
07 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A unified approach to the performance analysis of caching systems / Martina, V.; Garetto, M.; Leonardi, Emilio. -
ELETTRONICO. - (2014), pp. 2040-2048. (Intervento presentato al  convegno Infocom 2014 tenutosi a Toronto, (CN) nel
April 2014) [10.1109/INFOCOM.2014.6848145].

Original

A unified approach to the performance analysis of caching systems

Publisher:

Published
DOI:10.1109/INFOCOM.2014.6848145

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2551749 since:

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC



A unified approach to the performance
analysis of caching systems
Valentina Martina ∗, Michele Garetto †, Emilio Leonardi ∗

∗ Dipartimento di Elettronica, Politecnico di Torino, Torino, Italy
† Dipartimento di Informatica, Università di Torino, Torino, Italy

Abstract—We propose a unified methodology to analyse the
performance of caches (both isolated and interconnected), by
extending and generalizing a decoupling technique originally known
as Che’s approximation, which provides very accurate results at low
computational cost. We consider several caching policies, taking into
account the effects of temporal locality. In the case of interconnected
caches, our approach allows us to do better than the Poisson
approximation commonly adopted in prior work. Our results,
validated against simulations and trace-driven experiments, provide
interesting insights into the performance of caching systems.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

In the past few years the performance of caching systems, one
of the most traditional and widely investigated topic in computer
science, has received a renewed interest by the networking
research community. This revival can be essentially attributed to
the crucial role played by caching in new content distribution
systems emerging in the Internet. Thanks to an an impres-
sive proliferation of proxy servers, Content Delivery Networks
(CDN) represent today the standard solution adopted by content
providers to serve large populations of geographically spread
users [1]. By caching contents close to the users, we jointly
reduce network traffic and improve user-perceived experience.

The fundamental role played by caching systems in the
Internet goes beyond existing content delivery networks, as
consequence of the gradual shift from the traditional host-to-
host communication model to the new host-to-content paradigm.
Indeed, a novel Information Centric Network (ICN) architecture
has been proposed for the future Internet to better respond to
the today and future (according to predictions) traffic character-
istics [2]. In this architecture, caching becomes an ubiquitous
functionality available at each router.

For these reasons it is of paramount importance to develop ef-
ficient tools for the performance analysis of large-scale intercon-
nected caches for content distribution. Unfortunately, evaluating
the performance of cache networks is hard, considering that the
computational cost to exactly analyse just a single LRU (Least
Recently Used) cache, grows exponentially with both the cache
size and the number of contents [3], [4]. Nevertheless, several
approximations have been proposed over the years [4], [5], [6],
[7], [8], [9] which can accurately predict the cache performance
at an affordable computational cost.

The main drawback of existing analytical techniques is their
rather limited scope. Indeed, many of them target only specific

M. Garetto was supported by the AMALFI Project (Università di
Torino/Compagnia di San Paolo). Copyright 978-1-4799-3360-0/14/$31.00
c©2014 IEEE

caching policies (mainly LRU and FIFO) under simplifying traf-
fic conditions (most of previous work relies on the Independent
Reference Model, [10]), while the analysis of cache networks
has only recently been attempted (essentially for LRU) [11], [7],
[8], [12]. We refer the reader to [13] for an extended survey of
related work.

The main contribution of our work is to show that the decou-
pling principle underlying one of the approximations suggested
in the past (the so called Che approximation) has much broader
applicability than the particular context in which it was originally
proposed (i.e., a single LRU cache under IRM traffic), and can
actually provide the key to develop a general methodology to
analyse a variety of caching systems.

In particular, in this paper we show how to extend and
generalize the decoupling principle of Che’s approximation along
three orthogonal directions: i) a much larger set of caching algo-
rithms than those analysed so far (including a novel multi-stage
scheme called k-LRU), implementing different insertion/eviction
policies; ii) more general traffic conditions than the traditional
IRM, so as to capture the effects of temporal locality in the
requests arrival process; iii) a scalable and accurate technique
to analyse interconnected caches that goes beyond the standard
Poisson assumption adopted so far, allowing us to consider
large-scale networks implementing also coordinated replication
strategies (such as leave-copy-down).

Although in this paper we cannot analyse all possible combi-
nations of the above extensions, we provide sufficient evidence
that a unified framework for the performance analysis of caching
systems is indeed possible under the Che approximation at
low computational cost. Our results for the considered systems
turn out to be surprisingly good when compared to simulations
(model predictions can be hardly distinguished from simulation
results on almost all plots).

Furthermore, under the small cache regime (i.e., cache size
small with respect to the content catalog size), which is of special
interest for ICN, our expressions can be further simplified,
leading to simple closed-form expressions of the cache hit
probability, and revealing interesting asymptotic properties of the
various caching policies. The insights gained from our models
are also (qualitatively) confirmed by trace-driven experiments.

To the best of our knowledge, we are the first to propose a
unified, simple and flexible approach that can be used as the basis
of a general performance evaluation tool for caching systems.



II. SYSTEM ASSUMPTIONS

A. Traffic model

We first recall the so-called Independent Reference Model
(IRM), which is de-facto the standard approach adopted in the
literature to characterize the pattern of object requests arriving
at a cache [10]. The IRM is based on the following fundamental
assumptions: i) users request items from a fixed catalogue of
M object; ii) the probability pm that a request is for object m,
1 ≤ m ≤ M , is constant (i.e., the object popularity does not vary
over time) and independent of all past requests, generating an
i.i.d. sequence of requests.

By definition, the IRM completely ignores all temporal corre-
lations in the sequence of requests. In particular, it does not take
into account a key feature of real traffic usually referred to as
temporal locality, i.e., the fact that, if an object is requested at
a given point in time, then it is more likely that the same object
will be requested again in the near future.

This characteristic of real sequences of requests, and its bene-
ficial effect on cache performance, are well known, especially in
the context of computer memory architecture and web traffic
[14]. Indeed, several extensions of IRM have been proposed
to incorporate temporal locality in the traffic model. Existing
approaches [10], [15], [9] typically assume that the request
process for each object is stationary (i.e, either a renewal process
or a Markov- or semi-Markov-modulated Poisson process).

To account for temporal locality, in this paper we will consider,
whenever possible, the following traffic model which generalizes
the classical IRM. The request process for every content m is
described by an independent renewal process with assigned inter-
request time distribution. Let FR(m, t) be the cdf of the inter-
request time t for object m. The average request rate λm for
content m is then given by λm = 1/

∫∞
0

(1− FR(m, t)) dt. Let
Λ =

∑M
m=1 λm be the global arrival rate of requests at the cache.

Note that, by adopting an object popularity law analogous to the
one considered by the IRM, we also have λm = Λpm.

As a particular case, our traffic model reduces to the clas-
sical IRM when inter-arrival request times are exponentially
distributed, so that requests for object m arrive at the cache
according to a homogeneous Poisson process of rate λm. In
the following, we will refer to our generalized traffic model as
renewal traffic.

B. Popularity law

Traffic models like the IRM (and its generalizations) are
commonly used in combination with a Zipf-like law of object
popularity, which is frequently observed in traffic measurements
and widely adopted in performance evaluation studies [16].

In its simplest form, Zipf’s law states that the probability to
request the i-th most popular item is proportional to 1/iα, where
the exponent α depends on the considered system (especially on
the type of objects) [17], and plays a crucial role on the resulting
cache performance. Estimates of α reported in the literature for
various kinds of systems range between .65 and 1.

In our work we will consider a simple Zipf’s law as the object
popularity law, although our results hold in general, i.e., for any
given distribution of object request probabilities {pm}m.

C. Policies for individual caches

There exists a tremendous number of different policies to
manage a single cache, which differ either for the insertion or
for the eviction rule. We will consider the following algorithms,
as a representative set of existing policies:

• LFU: the Least Frequently Used policy statically stores
in the cache the C most popular contents (assuming their
popularity is known a-priori); LFU is known to provide
optimal performance under IRM.

• LRU: upon arrival of a request, an object not already stored
in the cache is inserted into it. If the cache is full, to make
room for a new object the Least Recently Used item is
evicted, i.e., the object which has not been requested for
the longest time.

• q-LRU: it differs from LRU for the insertion policy: upon
arrival of a request, an object not already stored in the cache
is inserted into it with probability q. The eviction policy is
the same as LRU.

• FIFO: it differs from LRU for the eviction policy: to make
room for a new object, the item inserted the longest time
ago is evicted. Notice that this scheme is different from
LRU because requests finding the object in the cache do
not ‘refresh’ the timer associated to it.

• RANDOM: it differs from LRU for the eviction policy: to
make room for a new object, a random item stored in the
cache is evicted.

• k-LRU: this strategy provides a clever insertion policy by
exploiting the following idea: before arriving at the physical
cache (storing actual objects), indexed by k, requests have
to traverse a chain of k − 1 virtual caches put in front of
it, which store only object hashes and perform meta-cache
operations on them. Upon arrival of a request, the request
enters cache i if its hash is already stored in cache i − 1
(or if i = 1). The eviction policy at all caches is LRU. For
simplicity, we will restrict ourselves to the case in which
all caches have the same size (expressed either in terms of
objects or hashes).

• k-RANDOM: it works exactly like k-LRU, with the only
difference that the eviction policy at each cache is RAN-
DOM.

We remark that LRU has been widely adopted, since it
provides good performance while being reasonably simple to
implement. RANDOM and FIFO have been considered as viable
alternative to LRU in the context of ICN, as their hardware
implementation in high-speed routers is even simpler. The q-
LRU policy and multi-stage caching systems similar to our k-
LRU have been proposed in the past to improve the performance
of LRU by means of a better insertion policy. We have chosen q-
LRU in light of its simplicity, and the fact that it can be given an
immediate interpretation in terms of probabilistic replication for
cache networks (see next section). The main strength of k-LRU,
instead, resides in the fact that it requires just one parameter1

(the number of caches k), providing significant improvements

1More sophisticated insertion policies such as the persistent-access-caching
algorithm [18] obtain a filtering effect similar to k-LRU but require more
parameters which are not easy to set.



over LRU even for very small k (much of the possible gain is
already achieved by k = 2).

D. Replication strategies for cache networks
In a system of interconnected caches, requests producing a

miss at one cache are typically forwarded along one or more
routes toward repositories storing all objects. After the request
eventually hits the target, we need to specify how the object
gets replicated back in the network, in particular along the
route traversed by the request. We will consider the following
mechanisms:

• leave-copy-everywhere (LCE): the object is sent to all
caches of the backward path.

• leave-copy-probabilistically (LCP): the object is sent with
probability q to each cache of the backward path.

• leave-copy-down (LCD): the object is sent only to the
cache preceding the one in which the object is found (if
any).

Notice that LCP, combined with standard LRU at all caches, is
the same as LCE combined with q-LRU at all caches.

III. THE CHE APPROXIMATION

We briefly recall Che’s approximation for LRU under the
classical IRM [5]. Consider a cache capable of storing C distinct
objects. Let TC(m) be the time needed before C distinct objects
(not including m) are requested by users. Therefore, TC(m) is
the cache eviction time for content m, i.e., the time since the
last request after which object m will be evicted from the cache
(if the object is not again requested in the meantime).

Che’s approximation assumes TC(m) to be a constant inde-
pendent of the selected content m. This assumption has been
given a theoretical justification in [19], where it is shown
that, under a Zipf-like popularity distribution, the coefficient of
variation of the random variable representing TC(m) tends to
vanish as the cache size grows. Furthermore, the dependence of
the eviction time on m becomes negligible when the catalogue
size is sufficiently large.

The reason why Che’s approximation greatly simplifies the
analysis of caching systems is because it allows to decouple the
dynamics of different contents: interaction among the contents
is summarized by TC , which acts as a single primitive quantity
representing the response of the cache to an object request.

More in detail, thanks to Che’s approximation, we can state
that an object m is in the cache at time t, if and only if a time
smaller than TC has elapsed since the last request for object m,
i.e., if at least a request for m has arrived in the interval (t−Tc, t].
Under the assumption that requests for object m arrive according
to a Poisson process of rate λm, the time-average probability
pin(m) that object m is in the cache is given by:

pin(m) = 1− e−λmTc (1)

As immediate consequence of PASTA property for Poisson
arrivals, observe that pin(m) represents, by construction, also
the hit probability phit(m), i.e., the probability that a request for
object m finds object m in the cache.

Considering a cache of size C, by construction:

C =
∑
m

I{m in cache}

After averaging both sides, we obtain:

C =
∑
m

E[I{m in cache}] =
∑
m

pin(m). (2)

The only unknown quantity in the above equality is TC , which
can be obtained with arbitrary precision by a fixed point proce-
dure. The average hit probability of the cache is then:

phit =
∑
m

pm phit(m) (3)

IV. EXTENSIONS FOR SINGLE CACHE

We will show in the next sections that Che’s idea of sum-
marizing the interaction among different contents by a single
variable (the cache eviction time) provides a powerful decoupling
technique that can be used to predict cache performance also
under renewal traffic, and to analyse policies other than LRU.

A. LRU under renewal traffic

The extension of Che’s approximation to the renewal traffic
model is conceptually simple although it requires some care.
Indeed, observe that, under a general request process, we can
not apply PASTA anymore, identifying pin(m) with phit(m). To
compute pin(m) we can still consider that an object m is in cache
at time t if and only if the last request arrived in [t − TC , t).
This requires that the age since the last request for object m is
smaller than TC :

pin(m) = F̂R(m,TC)

where F̂R(TC) is the pdf of the age associated to object-m inter-
request time distribution.

On the other hand, when computing phit(m), we implicitly
condition on the fact that a request arrives at time t. Thus, the
probability that the previous request occurred in [t−TC , t) equals
the probability that the last inter-request time does not exceed
TC , yielding:

phit(m) = FR(m,TC).

B. q-LRU under IRM and renewal traffic

We now analyse the q-LRU policy (LRU with probabilistic
insertion), considering first the simpler case of IRM traffic. In
this case, pin(m) and phit(m) are equal by PASTA.

To compute pin(m) we exploit the following reasoning: an
object m is in the cache at time t provided that: i) the last
request arrived at τ ∈ [t − TC , t) and ii) either at τ− object m
was already in the cache, or its insertion was triggered by the
request arriving at τ (with probability q). We obtain:

phit(m) = pin(m) = (1−e−λmTC )[pin(m)+ q(1−pin(m))] (4)

Solving the above expression for pin(m), we get:

phit(m) = pin(m) =
q(1− e−λmTC )

e−λmTC + q(1− e−λmTC )
(5)

Under renewal traffic, pin(m) and phit(m) differ by the same
token considered for LRU. Repeating the same arguments as
before, we get:

phit(m) = F (m,TC)[phit(m) + q(1− phit(m))] (6)



which generalizes (4). The age distribution must be instead used
to compute pin(m):

pin(m) = F̂ (m,TC)[phit(m) + q(1− phit(m))] (7)

Regarding the q-LRU policy, Che’s approximation allows to
establish the following interesting property as q → 0, whose
proof is reported in [13].

Theorem 1: The q-LRU policy tends asymptotically to LFU
as the insertion probability goes to zero.

C. RANDOM and FIFO
The decoupling principle can be easily extended to RAN-

DOM/FIFO caching policies by reinterpreting TC(m) as the (in
general random) sojourn time of content m in the cache. In
the same spirit of the original Che’s approximation, we assume
TC(m) = TC to be a primitive random variable (not any more
a constant) whose distribution does not depend on m.

Under IRM traffic the dynamics of each content m in the cache
can be described by an M/G/1/0 queuing model. Indeed observe
that object m, when not in the cache, enters it according to a
Poisson arrival process, then it stays in the cache for a duration
equal to TC , after which it is evicted independently of the arrival
of other requests for content m during the sojourn time.

The expression of pin(m) and phit(m) can then be immediately
obtained from Erlang-B formula (exploiting PASTA):

phit(m) = pin(m) = λmE[TC ]/(1 + λmE[TC ])

Notice that we still employ (2) to compute E[TC ].
As immediate consequence of Erlang-B insensitivity property

to the distribution of service time, we conclude that,
Proposition 1: Under IRM traffic, the performance of RAN-

DOM and FIFO (in terms of hit probability) are the same.
This result was originally obtained by Gelenbe [20] using a
totally different approach.

Note that, under FIFO policy, we can assume TC to be a
constant, in perfect analogy to LRU. Indeed, TC is still equal to
the time needed to observe the requests for C different objects
arriving at the cache. On the other hand, under RANDOM policy,
it is natural to approximate the sojourn time of an object in the
cache with an exponential distribution. Indeed, under RANDOM
an object is evicted with probability 1/C upon arrival of each
request for an object which is not in the cache.

Under renewal traffic the dynamics of each object under FIFO
and RANDOM can be described, respectively, by a G/D/1/0 and
a G/M/1/0 queuing model. Observe that, under general traffic,
the performance of FIFO and RANDOM are not necessarily the
same.

We now show how the RANDOM policy can be analysed, un-
der renewal traffic, employing basic queuing theory. Probability
phit can be easily obtained as the loss probability of the G/M/1/0
queue. Solving the Markov chain representing the number of
customers in the system at arrival times, we obtain:

phit(m) = MR(m,−1/E[TC ])

where MR(m, ·) is the moment generating function of object-m
inter-request time.

Probability pin(m) can also be obtained exploiting the fact that
the dynamics of a G/M/1/0 system are described by a process that

regenerates at each arrival. On such a process we can perform a
standard cycle analysis as follows (we drop the dependency of
random variables on m to simplify the notation). We denote by
Tcycle the duration of a cycle (which corresponds to an inter-
request interval). Observe that, by construction, the object is
surely in the cache at the beginning of a cycle. Let τ be the
residual time spent by the object in the cache, since a cycle has
started, and TON be the time spent by the object in the cache
within a cycle.

By definition, TON = min{τ, Tcycle}. Thus, we have by
standard renewal theory pin(m) = E[TON]/E[Tcycle]. Now, we
know that E[Tcycle] = 1/λm. For E[TON], we obtain:

E[TON]=

∫ ∞

0

(E[TON · Iτ≤r |Tcycle =r]+E[TON · Iτ>r |Tcycle =r])dFR(r) =

=

∫ ∞

0

(∫ r

0

x

E[TC ]
e−x/E[TC ] dx+ re−r/E[TC ]

)
dFR(r)

In the end, we get pin(m) = λm E[TC ] (1−MR(m,−1/E[TC ])).

D. 2-LRU

We now move to the novel k-LRU strategy, considering first
the simple case of k = 2. For this system, we derive both a rough
approximation based on an additional simplifying assumption
(which is later used to analyse the more general k-LRU) and a
more refined model that is based only on Che’s approximation.
For both models we consider either IRM or renewal traffic.

Let T i
C be the eviction time of cache i. We start observing

that meta-cache 1 behaves exactly like a standard LRU cache,
for which we can use previously derived expressions. Under
IRM, pin(m) and phit(m) (which are identical by PASTA) can
be approximately derived by the following argument: object m
is found in cache 2 at time t if and only if the last request
arrived in τ ∈ [t − T 2

C , t) and either object m was already in
cache 2 at time τ− or it was not in cache 2 at time τ−, but its
hash was already stored in meta-cache 1. Under the additional
approximation that the states of meta-cache 1 and cache 2 are
independent at time τ−, we obtain:

phit(m) = pin(m) ≈
≈ (1− e−λmT 2

C))[phit(m) + (1− e−λmT 1
C )(1− phit(m))] (8)

Observe that the independence assumption between cache 2 and
meta-cache 1 is reasonable under the assumption that T 2

C is
significantly larger than T 1

C (which is typically the case when the
two caches have the same size). Indeed, in this case the states of
cache 2 and meta-cache 1 tends to de-synchronize, since an hash
is expunged by meta-cache 1 before the corresponding object is
evicted by cache 2, making it possible to find an object in cache 2
and not in meta-cache 1 (which otherwise would not be possible
if T 1

C ≥ T 2
C).

An exact expression for phit(m) (under Che’s approximation)
that does not require any independence assumption can be
derived observing that the dynamics of object m in the system,
sampled at request arrivals, can be described by the four states
Discrete Time Markov Chain (DTMC) represented in Fig. 1,
where each state is denoted by a pair of binary variables
indicating the presence of object m in meta-cache 1 and cache



Fig. 1. DTMC describing the dynamics of an object in 2-LRU, sampled at
request arrival times.

2, respectively. Solving the DTMC, we get:

phit(m) = pin(m) = 1− (1 + qa)qb
qa + qb

(9)

with qa = 1− e−λmT 1
C , qb = e−λmT 2

C and qc = 1− (qa + qb).
The extension to renewal traffic can be carried out following

the same lines as before. Under the additional independence
assumption between the two caches, we obtain:

phit(m) ≈ FR(m,T 2
C)[phit(m) + FR(λm, T 1

C)(1− phit(m))]

pin(m) ≈ F̂R(m,T 2
C)[phit(m) + FR(λm, T 1

C)(1− phit(m))]

Also the refined model can be generalized to renewal traffic,
observing that object-m dynamics in the system, sampled at
request arrivals, are still described by a Markov Chain with
exactly the same structure as in Fig. 1 (only the expressions
of transition probabilities change in an obvious way). Thus we
obtain:

phit(m) = 1− (1 + qa)qb
qa + qb

with qa = F (m,T 1
C) and qb = 1− F (m,T 2

C)
To compute pin(m) we can resort to a cycle analysis, whose

details are reported in our technical report [13].

E. k-LRU

Previous expressions obtained for 2-LRU (under the indepen-
dence assumption between caches) can be used to iteratively
compute the hit probabilities of all caches in a k-LRU system.
For example, under IRM, we can use (8) to relate the hit prob-
ability of object m in cache i, phit(i,m), to the hit probability
phit(i− 1,m) of object m in the previous cache, obtaining:

phit(i,m) = pin(i,m) ≈
(1−e−λmT i

C))[phit(i,m) + (phit(i−1,m))(1−phit(i,m))] (10)

The generalization to renewal traffic is straightforward.
At last, for large k we can state:
Theorem 2: According to (10) k-LRU tends asymptotically

to LFU as k → ∞ under IRM and renewal traffic, as long as
the support of the inter-request time distribution is unbounded.
The proof is reported in [13].

F. k-RANDOM

Also k-RANDOM can be analysed under Che’s approximation
assuming exponential sojourn times in the caches. In particular,

2-RANDOM can be exactly described (under Che’s approxi-
mation) by a simple four-states continuous time Markov chain
representing the dynamics of object m in the system. Due to
space constrains we omit the details.

G. Small cache approximations
Small cache approximations can be obtained by replacing the

expressions of phit(m) and pin(m) with their truncated Taylor
expansion. This is especially useful to understand the depen-
dency of pin and phit on the object arrival rate λm (and thus its
popularity), obtaining interesting insights into the performance of
the various caching policies. Due to space limitations, we restrict
ourselves to IRM traffic, however we emphasize that a similar
approach can be generalized to renewal traffic. We obtain:

phit(m)=pin(m)≈


λmTC − (λmTC)2

2 LRU
λmTC − (λmTC)

2 RANDOM/FIFO
qλmTC + q(1− q)(λmTC)

2 q-LRU
(λmTC)

n k-LRU

Previous expressions permit us immediately to rank the perfor-
mance of the considered policies in the small cache regime.
Indeed, k-LRU turns out to be the best strategy, since the depen-
dency between phit(m) and content popularity λm is polynomial
of order n ≥ 2, in contrast to other policies (including q-LRU
for fixed q) for which phit(m) depends linearly on λm. The
coefficient of the quadratic term further allows us to rank policies
other than k-LRU: q-LRU is the only policy exhibiting a positive
quadratic term (which makes the dependency of phit(m) on λm

slightly super-linear). At last LRU slightly outperforms RAN-
DOM/FIFO because its negative quadratic term has a smaller
coefficient.

H. Model validation and insights
The goal of this section is twofold. First, we wish to validate

previously derived analytical expressions against simulations,
showing the surprising accuracy of our approximate models
in all considered cases. Second, we evaluate the impact of
system/traffic parameters on cache performance, obtaining im-
portant insights for network design.

Unless otherwise specified, we will always consider a cata-
logue size of M = 106, and a Zipf’s law exponent α = 0.8.

Fig. 2 reports the hit probability achieved by the different
caching strategies that we have considered, under IRM traffic.
Analytical predictions are barely distinguishable from simulation
results, also for the 3-LRU system, for which our approximation
(10) relies on an additional independence assumption among the
caches.

As theoretically predicted, q-LRU (k-LRU) approaches LFU
as q → 0 (k → ∞). Interestingly, the introduction of a single
meta-cache in front of an LRU cache (2-LRU) provides huge
benefits, getting very close to optimal performance (LFU).

Differences among the hit probability achieved by the various
caching policies become more significant in the small cache
regime (spanning almost 1 order of magnitude). In this case,
insertion policies providing some protection against unpopular
objects largely outperform policies which do not filter any
request. The impact of the eviction policy, instead, appears



 100  1000  10000  100000

Cache Size, C

LFU
q-LRU - q = 0.01 - model
q-LRU - q = 0.1 - model

LRU - model
FIFO/RANDOM - model

 100  1000  10000  100000

Cache Size, C

q-LRU - q = 0.01 - sim
q-LRU - q = 0.1 - sim

LRU - sim
FIFO - sim

RANDOM - sim

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

100 1000 10000 1e5

Cache Size, C

LFU
3-LRU - model (10)

2-LRU - model (9)
2-RANDOM - model

LRU - model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

100 1000 10000 1e5

Cache Size, C

3-LRU - sim
2-LRU - sim

2-RANDOM - sim
LRU - sim

Fig. 2. Hit probability vs cache size, for various caching policies, under IRM.

to be much weaker, with LRU providing moderately better
performance than RANDOM/FIFO.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 100 1000 10000 100000 1e6

p h
it

Cache size, C

LFU
LRU - IRM - model

LRU - hyper 2 - model
LRU - hyper 4 - model

LRU - hyper 10 - model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 100 1000 10000 100000 1e6

p h
it

Cache size, C

LRU - IRM - sim
LRU - hyper 2 - sim
LRU - hyper 4 - sim

LRU - hyper 10 - sim

Fig. 3. Hit probability vs cache size, for LRU, under different degrees of
temporal locality.

Fig. 3 shows the impact of temporal locality on caching per-
formance: LRU performance is evaluated under renewal traffic
in which object inter-arrival times are distributed according to a
second order hyper-exponential with branches λ1

m = zλm and
λ2
m = λm/z (hereinafter, we will call hyper-z such distribution),

so that increasing values of z results into stronger temporal
locality in the request process. We observe that temporal locality
can have a dramatic (beneficial) impact on hit probability, hence
it is crucial to take it into account while developing analytical
models of cache performance.

Fig. 3 also shows that LFU is no longer optimal when traffic
does not satisfy the IRM. This because LFU statically places
in the cache the C most popular objects (on the basis of the
average request rate of contents), hence the content of the cache
is never adapted to instantaneous traffic conditions, resulting into
suboptimal performance.

Fig. 4 compares the performance of LFU, LRU, q-LRU and
2-LRU in the case in which traffic exhibits significant temporal
locality (hyper-10). We also change the Zipf’s law exponent,
considering either α = 0.7 (left plot) or α = 1.0 (right plot).

100 1000 10000 100000 1e6

Cache size, C

LFU
2-LRU - model

q-LRU - q = 0.01 - model
q-LRU - q = 0.1 - model

LRU - model

100 1000 10000 100000 1e6

Cache size, C

2-LRU - sim
q-LRU - q = 0.01 - sim
q-LRU - q = 0.1 - sim

LRU - sim

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 1000 10000 100000 1e6

Cache size, C

LFU
2-LRU - model

q-LRU - q = 0.01 - model
q-LRU - q = 0.1 - model

LRU - model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 1000 10000 100000 1e6

Cache size, C

2-LRU - sim
q-LRU - q = 0.01 - sim

q-LRU - q = 0.1 - sim
LRU - sim

Fig. 4. Hit probability vs cache size, for various caching policies, under hyper-10
traffic, in the case of α = 0.7 (left plot) or α = 1 (right plot).

We observe that q-LRU performs poorly in this case, espe-
cially for small values of q (in sharp contrast to what we have
seen under IRM). This because q-LRU with very small q tends
to behave like LFU (keeping statically in the cache only the
objects with the largest average arrival rate), which turns out to
be suboptimal as it does not benefit from the temporal locality
in the request process.

On the contrary, a simple 2-LRU system provides very good
performance also in the presence of strong temporal locality. This
because, while 2-LRU is able to filter out unpopular contents,
its insertion policy is fast enough to locally adapt to short-term
popularity variations induced by temporal locality.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10 100 1000 10000 1e5

Cache size, C

3-LRU - trace
2-LRU - trace

2-RANDOM - trace
q-LRU - q = 0.01 - trace
q-LRU - q = 0.1 - trace

LRU - trace
FIFO - trace

RANDOM - trace

Fig. 5. Hit probability vs cache size, for various caching policies, under real
trace of Youtube video requests.

To further validate the design insights gained by our analysis,
we have also run a trace-driven experiment, using a real trace of
Youtube video requests collected inside the network of a large
Italian ISP, offering Internet access to residential customers. The
trace has been extracted analysing TCP flows by means of Tstat,
an open-source traffic monitoring tool developed at Politecnico
di Torino [21]. During a period of 35 days in year 2012, from
March 20th to April 25th, we recorded in total 3.8M of requests,
for 1.76M of videos, coming from 31124 distinct IP addresses.

Fig. 5 reports the hit probability achieved by different caching



schemes2. We observe that most considerations drawn under
synthetic traffic (in particular, the policy ranking) still hold
when the cache is fed by real traffic taken from an operational
network. We summarize the main findings: i) the insertion policy
plays a crucial role in cache performance, especially in the
small-cache regime; ii) a single meta-cache (2-LRU system)
significantly outperforms the simple LRU and its probabilistic
version (q-LRU), while additional meta-caches provide only
minor improvements; iii) the impact of the eviction policy is
not significant, especially when caches are small with respect to
the catalogue size.

V. CACHE NETWORKS

In a typical cache network, caches forward their miss stream
(i.e., requests which have not found the target object) to other
caches. Let us briefly recall the standard approach that has been
proposed in the literature to analyse this kind of system.

We first introduce some notation. Let phit(i,m) be the hit
probability of object m in cache i, and pin(i,m) be the (time
average) probability that object m is in cache i. We denote by
T i
C the eviction time of cache i. Furthermore, let λm(i) be the

total average arrival rate of requests for object m at cache i.
This rate can be immediately computed, provided that we know
the hit probability of object m at all caches sending their miss
stream to cache i – see later equation (12).

Once we know the average arrival rates λm(i), we can simply
assume that the arrival process of requests for each object at
any cache is Poisson, and thus independently solve each cache
using its IRM model. A multi-variable fixed-point approach is
then used to solve the entire system (see [7] for a dissection of
the errors introduced by this technique).

We now explain how Che’s approximation can be exploited to
obtain a more accurate analysis of the cache network, under the
three replication strategies defined in Sec. II-D. To describe our
improved technique, it is sufficient to consider the simple case
of just two caches (tandem network). Indeed, the extension of
our method to general network is straightforward.

Moreover, we will limit ourselves to the case in which the
traffic produced by the users satisfies the IRM model (i.e.,
the exogenous process of requests for each object is indeed
Poisson). The general idea is to try to capture (though still in
an approximate way) the existing correlation among the states of
neighboring caches, which is totally neglected under the Poisson
approximation. To do so, a different approximation is needed
for each considered replication strategy, as explained in the
following sections.

We remark that an alternative approach to ours has been
recently proposed in [12] for cache networks with feed-forward
topology, implementing TTL-based eviction policies. Their ap-
proach, which can be used to analyse the performance LRU,
RANDOM and FIFO under the Che approximation, essentially
consists in characterizing the inter-request process arriving at
non-ingress caches through a two steps procedure: i) the miss
stream of (ingress) caches is exactly characterized as a renewal
process with given distribution; ii) by exploiting known results

2The largest cache size that we could consider was limited by the finite
duration of the trace.

on the superposition of independent renewal processes, the
inter-request time distribution at non-ingress caches is obtained.
Although the approach in [12] is very elegant, and it can be
potentially extended to renewal traffic, it suffers from the follow-
ing two limitations: i) it becomes computationally very intensive
when applied to large networks; ii) it can be hardly generalized
to general mesh networks (non feed-forward). Our approach is
somehow complementary to the one proposed in [12] since,
while it applies only to IRM traffic, it is definitely more scalable
and readily applicable to networks with general topology.

A. Leave-copy-everywhere

Focusing on the basic case of a tandem network, the arrival
process of requests for object m at the first cache is an exogenous
Poisson process of rate λm(1). The first cache (which is not
influenced by the second one) can then be solved using the
standard IRM model, giving

phit(1,m) = pin(1,m) = 1− e−λm(1)T 1
C . (11)

The arrival process of request for object m at the second cache
is not Poisson. It is, instead, an ON-OFF modulated Poisson
process, where the ON state corresponds to the situation in which
object m is not stored in cache 1, so that requests for this object
are forwarded to cache 2. Instead, no requests for object m can
arrive at cache 2 when m is present at cache 1 (OFF state).

The standard approximation would be to compute the average
arrival rate λm(2) = λm(1)(1−pin(1,m)) and to apply the IRM
model also to the second cache. Can we do better than this?
Actually, yes, at least to compute the hit probability phit(2,m),
which can, in practice, be very different from pin(2,m) since
PASTA does not apply.

We observe that a request for m can arrive at time t at cache 2,
only if object m is not stored in cache 1 at t−. This implies that
no exogenous requests can have arrived in the interval [t−T 1

C , t]
(otherwise m would be present in cache 1 at time t), hence, a
fortiori, no requests for m can have arrived at cache 2 in the
same interval.

Now, provided that T 2
C > T 1

C , object m is found in cache 2
at time t, if and only if at least one request arrived at cache 2
within the interval [t−T 2

C , t−T 1
C ]. During this interval, the arrival

process at cache 2 is not Poisson (it depends on the unknown
state of cache 1), and we resort to approximating it by a Poisson
process with rate λm(2), obtaining:

phit(2,m) ≈ 1− e−λm(2)(T 2
C−T 1

C)

Essentially, the improvement with respect to the standard ap-
proximation consists in the term T 2

C −T 1
C in the above equation,

in place of T 2
C . This simple modification, however, can make a

huge difference in the resulting hit probability at cache 2 (we
omit example results due to lack of space). If, instead, T 2

C < T 1
C ,

we clearly have phit(2,m) = 0.
Note that the above reasoning cannot be applied to compute

pin(2,m) (which is necessary to estimate T 2
C), thus we simply

express
pin(2,m) ≈ 1− e−λm(2)T 2

C

as in the standard IRM model.



B. Leave-copy-probabilistically

Also in this case the first cache is not influenced by the second,
hence we can use the IRM formula of q-LRU (5) to analyze its
behavior.

To evaluate phit(2,m), we again observe that a request for
content m that arrives at time t at cache 2 produces a hit if,
and only if, at time t− content m is stored at cache 2 but not
in cache 1. For this to happen, in the case T 2

C > T 1
C there are

two sufficient and necessary conditions related to the previous
request for m arriving at cache 2: i) this request produced a hit
at cache 2, or it triggered an insertion here; ii) it arrived at cache
2 in the time interval [t−T 1

C , t], without producing an insertion
in cache 1, or it arrived at cache 2 in the interval [t−T 2

C , t−T 1
C ].

Thus, we obtain:

phit(2,m) ≈ [phit(2,m) + q(1−phit(2,m))]·

[(1−e−λm(2)T 1
C )(1−q) + e−λm(2)T 1

C (1−e−λm(2)(T 2
C−T 1

C))]

Note that, in the previous expression, we employ the full
rate λm(1) for requests arriving at cache 1 in the interval
[t − TC(1), t], since by construction cache 1 does not contain
m at t−. On the other hand, we approximate the arrival process
of requests for m at cache 2 with a Poisson process of rate λm(2)
over the interval [t− T 2

C , t− T 1
C ].

If, instead, T 2
C < T 1

C , the above expression simplifies to

phit(2,m)≈ [phit(2,m)+q(1−phit(2,m))](1−e−λm(2)T 2
C )(1−q)

To estimate pin(2,m), we resort to the standard Poisson
approximation:

pin(2,m) ≈ (1− e−λm(2)T 2
C )[pin(2,m) + q(1− pin(2,m))].

C. Leave-copy-down

This strategy is more complex to analyse, since now the
dynamics of cache 1 and cache 2 depend mutually on each other.
Indeed, it is possible to insert a content in cache 1 only when it is
already stored in cache 2. Probability pin(1,m) can be computed
considering that object m is found in cache 1 if, and only if, the
last request arrived in [t−T 1

C , t] and either i) it hit the object in
cache 1 or ii) it found the object in cache 2 (and not in cache
1). Since PASTA holds, we have:

pin(1,m) ≈ phit(1,m) = [(1−pin(1,m))phit(2,m)+pin(1,m)]·
(1− e−λm(1)TC(1))

Observe in the previous expression that we have assumed the
states of cache 1 and cache 2 to be independent; on the other
hand, similarly to what we have done before, we write:

pin(2,m) ≈ (1− e−λm(2)T 2
C )

Note that, since pin(1,m) and pin(2,m) are interdependent, a
fixed-point iterative procedure is needed to jointly determine
them.

It remains to approximate the hit probability at cache 2. When
T 2
C > T 1

C , we write:

phit(2,m) ≈ (1−e−λm(2)(T 2
C−T 1

C))+(1−phit(2,m))(1−e−λm(1)T 1
C )

Indeed, since at time t− cache 1 does not store the object by
construction, either the previous request arrived at cache 2 in
[t−T 2

C , t−T 1
C ], or it arrived in [t−T 1

C , t] but did not trigger an
insertion in cache 1 because object m was not found in cache
2. Similarly, if T 2

C < T 1
C :

phit(2,m) ≈ (1− phit(2,m))(1− e−λm(1)T 2
C )

At last we remark that cache networks implementing LCD
have been previously considered in [22] for the special case of
tandem topologies. We emphasize that the method proposed in
this paper provides a significantly simpler and higher scalable
alternative to the approach devised in [22], by capturing in a
simple yet effective way existing correlations between caches’
states, while reducing the number of interdependent parameters
that must be estimated through the iterative procedure.

D. Extension to general cache networks
Our approach, which has been described above for the simple

case of a tandem network, can be easily generalized to any
network. We limit ourselves to explaining how this can be done
for the leave-copy-everywhere scheme. Let rj,i be the fraction
of requests for object m which are forwarded from cache j to
cache i (in the case of a miss in cache j).

The average arrival rate of requests for m at i is then

λm(i) =
∑
j

λm(j)(1− phit(j,m))rj,i (12)

and we can immediately express:

pin(i,m) ≈ 1− e−λm(i)T i
C

resorting to the standard Poisson approximation.
Our refined approach to estimating the hit probability can

still be applied to the computation of the conditional probability
phit(i,m | j), which is the probability that a request for object
m hits the object at cache i, given that it has been forwarded
by cache j. This event occurs if, and only if, either a request
arrived at i from j in the time interval [t−T i

C , t−T j
C ] (provided

that T i
C > T j

C), or at least one request arrived at i in the interval
[t−T i

C , t] from another cache (different from j). Thus we write:

phit(i,m | j) ≈ 1− e−Ai,j

where Ai,j = rj,iλm(j)(1 − pin(j,m))max(0, T i
C − T j

C) +∑
k 6=j rk,iλm(k)(1−pin(k,m))T i

C . The expression for phit(i,m)
can then be obtained de-conditioning with respect to j.

Now, in case of tree-like networks previous expressions can
be evaluated step-by-step starting from the leaves and going up
towards the root. In case of general mesh networks, a global
fixed-point procedure is necessary.

E. Model validation and insights
As before, our aim here is to jointly validate our analytical

models against simulation, while getting interesting insights into
system behavior.

Fig 6 compares the performance of the different replication
strategies that we have analysed, in the case of a chain of 6
identical caches. We have chosen a chain topology to validate
our model, because this topology is known to produce the largest



 100  1000  10000

Cache size, C

LCE - model
LCP - q = 0.2 - model

LCD  - model

 100  1000  10000

Cache size, C

LCE - sim
LCP - q = 0.2 - sim

LCD - sim
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  1000  10000

Cache size, C

LCE - model
LCP - q = 0.2 - model

LCD  - model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  1000  10000

Cache size, C

LCE - sim
LCP - q = 0.2 - sim

LCD - sim

Fig. 6. Hit probability vs cache size, for various replication strategies, in the
case of a chain of 6 caches, under IRM traffic. Hit probability of the first cache
(left plot) and total hit probability of the network (right plot).

degree of correlation among caches (and thus the maximum
deviation from the Poisson approximation).

We separately show the hit probability on the first cache
(left plot) and the hit probability of the entire cache network
(right plot), observing excellent agreement between analysis
and simulation in all cases. We note that LCP significantly
outperforms LCE, as it better exploits the aggregate storage
capacity in the network avoiding the simultaneous placement of
the object in all caches. Yet, LCD replication strategy performs
even better, thanks to an improved filtering effect (LCD can be
regarded as the the dual of k-LRU for cache networks).

At last, we consider a very large topology comprising 1365
caches, corresponding to a 4-ary regular tree with 6 levels.
Such topology is extremely expensive (if not impossible) to
simulate, whereas the model can predict its behavior at the same
computation cost of previous chain topology. Fig. 7 reports the
total hit probability achieved in this large network, for two traffic
scenarios (analytical results only).

 0.01

 0.1

 1

100 1000 10000 1e5 1e6 1e7

Cache size, C

LCD
LCP - q = 0.2

LCE

M = 1e6
α = 0.8

α = 0.7
M = 1e7

Fig. 7. Hit probability vs cache size, for various replication strategies, in the
case of a tree topology with 1365 caches, for two traffic scenarios

We again observe the huge gain of LCD with respect to LCE,
whereas the benefits of LCP are not very significant, especially
with α = 0.7.

VI. CONCLUSIONS

The main goal of this paper was to show that a variety
of caching systems (both isolated and interconnected caches)

operating under various insertion/eviction policies and traffic
conditions, can be accurately analysed within a unified frame-
work based on a fairly general decoupling principle extending
the original Che’s approximation. We have also shown that
many properties of cache systems can be obtained within our
framework in a simple and elegant way, including asymptotic
results which would otherwise require significant efforts to be
established. From the point of view of system design, our study
has revealed the superiority of the k-LRU policy, in terms of
both simplicity and performance gains. Still many extensions
and refinements are possible, especially for cache networks under
general traffic.

REFERENCES

[1] W. Jiang, S. Ioannidis, L. Massoulié, and F. Picconi, “Orchestrating
massively distributed CDNs,” in ACM CoNEXT, 2012.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in ACM CoNEXT 2009.

[3] K. W. King, “Analysis of paging algorithms,” in IFIP Congress, 1971.
[4] A. Dan and D. Towsley, “An approximate analysis of the LRU and FIFO

buffer replacement schemes,” SIGMETRICS Perform. Eval. Rev., vol. 18,
pp. 143–152, Apr. 1990.

[5] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” IEEE JSAC, vol. 20, no. 7,
pp. 1305–1314, 2002.

[6] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approxima-
tion for lru cache performance,” ITC 2012.

[7] E. Rosensweig, J. Kurose, and D. Towsley, “Approximate Models for
General Cache Networks,” in INFOCOM, 2010.

[8] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy,
“Performance evaluation of the random replacement policy for networks
of caches,” SIGMETRICS Perf. Eval. Rev., vol. 40(1), pp. 395–396, 2012.

[9] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check before
storing: what is the performance price of content integrity verification in
lru caching?,” Comput. Comm. Rev., vol. 43, pp. 59–67, July 2013.

[10] E. Coffman and P. Denning., Operating Systems Theory. Englewood Cliffs
(NJ): Prentice-Hall, 1973.

[11] E. Rosensweig, D. J. Menache, and J. Kurose, “On the Steady-State of
Cache Networks,” in INFOCOM, 2013.

[12] N. Fofack, P. Nain, G. Neglia, and D. Towsley, “Analysis of ttl-based cache
networks,” in VALUETOOLS, 2012.

[13] Companion technical report, available at http://arxiv.org/abs/1307.6702.
[14] R. Fonseca, V. Almeida, M. Crovella, and B. Abrahao, “On the intrinsic

locality of web reference streams,” in IEEE INFOCOM, 2003.
[15] K. Kylkoski and J. Virtamo, “Cache replacement algorithms for the

renewal arrival model,” in Fourteenth Nordic Teletraffic Seminar, NTS-14,
(Copenhagen, Denmark), pp. 139–148, Aug. 1998.

[16] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing the
Video Popularity Characteristics of Large-Scale User Generated Content
Systems,” IEEE/ACM Trans. on Netw., vol. 17(5), pp. 1357–1370, 2009.

[17] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on
caching performance in a content-centric network,” in NOMEN, 2012.

[18] P. R. Jelenković and A. Radovanović, “The persistent-access-caching
algorithm,” Random Struct. Algorithms, vol. 33, pp. 219–251, Sept. 2008.

[19] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approxima-
tion for LRU cache performance,” in ITC, 2012.

[20] E. Gelenbe, “A unified approach to the evaluation of a class of replacement
algorithms,” IEEE Trans. Comput., vol. 22, pp. 611–618, June 1973.

[21] A. Finamore, M. Mellia, M. Meo, M. M. Munafò, and D. Rossi, “Experi-
ences of Internet traffic monitoring with Tstat,” IEEE Network, 2011.

[22] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection of
LRU caches and its analysis,” Perform. Eval., vol. 63, July 2006.


