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A CHARACTERIZATION OF VARIETIES WHOSE
UNIVERSAL COVER IS A BOUNDED SYMMETRIC

DOMAIN WITHOUT BALL FACTORS

FABRIZIO CATANESE - ANTONIO J. DI SCALA

Abstract. We give two characterizations of varieties whose uni-
versal cover is a bounded symmetric domain without ball factors
in terms of the existence of a holomorphic endomorphism σ of the
tensor product T ⊗T∨ of the tangent bundle T with the cotangent
bundle T∨. To such a curvature type tensor σ one associates the
first Mok characteristic cone CS, obtained by projecting on T the
intersection of ker(σ) with the space of rank 1 tensors. The simpler
characterization requires that the projective scheme associated to
CS be a finite union of projective varieties of given dimensions
and codimensions in their linear spans which must be skew and
generate.

1. Introduction

A central problem in the theory of complex manifolds is the one of de-
termining the compact complex manifolds X whose universal covering
X̃ is biholomorphic to a bounded domain Ω ⊂ Cn.
A first important restriction is given by theorems by Siegel and Kodaira
([Kod54], [Sie73]) extending to several variables a result of Poincaré,
and asserting that necessarily such a manifold X is projective and has
ample canonical divisor KX .
A restriction on Ω is given by another theorem of Siegel ([Sie48], cf.
also [Koba58]) asserting that Ω must be holomorphically convex.
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The question concerning which domains occur was partly answered by
Borel ( [Bore63]) who showed that, given a bounded symmetric domain
Ω ⊂ Cn, there exists a properly discontinuous group Γ ⊂ Aut(Ω) which
acts freely on Ω and is cocompact (i.e., is such that X =: Ω/Γ is a
compact complex manifold with universal cover ∼= Ω).

We consider the following question: given a bounded domain Ω ⊂ Cn,
how can we tell when a projective manifold X with ample canonical
divisor KX has Ω as universal covering ?
The question was solved by Yau ([Yau77]) in the case of a ball, using
the theorem of Aubin and Yau (see [Yau78], [Aub78]) asserting the
existence of Kähler Einstein metrics for varieties with ample canonical
bundle. The existence of such metrics, joint to some deep knowledge
of the differential geometry of bounded symmetric domains, allows to
obtain more general results.
Together with Franciosi ([CaFr09]) we took up the question for the case
of a polydisk, and a fully satisfactory answer was found in [CaDS12] for
the special case where the bounded symmetric domain has all factors of
tube type, i.e., the domain is biholomorphic, via the Cayley transform,
to some tube domain

Ω = V + iC,

where V is a real vector space and C ⊂ V is an open self dual cone
containing no lines.

The main results in the tube case are as follows:

Theorem 1.1. ([CaDS12]) Let X be a compact complex manifold of
dimension n with KX ample.

Then the following two conditions (1) and (1’), resp. (2) and (2’)
are equivalent:

(1) X admits a slope zero tensor 0 6= ψ ∈ H0(Smn(Ω1
X)(−mKX)),

(for some positive integer m );
(1’) X ∼= Ω/Γ , where Ω is a bounded symmetric domain of tube

type and Γ is a cocompact discrete subgroup of Aut(Ω) acting
freely.

(2) X admits a semi special tensor 0 6= φ ∈ H0(Sn(Ω1
X)(−KX)⊗η),

where η is a 2-torsion invertible sheaf, such that there is a point
p ∈ X for which the corresponding hypersurface Fp =: {φp =
0} ⊂ P(TXp) is reduced

(2’) The universal cover of X is a polydisk.

Moreover, the degrees and the multiplicities of the irreducible factors

of the polynomial ψp determine uniquely the universal covering X̃ = Ω.

The main purpose of the present paper is to extend these results to
the more general case of locally symmetric varieties X whose universal
cover is a bounded symmetric domain without irreducible factors which
are isomorphic to a ball of dimension at least two.
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In the case where there are no ball factors, we get the following
result, using the concept of an algebraic curvature type tensor σ.

Theorem 1.2. Let X be a compact complex manifold of dimension n
with KX ample.

Then the universal covering X̃ is a bounded symmetric domain with-
out factors isomorphic to higher dimensional balls if and only if there
is a holomorphic tensor σ ∈ H0(End(TX ⊗T∨X)) enjoying the following
properties:

1)there is a point p ∈ X, and a splitting of the tangent space T = TX,p

T = T ′1 ⊕ ...⊕ T ′m
such that the first Mok characteristic cone CS of σ is 6= T and more-

over CS splits into m irreducible components CS ′(j) with
2) CS ′(j) = T ′1 × ...× CS ′j × ...× T ′m
3) CS ′j ⊂ T ′j is the cone over a smooth non-degenerate (that is, the

cone CS ′j spans the vector space T ′j) projective variety S ′j unless CS ′j = 0
and dim (T ′j) = 1.

Moreover, we can recover the universal covering of X̃ from the se-
quence of pairs (dim(CS ′j), dim(T ′j)).

As we shall recall later, the first Mok characteristic cone CS ⊂ TX
is defined as the (closure of the) projection on the first factor of the
intersection of ker(σ) with the cone of rank 1 tensors:

ker(σ) ∩ {t⊗ t∨ ∈ (TX ⊗ T∨X)}.
The above result can be simplified if we restrict to locally symmetric

varieties X whose universal covering X̃ is a bounded symmetric domain
without factors of rank one.

Theorem 1.3. Let X be a compact complex manifold of dimension n
with KX ample.

Then the universal covering X̃ is a bounded symmetric domain with-
out factors of rank one if and only if there is p ∈ X such that, setting
T = TX,p,

A) there is a holomorphic tensor σ ∈ H0(End(TX ⊗ T∨X)) such that
the first Mok characteristic variety S1 ⊂ P(T ) is 6= P(T ) and more-
over S1 is the disjoint union of smooth projective varieties S ′j whose
projective spans are projectively independent and generate P(T ).

In other words, iff
A1) there is a point p ∈ X and a splitting of the tangent space

T = TX,p

T = T ′1 ⊕ ...⊕ T ′m
such that the first Mok characteristic cone CS of σ is 6= T and more-

over CS splits into m irreducible components CS ′(j) with
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A2) CS ′(j) ⊂ T ′j and CS ′(j) generates T ′j
A3) the projective variety S ′j := P(CS ′j) is smooth (and non-degenerate,

as required in A2)).
Moreover, we can recover the universal covering of X̃ from the se-

quence of pairs (dim(CS ′j), dim(T ′j)).

The above characterizations are important in order to obtain a more
precise formulation of a result of Kazhdan ([Kazh70]).

Corollary 1.4. Assume that X is a projective manifold with KX am-
ple, and that the universal covering X̃ is a bounded symmetric domain
without irreducible factors which are higher dimensional balls.

Let τ ∈ Aut(C) be an automorphism of C.
Then the conjugate variety Xτ has universal covering X̃τ ∼= X̃.

It is worthwhile observing that balls of dimension higher than one are
taken care of, once one allows a finite unramified covering, by the Yau
inequality for summands of the tangent bundle; hence one can combine
the present results with those of [Yau93] and [ViZu07], and obtain full
results for the general case where X̃ is any bounded symmetric domain.

A couple of words about the strategy of the proof:

(1) knowing that KX is ample, we have a Kähler Einstein metric
h, and we consider the Levi-Civita connection

(2) parallel transport defines then the restricted holonomy group
H (the connected component of the identity in the holonomy
group)

(3) by the theorems of De Rham and Berger (see [Ber53] and also
[Olm05]), the universal covering X̃ of X splits as a product
X̃ = D1 ×D2 where

(4) D1 is a bounded symmetric domain without factors of ball type
and D2 is the product of the irreducible factors of dimension
≥ 2 for which the holonomy group is the unitary group;

(5) we observe that by the Bochner principle ( [Koba80]) the tensor
σ is parallel, hence if we restrict the tensor at any point p ∈ X
we observe that σp is H-invariant.

(6) We decompose the holonomy group as a product and accord-
ingly the vector space T , the tangent space to X at p.

(7) We use elementary representation theory to derive some restric-
tions which the tensor σ must satisfy (this is done in section 3)

(8) we associate to any such tensor σ its first Mok characteristic
variety (see section 2), having in mind two standard possibil-
ities constructed using the algebraic curvature tensors of irre-
ducible bounded domains defined by Kobayashi and Ochiai in
[KobOchi81].
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(9) the rest of the proof (sections 4 and 5) is projective geometry,
using Mok’s description ([Mok02], [Mok89]) of the orbits on
Ti ⊗ T∨i of the complexified holonomy group of an irreducible
bounded domain.

2. Algebraic curvature-type tensors and their First Mok
characteristic varieties

In this section we consider the following situation. We are given a
direct sum

T = T1 ⊕ ...⊕ Tk
of irreducible representations Ti of a group Hi (the unusual notation is
due to the fact that T in the application shall be the tangent space to
a projective manifold at one point, and H = H1×· · ·×Hk shall be the
restricted holonomy group).

Definition 2.1. 1) An algebraic curvature-type tensor is a nonzero
element

σ ∈ End(T ⊗ T∨).
2) Its first Mok characteristic cone CS ⊂ T is defined as the projec-

tion on the first factor of the intersection of ker(σ) with the set of rank
1 tensors, plus the origin:

CS := {t ∈ T |∃t∨ ∈ T∨ \ {0}, (t⊗ t∨) ∈ ker(σ)}.
3) Its first Mok characteristic variety is the subset S := P(CS) ⊂

P(T ).
4) More generally, for each integer h, consider

{A ∈ T ⊗ T∨|A ∈ ker(σ),Rank(A) ≤ h},

and consider the algebraic cone which is its projection on the first factor

CSh := {t ∈ T |∃A ∈ ker(σ),Rank(A) ≤ h,∃t′ ∈ T : t = At′},

and define then Sh := P(CSh) ⊂ P(T ) to be the h-th Mok charac-
teristic variety.

5) We define then the full characteristic sequence as the sequence

S = S1 ⊂ S2 ⊂ · · · ⊂ Sk−1 ⊂ Sk = P(T ).

Remark 2.2. (1) In the case where σ is the curvature tensor of
an irreducible symmetric bounded domain D, Mok ([Mok02])
proved that the difference sets Sh\Sh−1 are exactly all the orbits
of the parabolic subgroup P associated to the compact dual D∨ =
G/P . In particular, the algebraic cone CSh is irreducible and
Hi-invariant.
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(2) More generally, if S is an Hi-invariant algebraic cone, and Hi

is the holonomy group of an irreducible symmetric bounded do-
main, then necessarily S is irreducible and indeed equal to one
of the Sh.

(3) In the case instead where Hi acts as the full unitary group on
Ti, then any Hi-invariant algebraic cone in Ti is trivial, that
is, either equal to Ti or just equal to {0}, where 0 ∈ Ti is the
origin.

Lemma 2.3. If σ is the curvature tensor of an irreducible symmetric
bounded domain D, Sh is smooth if and only if h = 1.

Proof. That S1 is smooth follows form the above remark, since S1

is a single orbit.
Conversely, observe that we have a sequence of inclusions for the

Mok characteristic varieties:

S = S1 ⊂ S2 ⊂ · · · ⊂ Sk−1 ⊂ Sk = P(T ).

Let then P ∈ S1, and let G be the stabilizer of P . The tangent space
V of P(T ) at P is a G-representation, and the Zariski tangent spaces
to Sh yield a flag of G-invariant subspaces of V ,

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V.

Our assertion follows then from the claim that V1 and V are the
unique invariant subspaces; since then, for k > h > 1, we have Vh 6=
V1 ⇒ Vj = V therefore Sh is singular at every point of S1.

Let us prove the claim.
The first characteristic variety S1 is homogeneous for the compact

subgroup K which stabilizes the origin of the bounded domain D. The
stabilizer KP , as proven in Theorem 2.3 and Proposition 2.4 at page 5
of [CoDS09], acts irreducibly on the normal space to S1 at P . Therefore
V splits as V1 ⊕ NP , where NP is KP - irreducibile. Now, G contains
KP , hence if W is G -invariant and strictly contains V1, then W is also
KP - invariant and W = V .

�
One geometric situation we have particularly in mind is the one

where

(∗∗) σ = ⊕ki=1σi ∈ ⊕ki=1(End(Ti ⊗ T∨i )) ⊂ End(T ⊗ T∨).
In this case it is clear that

ker(σ) = ⊕ki=1ker(σi)
⊕

(⊕i 6=j(Ti ⊗ T∨j )),

and if we intersect the Kernel of σ with the set of rank 1 tensors, we
obtain

ker(σ)∩{t⊗t∨} = {t⊗t∨|t = Σk
i=1ti, t

∨ = Σk
j=1t

∨
j , ∀i (ti⊗t∨i ) ∈ ker(σi)}.
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Defining now

CSi := {ti ∈ Ti|∃t∨i ∈ T∨i \ {0}, (ti ⊗ t∨i ) ∈ ker(σi)},

and similarly Si := P(CSi) ⊂ P(Ti) we see therefore that under hypoth-
esis (**) we have an inclusion ⊕ki=1CSi ⊂ CS.

But indeed, since

CS = {t = Σjtj|∃t∨ 6= 0, ti⊗t∨i ∈ ker(σi)∀i} = {t = Σjtj|∃t∨i 6= 0, ti⊗t∨i ∈ ker(σi)},

we have that

CS = ∪ki=1T1 ⊕ T2 · · · ⊕ Ti−1 ⊕ CSi ⊕ Ti+1 ⊕ · · · ⊕ Tk.

The above formula yields a decomposition of the Zariski closed pro-
jective set S as the union of the Zariski closed projective sets

S(i) := P(T1 ⊕ T2 · · · ⊕ Ti−1 ⊕ CSi ⊕ Ti+1 ⊕ · · · ⊕ Tk).

The latter sets are the join of the linear subspace

P(Tî) := P(T1 ⊕ T2 · · · ⊕ Ti−1 ⊕ Ti+1 ⊕ · · · ⊕ Tk)

with Si.

Remark 2.4. The next question is: when is the above an irredundant
decomposition?

It is a necessary condition that each CSi 6= Ti (i.e., Si 6= P(Ti)),
otherwise CS(i) = T .

This condition is also sufficient. In fact, the irreducible components
of S(i) are the joins of P(Tî) with the irreducible components of Si,
hence for each component of S(i) the projection onto P(Tj) is surjective
whenever j 6= i: therefore this component cannot be contained in any
S(j) when j 6= i.

Remark 2.5. At the other extreme, if σi = IdTi , or σi is invertible,
then ker(σi) = 0, hence in this case S(i) = P(Tî).

More generally, it can happen that S(i) is a linear subspace, iff CSi
is a linear subspace. In the sequel, we shall assume that each σi is
Hi-invariant: hence CSi shall be an invariant subspace of Ti: by the
irreducibility of Ti, the only possibility is either that CSi = 0, or that
CSi = Ti.

We can avoid both possibilities by requiring (the second case should
only occur for factors Ti of dimension = 1)

(1) S 6= P(T )
(2) if S has a component S0 which is a linear subspace, then S0

must be a hyperplane.
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3. Holonomy invariant curvature-type tensors

In this section we continue our consideration of a curvature-type
tensor σ assuming that it is invariant by the natural action of the
group H = H1 × · · · ×Hk.

We can naturally write σ as a direct sum σ = ⊕(i,j),(h,k)σ(i,j),(h,k),

σ(i,j),(h,k) : Ti ⊗ T∨j → Th ⊗ T∨k .

Lemma 3.1. σ(i,j),(h,k) = 0 if i 6= h or j 6= k, while for i 6= j

σ(i,j) := σ(i,j),(i,j) : Ti ⊗ T∨j → Ti ⊗ T∨j
is a multiple of the identity.

Proof. The second assertion is a consequence of Schur’s lemma once
we show that Ti ⊗ T∨j is, for i 6= j, an irreducible representation of the
compact group Hi ×Hj.

We use moreover that Ti is an irreducible representation of Hi. Hi

being compact, if χi is the character of the representation Ti, and dµi
is the Haar measure of Hi, we have that irreducibility is equivalent to∫

Hi

χiχi dµi = 1

Since the character χi,j of Ti ⊗ T∨j on Hi ×Hj is

χi,j(x, y) := χi(x)χj(y)

and∫
Hi×Hj

|χi,j(x, y)|2dµi,j = [by Fubini] =

∫
Hi

χiχi dµi ·
∫
Hj

χjχj dµj = 1

we conclude that Ti ⊗ T∨j is, for i 6= j, an irreducible representation of
Hi ×Hj.

For the first assertion, assume now that i 6= h and let

σ′ := σ(i,j),(h,k) : Ti ⊗ T∨j → Th ⊗ T∨k .
Since σ is H-invariant, σ′ is Hi × Hh-invariant. By what we have

seen Hom(Ti, Th) ∼= Th⊗T∨i is an irreducible nontrivial representation
of Hi ×Hh, hence there are no Hi ×Hh invariant homomorphisms in
Hom(Ti, Th). A fortiori σ′ = 0.

A completely analogous argument yields σ′ = 0 if j 6= k.
�

Using the previous lemma we consider the first characteristic variety
in the case where σ is H-invariant.

In this case it is clear that

ker(σ) = ⊕ki=1ker(σi)
⊕

(⊕i 6=j,σi,j=0(Ti ⊗ T∨j )),

and if we intersect the Kernel of σ with the set of rank 1 tensors, we
obtain
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ker(σ) ∩ {t⊗ t∨} =

= {t⊗t∨|t = Σk
i=1ti, t

∨ = Σk
j=1t

∨
j , ∀i (ti⊗t∨i ) ∈ ker(σi), ti⊗t∨j = 0 ∀ i 6= j s.t. σi,j 6= 0}.

Its projection on the first factor is the set

CS = ∪jCS(j) := ∪j{t = Σk
i=1ti ∈ T |∃t∨j ∈ T∨j \{0}, (tj⊗t∨j ) ∈ ker(σj), ti = 0∀ i 6= j s.t. σi,j 6= 0},

and we have a corresponding set S(j) := P(CS(j)) ⊂ P(T ).
We can also write

CS(j) = T̂1,j ⊕ T̂2,j · · · ⊕ T̂j−1,j ⊕ CSj ⊕ T̂j+1,j ⊕ · · · ⊕ T̂k,j,

where T̂i,j = Ti if σi,j = 0, T̂i,j = 0 if σi,j 6= 0. In other words, if one
forgets about the ordering,

CS(j) = CSj
⊕

(⊕σi,j=0Ti).

Our first remark is that, in case where there exists a σi,j 6= 0 with
i 6= j, then necessarily S(j) is contained in a hyperplane.

Our second observation is that however in this case the decomposi-
tion CS = ∪jCS(j) does not need to be irredundant, as one sees already
in the case k = 2, σ1,2 6= 0, σ2,1 = 0.

We end this section with an important, even if trivial, remark.

Remark 3.2. If V is an H-invariant linear subspace of T , then there
is a subset I ⊂ {1, . . . , k} such that V = ⊕i∈ITi.

4. Proof of Theorem 1.2

One implication follows right away from section 3, since we may take
σ := ⊕ki=1σi, letting σi be the algebraic curvature tensor of a bounded
symmetric domain of rank greater than one (cf. [KobOchi81], lemma
2.9), and the identity of Ti ⊗ T∨i for the factors of dimenson equal to
one. Then

CS = ∪ki=1(T1 ⊕ T2 · · · ⊕ Ti−1 ⊕ CSi ⊕ Ti+1 ⊕ · · · ⊕ Tk).
The converse implication follows since KX is ample, hence we may

consider the Kähler-Einstein metric of X, for which the tensor σ is
parallel, as proven by Kobayashi in ([Koba80]) (since it is a tensor of
covariant type two and contravariant type also two).

Hence the (irredundant) irreducible decomposition

CS = ∪mj=1CS ′(j) = ∪mj=1(T
′
1 × · · · × CS ′j × ...× T ′m)

is invariant under the holonomy group H.
Observe that, since KX is ample, all the irreducible holonomy fac-

tors Hi are either equal to U(Ti), or Hi acts on Ti as the holonomy
of a bounded symmetric domain. This implies that if CSj ⊂ Tj is
a proper Hj-invariant subset, then CSj is (see, remark 4, and also
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[Mok02], and also [Mok89], page 252) a Mok characteristic variety and
Tj is a bounded symmetric domain factor.

The holonomy invariance implies, as shown in section 4, that there
is another (possibly redundant) irreducible (by what we have just ob-
served) decomposition

CS = ∪ki=1CS(i) = ∪ki=1(CSi
⊕

(⊕σj,i=0Tj)).

It follows immediately that k ≥ m.
On the other hand, by our assumption and by Lemma 7.1, the linear

subspace

T̃ ′j := (T ′1 ⊕ · · · ⊕ T ′j−1 ⊕ T ′j+1 ⊕ · · · ⊕ T ′m)

is the maximal vector subspace V such that V + CS ′(j) ⊂ CS ′(j),
hence these linear subspaces are holonomy invariant, in particular their
mutual intersections are holonomy invariant.

We conclude that each subspace T ′j is holonomy invariant. By Re-
mark 3.2 each T ′j is a sum of a certain number of Ti’s.

Comparing the two decompositions, it follows that each CS ′(j) equals
some CS(i), and the hypothesis that the linear span of CS ′(j) equals
T implies that

CS ′(j) = CS(i) = CSi
⊕

(⊕j 6=iTj) =: CSi ⊕ T̃i.

Once more, by Lemma 7.1 T̃ ′j is the maximal linear subspace V
such that V + CS ′(j) ⊂ CS ′(j), and the above equality show that this
subspace contains T̃i. Since all the subspaces T ′j yield a direct sum,and
are holonomy invariant, it follows that T ′j = Ti, and CS ′j = CSi.

Therefore we finally obtain that m = k and that, when CS ′j = CSi 6=
0, then S ′j = Si is a smooth projective variety.

Since the only smooth characteristic variety is the first Mok charac-
teristic variety (as shown in Lemma 2.3), it follows that the cones CSi
are just the origin when dim(Ti) = 1, or they are the cones over the
first Mok characteristic variety.

To finish the proof, we must only show the following claim
Claim The dimension and codimension of the first Mok character-

istic variety determines the irreducible bounded symmetric domain D
of rank ≥ 2.

Proof. This follows from the following table.
Let D be an irreducible Hermitian symmetric space of rank > 1.
The following table follows from Mok’s enumeration of the charac-

teristic variety S1(D), see Mok’s Book [Mok89], page 250.
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D dim(D) dim(S1(D))
Ip,q pq p+ q − 2

IIn
n(n−1)

2
2(n− 2)

IIIn
n(n+1)

2
n− 1

IVn n n− 2
V 16 10
V I 27 16

Let η : IHSS → N× N be defined as

η(D) := (dim(D), dim(S1(D)))

Fact: η is injective.

Proof. The proof is obtained by direct inspection of the above table.
Indeed, it is not difficult to check that the pairs (27, 16) and (16, 10)
comes just from the domains of V I and V respectively. To show that
the pair comings from domains IVn come just from the domains of type
IVn it is necessary to recall the following isomorphisms:

IV3 ∼= III2 , IV6 ∼= II4 , IV4 ∼= I2,2

�

5. Proof of Theorem 1.3

In one direction, if X is locally symmetric without factors of rank 1,
consider the tensor σ such that σi is the curvature tensor for all i, and
σi,j is the identity on Ti ⊗ T∨j ∀ i 6= j.

We saw then in section 4 that

CS(j) = CSj
⊕

(0)

and then S(j) ⊂ P(Tj) is the first Mok characteristic variety, which
is smooth, hence A1), A2) and A3) hold.

Conversely, all the components CS(j) of the cone CS contain no
nontrivial vector subspace, since the cone over a projective variety is
singular unless the variety is a linear subspace. Hence, by the observa-
tions made in section 4 it follows that the holonomy invariant tensor
σ is such that all the components σi,j are a nonzero multiple of the
identity on Ti ⊗ T∨j ∀ i 6= j.

Then CS(j) = CSj
⊕

(0) and the projective variety Sj is smooth and
holonomy invariant, therefore we conclude as for theorem 1.2 that Sj is
the first Mok characteristic variety, and that we recover the universal
cover from the variety S.
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6. Proof of the Kazhdan’s type corollary

Consider the conjugate variety Xτ : since KX is ample we may as-
sume that X is projectively embedded by H0(X,OX(mKX).
τ carriesX toXτ andKX toKXτ , hence alsoXτ has ample canonical

divisor.
Moreover, τ carries the algebraic curvature type tensor σ to a similar

tensor στ . The equations of the Mok characteristic varieties are defined
over Z, hence we obtain that τ transforms each variety S i(X, σ) into
S i(Xτ , στ ), in particular respecting their dimension and codimension.

We conclude then immediately by the last assertion of our main
theorems that the universal covering of Xτ is X̃.

�

7. Elementary lemmas

We collect here, for the readers’ benefit, some trivial but important
observations.

Lemma 7.1. Let S ⊂ P(V ) = Pn be a non-degenerate projective vari-
ety, S 6= P(V ), and consider the join Z := S ∗ P(W ) ⊂ P(V ⊕W ) =
Pn+m. Then Z is smooth ⇔ W = 0 and S is smooth.

Proof. Let I be the homogeneous ideal of S. Since S is non-
degenerate, each 0 6= f ∈ I has degree ≥ 2, and moreover I contains
some non zero polynomial (since S 6= P(V )).

We shall show that P(W ) ⊂ Sing(Z), observing that P(W ) 6= ∅
unless W = 0, which is exactly which we have to proof.

Observe that

Z = {(v, w)|f(v) = 0,∀f ∈ I}.
Hence

Sing(Z) = {(v, w)| ∂f
∂vj

(v) = 0,∀f ∈ I}.

Since however deg(f) ≥ 2 , ∀f ∈ I, f 6= 0, ∂f
∂vj

(v) vanishes for v = 0,

hence P(W ) = {(0, w)|w ∈ W} ⊂ Sing(Z).
�

In the next lemma we use our standard notation, introduced in sec-
tion 2.

Lemma 7.2. Let CS ⊂ Ti be an Hi -invariant algebraic cone.
Then there is no nontrivial linear subspace Vi such that Vi+CS ⊂ CS,

unless CS = Ti.

Proof. If Vi is nontrivial, then Wi := {v|v + CS ⊂ CS} is a non
trivial linear subspace, which is Hi invariant. But Ti is an irreducible
representation, hence if Wi 6= {0}, then CS = Ti.
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