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Introduction

In recent years, brain studies have come onto the scene as a fascinating challenge.

Beyond a thirst for knowledge itself, many practical reasons for unveiling brain features

and mechanisms exist. In fact, unravelling brain architectures and functioning would

mean we have the possibility of treating diseases that are crippling humanity, and

achieving great technological advances. Both goals would unimaginably improve our

quality of life.

Within this big picture, the art of modelling is an essential tool and mathematical

theoretical insights give valuable contributions. These concern both the formalization

of simplified models used for capturing complex brain structures and dynamics, the

description of neural computation at different levels of brain organisation, and the

characterization of brain functions which most imaging techniques record.

The brain is believed to be the most complex organ in the human body. A huge

number of ingredients interact to give rise to its biological tissues and its functions.

Indeed, there are about twenty billion neurons in the brain, each of them linked to as

many as ten thousand others. Moreover, highly nonlinear dynamics underlying single

cell behaviour and the interactions among them give rise to enormous complexity which

we can only strive to manage by means of the famous Picasso quote:

“Modelling is the lie that reveals the Truth.”

This means that by exploiting mathematical instruments we are able to make a synthesis

process from an extremely complex reality, and to make predictions to be later evaluated

by experiments.

For modelling purposes, one can imagine the brain as a large network constituted

by a collection of diverse smaller ones. Zooming into smaller areas, the same picture

arises: several kinds of neuronal populations interact with each other. Of course, signal
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transmissions among neurons within the same population also exist. In particular, we

assume neurons belonging to the same population have the same features. Differently

from other approaches for large-scale modelling, the present work attempts to describe

brain areas without ignoring intrinsic differences among neuronal populations through

what we call multispecies models. Such models are based on the assumption that dif-

ferences in population densities, often by several orders of magnitude, let the single

population be modelled by a discrete or a continuous model. Considering only two

populations, for instance, a multispecies model consists in an ODEs system for each

cell of the low-density population, combined with only one PDEs system for the whole

high-density population.

The formalization of the multispecies model is the end product of my Ph.D. thesis,

which follows a logical path of reasoning from the necessary starting concepts through

the research results. Since the first step is the description of the single neuron in the net-

work, Chapter 1 is concerned with the FitzHugh-Nagumo model, subsequently exploited

in the whole thesis. More specifically, we start by deducing the model starting from the

Hodgkin-Huxley system and continue by analysing its features and its limitations, as a

means to define the type II neuron. Let us stress that replacing the FitzHugh-Nagumo

model by another one of type II in literature, would lead to results qualitatively similar

to those presented in the whole thesis. In order to describe a network, links among the

single units are the second most important ingredient. Neurons interact with each other

within a fully-organized ensemble which consists of two connection types: electrical and

chemical synapses. Chapter 2 takes into account cells coupled by electrical synapses.

Chapter 3 involves the more complex phenomena underlying chemical synapses. In both

chapters, after setting mathematical models of idealized neurons with only electrical-

type or chemical-type couplings among them, we carefully investigate the “passage to

the limit”, as the number of neurons tends to infinity while remaining confined in a fixed

and bounded spatial region. Chapter 4 provides results concerning the more realistic

network with both coupling types considered together. Referring to such a continuous

model several simulations are performed in order to describe the membrane potential

dynamics in such a network. In Chapter 5 we come to the formalization of the mul-

tispecies model by applying it to a concrete network: the Golgi-Granular loop in the

Cerebellum. This model formalization is promising and should be explored in future

by adding few more ingredients omitted in this work: the plasticity mechanism and

the delay underlying synapses. Furthermore, since stochasticity is a fundamental issue

in the mathematical description of biological system, parameters as random variables

should be embedded in the model.
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Modelling and computer simulations of complex networks with a huge number of

nodes is a formidable challenge. The intrinsic difficulties concerning the high number

of neurons may be alleviated to some extent by exploiting the multispecies models

in which the presence of the continuous model allows simulation costs to be highly

reduced. Indeed, by modelling the high-density population on the whole domain with

only a PDEs model, we avoid the computationally prohibitive cost of describing the

huge number of dense cells by ODEs. Moreover, since populations are supposed to

interact with each other, multiscale peculiarities can emerge between the coefficients

in the models, e.g., conductance coefficients can differ by several orders of magnitude

between discrete and continuous models.

To conclude, identifying the suitable level of modelling for a specific problem is often

difficult. Thanks to the multispecies models, which combine different levels, we are able

to model networks maintaining differences among populations and, at the same time,

to reduce the computational cost.
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Chapter 1
Models in literature

In order to introduce the models which describe the dynamics of neurons, let us start

to briefly explain the biological background. First of all, let us deepen the function and

the structure of neuron which is the fundamental part of the nervous tissue. It allows

the spikes reception and diffusion and the communication with the nervous system

which controls everything, from movement and speech to breathing and digestion. In

particular, the nervous system takes in sensory information, processes it, and then tells

the body how to respond. From the central nervous system’s control centered in the

brain and spinal cord, information is constantly moving to and from the network of

nerve cells in the peripheral nervous system.

As described in Figure 1.1, neurons are constituted by a cell body, called soma,

dendrites which are thin structures that arise from the cell body and an axon which is

a nerve fiber that conducts electrical impulses away from the soma. The impulses from

other cells are led to the axon which in turn leads them to muscles or other cells. At

the cellular level these messages are passed from neuron to neuron by way of electrical

impulses and chemical signals. When a neuron fires, an electrical impulse, known as an

action potential, travels along its axon. From one neuron to another this signal must

cross the small space, called the synapse, between the end of one nerve cell’s axon and

the dendrites of another cell. Because the action potential cannot pass over this gap,

when it reaches the end of the axon, chemicals called neurotransmitters are released

into the synaptic cleft close to the dendrites of the next neuron, and eventually cause

that neuron fires. In order that the action potential begins to move down the axon,

ion channels in the cells membrane must be opened, allowing the voltage between the

inside and the outside of the cell to rise above its resting state at -75 millivolts. While

at rest only potassium ions can pass through the cell membrane, at the moment in
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which the resting potential grows an action potential begins to travel along the axon

by opening sodium ion channels along the way. The result of this process is that the

cell rapidly becomes more positive than the outside in a stage known as depolarization.

This depolarizing effect travels along the front of the action potential as it moves down

the axon. After that, the cell repolarizes when potassium ions rush outward across

the membrane restoring it to its resting potential. The almost instantaneous change in

potential produced by depolarization and repolarization creates a pattern called spike

discharge. When the action potential reaches the end of the axon, it opens calcium ion

channels thus increasing the concentration of calcium ions inside the cell. This increase

in calcium ions triggers the release of neurotransmitters into the synaptic cleft, and in

so doing triggers a nerve impulse in a neighboring neuron.

Some of the models concerning action potential generation in neurons we decide to

focus on the Hodgkin-Huxley [26] and FitzHugh-Nagumo [17] ones. In order to cite

several alternatives, many other models which will not be analysed here are the follow-

ing: integrate-and-fire [37, 51], Brette-Gerstner [10], Morris-Lecal [40], Hindmarsh-Rose

[25], Izhikevich [30]. Thanks to these models, different levels of details are possible to

be obtained but in general, with except for the Hodgkin-Huxley model, the cited ones

present minimal dynamics range which reduces the real variety of neuronal behaviour.

All models in literature can be collected in categories. Thus, the conductance-based

models are characterized by a reasonable description of the neuronal dynamics but

they are expensive by computational perspective and near to impossible for analytical

treatments, the Hodgking-Huxley model is one of them. Going toward the direction of

reduce the complexity, the generic bifurcation models provide a qualitative description

of a wide range of neuronal behaviour. The FitzHugh-Nagumo models belongs in this

category. The threshold models are marked by a threshold in the voltage which, if is

overcame, cause a spike. By exploiting models like these, the informations concerning

the spike, as the height and the form of the spike are lost. This is due to the fact that

just after the voltage reaches the threshold is reset to the quiescent value of the voltage.

A complete explanation of the threshold models are performed in [21]. Finally, the rate

models, which are the less computationally demanding, describe only the spike rate or

the frequency.

1.1 The Hodgkin-Huxley equations

Neurons, in particular the squid giant axon, are the object of study of Alan Hodgkin and

Andrew Huxley during the ’50s, whose model is presented in [26]. The main purpose
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Figure 1.1: Structure of a single neuron.

of Hodgkin and Huxley is to understand and describe the action potential generation

in a neuron starting from the idea that a neuron can be studied as other cells enclosed

by a membrane which separates the interior of the cell from the extracellular space.

Due to the distribution of ions and the permeability of the cell membrane, between

the inside and outside of a cell, there is always a potential difference. As described

at the beginning of this chapter, the cell will undergo an action potential when it is

sufficiently depolarized. This is a temporary change in the potential difference over

the membrane. In order to explain how Hodgkin and Huxley derived their model, let

us stress that the most important properties of the membrane can be collected in the

electric circuit shown in Figure 1.2, from [26]. This circuit is appropriate for simple

membrane systems like the squid giant axon or other axonal membranes. In the model

there is a capacitor CM , to represent the lipid bilayer membrane, a sodium resistance

RNa, potassium resistance RK and a leakage resistance Rl. The membrane potential v

is the potential inside the cell minus the potential outside and there can be a current

I injected into the cell from an electrode or from other parts of the cell. The model

in Figure 1.2 represents a patch of membrane, i.e., a small area of membrane which is

isopotential, meaning that the membrane potential v is constant across the patch. In

models like this, two things are assumed. Firstly, the number of channels is large enough

that individual gating events are averaged out and the sodium (Na+) and potassium

(K+) currents are smooth population currents. Secondly, the channels are not arranged

in any way which allows special local interactions among small numbers of channels. In
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this model, the channels interact only through v.

The subsequent step consists of expressing the circuit in Figure 1.2 as a set of equa-

tions using the laws by Ohm and Kirchhoff. To obtain the Hodgkin-Huxley equations,

we follow the approach by J. Murray in [41]. See [34, 52] for full references. The cur-

Figure 1.2: Electrical circuit model of the cell membrane.

rent I(t) is made up by the currents due to ions which pass through the membrane and

the contribution from the time variation in the transmembrane potential, that is, the

membrane capacitance contribution. Thus we have,

I(t) = CM
dv

dt
+ Ii, (1.1)

where v is the voltage, CM the membrane capacity and Ii the ionic currents. Based on

Ohm and Kirchhoff laws, Hodgkin and Huxley imposed

Ii = INa + IK + IL = ḡNam
3h(v − vNa) + ḡKn

4(v − vK) + ḡL(v − vL), (1.2)

where the ionic current is specified into components carried out by sodium (INa), potas-

sium (IK) and the residual (IL) where L stands for leakage. In the second equality,

each current is then associated with a conductance and a driving force which is due to

the different concentrations of ions in the intracellular and extracellular media of the

cell, where vNa, vK and vL are the Nernst potentials of each channel. Let us stress that

the Nernst potential proper to each channel is the potential value at which that specific
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ionic current vanishes. Furthermore, we define the ionic conductances as follows:

gNa = ḡNam
3h,

gK = ḡKn
4.

(1.3)

Let us underline that the conductances in Eq. (1.3) are linked to the resistances in

Figure 1.2 by the following relations: gNa = 1/RNa, gK = 1/RK and gL = 1/RL. By

going further, the ingredients m, n and h in (1.3) are variables, bounded by 0 and 1,

which are determined by the following differential equations:

dm

dt
= αm(1−m)− βmm,

dn

dt
= αn(1− n)− βnn,

dh

dt
= αh(1− h)− βhh.

(1.4)

In particular, the variables m and h describe the activation and the inactivation of the

Na+ channel, respectively. While n rules the opening and closing of K+ gates. Thus,

the equations (1.3) are formalized by Hodgkin-Huxley by modelling the ionic channels

as consisting of multiple subunits, each of which obeys a simple two-state model. The

Na+ gating equations derive from the assumption that the Na+ channel consists of

three “m” gates and one “h” gate, each of which can be either closed or open. Since

the gates operate independently, then the fraction of open Na+ channel is m3h, where

m and h obey the equation of the two-state channel model. Similarly, since there are

four “n” gates per K+ channel, all of which must be open for K+ to flow, then the

fraction of open K+ channels is n4.

In [34], the expressions of the α and β functions, in units of (ms)−1, are presented.

They are:

αm = 0.1
25− v

exp
(

25−v
10

)

− 1
,

βm = 4exp
(−v
18

)

,

αh = 0.07 exp
(−v
20

)

,

βh =
1

exp
(

30−v
10

)

+ 1
,
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and,

αn = 0.01
10 − v

exp
(

10−v
10

)

− 1
,

βn = 0.125 exp
(−v
80

)

,

while the remaining parameters are

ḡNa = 120, ḡK = 36 and ḡL = 0.3.

Let us stress that these parameters enable to determine the conductances gNa, gK in

(1.3), which are in units of mS/cm2.

Another recurrent form of Eq. (1.4) is the following:

dm

dt
=
m∞(v)−m

τm(v)
,

dn

dt
=
n∞(v) − n

τn(v)
,

dh

dt
=
h∞(v)− h

τh(v)
,

(1.5)

which depend on x∞(v) and τx(v) (for x = m, n, h) as functions of the membrane

potential only. In particular, the x∞(v) are the steady state values of m, n and h at a

particular membrane potential and the τx(v) functions are the time constants at which

m, n and h change in responses to changes in v.

Now, if an applied current Iapp(t) is imposed, using Eq. (1.2), Eq. (1.1) becomes:

Cm
dv

dt
= −ḡKn4(v − vK)− ḡNam

3h(v − vNa)− ḡL(v − vL) + Iapp. (1.6)

The system constituted by (1.4)-(1.6), or equivalently (1.5)-(1.6), is the so-called Hodgkin-

Huxley model, which we reproduce here:

Cm
dv

dt
= −ḡKn4(v − vK)− ḡNam

3h(v − vNa)− ḡL(v − vL) + Iapp,

dm

dt
= αm(1−m)− βmm,

dn

dt
= αn(1− n)− βnn,

dh

dt
= αh(1− h)− βhh.

(1.7)

The equations (1.7) are supplemented by suitable initial conditions.
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1.2 Qualitative analysis of Hodgkin-Huxley equations

During the 60’s FitzHugh provided an useful qualitative analysis of Eq. (1.7). As pre-

sented in [34], it has an elegant qualitative description that allows a better understand-

ing of the model behavior. In FitzHugh’s article, [17], on Hodgkin-Huxley equations, is

underlined that the phase space (V,m, n, h) can be divided in two subsystems: (v,m)

constituted by the fast variables and (n, h) constituted by the slow ones. Considering

only two of the four variables, the full four-dimensional phase space can be reduced and

simplified.

1.2.1 Fast phase plane analysis

The presence in Eq. (1.7) of the slow variables leads to the fact that during the initial

phase of the action potential, n and h remain essentially unchanged while m and v vary.

This allows to simplify the full four-dimensional phase space by fixing the slow variables

and considering the behavior of the model as a function of only the two fast variables.

Of course, this analysis is valid only for the initial stages of the action potential. In

fact, as soon as the slow variables n and h start to change, this system becomes invalid.

In order to provide this qualitative description, let us fix the slow variables n and

h at their resting states, respectively n0 and h0, and consider how is the response of m

and v after a stimulus. The fast phase plane is described by the following differential

equations which can be studied in the (m, v) phase plane:

Cm
dv

dt
= −ḡKn40(v − vK)− ḡNam

3h0(v − vNa)− ḡL(v − vL) + Iapp,

dm

dt
= αm(1−m)− βmm .

(1.8)

Specifically, Figure 1.3 shows the nullclines dv /dt = 0, dm/dt = 0 and two sample

trajectories. Them and v nullclines intersect each other in three points called, according

to the notation in [34], vr, vs and ve which mean resting, saddle and excited point,

respectively. These points represent the steady states of Eq. (1.8) but not of the full

model in Eq. (1.7). In particular, vr and ve are stable states while vs is a saddle point.

The one-dimensional stable manifold described by vs, shown in Figure 1.3, divides the

(m, v)-plane in two regions. Trajectories having initial membrane potential just on the

left and just on the right of this threshold follow the unstable manifolds, ending in one

or the other stable equilibrium potential. However, as pointed out before, the behavior

of the reduced system depends on the values chosen for the variable states that are

held constant. First of all, let us note that since ve > vr, then h∞(ve) < h∞(vr) and
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Figure 1.3: The Hodgkin-Huxley fast phase plane. Nullclines dv / dt = 0 and dm/ dt = 0 are
shown with two sample trajectories. The saddle point vs describes a manifold which is also
represented. This figure is generated by considering h0 = 0.596 and n0 = 0.3176.

n∞(ve) > n∞(vr). Hence, while v is at the excited state, h begins to decrease, thus

inactivating the Na+ conductance, and n starts to increase thus activating the K+

conductance. Furthermore, let us remember that v nullclines are not independent of

n and h as shown in Figure. 1.4. Specifically, as h decreases, the v nullcline moves

vertically upward. The result is that the saddle node moves to the right along the

m nullcline. As the saddle moves, the downward-pointing stable manifold is dragged

along. Since this manifold is the threshold separatrix, a threshold increasing arises.

This behaviour in the phase plane physiologically corresponds to the fact that, as h

decreases, sodium channels are inactivated and therefore unavailable to participate in

action potentials. The limit case is that, as n increases and h decreases, ve and vs move

toward each other and they collapse. The new point will be a saddle-node bifurcation

and vr remains the unique stable steady state reached by the solution. Otherwise, the

combined effect of reducing n and increasing h is to move the v nullcline downward,

eliminating the intersection of the nullcline near the rest potential. As a result, there is

now no stable equilibrium point in the reduced system except for ve. The effect is that

the system undergoes a rapid depolarization which leads to an action potential in the

full system.
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Figure 1.4: Slow variables affect the position of the v nullcline which is represented by solid line
in four different cases. The figure shows the movement of v nullcline and the disappearance of
the steady state. The four different v nullclines are generated by considering: (1) h0 = 0.596,
n0 = 0.3176; (2) h0 = 0.4, n0 = 0.5; (3) h0 = 0.2, n0 = 0.7; (4) h0 = 0.1, n0 = 0.8.

1.2.2 Fast-slow phase plane analysis

Another reduced system can be constructed from the Hodgkin-Huxley model (see

Eq. (1.7)) by eliminating m and h leaving v and n. This corresponds to assume that m

is always at equilibrium, i.e., m = m∞(v). Physiologically, it is equivalent to suppose

that the activation of the Na+ conductances is on a faster time scale than that of the

voltage. Next, FitzHugh noted that n and −h have the same shape in the numeri-

cal simulations. Specifically, n + h ≈ 0.8 and thus h can be eliminated by imposing

h = 0.8− n. In other words, the model assumes that some sodium channels, (0.8− n),

have lost their activation gates, so that their conductance is gated only by the activation

gate m. The resulting model contains only two state variables and can be written as

Cm
dv

dt
= −ḡKn40(v − vK)− ḡNam

3(0.8− n)(v − vNa)− ḡL(v − vL) + Iapp,

dn

dt
= αn(1− n)− βnn .

(1.9)
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To tackle the phase plane analysis for this system, let us introduced the function f(v, n)

and g(v, n) as in the case of the system with both fast variables. In particular,

− f(v, n) = ḡKn
4
0(v − vK) + ḡNam

3(0.8 − n)(v − vNa) + ḡL(v − vL).

The v nullcline, defined by f(v, n) = 0, has a cubic shape while n nullcline is mono-

tonically increasing. Nullclines are shown in Figure 1.5, respectively with dashed and

dotted lines. There is a unique intersection between these two curves and thus, for this

system, there is a single steady state. Precisely, the curve f(v, n) = 0 is called slow

manifold since the solution of Eq. (1.9), shown in Figure 1.5 with full line, is almost

horizontal except where f(v, n) ≈ 0. Therefore, along the slow manifold the solution

moves slowly accordingly to the sign of dn /dt but away from the slow manifold it

moves quickly in a horizontal direction.

To complete this analysis, let us underline the close relationship between the fast

and the fast-slow phase plane analysis. Recall that, by imposing n = n0 and h = h0

in the fast phase plane, the v and m nullclines have three intersection points called vr,

vs and ve. In the case of fast-slow phase plane, when n is fixed at n0, the equation

f(v, n0) = 0 has exactly three possible solutions which correspond to that mentioned

before.

As discussed in the next section, the formulation of Hodgkin-Huxley equations in

terms of two variables, one fast and one slow, is the basis of the fundamental FitzHugh-

Nagumo model.

1.3 FitzHugh-Nagumo Model Reduction

The FitzHugh-Nagumo model extracts the previously explained Hodgkin-Huxley fast-

slow phase plane and presents it in a simplified form. Thus, the model is constituted by

two equations in two variables v and r. The first is the fast variable called excitatory

while the second is the slow one called recovery variable. Being a two-dimensional

fast/slow system, it has the following form:

dv

dt
= f(v, r)

dr

dt
= ǫg̃(v, r) ,

(1.10)
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Figure 1.5: The Hodgkin-Huxley fast-slow phase plane with I = 0. Nullclines dv / dt = 0 and
dn / dt = 0 are shown with one sample solution.

where the parameter 0 < ǫ ≪ 1 describes the ratio of time scales of the variable v and

r. Using the notation in [41], the FitzHugh-Nagumo equations are as follows:

dv

dt
= −v(a− v)(1 − v)− r + I

dr

dt
= bv − cr .

(1.11)

where, a, b, c ∈ R
+\{0} and I ∈ R

+ are the parameters of the model. One of the

interesting aspects of this model is that it can be studied using phase-plane technique

whose first step consists in determining the steady states (v̄, r̄). These are obtained by

imposing the nullcline intersection f(v̄, r̄) = g(v̄, r̄) = 0, where f(v, r) and g(v, r) are

the right-hand side in Eq. (1.11):

f(v, r) = −v(a− v)(1 − v)− r + I

g(v, r) = bv − cr .
(1.12)

In the sequel, let us consider a framework in which a unique equilibrium point exists.

In particular, the following condition, that holds for all I, can be imposed:
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Proposition 1.1. Under the condition:

b

c
>

1

3
(a2 − a+ 1) , (1.13)

there exists a unique equilibrium point.

Proof. In order to have only one equilibrium point, the g(v, r) slop has to be greater

than the maximum gradient of f(v, r). The calculations are straightforward and hence

omitted.

Fixing specific values of the parameters satisfying (1.13), Figure 1.6 represents the

nullclines and the equilibrium point at the intersection of the curves.

1.3.1 Stability and bifurcation analysis

Under the hypothesis (1.13) and according to the equilibrium point (v̄, r̄) coordinates

(see Figure 1.6), there are two possible characteristic phase portraits. Indeed, if the

steady state lies on either the left or right branch of f(v, r), then the solution is stable,

as shown in Figure 1.7. Otherwise, if it lies in the curve branch between its extremal

values, the solution becomes a periodic orbit which is a stable limit cycle. This phase

plane portrait is described in Figure 1.8.

In order to provide a precise analysis of the model (1.11), let us firstly introduce some

essential definitions and theorems well formalized in, beyond many others, [8, 24, 29].

1.3.1.1 Preliminary concepts

Definition 1.1 (Equilibrium point). Consider the autonomous system of ordinary dif-

ferential equations
du

dt
= f(u) ,

where u, f ∈ R
n. The states ue such that

f(ue) = 0

are called equilibrium points. If u(t0) = ue, then u(t) = ue for all times.

Definition 1.2 (Stability and instability of the equilibrium points). The equilibrium

states ue is said to be stable if for any ε > 0 it is possible to find a δ(ε) > 0 such that

for any initial condition u(0) with

‖u(0) − ue‖ < δ(ε),
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Figure 1.6: The nullclines provided by imposing f(v, r) = g(v, r) = 0 in Eq. (1.12) with param-
eters a = 0.25, b = 0.001 and c = 0.003. Top, the current I = 0 leads to nullclines intersecting
in the left branch of f(v, r) = 0. Bottom, the current I = 0.1 leads to their intersection lying
between the extremal values of f(v, r) = 0.
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Figure 1.7: Top, phase portrait for the FitzHugh-Nagumo equations (Eq. (1.11)) with param-
eters a = 0.25, b = 0.001, c = 0.003 and I = 0. The system has a unique globally stable rest
point at the nullcline intersection. The red curve is the forward solution with the initial datum
(v0, r0) = (−0.2,−0.15).
Down, the graphs which show the action potential v as a function of time (left) and the recovery
variable r as a function of time (right).
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Figure 1.8: Top, phase portrait for the FitzHugh-Nagumo equations (Eq. (1.11)) with param-
eters a = 0.25, b = 0.001, c = 0.003 and I = 0.1. The system has a unique unstable rest point
at the nullcline intersection and then there is a globally stable periodic orbit. The red curve is
the forward solution with the initial datum (v0, r0) = (−0.2,−0.15).
Bottom, two graphs which show the action potential v as a function of time (left) and the
recovery variable r as a function of time (right). Both graphs underline the periodicity of the
solution.
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one has that

‖u(t)− ue‖ < ε, ∀t ≥ 0.

An equilibrium state that is not stable is called unstable.

Definition 1.3 (Asymptotic stability). A stable equilibrium point ue is also asymptot-

ically stable if there is a neighborhood De of ue such that for u(0) ∈ De; one has

lim
t→+∞

‖u(t)− u(0)‖ = 0.

Theorem 1.4 (Linear stability). If f(u) is twice continuously differentiable, denoting

with λi the eigenvalues of the Jacobian matrix evaluated at the equilibrium state, one

has:

• If ∀i Re(λi) < 0, then ue is asymptotically stable;

• If ∃i such that Re(λi) > 0, then ue is unstable.

By considering a system of two ordinary differential equations, a characterization

of the equilibrium points by analysing the eigenvalues λi can be performed. In this case

one may have the following nondegenerated situations:

• λ1, λ2 ∈ R. If λ1, λ2 < 0, then

lim
t→+∞

u(t) = 0 ,

and this equilibrium point is called a stable node. If instead one of the eigenvalue

is positive, then

lim
t→+∞

u(t) = +∞ .

If both eigenvalues are positive, the equilibrium point is called unstable node. Oth-

erwise, it is called saddle point.

• λ1 = λ+ iw, λ2 = λ− iw complex conjugate. If λ = Re(λ1) = Re(λ2) < 0, then

lim
t→+∞

u(t) = 0 ,

and the equilibrium point is called stable focus. If λ = Re(λ1) = Re(λ2) > 0, then

lim
t→+∞

u(t) = +∞ ,
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and the equilibrium point is called unstable focus.

Finally, if λ = Re(λ1) = Re(λ2) = 0, then u(t) stays bounded and the equilibrium

state is a vortex point.

Let us stress that for systems of two differential equations, the eigenvalues of the Jaco-

bian matrix J are

λ =
trJ

2
±
√

(trJ)2

4
− detJ . (1.14)

Let us now consider the following system of ordinary differential equations:

du

dt
= f(u, α).

Definition 1.5 (Bifurcation point). An equilibrium solution ue bifurcates from another

at α = αb if there are two distinct branches ûe(α) and ǔe(α) continuous in α, such that

ûe(α) = ǔe(α). The common value αb such that (αb, ûe(αb)) = (αb, ûe(αb)) is called

bifurcation point.

It may happen that for α > αb, the solution tends to a time-periodic orbit. The

system then undergoes a bifurcation in which trajectories will not spiral toward a new

stable equilibrium point, but will tend to a limit cycle. This is called Hopf bifurcation.

In other words, an Hopf bifurcation is the birth of a limit cycle from an equilibrium in

dynamical systems generated by ODEs, when the equilibrium changes stability via a

pair of purely imaginary eigenvalues.

Definition 1.6 (Limit cycle). An orbit u(t) tends to a closed curve Γ called limit cycle

if there exists a period T > 0 such that the sequence of points u(t + nT ) tends to a

point of Γ as the integer n goes to infinity.

A cycle Γ is asymptotically stable if there exists a neighborhood UΓ of Γ such that,

if u(0) ∈ UΓ, then u(t) tends to Γ.

Theorem 1.7 (Hopf theorem). Focus on the dependence of the equilibrium configu-

ration ue on a parameter α, and assume that there is a critical value αb, such that

ue(α) is asymptotically stable for α < αb and unstable for α > αb. If at criticality the

Jacobian J of f has a simple pair of purely imaginary eigenvalues

λ(αb)) = ±iΩ,

and all the other eigenvalues have a negative real part and, furthermore, for α close to

αb

λ(α) = µ(α)± iω(α), with
dµ

dα
(α = αb) > 0, (1.15)
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then for α sufficiently near the critical value αb, there exists a limit cycle with initial

period T = 2π/Ω. If, in addiction, at criticality the equilibrium configuration u(α = αb)

is locally asymptotically stable, then the limit cycle is stable.

1.3.2 FitzHugh-Nagumo analysis

In order to introduce the FitzHugh-Nagumo model analysis, let us first consider the

model (1.11) without injected current, i.e., I = 0. Thus, the point

(v̄, r̄) = (0, 0) (1.16)

is the trivial stationary solution and it is the unique equilibrium point since Eq. (1.13)

holds.

Proposition 1. ∀a, b, g ∈ R
+ \ {0}, such that (1.13) holds, the steady state (v̄, r̄) =

(0, 0) is stable.

Proof. The linearization of Eq. (1.11) on the trivial equilibrium point (1.16) is





v̇

ṙ



 =





−a −1

b −c









v

r



 .

The corresponding characteristic equation is

λ2 + (a+ c)λ+ ac+ b = 0

which provides the eigenvalues of the linearized system:

λ1, 2 =
−(a+ c)±

√

(a− c)2 − 4b

2
.

As ∀a, b, g ∈ R
+ is Re(λ1, 2) < 0, then we conclude that (v̄, r̄) = (0, 0) is stable.

Now, let us come back to the system (1.11) in which a current I 6= 0 appears in

the first equation, and let us consider a generic equilibrium point (v̄, r̄) which varies as

a function of I. Since the FitzHugh-Nagumo model is a widely studied one, we know

there exist two Hopf bifurcations which characterize two current critical values. These

two values characterize the equilibrium point passage from stability to instability or

vice versa. In this configuration, the current I is the bifurcation parameter.
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Proposition 1.2. ∀a, b, g ∈ R
+\{0} and I ∈ R

+, two critical points arise when the

bifurcation parameter takes the values:

I∗1 = v̄∗1(a− v̄∗1)(1− v̄∗1) + b/cv̄∗1

I∗2 = v̄∗2(a− v̄∗2)(1− v̄∗2) + b/cv̄∗2
(1.17)

for

(v∗1 , r
∗
1) = (1/3(−

√

a2 − a+ 1− 3c+ a+ 1), b/(3c)(−
√

a2 − a+ 1− 3c+ a+ 1))

(v∗2 , r
∗
2) = (1/3(

√

a2 − a+ 1− 3c+ a+ 1), b/(3c)(
√

a2 − a+ 1− 3c+ a+ 1)) .

(1.18)

which are Hopf bifurcation points.

Furthermore, for I < I∗1 ∨ I > I∗2 , i.e., (v̄, r̄) < (v̄∗1 , r̄
∗
1) ∨ (v̄, r̄) > (v̄∗2 , r̄

∗
2), then the

equilibrium point (v̄, r̄) is stable. Otherwise, it is unstable and a limit circle arises.

Proof. As stated in Theorem 1.4, we can determine the nature of the equilibrium point

(v̄, r̄) by considering the eigenvalues of the Jacobian matrix. Thus, let us introduce

J =





−a+ 2(a+ 1)v̄ − 3v̄2 −1

b −c



 . (1.19)

We remark that for systems constituted by two equations, the eigenvalues of J can be

determined by exploiting (1.14). Since the trace of the Jacobian matrix is the sum

of the eigenvalues and the determinant is those product, the equilibrium point loses

stability via an Hopf bifurcation when

tr J = 0

detJ > 0.

The first equation gives us the coordinates of the critical points (v̄∗1,2, r̄
∗
1,2):

(v̄∗1,2, r̄
∗
1) =

(1

3
(±
√

a2 − a− 3c+ 1 + a+ 1),
b

3c
(±
√

a2 − a− 3c+ 1 + a+ 1)
)

.

Otherwise, since b/c > 1/3(a2 − a + 1) (see condition (1.13)), the inequality is always

satisfied. Thanks to this, we can state that (v̄∗1,2, r̄
∗
1,2) are two Hopf bifurcations. The

corresponding values of the bifurcation parameters I∗1,2 can be determined in the fol-

lowing manner. By recalling that for the second equation in (1.11) r = b/gv, it holds
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that

I∗1,2 = v̄∗1,2(a− v̄∗1,2)(1 − v̄∗1,2) + b/cv̄∗1,2 . (1.20)

Furthermore, by exploiting Theorem 1.4, for (v̄, r̄) such that TrJ < 0, i.e., (v̄, r̄) <

(v̄∗1 , r̄
∗
1)∨(v̄, r̄) > (v̄∗2 , r̄

∗
2), then the equilibrium point is stable. Otherwise, it is unstable.

The presence of the Hopf bifurcations, instead of saddle-node ones, leads the FitzHugh-

Nagumo model to belong to the Class II of neural excitability, where the criterion for

classifying excitability was suggested by Hodgkin in [26]. Through experiments, he

observed that by injecting strong current into excitable membrane, spike trains with

a certain oscillation frequency arose. The spike train frequency, as a function of the

current I, led to the classification. Two are the major classes that have been formalized,

and they are described in [27, 29]. The FitzHugh-Nagumo model (1.11) belongs to the

class II and it is characterized by a frequency band of the spike trains that is quasi-

independent to the input strength (when it is enough to produce spikes). What remains

dependent to the injected current is the duration of the burst phenomenon. A different

neuronal behaviour is described, for example, by exploiting the Hodgkin-Huxley model

where the presence of a saddle equilibrium point leads the frequency to start from zero

and to increase smoothly. It follows that the Hodgkin-Huxley model belongs to the

class I.

The bifurcation diagram in Figure 1.9 collects several information about the FitzHugh-

Nagumo model. In particular, beyond the results presented in Proposition 1.2, it un-

derlines that the Hopf bifurcation are subcritical. Moreover, as specified above, without

any external contribution, the equilibrium point is stable. But if the injected current

overcomes the I∗1 value, it joins a periodic limit circle. In that situation, a burst happens

with a quasi-constant frequency for all I∗1 < I < I∗2 . An exhaustive analysis of this can

be found in [29]. The injected current variation in time leads the neuron to exhibit

several behaviours which include the quiescent state, the single spike and the burst.

Nonetheless the FitzHugh-Nagumo model is not a fixed threshold model, it holds a

quasi-threshold which is a canard trajectory, i.e., a trajectory that follows the unstable

manifold. This means that with precise parameter choices, intermediate sized spikes

can arise. However, the precision needed is so great that an approximation of a real

threshold can be made. It follows that sub-threshold oscillations are severely limited in

the FitzHugh-Nagumo model.

With the choice of parameters a = 0.25, b = 0.001 and c = 0.003, which satisfy the
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condition (1.13), the bifurcation parameters are

I∗1 = 0.05302 and I∗2 = 0.14373 , (1.21)

and the corresponding potential values are:

v̄∗1 = 0.11787 and v̄∗2 = 0.715461 . (1.22)
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Figure 1.9: Bifurcation diagram made with XPPAUT by Bard Ermentrout. On the left, le
complete bifurcation diagram is presented. The line which cross the domain describes the
equilibrium point curve as I varies. Outside the limit circle, i.e., on the extreme left and right
branches of the equilibrium point curve, they are stable. Otherwise, on the center branch, they
are unstable and originate limit cycles. In the plot, open circles represent unstable limit cycles
while green line represent stable ones. On the right, a zoom on the first bifurcation point is
shown and it can be demonstrated that it is a subcritical one

1.3.3 FitzHugh-Nagumo model and the travelling waves

At this stage, let us underline that the FitzHugh-Nagumo model shown in Eq. (1.11) is

proper for the homogeneous (with respect to the current) situation, i.e. the membrane

potential is enforced to be space-homogeneous. For the general case, one may think of

a chain of coupled homogeneous elements, but now the potential can “diffuse” through

the membrane to the neighboring elements. In other words, the potential diffuses along

a membrane ions and hence along the neuron’s axon. Accordingly, let us make more
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general the Eq. (1.11) and add a diffusion term to the first equation:

∂v

∂t
= −v(a− v)(1 − v)− r + I + d

∂2v

∂x2

∂r

∂t
= bv − cr,

(1.23)

where x is the space variable which allows to consider the axon as spatially distributed

while a, b, c and D are parameters with D ≥ 0. Equations (1.23) are in the form

presented by Murray in [41]. Note that the diffusive term is only in the first equation

since we are only interested in the diffusion of the action potential v.
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Chapter 2
Electrically coupled neuronal networks

Despite in the past years almost all networks have been represented as constituted by

neurons that are interconnected by chemical synapses, electrical synapses are largely

present in the nervous system. In the sequel, we will use indifferently the terms electrical

synapses and gap junctions. However, for the sake of completeness, gap junctions are the

morphological equivalent of electrical synapses. In particular, as specified in [34], gap

junctions exist between near-neighbour neurons and they allow low-resistance electrical

transmissions. Indeed, at an electrical synapse a current Igap is generated which is

proportional to the difference between the action potentials v of the post-synaptic and

pre-synaptic neurons (see, e.g., [15] eq. (7.12)); explicitly, we have for some d > 0

Igap = d(vpost − vpre) . (2.1)

This establishes a diffusive coupling between neighbouring neurons. Let us stress that

in Chapter 5, (2.1) will be exploited to describe the interesting mechanism underlying

the ephaptic coupling.

Unfortunately, the analysis of electrical synapses in situ presents severe technical

difficulties and therefore their specific roles are still largely unexplored. Nevertheless,

in the past ten years, the topic concerning gap junction networks has been object of

several investigations, sometimes leading to paradoxical results (see e.g. [19, 38, 53]).

In order to build up the sample network we will consider, several ingredients are

taken into account. First of all, we model each single cell as an excitable element

by exploiting the FitzHugh-Nagumo model in (1.11). The excitable feature means

that neurons may not fire intrinsically without any synaptic inputs. Furthermore,

we suppose each cell belongs to the same functional class, avoiding the presence of
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heterogeneity. This agrees with authors in [19] who stress that electrical synapses

exist exclusively between neurons of the same class. In particular, despite many works

underline the presence of electrical synapses between inhibitory neurons (see e.g. [19]),

the existence of electrical connections between excitatory neurons is demonstrated in

the early postnatal stages (see [53]). Finally, as we will specify, we consider the presence

of both bidirectional (non-rectifying) and unidirectional (rectifying) synapses as claimed

in [38].

In this chapter, after setting our mathematical model of an idealized neuronal net-

work with electrical-type coupling between neurons, we carefully investigate the “pas-

sage to the limit” as the number of neurons tends to infinity, while they remain confined

in a fixed and bounded spatial region. We identify two different manners of increas-

ing the population of the network so that a non-trivial continuum limit is obtained.

The first one assumes a fixed topology of the network (nearest-neighbour connections)

but makes the proportionality coefficient in (2.1) to depend upon the total number of

neurons according to a specific law; conversely, the second manner keeps this coeffi-

cient fixed but suitably increases the number of connections per neuron. Both methods

lead to equivalent continuous models, in which the action potential is the solution

of a reaction-diffusion partial differential equation (or a reaction-convection-diffusion

equation if connections are not symmetric, i.e., if rectifying synapses are allowed). Our

arguments apply in any spatial dimension, although we detail them in 1D and we sketch

their extension to 2D. Clear numerical evidence confirms all theoretical results. At last,

an example of random connections is also presented.

2.1 Diffusive coupling within the network

We suppose that our network contains N neurons, identified by integer labels i =

1, · · · , N ; labels refer to the physical position of the neurons in the network. Electrical-

type connections in the neuronal network are easily described by basic concepts from

graph theory (see, e.g., [5]). Let us consider a graphG = (V,E), where V = {1, · · · , N} ⊂
N is the set of vertices and E ⊂ V × V is the set of edges. The so-called adjacency

matrix AG = (aij) is an N ×N matrix whose entries are:

aij =











wij if (i, j) ∈ E(G)

0 else ,
(2.2)

where i, j = 1, · · · , N and the weights are strictly positive.
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Exploiting the adjacency matrix, and assuming the gap-junction law (2.1) for the

interaction between adjacent neurons, we define the FitzHugh-Nagumo model with

diffusive coupling as follows:

v̇i = f(vi, ri) +
∑

j 6=i

aij(vj − vi) ,

ṙi = g(vi, ri) ,

(2.3)

where functions f and g are as in (1.12). Specifically, the summation describes the

influence on the i−th neuron by all neurons linked to it: it produces a diffusion effect

within the network. The simplest example is given by the expression in (2.7), which

models nearest-neighbour interactions in a chain of neurons.

Introducing the diagonal degree matrix DG := diag(di) with di =
∑

j 6=i aij , and the

Laplacian matrix LG := DG −AG = (lij), the previous system can be written as

v̇ = f(v, r)− LGv ,

ṙ = g(v, r) ,

where v = (vi), r = (ri) and f(v, r) = (f(vi, ri)), g(v, r) = (g(vi, ri)).

In the sequel, referring to the present chapter, we assume that all weights wij are

equal and precisely wij = d for some d > 0, which we will call the diffusion coefficient.

Let us introduce the set Q(i) of all indices q such that neuron i+ q is linked to neuron

i, i.e., ai,i+q 6= 0. Then, the model (2.3) can be written as

v̇i = f(vi, ri) + d
∑

q∈Q(i)

(vi+q − vi) ,

ṙi = g(vi, ri) .

(2.4)

In most cases, we shall consider Q(i) = Q independent of i, thus assuming a homoge-

neous network topology.

We are interested in describing the behaviour of the network as the number of neu-

rons increases, identifying conditions on the model which lead to non-trivial asymptotic

patterns in the limit N → ∞. We assume that the network is contained in a bounded

region B (independent of N) of the Euclidean space R
m, for some 1 ≤ m ≤ 3; let us

denote by xi ∈ B the physical position of the i−th neuron. Then, we assume that

the distance of any point x̂ ∈ B from the network tends to zero as N → ∞, and the

distance of each neuron from its neighbours in the network has a similar behaviour.

If interactions between neurons are local, we can give an expression of the diffusive
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term in (2.4) which is based on the Taylor expansion of the differences ∆vi,q = vi+q−vi.
Precisely, let us assume that at each time there exists a sufficiently smooth function v

defined in B such that vi = v(xi) for i = 1, · · · , N . Then, setting ∆xi,q = xi+q − xi, we

have

∆vi,q = ∇v(xi)∆xi,q +
1

2
∆xTi,qHv(xi)∆xi,q + h.o.t. , (2.5)

where ∇v denotes the gradient vector of v, whereas Hv denotes the Hessian matrix of

v. Substituting this expression into (2.4), we obtain a representation of the diffusive

term by which we can find the conditions on the coefficient d and/or the sets Q(i)

(depending on the network) yielding a non-trivial limit as N → ∞. We will detail our

analysis assuming a specific distribution of neurons in the one-dimensional case first,

and then we will consider the multi-dimensional extension.

2.2 One-dimensional dynamics

We consider neurons disposed over a closed chain, i.e., a ring. Each neuron occupies a

specific physical position xi in the interval B = [0, 1] given by

xi = (i− 1)∆x =
i− 1

N
with 1 ≤ i ≤ N , (2.6)

where N is the number of elements equally distributed along the chain and, conse-

quently, ∆x = 1/N is the distance between any two adjacent ones. Since the chain is

closed, we assume periodic boundary conditions, i.e., we set v0 = vN and vi+kN = vi

for any k ∈ Z.

2.2.1 Nearest-neighbour interactions

Let us first consider two symmetric nearest-neighbour interactions for each neuron.

This translates in considering the set of connections per neuron Q(i) = Q = {±1}. In

this case, the diffusive coupling assumes the following form:

− (LGv)i = d
∑

q=±1

(vi+q−vi) = d[(vi+1−vi)+(vi−1−vi)] = d(vi+1−2vi+vi−1) . (2.7)

An interesting dynamics produced by (2.4), which will represent a test case for the

subsequent discussion, is obtained by applying an initial stimulus to the central neuron

(i = N/2, assuming N even) of the line. Specifically, its action potential is initially set

to the value 2, whereas all the other variables are set to 0. Considering the diffusion
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Figure 2.1: Propagation of an initial pulse along a closed ring of N = 128 neurons

coefficient d = 0.05 (see [52]), the resulting dynamics is constituted by two pulses that

travel in opposite directions in the whole set of neurons (see e.g. [34] for the analysis of

travelling pulses). A sample dynamics is shown in Figure 2.1. We observe for further

reference that a similar dynamics is obtained starting from an initial stimulus of the

action potential given by a Gaussian function concentrated around the central neuron.

In all cases, at the end of dynamics, neurons return to the quiescent state. In fact,

neurons are modelled as excitable units and then, after the excitation, they undergo a

long refractory period. In this period they are blind to any stimulus. This is the reason

why two travelling pulses that collide depress their signals.

We now focus on how the dynamics produced by our model depends upon N . The

first observation is that, if the diffusion parameter d is kept fixed, then the diffusive

effect tends to vanish as N → ∞. This can be seen in two ways. On the one hand,

if neurons get close to each other and the action potential varies in a smooth manner,

then the differences on the right-hand side of (2.7) tends to zero, implying the vanishing

of the diffusion term LGv in each node. On the other hand, considering the test case

introduced above, it is easily seen that the effect of, say, doubling N is equivalent to

have a chain of neurons with the same spacing but with double length; this means that

on the original chain, waves have half the length and propagate with half the speed.

In order to obtain non-trivial diffusion effects in the limit, one possibility - that we

call Approach I - consists in letting the parameter d grow with N , i.e., d = dN . The

precise dependence can be found by exploiting the Taylor expansion (2.5), which in the

present setting becomes

∆vi,q = q∆xv′(xi) +
1

2
q2∆x2v′′(xi) + h.o.t. , (2.8)

where the prime indicates differentiation with respect to the spatial variable x. There-
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fore, the following expression holds for the diffusive term:

− (LGv)i = dN
[

(vi+1 − vi) + (vi−1 − vi)
]

= dN [∆x2v′′(xi) + h.o.t.] . (2.9)

We choose dN in such a way that dN∆x2 is independent on N , say

dN∆x2 = d∗ (2.10)

for a fixed constant d∗ > 0. Hence, we obtain

dN =
d∗

∆x2
= d∗N2 , (2.11)

i.e., dN is proportional to the square of the number of neurons. The fact that dN is

proportional to N2 is not surprising: the spectral gap of the Laplacian matrix, which

is its smallest non-zero eigenvalue, has the same behaviour as 1/(N2).

As N → ∞, the discrete model

v̇i = f(vi, ri) + dN
[

(vi+1 − vi) + (vi−1 − vi)
]

,

ṙi = g(vi, ri) ,
(2.12)

“converges” to a continuous model. To support this statement, we observe that the

quantity h.o.t. in (2.9) is given by

h.o.t. =
1

12
∆x4v(iv)(x̄i) ,

where x̄i ∈ (xi−1, xi+1) and v
(iv) is assumed continuous in [0, 1]. Thus, we have

−(LGv)i =
d∗

∆x2
[

(vi+1 − vi) + (vi−1 − vi)
]

= d∗v′′(xi) +
d∗

12
∆x2v(iv)(x̄i) .

(2.13)

It follows that if we fix any point x̂ ∈ [0, 1] and, for each N , we consider a neuron of

index i = i(N) such that

xi(N) =
i(N)

N
→ x̂ as N → ∞ ,

then,

lim
N→∞

dN
∑

q∈Q

(vi(N)+q − vi(N)) = d∗v′′(x̂) .
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We conclude that a continuum of neurons is the result of the limit process of letting

N → ∞, and
∂v

∂t
= f(v, r) + d∗

∂2v

∂x2
,

∂r

∂t
= g(v, r) ,

(2.14)

is the system of nonlinear partial differential equations of incomplete parabolic type

which describes the action potential and the recovery variable in the whole set of neu-

rons. Note that the first equation is similar to the so-called cable equation, which

describes the distribution of the potential along the axon of a single neuron (see,

e.g. [15, 44]). Reaction-diffusion models like (2.14) are studied in, among others, [18, 46].

We observe that the discrete model (2.11)–(2.12) can be viewed as a numerical semi-

discretization (in space) of the PDE system (2.14), obtained by using a second-order

centered finite difference method on the equally-spaced (2.6). Thus, if the solution

of (2.14) is sufficiently smooth as in the case of an initial Gaussian stimulus, we expect

to have quadratic convergence in ∆x of the discrete solutions, at any fixed time t > 0,

as it can be deduced from the fact that the error term on the right-hand side of (2.13)

is proportional to ∆x2.

We now give an example. Following the choice of parameters presented in [52], we

set d = 0.05 and we consider the case N = 128 as a reference one, i.e., we impose

dN = d for N = 128, which yields

d∗ =
0.05

1282
= 3.0518 · 10−6 . (2.15)

A comparison of several discrete solutions is presented in Figure 2.2. The (b) plots

clearly document the convergence of the discrete dynamics towards a limit one. Note

that these dynamics are generated by applying an initial stimulus vi|t=0 = 2 to a number

of neurons proportional to N around the center of the chain; in the limit, the initial

action potential takes the value 2 in an interval of positive length symmetrically placed

around the point x = 1/2, and vanishes elsewhere.

For the sake of completeness, let us define the error between dynamics involving a

couple of N and 2N neurons as follow:

‖vN − v2N‖2 =





1

N

N
∑

i=1

|vN,i(t)− v2N,2i(t)|2




1/2

. (2.16)
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Figure 2.2: Convergence of the discrete model (2.12)-(2.11) (Approach I) as N → ∞. Evolution
of pulses (a) for N = 128 (red dots) and N = 256 (black dots), (b) for N = 1024 (red dots) and
N = 2048 (black dots)
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Remark 1. A more general situation considers d = dN in (2.7) also depending on i

and q, i.e., the diffusive coupling law is replaced by

− (LGv)i = di+1(vi+1 − vi) + di−1(vi−1 − vi) , (2.17)

where di±1 = N2d∗(xi±1) and d∗ is a smooth function. In the limit, the diffusion

term in (2.14) is replaced by ∂
∂x

(

d∗ ∂v
∂x

)

. For simplicity, we confine ourselves to the

constant-coefficient case.

2.2.2 Extended range interactions

We now introduce a second approach to reproduce the same limit dynamics emerged

above, which avoids rescaling the diffusion coefficient with the square of the number of

neurons. This alternative way - which we call Approach II - consists of increasing the

number of connections per neuron according to a specific law (and just slightly adjust

the diffusion coefficient).

Since the core idea is to consider a number of connections per neuron that varies as

a function of N , let us define the following set:

Q = QN = {±1,±2, · · · ,±QN} , (2.18)

where QN is a positive integer to be determined. Thus, neurons linked to the i-th one

belong to the interval

I = [xi −QN∆x, xi +QN∆x] . (2.19)

Using again Taylor expansions, the sum in the diffusive coupling becomes

∑

q∈Q

(vi+q − vi) =





QN
∑

q=1

q2



∆x2v′′(xi) + h.o.t. .

Introducing the function φ : R+ → R
+ defined as

φ(x) =
x(x+ 1)(2x + 1)

6
(2.20)

and invoking the identity
n
∑

q=1

q2 = φ(n) ∀n ≥ 1 ,
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we obtain,

− (LGv)i = d
∑

q∈QN

(vi+q − vi) = d[φ(QN )∆x2v′′(xi) + h.o.t.] . (2.21)

We would like to choose QN in such a way that dφ(QN )/N2 is independent on N , say

d
φ(QN )

N2
= d∗ , (2.22)

for a fixed constant d∗ > 0. This equation admits a unique solution, say Qr
N , which

however need not be an integer. Therefore, we choose QN as the nearest integer to Qr
N .

Proposition 2.1. The number of neurons linked to any given one grows proportionally

to the power N2/3 of the total number of neurons. Indeed1,

QN ∼ Qr
N ∼

(

3d∗

d
N2

)1/3

= cN
2
3 .

Proof. By definition, Qr
N satisfies

d
φ(Qr

N )

N2
= d∗ . (2.23)

The result follows recalling that φ(x) ∼ x3

3 for x→ ∞.

Let us underline that, although the number of neurons linked to any given one grows

with N , interactions remain local, i.e., these neurons belong to a neighbourhood whose

size decays with N . Indeed, considering the i−th neuron and recalling (2.19), we have

|I| ≃ QN∆x ≃ N−1/3 . (2.24)

Thus, we expect that the limit model, as N → ∞, be again described by partial

differential equations.

As specified above, the slight shift from Qr
N to QN provokes the necessity of slightly

1 For any two non-negative sequences AN and BN and for N → ∞, we will use the symbols

AN ∼ BN ⇐⇒ AN/BN → 1 ,

AN ≃ BN ⇐⇒ cBN ≤ AN ≤ c′BN with c, c′ > 0 ,

AN . BN ⇐⇒ AN ≤ cBN with c > 0.
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modifying the diffusion coefficient. Precisely, we define dN so that the identity

dN
ϕ(QN )

N2
= d∗ (2.25)

is satisfied. An alternative possibility, which will be explored later on and which leads

to similar effects, would be to define d∗N so that

d
ϕ(QN )

N2
= d∗N . (2.26)

The coefficient dN is really a small perturbation of d, as the next proposition indicates.

Proposition 2.2. Let dN be the diffusion coefficient defined in (2.25). Then, one has

|dN − d| . N− 2
3 .

Proof. From (2.23) and (2.25), we obtain the following equality:

dN
φ(QN )

N2
= d

φ(Qr
N )

N2
. (2.27)

Since QN is defined as the nearest integer to Qr
N ,

|Qr
N −QN | ≤ 1

2
, (2.28)

and then, QN = Qr
N + εN with a proper choice of εN , such that |εN | ≤ 1/2. Writing

φ(Qr
N ) = φ(QN ) + φ(Qr

N )− φ(QN ) and substituting in (2.27), we get

|dN − d| = |φ(Qr
N )− φ(QN )|
φ(QN )

d . (2.29)

Using (2.28) and omitting computations, we conclude that |φ(Qr
N ) − φ(QN )| . N4/3

while φ(QN ) ≃ N2. This gives the desired estimate.

In order to obtain the continuous model as a limit of the discrete model for N →
∞, we observe that, if the fourth derivative of v is continuous in [0, 1], the diffusion

term (2.21) takes the form

−(LGv)i = dN

[

ϕ(QN )∆x2v′′(xi) + h.o.t.
]

= d∗v′′(xi) +
dN
12

∆x4
QN
∑

q=1

q4v(iv)(x̄i,q) ,
(2.30)
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where x̄i,q are suitable points in the interval (xi−q, xi+q). Since
∑QN

q=1 q
4 ∼ 1

5Q
5
N , using

Property 2.1 and Proposition 2.2, we deduce that

dN∆x4
QN
∑

q=1

q4 ≃ N
10
3
−4 = N− 2

3 → 0 as N → ∞ . (2.31)

Therefore, proceeding as in Section 2.2.1, if we fix any point x̂ ∈ [0, 1] and we

consider a neuron of index i = i(N) such that xi(N) → x̂ as N → ∞, we conclude that

−(LGv)i(N) → d∗v′′(x̂) as N → ∞ .

This means that Approach II yields in the limit the same system (2.14) of partial

differential equations, that we got from Approach I.

We now illustrate the asymptotic behaviour of the quantities defined above, for the

same test case considered in the previous subsection. We choose again d = 0.05, and

we enforce that for N = N0 = 128 we have QN0 = Qr
N0

= 1, which corresponds to

the nearest-neighbour interaction previously considered; we also enforce dN0 = d, and

consequently we get

d∗ =
d

N2
0

,

which is precisely (2.15). IncreasingN by powers of 2, i.e., setting N = N02
p with p ≥ 1,

the algorithm presented above produces the values of QN and dN shown in Table 2.1.

The last column of this table, as well as Figure 2.3 (left), quantitatively support the

asymptotic estimates proven in Propositions 2.1 and 2.2 (ignoring few values of p that

give superconvergence effects). Some representative dynamics obtained with Approach

II are documented in Figure 2.4; they should be compared to those given in Figure 2.2.

The evolutions of the action potentials produced by the discrete model with N = 1024,

and by a very accurate solution of the continuous model (2.14) are documented in

Figure 2.5. While the shapes of the pulses are already well captured, their speed of

propagation is less accurately reproduced; this should be related to the fourth-order

error term on the right-hand side of (2.30), whose decay is slower than in Approach I

as indicated by (2.31) compared to (2.13).

2.2.3 Comparison between approaches

After having described Approaches I and II, the main result consists to show that

they produce equivalent limit dynamics. The frames in Figures 2.6–2.7–2.8–2.9–2.10

describe the dynamics obtained with a fixed number of neurons N . Obviously, as
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Table 2.1: Number of connections per neuron QN , diffusion coefficient dN and relative error as
a function of N = N02

p with N0 = 128.

p N = N02p QN dN |dN − d|/d

0 128 1 0.0500 0

1 256 2 0.0400 2.0·10−1

2 512 3 0.0571 1.4·10−1

3 1024 5 0.0582 1.6·10−1

4 2048 9 0.0490 1.0·10−1

5 4096 14 0.0504 8.7·10−3

6 8192 23 0.0473 5.3·10−2

7 16384 36 0.0505 1.1·10−2

8 32768 58 0.0491 1.8·10−2

9 65536 92 0.0496 6.3·10−3

10 131072 146 0.0500 4.9·10−4

11 262144 232 0.0500 1.2·10−3

12 524288 369 0.0500 2.3·10−3

13 1048576 586 0.0500 2.1·10−3

14 2097152 930 0.0500 4.3·10−4

15 4194304 1476 0.0500 7.4·10−4

16 8388608 2344 0.0500 1.6·10−4

17 16777216 3721 0.0500 3.0·10−5

18 33554432 5907 0.0500 2.3·10−5

19 67108864 9377 0.0500 2.9·10−7

20 134217728 14885 0.0500 7.1·10−5
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Figure 2.3: Plots of QN/N
2/3 (left) and (dN − d)/N−2/3 (right) vs p, where N = N02

p
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Figure 2.4: Convergence of the discrete model (2.4)-(2.18)-(2.22) (Approach II) as N → ∞.
Evolution of pulses (a) for N = 128 (red dots) and N = 256 (black dots), (b) for N = 1024 (red
dots) and N = 2048 (black dots)
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Figure 2.5: Comparison of the dynamics produced by Approach II with N = 1024 (blue dots)
and by the continuous model (2.14) (black dots)

N = 128 represents the sample case, dynamics obtained by exploiting Approaches I

and II coincides, see Figure 2.6. Doubling N , two dynamics which are clearly different

arise and they are shown in Figure 2.7. The difference between dynamics reduces as N

increases, as can be seen in Figure 2.8–2.9–2.10.

In order to quantify the difference between the solutions considering N fixed, we

decide to compute the following L-2 norm:

‖v∗ − v∗∗‖2 =





1

N

N
∑

i=1

|v∗N,i(t)− v∗∗N,i(t)|2




1/2

, (2.32)

where v∗ represents the solutions obtained by exploiting Approach I while v∗∗ by ex-

ploiting Approach II.

2.2.4 Non-symmetric interactions

A more general configuration of the network admits non-symmetric links for each neu-

ron, which correspond to unidirectional connections (the so-called rectifying synapses).

A natural extension of the symmetric case consists in choosing

Q = QN = QD
N ∪ QC

N , (2.33)
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Figure 2.6: Having chosen N = 128, a comparison between Approaches I and II is shown.
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Figure 2.7: With N = 256, comparison between Approaches I and II is shown.
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Figure 2.8: N = 512 neurons. A comparison between Approaches I and II is shown.
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Figure 2.9: N = 1024 neurons. A comparison between Approaches I and II is shown.
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Figure 2.10: N = 2048 neurons. A comparison between Approaches I and II is shown.

where

QD
N = {±1, · · · , ±QD

N} , QC
N = {QD

N + 1, · · · , QC
N} .

for some integers QD
N ≥ 1 and QC

N > QD
N . (Choosing −QC

N instead of QC
N would be an

obvious alternative.) We will prove that a suitable choice of QC
N depending on N leads

to modify the limit model (2.14), by adding a first order term to the action potential

equation.

With our definitions, the sum in the diffusive coupling becomes

∑

q∈QN

(vi+q − vi) =

QD
N
∑

q=−QD
N

(vi+q − vi) +

QC
N
∑

q=QD
N
+1

(vi+q − vi) . (2.34)

Exploiting the Taylor expansion (2.8), we obtain

∑

q∈QN

(vi+q − vi) =







QC
N
∑

q=QD
N
+1

q






∆xv′(xi) +







QD
N
∑

q=1

q2 +
1

2

QC
N
∑

q=QD
N
+1

q2






∆x2v′′(xi) + h.o.t. .

(2.35)

Recalling the definition (2.20) of the function ϕ, and introducing the function ψ : R+ →
R
+ defined as

ψ(x) =
x(x+ 1)

2
(2.36)
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and such that
∑n

q=1 q = ψ(n), it is easily seen that the diffusive coupling takes the form

−(LGv)i = d
[

(ψ(QC
N )− ψ(QD

N ))∆xv′(xi)

+
1

2
(ϕ(QD

N ) + ϕ(QC
N ))∆x2v′′(xi) + h.o.t

]

.
(2.37)

Ideally, we would like to find integers QD
N and QC

N > QD
N satisfying the system















1

2
d(φ(QD

N ) + φ(QC
N ))

1

N2
= d∗

d(ψ(QC
N )− ψ(QD

N ))
1

N
= c∗ ,

(2.38)

for fixed constants d∗, c∗ > 0. At first, we discuss the existence of real solutions QD,r
N

and QC,r
N .

Proposition 2.3. Set AN = 2d∗

d N
2 and BN = c∗

d N . If

ϕ(ψ−1(BN )) ≤ AN , (2.39)

there exists a unique solution (QD,r
N , QC,r

N ) ∈ R
2
+ of the previous system.

Proof. For simplicity, let us set x̂ = QD,r
N and ŷ = QC,r

N . They should satisfy











ϕ(x̂) + ϕ(ŷ) = AN

ψ(ŷ)− ψ(x̂) = BN .

(2.40)

Recalling that both ϕ and ψ are strictly increasing bijections from [0,+∞) into itself,

the second equation yields

ŷ = ψ−1(ψ(x̂) +BN ) ,

which, substituted into the first equation, yields

ϕ(x̂) + ϕ(η(x̂)) = AN , (2.41)

with η(x̂) := ψ−1(ψ(x̂)+BN ). Now the function χ = ϕ+ϕ◦η is again strictly increasing,

and maps [0,+∞) into [χ(0),+∞) = [ϕ(ψ−1(BN )),+∞). Thus, condition (2.39) is

equivalent to the existence of a unique solution of (2.41), whence the result.

We observe that, given any arbitrary d∗ and c∗, there always exists an integer N∗

such that condition (2.39) is satisfied for all N ≥ N∗.
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Definition 2.1. Under the assumption (2.39), we define QD
N and QC

N , resp., to be the

nearest integers to QD,r
N and QC,r

N , resp., which are the unique solutions of the system















1

2
d(φ(QD,r

N ) + φ(QC,r
N ))

1

N2
= d∗

d(ψ(QC,r
N )− ψ(QD,r

N ))
1

N
= c∗ .

(2.42)

Proposition 2.4. The following asymptotic behaviour of the integers QD
N and QC

N

holds:

QD
N ≃ N

2
3 , QC

N ≃ N
2
3 with QC

N −QD
N ≃ N

1
3 .

Proof. It is enough to estimate x̂ = QD,r
N and ŷ = QC,r

N . We recall that they sat-

isfy (2.40). With the ansatz ŷ ≃ Nα, we have ϕ(ŷ) ≃ N3α. On the other hand, the

inequality x̂ < ŷ and the monotonicity of ϕ yield ϕ(ŷ) ≤ ϕ(x̂) + ϕ(ŷ) ≤ 2ϕ(ŷ). Since

AN ≃ N2, we deduce that ϕ(ŷ) ≃ N2, whence α = 2/3. On the other hand, ψ(ŷ) ≃ N
4
3

so that ψ(x̂) = ψ(ŷ) + BN ≃ N
4
3 + N ≃ N

4
3 , which implies x̂ ≃ N

2
3 . Finally, by

Lagrange’s theorem,

N ≃ BN = ψ(ŷ)− ψ(x̂) = ψ′(ẑ)(ŷ − x̂)

for some x̂ < ẑ < ŷ; since ψ′(ẑ) = ẑ + 1/2 ≃ N
2
3 , we conclude that ŷ − x̂ ≃ N

1
3 .

Even for the present model, interactions are local. Indeed, all neurons linked to the

i−th one belong to the interval

I = [xi −QD
N∆x, xi +QC

N∆x] ,

whose length shrinks to 0 as N → ∞ since QD
N∆x, QC

N∆x ≃ N− 1
3 .

In order to accommodate the effect of the slight shift from (QD,r
N , QC,r

N ) to (QD
N , Q

C
N ),

we introduce perturbations (d∗N , c
∗
N ) of (d∗, c∗). They are defined in such a way that

(QD
N , Q

C
N ) is the solution of the system















1

2
d(φ(QD

N ) + φ(QC
N ))

1

N2
= d∗N

d(ψ(QC
N )− ψ(QD

N ))
1

N
= c∗N .

(2.43)

The size of the perturbation can be estimated as follows.
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Proposition 2.5. The perturbed coefficients d∗N and c∗N introduced above satisfy

|d∗N − d∗| . N− 2
3 , |c∗N − c∗| . N− 1

3 .

Proof. Using (2.42) and (2.43), we get

d∗N − d∗ =
d

2N2

[

(ϕ(QD
N )− ϕ(QD,r

N )) + (ϕ(QC
N )− ϕ(QC,r

N ))
]

,

c∗N − c∗ =
d

N

[

(ψ(QD
N )− ψ(QD,r

N ))− (ψ(QC
N )− ψ(QC,r

N ))
]

.

As in the proof of Proposition 2.2, we have |ϕ(QD
N ) − ϕ(QD,r

N )| . N
4
3 , |ϕ(QC

N ) −
ϕ(QC,r

N )| . N
4
3 , and |ψ(QD

N ) − ψ(QD,r
N )| . N

2
3 , |ψ(QC

N ) − ψ(QC,r
N )| . N

2
3 , which

gives the result.

Finally, we study the limit behaviour of our model as N → ∞. To this end, we

make use of the following expression for the higher order terms in (2.37):

h.o.t. =
1

12

QD
N
∑

q=1

q4∆x4v(iv)(x̄i,q) +
1

6

QC
N
∑

q=QD
N
+1

q3∆x3v′′′(¯̄xi,q) ,

which holds under the assumption that the fourth derivative of v is continuous in [0, 1],

for suitable points x̄i,q ∈ (xi−q, xi+q) and ¯̄xi,q ∈ (xi, xi+q). Then, we observe that

QD
N
∑

q=1

q4∆x4 ≃ (QD
N )5∆x4 ≃ N

10
3
−4 = N− 2

3

and
QC

N
∑

q=QD
N
+1

q3∆x3 ≃
[

(QC
N )4 − (QD

N )4
]

∆x3 ≃ N
7
3
−3 = N− 2

3 .

Thus, we obtain the following result.

Theorem 2.2. Fix any point x̂ ∈ [0, 1] and for each N , consider a neuron i = i(N)

such that xi(N) → x̂ as N → ∞. Assuming the continuity of the fourth derivative of v

in [0, 1], we have

− (LGv)i(N) → d∗v′′(x̂) + c∗v′(x̂) as N → ∞ .

Therefore, the discrete model (2.4) with Q given by (2.33) and QD
N , Q

C
N defined in
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Definition 2.1 leads for N → ∞ to the continuous model

∂v

∂t
= f(v, r) + d∗

∂2v

∂x2
+ c∗

∂v

∂x
,

∂r

∂t
= g(v, r) ,

(2.44)

which describes the behaviour of a continuum of neurons disposed along a closed ring.

�

Remark 2. A few comments are in order.

i) Observe that having a larger number of neurons influencing a given neuron from

its right rather than from its left results in a convective term, whose coefficient

c∗ is positive; this corresponds to a negative speed of convective propagation, i.e.,

waves moving from right to left, as documented by Fig. 2.11. Obviously, choosing

c∗ = 0 yields QC
N = ∅, so one is back to the symmetric case considered in Sect.

2.2.2.

ii) The same limit model can be obtained with a nearest-neighbour interaction that

extends the one considered in Sect. 2.2.1, i.e.,

− (LGv)i = dN [(vi+1 − vi) + (vi−1 − vi)] + cN (vi+2 − vi) , (2.45)

with dN = d∗N2 and cN = c∗N2 .

iii) A generalization to variable coefficients d∗ and c∗ similar to the one discussed

in Remark 1 is also possible, yielding the two last terms on the right-hand side

of (2.44) being replaced by the conservation form ∂
∂x

(

d∗ ∂v
∂x

)

+ ∂
∂x (c

∗v).

We now provide some quantitative insights for our model. Extending the test case

considered in the previous subsection, we choose d = 0.05 and we enforce that for

N = N0 = 128, we have QD
N0

= QD,r
N0

= 1 and QC
N0

= QC,r
N0

= 2, i.e., each neuron is

influenced by its first neighbour on the left and by the two first neighbours on the right.

Using (2.42), we obtain

d∗ =
3 · 0.05
1282

= 9.1553 · 10−6 ,

c∗ =
2 · 0.05
128

= 7.8125 · 10−4 .

Then, we increase N by powers of 2 and we monitor the evolution of the quantities

QD
N and QC

N , as well as the errors d∗N − d∗ and c∗N − c∗. The results, reported in
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Figure 2.11: Convergence of the discrete model (2.4)-(2.33)-(2.42) as N → ∞. Evolution of a
pulse for N = 128 (red dots), N = 256 (blue dots) and N = 8192 (black dots)

Table 2.2, indicate an excellent agreement with the theoretical predictions given in

Propositions 2.4–2.5. The evolutions of the action potentials produced by the discrete

model with N = 512 and N = 2048, and by a very accurate solution of the continuous

model (2.44) are documented in Figure 2.11.

2.3 Multi-dimensional dynamics

In this section, we extend the previous one-dimensional treatment, and in particular the

material of Section 2.2.4, to describe the dynamics of a multi-dimensional agglomeration

of neurons. We will focus on the main aspects of the analysis, leaving to the reader

those details that are straightforward extensions of the one-dimensional results.

We assume that neurons form a periodic lattice contained in B = [0, 1]m, m = 2

or m = 3. Precisely, given any integer n ≥ 2 and setting h = 1/n, each neuron is

associated to a multi-index l ∈ {0, · · · , n − 1}m, which identifies its physical position

x = hl ∈ B. Thus we have N = nm distinct neurons in B, which are labelled by indices

i ∈ {1, · · · , N} according to some rule; the i−th neurons has position xi = hli, action

potential vi and recovery variable ri. Periodicity means that we replicate the situation

at x = hl in any y = h(l + nk) with k ∈ Z
m.

We adopt again the diffusion model (2.4), with Q given by (2.33). The definition of

QD
N and QC

N is as follows:
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Table 2.2: Number of connections per neuron QD, QC , convection coefficient c̃N and diffusion
coefficient d̃N as a function of N are shown.

p N = N = 2p QD
N QC

N N0d
∗

N |d∗N − dN |/dN N0c
∗

N |c∗N − cN |/cN

0 128 1 2 0.1500 0 0.1000 0

1 256 2 3 0.1188 2.1·10−1 0.0750 2.5·10−1

2 512 4 5 0.1328 1.1·10−1 0.0625 3.75·10−1

3 1024 7 9 0.1660 1.1·10−1 0.1063 6.25·10−2

4 2048 11 14 0.1485 9.8·10−3 0.1219 2.2·10−1

5 4096 19 22 0.1524 2.0·10−2 0.0984 1.6·10−2

6 8192 31 35 0.1546 3.0·10−2 0.1047 4.7·10−2

7 16384 50 55 0.1524 1.6·10−2 0.1035 3.5·10−2

8 32768 80 86 0.1486 9.2·10−3 0.0979 2.1·10−2

9 65536 129 136 0.1499 7.6·10−4 0.0909 9.1·10−2

10 131072 206 216 0.1506 4.2·10−3 0.1033 3.3·10−2

11 262144 329 341 0.1502 1.4·10−3 0.0983 1.7·10−2

12 524288 524 540 0.1501 6.7·10−4 0.1040 4.0·10−2

13 1048576 835 854 0.1499 6.6·10−4 0.0980 2.0·10−2

14 2097152 1329 1353 0.1499 4.7·10−4 0.0982 1.7·10−2

15 4194304 2114 2145 0.1500 1.5·10−4 0.1008 7.5·10−3

16 8388608 3361 3400 0.1499 5.4·10−5 0.1006 6.0·10−2

17 16777216 5342 5391 0.1499 9.3·10−5 0.1003 3.2·10−3

18 33554432 8489 8550 0.1500 3.0·10−5 0.0991 8.7·10−3

19 67108864 13485 13563 0.1500 1.8·10−5 0.1006 6.0·10−3

20 134217728 21420 21517 0.1500 5.5·10−7 0.0993 7.0·10−3

• given a radius RD
N := hQD

N with QD
N > 0 (to be determined later on), we set

QD
N := {q : ‖xi+q − xi‖ ≤ RD

N} ; (2.46)

• given a radius RC
N := hQC

N with QC
N ≥ QD

N (to be determined later on), and a

unit vector ν ∈ R
m, we set

QC
N := {q : RD

N < ‖xi+q − xi‖ ≤ RC
N and (xi+q − xi) · ν ≥ 0} , (2.47)

i.e., QC
N identifies neurons sitting on semi-balls of suitable radii centered at xi;

these semi-balls are obtained by cutting the corresponding balls by the hyperplane

containing xi and perpendicular to ν, and retaining the halves oriented in the

direction of ν (see Figure 2.12 for a pictorial representation of the sets QD
N and

QC
N in two dimensions).
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Figure 2.12: The sets QD
N and QC

N represented in a two-dimensional lattice

The effect of QD
N on the diffusion term −(LGv)i

Observe that q ∈ QD
N iff xi+q = hli+q = h(li + k) for some k ∈ KD

N := {k ∈ Z
m : ‖k‖ ≤

QD
N}. Thus, recalling (2.5), we have

∑

q∈QD
N

(vi+q − vi) =
∑

k∈KD
N

hk ·∇v(xi) +
1

2
h2kTHv(xi)k + h.o.t. . (2.48)

Now, writing

kTHv(xi)k =

m
∑

α=1

k2αD
2
ααv(xi) +

m
∑

α,β=1
α6=β

kαkβD
2
αβv(xi) ,

we get

∑

k∈KD
N

kTHv(xi)k =
m
∑

α=1







∑

k∈KD
N

k2α






D2

ααv(xi) +
m
∑

α,β=1
α6=β







∑

k∈KD
N

kαkβ






D2

αβv(xi) .

Now, it is easily seen that by the form of KD
N , the quantity

ϕ(QD
N ) :=

∑

k∈KD
N

k2α, with α = 1, · · · ,m

is independent of α, whereas

∑

k∈KD
N

k = 0,
∑

k∈KD
N

kαkβ = 0 if α 6= β ,
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since vectors in KD
N can be arranged in couples that are symmetric with respect to each

coordinate hyperplane. Thus,

∑

q∈QD
N

(vi+q − vi) =
1

2
h2ϕ(QD

N )∆v(xi) + h.o.t. , (2.49)

where ∆v =
∑m

α=1D
2
ααv is the Laplacian of the function v. We observe for further

reference that for any Q > 0, denoting by B(0, Q) the ball of center 0 and radius Q in

R
m, one has for any given α = 1, · · · ,m

ϕ(Q) =
∑

‖k‖≤Q

k2α ∼
∫

B(0,Q)
y2α dy ≃ Q2+m as Q→ ∞ .

The effect of QC
N on the diffusion term −(LGv)i

Now, q ∈ QC
N iff xi+q = h(li + k) for some k ∈ KC

N := {k ∈ Z
m : QD

N < ‖k‖ ≤
QC

N and k · ν > 0}. At this point, we assume that ν = e1, the first element of the

canonical basis in R
m; this choice is not at all restrictive, but simplifies the following

arguments. Indeed, referring to the analogue of (2.48) in which QD
N , KD

N resp., are

replaced by QC
N , KC

N resp., we have

∑

k∈KC
N

k ·∇v(xi) =







∑

k∈KC
N

k1







∂v

∂x1
(xi) =

(

ψ(QC
N )− ψ(QD

N )
) ∂v

∂x1
(xi) ,

with

ψ(Q) :=
∑

‖k‖≤Q
k1≥0

k1 ∼
∫

B(0,Q)∩{y1≥0}
y1 dy ≃ Q1+m as Q→ ∞ .

On the other hand,

∑

k∈KC
N

kTHv(xi)k =

m
∑

α=1







∑

k∈KC
N

k2α






D2

ααv(xi) .

But now,
∑

k∈KC
N

k2α =
1

2

∑

QD
N
<‖k‖≤QC

N

k2α =
1

2

(

ϕ(QC
N )− ϕ(QD

N )
)

.
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We conclude that, going back to the case of an arbitrary ν,

∑

q∈QC
N

(vi+q − vi) = d

[

h
(

ψ(QC
N )− ψ(QD

N )
)

ν · ∇v(xi)

+
1

4
h2
(

ϕ(QC
N )− ϕ(QD

N )
)

∆v(xi) + h.o.t.

]

.

(2.50)

The global effect of QC
N

Summing up (2.49) and (2.50), we obtain

−(LGv)i = dh
(

ψ(QC
N )− ψ(QD

N )
)

ν ·∇v(xi)

+
d

4
h2
(

ϕ(QD
N ) + ϕ(QC

N )
)

∆v(xi) + h.o.t. .

At this point, given two constants d∗ > 0 and c∗ ≥ 0, we would like to find QD
N > 0 and

QC
N ≥ QD

N such that














d
h2

4
(φ(QD

N ) + φ(QC
N )) = d∗

dh(ψ(QC
N )− ψ(QD

N )) = c∗ .

(2.51)

This system is similar to (2.38) and we can discuss its solvability as done in Section 2.2.4.

The conclusion is that for N large enough, the solution exists and satisfies

QD
N ≃ QC

N ≃ N
2

m(m+2) and QC
N −QD

N ≃ c∗N
2−m

m(m+2) ,

whereas the number of neurons that should be connected to a given neuron scales like

N
2

m+2 . We summarize our conclusions as follows.

Theorem 2.3. The discrete model (2.4), with Q given by (2.33)-(2.46)-(2.47) in which

QD
N and QC

N are the solution of (2.51), tends for N → ∞ to the following continuous

model of reaction-convection-diffusion type

∂v

∂t
= f(v, r) + d∗∆v + ĉ∗ · ∇v ,

∂r

∂t
= g(v, r) ,

(2.52)

where the convective velocity is given by the vector ĉ∗ = c∗ν.

The well-posedness of this model, as well as its numerical discretization, can be

studied by adapting the arguments given in [12] and [43].
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An example of a two-dimensional dynamics produced by the model described above

is given in Figure 2.13. We fix d = 0.05 as for the one-dimensional models; then, we

choose d∗ and c∗ in such a way that (2.51) is satisfied for n = 256 by QD
N =

√
2 and

QC
N = 2. This gives

d∗ = 3.8147 · 10−6 and c∗ = 3.9063 · 10−4 .

The vector ν is chosen to be e1. Figure 2.13 shows the evolution of the action potential

in the periodic box B = [0, 1]2 for n = 256, starting from an initial stimulus v|t=0 = 1

applied to the neurons lying in the circle of radius 1/32 around the center of the box.

The stimulus propagates in all directions, but since c∗ > 0 the speed of propagation is

faster in the direction of −ν.

2.3.1 Pseudo-random connections

While the models considered so far are fully deterministic, it is interesting to introduce

a form of randomness and monitor its effects. In the simplest form, this can be accom-

plished by perturbing the model considered above via a (pseudo-)random removal of

a fixed percentage of links among neurons. Connections to each neuron are turned-off

with uniform distribution in the given percentage, independently of the other neurons;

thus, the set Q(i) in (2.4) does depend upon i, in a (pseudo-)random manner. Com-

pared to the dynamics in Figure 2.13, by turning off a certain number of connections

leads to decreasing of the network activity. The signal propagation becomes more and

more difficult, up to the limit case in which the travelling pulse vanishes and the whole

network comes back to the equilibrium state.

As an example, we keep the same parameters d = 0.05, QD
N =

√
2, QC

N = 2 and

n = 256, as well as the same initial datum as above, and we choose to turn 30% of

connections off. In Figure 2.14, the resulting dynamics at the same time instants as in

Figure 2.13 is shown. The random effects on the patterns are apparent. The reduction

of active connections is reflected by a weaker propagation strength, i.e., a less travelling

pulse velocity and a less number of excited neurons. Indeed, let us consider t = 10

as in the second snapshots in Figure 2.13 and 2.14. By qualitatively comparing these

dynamics, a diminishing in velocity in the pseudo-random case is evident. Furthermore,

it emerges that slightly less than one half of the neurons are still excited. Specifically,

the number of active neurons at t = 10 in the deterministic dynamics is 2864, while it

decreases to 1341 when 30% of connections are eliminated. Furthermore, contours are

irregular and, in some realizations not shown here, even disconnected.

54



By increasing the percentage of turned-off links, what happens is that the travelling

pulse having irregular contours propagates slower and slower and involves even less neu-

rons. An observed limit case consists in 85% of connections off. Specifically, the active

connections in the percentage of 15% are too few to guarantee the signal propagation

and the pulse vanishes before reaching the domain boundaries.
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Figure 2.13: Two dimensional dynamics. Evolution of an initial stimulus by the discrete model
of Theorem 2.3 in a N = 256× 256 lattice of neurons
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Figure 2.14: Evolution as in Fig. 2.13, but with 30% of the connections turned-off in a pseudo-
random way
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Chapter 3
Chemically coupled neurons

In the previous chapter we focussed on neuronal networks where neurons were only

coupled by electrical synapses, i.e., gap junctions. Although this kind of networks have

received increasing attention in recent years, chemical synapses are the most frequent

ones in the central nervous system. Thus, after a brief introduction about chemical

synapse properties, we will discuss network models in which connections are character-

ized by chemical synaptic transmission.

3.1 Biological and modelling background

In order to explain the mechanism underlying chemical synapses, let us focus on two

chemically coupled neurons: the presynaptic and postsynaptic ones. Most frequently,

synapse is located between the axon of the presynaptic cell and a dendrite of the post-

synaptic one and it identifies the physical place in which the chemical reaction occurs.

Unlike gap junctions, in chemical synapses the axon and the dendrite do not physically

touch each other, i.e., there is a gap between them: the synaptic transmission takes

place in this specialized site. Schematically, a chemical reaction occurs when a signal

from the presynaptic neuron reaches the synapse, and it allows a potential variation in

the postsynaptic membrane. Indeed, the action potential causes the depolarization of

the axon’s terminal which leads to the opening of the voltage gated Ca2+ channels. As

a consequence of the increasing Ca2+ concentration inside the presynaptic membrane,

the vesicles filled of neurotransmitters fuse with the presynaptic membrane and their

content is released into the synaptic cleft. The neurotransmitters then passively diffuse

through the synaptic cleft and finally bind up with postsynaptic receptors. Thanks to

this binding between neurotransmitters and receptors, specialized postsynaptic channels
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Figure 3.1: Presynaptic, in term of the axon terminal, and postsynaptic cells are depicted.
The signal transmission in the synaptic cleft is carried out by neurotransmitters. Specifically,
the action potential provokes the opening of the voltage-gated calcium channels (Ca2+). Since
the concentration of Ca2+ increases inside the presynaptic terminal, vesicles fuse with the
terminal and they release neurotransmitters. By diffusion, they reach the postsynaptic cell
provoking the opening of specific channels. Variation in potassium and sodium concentration
in the postsynaptic cell translates in a change in the membrane potential

open. Accordingly, suitable ions flow through the postsynaptic membrane leading to

a change in the postsynaptic membrane potential. Figure 3.1 schematically describes

what happens in a synapse. Despite the response amplitude depends upon several

factors, two are the main classes collecting the postsynaptic answers: the excitatory

postsynaptic potential (EPSP) which describes a depolarization in the membrane po-

tential, and the inhibitory postsynaptic potential (IPSP) when a membrane potential

hyperpolarization occurs. The chief factor that determines the postsynaptic response is

the combination of two ingredients: the kind of neurotransmitter released by the presy-

naptic neuron and the receptor type invoked in the postsynaptic one. Notably, there

exist neurotransmitters, such as acetylcholine, for which both excitatory and inhibitory

receptors exist and there are some types of receptors that activate complex metabolic

pathways in the postsynaptic cell to produce effects that cannot appropriately be called

either excitatory or inhibitory. In order to deal with this variegated phenomenon, we

could consider postsynaptic neuron response as a direct function of the synaptic rever-

sal potential, vsyn. This potential ideally takes into account both neurotransmitter and

receptors. Nonetheless, it becomes apparent by experimental evaluations that most of

neurotransmitters provoke a single type response. For example for the glutamate, the

most important receptors all have excitatory effects. For other neurotransmitters, such
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as GABA, the most important receptors all have inhibitory responses (although there is

evidence that GABA is excitatory during early brain development). This is the reason

why neurotransmitters are commonly described as excitatory or inhibitory. From the

predominance of a single response-type, it follows that the postsynaptic potential can

be modelled as a direct function of the presynaptic reversal potential, vsyn,pre. Despite

we will consider this last approach, let us maintain in this introductory part the more

general notation vsyn.

Authors in [13] propose to determine the current produced by a chemical synapses,

Isyn, by considering the following linear Isyn − v relationship:

Isyn(t) = gsyns(t)(v(t) − vsyn) , (3.1)

where v(t) is the postsynaptic potential, s(t) is the fraction of the open channels,

gsyn > 0 is the maximum conductance and vsyn the reversal potential. Following the

original approach in [13], the course-time variation of s = s(t) follows by a simple

kinetic scheme which takes into account that, when an action potential reaches the

presynaptic terminal, it releases in the synaptic cleft the neurotransmitters molecules,

T . Furthermore, these molecules bind to the postsynaptic receptors. This translates

into considering the following first order kinetic scheme:

S + T
α−−⇀↽−−
β

TS∗ ,

where S and TS∗ characterize the bound and the unbound postsynaptic receptors,

respectively, and α , β are the forward and backward rate constants for transmitters

binding. Being s the fraction of open channels, i.e., the fraction of bound receptors, it

is described by
ds

dt
= α[T ](1 − s)− βs ,

where [T ] represents the neurotransmitter concentration in the synaptic cleft. We sup-

pose [T ] = 1 when a presynaptic impulse reaches the synapse, and for few times later.

The neurotransmitter release span is determined by the presynaptic potential vpre ex-

ceeding an a priori fixed threshold vT . On the contrary we suppose [T ] = 0 when

the threshold is not outpaced. This translates into considering the s time-course as

proposed in [15]:
ds

dt
= α(1− s)H∞(vpre − vT )− βs , (3.2)

where H∞ = H∞(x) is the Heaviside function such that H∞ = 0 if x < 0 and H∞ = 1
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otherwise. Postsynaptic neurons could have a certain heterogeneity degree in α and

β values. This allows us to describe different cell populations in a unique neuronal

network, as proposed in [15]. For example, we could model populations characterized

by gamma-aminobutyric acid GABAB synapses, which have slow opening and clos-

ing behaviours, and by GABAA and AMPA synapses, which have a fast nature in

opening and closing channels. In the sequel, if not otherwise specified, we suppose

α > β according to the fast opening of the sodium channel as opposed to a slower

activation of the potassium channel and deactivation of the sodium one. A rigorous

treatment of these concepts specifically applied to motorneurons is proposed in [51]. In

[13] and [15], a detailed classification of synaptic reversal potentials, linked to distinct

neurotransmitter/receptor couples, are specified.

Let us recall that the threshold vT did not appear in the FitzHugh-Nagumo model

described in Chapter 1. The reason is that, as stressed before, the FitzHugh-Nagumo

model is not a threshold type one. However, despite the spike generation in the presy-

naptic neuron being unrelated to a threshold, a bounded neurotransmitter release in-

terval in the chemical synapse term is ensured by vT in (3.2).

Before going on, a brief digression is now needed. The ordinary differential equation

(3.2) is introduced by authors in [13] in order to avoid the necessity of considering a

time-varying conductance gsyn = gsyn(t) in (3.2), such as the alpha-function described

in [42]:

gsyn(t) =
t− t0
τ

exp

[

−t− t0
τ

]

, t ≥ t0 , (3.3)

where t0 is the time of neurotransmitter release and τ is a time constant. Therefore,

in order to take into account the specific time in activating neurotransmitter release

and its subsequent time-course, exploiting (3.3) or introducing (3.2) becomes essential.

Specifically, neurotransmitter release time in (3.2) coincides with the instant in which

v = vT . It means that, despite the presynaptic neuron has already left the quiescent

state, as long as it does not reach the threshold vT , neurotransmitters are not yet

released. Of consequence, the postsynaptic neuron is not receiving any synaptic input.

This gap in time in the presynaptic neuron dynamics, between the upstroke state and

the threshold achieved, introduces a delay in transmission. Such a delay involves the

physiological time lapse necessary to starting neurotransmitter release. It is important

stressing that this delay cannot be assimilated to an axon conduction delay which would

involve both presynaptic and postsynaptic neurons. In this latter case, the variable s

in (3.1) would become

sij = s

(

t− |i− j|
ν

)

, (3.4)
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where ν is the positive axonal velocity value and the timing of s depends upon the dis-

tance between the presynaptic neuron j and the postsynaptic one i. The equation (3.4)

would rephrase the model that we are going to present in a system of delayed differential

equations. Nonetheless axonal delays are not considered in the thesis, we recognize their

importance in network description and we will introduce them in forthcoming works.

On the whole, the model which describes the action potential dynamics in a chem-

ically coupled network is the following one, similar to those proposed in [15]:

dvi
dt

= f(vi, ri)− gsyn,i





∑

j 6=i

aijsj(vi − vsyn,j)



 ,

dri
dt

= g(vi, ri) ,

dsi
dt

= αi(1− si)H∞(vi − vT )− βisi ,

(3.5)

where the adjacency matrix AG = (aij), defined in (2.2), describes the network archi-

tecture. For the sake of clarity, let us recall that the letter G identifies the graph, which

stands for the network, and that the adjacency matrix entries are defined as follows:

aij =











wij if (i, j) ∈ E(G)

0 else ,
(3.6)

where i, j = 1, · · · , N , the weights wij are strictly positive and E(G) collects the edges

of the graph G. In general, the adjacency matrix AG could be sparse or dense, local or

global. Nonetheless, in our case it is sparse since we assume each neuron is influenced

only by those neurons occupying a small spatial area called Bi ⊆ B, where B identifies

the whole domain, depending on the neuron but which remains fixed as N → ∞.

By using the Adjacency matrix definition in (3.6) and the notion of Bi, let us

rephrase the model (3.5) as follows:

dvi
dt

= f(vi, ri)− gsyn,i







∑

j∈B(i)

wijsj(vi − vsyn,j)






,

dri
dt

= g(vi, ri) ,

dsi
dt

= αi(1 − si)H∞(vi − vT )− βisi .

(3.7)
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The presence of a fixed area B(i) is the key difference between the model (3.7), in-

volving chemical synapses, and the model treated in Chapter 2 where electrical synapses

were taken into account. Since interactions involved in electrical synapses are mediated

by diffusion, their contributions vanishes as N → ∞ in a bounded domain. In order to

avoid this cancellation of the coupling term, a rescaling of the diffusion coefficient or an

increase in the number of connections for each neuron had been necessary. Nonetheless,

the resulting continuum model was a local one described by a system of reaction-

convection-diffusion equations (see Eq.(2.44)). On the contrary, as N → ∞, the model

(3.7) leads to the following integro-differential equations:

∂v

∂t
= f(v(x, t), r(x, t)) − gsyn

∫

B(x)
w(x, y)s(y, t)

(

v(x, t)− vsyn(y)
)

dy ,

∂r

∂t
= g(v(x, t), r(x, t)) ,

∂s

∂t
= α(1 − s(x, t))H∞(v(x, t) − vT )− βs(x, t) ,

where B(x) is the set collecting neurons, in the continuum framework, which influence

the one placed at x. This model is similar to the system (9.7) in [15]. However, in

order to highlight the fact that the reversal potential depends upon the presynaptic

neuron, it is explicitly imposed vsyn = vsyn(y) and, thus, the difference v(x, t)− vsyn(y)

is included in the integral operator.

Similarly, the discrete model (3.7) differs from (9.6) in [15] because we suppose

that vsyn depends upon the presynaptic neuron, i.e., vsyn,j, instead of depending upon

the postsynaptic one which would be written vsyn,i. In other words, the fact that the

reversal potential is imposed to depend upon the neurons j, instead of i, means that

the neuron which influences the postsynaptic neuron i is the presynaptic one, through

the chemical synapses. When there exists a homogeneous reversal potential upon the

whole network, i.e., ∀j vsyn,j = vsyn, then the difference (vi−vsyn) becomes independent

from j and it can be pulled out of the summation. This assumption is considered in,

for example, [4]. Moreover, focusing on the reversal potential in (3.7), we introduce the

following notation:

vsyn =











vEsyn ≥ 0 if the presynaptic neuron is excitatory,

vIsyn < 0 if the presynaptic neuron is inhibitory.

Specifically, considering a positive reversal potential, vEsyn, the depolarization of the
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postsynaptic membrane occurs. The depolarization is followed by, as usual, the hyper-

polarization phenomenon until equilibrium is reached. This response in the postsynaptic

membrane is due to the excitatory synapses. On the contrary, dealing with a negative

value of the reversal potential, vIsyn, the hyperpolarization of the membrane suddenly

appears. It is followed by the return towards equilibrium. This is the response of the

membrane triggered by an inhibitory synapse. The possibility to differentiate these two

kinds of synapses is a fundamental ingredient: it makes the model more meaningful

from a biological perspective.

Let us stress that the description of a network constituted by heterogeneous neurons

can be easily achieved by using parameters in the functions f and g, which depend on

the neuron i, i.e., f = fi(vi, ri) and g = gi(vi, ri) in (1.11).

In order to make notations consistent with Chapter 2 where we defined the set Q(i),

let us introduce the set P(i) which collects indexes p such that neuron i+ p is linked to

neuron i via chemical synapses. Thus, the chemical coupling term in (3.7) is rephrased

as
∑

p∈P(i)

wi,i+psi+p(vi − vsyn,i+p) , (3.8)

and the model (3.7) takes the following form:

dvi
dt

= f(vi, ri)− gsyn,i







∑

p∈P(i)

wi,i+psi+p(vi − vsyn,i+p)






,

dri
dt

= g(vi, ri) ,

dsi
dt

= αi(1− si)H∞(vi − vT )− βisi .

(3.9)

Different definitions of the set P(i) can be considered. Each of them will give rise

to a specific network architecture. An immediate choice consists to impose

P(i) := {p ∈ Z\{0} : ‖xi+p − xi‖ ≤ ri} , (3.10)

by preliminarily fixing the ranges of interactions ri ∈ R
+. Let us underline that the

range of interaction does not depend upon the number of neurons N in the domain.

Moreover, if ri = r ∀i = 1, · · · , N thus, P(i) = P. It means there is no heterogeneity

in the network topology with respect to each neuron.

In the sequel, we will tackle the issue of describing dynamics produced by (3.9) in

one and more spatial dimensions.
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3.2 One-dimensional dynamics

Firstly we detail the analysis of model (3.9) in the one-dimensional case. As in Chapter

2, neurons are identified by integer labels i = 1, · · · , N . Each neuron occupies a specific

physical position xi in the interval B = [0, 1) given by (2.6):

xi = (i− 1)∆x =
i− 1

N
with 1 ≤ i ≤ N ,

where N is the number of elements equally distributed along the chain and, conse-

quently, ∆x = 1/N is the distance between any two adjacent ones. Furthermore, we

assume periodic boundary conditions, thus the chain is closed, i.e., we set v0 = vN and

vi+kN = vi for any k ∈ Z.

Let us take into account a network without heterogeneity in the connection rule,

i.e., P(i) = P ∀i, with P(i) as in (3.10). Elements wi,i+p in (3.9), which are the weights

collected in the adjacency matrix (2.2), may assume different values according to a

specific law chosen. In general, we assume that weights wi,i+p (i.e., wij in (2.2)) are

determined as a function of the number of connections for each neuron. Specifically,

let us introduce the scalar value ω which represents the number of connections among

nearest-neighbour cells. For example, in this section, ω := 2 (in general, ω := 2m where

m is the space dimension). Thus,

wi,i+p =
ω

#P . (3.11)

Naively, carrying out dynamics which involve nearest-neighbour neurons only, weights

are unitary. Otherwise, if the number of connections increases, the value of wi,i+p

diminishes. In other words, the strength coupling is even up among all of them. Let us

stress that each element wi,i+p is often interpreted as the probability to find a connection

between cells i and i+ p.

We first consider the case of all excitatory neurons. The model (3.9), with a suitable

initial datum, generates a pulse-like dynamics, as shown in Figure 3.2 where N = 256.

Specifically, such dynamics is originated by an initial stimulus applied to the central

neuron (i = N/2) of the line: its action potential is initially set to the value 2, whereas

all the other variable are set to 0. The parameters of the model are fixed as follows:

αi = 0.9, βi = 0.1, gsyn,i = 0.1, vEsyn,i = 0.9, vT = 0.9, r = 1/128 ∀i . (3.12)

Obviously, the choice of parameters characterizes the solution. A key role is played by
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Figure 3.2: Dynamics obtained by exploiting the model (3.9) within a population of N = 256
neurons. Red dots with value 1 (0, resp.) indicate neurons such that vi ≥ vT, (vi < vT)

the threshold vT : it determines, together with the Heaviside function, the activation or

deactivation of ion channels underlying the mechanism of the action potential. In Figure

3.2, the Heaviside function is shown simultaneous to the solution. Increase or decrease

of the threshold leads to pulses with different velocities and thickness. Variations in

velocity and thickness are documented in Figure 3.3. In every snapshot, N = 256. The

only parameter that is changing is the value of the threshold vT . In the first frame of

Figure 3.3, vT = 0.7. In the second one, vT = 0.8, and in the last one, vT = 0.95.

These frames show dynamics at the same time instances. Note that the third snapshot

in Figure 3.3 coincides with the last one in Figure 3.2. It is apparent that the threshold

affects the dynamics: the lower is vT , the bigger is the neuron number in the active

state. Thus, the pulse is thicker and quicker. On the opposite, increasing vT the pulse

struggles to arise and to travel along the whole set of neurons.

In Figure 3.4, the evolution in time of the action potential produced by the discrete

model (3.9) within populations with a different number of cells is documented. Focusing

on both comparisons (between dynamics in populations of N = 128, N = 256 and

N = 2048, N = 4096), the convergence of the solutions is documented.

Next, in order to embed a certain degree of heterogeneity in the network, let us

consider two types of synapses: the inhibitory and the excitatory ones. Differently

from (3.12), vT = 0.8 and the inhibitory reversal potential is added, vIsyn,i = −0.1.

Figure 3.5 shows a dynamics where several neurons receive inhibitory synapses. Let

us stress that, according to treatments in Paragraph 3.1, we characterize an inhibitory
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Figure 3.3: Snapshots at time t = 12 of dynamics within a population of N = 256 neurons
coming from different choices of the threshold vT . These results strengthen the expectation of
a strong influence due to vT . In the first frame vT = 0.7, followed by vT = 0.8 and vT = 0.9,
up to vT = 0.95. As expected, by increasing vT , the pulse becomes even thinner and slower

neuron with a negative reversal potential. In particular, we choose to fix a negative

reversal potential to 5% of neurons uniformly distributed. The resulting dynamics has

to be compared with the one in Figure 3.2. Coherently to biological attendance, neurons

involved in inhibitory synapses are characterized by a membrane potential lower than

the resting one during the whole dynamics. Nevertheless, all neurons return to the

resting state at the end of the integration. Let us underline that the signal would

abruptly disappear and neurons would suddenly return to the quiescent state, if we

assumed that all synapses received from a neuron by one side are inhibitory. Figure

3.6 shows snapshots of dynamics originated in populations of neurons with different

percentages of inhibitory neurons. Frames are collected at the same time instances.

It is apparent that, while the number of inhibitory neurons increases, travelling pulses

decrease in velocity.

3.3 Multi-dimensional dynamics

Let us now consider multi-dimensional dynamics. We first assume that neurons form

a periodic lattice contained in B = [0, 1)m, m = 2 or m = 3, as done in Chapter 2.

Precisely, given any integer n ≥ 2 and setting h = 1/n, each neuron is associated to a

multi-index l ∈ {0, · · · , n−1}m, which identifies its physical position x = hl ∈ B. Thus

we have N = nm distinct neurons in B, which are labelled by indices i ∈ {1, · · · , N}
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(b)

Figure 3.4: Convergence of the discrete model (3.9) as N increases. Evolution of pulses (a)
for N = 128 (red dots) and N = 256 (black dots), (b) for N = 2048 (red dots) and N = 4096
(black dots)
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Figure 3.5: Dynamics obtained by exploiting the model (3.9). 5% of the N = 256 neurons are
characterized by a vIsyn = −0.1 (red dots). On the contrary, cells described by black dots receive

excitatory synapses. As above, vEsyn = 0.9, while the threshold is vT = 0.8

according to some non-relevant rule; the i−th neuron has position xi = hli, action

potential vi, recovery variable ri and the synaptic variable si. These quantities are

described by model (3.9) with periodic boundary conditions. By formula, periodicity

means that we re-iterate the situation at x = hl in any y = h(l + nk) with k ∈ Z
m.

According to the definition of P(i) in (3.10), neurons linked with the i−th one

(∀i = 1, · · · , N) by chemical synapses belong to the a priori fixed area. As mentioned

earlier, the number of links for each neuron, i.e., the cardinality of the set P, affects

the value of the non-zero elements of the adjacency matrix. Nonetheless, irrespective of

the number of cells in the population, we select this area as a circle or a sphere with a

fixed radius r = 1/32 ≃ 0.0313. If n = 32, this choice leads to four and six connections

per neuron for m = 2 and m = 3, respectively; since we assume neurons to be disposed

over a lattice, in all space dimensions each neuron is linked to the nearest-neighbours,

as shown in Figure 3.7. Let us stress that, in the multi-dimensional case, the definition

of P(i), stated in (3.10), is similar to that of QD
N ’s presented in Eq.(2.46). They do not

coincide though, since as opposed to P(i), |QD
N | tends to zero as N → ∞.

As in the one-dimensional case, the choice of parameters α, β, vT , gsyn and r is

crucial. Changing one parameter may radically modify the dynamics. We will see later

on that, despite the conceptual differences they present, the range of interaction r and

the threshold vT cause similar changes in the dynamics (that becomes apparent by

analysing Figures 3.9–3.10). In particular, effects on the velocity and on the thickness
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Figure 3.6: Snapshots at time t = 12 of dynamics within a population of N = 256 neurons
with different percentage of inhibitory neurons. Specifically, from the top to the bottom, 0%
(only excitatory neurons), 5%, 10%, 15% and 20% of inhibitory neurons are considered. While
the percentage of inhibition increases, it is apparent that the velocity of the travelling pulse
decreases. Moreover, the probability to have the wave diminishes. Indeed, hyperpolarization
of the postsynaptic membrane due to the inhibitory synapse contrasts the wave propagation.
This is the reason why in the last two snapshots one or two waves disappear. As in Figure 3.5,
vEsyn = 0.9, vIsyn = −0.1 and vT = 0.8

Figure 3.7: Neurons on the circumference (left) and on the surface of the sphere (right) are
linked with the central node. Assuming in both cases the radius to be unitary, nearest-neighbour
interactions are taken into account
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of the pulses arise.

We first consider the case of excitatory neurons only. The parameters are fixed as

follows:

αi = 0.9, βi = 0.1, gsyn,i = 0.1, vEsyn,i = 0.9, vT = 0.9, r = 1/32 ∀i , (3.13)

while the value of vIsyn will be specified in the Section 3.3.3. In the sequel, possible

parameter variations will be mentioned.

In order to investigate the dynamics produced by (3.9), in the following section we

discuss several numerical results obtained by imposing (3.13). For the sake of simplicity,

focusing on the case m = 2, i.e., let us consider the square box B = [0, 1)2. In each

numerical result, the initial stimulus vt=0 = 1 is applied to the neurons lying in the

circle of radius 1/32 around the center of the box. In succession, the full-deterministic

model as well as the model with stochastic parameters is taken into account.

3.3.1 Deterministic dynamics

The full-deterministic model is essential to completely understand solutions of model

(3.9). Indeed, by avoiding any stochastic ingredient we are able to reveal specific fea-

tures of solutions. In this section we examine three cases which concern networks’

architectures at different levels of relevance from biological perspectives. Such cases al-

low us to qualitatively present the mathematical achievement related to the convergence

of the solutions, as well as to show realistic dynamics within population of neurons.

Case A. Uniform distributed weights

Firstly, we deal with the set of connections P(i) defined in (3.10) such that P(i) = P
∀i. Thus, we build up the adjacency matrix AG, defined in (2.2) as a symmetric

one with uniform weights values ai,i+p ∀i. As underlined before, this goes against the

fundamental feature of the chemical synapses to be directional. Nonetheless, in order to

qualitatively show the convergence of the solutions while the number of cells increases,

we admit symmetric chemical reactions. In Figure 3.8, two-dimensional solutions of

(3.9) are shown. Snapshots (a), (b) and (c) are taken at the same time instants and

they differ by the number of neuron in the square box. We start in (a) with the

benchmark case of n = 32 per side, going to n = 64 in (b) and up to n = 256 in

(c). Since the connections are symmetric, the initial stimulus produces an isotropic

dynamics. Let us underline that the solution is qualitatively similar to that originating

from an electrical coupled network. Snapshots illustrate the initial excitation of the
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cells closest to the initially stimulated points, while the farther cells are still at rest.

As time passes, a steep wave front is generated and travels in the radial direction from

the center to the boundaries. As described by the nonlinear term due to FitzHugh-

Nagumo model, a repolarizing wave tail follows the wave front; it describes a travelling

pulse. Furthermore, these plots qualitatively document the convergence of the discrete

dynamics as n increases. As underlined before, the range of interactions r determines

the properties and the evolution in time of the travelling pulses. Figure 3.9 shows the

evolution of the travelling pulses by considering different ranges of interactions. In order

to allow the comparison, snapshots are taken at the same time. Specifically, the radius

are r = 1/64 and r = 1/16 in Figures 3.9 (a) and (b), respectively. These dynamics

should be compared to that in Figure 3.8 (c). Since r is the only changing parameter,

it is apparent how it qualitatively affects the evolution of the solutions. First of all, the

larger is the radius r, the quicker is the travelling pulse. This is due to the fact that

a larger number of linked neurons leads to a faster propagation of signals within the

lattice. Moreover, the pulse involves greater excited neurons than in Figure 3.8 (c). In

other words, the ring-shaped pulse becomes thicker. On the contrary, by considering

half the radius as in (b), a slower pulse arises. The number of excited neurons involved

are now less than in (b), thus we say the pulse becomes thinner. Similar effects on

pulse’s speed and shape can be obtained by considering different values of the threshold

vT , as documented in Figure 3.10.

In almost all dynamics of this chapter, we consider neurons placed over a regular grid

in the domain. In the case of uniform distributed weights we anticipate a more realistic

framework which will be used in the following chapters. Indeed, in order to make the

neuron positions over a slice more realistic, we exploit a triangular decomposition of the

domain which is borrowed from the FEM technique. Focusing on the two-dimensional

domain, B = [0, 1)2, we use a Matlab triangular mesh generator called BBTR described

in [6]. Adopting a triangular mesh, two improvements are carried out. Fistly, distance

between two nearest neighbour neurons, which are represented by the triangle vertices,

is not constant. Secondly, domain subregions with different mesh refinement may be

considered. This means that subregions with different density of neurons, as well as

the absence of neurons, are affordable. In Figure 3.11, the same problem which leads

to the dynamics shown in Figure 3.8 has been solved. In the case of the triangular

domain decomposition, the number of neurons is 10319. Let us note that, despite we

abandoned the regular grid in favour of an unstructured one, the solution converges to

those in Figure (3.8) (c).
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t=1.5

(a)
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t=4.5 t=5.8 t=8

t=1.5

(c)

t=4.5 t=5.8 t=8

Figure 3.8: Convergence of the solutions of discrete model (3.9) by considering differentN = n2.
Evolution of pulse (a) for n = 32, (b) for n = 128 and (c) for n = 256.
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t=1.5

(a)

t=4.5 t=5.8 t=8

t=1.5

(b)

t=4.5 t=5.8 t=8

Figure 3.9: Evolution of the travelling pulse in the square lattice with n = 256. The only
difference with Figure 3.8-(c) is a different value of r which was r = 1/32. Now, r = 1/16 in (a)
while r = 1/64 in (b). Differences in velocity and thickness of the travelling pulse are evident

t=5.8 t=5.8 t=5.8

Figure 3.10: Dynamics at t = 5.8 obtained by choosing different threshold values. The first
frame refers to vT = 0.7, the second to vT = 0.8 while the third one involves vT = 0.93 as in
Figure 3.8. It is apparent that changes in the threshold value provoke different thickness of the
pulses. Despite the threshold value and radius of interactions are not similar from a conceptual
perspective, comparing these snapshots with those in Figure 3.9, becomes evident that they
produce rather similar effects on the travelling pulses
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Figure 3.11: Development of the travelling pulse in the square block with 10319 neurons placed
at the vertices of the triangles. Each neuron receives chemical input from those which belong
a circle of radius 1/16 (of which it is the center). Two areas with different neuronal densities
are considered. Despite this new approach, with in addition a non-uniform mesh, a qualitative
comparison between this dynamics and those in Figure 3.8 (c) leads to the conclusion that these
travelling pulse are similar. Thus, the triangular decomposition does not affects the solution
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Figure 3.12: Plots with different visualizations of the Gaussian function stated in (3.12) having
θ = π/3 and σξ2/σξ1 = 20

Case B. Gaussian distributed weights

Moving towards more realistic network architectures, let us first vary the weights of

connections in the adjacency matrix according to a given (still deterministic) rule. In

this way, a hierarchy in synapse efficacy is created. For this purpose, let us introduce

the Cartesian coordinates ξ ∈ R
2. A two-dimensional Gaussian function plays the key

role in assigning the weight to each connection. Let us consider the Gaussian function

Nθ(ξ) = exp{−aξ21 + 2bξ1ξ2 + cξ22} , (3.14)

centred at the origin with

a =
cos2(θ)

2σ2ξ1
+

sin2(θ)

2σ2ξ2
b =

sin(2θ)

4σ2ξ1
− sin(2θ)

4σ2ξ2
c =

sin2(θ)

2σ2ξ1
+

cos2(θ)

2σ2ξ2
.

A three-dimensional representation of Nθ(ξ) is proposed in Figure 3.12.

The parameters σξ1 , σξ2 are the ξ1 and ξ2 spreads of the blob and θ determines

its angle with respect to the horizontal axis. In particular, we choose σξ2/σξ1 = 20.

Let us underline that the Gaussian function (3.14) provides values between zero and

one accordingly to the distance from the centre (0, 0). Considering the set P defined

in (3.10) and fixing θ, e.g. θ = π/3, the Gaussian function Nθ(x− xi) assigns weights

to all neurons lying in the circle of radius r with respect to each cell. Figure 3.13

shows the obtained dynamics. The choice θ = π/3 as the direction of the strongest

links is reflected by the fact that the pulse triggered by the initial datum presents an

axial symmetry with respect to the line ξ2 = tan(π/3)ξ1 in the domain B = [0, 1)2.
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t=1.5 t=4.5 t=5.8 t=8

Figure 3.13: Evolution of the travelling pulse in the square lattice with n = 256. The Gaussian
function (3.14) with θ = π/3 determines link weights for each neuron of the lattice. If we
considered homogeneous weights, Figure 3.8 (c) would be the result

Differently from the dynamics in Figure 3.8, weights are modified (reduced) according

to the Gaussian distribution. By comparing solutions in Figure 3.13 and 3.8 (c), it

becomes apparent that the weight reductions turn in a slower pulse.

In order to introduce heterogeneity in the connection rule among neurons, i.e.,

allowing P(i) to depend on the neuron i, the angle θ in (3.14) can be determined

according to some specific law. For example, let us introduce the vector field Φ : X →
(α sin2(2πξ1), 1 + β cos(2πξ2)), where X = (ξ1, ξ2) ⊆ [0, 1)2, 0 < α ≤ 1 and 0 < β < 1.

Thus, for the neuron placed at X̄ = (ξ̄1, ξ̄2), we set

θ = θX̄ = arctan

(

1 + β cos(2πξ̄2)

α sin2(2πξ̄1)

)

. (3.15)

By fixing α = 1 and β = 0.5, the corresponding dynamics is shown in Figure 3.14. As

another example, the dynamics obtained with the same values of α and β by exploiting

the vector field Ψ : X → (α sin(2πξ1), 1 + β cos(2πξ2)) is presented in Figure 3.15. In

this case,

θX̄ = arctan

(

1 + β cos(2πξ̄2)

α sin(2πξ̄1)

)

. (3.16)

Case C. Unidirectional synapsess

We finally reach the notable case of unidirectional synapses. To perform dynamics

consistent with the reality, this ingredient is fundamental. We decide to deal with

unidirectional synapses by selecting connections lying in half a circle of radius equal to
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Figure 3.14: Development of the travelling pulse in the square lattice with n = 256 in which
the angle θ, assigned to each neuron in the Gaussian function (3.14), is determined by (3.15)

the range of interactions for each neuron, which is a subset of P. In formulae,

P = {p : ‖xi+p − xi‖ ≤ r and xi+p,2 − xi,2 +
1

tan θ
(xi+p,1 − xi,1) ≤ 0} . (3.17)

This choice translates in exploiting the Gaussian function Nθ(ξ) given in (3.14) for

defining weights of connections, and to impose ξ2 − ξ̄2 +
1

tan θ (ξ1 − ξ̄1) ≤ 0 to consider

connections in half the plane. In Figure 3.16, snapshots of unidirectional chemical

synapses are shown. In this case also, θ = π/3. The first four frames should be

compared with those in Figure 3.13, where non-directional synapses are taken into

account.

3.3.2 Quasi-deterministic dynamics

In order to inject a certain degree of stochastic heterogeneity in the network topology,

let us vary the weights in the adjacency matrix according to a non-deterministic rule.

Specifically, we exploit the Gaussian function defined in (3.14) and we consider the angle

θ as a random variable uniformly distributed in [0, π[ for each neuron of the lattice. As in

Case B above, the corresponding Gaussian function assigns suitable weights to neurons
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Figure 3.15: Development of the travelling pulse in the square lattice with n = 256 in which
the angle θ, assigned to each neuron, in the Gaussian function (3.14) is determined by (3.16)

lying in the circle of radius r, but now P(i) does depend upon i. Figure 3.17 shows the

resulting dynamics at the same time instants of Figure 3.8 (c). The random effects on

the pattern are apparent. Firstly, contours of the pulse are irregular as highlighted in

Figure 3.18. Secondly, since weights in the adjacent matrix are decreased according to

the Gaussian function, the pulse travels with a lower speed than in the deterministic

case.

To complete the present section, the case of unidirectional random dynamics is

presented. As in Section 3.3.1, Case C, the connection weights are assigned by exploiting

(3.14) intersected with ξ2− ξ̄2+ 1
tan θ (ξ1− ξ̄1) ≤ 0. Moreover, we consider the angle θ as

a random variable uniformly distributed in (π/3 − π/4, π/3 − π/4] for each neuron of

the lattice. Differently from the dynamics in Figure 3.16, it becomes evident that the

pulse velocity is significantly lower and that the contour of the pulse are irregular.

3.3.3 The effect of inhibitory neurons

In order to make a parallelism with what done in the one-dimensional case, let us

consider both excitatory and inhibitory synapses. The parameters are the same as in
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t=1.5 t=4.5 t=5.8 t=8

t=10 t=12 t=14 t=16

Figure 3.16: Development of the travelling pulse in the square block with n = 256. With respect
to each neuron, the Gaussian function (3.14) with θ = π/3 determines link weights for those
connected with it. Furthermore, among them, zero weights are imposed to those neurons lying
in ξ2 − ξ̄2 +

1
tan θ (ξ1 − ξ̄1) ≤ 0

t=1.5 t=4.5 t=5.8 t=8

Figure 3.17: Development of the travelling pulse in the square lattice with n = 256 in which the
Gaussian function (3.14), that determines the link weights, is considered. The angle θ assigned
to each node of the lattice is randomly chosen with uniform distribution on [0, π)
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Figure 3.18: To stress the effect of the random ingredient in Figure 3.17, we focus on an enlarged
detail of the snapshot at t = 5.8: contour of the pulse is irregular

t=1.5 t=4.5 t=5.8 t=8

Figure 3.19: Development of the travelling pulse in the square block with n = 256. With respect
to each neuron, the Gaussian function (3.14), with θ as a random variable uniformly distributed
in (π/3 − π/4, π/3 − π/4], determines link weights for those connected with it. Furthermore,
among them, zero weights are imposed to those neurons lying in ξ2 − ξ̄2 +

1
tan θ (ξ1 − ξ̄1) ≤ 0

82



(3.13), with the exception of the vEsyn,i now set to 0.93 for each i excitatory neuron.

Moreover, the inhibitory reversal potential vIsyn,i is fixed to −0.9 for each i inhibitory

neuron.

Figure 3.20 shows dynamics originated in cell populations with different percentages

of inhibitory neurons. It becomes apparent that, while the percentage of inhibitory

neurons increases, travelling pulses have even less regular boundary shapes and decrease

in velocity. In the Figure 3.20 (a) (b) and (c), despite inhibition does not preclude the

propagation of the excitation in these dynamics, it clearly reduces the neural excitatory

activity. On the contrary, the wider inhibition stops the excitation phenomenon at

t = 17.
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Figure 3.20: Solutions of the discrete model (3.9) by considering different percentage of in-
hibitory neurons. Notably, evolution of wave pulse for (a) 5%, (b) 10%, (c) 15%, and (d) 20% of
them. We considered vsynE,i = 0.93 for each i-th excitatory cell and vsynI,i = −0.9 for each i-th
inhibitory one. Snapshots in (a)-(d) show even less regular boundary shapes and the respective
pulse velocity decreases. Excitation in dynamics (d) stops at t = 17
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Chapter 4
Ensemble of electrical and chemical

synapses

In Chapters 2 and 3 we investigated the membrane potential dynamics within pop-

ulations of neurons, assuming that their coupling involve synapses of a single type,

either electrical or chemical. This was clearly done in order to highlight the effects due

to each type. Since our aim is to study realistic neuronal networks, the fundamental

step is to put both the coupling types together. In the following, we will build up the

complete model. Afterwards, we will provide a characterization of the synchronization

phenomena.

4.1 The complete model

In order to describe a realistic neuronal network, we have to take into account that

the input current for each neuron is the result of both electrical and chemical coupling

interactions, i.e.,

I = Igap + Isyn , (4.1)

where Igap and Isyn are defined in (2.1) and (3.1), respectively. Referring to each cell,

the currents Igap,i and Isyn,i assume expressions widely explained in Chapters 2-3.

In order to get across the following treatments, let us consider a generic unstructured

decomposition of the domain B = [0, 1]m, where m = 1, 2, 3. Accordingly, xi ∈ R
m

describes the position of that cell i.

Concerning the current due to electrical synapses, Igap,i, we define Q(i) collects the
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neurons linked by gap-junctions as follows:

Q(i) = {q ∈ Z\{0} : i+ q and i are nearest-neighbours} . (4.2)

Imposing that each neuron is linked with its contiguous ones, it implies that, as biophys-

ically reasonable, signals flow through gap-junctions in both directions. Furthermore,

we let the diffusion coefficient to grow with the number of neurons N (thus, d = dN ).

In formulae,

Iigap = dN
∑

q∈Q(i)

(vi+q − vi) . (4.3)

The Isyn,i current input in (4.1) takes into account currents produced by chemical

synapses. Due to the biophysical considerations described in Chapter 3, we set

Iisyn = gsyn,i







∑

p∈P(i)

wi,i+psi+p(vi − vsyn,i+p)






, (4.4)

where the set P(i) collects indexes p such that neurons i + p influence the cell i via

chemical synapses. Specifically, with respect to each cell, links exist over a substantial

area which remains fixed as N → ∞. One of the possible definitions of P(i), suggested

in (3.10), is

P(i) = {p ∈ Z\{0} : ‖xi+p − xi‖ ≤ ri} ,

i.e., P(i) collects all the neuron indexes belonging to a circle centred in i and having

radius ri. Let us note that non-homogeneous weights wi,i+p ∀p ∈ P(i) can be introduced

by exploiting, for example, the Gaussian function (3.14) as done in Section 3.3.1, Case

B.

Taking into account (4.3) and (4.4), the whole system takes the following represen-

tation:

dvi
dt

= f(vi, ri) + dN
∑

q∈Q(i)

(vi+q − vi)− gsyn,i







∑

p∈P(i)

wi,i+psi+p(vi − vsyn,i+p)






,

dri
dt

= g(vi, ri) ,

dsi
dt

= αi(1− si)H∞(vi − vT )− βisi .

(4.5)

The continuum model can be derived from the discrete one (4.5) by letting the
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number of cells tend to infinity. Notably, in the limit case of N → ∞, this model leads

to the following integro-differential equation system:

∂v

∂t
= f(v(x, t), r(x, t)) + d∗∆v − gsyn

(

∫

y∈B(x)
w(x, y)s(y, t)(v(x, t) − vsyn(y)) dy

)

,

∂r

∂t
= g(v(x, t), r(x, t)) ,

∂s

∂t
= α(1 − s(x, t))H∞(v(x, t) − vT )− βs(x, t) .

(4.6)

Here, instead of (2.52) in which a convective term is present as the limit of the electrical

discrete coupling, for the sake of simplicity the only diffusive term is taken into account.

This means that all gap-junctions are here supposed to be non-rectifying synapses.

Moreover, B(x) ⊆ B is the small fixed area which collects the continuum of cells linked

with that in x; notably, it remains fixed as N → ∞. A proof of the well-posedness for

the system (4.6) will be presented in Section 4.3.

Despite in the following section an unstructured mesh decomposition will be consid-

ered, in order to show membrane potential dynamics produced by the discrete model

(4.5), we first consider neurons collected over a periodic lattice contained in B = [0, 1)m,

m = 2, as formalized in Chapter 2.

Let us underline that, thanks to a regular domain decomposition, the definition of

Igap,i in (4.3) corresponds to Approach I explained in Chapter 2. This choice implies

that if we compare solutions obtained with different N , we would rescale the diffusion

coefficient. Here, this selection is due to experimental reasons which underline the

high probability of finding gap-junctions among neighbouring cells. In order to avoid

the vanishing of the diffusion phenomenon as N → ∞, an alternative way is called

Approach II. It involves links among not only nearest-neighbours, which are chosen

accordingly to a suitable function of N , together with a fixed diffusion coefficient. Both

approaches are fully described in Chapter 2. Furthermore, let us consider the set which

takes into account chemical synapses, P(i), as in Section 3.3.1; in particular, Cases B

and C.

By applying an initial stimulus to the neurons lying in the circle of radius 1/32

around the center of the box, a travelling pulse is originated. The strengths of electrical

and chemical couplings, i.e., the parameters dN (4.3) and gsyn in (4.4), play a fundamen-

tal role in determining the solution. In other words, by varying the parameter values,

a hierarchy between the electrical and chemical phenomena is generated.

The dynamics we are showing first involve bidirectional chemical synapses, i.e., P(i)
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as in (3.10). In Figure 4.1, the strength of the chemical interactions gsyn is maintained

fixed to 0.1, while the diffusion coefficient changes; specifically, in the dynamics de-

picted in Figure 4.1 (a)-(b)-(c), it takes the values d = 0.05, d = 0.01 and d = 0.005,

respectively. Comparing these three cases, it becomes apparent that the electrical trans-

mission strength influences the shape and the velocity of the travelling pulses. In the

first slot of snapshots, the diffusion coefficient d = 0.05 causes the preponderance of the

electrical diffusion phenomenon over the chemical one. Thus, since electrical connec-

tions involve nearest neighbour neurons as in Figure 3.7, a nearly isotropic dynamics

arises. By diminishing the diffusion coefficient d to 0.01, the travelling pulse shape elon-

gates according to the weights assigned to the excitatory chemical connections. When

d = 0.005, electrical synapses become too weak to cause an isotropic pulse propagation

and chemical synapses determine the dynamics: an elongated pulse mainly propagated

along one direction, as imposed by the gaussian distributed weights.

As performed in Chapter 3, a notable case is to consider unidirectional chemical

interactions. This choice translates into imposing, for each neurons having position

(ξ1, ξ2), connections lying in the half plane ξ2− ξ̄2+ 1
tan θ (ξ1− ξ̄1) ≤ 0, as fully explained

in Section 3.3.1, Case C. This condition, joined to weights defined by the normal distri-

bution (3.14), leads to the dynamics shown in Figure 4.2. In this particular case, chem-

ical synapses among nearest neighbour neurons and unidirectional chemical synapses

co-exist. Here parameters are θ = π/3, as in Figure 3.13, d = 0.01 and gsyn = 0.1. The

other values are set as in Section 3.3. Whenever a non-null initial datum is imposed

in the center of the domain, the result is a travelling pulse toward the boundaries hav-

ing a preferred direction due to the chemical synapse unidirectionality. However, it is

apparent that the pulse propagation takes place in all directions, different to what is

described in Figure 3.16. This is due to the presence of electrical synapses.

4.2 Synchronous and asynchronous states

Synchronization in neuronal network is a widely studied topic. It operates in, among

others, the fundamental phenomenon of the synaptic plasticity. In large neuronal net-

works different dynamics can be observed, from chaotic to spatially or temporally reg-

ular patterns. When network activity is uniform on the whole domain at the same

time, we say that a synchronous activity arises. In order to mathematically charac-

terize the synchronous phenomenon, we introduce a synchronization measure. There

exist many of them in literature. For example, one of those presented in [1] involves a

cross-correlation function which compares activity of couples of neurons across different
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Figure 4.1: Solutions of discrete model (4.5) obtained by considering different values of the
diffusion coefficient d while the chemical coupling strength is fixed at gsyn = 0.1. Specifically,
in (a), d = 0.05. In (b), d = 0.01 and d = 0.005 in (c)
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Figure 4.2: Development of the travelling pulse in the square block of n = 256. Each neuron is
linked to its nearest neighbours by gap-junctions and with those lying in a half circle of radius
r by chemical synapses. In particular, chemical synapse weights are imposed by exploiting the
Gaussian function (3.14) with the angle θ = π/3. In consequence, the active chemical synapses
in half circle are determined by imposing ξ2 − ξ̄2 +

1
tan θ (ξ1 − ξ̄1) ≤ 0. The diffusion coefficient

d is let to 0.05

time delays. Since this activity is influenced by the synchronization degree, it provides

a synchronization measure of the system. Another kind of relevant measure for phase

models, fully described in [35], involves the phase coordinate of each single neuron.

Within the wide variety of synchronization measures, some of them refer to the fluc-

tuations of the potential v. Our choice, explained in [22], defines the synchronization

measure by averaging the fluctuations over a long time and by normalizing the variance

value. Specifically, the first step consists in evaluating the average potential v(t) at a

given time t:

v(t) =
1

N

N
∑

i=1

vi(t) .

This quantity describes the system behaviour in terms of population-averaged voltage.

Furthermore, the variance of the time fluctuations of v(t) is

σ2v =
〈

[v(t)]2
〉

t
−
[

〈v(t)〉t
]2
,

where 〈· · · 〉t = 1/T
∫ T
0 · · · dt denotes the time-averaging over a large time T . At this

stage, a normalization of σ2v to the average over the single cell membrane potentials is

needed. This leads to the definition of

χ2(N) =
σ2v

1
N

∑N
i=1 σ

2
vi

, (4.7)
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