 

due to the pH changes caused by the ion leaching phenomenon.  

In brief, CEL2 was prepared by melting reagent-grade reactants (SiO2, Ca3(PO)4, CaCO3, 

4MgCO3Mg(OH)2·5H2O, Na2CO3, K2CO3, Sigma-Aldrich) in a platinum crucible at 1400 °C 

for 1 h in air; the melt was poured onto a brass plate to obtain bars, which were annealed at 

500 °C for 12 h to release internal stresses. 

In order to obtain powders the melted glass was poured in water. The so obtained frit was 

then milled and sieved up to a grain size lower than 20 µm.  

2.1.2 Preparation of bulk and powder samples 

In this thesis, each type of bioactive glass was investigated in both the bulk and powder forms. 

As described in the previous paragraph, the bulk materials were obtained by pouring the 

melted glass on a brass plate to obtain glass bars which were annealed in a furnace then cut in 

to slices with an automatic cutter (ATA brilliant 220) showed in Figure 1. The bars were cut 

into 2 mm-thickness bulk with the size of about 1cm × 1 cm for subsequent treatment and 

analysis. The bulks of SCNA and CEL2 are polished with a polisher (Figure 2) on both sides 

using SiC abrasive papers, 120 > 320> 600 > 800> 1000 > 1200 > 2400 >4000 grit. The 

surface of well polished bulk samples is smooth, plane and homogeneous. 
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Figure 1: (a) ATA® BR220 Precision Cutter and (b) Struers® polisher 

The powder samples were prepared by pouring the melted glass into water to obtain a frit. 

The frit was then ball milled and sieved up to a grain size lower than 20 μm. The glass bar, 

bulk as well as powder samples are showed in Figure 2. 

 

Figure 2: (a) Glass bar, (b) bulk and (c) powder  

2.2  Synthesis of bioactive and ferrimagnetic glass-ceramic (SC-45) 

A glass-ceramic material, named SC-45 belonging to complex SiO2-Na2O-CaO-P2O5-FeO-Fe2O 

system was considered as ferromagnetic glass ceramic with potential application in the cancer 

therapy field thanks to its heating ability (hyperthermia effect, described in chapter III). Its molar 

composition is exhibited in Table 2. SC-45 was prepared by traditional melting of pure 

commercial reagents (SiO2, Na2CO3, CaCO3, Ca3(PO)4, FeSO4·7 H2O, Fe2O3, Sigma-Aldrich) in 
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a furnace at 1550 °C for 30 minutes in air, as described in literature [4, 5]. 

A part of the melt was poured into a brass mould to obtain glass bars, which were subsequently 

annealed at 600 °C for 12 hours. In order to prepare the bulk samples, the glass bars were cut 

into slices with the size of 10 x 10 x 1.5 mm
 3

 with an automatic cutter (Struers Accutom 5). 

Each slice was polished with SiC abrasive papers, up to 1200 grit and then with 6 microns 

diamond paste. Another part was cast into water to obtain frit, which was milled and sieved 

(below 20μm grain size) to powders. The glass bar, bulk as well as powder samples are showed 

in Figure 3. 

Table 2 SC-45 molar composition 

Oxide SiO2 Na2O CaO P2O5 FeO Fe2O3 

% molar 24.7 13.5 13.5 3.3 14 31 

 

Figure 3: (a) Bar, (b) bulk, (c) frit and (d) powder of SC-45 

2.3 Molecules for functionalization 

2.3.1  Gallic acid 

Gallic acid (3, 4, 5-trihydroxybenzoic acid, henceforth GA) and its derivatives are 

endogenous plant polyphenol found abundantly in tea, grapes, berries and other fruits as  

well as in wine [6]. It is a yellowish-white crystal (molecular mass 170.12 g/mol) with 
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melting point 250 °C and water solubility 1.1% at 20 °C [7]. On the basis of its chemical 

structure (Figure 4), gallic acid belongs to phenolic acids which are which have one 

carboxylic acid functional group. Like other polyphenols, gallic acid possesses a number of 

remarkable bioactivities such as antiallergic, anticarcinogenic, antimutagenic and 

antibacterial capacity, especially antioxidant and anticancer activities which had drawn wide 

attention to both investigations on human benefits and potential applications in industry such 

as food additives, cosmetics and pharmacy. 

 

Figure 4: (a) Chemical structure of gallic acid and (b) commercial gallic acid powder 

Gallic acid is also investigated to possess the pro-oxidant property in concentration dependent 

manner in presence of metal ions. Moreover, pro-oxidant property of gallic acid has been 

recognized as the apoptosis inducer in cancer cell lines [8].  

In this thesis Gallic Acid (GA 97.5-102.5% titration, G7384, Sigma Aldrich) was employed 

for the functionalization of bioactive glasses (SCNA and CEL2) and glass-ceramic (SC-45) as 

model molecule for polyphenols and also for its potential properties, described above. 

2.3.2 Folic acid 

Folic acid, a member in vitamin B9 family is a critical molecule which is used in supplements 

and as a fortificant in foods. As shown in figure 5, folic acid consists of a pterin moiety linked 

via a methylene group to a para-aminobenzoylglutamate moiety. Its metabolic activity 

requires reduction to the tetrahydrofolic acid (THF) derivative, addition of a chain of 

glutamate residues in γ-peptide linkage, and acquisition of one-carbon unit [9]. 
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Figure 5: chemical structure of folic acid [9] 

 

Figure 6: Physiology and metabolism of folic acid [9]. (GAR, glycinamide ribonucleotide; 

FGAR, formylglycinamide ribonucleotide; AICAR,aminoimidazolecarboxamide ribonucleotide; 

FIGLU, formiminoglutamic acid; IMP, inosine monophosphate)  

The biochemical function of folic acid substrates (figure 6) is to transfer and use one-carbon 



Materials and methods 

-127- 
 

units in a variety of essential reactions including de novo purine biosynthesis, pyrimidine 

nucleotide biosynthesis, amino acid interconversions, and the generation and use of formate 

[9]. Since it is required by DNA synthesis, folic acid is involved in cell division. Moreover, 

the over expression of receptor of folic acid can be detected in several types of cancers in 

lung, colon, kidney and ovarian while in healthy human tissues the receptors just have limited  

distributions. Hence, folic acid can be used as an ideal molecule for tumour detection and 

treatment.  

In this thesis Folic Acid (Folic acid  97 %, Sigma Aldrich) was used in preliminary 

experiments for the functionalization of SC-45 glass ceramic. The coupling of SC-45 and 

folic acid is of potential interest for the recognition and treatment of cancer. 

2.3.3 Extraction of polyphenol from grape skin 

Fresh red grapes (Barbera) were provided by a small-scale producer in the north of Italy 

(vineyard situated in Vagli Serra, Asti, Piedmonte, Italy) (Figure 7a). The fresh grapes were 

divided into four parts: flesh, skin, seed and stem (in this case only grape skin was 

employed).  

 

Figure 7: (a) fresh grape and (b) dried grape skin pieces 

Fresh red grape skin was dried in oven at 60 °C and then grinded into small pieces (2-3 mm
2
, 

Figure 7b). One type of conventional solvent extractions named as maceration was performed 

in this thesis according to literature [10]. The brief procedures are described as follows:  
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a) Weight dried grape skin (i.e. 10 g)  

b) Solvent preparation: water-ethanol (20/80, v/v) with a solid-liquid ratio 1:20  

c) Add solvent to immerse grape skin at 60 °C in a thermostatic bath (figure 8) for 60 min 

d) Filter with filter paper to separate grape skin and extract solution (figure 9a) 

e) Collect extraction solution and dry it in oven at 60 °C to remove the residual ethanol 

f) Dissolve the extract in double distilled water and freeze at -18°C 

g) Freeze dry and obtain the polyphenol extract (figure 9b) 

 

Figure 8: Thermostatic bath 

 

Figure 9: (a) Polyphenol extract in 80% ethanol and (b) polyphenol extract after freeze drying 

 

2.3.4 Extraction of polyphenol from green tea 
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Green tea (Longjing) was bought from China; its origin is in Hangzhou, P. R. China (figure 

10a). Since the green tea leaves were completely dry as brought, the extraction work started 

from the grinding of dried green tea leaves. As showed in figure 10b and 10c, green tea was 

put into a ceramic mortar and grinded into small pieces in order to increase the contact 

surface with solvent during extraction. 

 

Figure 10: (a) green tea leaves, (b) green tea in a ceramic mortar and (c) grinded green tea 

 

Scheme 1: Extraction of green tea polyphenol with water and 80% ethanol 

Conventional solvent extraction [11] was selected to isolate tea polyphenols from green tea 

with two kinds of solvents (pure water, water-ethanol mixture). The procedures can be 



Materials and methods 

-130- 
 

summarized in the scheme 1. Tea phenol extracts with 80% ethanol were employed in the 

subsequent analysis due to its higher yield compared with the water extracted tea polyphenol. 

3 Determination of total phenol content 

3.1 Folin-Ciocalteau colorimetry 

The Folin-Ciocalteau (FC) procedure is one of the standard procedures in grape polyphenol 

analysis such as in wine analysis, as well as in tea analysis [12]. Folin-Ciocalteau (FC) 

colorimetry is based on a chemical reduction of the reagent, a mixture of tungsten and 

molybdenum oxide. Singleton [13] first adapted this method to wine analysis. The products of 

the metal oxide reduction have a blue color that exhibits a broad light absorption with a 

maximum at 760 nm. The intensity of light absorption at that wavelength is proportional to the 

concentration of phenolics. Hence, gallic acid usually is employed as the calibration standard in 

FC method and the detection of light intensity is processed by UV-visible spectroscopy. In this 

thesis, Folin-Ciocalteau technique was employed both for standard curve and phenol content 

determination. The determination of standard curve is described as follows (figure 11): 

a) Place 2 ml of gallic acid of each concentration into a container.  

b) Add 6 ml double distilled water. 

c) 0.5 ml Folin-ciocalteau reagent was added  

d) Swirl to mix and incubate 1 to 8 minutes at room temperature. 

e) Add 1.5 ml 20 % sodium carbonate solution. 

f) Incubate for 2 hours at room temperature. 

g) Transfer 4 ml mixed solution into 1-cm plastic cuvette and measure the absorbance at 760 

nm in an UV-visible spectrophotometer. 

h) Subtract of the absorbance of the blank from all readings and created a calibration curve 

form the standards. 
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Figure 11: Determination of standard curve by Folin-Ciocalteau colorimetry 

Concerning for the total phenol content, the analysis steps are similar with the standard curve 

determination except the change of gallic acid to polyphenol solution in step a. In addition, bulk 

samples were analyzed by FC assay to evaluate the molecule on the surface after 

functionalization. 

3.2 Standard curve  

A standard curve is a type of graph used as a quantitative research technique. Multiple samples 

with known properties are measured and graphed, which then allows the same properties to be 

determined for unknown samples by interpolation on the graph. The samples with known 

properties are the standards, and the graph is the standard curve. In this case, gallic acid is the 

known material and phenolic is the unknown molecule. To draw a standard curve, at least five 

point of absorbance of gallic acid need to be detected. 

3.2.1 Calibration standard preparation  

Gallic acid (97.5–102.5% titration, G7384, Sigma-Aldrich) is used as the calibration standard 

and six concentrations with an increasing order were prepared as described in Table 3. Since 

the concentration is relative low, dilution step by step is employed. Dissolve 50 mg gallic acid 

in 50 ml double distilled water and mix the solution with magnetic stirring. Dilute 10 ml to 

100 ml to obtain 0.1 mg/ml concentration. Then dilute 1, 2, 1, 2, 3 and 4 ml to 40, 20, 10, 10, 

10 and 10 ml with water, respectively, to prepare the six concentrations for standard curve. In 

addition, the detection of each point was tripled to analyze the standard deviation. 

http://en.wikipedia.org/wiki/Quantitative_research
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Table 3 Six points of concentration for standard curve 

Points  1 2 3 4 5 6 

Concentration 

(mg/ml) 
0.0025 0.005 0.01 0.02 0.03 0.04 

3.2.2 Sodium carbonate solution 

In FC method, 20 % sodium carbonate (anhydrous, ≥99.5%, granular, Sigma-Aldrich) 

solution is needed for the reaction. Dissolve 10 g reagent-grade sodium carbonate in 50 ml 

double distilled water. Then stir with a magnetic stirring till all the powder was dissolved. At 

last, filter the solution and store it at room temperature. 

3.3 Determination of total phenolic content 

3.3.1 Solution preparation  

250 mg grape skin extracts were dissolved in 50 ml double distilled water and mixed with 

magnetic stirred (figure 12) to obtain a solution with concentration 5 mg/ml, and then store 

the solution in refrigerator at 4 °C. 

 

Figure 12: Heating magnetic stirrer 

50 mg green tea extracts were dissolved in 50 ml double distilled water and mixed with 

magnetic stirred to obtain a solution with concentration 1 mg/ml, and then store the solution 
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in refrigerator at 4 °C. 

3.3.2 Determination by Folin-Ciocalteau colorimetry  

The determination of polyphenol content is similar to the determination of standard curve. In 

brief, place 2 ml polyphenol solution into a container followed by 6 ml double distilled water. 

Then add 0.5 ml Folin-Ciocalteau reagent and swirl to mix and incubate 1 to 8 minutes at 

room temperature. After incubated for 2 hours at room temperature, the solution was 

transferred to cuvette and detected the absorbance at 765 nm by UV-visible spectroscopy. 

4 Surface functionalization of bioactive glasses 

As described in figure 13, synthesized bioactive glass was prepared as bulk or powder samples. 

The first step of the functionalization process is sample washing in order to expose the hydroxyl 

groups (-OH) on its surface. The target molecule can be grafted on the surface exploiting the 

–OH groups directly or indirectly. 

 

Figure 13: Surface functionalization of bioactive glasses with biological molecule 

4.1 Surface activation  
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Surface activation is the first step in functionalization process in order to remove the 

contaminants on the surface as well as expose the reactive hydroxyl groups. The cleaning 

treatment condition has been selected according to a previous study on functionalization of 

bioactive glasses performed by the research group [14]. In the cited reference, different 

treatments were compared by contact angle measurement and XPS analysis in order to 

characterize surface modification (hydroxyls exposition and bioactivity reactions). The optimal 

treatment has been chosen as the one that allows high hydroxylation in a controlled and 

reproducible way, without the beginning of bioactivity reaction (such as hydroxyls condensation 

to form silica gel). 

4.1.1 Hydroxyl exposure of SCNA and CEL2 

The surface activation of SCNA and CEL2 include three passages for both bulk and powder 

samples: 

a) Samples washing in acetone for 5 min in an ultrasonic bath to remove contaminants 

b) Samples washing three times in double distilled water for 5 min in ultrasonic bath to 

favour -OH groups exposition 

c) Samples air drying in cabinet at room temperature  

This method is according to the previous work in our lab [1] and the presence of hydroxyls 

groups onto samples surface has been investigated by means of XPS. 

4.1.2 Hydroxyl exposure of SC-45 

In order to bond with bioactive molecules, the surface of glass-ceramic should be firstly 

activated. Since SC-45 is a silica-based glass-ceramic, the surface can be easily 

functionalized by activating the -OH groups after the contact with an aqueous medium. 

According to previous work in our lab [15], the optimization condition of surface treatment 

has been selected. Both the bulk and powder samples were soaked in double-distilled water 

for 7 days in incubator at 37 °C without refreshing the solution. 
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4.2 Gallic acid grafting  

Gallic acid was directly grafted on the surface of SCNA, CEL2 and SC-45, since it presents 

functional groups able to link directly with -OH groups on the glass surface. Gallic acid solution 

with concentration of 1 mg/ml in double distilled water was prepared by dissolving GA in 

double-distilled water for about 2 hours under magnetic stirring. For each glass bulk or powder 

sample, 5 ml of 1.0 mg/ml gallic acid solution was employed. Then, samples (both bulk and 

powder ones) with activated surface were soaked in gallic acid solution for 24 hours at 37 °C in 

incubator. In addition, in order to prevent the light irradiation of gallic acid, which is a 

light-sensitive molecule, all the containers were covered with aluminum foils. After 

functionalization, bulks and powers were separated from the solution and washed twice in 

double distilled water. Finally, the glass samples were air dried in cabinet at room temperature. 

The solutions were stored in refrigerator for further analysis. The GA grafted samples were 

labeled as SCNA+GA, CEL2+GA and SC-45+GA, respectively. 

4.3 SCNA and CEL2 modified with acidified gallic acid 

In order to investigate the effect of pH on the glass and molecule behavior, SCNA and CEL2 

were modified by citric acid addition to acidify GA solution. 0.5 M citric acid (CA, Citric Acid 

Monohydrate, ACS reagent 99.0-102.0%, Sigma-Aldrich) in double distilled water was added 

drop wise to 1.0 mg/ml GA solution till the pH was 3.0. The procedures of functionalization are 

the same as GA grafting. The acidified GA grafted samples were labeled as SCNA+GA+CA and 

CEL2+GA+CA. 

4.4 SC-45 modified with buffered gallic acid 

With the aim to evaluate effect of pH on both the glass-ceramic and molecule behavior, SC-45 

was functionalized with buffered gallic acid solution, prepared dissolving gallic acid in citric 

acid-sodium citrate buffer The citric acid-sodium citrated buffer system was employed and the 

pH range of the buffer is from 3.0 to 6.2. In this case, pH 3.0 was selected by mixing 82 ml 0.1 

M citric acid and 18 ml 0.1 M sodium citrate solution. The preparation of buffer solution and 

buffered gallic acid was described as follows: 
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a) Weight 2.1 g citric acid monohydrate (C6H8O7•H2O, M. wt. 210.14 g/mol, Sigma-Aldrich) 

and add 100 ml double distilled water under magnetic stirring mixing to obtain 0.1 M 

citric acid solution. 

b) Dissolve 2.94 g trisodium citrate dihydrate, (C6H5O7Na3•2H2O, M. wt. 294.12 g/mol, 

Sigma-Aldrich) in 100 ml double distilled water and mix the solution with magnetic 

stirring to get 0.1 M sodium citrate solution. 

c) Transfer 82 ml 0.1 M citric acid solution and mixed with 18 ml 0.1 M sodium citrate 

solution to obtain the buffer solution with pH 3.0. 

d) 50 mg gallic acid was dissolved in 50 ml above-mentioned buffer solution and mixed 

under magnetic stirring to obtain the buffered gallic acid solution. 

Some samples were treated with the pure buffer solution (without gallic acid) in order to study 

the effect of the citric acid-sodium citrate buffer on SC-45. 

Each sample of SC-45 bulk and powder was modified with 5 ml buffer solution and 5 ml 

buffered gallic acid solution, respectively, through the same method as gallic acid grafting. The 

buffer grafted and buffered GA grafted samples were named as SC-45+BUF and 

SC-45+GA-BUF, respectively. 

4.5 Grape polyphenol and tea polyphenol grafting 

The grafting of grape polyphenol (GP) and tea polyphenol (TP) is similar to the grafting of gallic 

acid on the surface of SCNA and CEL2. Both grape polyphenol and tea polyphenol were directly 

grafted with concentration of 5.0 mg/ml and 1.0 mg/ml, respectively, in double distilled water. 

Grape polyphenol solution was prepared by dissolving 250 mg grape skin extracts in 50 ml 

double-distilled water for about 2 hours under magnetic stirring. Tea polyphenol solution was 

obtained by dissolving 50 mg green tea extracts in 50 ml double-distilled water for about 2 hours 

under magnetic stirring. For each glass bulk or powder sample, 5 ml of 5.0 mg/ml GP solution as 

well as 1.0 mg/ml TP solution were employed. Then, samples (both bulk and powder ones) with 

activated surface were soaked in GP solution and TP solution for 24 hours at 37 °C in incubator. 

In addition, in order to prevent the light irradiation all the containers were covered with 
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aluminum foils. After functionalization, bulks and powers were separated from the solution and 

washed twice in double distilled water. Finally, the glass samples were air dried in laminar flow 

cabinet (figure 14) at room temperature. The solutions were stored in refrigerator for further 

analysis. 

 

Figure 14: Laminar flow cabinet 

4.6 Surface functionalization of SC-45 with folic acid  

4.6.1 Silanization of SC-45 

Silaniazation, which has been chosen because it is a well known technique for traditional 

glass functionalization, is the second step in the surface functionalization process in order to 

promote and stabilize the bonding between material and molecule. The background of our lab 

has transferred this technique to reactive glasses and glass-ceramics [14]. 

3-amminopropyltriethoxysilane (H2N (CH2)3 Si (OC2H5)3, APTES, 99% Aldrich) has been 

employed in order to introduce amino groups as functionalities. The main procedure can be 

described as follows: 
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a) 35 μl of 3-aminopropyltriethoxysilane has been dissolved in 150 ml of ethanol to obtain 

a solution 

b) SC-45 bulks or powders were soaked in this solution maintained for 6 h at room 

temperature. 

c) A thermal treatment has been processed for 1 h at 100 °C in oven to stabilize the 

silane-surface bonding  

d) Samples were washed three times in ethanol for 5 minutes in ultrasonic bath in order to 

remove the un-bounded molecules. 

e) Dry again for 1h at 100 °C in a furnace. 

The silanization was investigated by XPS analysis (Al source, Surface Science Instruments, 

M-Probe), since it was able to detect the nitrogen atom and characterize amino groups on the 

glass surface. 

4.6.2 Folic acid grafting 

At first, a solution of folic acid (Folic acid ≥ 97%, Sigma-Aldrich) in DMSO (Dymethyl 

sulfoxide ≥ 99%, ACS reagent, Sigma-Aldrich) has been prepared by dissolving 4.5 mg 

folic acid in 5 ml DMSO and adding 4.5 mg DCC (Dicyclohexyl carbodiimide ≥99%, 

Sigma-Aldrich) to obtain a 5 ml mixed solution for each SC-45 glass-ceramic sample (bulk or 

powder). Then, the silanized glass-ceramic samples have been soaked in this mixed solution 

for 2 h at 25 °C followed by washing sample twice in double distilled water. In the end, the 

functionalized glass samples were air dried under a laminar flow cabinet to avoid 

contaminations. After completely dried, the samples were packed in paper-PE bags with 

welding machine (figure 15) and stored in dark for XPS analysis, while the powder samples 

were stored in bottles covered by aluminum foils for further analysis. 
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Figure 15: Welding machine and packed samples 

4.7 Antioxidant analysis of SC-45 powder before and after functionalization 

Powder samples of SC-45 washed, SC-45+GA, SC-45+BUF and SC-45+BUF-GA were 

suspended in a buffered solution (PB, pH 7.4) of H2O2 in the presence of DMPO as a spin trap to 

test the release of HO • radicals in buffer solution. The electron paramagnetic resonance 

spectroscopy (EPR) spectra were recorded on aqueous suspension after 10, 30 and 60 minutes of 

incubation. 

5 Analysis techniques for surface functionalization 

5.1 UV-visible spectroscopy [16-18] 

Ultraviolet–visible spectroscopy or ultraviolet-visible spectrophotometry (UV-Vis or UV/Vis) 

refers to absorption spectroscopy or reflectance spectroscopy in the ultraviolet-visible spectral 

region. This means that light in visible and adjacent range is employed. The absorption intensity 

in the visible ranges directly influences the color of the chemicals involved. 

Many molecules absorb ultraviolet or visible light. The absorbance of a solution increases as 

attenuation of the beam increases. The absorbance (A) could be stated by Beer-Lambert’s Law 

as: 

A = εbc = log10 (I/I0) 

http://en.wikipedia.org/wiki/Absorption_spectroscopy
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Visible_spectrum
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Where b is the path length of sample; c represents the concentration of compound in solution; ε 

is a constant of proportionality, called absorbtivity; I0 the intensity of the incident light at a given 

wavelength; I is the transmitted intensity.  

The principle of ultraviolet-visible absorption can be described as molecules containing 

π-electrons or non-bonding electrons (n-electrons) can absorb the energy in the form of 

ultraviolet or visible light to excite these electrons to higher anti-bonding molecular orbitals. 

The absorption of UV or visible radiation corresponds to the excitation of outer electrons. There 

are three types of electronic transition which can be considered: 

i. Transitions involving π, σ, and n electrons (figure 16) 

ii. Transitions involving charge-transfer electrons 

iii. Transitions involving d and f electrons 

 

Figure 16: Possible electronic transitions of π, σ, and n electrons 

A UV-visible spectrophotometer (figure 17) is a device used to study ultraviolet-visible 

spectroscopy. It measures the intensity of light passing through a sample (I), and compares it 

with the intensity of light before it passes through the sample (I0). The ratio of I and I0 is named 

as the transmittance, which is usually expressed as a percentage (% T). The absorbance (A) is 

based on the transmittance: 

A = - log (% T/ 100 %) 
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Figure 17: Cary ® 500 Scan UV-visible spectrophotometer 

As showed in figure 18, the basic parts of a spectrophotometer include a light source, a holder, a 

diffraction grating or monochromator to prepare the different wavelengths of a light, and a 

detector. The radiation source is often a Tungsten filament (300-2500 nm), a deuterium arc lamp 

which is continuous over the ultraviolet region (190-400 nm), and more recently light emitting 

diodes (LED) and Xenon Arc Lamps for the visible wavelengths. The detector is typically a 

photomultiplier tube, a photodiode, a photodiode array or a charge-coupled device (CCD). 

 

Figure 18: Schematic of UV- visible spectrophotometer 

UV/Vis spectroscopy is routinely used in analytical chemistry for the quantitative determination 

of different analytes, such as transition metal ions, highly conjugated organic compounds, and 

http://en.wikipedia.org/wiki/Photomultiplier_tube
http://en.wikipedia.org/wiki/Photodiode
http://en.wikipedia.org/wiki/Charge-coupled_device
http://en.wikipedia.org/wiki/Analytical_chemistry
http://en.wikipedia.org/wiki/Quantitative_analysis_(chemistry)
http://en.wikipedia.org/wiki/Transition_metal
http://en.wikipedia.org/wiki/Conjugated_system
http://en.wikipedia.org/wiki/Organic_compound
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biological macromolecules. Moreover, UV spectroscopy plays a role as detector of other 

methodology such as HPLC. Samples for spectroscopic analysis are commonly solutions but 

solids and gases may also be studied. 

In the present thesis UV-Visible spectroscopy was employed for the quantification of gallic acid 

and total phenols by the Folin-Ciocalteau method describe in the previous paragraphs (figure 

17). 

5.2 Fourier Transform Infrared Spectroscopy (FTIR) 

5.2.1 Introduction of Fourier Transform Infrared Spectroscopy (FTIR) [19-22] 

Fourier transform infrared spectroscopy is used to obtain an infrared spectrum of absorption, 

emission, photoconductivity or Raman scattering of liquid, solid or gas on the basis of 

interaction of infrared radiation with sample. FTIR techniques analyze molecular vibrations 

induced by the IR radiation (400 - 4000 cm-1). These techniques schematize atoms as masses 

joined by bonds with spring-like properties. 

An FTIR Spectrometer (figure 19) is an instrument which acquires broadband NIR to FIR 

spectra. Unlike a dispersive instrument, i.e. grating monochromator or spectrograph, FTIR 

spectrometers collect all wavelengths simultaneously. This feature is called the Multiplex or 

Felgett Advantage. 

 

Figure 19: FTIR spectrometers  

http://www.newport.com/store/product.aspx?id=994929&lang=1033
http://www.newport.com/store/product.aspx?id=994929&lang=1033
http://www.newport.com/store/product.aspx?id=994929&lang=1033
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The information provided by FTIR can identify unknown materials; determine the quality or 

consistency of a sample; determine the amount of components in a mixture. Figure 20 

exhibited the optical diagram of an FTIR spectrometer. 

 

Figure 20: Optical diagram of an FTIR spectrometer 

The normal instrumental analysis process is as follows (figure 21): 

a) The Source: Infrared energy is emitted from a glowing black-body source. This beam 

passes through an aperture which controls the amount of energy presented to the 

sample (and, ultimately, to the detector). 

b) The Interferometer: The beam enters the interferometer where the “spectral encoding” 

takes place. The resulting interferogram signal then exits the interferometer. 

c) The Sample: The beam enters the sample compartment where it is transmitted through 

or reflected off of the surface of the sample, depending on the type of analysis being 
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accomplished. This is where specific frequencies of energy, which are uniquely 

characteristic of the sample, are absorbed. 

d) The Detector:  The beam finally passes to the detector for final measurement. The 

detectors used are specially designed to measure the special interferogram signal. 

e) The Computer: The measured signal is digitized and sent to the computer where the 

Fourier transformation takes place. The final infrared spectrum is then presented to the 

user for interpretation and any further manipulation 

 

Figure 21: Normal instrumental analysis process of FTIR Spectrometer 

Some of the major advantages of FTIR over the dispersive technique include high analysis 

speed, high sensitivity, mechanical simplicity and internally calibration etc. These advantages, 

along with several others, make measurements made by FT-IR extremely accurate and 

reproducible. Thus, it is a very reliable technique for positive identification of virtually any 

sample. 

5.2.2 Sample preparation for FTIR 

In this thesis, functionalized powder sample were dried and stored for FTIR analysis. The 

glass powder and KBr with a ratio of 2 mg/198 mg for each pellet were completely mixed 

and pressed with the mould as showed in figure 22 to obtain a pellet sample for analysis. 
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FTIR technique was employed for the evaluation of surface chemical composition of bare and 

functionalized glasses. 

 

Figure 22: Mould for KBr pellet  

5.3 Scanning Electron Microscopy (SEM) [22-24] 

The scanning electron microscope (SEM) is a type of electron microscope that produces images 

of a sample by scanning it with a focused beam of high-energy electrons to generate a variety of 

signals at the surface of solid specimens. The signals that derive from electron-sample 

interactions reveal information about the sample including external morphology (texture), 

semi-quantitative chemical composition, and crystalline structure and orientation of materials 

making up the sample. The electron beam is generally scanned in a raster scan pattern, and the 

beam's position is combined with the detected signal to produce an image.  

In most applications, data are collected over a selected area of the sample surface, and a 

2-dimensional image is generated that displays spatial variations in surface properties. 

Conventional SEM techniques can scan areas ranging from approximately 1 cm to 5μm in width 

with a magnification from 20× to approximately 30000×. Furthermore, SEM is capable of 

performing analysis of selected point locations on the sample surface; the approach is especially 

useful in qualitatively or semi-quantitatively determining chemical compositions (combination 

with EDS), crystalline structure as well as crystal orientations (with EBSD).  

http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
http://en.wikipedia.org/wiki/Raster_scan
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The fundamental principle of SEM is that accelerated electrons in an SEM carry significant 

amounts of kinetic energy, and this energy is dissipated as a variety of signals produced by 

electron-sample interactions when the incident electrons are decelerated in the solid sample. 

These signals mainly include secondary electrons (which produce SEM images), backscattered 

electrons (BSE), diffracted backscattered electrons (EBSD, used for determination of crystal 

structures and orientations of minerals), photons (characteristic X-rays, that are used for 

elemental analysis and continuum X-rays), visible light (cathodoluminescence-CL), as well as 

heat. Secondary electrons and backscattered electrons are commonly employed to image 

samples. Thereinto, secondary electrons do great contributions to exhibit morphology and 

topography on samples, while backscattered electrons are most valuable for illustrating contrasts 

in composition in multiphase samples. X-ray is generated by inelastic collisions between the 

incident electrons and electrons in discrete orbitals (shells) of atoms in the sample. When the 

excited electrons go back to lower energy orbital, the X-ray is produced with a fixed wavelength 

which depends on the energy difference of electrons in different element. Hence, the element in 

a sample will be excited by the electron beam and yield a characteristic X-ray.  

  

Figure 23: Schematic of SEM characteristic components 

http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
http://serc.carleton.edu/research_education/geochemsheets/bse.html
http://serc.carleton.edu/research_education/geochemsheets/ebsd.html
http://serc.carleton.edu/research_education/geochemsheets/xrays.html
http://serc.carleton.edu/research_education/geochemsheets/semcl.html
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Scanning electron microscopy instrumentation is commonly consisted of several essential 

components including the following (figure 23):  

a) Electron Source ("Gun") 

b) Electron Lenses 

c) Sample Stage 

d) Detectors for all signals of interest 

e) Display / Data output devices 

f) Infrastructure Requirements  

In addition, the infrastructure requirements include power supply, vacuum system, cooling 

system, vibration-free floor as well as room free of ambient magnetic and electric fields. 

In the present thesis SEM and EDS analyses were performed in order to evaluate the reaction of 

bioactive glasses and glass ceramic in the functionalization media, both from a morphological 

and chemical point of view. 

5.4 X-ray photoelectron spectroscopy (XPS) [25-28] 

X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical 

Analysis (ESCA) is a widely used technique to investigate the chemical composition of surfaces. 

XPS is a kind of surface-sensitive quantitative spectroscopic technique that measures the 

elemental composition at the parts per thousand range, empirical formula, chemical state and 

electronic state of the elements that exist within a material. XPS spectra are obtained by 

irradiating a material with a X-rays beam and simultaneously measuring the kinetic energy and 

number of electrons escaping from the top 0 to 12 nm of the material being analyzed. During 

XPS measurement, an ultra-high vacuum (UHV) < 10
-9

 Torr (< 10
-7

 Pa) condition is required. 

As showed in figure 24, the XPS instrumentation commonly includes essential parts as follows: 

a) Electron energy analyzer 

http://en.wikipedia.org/wiki/Empirical_formula
http://en.wikipedia.org/wiki/Chemical_state
http://en.wikipedia.org/wiki/Electronic_state
http://en.wikipedia.org/wiki/Spectrum
http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/Kinetic_energy
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Nanometre
http://en.wikipedia.org/wiki/Ultra-high_vacuum


Materials and methods 

-148- 
 

b) X-ray source 

c) Ar ion gun 

d) Neutralizer 

e) Vacuum system 

f) Electronic controls 

g) Computer system 

 

Figure 24: X-ray Photoelectron Spectrometer 

XPS is based on the theory of photoelectric effect (figure 25a) outlined by Einstein in 1905 and 

photoemission for analysis (figure 25b) proposed by Kai Siegbahn. 

The energy of a photon of all types of electromagnetic radiation is given by the Einstein relation:  

E = h ν 

Where h is Planck constant (6.62 x 10
-34

 J s) and ν is the frequency (Hz) of the radiation. 
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Figure 25: (a) Photoelectric effect and (b) photoemission 

A photoemission process can be described by an energy balance: 

BE = h ν-- KE - Φspec 

Where BE represents electron binding energy; KE is electron kinetic energy; Φspec represents 

for spectrometer work function. 

Through XPS analysis, some information of sample analyzed could be obtained: 

a) Identification of elements near the surface and surface composition 

b) Local chemical environments 

c) Oxidation states of transition metals 

d) Valence band electronic structure 

As a result of the obtained information, XPS is commonly empolyed to measure: 

a) Elemental composition of the surface  

b) Empirical formula of pure materials  

c) Elements that contaminate a surface  

d) Chemical or electronic state of each element in the surface  

e) Uniformity of elemental composition across the top surface (line profiling or mapping)  

f) Uniformity of elemental composition as a function of ion beam etching (depth profiling)



Materials and methods 

-150- 
 

Reference 

[1] Verné E, M Miola, Vitale-Brovarone C, et al. Surface silver-doping of biocompatible glass to 

induce antibacterial properties. Part I: massive glass. J Mater Sci Mater Med 2009; 20: 733-740 

[2] Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass® derived glass-ceramic scaffolds for 

bone tissue engineering. Biomaterials 2006; 27: 2424-2425 

[3] Vitale Brovarone C, Verné E, Robiglio L, et al. Biocompatible glass-ceramic materials for bone 

substitutions. J Mater Sci:Mater Med 2008; 19: 471-478 

[4] Bretcanu O, Verné E, Cöisson M, et al. Temperature effect on the magnetic properties of the 

coprecipitation derived ferrimagnetic glass-ceramics. J Magn Magn Mater 2006; 300: 412-417 

[5] Bretcanu O, Verné E, Cöisson M, et al. Magnetic properties of the ferrimagnetic glass-ceramics 

for hyperthermia. J Magn Magn Mater 2006; 305: 529-533 

[6] Singh J, Rai GK, Upadhyay AK, et al. Antioxidant phytochemicals in tomato (Lycopersicon 

esculentum). Ind J Agric Sci 2004; 74: 3-5 

[7] Polewski K., Kniat, S., Slawinska, D., 2002. Gallic acid, a natural antioxidant, in aqueous and 

micellar environment: spectroscopic studies. Curr. To p. Biophys. 26, 217-227. 

[8] Yen, G.C., Duh, P. D., Tsai, H.L., 2002. Antioxidant and pro-oxidant properties of ascorbic acid 

and gallic acid. Food Chem. 79, 307-313. 

[9] JW Miller. Folic acid. Encyclopedia of Human Nutrition, Encyclopedia of Human Nutrition, 

2005, 2: 262-269 

[10] Cho YJ, Hong JY, Chun HS, et al. Ultrasonication-assisted extraction of resveratrol from grapes. 

J Food Eng 2006; 77: 725-730 

[11] Vuong QV, Golding JB, Stathopoulos CE, et al. Optimizing conditions for the extraction of 

catechins from green tea using hot water. J Sep Sci 2011; 34: 3099-3106 

[12] Wiseman S, Waterhouse A, Korver O. The health effects of tea and tea components: 

opportunities for standardizing research methods. Crit Rev Food Sci Nutr 2001; 41: 387-412 

[13] Singleton VL and Rossi JA. Colorimetry of total phenolics with phosphomolybdic- 

phosphotungstic acid reagents. Am J Enol Vitic 1965; 16: 144-158 

[14] Vernè E, Vitale-Brovarone C, Bui E, et al. Surface functionalization of bioactive glasses. J 

Biomed Mater Res DOI: 10.1002/jbm.a.32153. 

[15] Verné E, Miola M, Ferraris S, et al. Surface activation of a ferrimagnetic glass-ceramic for 

antineoplastic drugs grafting. Adv Eng Mater 2010; 12: 309-319 

[16] http://en.wikipedia.org/wiki/Ultraviolet%E2%80%93visible_spectroscopy 

[17] http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uvvisab1.htm 

[18] http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/beers1.htm 

http://en.wikipedia.org/wiki/Ultraviolet%E2%80%93visible_spectroscopy
http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uvvisab1.htm
http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/beers1.htm


Materials and methods 

-151- 
 

[19] http://en.wikipedia.org/wiki/Fourier_transform_infrared_spectroscopy 

[20] http://mmrc.caltech.edu/FTIR/FTIRintro.pdf 

[21] http://www.newport.com/Introduction-to-FTIR-Spectroscopy/405840/1033/content.aspx 

[22] http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html 

[23] http://www.purdue.edu/rem/rs/sem.htm 

[24] http://www.ammrf.org.au/myscope/sem/background/ 

[25] http://mmrc.caltech.edu/SS_XPS/XPS_PPT/XPS_Slides.pdf 

[26] http://www.phi.com/surface-analysis-techniques/xps.html 

[27] http://pire-ecci.ucsb.edu/pire-ecci-old/summerschool/papers/vohs1.pdf 

[28] http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy#Peak_identification 

 

http://en.wikipedia.org/wiki/Fourier_transform_infrared_spectroscopy
http://mmrc.caltech.edu/FTIR/FTIRintro.pdf
http://www.newport.com/Introduction-to-FTIR-Spectroscopy/405840/1033/content.aspx
http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
http://www.purdue.edu/rem/rs/sem.htm
http://www.ammrf.org.au/myscope/sem/background/
http://mmrc.caltech.edu/SS_XPS/XPS_PPT/XPS_Slides.pdf
http://www.phi.com/surface-analysis-techniques/xps.html
http://pire-ecci.ucsb.edu/pire-ecci-old/summerschool/papers/vohs1.pdf
http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy#Peak_identification


Results and discussions 

-152- 
 

Chapter V  

Results and discussions 

1 Introduction 

In this thesis, two types of bioactive glasses (SCNA and CEL2) and one kind of bioactive and 

ferrimagnetic glass-ceramic (SC-45) have been employed for the functionalization. Three types 

of molecules, gallic acid, grape polyphenol and tea polyphenol were grafted to bioactive glasses, 

while gallic acid has either been used for SC-45 functionalization. This chapter, which constitutes 

the core of this thesis, is divided in to four sections and each of them devoted to deal with one of 

the research theme: i) surface functionalization of SCNA and CEL2 with gallic acid; ii) surface 

functionalization of SCNA and CEL2 with polyphenol extracted from grape skin; iii) surface 

functionalization of SCNA and CEL2 with polyphenol extracted from green tea ; iv) surface 

functionalization of SC-45 with gallic acid and buffered gallic acid and v) surface 

functionalization of SC-45 with folic acid. 

2 Surface functionalization of SCNA and CEL2 with gallic acid 

Bioactive glasses are very attractive materials and widely investigated for many years with the 

applications in bone reconstruction. SCNA and CEL2 are two types of silica-based bioactive 

glasses with different level of reactivity (CEL2 possesses a higher reactivity). In this section, 

gallic acid (GA) as a model molecule of polyphenol family was grafted to the surface of 

bioactive glasses and, in order to study of effect of pH, acidified gallic acid with citric acid was 

employed for the functionalization as well. 
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2.1 Macroscopic observations on the samples 

Figure 2-1 exhibited the SCNA and CEL2 bulk samples before and after functionalization 

process. As far as CEL2 is referred, after modification with gallic acid, the color of bulk sample 

transferred from colorless to brown. Similar changes of color were also found on the surface of 

CEL2 grafted by gallic acid with citric acid (CA) addition. On the other hand, no significant 

color variation was observed on the surface of SCNA functionalized by GA as well as GA+CA.  

Washed SCNA 

 

SCNA+GA 

 

SCNA+GA+CA 

 

Washed CEL2 

 

CEL2 + GA 

 

CEL2 + GA+CA

 

Figure 2-1: Glass bulks appearances before and after functionalization 

Both SCNA and CEL2 powder samples were only functionalized by GA, and after solution was 

moved away, the powder appearances were observed in figure 2-2. The color of CEL2 powder 

transferred from white to brown, which was similar to bulk sample. However, compared with 

SCNA bulk, powder sample exhibited significant color changes from white to brown.  
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Washed SCNA 

 

SCNA+GA 

 

Washed CEL2 

 

CEL2 + GA 

 

Figure 2-2: Glass powder appearances before and after functionalization 

Figure 2-3 reported the color of gallic acid, gallic acid with citric acid and uptake solution after 

functionalization. GA solution in which the bulk samples were soaked for 24 hours exhibited a 

color change from colorless to dark green after CEL2 bulks were removed out. As for uptake 

solution of SCNA functionalization, no significant color change was observed. With the addition 

of citric acid, the mixed solution presented a light green after reacting with CEL2. It means that 

citric acid can reduce the color change in the uptake solution. 

GA 

 

SCNA+GA 

 

CEL2 + GA 
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GA+CA 

 

SCNA+GA+CA 

 

CEL2 + GA+CA 

 

Figure 2-3: Gallic acid, gallic acid with citric acid and uptake solution after functionalization 

2.2 pH measurement  

In order to investigate the effect of pH and the addition of citric acid, pH value of GA solution 

was measured before and after soaking SCNA and CEL2 bulks for 24 hours with a pH-meter 

(figure 2-4) and the results were showed in figure 2-5. It should be underlined that, in the 

starting step, both two glasses were soaked in the GA solution, whose pH value was 3.22 ± 0.30 

without the addition of CA.  

 

Figure 2-4: Crison ® pH meter 

After functionalization, notable changes of pH from acidic value to alkaline in uptake solution of 

both glasses could be observed, especially in the case of more reactive glass (CEL2) and the 
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powder samples (Table 2-1). In this case, the pH value is 3.45 for SCNA bulk and 7.99 for 

SCNA powder, 7.34 for CEL2 bulk and 8.68 for CEL2 powder.  

 

Figure 2-5: pH value of GA uptake solution before and after 24 hours soaking of different glass 

bulks, and the effect of CA addition in surface functionalization  

Table 2-1 pH value of GA uptake solution before and after 24 h soaking of SCNA and CEL2 

powders 

Samples GA SCNA+GA CEL2+GA 

pH value 3.22 7.99 8.68 

In general, the amorphous silica network of bioactive glasses can be attacked by water through 

the breaking of oxygen bridges and the forming of hydroxyl group, when glass is soaking in 

aqueous solution. The formation of –OH group could be promoted by the ion exchange between 

Na
+
 from glass network and H3O

+
 from the aqueous solution. When an acid solution was 

employed, the –OH formation will be facilitated by the increase of ion exchange [1].  

According to literature [2], the environment of an aqueous solution where bioactive glasses are 

soaked can transfer to an alkaline one with a static model of soaking, even if the solution was the 
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buffered simulated body fluids. The reason may be the decrease amount of H3O
+
 in the solution 

by ion exchange with Na
+
.  

Furthermore, an alkaline environment promotes a further hydroxylation of silica-based glasses 

through a direct disruptive action on the silica network catalyzed by the –OH anions in the 

solution. The promotion effect is much stronger on bioactive glasses characterized by high 

reactivity such as CEL2 than on almost inert glasses. Since the powder samples provided a larger 

surface area for reaction, the ion change was stronger than the bulk sample. As a result of basic 

environment, the catechol groups on GA structure can be oxidized and generate quinone groups 

[3]. This process leaded to the typical brownish color observed both on the glass surface and in 

uptake solution. 

With addition of citric acid, the basification was weakened but not completely overcame. The 

pH value of uptake solution could be kept below 7.00, in fact this value is reported in literature 

as a favorable pH for the transition of GA structure from phenol group to quinone ones [3]. As a 

result, a strong color change of CEL2 uptake solution was significantly reduced compared with 

the one without CA addition.  

2.3 UV-Vis measurements 

2.3.1 Standard curve: gallic acid as the calibration standard 

The standard calibration curve (figure 2-6) was obtained by the combination of 

Folin-Ciocalteau colorimetry (chapter IV) and UV-Vis spectroscopy after the reaction 

between Gallic acid solutions (different concentrations ranged from 0.0025 to 0.04 mg/ml) 

and Folin-Ciocalteau reagent.  

In this case, GA solution, the calibration standard was prepared with six different 

concentrations (Table 2-2) to detect the absorbance at 760 nm by UV absorption technique. 

Moreover, absorbance detection was repeated at least three times to estimate the uncertainty, 

marked in figure 2-6 as the error bar. The correlation coefficient of this curve is 0.9997, 
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which represented for an extremely good linear relationship. 

Table 2-2 concentrations of GA and absorbance 

Number 
Concentration  

[mg/ml] 

Absorbance  

Mean±SD 

1 0.0025 0.074204±0.001477 

2 0.005 0.134941±0.002894 

3 0.01 0.259997±0.005529 

4 0.02 0.491553±0.00066 

5 0.03 0.709862±0.012044 

6 0.04 0.933102±0.007839 

(n = 3 mean±SD) 

 

Figure 2-6: Standard calibration curve with GA as standard 

 

y = 22.981x + 0.0232 
R² = 0.9997 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.01 0.02 0.03 0.04 0.05 

A
b

so
rb

an
ce

 7
6

0
 n

m
[a

.u
] 

 

GA concentration [mg/ml] 



Results and discussions 

-159- 
 

2.3.2 Uptake solution analyzed by UV 

In order to evaluate the consumption of gallic acid during the functionalization process, the 

amount of gallic acid in solution, both before and after grafting, was determined by 

Folin-Ciocalteau colorimetry and UV-Vis spectroscopy. On the basis of standard calibration 

curve, the amount of gallic acid was calculated. 

The bar diagram in figure 2-7 exhibited the concentration of original gallic acid and gallic 

acid remaining in the uptake solution after soaking SCNA bulk and powder samples as well 

as CEL2 bulk and powder samples. In general, a decrease of gallic acid concentration can be 

observed in uptake solution of all samples, which means gallic acid was depleted during 

functionalization. Furthermore, it is notable that CEL2 consumed more gallic acid than 

SCNA, no matter bulk and powder samples (the value are 0.3293 and 0.9092 mg/ml, 

respectively). The reason could be that CEL2 has a higher surface reactivity with more –OH 

group exposure. Moreover, during functionalization process, the high reactivity of CEL2 

could lead to the condensation of –OH groups and promote the formation of silica gel layer 

which can absorb and retain an additional amount of gallic acid. 

Compared to bulk samples, powder samples of both glasses showed a higher depletion of 

gallic acid due to their larger specific surface area to bind more gallic acid molecules. In fact, 

the reduction in the amount of gallic acid in the functionalization medium is extremely high 

for both glass powders. On the other hand, it should be noticed that the strongly basic pH of 

solution recorded after modification of CEL2 (bulk and powder) and SCNA (powder) 

samples can affect and change the molecular structure of gallic acid and may lead to a 

different behavior during reaction with Folin-Ciocalteau’s reagent. 
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Figure 2-7: UV photometric results for GA uptake solution before and after 1 day soaking of 

different glass samples 

The effect of citric acid addition to gallic acid solution on gallic acid depletion after 

functionalization is reported in figure 2-8. Compared to gallic acid without citric acid 

introduction, an apparent reduction of gallic acid uptake can be observed for both SCNA and 

CEL2 bulk samples. The reason may be that the significant reduction of the gallic acid 

content after functionalization without citric acid addition was partly attributed to an effective 

bond with glass and partly to the structure change of gallic acid when it is in a basic solution. 

At the same time, the observable depletion of gallic acid after citric acid introduction partly 

evidenced the success of grafting to some extent.  

In order to evaluate the reversibility of grafting, citric acid was added in the uptake solution 

after soaking CEL2 bulk with and without citric acid addition to obtain a solution with pH 3.0. 

The consumptions of gallic acid content were 0.3064 and 0.3140 in uptake solution of 

CEL2+GA and CEL2+GA+CA with citric acid addition after functionalization, respectively. 

The results suggest that with the change of pH the grafting is stable to some extent.  
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Figure 2-8: UV photometric results for GA+CA uptake solution before and after 1 day 

soaking of different glass samples 

2.3.3 Functionalized bulk samples analyzed by UV 

Bulk samples of SCNA and CEL2 were investigated after soaked in gallic acid solution for 24 

hours by reacting with Folin-Ciocalteau’s reagent (figure 2-9) cooperated with UV-Vis 

spectroscopy in order to determine the amount of gallic acid grafted on sample surface. The 

bar diagram in figure 2-10 exhibited the amount of gallic acid remaining on the bulk samples 

after functionalization. There was nearly no gallic acid detected on the surface of SCNA 

bulks while a relatively high amount of gallic acid remained on the surface of CEL2 bulks. 

The results were reasonable in comparison with the consumption amount of gallic acid due to 

the different reactivity level of two glasses. Another reason may be the amount of gallic acid 

on SCNA surface is too low to be detected by Folin-Ciocalteau colorimetry. 
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Figure 2-9: a) GA grafted bulk sample in FC reagent and b) uptake after 2h incubation 

 

Figure 2-10: UV photometric results for SCNA and CEL2 bulk samples uptake after 1 day 

soaking in gallic acid solution 

2.3.4 Release test in double distilled water 

The release of both two types of glass powder sample after gallic acid functionalization 

process were investigated for one day release and one week release. The effectiveness was 

evaluated by gallic acid content in the release uptake solution after powder samples were 

incubated for 1 day and 1 week with the combination of UV and Folin-Cilcalteau colorimetry. 

From the bar diagram in figure 2-11, generally speaking, the release amount of gallic acid 

from SCNA and CEL2 powders were low with a value below 0.004 mg/ml (GA). Moreover, 

the release of both powder samples decreased along with the increase of time. Compared with 
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CEL2 powder, SCNA powder could release a higher amount of gallic acid for both 1 day 

release and 1 week release. The low release effectiveness may suggest the strong bond 

between glass surface and gallic acid molecules. 

 

Figure 2-11: Release test of SCNA and CEL2 powder grafted by GA for 1 day and 1 week 

2.4 XPS analysis 

XPS was employed to characterize the chemical composition and kind of chemical bond on the 

outermost surface layer of the washed SCNA and CEL2 bulk samples as well as bulks grafted by 

gallic acid and gallic acid with addition of citric acid. Results were exhibited by the following 

spectra including survey spectra and detailed analyses of carbon and oxygen regions. The 

samples were named as follows:  

i. SCNA (just washed sample) 

ii. SCNA+GA 

iii. SCNA+GA+CA 

iv. CEL2 (just washed sample) 

v. CEL2+GA 
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vi. CEL2+GA+CA 

 

Figure 2-12: Survey spectra of SCNA 

The survey spectra (figure 2-12) of washed SCNA highlighted all elements present on glass 

surface. Signals of elements from glass composition were observed. Carbon, which is commonly 

present in the first surface layers of materials, was also observed in this non-functionalized 

sample due to the unavoidable atmospheric contaminations. The atomic percentage of sodium 

was low, since the sodium atom stayed inside the glass matrix. 

Figure 2-13 showed the detailed XPS analysis in carbon region of SCNA bulks. It can be 

observed that, a notable signal at about 284.8 eV was detected on surface of washed SCNA, 

which can be attributed to unavoidable hydrocarbon contaminants on reactive surface as widely 

mentioned in literature for XPS analysis of reactive materials [4]. A weak signal at about 289.38 

eV can be assigned to carbonates [5] 

The detailed analysis spectra (figure 2-14) of oxygen region underlined the presence of the 

characteristic signals for oxides at 531.7 eV, silica at 532.35 eV as well as hydroxyls at 533.54 

eV as reported in literature related to surface activation [6]. 
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Figure 2-13: XPS detailed analysis of carbon region for SCNA washed sample 

 

Figure 2-14: XPS detailed analysis of oxygen region for SCNA washed sample 
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Figure 2-15: Survey spectra of SCNA+GA 

The survey spectra (figure 2-15) of SCNA functionalized with gallic acid highlighted all 

elements present on glass surface. Signals of elements from glass composition were observed. 

In detailed analysis spectra of carbon region on SCNA+GA (figure 2-16), different contributions 

can be detected after gallic acid functionalization. In particular, the signal of carbonate 

disappeared. Together with the peak of carbon contaminants at 284.83 eV, other two peaks at 

286.23 eV and 288.22 eV were observed. They can be attributed to C-O and C=O bonds 

respectively, according to literature [7-10]. Similar results have been reported on gallic acid 

functionalized surfaces [9].  

Figure 2-17 showed the detailed analysis spectra of oxygen region on SCNA bulk after gallic 

acid modification. A notable increase in the –OH signal at 533.58 eV further evidenced the 

presence of gallic acid. Peak at 531.71can be attributed to oxides but also to C=O bonds [11]. 
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Figure 2-16: XPS detailed analysis of carbon region for SCNA+GA sample 

 

Figure 2-17: XPS detailed analysis of oxygen region for SCNA+GA sample 
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Figure 2-18: Survey spectra of SCNA+GA+CA 

Figure 2-18 displayed the survey spectra of SCNA functionalized by gallic acid with addition of 

citric acid. It highlighted all elements present on glass surface. Signals of elements from glass 

composition were observed. 

After functionalization with addition of citric acid, a reduction of C=O signal (at about 288 eV) 

can be observed compared to the one without citric acid in detailed analysis of carbon region 

(figure 2-19). This result confirms the possibility of citric acid to inhibit the oxidation of gallic 

acid to quinone. 

In the detailed analysis of oxygen region (figure 2-20), a significant decrease in signals of –OH 

group at about 533.5 eV as well as signal of C=O at about 531.6 eV can be detected in 

accordance to the results obtained in carbon region. 
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Figure 2-19: XPS detailed analysis of carbon region for SCNA+GA+CA sample 

 

Figure 2-20 XPS: detailed analysis of oxygen region for SCNA+GA sample 
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Figure 2-21: Survey spectra of CEL2 washed sample 

The survey spectra (figure 2-21) of washed CEL2 highlighted all elements present on glass 

surface. Signals of elements from glass composition were observed, including oxygen, calcium, 

silicon, magnesium and sodium. Carbon, which is commonly present in the first surface layers of 

materials, was also observed in this non-functionalized sample due to the unavoidable 

atmospheric contamination.  

Figure 2-22 showed the detailed XPS analysis of carbon region of CEL2 bulks. It can be 

observed that, a notable signal at about 284.85 eV was detected on surface of washed CEL2, 

which can be attributed to unavoidable hydrocarbon contaminants on reactive surface as widely 

mentioned in literature for XPS analysis of reactive materials [4]. Compared to SCNA, a signal 

at about 289.66 eV with higher intensity can be assigned to carbonates [5] 

The detailed analysis spectra (figure 2-23) of oxygen region underlined the presence of the 

characteristic signals for oxides at 530.84 eV, silica at 531.63 eV as well as hydroxyls at 533.26 

eV as reported in literature related to surface activation [6]. It should be underlined that the 

signal of –OH is stronger than that of SCNA due to the higher reactivity of CEL2 with more 
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–OH groups exposed on the surface. 

 

Figure 2-22: XPS detailed analysis of carbon region for CEL2 washed sample 

 

Figure 2-23: XPS detailed analysis of oxygen region for CEL2 washed sample 
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Figure 2-24: Survey spectra of CEL2+GA sample 

The survey spectra (figure 2-24) of CEL2 functionalized with gallic acid highlighted all 

elements present on glass surface. Signals of elements from glass composition were observed, 

including oxygen, calcium, silicon, phosphorus, magnesium as well as carbon. Sodium content 

was lower probably due to the ion exchange with the aqueous solution. 

In detailed analysis spectra of carbon region on CEL2+GA (figure 2-25), different contributions 

can be detected after gallic acid functionalization. In particular, the signal of carbonate 

disappeared. Together with the peak of carbon contaminants at 284.83 eV, other two peaks at 

286.23 eV and 288.22 eV were observed. They can be attributed to C-O and C=O bonds 

according to literature [7, 8]. 

Figure 2-26 showed the detailed analysis spectra of oxygen region on CEL2 bulk after gallic 

acid modification. A significant increase in the –OH signal at 533.59 eV further evidenced the 

presence of gallic acid. Peak at 531.35 eV can be attributed to oxides but also to C=O bonds 

[11]. 
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Figure 2-25: XPS detailed analysis of carbon region for CEL2+GA sample 

 

Figure 2-26: XPS detailed analysis of oxygen region for CEL2+GA sample 
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Figure 2-27: Survey spectra of CEL2+GA+CA sample 

Figure 2-27 displayed the survey spectra of CEL2 functionalized by gallic acid with addition of 

citric acid. Signals of elements from glass composition were observed, including calcium, silicon, 

phosphorus, magnesium as well as carbon. Also, on this sample, sodium was present with a low 

atomic percentage probably due to the ion exchange with solution. 

Similar to SCNA, after functionalization with addition of citric acid, a reduction of C=O signal 

(at about 288 eV) can be observed compared to the one without citric acid in detailed analysis of 

carbon region (figure 2-28). This result confirms the possibility of citric acid to inhibit the 

oxidation of gallic acid into quinone. 

In the detailed analysis spectra of oxygen region (figure 2-29), a significant decrease in signals 

of –OH group at about 533.5 eV as well as signal of C=O at about 531.6 eV could be detected in 

accordance to the results obtained in carbon region. 



Results and discussions 

-175- 
 

 

Figure 2-28: XPS detailed analysis of carbon region for CEL2+GA+CA sample 

 

Figure 2-29: XPS detailed analysis of oxygen region for CEL2+GA+CA sample 
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Table 2-3 XPS atomic percentage analysis of bulk samples 

Element 

[at%] 

SCNA CEL2 

Washed  GA GA+CA Washed  GA GA+CA 

O 44.6 48.0 49.0 45.1 46.8 51.7 

C 33.5 35.7 29.8 34.7 37.8 17.0 

Si 14.9 14.2 19.9 5.7 8.9 16.4 

Ca 4.8 1.1 0.2 6.8 5.0 2.3 

Al 1.4 - - - - - 

Na 0.8 - - 4.3 0.5 0.7 

P - - - 1.8 0.9 0.2 

Mg - - - 1.3 <0.1 11.6 

Other - 1.1 1.1 <0.5 - 0.1 

The atomic percentage analysis of elements detected by means of the survey analysis was listed 

in Table 2-3. It can be observed that on surface of both washed SCNA and CEL2 samples, a 

certain amount of unavoidable carbon contaminants stilled remained, even though a washing 

treatment has been performed as widely reported in the literature for XPS analysis of reactive 

materials [12-14]. 

After functionalization with gallic acid, a certain increase in surface carbon and oxygen content 

can be detected on both SCNA and CEL2 surfaces. However, with the addition of citric acid in 

the functionalization medium, a reduction in the surface carbon content and a more evident 

increase in the oxygen content were observed.  

Through the analysis of surface chemical composition, a notable decrease in sodium and calcium 

content could be detected for both glasses due to the ion exchange process between bioactive 

glass surface and the grafting solution. 
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In addition, after GA grafting, no change of the silicon content happened to SCNA, while for 

gallic acid grafted CEL2, a significant increase of silicon content could be observed in 

comparison with washed CEL2. The increase in the surface silicon content was observed after 

functionalization with addition of citric acid for CLE2 and also for SCNA. These observations 

suggest certain dissolution of the glass matrix in the functionalization medium added with citric 

acid, which result in a higher SiO2 exposition and higher removal of adventitious carbon. 

2.5 SEM analysis  

The SEM-EDS analyses were performed to analyze the surface morphology of the samples, as 

well as their chemical composition on bulks before and after gallic acid grafting to obtain clear 

evidence about the difference in the substrate reactivity. 

SCNA washed  

 

Figure 2-30: SEM images of washed SCNA samples with different magnifications 
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Figure 2-30 exhibited the images of washed SCNA bulk with different magnifications from 1000

× to 10000×. A uniform surface was present with slightly polishing lines.  

 

Figure 2-31: SEM images and EDS analysis of SCNA washed  

EDS analysis (figure 2-31) demonstrated the elements detected on SCNA and all elements of 

glass composition were observed such as oxygen, silicon, sodium, calcium as well as aluminum. 

Carbon was present on the surface, which is ascribed to contaminant on the surface. 

SCNA+GA 

 

Figure 2-32: SEM images of gallic acid grafted SCNA samples with different magnifications in 
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two areas 

In order to investigate the homogeneity of surface morphology, two different areas were selected 

and analyzed by SEM. Figure 2-32 displayed the images from two different areas named as 

SCNA+GA-1 and, respectively, with magnification of 1000×, 2000×, 5000× and 10000×.  

After grafting with gallic acid, two different surface morphologies can be observed in 

SCNA+GA-1 and SCNA+GA-2. SCNA+GA-1 area presents a quite cracked surface with the 

typical morphology of the silica gel layer, while the other area showed a uniform surface which 

is analogous to the washed SCNA. 

 

Figure 2-33: SEM images with a magnification 200×and EDS analysis on chemical composition of 

gallic acid grafted SCNA in two areas  

EDS analysis (Tables in figure 2-33) demonstrated a higher enrichment of carbon atomic 

percentage as well as depletion of sodium and calcium for SCNA+GA-1 area, if compared to 

SCNA+GA-2 area, which is closer to the just washed sample. It means that the surface reactivity 
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of SCNA is not uniform; and this phenomenon may be ascribed the slower reaction kinetics of 

this material. 

 

Figure 2-34: SEM images with a magnification 200×and EDS analysis on chemical composition of 

gallic acid grafted SCNA in two specific zones: the reactive zone and the uniform zone  

In order to further evaluate the chemical composition of the gallic acid grafted surface, EDS 

analysis was performed in two zones as showed in figure 2-34: i) reactive zone and ii) uniform 

zone.  

Compared with the chemical composition of uniform zone, a significant enrichment of carbon 

could be detected due to the contribution of gallic acid grafting. In addition, a notable depletion 

of sodium and calcium could be observed; this phenomenon could be ascribed to the relatively 

intense ion-exchange between the material and solution. 
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CEL2 

 

Figure 2-35: SEM images of washed CEL2 samples with different magnifications 

Figure 2-35 exhibited the images of washed CEL2 bulk with different magnifications ranged 

from 1000× to 10000×. All the images showed a uniform surface with slightly polishing spots 

and cracks. 
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Figure 2-36: SEM images with 200× and chemical composition by EDS analysis of CEL2 washed 

bulks 

EDS analysis (figure 2-36) evidenced all elements of glass composition including oxygen, 

silicon, sodium, calcium, phosphorus, potassium as well as magnesium. The presence of carbon 

is due to the unavoidable atmospheric contamination on the surface. 

CEL2+GA 

Since the morphology of CEL2 grafted with gallic acid was uniform on all the sample surface, 

only one area was selected for SEM investigation. Figure 2-37 displayed the images with 

magnification of 1000×, 2000×, 5000× and 10000×.  

After grafting with gallic acid, CEL2 bulks were completely covered by a cracked layer with the 

typical morphology of silica gel. Compared with the washed CEL2, EDS analysis (Tables in 

figure 2-38) demonstrated a notable increase of carbon content on gallic acid grafted CEL2 

surface as well as significant depletion of sodium and calcium due to the higher reactivity of 

glass surface. 
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Figure 2-37: SEM images of gallic acid grafted CEL2 samples with different magnifications 

 

Figure 2-38: SEM images with a magnification 200×and EDS analysis on chemical composition of 

gallic acid grafted CEL2  
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Figure 2-39: SEM images with a magnification 200×and EDS analysis on chemical 

composition of gallic acid grafted CEL2 in two specific zones: The reactive zone and the base 

zone 

In order to further evaluate the chemical composition of the gallic acid grafted surface, EDS 

analysis was performed in two zones as showed in figure 2-39: i) reactive layer and ii) base 

zone.  

Compared with the chemical composition of base zone, a significant increase of carbon could be 

detected on the reactive layer, due to the contribution of gallic acid grafting. In addition, a 

notable depletion of sodium and calcium can be observed; this phenomenon can be ascribed to 

the relatively intense ion-exchange between the material and solution. 
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2.6 FTIR analysis 

FTIR was employed to analyse the functional groups of both SCNA and CEL2 glass powder 

before and after functionalization with gallic acid. 

 

Figure 2-40: FTIR spectra of GA, washed SCNA and SCNA+GA 

As for the gallic acid spectra (figure 2-40, 2-41), the typical polyphenolic characteristics were 

showed with the existence of a phenolic ring –OH stretching within the 3200-3550 cm
-1

, and 

–OH in plane bending at about 1322 cm
-1

, an aromatic ring C=C stretching within1450-1600 

cm
-1

, and C-O/C-C stretching vibrations within 1200-1300 cm
-1

, deformation of C-H aromatic at 

about 1024cm
-1

, as well as δcc benzene ring vibration at about 732 cm
-1

 [15, 16]. 
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Figure 2-41: FTIR spectra of GA, washed CEL2 and CEL2+GA 

The FTIR spectra of two glasses are dominated by the vibrational bands due to Si-O vibrational 

modes: Si-O-Si stretch, Si-O alkali stretch and S-O bend and Si-O rock as showed in figure 2-39, 

2-40. Both two bioactive glasses showed very strong absorption at 1000-1200 cm-1, assigned to 

Si-O-Si asymmetric stretching mode. Peaks at about 760 cm
-1

 and 460 cm
-1

 are assigned to 

symmetric stretching and rocking vibration of Si-O-Si band, respectively. The observed peak 

around 960 cm
-1

 present on both glasses is assigned to non-bridging oxygen together with the 

surface silanols (Si-OH) groups. In addition, the surface silanol groups are confirmed by 

presence of a broad band in the region from 3000cm
-1

 to 3400 cm
-1

, which represents the 

vibration of different hydroxyl groups [17-19]. 

After gallic acid grafting, the absorbance intensity of board peak in the region of 3000-3400 cm
-1

 

increased and the peak became narrow compared with that of the washed glasses. This 

phenomenon can ascribed to the bonding of gallic acid to enhance the signal of –OH group.  
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3 Surface functionalization of SCNA and CEL2 with polyphenol extracted from 

grape skin 

Natural grape polyphenols (GP) were extracted through a conventional solvent extraction 

methodology with 80% ethanol as the solvent. The grape polyphenols extracts were freeze dried 

and then grafted to the surface of two bioactive glasses (SCNA and CEL2) with different 

bioactivity level. Techniques such as UV together with Folin-Ciocalteau colorimetry, XPS, SEM 

were employed to evaluate the effectiveness of surface functionalization on the basis of the 

previous research on galic acid grafting. The aim of this research is the combination of bioactive 

propertied of bioactive glasses with the health-promoting benefits and good biocompatibility of 

polyphenols. 

3.1 Total phenol content analysis 

The total polyphenol content was evaluated by UV-Vis spectroscopy with Folin-Ciocalteau 

colorimetry as described in Chapter IV and calculated with function below according to the 

standard calibration curve: 

Absorbance = 22.981 * Concentration (GA) + 0.0232 

 

Figure 3-1: (a) Grape polyphenol extract after freeze drying and (b) polyphenol aqueous solution 

Figure 3-1 showed the images of grape polyphenol extracts after freeze drying and the 

polyphenol aqueous solution for functionalization. Both the grape polyphenol extracts and the 

aqueous solution presents a purple color due to the polyphenol composition, which always 
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includes proanthocyanidins as mentioned in Chapter I. 

Table 3-1 total phenol content of GP 

Sample 
Phenol content 

(mg/ ml GA) 

Phenol mass 

mg/ g extract 

1 0.07296 ± 0.00369 14.59201 ± 0.00074 

2 0.07084 ± 0.02197 14.16867 ± 0.00439 

N=3  mean ± SD 

Table 3-1 listed the phenol content of grape phenol extract from two extractions. No significance 

difference of phenol content could be observed in these two extractions. The results revealed the 

repeatability and stability of extraction methodology. In addition, through calculation, there are 

14.59 mg and 14.17 mg of phenols in 1 g of extract, respectively. 

3.2 Macroscopic observations on the samples 

Figure 3-2 exhibited the SCNA and CEL2 bulk samples before and after functionalization 

process. As far as CEL2 is referred, it is evidenced that after modification with grape phenol, the 

color of bulk sample changed from colorless to light brown. Similar changes of color were also 

found on the surface of CEL2 grafted by grape phenol with citric acid (CA) addition. On the 

other hand, the color variation was almost absent on the surface of SCNA functionalized by GP 

as well as GP+CA. 
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Washed SCNA 

 

SCNA+GP 

 

SCNA+GP+CA 

 

Washed CEL2 

 

CEL2 + GP 

 

CEL2 + GP+CA

 

Figure 3-2: Glass bulks appearances before and after functionalization 

Washed SCNA 

 

SCNA+GP 

 

Washed CEL2 

 

CEL2 + GP 

 

Figure 3-3: Glass powder appearances before and after functionalization 
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GP 

 

SCNA+GP 

 

CEL2 + GP 

 

GP+CA 

 

SCNA+GP+CA 

 

CEL2 + GP+CA 

 

Figure 3-4: Phenol solution, phenol solution with citric acid and uptake solution after 

functionalization 

Both SCNA and CEL2 powder samples were just functionalized by grape phenol without citric 

acid, and after solution was moved away, the powder appearances were observed in figure 3-3. 

The color of CEL2 powder transferred from white to light brown, which was similar to bulk 

sample. Compared with SCNA bulk, powder sample exhibited significant color changes from 

white to light brown. However, the color variation is not as significant as gallic acid 

functionalization (chapter V, section 2.1), since the phenol content of GP is lower than GA. 

Grape phenol aqueous solution in which the bulk samples were soaked for 24 hours exhibited a 

color change from pink to yellow after CEL2 bulks were removed out. As for uptake solution of 

SCNA functionalization, the color became lighter. With the addition of citric acid, the mixed 

solution presented a light orange after reacting with CEL2, while after SCNA was removed out, 

the color of solution seemed similar to the one without citric acid. The color variation is the 

results of depletion and oxidation of pigment component in the grape phenol extracts [20].  
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3.3 pH measurement  

The effect of pH and the addition of citric acid were investigated through measuring pH value of 

GP solution before and after soaking SCNA and CEL2 samples (bulk and powder) for 24 hours 

with pH meter. Figure 3-5 demonstrated the results.  

It should be underlined, as described previously for the gallic acid functionalization, that in the 

present setup, both of the glasses were soaked in the grape phenol solutions, which are 

characterized by a fairly acid pH value (3.61 ± 0.23) without the addition of CA.  

As described in the previous research on gallic acid functionalization, a significant ion release 

can be ascribed to bioactive glasses in aqueous media and it is enhanced by an acidic 

environment. The ion exchange between the glass and the solution induces a significant increase 

of the solution pH for static soaking models as reported in literature [1] and confirmed by 

experimental results (figure 3-5).  

 

Figure 3-5: pH value of GP uptake solution before and after 24 hours soaking of different glass 

bulks, and the effect of CA addition in surface functionalization 
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After functionalization, notable changes of pH from acidic value to alkaline in uptake solution of 

both glasses could be observed, especially in the case of more reactive glass (CEL2) and the 

powder samples (Table 3-2). In this case, the pH value is 3.79 for SCNA bulk and 9.54 for 

SCNA powder, 8.53 for CEL2 bulk and 10.68 for CEL2 powder. These data confirmed the one 

previously obtained with gallic acid. 

Table 3-2 pH value of GP uptake solution before and after 24 h soaking of SCNA and CEL2 

powders 

Samples GP SCNA+GP CEL2+GP 

pH value 3.61 9.54 10.06 

According to literature, an alkaline environment promotes a further hydroxylation of silica-based 

glasses as well as the oxidation of catechol groups in phenols into quinone groups, resulting in 

the color changes on the bulk samples and in uptake solutions. Since the significant pH change 

of CEL2 samples, the colors varied greatly. 

With addition of citric acid, the basification was weakened but not completely overcome (figure 

3-5). The pH value of uptake solution could be kept below 7.00 that the literature reports a 

favorable pH for the transition of phenolic components from phenol group to quinone ones [3]. 

As a result, a strong color change of CEL2 uptake solution was significantly reduced compared 

with the one without CA addition.  

3.4 UV-Vis analysis 

3.4.1 Uptake solution analyzed by UV 

In order to evaluate the depletion of grape phenols during the functionalization process, the 

amount of phenols in uptake solution of both before and after grafting was measured by 

Folin-ciocalteau colorimetry with UV-Vis spectroscopy. The amount of phenols was 

calculated based on the equation from standard calibration curve. 
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The bar diagram in figure 3-6 demonstrated the phenol content in original phenol solution as 

well as in the uptake solution after soaking SCNA bulk and powder samples, and CEL2 bulk 

and powder samples. Generally, a depletion of phenols content can be observed in all uptake 

solution samples. A notable decrease of phenol content was observed on CEL2 bulk (the 

value is 0.0548 mg/ml) compared with SCNA bulk samples (the value is 0.0732 mg/ml). 

Furthermore, a higher consumption of biomolecules can be underlined for powder samples 

when compared to bulk ones. Both of results are in accordance with the ones obtained with 

gallic acid functionalization on glass samples (chapter V, section 2.3.2). As far as the powders 

are concerned, the capability to bond larger amount of biomolecules can be ascribed to the 

larger surface area in comparison with bulk samples. Considering the different bioactivity 

levels of two bioactive glasses, the higher ability of CEL2 in binding phenols can be assigned 

to its higher reactivity with more –OH group exposure. The formation of a porous silica gel 

layer during functionalization process can lead to the absorption an additional amount of 

phenol molecules. In addition, the structural change of phenol molecules in alkaline 

environment can be another reason for the phenol content reduction, as previously studied for 

gallic acid functionalization (chapter V, section 2.3.2). 

 

Figure 3-6: UV photometric results for GP uptake solution before and after 1 day soaking of 

different glass samples 
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Figure 3-7: UV photometric results for GP+CA uptake solution before and after 1 day soaking of 

different glass bulk samples 

The effect of citric acid (CA) addition in the functionalization medium of bulk samples is 

reported in figure 3-7. A decrease of phenol consumption can be observed in the uptake 

solutions, especially in CEL2 with addition of citric acid (figure 3-7) when compared with the 

ones without CA (figure 3-6). As described in gallic acid functionalization (chapter V, section 

2.3.2), it can be supposed that the strong basification induced by bioactive glasses (and 

especially by CEL2) soaking can lead to the partial change in the structure of the molecules 

and the impossibility to detect them by the Folin&Ciocalteau method. CA addition allows the 

maintenance of uptake solution pH below 7.00 reducing the structural change of phenols. A 

moderate reduction in the phenols content of CA-added grape polyphenols (figure 3-7) 

solutions after glass functionalization was detected. However, the uptake of a fraction of 

molecules on samples surface. will be demonstrated by other analysis in the following 

paragraphs. 

3.4.2 Functionalized bulk samples analyzed by UV 

After grafting with grape phenols, bulk samples of SCNA and CEL2 were investigated by 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

GP+CA SCNA+GP+CA CEL2+GP+CA 

C
o

n
ce

n
tr

at
io

n
 G

A
[m

g/
m

l]
 

GP+CA functionalization 



Results and discussions 

-195- 
 

reacting with Folin-Ciocalteau’s reagent (figure 3-8) cooperated with UV-Vis spectroscopy to 

evaluate the amount of phenol molecule on the bulk surface after functionalization and the 

results were reported in bar diagram figure 3-9. The amount of phenols on the surface of 

SCNA was low and could not be detected by UV. However, on the surface of CEL2, a 

relatively higher amount of grape phenols was detected. The results are in accordance with 

the depletion of grape phenols in uptake solution due to the different reactivity level of two 

glasses.  

 

Figure 3-8: a) GP grafted bulk sample in FC reagent and b) uptake after 2h incubation 

 

Figure 3-9: UV photometric results for phenol content on functionalized SCNA and CEL2 

bulk samples 
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3.4.3 Release test in double distilled water 

The release test was performed by soaking powder samples of two types of glasses after 

functionalization with grape phenol for 1 day and 1 week and analyzing through UV with 

Folin-Ciocalteau method. In general, the release amount of grape phenols from SCNA and 

CEL2 powders were extremely low and the UV was not able to evaluate the amount. The low 

release effectiveness may suggest the strong bond between glass surface and grape phenol 

molecules. These results are in accordance with the ones obtained for gallic acid 

functionalization of the same glasses (chapter V, section 2.3.4). 

3.5 XPS analysis 

XPS was employed to characterize the chemical composition and chemical groups on the surface 

of the just pretreated SCNA and CEL2 bulk samples as well as bulks grafted by grape phenols 

and grape phenols with addition of citric acid. Results were reported by the following spectra 

including survey spectra and detailed analyses of carbon and oxygen regions. The samples were 

named as follows:  

i. SCNA (just washed sample) 

ii. SCNA+GP 

iii. SCNA+GP+CA 

iv. CEL2 (just washed sample) 

v. CEL2+GP 

vi. CEL2+GP+CA 
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SCNA washed 

 

Figure 3-10: survey spectra of washed SCNA 

The survey spectra (figure 3-10) of washed SCNA highlighted all elements present on glass 

surface. Signals of elements from glass composition were observed, including oxygen, calcium, 

silicon, aluminum and sodium. Carbon, which is commonly present in the first surface layers of 

materials, was also observed in this non-functionalized sample due to the unavoidable 

atmospheric contamination as reported in the literature [12, 13] and already observed for gallic 

acid functionalization (Chapter V, section 2.4).  

Figure 3-11 reports the detailed analysis of carbon region of SCNA. Two main contributions can 

be observed at about 284.8 eV and 289.4 eV. The front could be attributed to unavoidable 

contaminations and the latter could be assigned to carbonates.  

In the detailed analysis spectrum of oxygen region (figure 3-12), typical signals of oxides (at 

531.7 eV) , silica (532.35 eV) and hydroxyl groups (533.54 eV) can be observed as reported in 

the literature related to surface activation [6]. 
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Figure 3-11: XPS detailed analysis of carbon region for SCNA washed sample 

 

Figure 3-12 XPS detailed analysis of oxygen region for SCNA washed sample 
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SCNA+GP 

 

Figure 3-13: Survey spectra of SCNA+GP 

Figure 3-13 reports the survey spectrum of SCNA functionalized with grape phenols highlighted 

all elements present on glass surface. Signals of elements from glass composition were observed, 

including oxygen, calcium, silicon, aluminum, sodium as well as carbon.  

In detailed analysis spectra of carbon region on SCNA+GP (figure 3-14), different contributions 

can be detected after grape phenol functionalization. In particular, the signal of carbonates 

disappeared. The appearance of two new contributions at 285.93 eV and at 288.08 eV was 

observed. They can be attributed to C-O and C=O, respectively. Compared with gallic acid 

funtionalization, same signals were detected with a lower intensity (chapter V, section 2.4). 

Figure 3-15 reports the detailed analysis of oxygen region, signals of silica and –OH groups are 

still present on SCNA bulk after phenol grafting. Hydroxyls peaks confirmed the grafting of 

phenol. Signals at about 531.6 eV can be attributed to both oxides and C=O groups. 
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Figure 3-14: XPS detailed analysis of carbon region for SCNA+GP sample 

 

Figure 3-15: XPS detailed analysis of oxygen region for SCNA+GP sample 

 



Results and discussions 

-201- 
 

SCNA+GP+CA 

 

Figure 3-16: Survey spectra of SCNA+GP+CA 

Figure 3-16 presents the survey spectra of SCNA functionalized by phenol with addition of citric 

acid. All elements present on glass surface are listed. Signals of elements from glass composition 

were observed. 

With addition of citric acid as observed for gallic acid grafted samples, a reduction of C=O 

signal can be observed compared to the one without citric acid in detailed analysis of carbon 

region (figure 3-17). This result confirms the ability of citric acid to inhibit the oxidation of 

phenol molecule to quinone. 

In the detailed analysis of oxygen region (figure 3-18), a reduction in signals of -OH group as 

well as signal of C=O could be detected in accordance with the results obtained for gallic acid 

grafted bioactive glasses (chapter V, section 2.4). 
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Figure 3-17: XPS detailed analysis of carbon region for SCNA+GP+CA sample 

 

 

Figure 3-18: XPS detailed analysis of oxygen region for SCNA+GP+CA sample 
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CEL2 washed 

 

Figure 3-19: Survey spectra of CEL2 washed sample 

The survey spectrum (figure 3-19) of washed CEL2 highlights all elements present on glass 

surface, as observed for gallic acid functionalization (chapter V, section 2.4). Signals of elements 

from glass composition were observed. Carbon, which is commonly present in the first surface 

layers of materials, was also observed in this non-functionalized sample due to the unavoidable 

atmospheric contaminations [13, 14].  

Figure 3-20 shows the detailed analysis of carbon region of CEL2 bulk sample. A notable signal 

at about 284.85 eV is present on surface of washed CEL2, which can be attributed to 

unavoidable hydrocarbon contaminants on reactive surfaces [13, 14]. Compared to SCNA, the 

signal at about 289.66 eV presents a higher intensity and can be assigned to carbonates [5]. 

In the detailed analysis (figure 3-21) of oxygen region, the presence of the characteristic signals 

for oxides at 530.84 eV, silica at 531.63 eV as well as hydroxyls at 533.26 eV can be observed. It 

can be underlined that the signal of –OH is stronger than that of SCNA due to the higher 
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reactivity of CEL2 with more –OH groups exposed on the surface. 

 

Figure 3-20: XPS detailed analysis of carbon region for CEL2 washed sample 

 

Figure 3-21: XPS detailed analysis of oxygen region for CEL2 washed sample 
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CEL2+GP 

 

Figure 3-22: Survey spectra of CEL2+GP 

The survey spectrum (figure 3-22) of CEL2 functionalized with grape phenols highlights all 

elements present on glass surface. Compared with the only washed sample, A certain reduction 

in the sodium and calcium content can be correlated with the ion release in the functionalization 

medium, while the increase in silicon content can be attributed to the silica gel formation. 

In detailed analysis of carbon region of CEL2+GP (figure 3-23), different contributions can be 

detected after phenols functionalization. First, the signal of carbonate and the new peak at 

286.16 eV and 288.79 eV can be observed and they can be attributed to C-O and C=O bonds 

respectively. 

Figure 3-24 exhibits the detailed analysis of oxygen region of CEL2 bulk after grape phenols 

grafting. A significant increase in the –OH signal at 533.59 eV further confirms the phenols 

grafting. Peak at 531.6 eV can be attributed to oxides but also to C=O bonds [11]. 
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Figure 3-23: XPS detailed analysis of carbon region for CEL2+GP sample 

 

Figure 3-24: XPS detailed analysis of oxygen region for CEL2+GP sample 
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CEL2+GP+CA 

 

Figure 3-25: Survey spectra of CEL2+GP+CA 

The survey spectrum of CEL2 functionalized by grape phenols with addition of citric acid is 

reported in figure 3-25. It highlights all elements present on glass surface. A certain reduction in 

the sodium and calcium content can be correlated with the ion release in the functionalization 

medium, while the increase in silicon content can be attributed to the silica gel formation 

Similar to SCNA, after functionalization with addition of citric acid, a reduction of C=O signal 

can be observed in the detailed analysis of carbon region (figure 3-26). This result confirms the 

ability of citric acid to inhibit the oxidation of phenol into quinone. 

In the detailed analysis of oxygen region (figure 3-27), a significant decrease in signals of –OH 

group as well as signal of C=O can be detected in accordance with the results obtained in gallic 

acid functionalization (chapter V, section 2.4). 
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Figure 3-26: XPS detailed analysis of carbon region for CEL2+GP+CA sample 

 

Figure 3-27: XPS detailed analysis of oxygen region for CEL2+GP+CA sample 
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Table 3-3 XPS atomic percentage of elements in the analyzed samples 

Element 

[at%] 

SCNA CEL2 

Washed  GP GP+CA Washed  GP GP+CA 

O 44.6 32.6 31.9 45.1 47.5 49.1 

C 33.5 52.0 57.3 34.7 32.6 20.7 

Si 14.9 11.1 10.1 5.7 13.2 15.9 

Ca 4.8 2.0 - 6.8 4.2 2.8 

Al 1.4 - - - - - 

Na 0.8 0.3 - 4.3 0.1 - 

P - - - 1.8 - 0.3 

Mg - - - 1.3 <0.1 11.3 

Other - <2.1 0.8 <0.5 <2.4 <0.1 

Table 3-3 reports the comparison between atomic percentages of elements on the surface of 

bioactive glasses before and after phenol functionalization, with and without citric acid addition. 

It can be observed that on surface of both washed SCNA and CEL2 samples, a certain amount of 

unavoidable carbon contaminants still remained, even though a washing treatment has been 

performed as widely reported in the literature for XPS analysis of reactive materials [12-14]. 

The reduction in calcium and sodium after phenol grafting demonstrates the ion exchange 

between glasses and the solution due to the material reactivity. At the same time, the increase in 

the silicon content on CEL2 samples confirms a more evident reaction which can lead to the 

formation of a silica gel layer, as discussed in the SEM paragraph. 

After phenol grafting, the total carbon and oxygen contents on the surface show a not 

consistently trend. A certain increase in surface carbon can be detected on SCNA while a 

decrease on CEL2 surfaces. The detailed analyses of carbon and oxygen regions, discussed in 
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the previous paragraphs, allow a more precise discussion of the surface functionalization. 

3.6 SEM analysis 

The SEM-EDS analysis was performed to analyze the surface morphology of the samples, as 

well as their chemical composition on bulks before and after phenol grafting to obtain clear 

evidence about the difference in the substrate reactivity. 

SCNA washed  

Figure 3-28 exhibits the images of washed SCNA bulk with different magnifications from 1000

× to 10000×. A uniform surface is present with slightly visible polishing lines.  

 

Figure 3-28: SEM images of washed SCNA samples with different magnifications 
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Figure 3-29: SEM images and EDS analysis of SCNA washed  

EDS analysis (figure 3-29) evidences the presence of the typical elements of glass composition 

(such as oxygen, silicon, sodium, calcium as well as aluminum). A small amount of carbon has 

also been reported and can be ascribed to surface contaminations. 

SCNA+GP 
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Figure 3-30: SEM images of SCNA+GP samples with different magnifications 

In general, the surface of SCNA+GP showed a homogeneous morphology. Figure 3-30 shows 

the images with magnification of 1000×, 2000×, 5000× and 10000×. No significant changes 

can be observed from these images compared with the washed sample (figure 3-28). The reason 

may be the low reactivity of SCNA and the low amount of phenol molecules in grape phenol 

solution. 

EDS analysis (figure 3-31) demonstrates a slight enrichment of carbon as well as depletion of 

sodium and calcium. 

 

Figure 3-31: SEM images and EDS analysis of SCNA+GP 

CEL2 

Figure 3-32 exhibits the images of washed CEL2 bulk with different magnifications ranged from 

1000× to 10000×. All the images show a uniform surface with slightly polishing spots and 

cracks. 

EDS analysis (figure 3-33) detects all the elements of glass composition (oxygen, silicon, 

sodium, calcium, phosphorus, potassium as well as magnesium). The presence of a small amount 

of carbon is due to the unavoidable atmospheric contamination on the surface. 
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Figure 3-32: SEM images of washed CEL2 samples with different magnifications 

 

Figure 3-33: SEM images with 200× and chemical composition by EDS analysis of CEL2 washed 

bulks 
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CEL2+GP 

The images of CEL2 grafted with grape phenols (Figure 3-34) shows a conformably cracked 

morphology through SEM investigation. Figure 3-33 displays the images with magnification of 

1000×, 2000×, 5000× and 10000×.  

After grafting with phenol, CEL2 bulks were completely covered by a cracked layer with the 

typical morphology of silica gel. Compared with the washed CEL2, EDS analysis (Tables in 

figure 3-35) demonstrates a notable increase in the carbon content on phenol grafted CEL2 

surface as well as significant depletion of sodium and calcium due to the higher reactivity of 

glass surface. 

 

Figure 3-34: SEM images of CEL2+GP samples with different magnifications 
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Figure 3-35: SEM images with 200× and chemical composition by EDS analysis of CEL2 +GP 

bulks 

3.7 FTIR analysis 

FTIR was employed for the analysis of the functional groups of both SCNA and CEL2 glass 

powder before and after functionalization with grape phenols. 

 

Figure 3-36: FTIR spectra of phenol, washed SCNA and SCNA+GP 
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Figure 3-37: FTIR spectra of phenol, washed CEL2 and CEL2+GP 

As for the grape phenol spectra (figure 3-36, 3-37), the typical polyphenolic characteristics were 

observed, including the existence of a phenolic ring –OH stretching within the 3200-3550 cm
-1

, 

and –OH in plane bending at about 1322 cm
-1

, an aromatic ring C=C stretching within1450-1600 

cm
-1

, and C-O/C-C stretching vibrations within 1200-1300 cm
-1

, deformation of C-H aromatic at 

about 1024cm
-1

[15, 16]. 

The FTIR spectra of two glasses are dominated by the vibrational bands due to Si-O vibrational 

modes: Si-O-Si stretch, Si-O alkali stretch and S-O bend and Si-O rock as showed in figure 3-40, 

3-41 as reported in gallic acid grafting. The strong absorption at 1000-1200 cm-1 is assigned to 

Si-O-Si asymmetric stretching mode while peaks at about 760 cm
-1

 and 460 cm
-1

 are attributed 

to symmetric stretching and rocking vibration of Si-O-Si band, respectively. The peak observed 

around 960 cm
-1

 present on both glasses is assigned to non-bridging oxygen together with the 

surface silanols (Si-OH) groups. In addition, the surface silanol groups are confirmed by 

presence of a broad band in the region from 3000cm
-1

 to 3400 cm
-1

, which represents the 

vibration of different hydroxyl groups [17-19]. 

After phenol grafting, the absorbance intensity of board peak in the region of 3000-3400 cm
-1
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increased and the peak became narrow compared with that of the washed glasses. This 

phenomenon can ascribed to the bonding of phenol to enhance the signal of –OH group. In other 

parts of the spectra, similar to gallic acid functionalziation, no significant changes of the peak 

can be observed due to the low amount of phenols on the glass surface as well as the strong 

signal from glass oxides, which covers the absorbance intensity of phenol to some extent.  
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4 Surface functionalization of SCNA and CEL2 with polyphenol extracted from 

green tea 

Natural tea polyphenols (TP) were extracted through a conventional solvent extraction 

methodology with two types of solvents: 80% ethanol and double distilled water, respectively. 

The extract yield and total phenol content were investigated by UV-Vis spectroscopy with 

Folin-Ciocalteau colorimetry. Tea polyphenols (TP, ethanol extracts) were grafted to the surface 

of two bioactive glasses (SCNA and CEL2) with different bioactivity level. Techniques such as 

UV-Vis spectroscopy together with Folin-Ciocalteau colorimetry and XPS were employed to 

evaluate the effectiveness of surface functionalization on the basis of the previous research on 

grape phenol grafting (chapter V, section 3).  

4.1 Total phenol content and extract yield analysis 

The total polyphenol content was evaluated by UV-Vis spectroscopy with Folin-Ciocalteau 

colorimetry as described in Chapter IV and calculated with the standard calibration curve: 

Absorbance = 22.981 * Concentration (GA) + 0.0232 

 

Figure 4-1: Freeze dried tea polyphenol extracts from (a) 80% ethanol extraction (b) double 

distilled water extraction 

Figure 4-1 reports the images of polyphenol extracts with 80 % ethanol (a) and double distilled 

water (b) after freeze drying. The ethanol extract presents a green color while the water extracts 

showed a yellow color due to the compositional differences as mentioned in Chapter I. 
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Figure 4-2: Phenol content and extract yield of two types of extract 

In order to evidence the presence of polyphenols in extracts as well as evaluate effectiveness of 

two solvents, phenol content and extract yield were analyzed by Folic-Ciocalteau colorimetry 

with UV-Vis spectroscopy and results are presented in in figure 4-2. 379.7 mg crude tea 

polyphenol (TPE) can be isolated with 80 % ethanol, while 226.3 mg with double distilled water 

(TPW) from 1 g grinded green tea,. As far as the total phenol content was concerned, tea 

polyphenols from ethanol have a higher phenol content than the water extracts. Since the 

extracts from ethanol exhibited a higher extract yield and total phenol content, in the subsequent 

research, this extracts were employed for the functionalization and named as TP. 

4.2 Macroscopic observations on the samples 

SCNA and CEL2 bioactive glasses, in the form of slices and powders, were functionalized with 

tea polyphenols (extracted with water-ethanol solvent system) as described in (chapter IV, 

section2.3.4) of materials and methods section. 
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Washed SCNA 

 

SCNA+TP 

 

Washed CEL2 

 

CEL2 + TP 

 

Figure 4-3: Glass bulks appearances before and after TP functionalization 

Washed SCNA 

 

SCNA+TP 

 

Washed CEL2 

 

CEL2 + TP 

 

Figure 4-4: Glass powder samples appearances before and after TP functionalization 
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Figure 4-3 shows the SCNA and CEL2 bulk samples before and after TP functionalization 

process. As far as CEL2 is referred, it is evident that after modification with tea polyphenols, the 

color of bulk samples changes from colorless to brown. On the other hand, the color variation is 

almost absent on the surface of SCNA functionalized by TP.  

Both SCNA and CEL2 bulk and powder samples were functionalized with tea polyphenol, and 

after solution was moved away, the powder appearances were observed in figure 4-4. The color 

of CEL2 powder changes from white to light brown, which was similar to bulk sample. 

Compared with SCNA bulk, powders exhibit a significant color changes from white to brown. 

However, the color variation is not as significant as gallic acid funtionalization but the change is 

greater than that of grape phenol functionalization. 

TP 

 

SCNA+TP 

 

CEL2 + TP 

 

Figure 4-5: Tea polyphenol solution and uptake solution after functionalization of SCNA and 

CEL2 bulk samples 

The original tea polyphenol solution presents a yellow color. Figure 4-5 exhibits the color 

change of uptake solution of tea polyphenols in which SCNA and CEL2 bulks were soaked for 

24 hours. After SCNA bulks were removed out, the tea polyphenol uptake varied from yellow to 

light yellow while the uptake solution for CEL2 functionalization changed into brown color. 
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4.3 pH measurement  

The effect of pH was investigated through measuring pH value of TP uptake solutions before 

and after soaking of SCNA and CEL2 samples (bulks and powders) for 24 hours. The results are 

reported in figure 4-6. 

As described previously for the gallic acid and grape phenols functionalization (chapter V, 

section 2.2 and 3.3), the pH of the starting TP solution used for the functionalization is acidic, in 

this case the pH has a value of 5.11 ± 0.0. 

The ion exchange between the glass and the solution induces a significant increase of the 

solution pH for static soaking models as described and confirmed in the previous research on 

gallic acid and grape phenol functionalization (chapter V, section 2.2 and 3.3). Similar variations 

of pH value can be observed in uptake solution of both glass bulks and powders after TP 

functionalization.  

 

Figure 4-6: pH value of TP uptake solution before and after 24 hours soaking of different glass 

bulks and powders 

After functionalization, notable changes of pH from acidic value to alkaline in uptake solution of 
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both glasses can be observed, especially in the case of more reactive glass (CEL2) and the 

powder samples (figure 4-6). In this case, the pH value is 6.35 ± 0.06 for SCNA bulk and 9.38 ± 

0.07 for SCNA powders, 8.47 ± 0.05 for CEL2 bulk and 9.79 ± 0.0 for CEL2 powders. These 

data confirmed the one previously obtained with gallic acid as well as grape phenols (chapter V, 

section 2.2 and 3.3). 

4.4 UV-Vis analysis 

4.4.1 Uptake solutions analyzed by UV 

 

Figure 4-7: UV photometric results for TP uptake solution before and after 24 hours soaking 

of different glass samples 

The depletion of tea polyphenols during the functionalization process was investigated by 

means of Folin-Ciocalteau colorimetry with UV-Vis spectroscopy on uptake solutions before 

and after glass soaking. The amount of tea polyphenols content was calculated on the basis of 

the equation from standard calibration curve (chapter V, section 2.3.1). 
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The bar diagram in figure 4-7 shows the phenol content in original phenol solution as well as 

in the uptake solution after soaking SCNA bulk and powder samples, and CEL2 bulk and 

powder samples. In general, the depletion of phenol content can be observed in all uptake 

solutions, as reported in gallic acid and grape phenol functionalization (chapter V, section 

2.3.2 and 3.4.1). If compared with SCNA bulk samples, the CEL2 bulks were able to bond 

more biomolecule and significantly decreased the phenol content to 0.2091 mg/ml. 

Furthermore, a higher consumption of biomolecules can be underlined for both powder 

samples (the values are 0.0925 and 0.0957 mg/ml, respectively) when compared to bulk ones. 

The results are in accordance with the ones obtained with gallic acid and grape phenol 

functionalization on glass samples (chapter V, section 2.3.2 and 3.4.1).  

As far as the powders are concerned, the capability to bond more biomolecules can be 

ascribed to the larger surface area. Considering the different bioactivity levels of two 

bioactive glasses, the higher ability of CEL2 in binding phenols can be assigned to its higher 

reactivity with more –OH group exposure and formation of a porous silica gel layer during 

functionalization process (chapter V, section 2.3.2 and 3.4.1). In addition, the structural 

change of phenol molecules in alkaline environment can be another reason for the phenol 

content reduction, as previous study for gallic acid and grape phenol functionalization 

(chapter V, section 2.3.2 and 3.4.1). 

4.4.2 Functionalized bulk samples analyzed by UV 

In order to evaluate the amount of phenol molecules on the bulk surface after 

functionalization, bulk samples of SCNA and CEL2 were analysed by reacting with 

Folin-Ciocalteau’s reagent (figure 4-8) and observing the reaction solution with UV-Vis 

spectroscopy. The results are reported in bar diagram in figure 4-9.  

The amount of phenols on the surface of SCNA is too low to be detected by UV. However, on 

the surface of CEL2, a relatively higher amount of tea polyphenol has been detected. The 

results are in accordance with the depletion of tea polyphenol in uptake solution due to the 

different reactivity level of two glasses. 
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Figure 4-8: a) TP grafted bulk sample in FC reagent and b) uptake after 2h incubation 

 

Figure 4-9: UV photometric results for phenol content on functionalized SCNA and CEL2 

bulk samples 

4.5 XPS analysis 

With the aim to confirm the presence of tea polyphenols on material surface, XPS was employed 

to characterize the chemical composition and chemical groups on the surface of the just washed 

SCNA and CEL2 bulk samples as well as bulks grafted with tea polyphenols. Results have been 

reported by the following spectra including survey spectra and detailed analyses of carbon and 

oxygen regions. The samples were named as follows:  
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ii. SCNA+TP 

iii. CEL2 (just washed sample) 

iv. CEL2+TP 

SCNA washed 

 

Figure 4-10: Survey spectra of washed SCNA 

Signals of all elements from glass composition were highlighted in the survey spectrum (figure 

4-10) of washed SCNA. Signals of elements characteristic of glass composition can be observed, 

including oxygen, sodium, calcium, silicon, aluminum. Carbon, which is commonly present in 

the first surface layers of reactive materials, has also been observed in this non-functionalized 

sample due to the unavoidable atmospheric contaminations, as reported in gallic acid and grape 

phenol functionalization (chapter V, section 2.4 and 3.5). 

Figure 4-11 reports the detailed analysis of carbon region of washed SCNA. Two main 

contributions can be observed at about 284.8 eV and 289.4 eV, they can be attributed to 

unavoidable contaminations and carbonates, respectively [13, 14]. 
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In the detailed analysis spectrum (figure 4-12) of oxygen region, typical signals of oxides (at 

531.7 eV), silica (532.35 eV) and hydroxyl groups (533.54 eV) can be observed, as reported in 

the literature related to surface activation [6].  

 

Figure 4-11: XPS detailed analysis of carbon region for SCNA washed sample 

 

Figure 4-12: XPS detailed analysis of oxygen region for SCNA washed sample 
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SCNA+TP 

Figure 4-13: Survey spectra of SCNA+TP 

The survey spectrum of SCNA functionalized with tea polyphenols (figure 4-13) highlights only 

silicon and oxygen as characteristic elements of the glass composition, while no signals for 

sodium and calcium can be detected. Ion release in the functionalization medium can be an 

explanation of this result. Moreover a significant increase in the carbon content can be pointed 

out. 

Figure 4-14 presents the detailed analysis of carbon region on SCNA+TP. After tea polyphenols 

functionalization, carbonate signals disappears and two new contributions at 285.12 eV and at 

288.96 eV appears near to the contaminants one. They can be attributed to C-O and C=O, 

respectively.  

Figure 4-15 reports the detailed analysis of oxygen region. A small signal for OH groups is still 

present and can be related also to tea polyphenol grafting. A signal at about 532.36 eV can be 

attributed to both silica and C-O bonds, while the small one at about 530.96 eV can be attributed 
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to both oxides and C=O groups.  

 

Figure 4-14: XPS detailed analysis of carbon region for SCNA +TP sample 

 

Figure 4-15: XPS detailed analysis of oxygen region for SCNA+TP sample 
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CEL2 washed 

 

Figure 4-16: Survey spectra of CEL2 washed sample 

All elements present on glass surface were highlighted in the survey spectra (figure 4-16) of 

washed CEL2, as reported in gallic acid and grape phenol functionalization. Signals of elements 

from glass composition were observed, including oxygen, calcium, silicon, magnesium and 

sodium. Carbon was also observed in this non-functionalized sample due to the unavoidable 

atmospheric contamination [13, 14]. The content of magnesium, sodium and calcium are lower 

that the starting composition probably due to the release of ion in aqueous solution. 

In the detailed analysis of carbon region of washed CEL2 (figure 4-17), a notable signal at about 

284.85 eV can be detected, and it can be attributed to unavoidable hydrocarbon contaminants on 

reactive surfaces [13, 14]. A signal at about 289.66 eV can also be observed, it can be attributed 

to carbonates [5] and it presents and higher intensity if compared to the one observed on washed 

SCNA (figure 4-10), because of the higher reactivity of CEL2. 

In the detailed analysis (figure 4-18) of oxygen region, the presence of the characteristic signals 
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for oxides at 530.84 eV, silica at 531.63 eV as well as hydroxyls at 533.26 eV can be observed, 

as reported in gallic acid and grape phenol functionalization (chapter V, section 2.4 an 3.5). 

 

Figure 4-17: XPS detailed analysis of carbon region for CEL2 washed sample 

 

Figure 4-18: XPS detailed analysis of oxygen region for CEL2 washed sample 
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CEL2+TP 

 

Figure 4-19: Survey spectra of CEL2+TP 

 

Figure 4-20: XPS detailed analysis of carbon region for CEL2+TP sample 
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Figure 4-21: XPS detailed analysis of oxygen region for CEL2+TP sample 

The survey spectrum (figure 4-19) of CEL2 functionalized with tea polyphenol highlighted all 

elements present on glass surface, including oxygen, calcium, silicon, phosphorus, as well as 

carbon. Magnesium was absent and the decrease of calcium and silicon content was observed. 

The reason may be that tea polyphenol grafting covers the reactive layer of glass. 

In the detailed analysis of carbon region on CEL2+TP (figure 4-20), different contributions can 

be observed after phenol functionalization. First, the signal of carbonate and one new 

contributions can be observed at 286.34 eV and 288.48 eV and can be attributed to C-O and 

C=O bonds, respectively. 

Figure 4-21 reports the detailed analysis of oxygen region on CEL2 bulk after tea polyphenol 

modification. The presence of –OH signal at 533.59 eV can be attributed to tea polyphenol 

grafting. Peak at 531.6 eV and 532.98 eV can be attributed to oxides /C=O bonds and silica/C-O 

bonds respectively; they are a further confirmation of phenol grafting and are in accordance with 

the results obtained for gallic acid and grape phenol grafting (chapter V, section 2.4 and 3.5). 
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Table 4-1 XPS atomic percentage of elements in the analyzed samples 

Element 

[at%] 

SCNA CEL2 

Washed  TP Washed  TP 

O 44.6 25.0 45.1 24.9 

C 33.5 55.8 34.7 70.8 

Si 14.9 19.2 5.7 0.3 

Ca 4.8 - 6.8 2.5 

Al 1.4 - - - 

Na 0.8 - 4.3 - 

P - - 1.8 1.4 

Mg - - 1.3 - 

Other - - <0.5 - 

Table 4-1 reports the atomic percentages of elements on the surface of bioactive glasses before 

and after tea polyphenol functionalization. 

It can be observed that on surface of both washed SCNA and CEL2 samples, a certain amount of 

unavoidable carbon contaminants stilled remained, even though a washing treatment has been 

performed as widely reported in the literature for XPS analysis of reactive materials [12-14]. 

A significant increase of carbon content on both glasses after tea polyphenol functionalization 

can be observed. Compared with SCNA, the content of carbon on CEL2 surface increases up to 

70.8 due to its higher reactivity that leads to notable effectiveness of tea polyphenol grafting. 

The calcium and sodium were almost absent on the surfaces of both glasses after 

functionalization due to the ion exchange between molecule and glass surface, and the results are 

in accordance with the pH value variations. Concerning for CEL2, the decrease of silicon 
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content is the result of tea polyphenol bonding with reaction layer to cover the glass silica gel. 

5 Surface functionalization of SC-45 with gallic acid and buffered gallic acid 

SC-45 is a type of bioactive and ferrimagnetic glass-ceramics. This peculiar feature suggests it as 

a potential candidate for cancer treatment. In this section, gallic acid (GA) as a model molecule 

of polyphenol family was grafted to the surface of SC-45 bioactive glass-ceramic. In order to 

study the effect of pH, citric acid and sodium citrate buffer system was employed for the 

functionalization. Techniques such as UV together with Folin-Ciocalteau colorimetry, XPS, SEM 

were employed in order to evaluate the effectiveness of surface functionalization on the basis of 

the previous research on gallic acid grafting.  

5.1 Macroscopic observations on the samples 

Washed SC-45 

 

SC-45+GA 

 

SC-45+BUF 

 

SC-45+BUF-GA 

 

Figure 5-1: Glass bulks appearances before and after functionalization 

 

Bulk and powders samples of SC-45 were prepared as described in Chapter IV, and were 
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subsequently functionalized with gallic acid (GA), through direct anchoring to the hydroxyl 

groups on surface with or without citric acid-sodium-citrate buffer. Some samples were treated 

only with the buffer (without gallic acid) in order to evaluate the effect of citric 

acid-sodium-citrate buffer on the glass-ceramic surface. The functionalized samples were named 

as SC-45+GA, SC-45+BUF and SC-45+BUF-GA, respectively. 

GA 

 

BUF 

 

BUF-GA 

 

SC-45 bulk +GA 

 

SC-45 bulk +BUF 

 

SC-45 bulk +BUF-GA 

 

SC-45 powder +GA 

 

SC-45 powder +BUF 

 

SC-45 powder +BUF-GA 

 

Figure 5-2: Gallic acid, buffer solution and buffered gallic acid as well as their uptake solution 

after functionalization 
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Figure 5-1 exhibits the observations from the macroscopic point of view on functionalized 

samples in comparison with samples not functionalized. It can be observed that the appearance 

of SC-45 bulk functionalized with only gallic acid is almost the same as washed SC-45, while 

the surface of SC-45 treated with buffer and buffered gallic acid is more soft or grainy and 

presents some white deposits. Compared with gallic acid grafted SC-45 bulk, the other two bulks 

with the presence of buffer showed a lower consistency with superficial white deposits. 

Figure 5-2 presents the appearance of gallic acid solution, buffer solution as well as buffered 

gallic acid solution before and after soaking SC-45 bulks and powders for 24 hours at 37 °C. A 

notable color change from colorless to dark can be observed in uptake solution after gallic acid 

and buffered gallic acid grafting. This phenomenon can be assigned to the bond between gallic 

acid and iron to form the iron-gallates complex, which has a typically dark color [21]. The 

uptake solution of buffer after functionalization varied into yellow (bulk samples) or brown 

(powder samples) due to the chelating capability of citric acid to bond with iron and calcium and 

resulting in the color variation. It must be underlined that formation of white deposits can be 

observed after functionalization with the presence of buffer. 

5.2 pH measurement  

In order to investigate the effect of pH, pH values of GA solution, buffer solution as well as 

buffered gallic acid solution were measured, with a pH meter, before and after soaking SC-45 

bulks and powders for 24 hours and the results are reported in figure 5-3 and Table 5-1. 

Three types of original solution (gallic acid, buffer, buffered gallic acid) have an acidic pH value 

(3.21, 2.99, and 3.02, respectively). After functionalization, the pH value increased in all kinds 

of uptake solutions as the glass has released ions which tend to basify the solution. This effect is 

more substantial in the case of powders due to their greater surface area. 
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Figure 5-3: pH value of GA, buffer and BUF-GA uptake solution before and after 24 hours 

soaking SC-45 bulks 

Table 5-1 pH value of GA, buffer and BUF-GA uptake solution before and after 24 hours 

soaking SC-45 powders 

Samples pH value 

GA 3.21 

Buffer  2.99 

BUF-GA 3.02 

SC-45+GA 8.07 ± 0.126 

SC-45+BUF 4.72 ± 0.060 

SC-45+BUF-GA 4.56 ± 0.042 

In the case of functionalization with buffered gallic acid, the effect of buffer solution can be 

clearly observed for powder samples, as it has a pH much lower than the same material 

immersed in a solution of gallic acid in water. On the contrary, for the bulk samples no 

significant effect can be observed, namely measuring almost the same pH value in the case of 

functionalization with or without buffer.  
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5.3 UV-Vis measurements 

5.3.1 Uptake solution analyzed by UV 

 

Figure 5-4: UV photometric results for GA and buffered gallic acid uptake solution before and 

after 1 day soaking of SC-45 bulk 

In order to evaluate the depletion of gallic acid during the functionalization process as well as 

the effect of buffer, the amount of gallic acid in uptake solution (gallic acid and buffered 

gallic acid) was determined by Folin-Ciocalteau colorimetry and UV-Vis spectroscopy. The 

results are reported in figure 5-4. 

The bar diagram in figure 5-4 exhibits the concentrations of original gallic cid and buffered 

gallic acid are approximately 1mg/ml which are in accordance with solutions concentration as 

prepared. It can be observed that the decrease of gallic acid content is greater in uptake 

solution for samples functionalized with only gallic acid than samples grafted with buffered 

gallic acid. It can be due to the different functionalization of two cases, in particular the 

presence of buffer solution inhibit the adhesion of gallic acid to the surface. The possible 

reason can be that gallic acid tends to bind to the –OH groups exposed on the surface of 

glassy matrix, while with the presence of buffer, since the majority of the glass surface 
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dissolved in the solution, the effectiveness of functionalization can be decreased. 

5.3.2 Functionalized bulk samples analyzed by UV 

 

Figure 5-5: a) GA grafted SC-45 bulk in FC reagent and b) uptake after 2h incubation 

 

Figure 5-6: UV photometric results for gallic acid content on gallic acid and buffered gallic 

acid functionalized SC-45 bulk samples 

Bulk samples of SC-45 were investigated after soaking in gallic acid solution and buffered 

gallic acid solution for 24 hours by reacting with Folin-Ciocalteau’s reagent (figure 5-5) 

cooperated with UV-Vis spectroscopy. The bar diagram (figure 5-6) exhibits the amount of 

gallic acid remaining on the bulk samples after functionalization. It can be underlined that the 

amount of gallic acid on washed SC-45 and SC-45+BUF were almost zero after reaction with 

Folin-Ciocalteau’s reagent. In general, after GA and BUF-GA grafting, a certain amount of 

gallic acid was detected on both samples, while the amount is higher on bulks functionalized 
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with only gallic acid than that grafted with BUF-GA. The results are reasonable, since the 

depletion of gallic acid in uptake solution of sample grafted with only gallic acid is higher 

than that of buffered gallic acid. 

5.3.3 Release test in double distilled water 

Table 5-2 Gallic acid amount in uptake after 3h and 24 release test 

Samples  Release time [h] Gallic acid content of release [mg/ml] 

SC-45+GA 3 -0.00013 ± 0.000219 

SC-45+BUF-GA 3 0.002142 ± 0.002799 

SC-45+GA 24 0.000105 ± 0.000252 

SC-45+BUF-GA 24 -0.00047 ± 0.000105 

 

Figure 5-7: UV photometric results for gallic acid content on gallic acid and buffered gallic 

acid functionalized SC-45 bulk samples after 24h release 

With the aim to evaluate the release of gallic acid from functionalized surfaces, the release 
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solutions as well as the functionalized bulks were analyzed after 3 h and 24 h release. Table 

5-2 listed the results of gallic acid content in release solutions of 3 h and 24 h release, 

respectively. However, overall neither the bulks grafted with only gallic acid nor that grafted 

with buffered gallic acid present a release of gallic acid in double distilled water.  

Bulks after 24 h release were investigated with Folin-Ciocalteau colorimetry in order to 

further study the release test and evaluate the maintenance of the molecule on glass-ceramic 

surface after water soaking. From bar diagram in figure 5-7, on both samples, the presence of 

gallic acid can be observed and moreover the bulk only grafted with gallic acid contains 

larger amount of gallic acid than that grafted with BUF-GA. The results are also in 

accordance with the analysis on bulks before release test. As a result, it can be inferred that it 

is nearly impossible to release gallic acid from SC-45 due to the strong bond between GA and 

glass-ceramics. 

5.4 XPS analysis 

XPS was employed to characterize the chemical composition and the kind of chemical bonds on 

the surface of the just washed SCNA and CEL2 bulk samples as well as bulks grafted with gallic 

acid and gallic acid citric acid-sodium citrate buffer. Survey spectra and detailed analyses of 

carbon and oxygen regions hqave been considered. The samples are named as follows:  

i. Washed SC-45  

ii. SC-45+GA 

iii. SC-45+BUF 

iv. SC-45+BUF-GA 
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Washed SC-45 

 

Figure 5-8: Survey spectra of washed SC-45 

Figure 5-8 presents the survey spectrum of washed SC-45, in which the elements present on the 

surface of bulk samples are highlighted. Elements from glass-ceramic composition can be 

observed, including oxygen, iron, calcium, phosphorus, and silicon. The presence of carbon and 

nitrogen on the first surface layer of materials, even in non-functionalized samples, is due to the 

unavoidable atmospheric contaminants [13, 14]. It can be noted that sodium has not been 

detected; this phenomenon can be attributed to the ion release of the glass-ceramic in the 

washing media, as previously observed for SCNA and CEL2 glasses (chapter V, section 2.4).  

Figures from 5-9 to 5-12 exhibit the spectra of the detailed regions of carbon, oxygen, iron and 

silicon.  
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Figure 5-9: XPS detailed analysis of carbon region for washed SC-45 sample 

 

Figure 5-10: XPS detailed analysis of oxygen region for washed SC-45 sample 
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Figure 5-11: XPS detailed analysis of iron region for washed SC-45 sample 

 

Figure 5-12: XPS detailed analysis of silicon region for washed SC-45 sample 
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In figure 5-9, the detailed analysis spectrum of carbon region shows a  signal at about 284.77 

eV which can be attributed to environmental contaminants, as the reactive surface easily absorb 

hydrocarbons from the atmosphere. Other signals at 286.25 eV and 288.44 eV are assigned to 

C-O and C=O bond respectively [22-24].  

Figure 5-10 presents the spectrum of the detailed analysis of oxygen region. It can be observed 

that oxygen is bound to different element of glass-ceramics, in particular, the silicon with the 

notable signals present at 531.58 eV. The contribution at about 530.58 eV is assigned to oxides 

from glass matrix. Peaks at about 533.69 are attributed to surface hydroxyl groups which 

confirmed the exposure of –OH on material surface. It can be noted that through XPS it is 

possible to observe the surface hydroxyls while in FTIR spectra (chapter V, section 5.6) this 

signal is absent. This result can be explained considering the different penetration depths of the 

two techniques, few microns for FTIR and few nanometers for XPS. The OH-rich layer interests 

just for nanometers of the glass-ceramic surface and consequently only XPS can clearly detect it. 

In the detailed analysis spectrum of iron region (figure 5-11), three contributions have been 

detected and all of them can be attributed to Fe2O3. It is possible that the analysis was carried out 

on the lamella of hematite, or that those signals corresponded to magnetite, as it is given by 

Fe2O3 + FeO. 

In detailed analysis spectrum of silicon region (figure 5-12), only one peak at 101.92 eV has 

been detected and attributed to silica (SiO2), confirming that the washing step effectively induce 

hydroxyls exposition without their condensation to silica gel [25]. 
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SC-45+BUF 

 

Figure 5-13: Survey spectra of SC-45+BUF 

Figure 5-13 shows the survey spectrum of SC-45+BUF, in which all elements present on the 

surface of bulk samples are highlighted. Elements from glass-ceramic composition can be 

observed, including oxygen, calcium and silicon. Sodium and calcium are almost absent due to 

the ion exchange between washing solutions and buffer and SC-45 and also to the bond with 

citric acid which is a strong chelator for calcium ions. It can be observed that the signal of iron is 

almost absent, while strong signals of silicon and oxigen are present. It can be supposed that 

after the etching occurred by the action of the buffer, only a thin silica-rich film was detected as 

the result of ionic dissolution from the glass matrix. 

Figure 5-14 reports the detailed spectrum of carbon region for SC-45+BUF; it can be observed 

that the intensity of peak of the contamination decreased if compared with the pretreated SC-45. 

The signal at 286.03 eV corresponds to alcohols, and then it can be attributed to the C-OH bond 

of citric acid. The third peak at 288.64 eV, corresponded to the C=O of non-reactive COOH 
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group [26], and of COO
- 
groups from calcium citrate, as discussed in (chapter V, section 5.5.1 

and 5.6). 

 

Figure 5-14: XPS detailed analysis of carbon region for SC-45+BUF sample 

 

Figure 5-15: XPS detailed analysis of oxygen region for SC-45+BUF sample 

C=O from 

non-reactive 

COOH 
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Figure 5-16: XPS detailed analysis of silicon region for SC-45+BUF sample 

Figure 5-15 shows the detailed analysis spectrum of oxygen region for SC-45+BUF. It can be 

observed that the signals of oxides from glass structure are greatly reduced compared to the 

pretreated SC-45 (figure 5-9) due to the dissolution of glass matrix in buffer solution, which was 

observed in subsequent analysis of SEM images (chapter V, section 5.5.1). 

In the detailed spectrum of silicon region (figure 5-16), a single peak at 103.37 eV can be 

observed. This signal is located at band energy where typically signal of silica gel can be 

detected; however, in the presence of silica gel, two peaks of silica at lower energy are usually 

detected. In this case, instead only one peak was observed and therefore it is not appropriated to 

assign the signal to silica gel. Hence, it is assumed that the signal is from silica despite it has 

higher binding energy. Another reason may be that the signal at 101.92 eV detected in the 

pretreated sample is attributed to the silicate glass matrix, while buffer tends to dissolve the glass 

matrix and leads to the formation of a more disrupted network of silica, which confirms the 

macroscopic appearance of SC-45+BUF with soft or grainy surfaces. 
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SC-45+GA 

 

Figure 5-17: Survey spectra of SC-45+GA 

Figure 5-17 presents the survey spectrum of SC-45+GA, in which all elements present on the 

surface of bulk samples are highlighted. Elements including oxygen, iron, calcium, silicon from 

glass-ceramic composition can be observed. On this bulk sample, sodium has not been detected 

as well, as reported in washed SC-45 and SC-45+BUF. The signal of carbon is significantly 

higher if compared to ones detected on washed (figure 5-7) and buffer treated (figure 5-12) 

samples, it can be attributed to the sum of atmospheric contaminants and grafted gallic acid. 

In figure 5-18 (detailed spectrum of carbon region), the contribution at lower energies is shifted, 

if compared to the peak of contaminants on the washed SC-45, toward higher energies and 

partially cover the possible contribution at 286.03 eV of C-O. The peak at 288.29 eV,attributed 

to C=O groups, is still present. So, for this sample the carbon region is not of univoque 

interpretation and does not allow an attribution to gallic acid groups. 

In the detailed spectrum of oxygen region in figure 5-19, two main contributions can be 
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observed. Compared to washed SC-45 (figure 5-9) and SC-45+BUF (figure 5-14), the signals of 

oxides from glass matrix disappeared. The intensity of signal at 532.36 eV attributed to –OH 

group presents a significant increase and this phenomenon can be assigned to the grafting of 

gallic acid. Moreover the other peak at 531.04 eV could be attributed to silica or oxides from 

glass structure. 

 

Figure 5-18: XPS detailed analysis of carbon region for SC-45+GA sample 

 

Figure 5-19: XPS detailed analysis of oxygen region for SC-45+GA sample 



Results and discussions 

-252- 
 

 

Figure 5-20: XPS detailed analysis of iron region for SC-45+GA sample 

 

Figure 5-21: XPS detailed analysis of silicon region for SC-45+GA sample 

From the detailed spectrum of iron region (figure 5-20), similar peaks to washed SC-45 were 

observed and attributed to Fe2O3 hematite or magnetite. 

As for the silicon region analysis (figure 5-21), a single peak at 103.38 eV was detected and 

attributed to silica as reported for SC-45+BUF. 
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SC-45+BUF-GA 

 

Figure 5-22: Survey spectra of SC-45+BUF-GA 

Figure 5-22 presents the survey spectrum of SC-45+BUF-GA, in which all elements present on 

the surface of bulk samples are highlighted. Elements including oxygen, iron, sodium and silicon 

from glass-ceramic composition have been observed. On this bulk sample, calcium was absent 

due to the binding with citric acid of the buffer. Moreover, the signal of iron is very low as 

reported in SC-45+BUF sample, while strong signals of silicon and oxigen are present. It can be 

supposed that after the etching occurred by the action of the buffer, only a thin silica-rich film 

was detected as the result of ionic dissolution from the glass matrix. The presence of carbon is 

very low, despite the presence of gallic acid.  

The detailed analysis of carbon region (figure 5-23) underlines that the peak related to 

contaminants or gallic acid in SC-45+BUF-GA increased if compared with SC-45+BUF. Similar 

results can be found in SC-45+GA if compared with the washed SC-45. While the signal at 

286.17 eV become weaker than SC-45+BUF and it can be attributed to C-O in citric acid or 
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gallic acid. The peak at 288.81 eV, assigned to C=O, presents a slightly higher intensity than the 

sample SC-45+BUF, as a result of the binding of citrate and calcium or gallic acid. 

 

Figure 5-23: XPS detailed analysis of carbon region for SC-45+BUF-GA sample 

 

Figure 5-24: XPS detailed analysis of oxygen region for SC-45+BUF-GA sample 
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Figure 5-25: XPS detailed analysis of silicon region for SC-45+BUF-GA sample 

Two peaks have been detected in the detailed analysis spectrum of oxygen region (figure 5-24). 

A weak signal at 530.31 eV and an extremely strong signal at 532.71 eV are attributed to oxides 

of glass or oxygen in Fe2O3, and –OH group respectively. The intensity of –OH signals presents 

an increase tendency, due to the grafting of gallic acid. 

As for silicon region analysis (figure 5-25), as in the previous two spectra, a single peak at 

103.22 eV is detected and can be attributed to silica. 

Table 5-3 listed XPS the atomic percentage of washed SC-45, SC-45+BUF, SC-45+GA 

SC-45+BUF-GA bulk samples. 

A significant increase of carbon content can be observed on SC-45+GA bulk sample due to the 

contribution of gallic acid.  

It can be noted that compared with the washed sample, sodium, calcium as well as phosphorus 

are almost absent on functionalized bulks due to the bond between gallic acid and citric acid as 
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well as the dissolution of glass surface. Moreover, the iron content decreased after 

functionalization.  

The silicon content is higher in samples with buffer than that without buffer. Since samples 

immersed in the buffer was dissolved to obtain a surface owning almost magnetite crystals with 

a thin silica layer on them. The one without buffer bonded large quantity of gallic acid which 

may cover the silica layer. This will confirmed by results obtained from SEM / EDS and UV 

with the Folin-Ciocalteau colorymetry.  

Table 5-3 XPS atomic percentage analysis of bulk samples 

Element  Washed SC-45 SC-45+BUF SC-45+GA SC-45+BUF-GA 

O 54.5 65.7 41.3 66.3 

C 29.9 9.1 52.6 7.5 

Fe 6.4 <0.1 1.9 0.7 

Ca 3.4 - 1.2 - 

Si 2.4 24.6 2.9 24.8 

P 1.9 - - - 

N 1.6 - - - 

Na - 0.5 - 0.7 

5.5 SEM analyses  

The SEM-EDS analyses have been performed in order to analyze the surface morphology of the 

samples, as well as their chemical composition before and after gallic acid grafting to obtain 

clear evidence about the difference in the substrate reactivity. 

5.5.1 SC-45 bulk sample 
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Washed SC-45 

 

Figure 5-26: SEM images of washed SC-45 samples with different magnifications in two different 

areas 

Figure 5-26 reports the SEM images of washed SC-45 with magnifications of 1000×, 2000× 

and 5000× in two different areas in order to analyze the morphology and homogeny of the 

glass-ceramic surface. It can be noted that the glass-ceramic surface is homogeneous, since 

different areas have similar morphological structures. In both areas magnetite crystals, 

embedded in the glass matrix, can easily be observed. 

Figure 5-27 shows an SEM image with the corresponding EDS analysis of washed SC-45. It can 

be observed that all elements of glass-ceramic composition are present in the surface, including 

oxygen, iron, silicon, sodium, calcium and phosphorus. A small amount of carbon attributed to 

environmental contamination can be detected as well, as widely reported in literature, and 

already observed in XPS analyses. Cr signal is due to sample metallization for SEM observation. 
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Figure 5-27: SEM images and EDS analysis of washed SC-45 

 

Figure 5-28: SEM images with a magnification 5000×and EDS analysis on chemical composition of 

washed SC-45 in two specific areas 
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Figure 5-29: SEM images with a magnification 10000× specific on the cracks with EDS analysis in 

the surface region 

Figure 5-28 reports the SEM images with a magnification 5000×and EDS analyses of washed 

SC-45 in two specific areas. It can be found that in area 1 only oxygen and iron can be detected 

and together with the morphology of this area, the presence of magnetite crystals can be 

confirmed. While in area 2, all elements from glass-ceramic composition have been detected 

with an increase of silicon content compared with the washed sample, probably due to the 

formation of silica gel layer. 

Figure 5-29 shows an SEM image (magnification 10000×) with the corresponding EDS 

analysis on the cracked surface layer in order to investigate more in depth the nature of the 

reaction layer. . The composition is similar to the characteristic elements of glass. The higher 

amount of oxygen and silicon can be related to the formation of a thin reaction layer made of 

silica gel, in this point. 
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SC-45+GA 

 

Figure 5-30: SEM images of SC-45+GA samples with different magnifications 

 

Figure 5-31: SEM images and EDS analysis of SC-45+GA 

Figure 5-30 reports SEM images of SC-45+GA samples with magnifications of 1000×, 2000× 

and 5000×. In comparison with the only washed sample, the process of functionalization with 

gallic acid induces a greater reactivity in the glass. In fact, a surface reaction layer can clearly be 

observed and it results in a surface full of cracks. It is also noted that the edges of the crystals are 

less tidy, and this can be due to a reaction layer above the crystals themselves. 

Figure 5-31 shows the SEM images and EDS analysis of SC-45+GA. A significant increase of 

carbon content can be observed compared to the washed sample and assigned to the contribution 

of gallic acid considering equal environmental contamination on the samples. In addition, all 

elements of glass constituents have been detected by EDS. Sodium has not been detected 
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probably because of its release in the solution as well as a surface coverage of silica gel layer 

with gallic acid. 

 

Figure 5-32: SEM images with a magnification 2000×and EDS analysis on chemical composition of 

SC-45+GA in two specific areas 

Figure 5-32 listed SEM images with a magnification 2000×and EDS analysis on chemical 

composition of SC-45+GA in two specific areas which were selected to analyze the crack and 

reactive layer. From morphological observations, Area 1 seems as silica gel layer grafted with 

gallic acid while area 2 can be recognized as magnetite crystals. The EDS analyses underline a 

notable increase in the carbon content in area 1, which can be a confirmation the grafting of 
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gallic acid. In area 2, a higher amount of iron and oxygen can be detected, confirming the 

presence of magnetite crystals. 

 

Figure 5-33: SEM images with a magnification 2000×and EDS analysis on chemical composition of 

SC-45+GA in two specific areas 

Figure 5-33 showed the SEM images with a magnification 2000×and EDS analysis on chemical 

composition of SC-45+GA in two specific areas (different areas from figure 5-29 with similar 

morphology). Similar results have been obtained from the morphology observation as well as the 

EDS analysis. This result further proved the grafting of gallic acid and the presence of magnetite 

crystals in this sample.
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SC-45+BUF 

 

Figure5-34: SEM images of SC-45+BUF samples with different magnifications 

 

Figure5-35: SEM images and EDS analysis of SC-45+ BUF 

Figure 5-34 exhibits SEM images of SC-45+BUF samples with magnifications of 1000×, 2000

× and 5000×. In comparison with the only washed sample (figure 5-23), the amorphous glassy 

matrix appears significantly reduced while magnetite crystals are clearly visible. In addition 

some slats are clearly observable and they can be traced to hematite crystals. 

Figure 5-35 reports the SEM images and EDS analysis of SC-45+BUF. It can be noted that the 

content of carbon decreased while iron content increased compared with the washed sample due 

to the dissolution of glass matrix in buffer. The results are in accordance with the morphology 

observation in figure 5-31. 
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Figure 5-36: SEM images with a magnification 5000×and EDS analysis on chemical composition of 

SC-45+BUF in two specific areas 

Two specific areas have been selected to analyze the chemical composition and the SEM images 

with a magnification 5000× and EDS analysis results are reported in figure 5-36. In both areas 

only iron, oxygen and silicon have been detected. Area 1 with extremely high iron is mainly 

magnetite crystals but with less amount of residual glass matrix, while area 2 can be assigned to 

magnetite crystals with a part of residual glassy matrix as observed from the image.  



Results and discussions 

-265- 
 

 

Figure 5-37: SEM images with a magnification 2000× and EDS analysis of white deposits on 

SC-45+BUF surface 

Figure 5-37 shows the image and EDS analysis of white deposits on bulk surface. It can be 

underlined that the carbon and calcium content are very high on these deposits. It is assumed as 

salts of calcium, probably calcium citrate. The further confirmation will be subsequently carried 

out with FTIR (chapter V, section 5.6). 
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SC-45+BUF-GA 

 

Figure 5-38: SEM images of SC-45+BUF-GA samples with different magnifications 

 

Figure 5-39: SEM images and EDS analysis of SC-45+ BUF-GA 

Figure 5-38 exhibits SEM images of SC-45+BUF-GA samples with magnifications of 1000×, 

2000× and 5000× in two different areas. It can be observed that in the presence of buffer, the 

majority of the glassy matrix surface has gone into solution leaving magnetite crystals and 

hematite, as has already observed for the bulk sample immersed in buffer. In addition, the 

wrinkled layers can be seen, which also present in other samples and likely assigned to residual 

amorphous phase on the crystals. This suggests that the dissolution of the amorphous phase 
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happens in presence of the buffer. The phenomenon is explicable by considering the acidic pH of 

this solution and the strong chelating effect of citrate for iron and calcium. 

Figure 5-39 shows the SEM images and EDS analysis of SC-45+BUF-GA. On the surface of 

this sample, iron and oxygen are particularly present, confirming the SEM observation that 

suggestedthe presence of magnetite crystals and hematite lamellae. The carbon content is much 

lower if compared to the one on the sample only grafted with gallic acid. The reason may be that 

the dissolution of the amorphous phase reduces the possibility of bonding between the molecule 

and the surface of the material. 

 

Figure 5-40: SEM images with a magnification of 2000×and EDS analysis on chemical composition 

of SC-45+BUF-GA in area 1 and area 2 

Figure 5-40 and 5-41 report the SEM images with a magnification of 2000× and EDS analysis 

in four different areas on SC-45+BUF-GA bulk surface. The areas are: 1) thick blades (hematite), 

2) possible residual amorphous phase surface, 3) magnetite crystals and 4) deepest portion. 
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Figure 5-41: SEM images with a magnification 2000×and EDS analysis on chemical composition of 

SC-45+BUF-GA in area 3 and area 4 

From the EDS analysis, iron, oxygen, silicon and carbon can be observed in area 1. Together 

with the morphology, it can be deduced that this area is made up of magnetite crystals coated 

with thin layer of glass matrix, as evidenced by the presence of small amount of silicon. Almost 

all components of the glass can be detected in area 2 with particular high iron content. It 

suggests that this area refers to a residual glassy matrix positioned over magnetite crystals. 

Elements of area 3 are similar to that of area 1, except more iron and less carbon. The EDS 

analysis of area 4 demonstrated a high amount of iron, and together with the morphological 

observation, it can be assumed that the area 4 is reported to a magnetite crystal. 
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Figure 5-42: SEM images with a magnification 1000× and EDS analysis of white deposits on 

SC-45+BUF-GA surface 

Figure 5-42 showed the image and EDS analysis of white deposits on bulk surface of 

SC-45+BUF-GA. The morphology and the chemical composition are similar to that of 

SC-45+BUF (figure 5-37). It is assumed as salts of calcium, probably calcium citrate. The 

further confirmation will be carried out with FTIR (chapter V, section 5.6).
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Table 5-4 atomic percentages of elements from EDS analyses of bulk samples 

Element  washed SC-45 SC-45 + GA SC-45 + BUF SC-45+ BUF-GA 

C 10.8 31.42 11.78 13.28 

O 53.79 43.78 41.54 43.20 

Na 3.56 - - - 

Si 8.17 9.45 6.33 6.81 

P 0.99 0.35 - - 

Ca 4.76 1.62 - 0.56 

Fe 17.92 13.38 40.36 36.15 

 

Table 5-4 reports the atomic percentages of elements from EDS analyses of bulk samples. It can 

be underlined that carbon content significantly increases after functionalization with gallic acid 

compared to the washed sample. This change is not notable between the sample soaked in the 

buffer and buffered gallic acid, as described previously, probably due to the strong dissolution of 

the glassy matrix by buffer, which inhibits the bond between gallic acid and the surface. The 

presence of the buffer indicates another obvious difference: the higher iron content in these 

samples. However, opposite results of iron content has been obtained by XPS analysis. This 

phenomenon is reasonable, considering the different penetration depths of two techniques, few 

microns for SEM and few nanometers for XPS. Hence, the magnetic crystals and hematite in 

valley are not able to be detected by XPS. In addition, a slight difference of calcium content can 

be observed due to the strong chelating between buffer and calcium, and resulting in generation 

of stable compounds.  

5.5.2 SC-45 powder samples 
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Washed SC-45 

 

Figure 5-43: SEM images of washed SC-45 powders with different magnifications 

 

Figure 5-44: SEM images and EDS analysis of washed SC-45 powder 

Figure 5-43 and 5-44 reports the SEM images and EDS analysis of washed SC-45 powder. From 

the SEM images, we can verify that the average size of the powder is less than 20 μm as 

prepared by sieving through a sieve with mesh-size of 20μm. Some aggregates of powder can be 

observed while magnetite crystals are not clearly visible since they are inside the glass matrix. 

From EDS analysis, in general, similar composition of glass can be detected as obtained from 

bulk sample. However, powder presents higher carbon content than bulk sample. This result can 

be assigned to the small size of powder which deposited on an adhesive based on carbon.  
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SC-45+GA 

 

Figure 5-45: SEM images of SC-45+GA powders with different magnifications 

 

Figure 5-46: SEM images and EDS analysis of SC-45+GA powder 

Figure 5-45 and 5-46 reports the SEM images and EDS analysis of SC-45+GA powder. The 

appearance of the powders is similar to that of washed ones. As for the morphology of the 

powders, also in this case magnetite crystals can’t be observed and it is assumed that they are 

immersed in the glass matrix.  

From EDS analysis, the atomic percentages of the different elements is similar to that obtained 

from washed powders except a slight difference of iron and carbon. In this case, the iron content 

decreased while the carbon content increased probably due to the presence of gallic acid on the 

surface. However it must be underlined that semi-quantitative analyses on powders are not 

precise due to the significant contribution of carbon adhesive tape.  
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SC-45+BUF 

 

Figure 5-47: SEM images of SC-45+BUF powders with different magnifications 

 

Figure 5-48: SEM images and EDS analysis of SC-45+BUF powder 

Figure 5-47 and 5-48 reports the SEM images and EDS analysis of SC-45+BUF powder,. The 

appearance of SC-45+BUF powder is slightly different from the washed powder in dimensions 

of powder size. In this case, the powder size is smaller, with minimum size of less than 5 μm. It 

also seems that these powders tend to aggregate compared with the washed sample. Moreover 

some magnetite crystals can be observed.  

From EDS analysis, nearly no difference was found in composition of this powders compared 

with powders studied previously. In addition, higher carbon content was observed even 

compared to SC-45+GA due to the deposition of calcium salts, probably calcium citrate as 

observed in bulk samples. 
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SC-45+BUF-GA 

 

Figure 5-49: SEM images of SC-45+BUF-GA powders with different magnifications 

 

Figure 5-50: SEM images and EDS analysis of SC-45+BUF-GA powder 

Figure 5-49 and 5-50 shows the SEM images and EDS analysis of SC-45+BUF-GA powder. The 

appearance of the powders is similar to that treated only with the buffer in both morphology and 

dimensions. In comparison to the sample grafted with only GA, there is a greater aggregation of 

the powders, as observed in powder soaked in buffer. Moreover, in some regions the presence 

magnetite crystals can be observed, as seen in the bulk and in just buffer treated powders. As for 

EDS analysis, it can be underlined that functionalization with the presence of buffer leads to 

higher iron content due to the dissolution of glass matrix as observed in the bulk samples. These 

powders, compared with those soaked in the buffer only, seem to have an atomic percentage of 

less carbon, in contrast to what would be expected for the presence of gallic acid bonded to the 



Results and discussions 

-275- 
 

surface. This result can support a less effective functionalization of the glass-ceramic in the 

presence of buffer as already observed for bulk samples. However it must be underlined that 

quantitative analyses on powders are not precise due to the significant contribution of carbon 

adhesive tape. 

5.6 FTIR analyses 

 

Figure 5-51: FTIR spectra of gallic acid (with KBr) 

From FTIR spectra of gallic acid (figure 5-51), the typical polyphenolic characteristics were 

showed with the existence of a phenolic ring –OH stretching within the 3200-3550 cm
-1

, and 

–OH in plane bending at about 1322 cm
-1

, an aromatic ring C=C stretching within1450-1600 

cm
-1

, and C-O/C-C stretching vibrations within 1200-1300 cm
-1

, deformation of C-H aromatic at 

about 1024cm
-1

, as well as δ-benzene ring vibration at about 732 cm
-1

 [15, 16]. 
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Figure 5-52: FTIR spectra of washed SC-45 

From FTIR spectra (figure 5-52) of washed SC-45, the peaks at 889.8 cm
-1

 show the existence of 

silica and peaks at 558.2 cm
-1

 are related to iron oxide (Fe-O stretching) [24]. 

 

Figure 5-53: FTIR spectra of SC-45+GA 
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From FTIR spectra of SC-45+GA in figure 5-53, the signal of silica and magnetite or hematite at 

871.4 cm
-1

 and 539.8 cm
-1

 can be detected respectively [27, 28]. No signal for gallic acid has 

been recorded. Probably the molecular layer is too this to be detected by this technique 

considering the high signal of the substrate.  

 

Figure 5-54: FTIR spectra of SC-45+BUF 

From FTIR spectra of SC-45+BUF in figure 5-54, typical peaks of Fe-O stretching at 539.9 cm
-1

 

were observed, which may correspond to the or magnetite or hematite [27, 28]. The absence of 

peaks of silica is in accordance with the observation in the SEM images due to the dissolution of 

amorphous glassy matrix. Signals at 1565 cm
-1

 and 1055 cm
-1

 may be attributed to asymmetrical 

stretching of the COOH group of citric acid and the symmetrical stretching of the -OH group of 

citric acid.  
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Figure 5-55: FTIR spectra of SC-45+BUF-GA 

From FTIR spectra of SC-45+BUF-GA in figure 5-55, a peak corresponding to the stretching 

Fe-O can be observed with position at 554.0 cm
-1 

between that for hematite (540 cm
-1

) and 

magnetite (570 cm
-1

). Peaks at 1574 cm
-1

 and 1372 cm
-1 

can be attributed to asymmetrical 

stretching of the C=O of -COOH group, symmetric stretching of the –COO group from citric 

acid or calcium citrate, whose signals are at 1400 cm
-1

 (figure 5-55). Peaks at 1058 cm
-1

 are 

attributed to the symmetric stretching of the OH group of citric acid. 

Figure 5-56 reported the FTIR spectra of commercial calcium citrate, deposit in SC-45+BUF 

and deposit in SC-45+BUF-GA. It can be observed that the graphs obtained are identical, 

therefore it can be concluded that the white deposits present on the samples that have been in 

contact with the citrate buffer are actually citrates of calcium. 
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Figure 5-56 FTIR spectra of calcium citrate, deposit in SC-45+BUF and deposit in 

SC-45+BUF-GA 

 

Figure 5-57: FTIR spectra of all the samples analyzed 
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Figure 5-57 reports the FTIR spectra of all the samples analyzed.No significant differences have 

been observed in spectra of the four samples of SC-45 (washed, GA, BUF, GA+BUF) for wave 

numbers from 2000 cm
-1

 to 4000 cm
-1

. In particular, the peaks of hydroxyls were not clearly 

observed. 

A board peak in the range of 1400-1500 cm
-1

 is present on powders of washed SC-45, 

SC-45+GA and SC-45+BUF, while for the powders of SC-45+ BUF-GA, two distinct peaks at 

1574.2cm
-1

 and 1371.6 cm
-1

 have been observed and can be attributed to the link between 

magnetite and citric acid or, the C=C stretching of the aromatic ring and the vibration of the 

phenolic -OH group of the gallic acid or calcium citrate, respectively. 

A peak at about 1055 cm
-1

 can be observed on the two samples treated with the buffer, they can 

be attributed to a link between citric acid and magnetite (symmetric stretching of the OH group 

citric acid). A peak at about 880 cm
-1

 can be observed for washed SC-45 and SC-45+GA samples 

but not for the ones treated with the buffer. This signal can be attributed to silica, and its 

behavior confirms the dissolution of the silica-based glassy matrix for buffer treated surfaces.  

According to literature [24, 25], the peak at 575 cm
-1

 is related to stretching Fe-O of magnetite 

(Fe3O4); and peak at 539.85 cm
-1

 is attributed to hematite. SC-45+BUF-GA present a signal at 

554.02 cm
-1

 that can be attributed to the Fe-O stretching vibration of magnetite or hematite, 

since peak located within the range of characteristic wavelength of these two iron oxides. 

5.7 Antioxidant properties 

Powder samples of SC-45 washed, SC-45+GA, SC-45+BUF and SC-45+BUF-GA were 

suspended in a buffered solution (PB, pH 7.4) of H2O2 in the presence of DMPO as a spin trap to 

test the release of HO • radicals in buffer solution. The electron paramagnetic resonance 

spectroscopy (EPR) spectra were recorded on aqueous suspension after 10, 30 and 60 minutes of 

incubation. 
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Figure 5-58 HO• radicals release by suspensions in buffer solution of A) washed SC-45, A') 

SC-45+GA, B) SC-45+BUF and B') SC-45+BUF-GA in the presence of H2O2 using DMPO as a 

spin trap. 

In general (figure 5-58), all samples are able to generate HO• radicals suggesting a reactivity of 

Fenton. Moreover, for all samples, that a radical production which remains constant over time is 

observed. Washed SC-45 and SC-45+BUF produced similar amount of radicals, while samples 

after modification with gallic acid, an increase of reactivity can be detected for both samples, 

which suggests the pro-oxidant activity of gallic acid [29].The reason can be that when phenolic 

are under the condition which favor their autoxidation, such as high pH with high concentration 

of iron or with the presence of oxygen, they tend to behave like prooxidant [30] as described in 

chapter 1, section 4.2.1.3. However, a number of recent researches investigated the pro-oxidant 

effects of phenol and have also been suggested as potential mechanisms for cancer prevention 

[31-33] by induction of apoptosis and inhibition of cell proliferation [34, 35] as well as effect on 

cell signaling [36, 37]. 

In the spectra recorded in the presence of SC-45+GA, the signal of HO• appears superimposed, 

while that of SC-45+BUF-GA is not yet identified. This phenomenon can be assigned to an 

inhibitory effect of the citrate buffer on the generation of this radical. 
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6 Surface functionalization of SC-45 with folic acid 

In addition to gallic acid grafting, SC-45 bulk and powder samples have been silanized and 

functionalized with folic acid (FA). The combination of folic acid and SC-45 may provide a new 

method for tumor detection and hyperthermia treatment. Techniques such as XPS and FTIR were 

employed in order to evaluate the effectiveness of surface functionalization. The names of 

samples and techniques for characterization are listed in Table 6-1.  

Table 6-1 Names and analysis techniques employed 

Sample name Treatment Analysis 

Washed SC45 Hydroxylation XPS 

SC45+SIL Hydroxylation and silanization XPS 

SC45+SIL+DCC+FA 
Hydroxylation, silanization and FA 

grafting 
XPS, FTIR 

6.1 XPS analysis 

The atomic percentages of the elements are listed in Table 6-2 after detected on sample surfaces 

(washed SC-45, SC-45+SIL, SC-45+SIL+DCC) at different steps of functionalization process by 

XPS. Although a good clean degree can be obtained by washing, a certain amount of 

unavoidable carbon contaminants still remain on the surfaces as described in literature [13, 14]. 

After silanization, on SC45 surface an increase in surface carbon content can be noticed 

compared with the washed one, while a further increase of carbon can be observed on the folic 

acid grafted samples. This phenomenon suggests the contribution of APTES and FA. In addition, 

that nitrogen nearly absent on washed SC45 surface appeared on silanized and FA grafted 

samples can be a first index of presence of APTES and FA on the surface.  
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Table 6-2 XPS atomic percentages of elements in the analyzed samples 

Element [at %]  Washed SC45 SC45+SIL SC45+SIL+DCC+FA 

O 54.5 43.8 36.3 

C 29.9 40.0 46.5 

N 1.6 5.0 9.2 

Fe 6.4 4.0 4.0 

P 1.9 1.0 0.8 

Si 2.4 4.8 2.3 

Ca 3.4 0.7 0.7 

Na - 0.7 0.1 

Washed SC-45 

 

Figure 6-1: Survey spectra of washed SC-45 
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Figure 6-2: XPS detailed analysis of carbon region for washed SC-45 samples 

 

Figure 6-3: XPS detailed analysis of nitrogen region for washed SC-45 samples 

Figure 6-1 presents the survey spectrum of washed SC-45, in which the elements present on the 

surface of bulk samples are highlighted. Elements from glass-ceramic composition can be 
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observed, including oxygen, iron, calcium, phosphorus, and silicon. The presence of carbon and 

nitrogen on the first surface layer of materials, even in non-functionalized samples, is due to the 

unavoidable atmospheric contaminants [13, 14]. It can be noted that sodium has not been 

detected; this phenomenon can be attributed to the ion release of the glass-ceramic in the 

washing media, as previously observed for SCNA and CEL2 glasses (chapter V, section 2.4).  

In figure 6-2, the detailed analysis spectrum of carbon region shows a signal at about 284.88 eV 

which can be attributed to environmental contaminants, as the reactive surface easily absorb 

hydrocarbons from the atmosphere. Other signals at 286.25 eV and 288.44 eV are assigned to 

C-O /C-N and C=O bond respectively [6, 22-24]; they are very small on this sample and can be 

attributed to contamination too.  

Figure 6-3 presents the spectrum of the detailed analysis of nitrogen region. Signals at 399.01 eV 

and 399.92 eV can be assigned to –NH2 and C=N in the contaminants, respectively according to 

literature [38, 39]. 

SC-45+SIL 

Figure 6-4 shows the survey spectrum of SC-45+SIL, in which all elements present on the 

surface of bulk samples are highlighted. Elements from glass-ceramic composition can be 

observed, including oxygen, calcium and silicon. It can be observed that the content of nitrogen 

as well as carbon content increased notably, due to the contributions of APTES. 

In figure 6-5, the detailed analysis spectrum of carbon region shows a signal at about 284.92 eV 

which can be attributed to environmental contaminants and in this case, it can also assigned to 

the characteristic carbon bond (C-C) present in APTES as described in [14]. Other signals at 

286.71 eV and 288.17 eV are assigned to C-O /C-N and C=O bond respectively [22-24].  

In the detailed spectrum of nitrogen region in figure 6-6, the main contributions at about 400.26 

eV can be observed and attributed to NH2 from APTES molecule. The other peak with lower 

intensity can be assigned to C=N and CONH in contaminants [13]. 
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Figure 6-4: Survey spectra of SC-45+SIL 

 

Figure 6-5: XPS detailed analysis of carbon region for SC-45+SIL samples 
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Figure 6-6: XPS detailed analysis of nitrogen region for SC-45+SIL samples 

SC-45+SIL+DCC+FA  

 

Figure 6-7: Survey spectra of SC-45+SIL+DCC+FA 
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Figure 6-8: XPS detailed analysis of carbon region for SC-45+SIL+DCC+FA samples 

 

Figure 6-9: XPS detailed analysis of nitrogen region for SC-45+SIL+DCC+FA samples 

Figure 6-7 presents the survey spectrum of SC-45+SIL+DCC+FA, in which all elements present 

on the surface of bulk samples are highlighted. Elements including oxygen, iron, calcium, silicon 

from glass-ceramic composition can be observed. It should be underlined that a significantly 
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increase of carbon and nitrogen can be observed, if compared with SC-45+SIL. It can be 

assumed that the contribution of folic acid molecule leads to the increase. 

In figure 6-8 (detailed spectrum of carbon region), the main contribution at about 284.71 can be 

attributed to C-C bond in APTES molecule as well as the contaminants from atmosphere. It 

should be noticed that signal of C=O on washed SC-45 and SC-45+SIL at about 288.3 eV 

disappeared and instead a new contribution at 287.89 eV was detected. According to literature, it 

can be assigned to CONH group in folic acid structure [14].  

In spectrum of nitrogen region (figure 6-9), signals at 399.1 eV can be assigned to NH2 group in 

APTES as well as that in folic acid structure. Another peak at 400.35 eV can be corresponded to 

C=N bond in folic acid. In addition, the signal with higher energy at about 401.31 eV can be 

correlated to NHCO bonds of folic acid [14]. 

6.2 FTIR analysis 

 

Figure 6-10: FTIR spectra of folic acid 
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Folic acid spectrum (figure 6-10) evidences the characteristic peaks of the molecule: the bands 

between 3600 and 3400 cm
-1

 are due to the hydroxyl (–OH) stretching bands of glutamic acid 

moiety and –NH group of PT ring. Peak at 1690 cm
-1

 is due to the vibration of C=O, while the 

peak at 1605 cm
-1

 relates to benzene ring as described in literature [38].  

 

Figure 6-11: FTIR spectra of folic acid, washed SC-45, SC-45+SIL and SC-45+SIL+DCC+FA 

Figure 6-11 reports the comparison among FTIR spectra of folic acid, washed SC-45, 

SC-45+SIL and SC-45+SIL+DCC+FA. The washed SC-45 powders present the typical signal 

for silica at 928 cm
-1

 and iron oxides at about 558 cm
-1

. After silanization, in addition to the 

signals of silica and iron oxide, signals of -OH groups can be observed at 3230 cm
-1

, while the 

appearance of peaks at about 1553 cm
-1

 can be assigned to amino group of APES molecule [38, 

39], if compared with washed SC-45. With DCC activation and folic acid grafting, the presence 

of peak at about 2384 cm
-1

 can be ascribed to N
+
-H stretching vibration band of C=N

+
H- on PT 



Results and discussions 

-291- 
 

ring from folic acid structure as described in the literature [38]. 
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Conclusions 

Two types of sources were employed for the natural polyphenol extraction. One is red grape (Barbera) 

from Italy, while the other is green tea (Longjing) from China. Both the grape polyphenol (GP) and 

tea polyphenol (TP) were extracted by conventional solvent extraction. The solvent system used for 

GP extraction was water-ethanol (20:80, v/v) solution, while two solvent systems, which were water 

and water-ethanol (20:80, v/v), respectively, were adopted in TP extraction. Through 

Folin-Ciocalteau colorimetry and calibration curve (linear correlation coefficient R
2
=0.9997), the 

presence and total phenol content of both polyphenol in the freeze dried extracts was determined. 

The total phenol content of grape polyphenol is 14.6 mg/g (freeze dried extracts). Considering the 

total phenol content of tea polyphenol, the phenol masses from 1 g green tea leaves were 152.8 mg 

(extracted from water-ethanol system) and 67.4 mg (extracted from double distilled water system). 

Compared with the tea polyphenol extracted from water system, tea polyphenol from water-ethanol 

exhibited a higher yield and total phenol content.  

In this thesis, two silica-based bioactive glasses (SCNA and CEL2) with different surface reactivity 

were prepared as bulk and powder samples for functionalization with one model molecule (gallic 

acid, GA) and two natural biomolecules (grape polyphenols and tea polyphenols). After surface 

activation, hydroxyl groups were exposed on the material surface followed by gallic acid, grape 

polyphenol as well as tea polyphenol grafting.  

Through Folin-Ciocalteau colorimetry combined with UV-vis spectroscopy, the depletion of GA, GP 

and TP in uptake solution and the content of these molecules on functionalized bulk samples were 

evaluated. The results suggest not only the uptake of molecule on glass surface during 

functionalization but also the grafting of the three types of molecules on bioactive glass samples. All 

three types of molecules displayed a similar tendency that the depletion of GA, GP and TP in uptake 

solutions and the amount of these molecules on functionalized bulks increased along with the glass 

reactivity from SCNA to CEL2 as well as the surface area from bulk samples to powder samples. 
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XPS analysis of samples after GA, GP and TP anchoring evidenced characteristic peaks for GA and 

polyphenol on functionalizaed samples.  

Concerning for the gallic acid and grape polyphenol functionalization, citric acid addition in the 

fictionalization medium made it possible to preserve the structure of gallic acid and phenol molecule 

during grafting. Moreover, SEM observation of the surfaces confirmed the different reactivity of two 

types of glasses. In fact, a significant reaction layer with a uniformly cracked morphology was 

observed on CEL2 surfaces for both gallic acid and grape polyphenol, while only several reactive 

zones can be seen on gallic acid grafted SCNA samples. 

In aspect of the depletion in uptake solution as well as three molecules amount on functionalized 

surface, gallic acid grafting exhibited the most significant results probably due to its higher phenol 

content and purity, followed by tea polyphenol and the last one is grape phenol. Furthermore, 

through the macroscopic observation, the greatest color changes on bulk sample and in uptake 

solution before and after functionalization were, in order gallic acid, tea polyphenol and grape 

polyphenol. In addition, pH changes showed similar tendency as well. 

SC-45, a bioactive and ferrimagnetic glass-ceramic belonging to the system 

CaO-SiO2-P2O5-Na2O-Fe2O3-FeO was also investigated as bulk and powder samples functionalized 

with gallic acid and buffered gallic acid (citric acid-sodium citrate buffer system) in this thesis. The 

glass-ceramic samples have been functionalized using the strategy of directly anchoring gallic acid to 

the hydroxyl groups on material surface exposed by soaking in water for 7 days. Considering the 

sensitivity of gallic acid in pH changes, the functionalization was performed not only using a 

solution of GA in water, but also with a solution of GA in citrate buffer (pH 3.0). 

Analysis through Folin-Ciocalteau colorimetry and UV-vis spectroscopy demonstrated gallic acid 

depletion in uptake solution after grafting and the presence of gallic acid on functionalized bulks, 

especially for samples functionalized without citrate buffer. XPS analysis confirmed the appearance 

of characteristic signals of the molecule anchored on the samples functionalized with gallic acid as 

well as a significant increase of carbon content, but not observed for buffered gallic acid grafting. 

Surface morphology of the samples subjected to the different treatments has been observed by SEM / 

EDS: i) pretreated glass-ceramics presented magnetite crystals immersed in a glassy matrix; ii) gallic 

acid functionalized sample induced the formation of a significant reaction layer on surface; iii) buffer 



Conclusions 

-297- 
 

treated samples (both with and without GA) showed a strong dissolution of amorphous surface with 

the exposure of magnetite crystals and hematite with small residual amorphous phase. On the buffer 

treated samples (both with and without GA), the precipitation of calcium citrates has been observed. 

The semi-quantitative analysis of the surface chemical composition (EDS) has revealed a greater 

concentration of carbon in the samples functionalized with GA (without buffer) compared to the 

pretreated ones; this phenomenon is not observed in the samples treated with the buffer. In addition, 

none of the samples showed the capacity to release gallic acid in water for immersion up to 24h. It is 

therefore possible that the gallic acid tends to bind to the hydroxyl exposed from the glass matrix and 

the link seems quite strong as there is no evidence of release water. As a result, the functionalization 

effectiveness of SC-45 with gallic acid (without buffer) is greater than that with the presence of 

buffer since the glass-ceramics after treated with buffer tend to dissolved and thus the possibility of 

bond with molecule is decreased. If compared with bioactive glasses also employed in this thesis, the 

reactivity of SC-45 is higher than SCNA and the results can be evidenced by the depletion of gallic 

acid in uptake solution, the amount of molecule on functionalized bulk surface as well as the 

formation of a uniformly cracked reaction layer. However, since SC-45 is a kind of glass-ceramic, its 

morphology is different from that of bioactive glasses and magnetic crystals have been observed by 

SEM. 

To summarize, this thesis demonstrates that both model molecule and natural biomolecules can be 

coupled with synthetic inorganic materials. The results are quite new and creative in the surface 

functionalization field, since it proves the possibility to prepare smart biomaterials able to combine 

typical inorganic activity of biomaterials with specific biological properties of natural molecules. In 

vitro cellular tests are planned in order to verify the biological behavior of the modified materials. 

Moreover, analysis will be performed to determine the composition of polyphenol extracts as well as 

the biological activities of functionalized glass and glass-ceramic samples. 
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