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Summary

In this thesis, different materials were used to make ceramic sensors to ammonia, obtained

by screen printing, working at room temperature. The main objective is to apply these

devices to food chemistry, in order to evaluate quantitatively the alteration products of

certain food categories, for example meat, which tends to generate biogenic amines, such

as cadaverine, putrescine, histamine and others.

Since the ammonia is the simplest amino group, it was decided to characterize ceramic

sensors in ammonia atmosphere.

The ceramic materials used for the realization of sensors are ZnO, Fe2O3, WO3 and Bi2O3.

However, the tests performed have shown that the ceramic oxides were not sufficient to

ensure good electrical responses. So, we have functionalized sensors mainly with carboxyl

groups, in order to improve the electrical response to ammonia: the best results were

obtained by functionalization of glass ceramic with canforquinone (CQ) and benzophenone

(BP) via plasma. These sensors give a good response in ammonia atmosphere starting from

few ppm.
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In recent decades there have been many important changes in lifestyle and food in global

market.

It is now common to purchase food in shopping malls, where the food supply is increasing

in size and diversity. For this reason it is necessary to adapt and improve controls about the

safety and the quality of food. During years, food processing technology has made great

strides in agriculture and respectively the population increased. For these reasons, issues

concerning food safety have become very complex. The complexity concerns variable

quality related to food products, new food products, their conservation and fraud.

In addition, the production processes for food preservation have become very important

due to the need to store food for long periods, to avoid chemical and microbiological

deterioration, infestation of insects and pathogenic contamination [1]. Today, the producers

aim is to introduce innovative products to the market at shorter time intervals, trying to

prevent health risks, product losses and disputes. In addition, consumers expect a wide

range of competitively priced, highly processed and convenient food products of high

quality. They requires fresh, nutritious, healthy, tasty and overall sure food.

On the other hand, consumers have no direct means for their expectations verification and

have to rely completely to the supervisory authorities. So food control is fundamental both

for the consumers protection and for food industry that intends to gain the trust of

consumers.

For these reasons the aim we need to achieve is to prevent the food spoilage, in order to

ensure high quality products. It is possible to find many ways to assess and prevent

spoilage, using chromatographic and spectrometric techniques, which are the most

common tools, or even using ceramic , optical, composite or biochemical sensors.

This thesis deals with the research of ceramic materials, adopted in the food industries to

monitor the quality of the food, using thin layers to detect gases. There are many works,

easily available in literature, which have been already made about the realization of

ceramic materials used for sensing.

The features that distinguish the sensors presented in this thesis from the previous ones are

simplicity, speed and low cost to make them.

The first chapter of this thesis presents a detailed description of the main ceramic sensors.

Chapter 1 ends with ceramic sensors to ammonia, with a special attention to those who

work at room temperature, because sensors aimed to evaluate food spoilage should be used

at room temperature.
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The second chapter is entirely focused on food chemistry principles and, in particular, on

the state of art methods for the determination of food spoilage.

The third chapter deals with the materials studied during this PhD work as ammonia

sensors and focuses on screen printing technique. The materials studied were designed to

be applied to a limited category of spoiled food, particularly those that produce biogenic

amines; for this reason, the analysis that will be presented refers to measures of variation of

electrical resistances of the sensors with respect to the variation of the concentration of

moisture and ammonia, the simplest amino group taken as a reference.
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Chapter 1

Ceramic Sensors

1.1 Introduction

In the last years the development of new sensors has rapidly grown especially in control

systems, for the improvement of industrial processes and of human lifestyle.

The concept of ceramic sensors include all sensors produced using ceramic technology.

The reason why these materials are widely used is due to the fact that they exhibit a

number of specific features which enable their cost to become lower and their reliability to

increase, thus occupying a significant position in sensor technology [1].

In this introduction a very general approach on sensors and ceramic sensors will be treated,

dealing with their technology, classification, the types of materials used for their

manufacturing, the methods of checking their features and the areas of application. This

part will culminate with the focusing on ammonia sensors, whose topic is the main subject

of this Ph.D. thesis.

1.2 Classifications and properties of sensors

In general, sensors are devices able to convert physical or chemical quantities into

electrical signals [2]. The definition of the IEC (International Electrotechnical Committee)

states that ”the sensor is the primary part of a measuring chain which converts the input

variable into a signal suitable for measurement” [3].

It is possible to find basically two kinds of sensors: active and passive. The active one can

convert one form of energy directly into another without the need of an external source,

while the passive one is not able to convert the energy directly, but it checks the energy or

the excitation from another source.

Certain requirements are set for sensors, according to their operating principle and their

construction, in general the sensors must be characterized by:
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 high sensitivity

 high accuracy

 reproducibility

 high response rate

 selectivity

 broad range of measurement and operating temperatures

 high reliability

 long period of operation

 resistance to ageing and to the ambient influences (heat, vibration, water,

dust)

 safety

 low price and small dimensions

 weight

 strength

The aim of a sensor is to carry out a quantitative conversion of a certain property of the

substance or the process: the substance may be a solid, a liquid or a gas, while the property

registered may be detected in different ways and it may have a physical or a chemical

nature.

Sensors can be classified into two families: physical and chemical sensors.

Figure 1.2.1. Flow chart of physical and chemical sensors.
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It is possible to find many applications in which these sensors can be used: Table 1.2.1

presents some examples of these applications and the corresponding principles of operation

exploited. From Table 1.1 it emerges that sensors can be classified also according to their

purpose: so we can find pressure and force sensors, sensors for level, speed sensors,

sensors for acceleration, sensors for vibrations, sensors for magnetic field, sensors for

vacuum, sensors for displacement, temperature sensors, humidity sensors, gas sensors,

biosensors, sensors for radioactive radiation.

Type of sensor Principle of operation Quantity being measured

Thermistor (NTC),

semiconductor sensor

Resistance’s change Force, mass, pressure,

acceleration, temperature,

humidity gas

Capacitance sensor Capacitance’s change Force, mass, pressure,

acceleration, level, humidity

Inductive sensor Inductance change Force, mass, pressure,

acceleration, magnetic field,

torque

Hall sensor Hall effect Angle, number of revolutions,

force, magnetic field

Piezo/ultrasonic sensor Piezoelectric effect Pressure, acceleration,

distance

Pyroelectric sensor Pyroelectric effect Smoke, fire, thermal

distribution.

Optoelectronic sensor Optoelectronic effect Radiation, angle, torque,

number of revolutions,

displacement

Table 1.2.1. Possible applications and corresponding quantity being measured of different sensors classified

according to their principles of conversion.

Sensors can be classified from different points of view: the materials, the principles of the

conversion, the type of output signals, the technology of their production. The

classification of the sensors from the point of view of the material used, the devices can be
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divided according to the nature of the sensing material: metals, ceramics, polymers and

composites.

Finally, sensors can be classified according to their manufacturing technology: so we can

find integrated, thin films, thick films and ceramic sensors. Thin film sensors are obtained

by depositing an appropriate sensitive thin film onto a dielectric substrate (the basis).

Thick film sensors are realized by depositing an appropriate sensitive paste on a ceramic

substrate, most often made of alpha-alumina (α−Al2O3), followed by a heat treatment in

order to shape the thick film.

1.2.1 Classification of ceramic sensors

Ceramic materials are inorganic, non-metallic materials, mainly resulting from the

combination of metal and non metal elements by strong bonds (covalent or ionic). They

can be crystalline or partially crystalline. They are formed by the action of heat and

subsequent cooling [4].

The use of ceramics in sensors application is determined by many properties of the

material [5], as for example:

 their microstructure can be controlled over their composition and the firing

conditions, in fact the microstructure exerts an evident influence over different

properties of the ceramics, such as electrical, optical, magnetic, thermal and

mechanical properties;

 these materials can be used for high-temperature applications, thanks to their high

temperature resistance and to the ambient influence;

 ceramics are produced by means of relatively simple operations, such as mixing the

pristine components, pressing and firing at high temperatures;

 ceramics are produced starting from cheap materials, giving rise to relatively cheap

sensors.

In general ceramic materials have structural properties connected with the crystal grains

(called bulk), the separation surface of near crystal grains (grain boundaries), the

separation surface of crystal grains and space (surface) and the pores in the structure.

Thanks to these features, both bulk and surface properties can be exploited in the

production of ceramic sensors.
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Ceramic materials used for sensors application can be classified mainly into three families:

 ceramics exploited for physical properties of the grains;

 ceramics exploited for properties of the grain boundaries;

 ceramics exploited for surface properties;

Standing at this general classification, ceramic sensors exploiting these properties are

reported in Table 1.2.1.1.

Exploited attribute General application Functional property

Bulk Temperature sensor

Oxygen gas sensor

Pressure sensor

Infrared sensor

Ultrasonic sensor

Capacitance temperature

sensor

Magnetic temperature

sensor

Critical temperature sensor

Negative temperature

coefficient thermistor (NTC)

Solid electrolyte and

semiconduction

Piezoelectricity

Pyroelectricity

Piezoelectricity

Ferroelectricity

Ferromagnetic

Semiconduction

Grain – boundary

properties

Temperature sensor

Gas sensor

Pressure sensor

Positive temperature

coefficient thermistor(PTC)

Semiconduction

Semiconduction

Surface properties Humidity sensor Conduction/semiconduction

Table 1.2.1.1. Classification of ceramic sensors according to materials properties [6]

Type of sensor Output signal Effect Material

Temperature

sensor

Change in

resistance

Change in the concentration of the

temperature carriers

NiO, CoO, FeO,

MnO, MnO-

NiOCoO
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Thermistor effect with a negative

or positive temperature coefficient

CoO-Al2O3-

CaSiO3

Phase transition, barrier effect BaTiO3

Phase transition

semiconductormetal

VO2, V2O3

Change in

magnetization

Phase transition

ferromagnet/paramagnet

Ferrites on the

basis of Mn-Zn,

Ni-Zn, Mn-Cu

Change in

capacitance

Temperature change in the

dielectric permittivity of

ferroelectrics

(Ba1-xSrx)TiO3,

BaTiO3, PZT

Gas sensor Change in

resistance

Thermal reaction of the catalytic

combustion of gases

Pt catalyst/Al2O3/

Pt conductor

Change in electric charge with

adsorption-desorption of gases

SnO2, ZnO,

In2O3,

WO3, Fe2O3,

NiO, Cr2O3,

TiO2, etc.

Temperature variations Thermistors

Humidity

sensor

Change in

resistance

Ionic conduction with humidity

adsorption

LiCl, ZnO-Li2O,

etc.

Electron conduction with

humidity adsorption

TiO2, ZnO,

MgCr2O4-TiO2,

Fe2O3, etc.

Change in

capacitance

Change the dielectric permittivity

with humidity absorption

RuO2

Optical sensor Electromotive

force

Pyroelectric effect SrTiO3, LiNbO3,

PbTiO3, PZT, etc.

Ultrasonic

sensor

Difference in

phases of

waves

Piezoelectric effect PbTiO3, PbZrO3,

PZT

Sensors for

force, pressure

Change in

resistance

Piezoresistive effect ZnO-NiO-Li2O,

ZnO-TiO2-B2O3,
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and

acceleration

V2O5

Change output

voltage

Piezoelectric effect PbTiO3, PbZrO3,

PZT

Piezoresonance

sensor

Change in

frequency

Piezoelectric effect PbTiO3, PbZrO3,

PZT

Table 1.2.1.2. Ceramic sensors, exploited effects and materials [6].

1.2.2 Parameters of ceramic sensors

The most important parameters for gas sensors are the following ones:

o Sensor resistance in function of gas concentration: it illustrates the influence of gas

concentration Cg on the sensor resistance (Rs) or on the conductivity (Gs); the

concentration of the gas is usually measured in ppm. At low concentrations of gas

in atmosphere and at fixed constant temperature, the conductivity can be described

by equation (1.2.2.1)

Gs = KCg
α (1.2.2.1)

where K and α are constant and Cg stands for the gas concentration parameters in air.

o Sensor response to gas: it is defined as the relative variation of the starting

resistance, comparing it with the resistance measured in gas atmosphere:

SR = (RPgas – RPgas0) / RPgas0 (1.2.2.2)

where R(Pgas) is the total resistance of the material when exposed to P(gas) partial pressure

and R(Pgas0) is the measured resistance when the gas partial pressure tends to zero. It is

function of gas concentration.

o Sensitivity: it is represented by the slope of the calibration curve of the sensor

response in function of the gas concentration [7].

o Response characteristic: it is a resistance/time relationship taken down at sharp

changes of gas concentration; the response is measured at definite temperature and

gas concentration values.



14

o Operating temperature: it should be specific for any sensor; it is function of the

ceramic composition and of the gas to be detected. It is important to define this

parameter because with respect to every single gas, the sensor reaches the

maximum of its sensitivity at a given temperature.

o Selectivity: it is the ability of a sensor to give response only to a certain gas (Figure

1.2.2.1); it is correlated to a definite gas and it is closely connected with its

operating temperature [8].

Figure 1.2.2.1. Schematic representation of the analyte (triangle) identification in a mixture (rhombus =

species of interference).

o Porosity: an important requirement in the production of ceramic materials for

sensors application is checking the pores’ size: in the case of piezoceramics, ferrite

ceramics, PTC and NTC thermistors, varistors and ferroelectric ceramics, the

pores’ volume is reduced to minimum values, while the role of the pores is

particularly important for gases and humidity ceramic sensors [9].

In particular, pores are empty spaces between the ceramic grains which play a very

important role on the properties of a ceramic sensor. Concerning the number of pores, it is

possible to find pores having three different natures: the open passage pores, which pass

through the bulk of the material from a surface to another one, or which start from one

surface, go around a certain volume and come back to the same initial surface; the open

dead-end pores, which start from a surface and reach to a certain depth in the bulk; internal

pores, which are present in the bulk and do not have an outlet on the surface. Besides,

pores can have different kinds of shapes, mainly cylindrical, rectangular, split and square.

Actually, the structure of the pore system is much more complicated with respect to the
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ones that has just been discussed, because the real structure is a combination of the types

above defined.

According to their size, it is possible to refer to microporosity when the pore size is below

2 nm, mesoporosity when the pore size is between 2 and 50 nm, and macroporosity for

pore sizes over 50 nm [10]. This terminology was developed to classify the porosity of the

materials by the IUPAC. Another very important factor connected to the pores is the

porosity, defined as [11]:

P = Vp/V (1.2.2.3)

where Vp represents the total pore volume and V is the ceramic bulk.

For ceramic sensors the last basic concept to define is the specific surface area s, defined

as:

s = S/m (1.2.2.4)

where [s] = m2/g, S is the total surface, that is the sum of the ceramic body external surface

SS and the surface of the internal pores Sp (S = SS + Sp).

The specific surface area indicates the reactivity’s degree of a surface: a large value of s in

a ceramic material guarantees a high sensitivity of the sensor, giving rise to a large change

in electrical resistance or capacitance.

All these factors (size, porosity and specific surface area) are important in the production

of ceramic sensors: they can be controlled by choosing either a suitable temperature regime

or by introducing suitable additives which stimulate the pore formation.

1.3 Electrical properties of ceramic sensors

The response of ceramic sensors to an external phenomenon, such as water vapor, gases,

pressure, temperature and so on, gives an electrical response, by varying their resistance or

the electrical current [12]. For this reason it is fundamental to determine the electrical

properties of ceramic oxides in order to explain the ceramic sensors’ operating principles.

The specific structure of the ceramics determines the following basic factors, on which its

electrical resistance depends: grain bulk, grain surface and grain boundaries.
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1.3.1 Electrical conductivity in ceramic sensors

In general the electrical conduction may be of two different natures: electrical and ionic,

differing between them from the typology of the species responsible for the conduction.

Considering the electron conduction mechanism, in each crystal lattice, the atoms are

arranged in a definite order; the atoms of each chemical element in ceramic oxides occupy

well defined positions in the lattice site. If all these sites for metal and oxygen atoms are

occupied, the material is a perfect crystal.

In order to understand the basic principles of the electrical conduction in ceramic materials,

let us consider a particular case, that refers to a semiconducting perfect crystal, whose band

structure is shown in Fig. 1.3.1.1.

Figure 1.3.1.1. Energy bands characteristic of a conductor, an insulator and a semiconductor.

Eg is the energy gap and represents the width of the forbidden band and it is defined as the

difference between the bottom of the conduction band (Ec) and the top of the valence band

(Ev), so Eg = Ec − Ev. In semiconductors the value of Eg is approximately 1 eV, while in

insulators it may reach 6-7 eV.

At T = 0 K, the valence band (VB) is completely filled by the electrons, while the

conduction band (CB) is completely empty. This deals with a particular case in which a

semiconductor material behaves as an insulator one. However if T > 0K, so if the thermal

energy increases, the electrons of the VB start to have a sufficient energy to pass the gap so

to move to CB: the higher the temperature, the easier the movement of the electrons to pass

from a band to another one. As electrons (e) pass to the CB, they leave holes (h) in the VB,

which can be seen as positive electrical charges. So at T > 0K heat generates an e-h couple

Metals (OVERLAP) Insulators Eg>5eV Semiconductors Eg<5eV
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with a probability defined by Boltzmann factor exp(−Eg/2kT), where k is the Boltzmann

constant (k = 1.38 × 10−23J/K).

The concentrations of electrons (n) and holes (p) generated by temperature are equal: such

semiconductor is called intrinsic, characterized by concentrations intrinsic of electrons (ni)

and holes (pi), defined by equation 1.3.1.1:

(1.3.1.1)

where mn and mp are the effective masses of the electrons and holes, respectively, while

ħ= 1.05 × 10−34Js(ħ = h/2π) is the normalized Planck’s constant.

Once defined ni and pi, the electrical conductivity of an intrinsic semiconductor (σ0) is

defined as the sum of the partial conductivities of electrons and holes:

σ0 = σn + σp = qniμn + qpiμp (1.3.1.2)

where μn and μp are the electron and hole mobilities, respectively.

As ni and pi increase exponentially with a rise in temperature, also σ0 increases following

an exponential law.

This feature is exploited in the NTC thermistors, which are sensors whose electrical

resistance decreases after an increase in temperature.

Considering the equation 1.3.1.1, the most important factor is the constant of the

exponential:

B =Eg/2k (1.3.1.3)

The aim is to obtain a high value of B, in order to have high values of ni and pi, so a high

σ0. That is possible by choosing either semiconductor materials with a wide Eg if we want

to work at high temperatures, or semiconductor materials with a narrow Eg if we want to

consider low temperatures applications.

1.3.1.1 Ionic conduction mechanism

Now let us take in consideration the mechanism of ionic conduction [13].
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From the point of view of energy, atoms in lattice sites are located in potential wens.

If T > 0K, there is a definite probability for some atoms to receive enough heat energy to

leave lattice sites. So an intrinsic ionic disorder occurs, as the periodicity of ions in the

lattice is disturbed. In this case we use the term ion instead of atoms because the chemical

bond is partially or completely ionic and the atoms have a certain electric charge.

These local disturbances are called point defects of the lattice. In particular, two different

mechanisms of point defect formation are possible, according to the place the atoms locate

after leaving the lattice sites: Frenkel and Schottky defects.

Frenkel defect occurs when atoms A, after leaving the lattice sites, pass in the interstices.

This kind of movement can be described by the following equation:

0 AA + Vi VA + Ai (1.3.1.1.1)

where 0 denotes the perfect crystal, AA is the atom A occupying its due place in a certain

site, Vi is the non-occupied interstice, VA the non-occupied site by the atom A (so it is a

vacancy) and Ai is the atom A located in an interstice. This mechanism is represented in

Fig. 1.3.1.1.1.

Figure 1.3.1.1.1. Defect formation mechanism in a crystal having a composition AB: a) Frenkel and b)

Schottky types.

The vacancy concentration [VA] is equal to the atom concentration in the interstices [Ai]

and can be quantified by the following equation:
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[VA] = [Ai] = (N Ni)
1/2 ·  exp(−ΔHF/2kT) (1.3.1.1.2)

where ΔHF is the enthalpy of the Frenkel defect formation, N is the number of sites for the

atom A, Ni is the number of interstices which may be occupied by atoms A.

However this kind of mechanism not always occurs: in order to have Frenkel defect it is

necessary that the dimensions of A are such that they can be placed in the interstices. If

such arrangement does not verify, the defects in the lattice are formed according to the

Schottky mechanism, shown in Fig. 1.3.1.1.1b.

In this case, the atoms A, after releasing the sites, come out on the crystal surface and the

mechanism can be explained by the following equation:

0 VA + A (1.3.1.1.3)

where A indicates the atom A on the surface and VA the vacancy formed by A.

The concentration of these vacancies is equal to the atom concentration and it is equal to:

[VA] = [Ai] = N exp (−ΔHS/2kT) (1.3.1.1.4)

where N is the number of sites and ΔHS is the enthalpy of the Schottky defect formation.

Considering both the defect mechanisms, vacancies are formed in the crystal sites and

atoms A can occupy the free places located in the near borough. From equations 1.3.1.1.2

and 1.3.1.1.4 it can be evidenced that, as the temperature increases, [VA] tends to (NNi)
1/2

or to N in the case of Frenkel or Schottky mechanism, respectively.

So for T > 0K atoms in the lattice of oxides have an electric charge and due to the

mechanisms above described they build the lattice like ions: the metal and the oxygen ions

are positively and negatively charged respectively.

In absence of an electric field, ions motion in the sublattice with vacancies is chaotic and it

is carried out by hopping from one site to another one. On the contrary, by applying an

external electric field, the ionic motion becomes directed and an electric current is

generated and starts flowing through the crystal lattice.

This type of electric conduction is called intrinsic ionic conduction.

In presence of defects in the sublattices of the metal and the oxygen, the intrinsic ionic

conductivity is given by the sum of the conductions of the two types of ionic species:
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σi = qn+μ+ + qn−μ− (1.3.1.1.5)

where n+ and n− are the vacancy concentrations in the sublattices of the metal and the

oxygen, while μ+ and μ− are the mobilities of the metal and the oxygen, respectively.

From equations 1.3.1.1.2 and 1.3.1.1.4 it is possible to note that the intrinsic ionic

conduction has an activation nature, whose energy is nothing but the enthalpy of the defect

formation (ΔHF and ΔHS for the Frenkel and Schottky mechanisms, respectively).

So the intrinsic ionic conduction is a sum of the cationic (metal ions) and anionic (oxygen

ions) conduction and the crystals characterized by this type of conduction are called ionic

conductors or solid electrolytes.

1.3.1.2 Extrinsic electron conduction mechanism

Usually, the intrinsic electron conduction is low, for this reason suitable impurities are

intentionally introduced inside the crystal in order to increase the conduction [14]. This

approach is known as the doping method.

In particular, let us consider the case of a generic ceramic oxide characterized by the

chemical formula MO, where M is a metal of second valency (e.g. ZnO, MgO, CdO, NiO):

if we replace some of the atoms M by the atoms belonging to a metal of third valency, such

as Al, the aluminum gives up three electrons instead of two.

Two of these electrons fill the VB, while the third is redundant and connected with the

aluminum atom, whose energy level Ed is situated above the middle of the forbidden band

Eg, near the bottom of the CB.

At T = 0K the crystal behaves as an insulator and all positions of Ed are occupied by

electrons, but when T > 0K part of these electrons in this level have a sufficient energy to

pass from Ed to CB, as a result of heat excitation. It is possible to express the electrons’

concentration in function of the temperature as follows:

n = (2Nd)
1/2 ·(mnkT/2πħ2)3/4·  exp(−ΔEd/2kT) (1.3.1.2.1)

where Nd is the concentration of donor atoms and ΔEd = Ec − Ed is the energy needed to

the electrons to pass from Ed to Ec.

So the passage of electrons from Ed to the CB leads to an increase of electric conductivity,

determined by the motion of these electrons. This type of semiconductor, characterized by
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impurities having a valence number higher than the crystal’s atoms, is called n-type

semiconductor, where n indicates the presence of negative charges responsible for the

electric conduction of the material.

The impurities which introduce electrons to the CB are called donors and the Ed represents

the donor level.

Let us consider now the opposite situation: if the bivalent metal atom M is replaced by

some univalent atoms, i.e. Li, there is a shortage of one electron for each impurity atom for

the band atom to be filled. As a consequence, the free energy level in the VB splits off and

rises above its top: this level (Ea) is situated below the middle of the forbidden band, near

the top of the VB. This kind of impurity gives rise to holes in the VB and is called

acceptor, while Ea is the acceptor level. This type of doping lets to define the p-type

semiconductor, as electrical conductivity is determined by the motion of the holes; the p

indicates that the responsibles for electrical conduction are positive electrical charges (in

particular the holes).

The hole concentration in the VB is defined in a similar way as the electron in the CB for a

n-type semiconductor:

p = (2Na)
1/2 ·(mpkT/2πħ2)3/4·  exp(−ΔEa/2kT) (1.3.1.2.2)

where Na is the concentration of acceptor atoms and ΔEa = Ea − Ev is the energy needed to

the electrons to pass from Ea to Ev.

A schematic representation of the n-type and p-type semiconductors is reported in Fig.

1.3.1.2.1.

Once n and p have been determined, it is possible to define the electrical conductivity for

n-type (σn) and p-type (σp) semiconductors:

σn = qnμn ≈ N d
1/2· (mnT)3/4 ·  exp(−ΔEd/2kT) (1.3.1.2.3)

σp = qnμp ≈ N a
1/2· (mpT)3/4 ·  exp(−ΔEa/2kT) (1.3.1.2.4)
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Figure 1.3.1.2.1. Energy band diagram of n-type and p-type semiconductors. The full circles indicate the

electrons, while the empty ones are the holes.

The concentration of free carriers is higher than the intrinsic concentration, because the

activation energy of the impurity levels is smaller than the semiconductor forbidden band

width.

So by introducing impurities, from eq. 1.3.1.2.3 and 1.3.1.2.4 we can note that a relevant

conduction can be obtained at lower temperatures than the intrinsic conduction, because σn

and σp are function of ΔEd and ΔEa respectively, which are smaller than Eg of an intrinsic

semiconductor.

The doping of semiconductor crystals can be applied to lots of ceramic sensors, such as

metal oxide varistors, as ZnO, SnO2, TiO2 and SrTiO3, PTC-thermistors, as BaTiO3,

humidity ceramic sensors and ceramic sensors for gases. For varistors, the aim is to

increase the conductivity of the ceramic grains within definite limits, while for thermistors

the main purpose is to achieve low resistance at room temperature. For humidity ceramic

sensors doping is carried out both to reduce the electrical resistance at low humidities (in

this case sensors’ resistance, below 30% RH, exceeds 10 MΩ, making their application

below these limits difficult) and to increase the sensor sensitivity by means of secondary

impurities. Finally, for ceramic gas sensors, doping lets to increase the sensitivity to a

particular gas by means of an appropriate selected impurity.

In general real oxide crystals are nonstoichiometric, that means that the relation between

metal cations and oxygen anions is not fulfilled in accordance to their chemical formula.

The deviation from stoichiometry depends on ambient atmosphere and temperature [15].

Often, a certain number of oxygen atoms passes from crystal to the surrounding

atmosphere, according to the reaction:
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MOMO1−x + x/2 O2 (1.3.1.2.5)

where x indicates the site of an oxygen atom: from eq. 1.3.1.2.5 x parts remain unoccupied

and these vacancies arise in the oxygen sublattice. This process can be chemically

summarized by the following reaction:

O2 → V0
2+ + 2e− + 1/2O2 (1.3.1.2.6)

As oxygen ions have a negative charge, their corresponding vacancies formed are

positively charged. For the valence electrons given up from the x-parts of the metal atoms

no free places in the VB are present. Their energy level is usually situated very close to the

bottom of the CB. At medium and high temperatures lots of electrons, situated on this

level, pass to the CB. So, the electron concentration is given by the equation:

n = 2[V0] (1.3.1.2.7)

Thus, oxygen vacancies behave as donor impurities and the corresponding oxide

semiconductors is a n-type semiconductor, which includes for example ZnO, CdO, SnO2,

CeO2, TiO2, V2O5, Nb2O5, Ta2O5 and WO3.

In other metal oxides the opposite case can emerge, that means that there may be a

shortage of metal atoms in the crystal. In this case the equation 1.3.1.2.5 becomes:

MO → M1−xO + xM (1.3.1.2.8)

MM → VM
2- + 2h+ +M (1.3.1.2.9)

The metal vacancies are negatively charged and act as acceptor impurities. For each

vacancy there is a shortage of two electrons for the VB to be filled and the free energy

locates close to the top of the VB. At medium and high temperatures electrons leave the

VB giving rise to holes characterized by a concentration of p = 2[VM].

These materials are p-type semiconductors and include Ag2O, CoO, MnO, Cr2O3, NiO and

Cu2O.

Now let us take into account the ceramic materials’ electric properties depending on grain

surface.
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Different factors influence the electrical features of the ceramic grain, such as the

properties of the grain bulk, which has just been discussed above, the interruption of the

lattice in the grain boundaries and secondary atoms or molecules on the surface [16].

As this thesis deals with sensitive materials for humidity and gas sensing, the last property

will be deepened.

When atoms or molecules coming from the surrounding atmosphere approach to the

ceramic grains, they are captured on the surface of the materials giving rise to the

phenomenon of adsorption. Depending on the mechanism of this process, it is possible to

identify a physical and chemical’s types of adsorption. The reverse process is called

desorption.

In the case of physical adsorption, the atoms and molecules retain their individuality: the

forces of their interaction with the surface have mainly an electrostatic nature. They are

small and the binding energy with the surface does not exceed 0.1 eV. That explains why

the physical adsorption and desorption are carried out at relatively low temperatures.

On the other hand in the chemical adsorption the atoms or molecules are chemically

bonded with the crystal: the binding energy is above 1 eV and this kind of bond is

predominantly covalent and partially ionic. In this case the adsorption and desorption take

place at high temperatures.

Regardless of the type of adsorption, the adsorbed atoms or molecules form donor or

acceptor surface levels.

It is not aways possible to differentiate the mechanisms of physical and chemical

adsorption strictly: in many real cases the adsorption has a mixed nature.

Let us examine now the influence of the surface states over the band diagram and the

electrical properties of the surface layer: in particular, as a starting point, let us take in

consideration the cases of the surface layers of intrinsic semiconductors.

For these materials the Fermi level (EF) is situated in the middle of the forbidden band and

their band diagram is reported in Fig. 1.3.1.2.2.
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Figure 1.3.1.2.2. Energy band diagram of an intrinsic semiconductor characterized by a) acceptor and b)

donor surface states.

In particular, Fig. 1.3.1.2.2a presents the band diagram in acceptor surface states.

They catch electrons from the surface layer, which becomes depleted of electrons and

enriched in holes, so bending upwards the energy levels in CB’s bottom and the VB’s top.

On the surface, a potential barrier is formed having a height of qs, which the electrons

must overcome in order to leave the crystal bulk.

In this case the surface layer is enriched in holes having an additional concentration Δps,

producing an additional electrical conduction occurring in the surface layer, called surface

conduction, defined as:

σps = qΔpsμps (1.3.1.2.10)

where μps is the mobility of the holes in the surface layer.

On the contrary, Fig. 1.3.1.2.2b shows the band diagram of a crystal with donor surface

levels: in these levels the electrons pass into the CB in a thin surface level, which is

enriched in electrons and depleted in holes. In this case the energy levels bend downwards.

For crystals with donor surface levels, being the surface layer enriched in electrons, having

an additional concentration Δns, an additional electrical conduction occurs, defined in a

similar way as 1.3.1.2.10:

σns = qΔnsμns (1.3.1.2.11)

where μns is the mobility of the electrons in the surface layer.
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Concerning the n-type semiconductors, the Fermi level (EF) is located below the CB

bottom, as it is shown in the band diagrams in the left side of Fig. 1.3.1.2.3a: considering

the case of acceptor surface levels, the electrons from the surface layer are captured by the

acceptor surface levels. The surface is negatively charged with a surface density of Qs. The

surface layer having a thickness dn is depleted of electrons and their concentration may be

assumed to zero. This layer is called depletion layer, or area of bulk charge. The energy

levels at the bottom of CB and the top of VB in the surface layer bend upwards, leading to

the formation of a potential barrier on the surface with a high qs, which depends on the

concentration of electrons in the bulk n and on the concentration of the acceptor surface

states Nas:

s =qndn
2/2ϵϵ0 = qN2

as/2ϵϵ0n = Q2
s/2qϵϵ0n (1.3.1.2.12)

where ϵ is the relative dielectric constant and ϵ0 = 8.85 × 10−12 F/m. From equation

1.3.1.2.12 the height of the potential barrier depends on the surface and bulk properties of

the grains. The depletion layer with a thickness dn is positively charged and an electrostatic

field is formed in it, whose potential ϕ change from 0 in the bulk to ϕs on the surface.

The concentration of electrons in this layer is different from zero and changes according to

its thickness as follows:

n’ = n . exp(qϕ/kT) (1.3.1.2.13)

In the steady state, the Fermi level is constant for the whole bulk of the crystal.

In Fig. 1.3.1.2.3b a band diagram in acceptor surface states is presented: it considers the

case when the electron concentration is very low or the surface state concentration is very

high. In this case the deformation of the bands is so large that the Fermi level in a thin

surface layer passes into the lower half of the forbidden band. This state of the Fermi level

corresponds to the p-type semiconductor: the layer so formed, having a hole conductivity

in a n-type semiconductor, is called inverse layer and leads to the formation of a p-n

junction near the surface.
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Figure 1.3.1.2.3. Energy band diagram of n-type and p-type semiconductors characterized by surface states:

a) n-type and acceptor surface states; b) n-type and acceptor surface states with an inverse p-layer; c) n-type

and donor surface states acceptor; d) p-type and donor surface states; e) p-type and donor surface states with

an inverse n-layer; f) p-type and acceptor surface states.

The conduction of the inverse layer may surpass the bulk conduction.

On the other hand Fig. 1.3.1.2.3c presents the band diagram in donor surface levels: the

surface layer, having a thickness d’n, is enriched with electrons and the energy levels are

bent downwards, occurring an additional surface conductivity:

Δσns = qΔnsμns (1.3.1.2.14)

where Δns is the additional electrons’ concentration in the enriched layer. This effect

occurs on the basis of the operation principle of some semiconductor sensors for humidity

and gases sensing. Taking into account the case of a p-type semiconductor, the bending of

the energy bands is a mirror-image of the n-type semiconductor’s bending. So in Fig.
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1.3.1.2.3d, 1.3.1.2.3e and 1.3.1.2.3f the cases are examined in parallel and the bending can

be mathematically defined as:

s =qpd2
p/2ϵϵ0 = qN2

ds/2ϵϵ0 n= Q2
s/2qϵϵ0p (1.3.1.2.15)

where Nds is the concentration of the donor surface states not occupied by the electrons and

p is the concentration of the holes in the bulk.

So, for all the cases above mentioned, in order to explain the mechanism of sensing, it is

necessary to take in consideration the impurities’ concentration (donors or acceptors), the

forbidden band width and the dielectric constant. In particular the concentration of the

impurities influences the potential barrier height in the formation of depletion surface layer

or the relative share of the surface conduction in the formation of an enriched surface layer.

The width of the forbidden band affects the possibility of forming an inverse layer. Finally

the dielectric constant influences the potential barrier height and the depletion layer width.

In the production of some sensors, ceramics are used in which potential barriers are formed

on the grain surface. In some cases the barriers are formed under an external influence.

These potential barriers on the grain surface influence the electrical properties of ceramics,

as they prevent the electrons to pass from one grain to another one, so affecting the

conduction.

According to the grain binding mechanism, three types of boundaries between them can be

differentiated:

 type A: the impurity atoms or non-stoichiometric vacancies, forming the surface layer,

are located on the grain surface. These atoms get on the surface either during the

ceramics firing process, or by means of diffusion after that. The adsorbed layer

thickness is disregarded and the boundary is regarded as a direct contact between two

grains. The band diagram resulting is shown in Fig. 1.3.1.2.4a. From the energy’s point

of view, these are two Schottky barriers connected back-to-back and this model is

typical of the metal-oxide varistors (MOV), such as ZnO, SnO2 and TiO2;

 type B: in the grain boundaries a second phase is formed, whose physical and chemical

properties are different from their bulk properties. The layer formed between the grains

is thick 1-10 nm and structurally it is crystalline or amorphous. This layer is formed

when there is a great amount of impurities: some of them cause surface states and
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others decrease the firing temperature and increase the ceramic density (Fig.

1.3.1.2.4b). This is the typology typical of some varistors and PTC-thermistors;

 type C: this type of grain boundary is more complicated and is a combination of the

two types above described. One of the probable mechanisms for producing an

intermediated layer is a diffusion between the grains or a segregation from the bulk to

the surface. One of the materials characterized by this type of boundary is SrTiO3.

The width of the grain boundaries is determined by the sum of the widths of the depletion

layers in the contacting grains and by the thickness of the dielectric layers between the

grains, if such layers exist. At low voltages, the mechanism of conduction between the

grains is a thermionic emission across the Schottky barrier.

The density of the current through one barrier is:

j = A · exp(−qs/kT)[1 − exp(−qV/kT)] (1.3.1.2.16)

where A is the Schottky-Richardson constant and V is the voltage applied. From the

equation 1.3.1.2.16 it is possible to determine the potential barrier height by measuring the

temperature dependence of the current at a constant voltage. At high voltages the

conduction of the contacts between the grains is determined by the tunnelling through the

barriers.

Figure 1.3.1.2.4. Energy band diagram of the boundary a) of type A and b) type B or C between two ceramic

semiconductor grains.
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The typical current-voltage characteristic is symmetrical, nonlinear and typical of MOV,

presented approximately in the form of:

I = CVα (1.3.1.2.16)

where C is constant and α is the nonlinear exponent describing the non-linearity of the

current-voltage characteristic. So the electrical resistance can be expressed as:

R =1/CV α−1 (1.3.1.2.17)

1.3.2 Properties of semiconductors

The surrounding atmosphere influences the electron conductivity of ceramic materials, by

changing the conductivity of the bulk, the grain surface and the height on the grain

boundary potential barriers [17]. In particular gas and water molecules behave as active

particles in semiconductor ceramics creating donor and acceptor states of the grain surface

or in their bulk.

The changes are evidenced either in the grain bulk or in a thin surface layer and these are

the peculiarities which distinguish the semiconductor sensors from proton humidity

sensors, for which the conduction has a protonic nature and is verified in the bulk of the

adsorbed water vapors.

Ceramic sensors involve oxide ceramics, which is the reason why the influence of oxygen

on the bulk properties of the grains plays an important role. Thanks to the oxygen pressure

it is possible to control the relation between the metal and the oxygen ions in the lattice, so

the concentration of defects in it. In this way electrons and holes’ concentration is

controlled.

For example, when zinc atoms are dominant in zinc oxide, they are located in the

interstices, so ZnO conduction is n-type and depends on the oxygen pressure according to:

σn ≈ σ0p
β

0 (1.3.2.1)

where, in this case, β = −1/6 at T = 1100◦C. If oxygen pressure increases, the type of

conduction changes to p-type, as oxygen atoms have been introduced into the sites, acting



31

as acceptors, leading to an increase of conduction with the increase of pressure, so

changing the parameter β from -1/6 to +1/6.

The influence of oxygen on the surface and grain boundaries’ properties is very important

for ceramic sensors, as the firing process is mostly carried out in air.

So, at high temperatures at which this process is verified, a chemical adsorption of oxygen

atoms over the grain surface is carried out. It has been demonstrated that in ceramic

varistors as ZnO, grains are covered by a monolayer of oxygen atoms, which act as

acceptors according to the following reaction:

O2 + 2e− → 2O− or  O2 + 2e− → O2
2− (1.3.2.2)

As a consequence, the adsorbed oxygen atoms change the electron concentration in the

surface layer, acting as oppositely in n-type and p-type semiconductor ceramics.

In p-type ceramics, the acceptor surface states capture electrons from an enriched surface

layer, so increasing the conductivity. A possible model to represent this type of ceramics is

shown in Fig. 1.3.2.1.

Figure 1.3.2.1. Model of p-type semiconductor ceramics with acceptor surface states.

The surface layers are in contact between them and create conductive channels, which

determine the ceramic conduction. If oxygen pressure increases, the amount of adsorbed

oxygen atoms increases and the enriched layers expand.
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On the other hand, in n-type semiconductor ceramics, the adsorbed oxygen atoms tend to

form depletion layers on the surface and potential barriers occur at the grain boundaries, as

Fig. 1.3.2.2 shows.

The potential barrier height has been already defined by equation 1.3.1.11 and the

depletion layer width is proportionally inverse to the electrons’ concentration:

dn =Nas/n = Qs/qn = √(2ϵϵ0Ψs/qn) (1.3.2.3)

In this case, the adsorbed oxygen increases the electrical resistance. In particular, in order

to determine the resistance’s value, it is necessary to rewrite the current density, already

defined by equation 1.3.1.2.16:

j ≈ V · exp(−qΨs/kT) (1.3.2.4)

From equation 1.3.2.4, the resistance R of the grain boundary is approximated as:

R ≈ exp(qΨs/kT)= exp(qN2
asΨs/2ϵϵ0nkT) (1.3.2.5)

which depends exponentially on the adsorbed oxygen atoms’ concentration.
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Figure 1.3.2.2. Model of n-type semiconductor ceramics with potential barriers at the grain boundaries.

Usually, as a result of the oxygen acceptor action, in n-type ceramics barriers in the grain

boundaries are formed more easily than those which can be formed in the p-types

ceramics, because for them donor impurities must be introduced in order to compensate the

acceptor action of oxygen.

Before presenting the ceramic sensors for humidity and gases detection, it is important to

understand what happens when water or gas molecules approach to a semiconductor

ceramic material [18].

In the case of direct interaction with the surface of a n-type ceramic semiconductor, the gas

and the water molecules are directly adsorbed on the ceramic grain surface, acting as

donors when combining with the surface.

Taking H2 as an example of a reducing gas, the reaction which verifies is:

H2(gas) - 2e− → 2H+ (1.3.2.6)

while, if water molecules approach, the reaction becomes:

H2O(vapor) - e− → H2O
+ (1.3.2.7)
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So in n-type ceramics, these types of gases tend to reduce the potential barrier height at the

grain boundary, by consequently increasing the conductivity, which depends on the

pressure that the gas exert on the material’s surface, as already shown in eq. 1.3.2.1; in

particular in presence of water molecules the parameter β is equal to 1/2, while with

reducing gases β = 1/2 − 1/3 or 1/2 + 1/3. So:

σ = σ0p
1/2

water (1.3.2.8)

σ = σ0p
β

reducing with β =1/2,1/3 (1.3.2.9)

In p-type materials, the reducing gases and water vapor tend to form a depletion layer and

to reduce the conduction.

The reducing gases and water molecules interact chemically with the grain surfaces, as this

condition is advantageous from the energy’s point of view.

If no oxygen vacancies are present, the reactions which occur at the surface are:

H2 (gas) + O− → H2O + e− (1.3.2.10)

H2O (vapor) + O− → 2OH + e− (1.3.2.11)

On the contrary, if oxygen vacancies can be found, the reactions 1.38 and 1.39 become:

H2O (vapor) + O2− + V0
−→ 2OH− + e− (1.3.2.12)

H2O (vapor) + O2− + V0
2− → 2OH− + 2e− (1.3.2.13)

Also in this case, the gases act as donors.

1.4 Ceramic humidity sensors

In the electrical characterizations’ the sensor responses in function of relative humidity

(RH) are reported: in order to understand what is the meaning of RH, let us start to present

some preliminary definitions, which can be found in ref. [19].
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The water vapor pressure is defined as the part of the total pressure of a gas which is

contributed by the water vapor component.

The saturation water vapor pressure is the maximum attainable water vapor pressure of a

gas for a given temperature and pressure.

The specific humidity is the ratio of the amount of water vapor to the amount of dry carrier

gas. Commonly it is expressed in parts per million by volume or weight.

The dew-point is the temperature at which condensation would occur if a gas were to be

cooled at constant pressure.

Finally, RH is the ratio of the water vapor pressure to the saturated water vapor pressure at

the same temperature; it is expressed as a percentage.

Table 1.4.1 shows the relationship between these units: in particular the RH scale occupies

only a small part of the practical humidity scale and is the unit most commonly used in

ambient measurement and also in higher concentration levels in, for example,

environmental test specifications.
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Dew Point (°C) Saturated

vapor pressure (Pa)

Relative humidity

at 21°C (%)

Absolute humidity

(ppm v/v)

-100 0.001 0.01

-90 0.010 0.10

-80 0.055 0.54

-70 0.262 2.58

-60 1.082 10.68

-50 3.940 38.89

-40 12.940 126.82

-30 38.020 1.5 375.40

-20 103.300 4.2 1,020.00

-10 259.900 10.5 2,572.00

0 611.200 24.6 6,069.00

10 1,227.000 49.4 12,267.00

20 2,339.000 94 23,625.00

30 4,245.000 43,729.00

40 7,381.000 78,571.00

50 12,344.000 138,740.00

60 19,933.000 244,900.00

70 31,177.000 444,450.00

80 47,370.000 878,120.00

90 70,000.000 2,247,000.00

100 101,000.000 Inf

Table 1.4.1. The humidity scale.

The unit ppm v/v indicates the number of parts of water to 1 million parts of dry gas,

expressed by volume. Since standard atmospheric pressure is 101,325 Pa, this is expressed

as:

(ppm v/v) = svp(Pa) / 101,325 − svp(Pa) (1.4.1)

where svp stands for saturated vapor pressure.
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In recent years, the use of humidity control systems has increased in the quality control of

production processes and products in a wide range of industries, such as the production of

electronic devices, precision instruments, textiles, foodstuffs and in many domestic

applications, as for example the control of living environments in buildings, where

humidity sensors are used to guarantee a comfortable humidity level and for cooling [20].

Each field requires different operating conditions, so different kinds of humidity sensors

have been developed to meet the different requirements.

Different humidity-sensing mechanisms and operating principles have been identified for

ceramics. The type of conduction may be ionic or electronic: most current humidity

sensors are based on porous sintered bodies of ionic-type humidity-sensitive ceramics.

Other humidity sensors using different sensing mechanisms are of the solid-electrolyte

type, or use the heterocontacts between p- and n-type semiconducting oxides.

When the oxides are kept in contact with humid air, water molecules chemisorb on the

available sites of the oxide surface, mainly at the neck parts of the crystal grains, by a

dissociative mechanism to form two hydroxyl ions for each water molecule, from whom

the hydroxyl group adsorbs on metal cations located in the surface layer of the grains,

which have high local charge density and a strong electrostatic field. The proton reacts

with an adjacent surface O2
− group to form a second OH− group. The chemisorbed layer,

once formed, is not further affected by exposure to humidity.

When the first layer of water molecules is formed, subsequent layers of water molecules

are physically adsorbed on the first hydroxyl layer. The physisorbed water easily

dissociates to form H3O
+, because of the high electrostatic fields in the chemisorbed layer.

The first layer of physisorbed water molecules is characterized by double hydrogen

bonding of a single water molecule. The physisorption changes from monolayer to

multilayer when the water-vapor pressure increases. Water molecules, in the succeeding

physisorbed layers, are only single bonded and form a liquid-like network [21].

Therefore, single bonded water molecules can form dipoles and reorient freely under an

externally applied electric field, so increasing the dielectric constant. Physisorption of

water molecules can verify at temperatures lower than 100◦C, while, at higher

temperatures, chemisorption of water molecules is the only responsible for changes in the

electrical conductivity of ceramics.

The interaction between the porous structure and water must also be considered: the

presence of open porosity lets water condensation in the capillary pores. The quantity of
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condensed water depends on the available pore sizes and their distribution; it is possible to

evaluate the pore radius at which capillary condensation occurs at different temperatures

(T) by means of the Kelvin equation:

rk =2γM / ρRT ln(PS/P) (1.4.2)

where rk is the Kelvin radius, P is the water-vapor pressure, PS is the water-vapor pressure

at saturation, γ, ρ and M are the surface tension (72.75 dyn cm−1 at 20◦C), density and

molecular weight of water, respectively. Water condensation takes place in all the pores

with radii up to rk, at given temperatures and water-vapor pressures.

The smaller the rk or the temperature, the more easily the condensation occurs.

These physical interaction mechanisms between water and oxide surfaces are largely

recognized to be the basis of the operative mechanisms of a wide range of different

humidity-sensor materials.

Now let us examine the case of gas-sensing mechanism of ceramic sensors, deepening in

particular the behavior of ammonia on the oxide surfaces.

1.5 Ceramic gas sensors

Ceramic gas sensors can be classified according to different principles, such as the

chemical properties of the gas, the sensitivity region of the ceramic material, the

conductivity mechanism, the measured physical quantity and the field of application [22].

According to the chemical gas properties, we can find the oxidizing gas sensors, such as

O2, Cl2 sensors, and reducing gas sensors, sensitive for example to H2, CO, NH3, CH4.

Oxidizing gases form acceptor surface states in semiconductive sensors, while the reducing

ones tend to form donor surface states.

According to the sensitivity regions of the ceramic material, gas sensors can be divided

into surface and volume sensors: the surface sensors are the traditional semiconductive gas

sensors, while the volume ones are all the devices made of solid electrolytes as well as

some semiconductive sensors.

According to the conductivity mechanism, ceramic gas sensors behave similarly to the

humidity ones: so we can find either the electronic, such as all the semiconductive sensors,

and the ionic sensors, as for example those made of solid electrolytes.
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According to the measured physical quantity sensitive to the influence of gases, we can

define the resistive, potentiometric and amperometric sensors. The resistive sensors are

nothing but the semiconductive ones and some sensors made of solid electrolytes; for them

the resistance is a function of the gas atmosphere that they detect. The potentiometric and

amperometric devices include mainly the solid electrolytes sensors. These kinds of sensors

are also called concentration cells and electrochemical pumps.

According to the field of application, ceramic gas sensors can be classified into reducing

gas sensors, toxic gas sensors, alcohol sensors, odor sensors, oxygen sensors and other gas

sensors.

Not all the sensors just defined will be described: the ones on which we will focus are the

semiconductive resistive gas sensors, able to detect reducing gas (in particular NH3).

The characteristics of resistive gas sensors are not determined by a general approach: the

devices are defined in different ways and conditions which must be specified [23].

The first parameter to define is related to the influence of the gas concentration, namely Cg,

measured in ppm values (even if sometimes the measurements are carried out in volume

percentages), on sensor’ s resistance RS or on its conductivity GS. At low concentration of

the gas in air, at a certain temperature, the following equation is approximately valid:

GS = KCg
α (1.5.1)

where K and α are constants and Cg represents the gas concentration in air.

When we speak about measurements performed in air, we mean that measurements are

carried out either in clear air or at fixed temperature and humidity.

Another important parameter to define for resistive gas sensors is the sensitivity, defined as

the degree of the influence of a gas on the sensor’s resistance. This parameter can be

defined as:

Sg =Ra /RS (1.5.2)

where Sg is the sensitivity to the gas, Ra the resistance of the sensor in air and RS the

resistance of the sensor exposed to a gas having a concentration Cg.

In particular, if a sensor is exposed to oxidizing gases, its resistance rises (giving a value of

Sg < 1), while when it is exposed to reducing gases its resistance decreases (so Sg > 1).
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However the definition 1.5.2 has some disadvantages: the sensor’s resistance to air is

assumed to be a basic one and it is difficult to compare the sensor’s parameters when the

resistance changes within different boundaries. Besides, the sensitivity thus defined

characterizes a given sensor at a fixed concentration of the gas, so it is a function of this

concentration and not an universal parameter.

For this reason generally it is preferable to define the sensitivity of the gas as the relative

variation, measured in %, between the resistance of the sensor in air Ra and the resistance

of the sensor exposed to the gas Rg:

SR(%) = 100 ·((Ra − Rg)/Ra) (1.5.3)

This last definition has been used for all the measurements done in this Ph.D. thesis.

1.6 Ceramics materials

1.6.1 Zinc oxide

Zinc oxide is recognized as one of the most important semiconducting material used for

different technological applications.

It is well known that these properties of ZnO are dependent on the crystallinity,

preferential orientation, crystallite size, dislocation density, micro-strain, texture

coefficient and morphology [24]. Thin films of ZnO can be used as a window layer as well

as one of the electrodes in solar cells.
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Figure 1.6.1.1 Position of the conduction and valence bands of some semiconductors at pH = 1 and some

redox potentials

It has a wide band gap energy (3.37 eV at room temperature) [25-26] (Figure 1.6.1.1) and

it is a semiconductor with hexagonal wurtzite structure (Figure 1.6.1.2)  showing several

applications like solar cells, gas sensors, liquid crystal displays and photothermal

conversion systems [27-28].

Figure 1.6.1.2 Wurzite structure

A vast amount of research papers, regarding the gas sensing properties of ZnO thick and

thin films or nanostructures, have been published in recent years [29–33]. The role of
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doping, with atoms of different elements, on the sensing properties of ZnO, was intensively

investigated too [34].

1.6.2 Iron oxide

Fe2O3 has been widely studied due to its abundance, low cost, and interesting magnetic,

semiconducting, and electrochemical properties [35-42].

α-Fe2O3 is a n-type semiconductor; it has been proven to be a good gas sensitive material

for detection of toxic, combustible, explosive and harmful gases in both domestic and

industrial applications, extensive studies have been carried out to improve the gas sensing

performances of the α-Fe2O3 based sensor [43-44]. It is well-known that the shape and size

of α-Fe2O3 have a significant influence on its gas sensing properties [45-48].

α-Fe2O3, hematite, with an experimental band-gap of 2.2 eV [49] was identified as a charge

transfer semiconductor [50-51].

Figure 1.6.2.1 Crystal structure of the corundum structure. The transition metal atoms are label as gray while

O is red. (a) The rhombohedral primitive cell. (b) The hexagonal representation.

1.6.3 Tungsten oxide

Because of its interesting chemical, optical and electrical properties, tungsten oxide (WO3),

which is a n-type semiconductor, has been the object of extensive research. It was studied
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in numerous fields such as electrochromism [52-55], photoelectrochemical [56-57] and

particularly in gas sensor [58-63]. Pure WO3 has good sensing properties to oxidizing

gases such as NO and NO2 [64-65], O3 [66-67] and Cl2 [68]. However for reducing gases

(CO, NH3, ethanol, methanol, etc.), the surface modification of WO3 by noble catalyst (Pt,

Au, and Pd) is required. The sensing mechanism of gas sensors based on modified metal

oxides by noble metals (NM-MO) has been reported in the literature by several authors

[69-70]. It is accepted that the sensing mechanism is associated to the change of the

resistance in contact with the chemisorbed oxygen and gas species on the surface of the

metal oxide. For NM-MO such as Pd–SnO2, Pt–WO3 and Pd–WO3, the catalyst on the

surface of the metal oxides favors the presence of oxygen species (O−, O2
− and O2−) on the

surface which depends strongly on the temperature [71-74]. The ionization of oxygen

molecules by the capture of electrons from the conduction band of oxides results in an

electron depletion region on the surface of the sensor material. When the surface of the gas

sensors is exposed to reducing gases, the oxygen species react with the gases and electrons

are given back to the semiconductor, which increases the sensor conductivity [75].

Figure 1.6.3.1 WO3 lattice monoclinic, pseudo-cubic[76].

1.6.4 Bismuth oxide

The Bi2O3 is much more known transition metal oxide semiconductor.
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It has been extensively investigated for various applications as photocatalyst [77-78], ion

conducting solid electrolyte [79], optical and electrical material in solid oxide fuel cells

[80] and oxygen sensors, and selective sensing material for NO detection [81]. In the last

decade, Bi2O3 has been reported with various morphologies, such as nanorods [82],

nanotubes [83], nanowires and nanofibers [84]. Due to such morphology, Bi2O3 has found

numerous modern applications in electronics and electro-optics [85], catalysis [86] and gas

sensors [87].

Figure 1.6.4.1 Bi2O3 lattice.

1.7 Ammonia Sensors

1.7.1 High Temperature

There are many principles for measuring ammonia described in literature.

Among all, in this sub-section the most frequently used techniques in commercial

ammonia detectors are discussed: in particular metal-oxide gas sensors and catalytic

ammonia detectors are dealt with, by considering the applications both at high and at low

temperatures.

Let us examine the case of metal-oxide ammonia sensors operating at high temperatures.

The ammonia sensors that have been manufactured in the largest quantities are without

doubt metal-oxide gas sensors, mostly based on SnO2 sensors. A lot of research has been

done on these types of gas sensors [88-90].
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These devices are inexpensive and thus very promising to develop gas sensors.

Many models have been proposed that try to explain the functionality of these types of

sensors [91]. It is well established by now that gas sensors operate on the principle of

conductance change due to chemisorption of gas molecules on the sensing layer.

A common model is based on the fact that metal-oxide films consist of a large number of

grains, contacting at their boundaries. The electrical behavior is governed by the formation

of double Schottky potential barriers at the interface of adjacent grains, caused by charge

trapping at the interface. The height of this barrier determines the conductance.

When exposed to a chemically reducing gas, like ammonia, co-adsorption and mutual

interaction between the gas and the oxygen result in oxidation of the gas at the surface

[92]. Removal of oxygen ions from the grain surface results in a decrease in barrier height.

The energy band diagram at the grain boundaries is shown in Fig. 1.7.1.1.

Figure 1.7.1.1. Energy band diagram showing the Schottky barrier height at the grain boundary of tin oxide

without and with a chemically reducing gas.

As it can be concluded from this model, metal-oxide sensors are not selective to one

particular gas. Different approaches to make selective sensor systems have been applied,

like principle component analysis, or artificial neural networks, also known as the artificial

nose, or conductance scanning at a periodically varied temperature.

Varying the temperature changes the current density through a Schottky barrier but

chemisorption is also a function of the temperature. It is shown that these two effects have

a different temperature dependency for different gases. Techniques have been shown to



46

create micromachined isolated hotplates that can be used to miniaturize and integrate these

types of sensors on a chip.

A different approach to make selective metal-oxide gas sensors is by using metals or

additives that enhance the chemisorption of specific gases.

WO3 based sensing material is demonstrated to respond to NH3 and NO [93].

Many materials have been added to this sensing material in order to enhance the sensitivity

and the selectivity towards these two gases. Known additives for optimizing the ammonia

sensitivity of SnO2 based ammonia sensors are Pd, Bi and AlSiO3 or Pt and SiO2. The

lowest ammonia detection limit found in literature is 1 ppm, by using a WO3 ammonia

sensor with Au and MoO3 additives. The sensor is operated at an elevated temperature of

more than 400◦C. Most sensors have even higher detection limits. Normal detection limits

of these sensors range from 1 to 1000 ppm. These sensors are commercially available and

are mainly used in combustion gas detectors or gas alarm systems, for instance for reliable

ammonia leakage detection in refrigeration systems, or for monitoring the ventilation into

the passenger compartment in cars.

Another type of ceramic material used for ammonia detection is ZnO [94]: because of its

high chemical stability, low dielectric constant, large electromechanical coupling

coefficient and high luminous transmittance, ZnO based materials have been widely used

as dielectric ceramic, pigment, catalyst and sensing material. As gas sensing material, it is

one of the earliest discovered and most widely applied oxide gas sensing material.

It is sensitive to many sorts of gases and has satisfactory stability. However, ZnO based

sensors are not selective for a particular gas and various attempts are being made to

improve their selectivity. One approach is to use dopants and additives which can modulate

the gas-sensing characteristics to some extent. In reference [94] the authors proposed a

comparison between pure ZnO, RuO2-doped ZnO and surface ruthenated ZnO sensors for

ammonia detection. The sensing materials were deposited by means of screen-printing

technique and the resulting sensors were tested under 1000 ppm of ammonia at different

operating temperatures (100◦, 150◦, 200◦, 250◦, 300◦ and 350◦C). It was demonstrated that

the dopants in the ZnO material are necessary in order to increase the sensor response

under ammonia atmosphere.

In particular the sensor response is defined in equation 1.5.3, in this case Ra would be the

resistance in air and Rg the resistance measured in ammonia atmosphere.
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The response of unmodified ZnO to NH3 was relatively poor with respect to the response

of RuO2-doped ZnO and, above all, with respect to the response of surface ruthenated ZnO

(Fig. 1.7.1.2).

ZnO based sensors were found to be sensitive to the operating temperature, the firing

temperature and the amount of additive. Let us take into consideration, for example, the

case of ruthenated ZnO tested under 1000 ppm of ammonia operating under different

temperatures: from the results shown in Fig. 1.6.1.2, the response increased with increasing

the RuO2 amount to attain the maximum (S = 386) at 0.37 wt%, and then decreased with a

further increase of RuO2. The 0.37 wt% RuO2 would be an appropriate amount to cover the

film surface and to make a sufficient number of Ru sites available for adsorption of oxygen

species which react with the target gas.

The gas-sensing mechanism on the doped-ZnO can be explained as follows: atmospheric

oxygen molecules are adsorbed on the surface of n-type semiconductor oxides in the forms

of O− and O2− thereby decreasing the electronic conduction. Atmospheric oxygen

molecules take electrons from the conduction band of n-type ZnO to be adsorbed as O−

ZnO.

The reaction can be expressed as:

O2(gas) + 2e− → 2O−
ZnO (1.7.1.1)

The ZnO material is oxygen deficient. The excess zinc ions (due to oxygen vacancies) act

as electron donors. When reducing gas molecules like NH3 react with negatively charged

oxygen adsorbates, the trapped electrons are given back to conduction band of ZnO. The

energy released during decomposition of adsorbed ammonia molecules would be sufficient

for electrons to jump up into the conduction band of zinc oxide, causing an increase in the

conductivity of the sensor.
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Figure 1.7.1.2. Variation in response to 1000 ppm of NH3 of: a) pure ZnO fired at 500-700◦C, b) thick films

doped with different amounts of RuO2 and fired at 650◦C, c) with surface ruthenation, fired at 650◦C, at

different operating temperatures.

The possible reaction is:

2NH3 + 3O−
ZnO → 3H2O + N2 + 3e− (1.7.1.2)

For this reaction to proceed to the right hand side, some amount of activation energy has to

be provided thermally. An increase in operating temperature surely increases the thermal

energy so as to stimulate the oxidation of NH3 (equation 1.7.1.2).

The reducing gas (NH3) donates electrons to ZnO, therefore the resistance decreases, and

the conductance increases. This is the reason why the gas response increases with
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operating temperature. The point at which the gas response reaches maximum is the actual

thermal energy needed for the reaction to proceed.

However, the response decreases at higher operating temperatures, as the oxygen

adsorbates are desorbed from the surface of the sensor. Also, at high temperatures the

carrier concentration increases due to intrinsic thermal excitation, and the Debye length

decreases. This may be one of the reasons for the decreased gas response at high

temperatures. As the species are desorbed from the surface, oxygen is adsorbed again.

When the optimum amount of ruthenium oxide (0.37 wt%) is incorporated on the surface

of ZnO film, the Ru species would be distributed uniformly throughout the surface of the

film. Due to this not only the initial resistance of the film is high but this amount would

also be sufficient to promote the catalytic reaction effectively and the overall change in the

resistance on exposure of ammonia gas leading to high sensitivity. When the amount of

RuO2 on the surface of the film is less than the optimum, the surface dispersion may be

poor and the sensitivity of the film is observed to be decreased since the amount may not

be sufficient to promote the reaction more effectively. On the other hand, as the amount of

RuO2 on the surface is more than the optimum, the Ru atoms would be distributed more

densely. As a result, the initial resistance of the film would decrease and the overall change

in the resistance on the exposure of gas would be smaller leading to lower response to the

target gas.

Fig. 1.7.1.3 shows the adsorption of oxygen species on the surface of zinc oxide,

abstracting electrons, and thus, causing an increase in the potential barrier at grain

boundaries.

Thus, by controlling the distribution and amount of the catalyst on the semiconductor oxide

surface, it is possible to fabricate sensors with good sensing properties.
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Figure 1.7.1.3. Gas-sensing mechanism of surface ruthenated samples: a) oxygen adsorption and b) under

ammonia atmosphere.

Another very interesting article which deals with doped-ZnO for gas-sensing application at

high temperatures and which inspired the first part of the Ph.D. work was the reference

[95]: thick films of pure ZnO and Fe2O3-modified ZnO were prepared by screen-printing

and their results under ammonia atmosphere at 350◦C were compared. The doping of the

ZnO films with Fe2O3 was obtained by dipping the surface of these films into an aqueous

solution of ferric ammonium sulfate for different intervals of time; then the films were

dried at 90◦C and fired at 500◦C for 24 h in air ambient. The ferric ammonium sulfate

dispersed on the films would be oxidized in the firing process, and sensor elements with

different mass % of Fe2O3 were obtained.

Upon exposure to NH3 gas, the barrier height Fe2O3-ZnO intergranular region decreases

markedly due to the chemical transformation of Fe2O3 into ammonium ferric hydroxide,

leading to a drastic increase in conductance, so to a decrease in electrical resistance. In

particular the Fe2O3-modified films showed very high electrical resistance on the order of 1

GΩ in air and a lower resistance on the order of 10 MΩ upon exposure of 50 ppm NH3 at

350◦C. The sample, with 0.74 mass % of ferric oxide, was observed to be the most

sensitive of all. It showed a response of 178.6 to 50 ppm NH3 at 350◦C.

The response could be attributed to the adsorption-desorption-type sensing mechanism.
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The higher response of this sample as compared to other Fe2O3-modified samples may be

due to the optimum number of Fe2O3 grains dispersed on the surface.

If the amount of α-Fe2O3 is smaller than the optimum (0.74 mass %), then the number of

Fe2O3 misfits on the surface would be smaller. A small amount of oxygen would adsorb

and an oxidation of target gas would be weak, giving a smaller response.

When the amount of α-Fe2O3 dispersed on the surface is larger than the optimum (0.74

mass %), only some part of α-Fe2O3 would be utilized for the adsorption of oxygen and

unused Fe2O3 would remain idle, resisting the NH3 gas to reach the Fe2O3-ZnO surface.

Due to this, the resistance of the sensor could not change considerably, giving a

comparatively smaller response.

The responses of these sensors are shown in Fig. 1.7.1.4.

Figure 1.7.1.4. Response’s variation with operating temperature.

In the case of both semiconductor like pure and modified-ZnO, the surface oxygen ions

give up electrons, acting as donors, which are completely ionized if they are near the CB;

however, if the donor levels are slightly below the conduction band, then these levels are

not completely ionized at room temperature but are ionized at higher temperature.

At high temperature, the atmospheric oxygen captures the electrons from the CB of the

sensing material:

O2(air) + 4e−
(CB)→ 2O2−

(film) (1.7.1.3)
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This would result in decreasing conductivity of the film. When ammonia reacts with the

surface of the film and adsorbed oxygen on the surface of the film, it gets oxidized to

nitrogen oxide gas and ferric ammonium hydroxide, liberating free electrons in the CB.

The following reaction takes place as:

Fe2O3 + 5NH3 + 4O2−
(film)→ [FeNH]4(OH)3(film) + 2NO2(gas) + 8e−

(CB) (1.7.1.4)

This shows the n-type conduction mechanism. The generated electrons contribute to a

sudden increase in the conductance of the thick film. The misfit regions dispersed on the

surface would enhance the ability of base material to adsorb more oxygen species, giving

high resistance in air ambient.

These sensors showed high response to ppm level of gas, high selectivity from mixed

gases, quick response and fast recovery.

1.7.2 Room temperature

In foods industries’ applications, in order to evaluate foods’ quality, the sensors must work

at room temperature. So in this sub-paragraph the state-of-art of the most representative

ammonia sensors working at room temperature is presented.

In reference [96] where pure ZnO (called S1) and doped ZnO (Pd-ZnO, Fe-ZnO and Ru-

ZnO, called from now S2, S3 and S4 respectively) were prepared, with whom thick film

sensors were realized and tested for specific sensitivity to ammonia gas in air at room

temperature.

It has been noted that the sensitivity increases with increasing concentrations of NH3 in all

these elements. Among all, S2 gave the highest sensitivity with respect to the others. The

sensor response under gas exposure was defined as:

Sg =(va – vg)/va (1.7.2.1)

where va is the sensor voltage output in air and vg that in the presence of the gas.

Moreover, at these operating conditions, all of the sensor elements are insensitive to other

test gases such as H2, CO, ethanol, methanol and acetone. Fig. 1.7.2.1 shows the response

time of these elements to 30 ppm of NH3 in air and at room temperature.
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Figure 1.7.2.1. Sensitivity of S1, S2, S3 and S4 for 30 ppm of ammonia gas in air.

The Pd-ZnO (S2) sensor element had a fast response time of ≈4 s and high sensitivity when

compared to S1, S3 and S4. The lack of a quick response to NH3 of S1, S3 and S4 may be

due to the low surface catalytic activity. The response time of S2 to NH3 is repeatable for

the measured concentrations and the time drift is less than 0.5 mVh−1.

All of these elements adsorb H2O in air (3000-3660 cm−1) which is clearly indicated in the

IR spectra. Upon exposure to NH3 a noticeable decrease in the hydroxyl bands of these

sensors has been observed which may be due to the surface reaction of NH3 with

physisorbed H2O.
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Figure 1.7.2.2. Sensitivity of S1, S2, S3 and S4 for 30 ppm of ammonia gas in air.

The resulted reaction product (NH4OH) which is volatile in nature may be responsible for

modulating the sensitivity.

Further, the negligible quantity of the surface reaction product and its high volatility

indirectly indicated the observed fast response of these sensors to NH3 and quick recovery

to normal conditions. Moreover the observed insensitivity to other interfering gases and

vapors clearly indicated the specificity to NH3. The observed changes in the sensitivity in

pure and doped sensor elements may be attributed to the particle size variations in the

calcined powders. The Pd-ZnO sensor which showed high sensitivity to different NH3

concentrations had lower average particle size when compared to the other materials[97-

98].
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1.8 Conclusion

In this section the basic principles of ceramic sensors are presented, starting from the

general definitions related to these devices and the presentation of ammonia ceramic

sensors used at room temperature, which constitute the main theme of this thesis.

A section of the chapter is focused on the semiconductor type I p-type, because the sensors

studied during this research work have shown these electric behaviors: so it was necessary

to show the main semiconductors characteristics and the gas sensing mechanisms that

occur on the surface of the sensitive material. A section of the chapter is related to the

description of materials used to obtain ammonia sensors. Since the devices described in the

following sections are potentially used for the investigation of food quality, it is important

to focus the next chapter on the discussion of food chemistry and food spoilage, in order to

understand why materials sensitive to ammonia at room temperature have been studied.



56

Bibliography

1. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), p. xi.

2. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 1-3.

3. Terms and Definitions in Industrial Process Measurement and Control, (IEC draft

65/84), International Electrotechnical Committee (1982).

4. T.G. Nenov and S.P. Yordanov, Ceramic Sensors, Technomic Publishing

Company, Inc., USA, pp. 133-174

5. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 10-11.

6. T.G. Nenov and S.P. Yordanov, Ceramic Sensors, Technomic Publishing

Company, Inc., USA, pp. 24-50

7. K. Galatsis, L. Cukrov, W. Wlodarski, P. McCormick, K. Kalantar-zadeh, E.

Comini and G. Sberveglieri, p- and n-type Fe-doped SnO2 gas sensors fabricated

by the mechanochemical processing technique, Sensors and Actuators B

(Chemical), v B93, n 1-3, (2003), 562-565

8. L.A. Currie, Nomenclature in evaluation of analytical methods including detection

and quantification capabilities (IUPAC Recommendations 1995), Pure and Applied

Chemistry, v 67, n 10 (1995), 1699-1723

9. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 15-16.

10. P. Colombo, C. Vakifahmetoglu and S. Costacurta, Fabrication of ceramic com-

ponents with hierarchical porosity, Journal of Materials Science 45 (2010), pp.

5425-5455.

11. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 20-21.



57

12. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 24-26.

13. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 26-28.

14. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 29-31.

15. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), p. 33.

16. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 40-49.

17. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 65-67.

18. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 68-69.

19. P. T. Moseley, J. O. W. Norris and D. E. Norris, Techniques and mechanisms in

gas sensing, Adam Hilger Bristol, Philadelphia and New York (1991), pp. 189-190.

20. E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future

developments, Sensors and Actuators B 23 (1995), pp. 135-156.

21. M. Egashira, M. Nakashima, S. Kawasumi and T. Seiyama, Temperature

programmed desorption study of water adsorbed on metal oxides, Bulletin of the

Chemical Society of Japan 51 (1978), pp. 3144-3149.

22. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 133-134.

23. T. G. Nenov and S. P. Yordanov, Ceramic Sensors Technology and Applications,

Technomic Publishing Co. Inc. (1996), pp. 134-136.

24. G.Yanfeng, N. Masayuki, Morphology Evolution of ZnO Thin Films from Aqueous

Solutions and Their Application to Solar Cells, Langmuir 22 (2006) 3936–3940.



58

25. S. Ghosh, P. Srivastava, B. Pandey, S. Maurav, P. Bharadwaj, D.K. Avasthi, D.

Kabiraj, S.M. Shivaprasad, Study of ZnO and Ni-doped ZnO synthesized by atom

beam sputtering technique, Applied Physics A 90 (2008) 765–769.

26. B. Pandey, S. Ghosh, P. Srivastava, D. Kabiraj, T. Shripati, N.P. Lalla, Synthesis of

nanodimensional ZnO and Ni-doped ZnO thin films by atom beam sputtering and

study of their physical properties, Physica E 41 (2009) 1164–1168.

27. K.L. Chopra, S. Major, D. K. Pandya, Transparent conductors—A status review,

Thin Solid Films 102 (1983) 1–46.

28. R. Mariappan, V. Ponnuswamy, M. Ragavendar, Influence of molar concentration

on the physical properties of nebulizer-sprayed ZnO thin films for ammonia gas

sensor Materials Science in Semiconductor Processing 16 (2013) 1328–1335.

29. B.L. Zhu, C.S. Xie, J. Wu, D.W. Zeng, A.H. Wang, X.Z. Zhao, Influence of Sb, In

and Bi dopants on the response of ZnO thick films to VOCs, Materials Chemistry

and Physics 96 (2006) 459–465.

30. P.P. Sahay, R.K. Nath, Al-doped zinc oxide thin films for liquid petroleum gas

(LPG) sensors, Sensors and Actuators B: Chemical 133 (2008) 222–227.

31. Y.-J. Li, K.-M. Li, C.-Y. Wang, C.-I. Kuo, L.-J. Chen, Low-temperature

electrodeposited Co-doped ZnO nanorods with enhanced ethanol and CO sensing

properties, Sensors and Actuators B: Chemical 161 (2012) 734–739.

32. X. Wang, M. Zhao, F. Liu, J. Jia, X. Li, L. Cao, C2H2 gas sensor based on Ni-doped

ZnO electrospun nanofibers, Ceramics International 39 (2013) 2883–2887.

33. L. Han, D. Wang, Y. Lu, T. Jiang, L. Chen, T. Xie, Y. Lin, Influence of annealing

temperature on the photoelectric gas sensing of Fe-doped ZnO under visible light

irradiation, Sensors and Actuators B: Chemical 177 (2013) 34–40.

34. A.P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, F. Iacomi,Study on Ni-

doped ZnO films as gas sensors, Applied Surface Science 280 (2013) 598– 604

35. H. B. Wu, J. S. Chen, H. H. Hng, X. W. Lou,* Nanostructured metal oxide-based

materials as advanced anodes for lithium-ion batteries, Nanoscale, 4, 2526 – 2542

(2012).



59

36. T. Yu, Y. Zhu, X. Xu, K.S. Yeong, Z. Shen, P. Chen, C.T. Lim, J.T.L. Thong, C.H.

Sow, Simple nanoscience: Substrate-friendly synthesis of metal oxide

nanostructures using a hotplate,  Small 2 (2006) 80.

37. J. Chen, L. Xu, W. Li, X. Gou, α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion

Battery Applications  Adv. Mater. 17 (2005) 582-586.

38. J. Sarradin, A. Guessous, M. Ribes, J., Synthesis and characterization of lithium

intercalation electrodes based on iron oxide thin films, Power Sources 62 (1996)

149-154.

39. J. Morales, L. Sánchez, F. Martín, F. Berry, X. Ren, J., Synthesis and

characterization of nanometric iron and iron-titanium oxides by mechanical

milling: electrochemical properties as anodic materials in lithium cells,

Electrochem. Soc. 152 (2005) A1748.

40. D. Larcher, D. Bonnin, I. Rivals, L. Personnaz, J.-M. Tarascon,, Combined XRD,

EXAFS, and Mössbauer Studies of the Reduction by Lithium of α ­ Fe2O3 with

Various Particle Sizes,  J. Electrochem. Soc. 150 (2003) A1643.

41. M.V. Reddy, T. Yu, C.-H. Sow, Z. Shen, C.T. Lim, G.V. Subba Rao, B.V.R.

Chowdari, α-Fe2O3 nanoflakes as an anode Material for Li-ion batteries”  Adv.

Funct. Mater. 17 (2007) 2792.

42. Huang, Bo; Tai, Kaiping; Dillon, Shen J, Structural evolution of α-Fe2O3

nanowires during lithiation and delithiation, Journal of Power Sources 245 (2014)

308-314

43. S.Wang,L.iWang,T.Yang,X.Liu,J.Zhang,B.Zhu,S.Zhang, W. Huang,S.Wu,Porous

a-Fe2O3 hollow microspheres and their application for acetone sensor,Journal of

Solid State Chemistry 183 (2010) 2869–2876.

44. L.Huo,Q.Li,H.Zhao,L.Yu,S.Gao,J.Zhao, Solgel routeto pseudo cubics haped a-

Fe2O3 alcohol sensor: preparation and characterization, Sensors and Actuators

B107(2005)915–920.

45. S.Y.Wang,W.Wang,W.Z.Wang,Z.Jiao,J.H.Liu,Y.T.Qian, Characterization and gas-

sensing properties of nanocrystalline iron (III)oxide films prepared by ultrasonic

spray pyrolysis on silicon, Sensors and Actuators B69(2000)22–27.



60

46. E.T.Lee,G.E.Jang,C.K.Kim,D.H.Yoon ,Fabrication and gas sensing properties of a-

Fe2O3 thin film prepared by plasma enhanced chemical vapor deposition (PECVD),

Sensors and Actuators B77 (2001) 221–227.

47. Q.Hao,L.Li,X.Yin,S.Liu,Q.Li,T.Wang, Anomalous conductivity-type transition

sensing behaviors of n-type porous a-Fe2O3 nanostructure stoward H2S, Materials

Science and Engineering B176(2011)600–605.

48. S.T. Navale, D.K. Bandgar, S.R. Nalage, G.D. Khuspe, M.A. Chougule, Y.D.

Kolekar, S. Sen and V.B. Patil, Synthesis of Fe2O3 nanoparticles for nitrogen

dioxide gas sensing applications, Ceramics International 39 (2013), n. 6, 6453-

6460.

49. J. Zaanen, G. A. Sawatzky and J. W. Allen, ’Band Gaps and Electronic Structure of

Transition-Metal Compounds”, Phys. Rev. Lett.55 418 (1985)

50. S. Mochizuki, Electrical conductivity of α-Fe2O3 1977 Phys. Status Solidi a 41,2

591-594

51. Y. Guo, S. J. Clark and J. Robertson, Electronic and magnetic properties of Ti2O3,

Cr2O3, and Fe2O3 calculated by the screened exchange hybrid density functional, J.

Phys.: Condens. Matter 24 (2012) 325504

52. S.K. Deb, Opportunities and challenges in science and technology of WO3 for

electrochromic and related applications, Solar Energy Materials and Solar Cells 92

(2008) 245–258.

53. R. Sivakumar, A. Moses Ezhil Raj, B. Subramanian, M. Jayachandran, D.C.

Trivedi, C. Sanjeeviraja, Preparation and characterization of spray deposited n-type

WO3 thin films for electrochromic devices, Bulletin of Materials Science 39 (2004)

1479–1489.

54. J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, J.P. Tu, Electrochromic behavior of WO3

nanotree films prepared by hydrothermal oxidation, Solar Energy Materials and

Solar Cells 95 (2011) 2107–2112.

55. C. Chananonnawathorn, S. Pudwat, M. Horprathum, P. Eiamchai, P. Limnontakul,

C. Salawan, K. Aiempanakit, Electrochromic property dependent on oxygen gas



61

flow rate and films thickness of sputtered WO3 films, Procedia Engineering 32

(2012) 752–758.

56. K. Paipitak, C. Kahattha, W. Techitdheera, S. Porntheeraphat, W. Pecharap,

Characterization of sol–gel derived Ti-doped tungsten oxide electrochromic thin

films, Energy Procedia 9 (2011) 446–451.

57. W. Li, J. Li, X. Wang, S. Luo, J. Xiao, Q. Chen, Visible light photoelectrochemical

responsiveness of self-organized nanoporous WO3 films, Electrochimica Acta 56

(2010) 620–625.

58. W. Li, J. Li, X. Wang, J. Ma, Q. Chen, Photoelectrochemical and physical

properties of WO3 films obtained by the polymeric precursor method, International

Journal of Hydrogen Energy 35 (2010) 13137–13145.

59. C. Zhang, A. Boudiba, C. Navio, C. Bittencourt, M.G. Olivier, R. Snyders, M.

Debliquy, Highly sensitive hydrogen sensors based on co-sputtered

platinumactivated tungsten oxide films, International Journal of Hydrogen Energy

36 (2011) 1107–1114.

60. C. Zhang, O. Van Overschelde, A. Boudiba, R. Snyders, M.G. Olivier, M.

Debliquy, Improvement of sensing characteristics of radio-frequency sputtered

tungsten oxide films through surface modification by laser irradiation, Materials

Chemistry and Physics 133 (2012) 588–591.

61. C. Zhang, M. Debliquy, A. Boudiba, H. Liao, C. Coddet, Sensing properties of

atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection, Sensors and

Actuators B 144 (2010) 280–288.

62. A. Boudiba, C. Zhang, C. Navio, C. Bittencourt, R. Snyders, M. Debliquy,

Preparation of highly selective, sensitive and stable hydrogen sensors based on Pd-

doped tungsten trioxide, Procedia Engineering 5 (2010) 180–183.

63. C. Zhang, A. Boudiba, C. Navio, M.G. Olivier, R. Snyders, M. Debliquy, Study of

electivity of NO2 sensors composed of WO3 and MnO2 thin films grown by radio

frequency sputtering, Sensors and Actuators B 161 (2012) 914–922.



62

64. R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cané, R. Ionescu, E. Llobet,

Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen,

Sensors and Actuators B 149 (2010) 352–361.

65. S. Vallejos, T. Stoycheva, P. Umek, C. Navio, R. Snyders, C. Bittencourt, E.

Llobet, C. Blackman, S. Moniz, X. Correig, Au nanoparticle-functionalised WO3

nanoneedles and their application in high sensitivity gas sensor devices, Chemical

Communications 47 (2011) 565–567.

66. T.S. Kim, Y.B. Kim, K.S. Yoo, G.S. Sung, H.J. Jung, Sensing characteristics of dc

reactive sputtered WO3 thin films as an NOx gas sensor, Sensors and Actuators B

62 (2000) 102–108.

67. K. Aguir, C. Lemire, D.B.B. Lollman, Electrical properties of reactively sputtered

WO3 thin films as ozone gas sensor, Sensors and Actuators B 84 (2002) 1–5.

68. A. Labidi, C. Jacolin, M. Bendahan, A. Abdelghani, J. Guérin, K. Aguir, M.

Maaref, Impedance spectroscopy on WO3 gas sensor, Sensors and Actuators B 106

(2005) 713–718.

69. F. Bender, C. Kim, T. Mlsna, J.F. Vetelino, Characterization of a WO3 thin film

chlorine sensor, Sensors and Actuators B 77 (2001) 281–286.

70. M. Hübner, C.E. Simion, A. Haensch, N. Barsan, U. Weimar, CO sensing

mechanism with WO3 based gas, Sensors and Actuators B 151 (2010) 103–106.

71. J.K. Srivastava, P. Pandey, V.N. Mishra, R. Dwivedi, Sensing mechanism of Pd

doped SnO2 sensor for LPG detection, Solid State Sciences 11 (2009) 1602–1605.

72. N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors, Journal of

Electroceramics 7 (2001) 143–167.

73. D. Kohl, The role of noble metals in the chemistry of solid-state gas sensor,

Sensors and Actuators B 1 (1990) 158–165.

74. P.P. Sahay, Zinc oxide thin film gas sensor for detection of acetone, Journal of

Materials Science 40 (2005) 4383–4385.



63

75. I. Hafaiedh, S. Helali, K. Cherif, A. Abdelghani, G. Tournier, Characterization of

tin dioxide film for chemical vapors sensor, Materials Science & Engineering C 28

(1) (2008) 584–587.

76. http://www.fhi-berlin.mpg.de/KHsoftware/Balsac/pictures.html

77. M.J. Verkerk, K. Keizer, A.J. Burggraaf,, High oxygen ion conduction in sintered

oxides of the Bi2O3-Er2O3 system,  J. Electrochem. Soc. 10 (1980) 81-90.

78. P. Shuk, H.D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Oxide ion

conducting solid electrolytes based on Bi2O3, Solid State Ionics 89 (1996) 179-196.

79. A.M. Azad, S. Larose, S.A. Akbar, Bismuth oxide-based solid electrolytes for fuel

cells: a review, J. Mat. Sci. 29 (1994) 4135-4151.

80. A. Cabot, A. Marsal, J. Arbiol, J.R. Morante, Bi2O3 as a selective sensing material

for NO detection., Sens. Actuators B 99 (2004) 74-89.

81. H.W. Kim, J.W. Lee, S.H. Shim, Study of Bi2O3 nanorods grown using the

MOCVD technique, Sens. Actuators B 126 (2007) 306-310.

82. L. Li, Y.W. Yang, G.H. Li, L.D. Zhang, Conversion of a Bi Nanowire Array to an

Array of Bi–Bi2O3 Core–Shell Nanowires and Bi2O3 Nanotubes, Small 2 (2006)

548-553.

83. Y.F. Qiu, D.F. Liu, J.H. Yang, S.H. Yang, Controlled Synthesis of Bismuth Oxide

Nanowires by an Oxidative Metal Vapor Transport Deposition Technique, Adv.

Mater. 18 (2006) 2604-2608.

84. M. Miyayama, H. Yanagida, Oxygen Ion Conduction in γ-Bi2O3 Doped with

Sb2O3, J. Mater. Sci. 21 (1986) 1233-1236.

85. P.S. Halasyamani, K.R. Poeppelmeier, Noncentrosymmetric Oxides, Chem. Mater.

10 (1998) 2753-2769.

86. K.R. Nemade, S.A. Waghuley, LPG sensing application of graphene/Bi2O3

quantum dots composites., Solid State Sciences 22 (2013) 27-32



64

87. D.K.; Nalage, S.R.; Khuspe, G.D.; Chougule, M.A.; Kolekar, Y.D.; Sen, S.; Patil,

Synthesis of Bi2O3 nanoparticles for nitrogen dioxide gas sensing applications.,

Ceramics International 39 (2013) 6453–6460

88. G. Sberveglieri, Recent developments in semiconducting thin-film gas sensors,

Sensors and Actuators B 23 (1995), pp. 103-109.

89. H. P. Huebner and S. Drost, Tin oxide gas sensors: an analytical comparison of gas-

sensitive and non-gas-sensitive thin films, Sensors and Actuators B 4 (1991), pp.

463-466.

90. C. Imawan, F. Solzbacher, H. Steffes and E. Obermeier, Gas-sensing characteristics

of modifies MoO3 thin films using Ti-overlayers for NH3 gas sensors, Sensors and

Actuators B 64 (2000), pp. 193-197.

91. P. K. Clifford and D. T. Tuma, Characteristics of semiconductor gas sensors I.

Steady state gas response, Sensors and Actuators 3 (1983), pp. 233-254.

92. B. Timmer, W. Olthuis and A. van den Berg, Ammonia sensors and their

applications-a review, Sensors and Actuators B 107 (2005), pp. 666-677.

93. C. N. Xu, N. Miura, Y. Ishida, K. Matuda and N. Yamazoe, Selective detection of

NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted

WO3 element, Sensors and Actuators B 65 (2000), pp. 163-165.

94. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil and L. A. Patil, Modified zinc oxide

thick film resistors as NH3 gas sensor, Sensors and Actuators B 115 (2006), pp.

128-133.

95. D. R. Patil and L. A. Patil, Ammonia Sensing Resistors Based on Fe2O3-Modied

ZnO Thick Films, IEEE Sensors Journal, Vol. 7, No. 3 (2007), pp.434-439.

96. G. S. Trivikrama Rao and D. Tarakarama Rao, Gas sensitivity of ZnO based thick

film sensor to NH3 at room temperature, Sensors and Actuators B 55 (1999), pp.

166-169.

97. C. Baroni, Phd Thesys of C. Baroni, Near room temperature NOX detection and

soil humidity content determination by means of new doped hematite sensors, Ph.D

Thesis, Politecnico di Torino, 2011.



65

98. Phd Thesys of A. Cavalieri, Room temperature ammonia sensors for food industry

applications, Ph.D. Thesis, 2011.



66

Chapter 2

Food chemistry and state-of-art of instruments

for foods' spoilage detection [1]

2.1 Introduction

Food spoilage is a metabolic process that causes foods to be undesirable or unacceptable

for human consumption due to changes in sensory characteristics.

Growth of microorganisms in foods can cause spoilage by producing an unacceptable

change in taste, odour, appearance, texture, and a combination of the above [2].

Food loss, from farm to fork, causes considerable environmental and economic effects.

The USDA Economic Research Service estimated that more than ninety-six billion pounds

of food in the U.S. were lost by retailers, foodservice and consumers in 1995. Fresh

products and fluid milk each accounted for nearly 20% of this loss while lower percentages

were accounted for grain products (15.2%), caloric sweeteners (12.4%), processed fruits

and vegetables (8.6%), meat, poultry and fish (8.5%), and fat and oils (7.1%). Some of this

food would have been considered still edible but was discarded because it was perishable,

past its sell-by date, or in excess of needs. There are also environmental and resource costs

associated with food spoilage and loss. If 20% of a crop is lost, then 20% of the fertilizer

and irrigation water used to grow that crop is wasted.

The spoilage potential of a microorganism is the ability of a pure culture to produce the

metabolites that are associated with the spoilage of a particular product. In general, several

of the organisms isolated from a food product will be able to produce spoilage metabolites

when allowed unlimited growth. It is crucial that quantitative considerations are

introduced, since the spoilage activity of an organism lies in its quantitative ability to

produce spoilage metabolites. These considerations in general, are the implementation of a

careful combination of microbiology, sensory analysis and chemistry [3].
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2.2 The nature of food spoilage

Spoilage can be microbial or mechanical in origin [4]. Microbial spoilage is by far the most

common cause of spoilage of perishable foods and may manifest itself as visible growth

(slime, colonies), as textural changes (degradation of polymers) or as off-odors and off-

flavors. Despite chill chains, chemical preservatives and a much better understanding of

microbial food spoilage, it has been estimated that 25% of all foods produced globally is

lost post harvest or post slaughter due to microbial spoilage.

Physical and chemical characteristics of food and how it is stored, determine its degree of

susceptibility to microbial attack. Although the total microbial flora may increase during

storage, it is specific spoilage organisms which cause the chemical changes and the

production of off-odors [5]. This is because the chemical properties of foods vary widely,

and different foods are colonized by the indigenous spoilage organisms that are best able to

use the nutrients available. Microbial growth in foods follows the standard pattern for a

bacterial growth curve. It is only when the microbial population density reaches a

substantial level that harmful spoilage effects are usually observed.

Off-odors or off-flavors can often be detected soon after 106 organisms/g or per mL or per

cm2 of food surface have been produced. This level can be considered as the cut-off point

between spoiled and unspoiled (level of incipient spoilage). Indeed, throughout much of

the exponential phase of growth, population densities may be too low to observe any

perceptible effect, but because of the nature of exponential growth, it is only the last

doubling or two of the population that leads to observable spoilage.

2.3 The most important factors affecting the growth of food

spoilage bacteria

2.3.1 Temperature

One of the most crucial factors affecting microbial growth in food is temperature. Growth

is restricted to those temperatures at which an organism’s cellular enzymes and membranes

can function. As the temperature rises, chemical and enzymatic reactions in the cell

proceed at more rapid rates, and growth becomes faster.
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However, above a certain temperature, particular proteins may be irreversibly damaged.

Thus, as the temperature is increased within a given range, growth and metabolic functions

increase up to a point where inactivation reactions set in. Every food spoilage bacteria has

cardinal temperatures namely, a minimum temperature below which growth no longer

occurs, an optimum temperature at which growth is most rapid, and a maximum

temperature above which growth is not possible [6]. Since the first observation of bacterial

growth at 0°C, many terms were used for these organisms. The term “psychrotroph” was

introduced by Eddy (1960) to replace the misnomer “psychrophilic”. The latter term

indicates organisms that have a preference for growing at low temperatures, while

psychrotrophs should rather be regarded as cold tolerant being able to grow at 7°C or less

but having optimum temperatures of 25 to 35°C. In 1976 the International Dairy

Federation (IDF) adopted the following definition: A psychrotroph is a micro-organism

which can grow at 7°C or less, irrespective of its optimum growth temperature.

Many psychrotrophic bacteria, when present in large numbers, can cause a variety of off-

flavors as well as physical defects in foods. Raw foods held under refrigeration prior to

processing, as well as non -sterile heat processed foods that rely on refrigeration for shelf

life, are subject to quality loss and possible spoilage by psychrotrophic bacteria. Although

psychrotrophic bacteria will not grow in frozen foods, they can grow and cause spoilage if

the food is allowed to thaw partially, and is subsequently held at too high a temperature

(i.e., unfrozen, but still refrigerated) [7].

Studies have revealed that the most common bacteria isolated on dairy equipment surfaces

are Gram negative psychrotrophs (e.g. flavobacteria), which are responsible for growth and

spoilage in milk at refrigeration temperatures [8]. Jooste investigated the role of

flavobacteria as causative agents of the putrid butter defect and found that the optimum

growth temperature for the six Flavobacterium strains from butter tested, was 25°C and

that these strains were capable of multiplication in cream both at 6°C and 25°C [9].

2.3.2. pH

pH is one of the main factors affecting the growth and survival of micro - organisms in

culture media and in foods. All micro -organisms have a pH range in which they can grow

and an optimum pH at which they grow best.

Bacteria generally have a minimum pH for growth of around 4.0 – 4.5 and an optimum pH

between 6.8 and 7.2, (that is, more or less neutral), and pH maxima between 8.0 and 9.0.
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Organisms that thrive at low pH values are called acidophiles. Organisms that have very

high pH optima for growth, are known as alkaliphiles, which can produce hydrolytic

enzymes, such as proteases and lipases.

The pH minimum for an organism is determined by the temperature of the environment

(e.g. the incubation temperature in the laboratory), the nutrients that are available, the

water activity and the presence or absence of inhibitors. Despite the pH requirements of a

particular organism for growth, the optimal growth pH represents the pH of the

extracellular environment only, the intracellular pH must remain near neutrality in order to

prevent destruction of acid-or alkali-labile macromolecules in the cell. For the majority of

microorganisms, whose pH optimum for growth is between 6 and 8 (referred to as

neutrophiles), the cytoplasm remains neutral or very nearly so. When the microbial cell is

subjected to extreme pH values, cell membranes become damaged. The pH minimum for

an organism depends on the type of acid present. Generally, the minimum is higher if any

organic acid is responsible for the environmental pH rather than an inorganic acid.

Foods are quite variable in terms of their pH values. Most are acidic, ranging from the very

acidic to almost neutral in reaction. pH changes in foods due to the activity of micro

organisms are common. Meat becomes more alkaline when spoilage is caused by Gram

negative rods such as Pseudomonas spp.. The organism uses amino acids as its carbon

source which leads to the production of ammonia, making the cell environment more

alkaline. Shimomura  found that the pH range of Chryseobacterium shigense for growth

was 5-8 [10]. According to Park the pH range for growth of Chryseobacterium

soldanellicola is pH 5-7 and that for optimal growth is pH 5 [11].

2.3.3 Water activity and Sodium chloride

Water availability not only depends on the water content of an environment, that is, how

moist or dry a solid microbial habitat may be, but is also a function of the concentration of

solutes such as salts, sugars, or other substances that are dissolved in water. This is because

dissolved substances have an affinity for water, which makes the water associated with

solutes unavailable to organisms. Water availability is generally expressed in physical

terms such as water activity. The water content of a food may bear little relationship to its

water activity (aw). Foods may have a low salt content but a low water activity. Each

specific organism has its own range of water activity in which it will grow. Most
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organisms have an optimum approaching 1.0, where the water activity is high but, where

there is also sufficient dissolved nutrients to support rapid growth.

An added complication is the reaction that some organisms show towards sodium chloride

(NaCl). Halophiles are organisms that require sodium ions in order to grow. Moderate

halophiles are organisms that require NaCl but will grow only at moderate concentrations,

i.e. between 1 and 10%. Sodium ions are believed to be involved with the transport

mechanisms associated with the cell membrane and the uptake of materials from the

environment. Extreme halophiles are organisms that will only grow at high sodium

chloride concentrations and generally require 15-30% NaCl, depending on the species, for

optimum growth. Halotolerant organisms can tolerate some reduction in the aw of their

environment, but generally grow best in the absence of the added solute.

2.4 Spoilage caused by flavobacteria

Flavobacteria have been associated with spoilage of food, but information about the

incidence and role of flavobacteria in food deterioration is difficult to obtain, mainly due to

the history of faulty classification or reclassification of these organisms. They are,

however, accepted as common contaminants of protein-rich foods and under refrigerated

storage, they are in competition with the pseudomonads [12-13].

Undesirable flavors and odors, possible slime production and/or toxic metabolic end

products are detrimental and apart from an economical loss to industry and consumers,

may also have a health impact on consumers.

Even if the spoilage bacteria are not pathogenic per sé, changes in the biochemical status

of stored food due to deterioration by such bacteria, may make conditions favorable for

other bacteria, or even pathogens, to grow in. Studies on the proteolytic activities of

flavobacteria have indicated that flavobacteria may possibly produce pasteurization

resistant extracellular enzymes and that they may in this way contribute to the

psychrotrophic spoilage of milk and dairy products. Although psychrotrophs secrete other

enzymes with spoilage potential, e.g., glycosidases, the most important enzymes from the

viewpoint of food spoilage are extracellular proteinases, lipases, and phospholipases on

which this review will concentrate [14-16].
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2.4.1 Proteolytic activity

All enzymes that catalyze hydrolysis of proteins to peptones, polypeptides, and amino

acids, are called proteolytic enzymes. These enzymes hydrolytically cleave the peptide

linkage with the formation of a free amino and carboxylic acid group. Animal proteinases

include such enzymes as pepsin, rennet, trypsin, chromotrypsin, and cathepsin [17].

Continued proteolysis results in putrid off -flavors associated with lower molecular- weight

degradation products such as ammonia, amines, and sulphides [18]. Proteinase production

by psychrotrophs is normally at a maximum in the late exponential or stationary phase of

growth. Bitter peptides are normally characterized by large numbers of hydrophobic amino

acids [19]. Proteases produced by psychrotrophs have been shown to hydrolyze casein, but

whey proteins were more resistant against hydrolysis [20]. The optimum pH and

temperature for protease production depends on the species and strain. The most common

proteolytic activity in milk was reported as clotting.

Roussis found that Flavobacterium MTR3 proteinases were active at 32-45°C, and

exhibited considerable activity at 7°C. The enzyme was active at pH 6.0 -8.0, and exhibited

considerable activity at pH 6.0 in the presence of 4% NaCl [21].

2.4.2 Lipolytic activity

Lipolytic enzymes can be defined as carboxylesterases that hydrolyze acylglycerols.

Most bacterial lipases are extracellular and are produced during the late log and early

stationary phases of growth [22]. True lipases act on insoluble substrates such as micelles

in emulsion or surface monolayers [23].

Lipolysis is known to contribute both desirable and undesirable flavors to dairy products,

initially through hydrolysis of milk triacylglycerols. Short-chain fatty acids, such as butyric

acid (C4:0), caproic acid (C6:0) and caprylic acid (C8:0), impart sharp and tangy flavors.

Medium-chain fatty acids, such as capric (C10:0) and lauric acid (C12:0) tend to impart a

soapy taste, while longchain fatty acids, such as myristic acid (C14:0), palmitic acid

(C16:0) and stearic acid (C18:0), contribute little to flavor [24]. Unsaturated fatty acids

released during lipolysis are susceptible to oxidation and the concomitant formation of
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aldehydes and ketones, which give rise to off-flavors described as “oxidized card-boardy”

(tallowy), or metallic.

The lipases from many of the psychrotrophic bacteria are remarkably heat stable and may,

therefore, contribute to lipolysis in dairy products, even when they are heat treated. The

microbial lipases can attack intact fat globules and may cause lipolysis without any prior

activation [25]. Other unpleasant flavors, such as ‘’rancid, butyric, bitter, unclean, soapy

and astringent’’ in milk and milk products, have also been attributed to lipolysis [26]. In

general, flavobacteria are less well-known for lipase production. However, significant

lipase production by some Flavobacterium strains have been reported by some researchers.

Optim al temperature for extracellular Gram negative bacterial lipases is found in the

temperature range of 30 to 40°C. Bacterial lipases appear to be very stable at temperatures

below 8°C. The optimum pH of most extracellular Gram negative bacterial lipases appears

to be at neutral or alkaline pH values between seven and nine. It has been suggested that

the optimum pH depends upon the nature of the substrate, the buffer solution, and other

external conditions.

2.5 Microbial deterioration of food components

The type and extent of microbial colonization of a food only partly affects its ultimate

deterioration, because the biochemical activities of the microbial community structure at

the time of the onset of spoilage are also decisive [27]. Organoleptic deterioration may,

however, occur before any marked chemical changes take place in the food. This is

because some odiferous metabolites can be detected organoleptically at very low levels.

Less than 1 ppm dimethyl sulphide or methyl mercaptan is sufficient to cause off-odors

[28]. Even at the maximum cell concentration usually achieved (about 109 cfu g-1 or mL-1),

metabolizing at the optimum rate would only produce about 2 mL g-1 h-1 of carbon dioxide.

At lower temperatures this rate would be much less. Conversely, high levels of microbes

may be present in a food that shows no obvious organoleptic change.

The growth of microbes in foods inevitably causes chemical changes. Bacteria, the

predominating organisms in the microbial ecology of most foods, are extremely small: a

rod of 2 x 0.8 μm has a volume of about 10-12 cm3.

Although they have a high metabolic potential per cell, large numbers of bacteria are

required before they can cause measurable chemical changes.
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2.5.1 Microbial metabolites

Biological as well as fabricated food structures will possess receptors to which

microorganisms can absorb. The resulting colonization of such structures may occur in a

stratified way, leading to relatively high local concentrations of microbial metabolites [29-

30]. The metabolites formed by a given spoilage association will once again depend on the

prevailing intrinsic, extrinsic and implicit conditions.

These include the limiting factors influencing: (1) the type of spoilage, determined by the

relative amounts of metabolites formed; and (2) the rate at which these metabolites are

produced during storage and distribution of the food. The latter is mostly expressed as the

time to (onset of) spoilage, as detected by sensory evaluations – odor, color, structure and

taste. The microbial metabolites depend not only on the storage conditions but also on

other environmental factors such as aeration, glucose and lactate availability, and pH [31].

2.5.2 Carbohydrates

Carbohydrates, if available, usually are preferred by microorganisms to other energy-

yielding foods. The carbohydrates are divided into monosaccharides, disaccharides, and

polysaccharides. The monosaccharides are polyhydroxy aldehydes (aldoses), or

polyhydroxy ketones (ketoses). For utilization, bacteria first need to break down complex

carbohydrates such as starch into their constituent monosaccharides. The random splitting

of glycosidic bonds results in softening and liquefaction [32]. Several bacteria possess an

extracellular enzyme, diastase or amylase, which hydrolyses starch. Starch is then

converted either directly to glucose or via intermediates such as maltose [33].

Although flavobacteria do not degrade lignin and cellulose, it is possible that these

organisms are involved in the breakdown of various proteins and carbohydrates [34].

Glucose is the main carbohydrate used as a carbon and energy source. The breakdown of

this monosaccharide can proceed by several pathways. In aerobic respiration the glucose

metabolite, pyruvate is converted into carbon dioxide (CO2) and water (H2O) by means of

the tricarboxylic acid (TCA) cycle, Krebs cycle, or citric acid cycle. To enter the system,

the pyruvate is converted to acetate activated by coenzyme A. Only the aerobic and some

facultatively anaerobic microorganisms possess an intact TCA cycle. The pyruvic acid can

be decarboxylated to form acetaldehyde and CO2. The acetaldehyde can remain or be

reduced to ethyl alcohol, oxidized to acetic acid, or condensed to form acetoin or
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acetylmethylcarbinol (AMC). The AMC can be oxidized to diacetyl, which has a butter

flavor or reduced to 2,3-butanediol. Pyruvate can be aminated to form alanine. Boers

observed that the glucose concentration had decreased to a low level at the first signs of

spoilage. It has been concluded also that glucose limitations caused a switch from a

saccharolytic to an amino acid degrading metabolism in at least some bacterial species

[35]. Foods with high levels of carbohydrates are preferentially colonized by glycolytic

organisms and tend to ferment rather than putrefy. This leads to the production of acids

(mainly lactic and acetic) and is accompanied by a reduction in pH. The lactate occurring

in flesh foods due to post mortem glycolysis can often be differentiated by its optical

rotation from lactic acid formed by microorganisms; this increases its reliability as an

index of spoilage [36]. However, in some instances lactic acid may be dissimilated and

acetic acid may be a better indicator of microbial colonization and metabolism [37-38].

2.5.3 Fats

The principle lipids in foods are fats. Fats are esters of glycerol and fatty acids and are

called glycerides, in the ratio of one molecule of glycerol to three molecules of fatty acids.

A pure fat is not attacked by microorganisms, since there must be a nutrient containing

aqueous phase in which the organism can grow. Lipase, an enzyme that hydrolyzes fats to

free fatty acids and glycerol, is present in many kinds of foods. Because milk contains an

appreciable amount of this enzyme, milk fat often undergoes lipase-catalyzed hydrolysis

with the production of free fatty acids, diglycerides, monoglycerides, and in extreme cases,

free glycerol. Short-chain water-soluble fatty acids (butyric, caproic, and caprylic) cause

obnoxious rancid flavors in milk. Lipolysis in foods followed by ß-oxidation produce

ketones, which always result in off-flavors. The oxidative deterioration of fats involves the

reaction of unsaturated fatty acids with oxygen to yield hydroperoxides. The

hydroperoxides are not flavor compounds, but readily decompose to carbonyl compounds

resulting in off-flavors or -odors. The carbonyl compounds are mixtures of saturated and

unsaturated aldehydes and produces ketones.

2.5.4 Proteins

Microorganisms, through their proteolytic enzymes, break down protein into simpler

substances. The breakdown usually follows the following pattern: protein  peptones 
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polypeptides  peptides  amino acids  ammonia (NH3)  elemental nitrogen (N).

Proteinases catalyze the hydrolysis of proteins to peptides, which may impart a bitter taste

to foods. Peptidases catalyze the hydrolysis of polypeptides to simpler peptides and finally

to amino acids. The latter impart flavors, desirable or undesirable, to some foods; e.g.,

amino acids contribute to the flavor of ripened cheeses [39]. The products that are formed

depend upon (1) the type of microorganism; (2) the types of amino acids; (3) temperature;

(4) the amount of available oxygen; and (5) the types of inhibitors that might be present.

Decomposition of protein by aerobic organisms is called decay. Proteins containing amino

acids with sulphur, such as cystine and methionine, can be broken down with no

unpleasant odor because the end products are completely oxidized and stabilized.

Sulphur compounds, however, are often associated with ‘putrid’ odors.

The metabolites produced by microorganisms in proteinaceous foods such as meat include

ammonia, ethanol, lactate, acetate, indole and acetoin, with smaller quantities of higher

fatty acids, amines and ethyl esters of the lower fatty acids, sulphides, hydrogen sulphide

and mercaptans [40]. Most of the esters, amines, ammonia and sulphur compounds are

produced from amino acids. There is no significant degradation of protein proper until

spoilage has progressed to obvious deterioration. Owing to production of amines and

ammonia, the pH of proteinaceous foods tends to rise as spoilage progresses. An increase

in the pH of a protein food indicates protein degradation, just as a decrease in pH results

from the fermentation of carbohydrates.

2.6 Biogenic amines

Biogenic amines are basic nitrogenous compounds formed mainly by decarboxylation of

amino acids or by amination and transamination of aldehydes and ketones. Biogenic

amines in food and beverages are formed by the enzymes of raw material or are generated

by microbial decarboxylation of amino acids, but it has been found that some of the

aliphatic amines can be formed “in vivo” by amination from corresponding aldehydes [41].

Koessler proposed that biogenic amine formation is a protective mechanism for bacteria

against acidic environments. The production of amines requires the availability of free

amino acids and appropriate status of environmental factors such as pH and temperature

[42-43]. The precursors of the main biogenic amines involved in food poisoning are:

histidine  histamine, tyrosine  tyramine, hydroxytryptophane  serotonin,
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tryptophane  tryptamine, lysine  cadaverine, ornithine  putrescine, arginine 

spermine, and arginine spermidine (Fig. 2.6.1).

The prerequisites for biogenic amine formation by microorganisms are: (1) availability of

free amino acids, but not always leading to amine production; (2) presence of decarboxy

lase-positive microorganisms; and (3) conditions that allow bacterial growth,

decarboxylase synthesis and decarboxylase activity.

Biogenic amines are present in a wide range of food products including fish products, meat

products, dairy products, wine, beer, vegetables, fruits, nuts and chocolate. Virtually all

foods that contain proteins or free amino acids and are subject to conditions enabling

microbial or biochemical activity, are conducive to the production of biogenic amines. The

total amount of the different amines formed strongly depends on the nature of the food and

the microorganisms present [44]. Different biogenic amines (histamine, putrescine,

cadaverine, tyramine, spermine, spermidine) have been detected in fish such as mackerel,

herring, tuna, and sardines. Other amines, such as trimethylamine and dimethylamine are

present in fish and fish products at levels depending on the fish freshness. Bacterial-

produced histamine has also been found in dairy products and vegetables [45]. Amines

(e.g. histamine, tryptamine, tyramine) are also important because of their role in causing

spoilage of dairy products by producing typical off-flavors and putrid odors [46].

Putrescine, cadaverine, histamine, tyramine, spermine and spermidine were found to be

present in minced pork, beef and poultry stored at chill temperatures. Histamine has been

recognized as the causative agent of scombroid poisoning (histamine intoxication), as well

as nausea, vomiting, gastrointestinal distress and headache, whereas tyramine has been

related to food-induced migraines and hypertensive crisis in patients under antidepres sive

treatment with monoamine oxidase inhibitor (MAOI) drugs. Secondary amines such as

putrescine and cadaverine can react with nitrite to form heterocyclic carcinogenic

nitrosamines, nitrosopyrolidine and nitrosopiperidine [47-48].
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Figure 2.6.1. Chemical structures of some biogenic amines [49].

The levels reported for histamine and its potentiators in food would not be expected to

pose any problem if normal amounts were consumed. Sandler  reported that 3 mg of

phenylethylamine causes migraine headaches in susceptible individuals, while 6 mg total

tyramine intake was reported to be a dangerous dose for patients receiving monoamine

oxidase inhibitors [50-51]. The level of 1000 mg kg-1 (amine/food) is considered

dangerous for health. This level is calculated on the basis of food borne histamine

intoxications related to amine concentration in food [52].

The European Community has recently proposed that the average content of histamine

should not exceed 10-20 mg/100 g of fish.

Biogenic amine content can be considered as a freshness marker or as a bad conservation

marker [53].Let us consider for example the case of the meats: red meat (adult bovine) and

white meat (chicken) are particularly susceptible to protein degradation, which takes place
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under appropriate conditions. So that the levels of biogenic amines in these two kinds of

meat can be related to spoilage and sometimes to their protein degradation.

In reference [53], in order to find a correlation between the amines levels and the spoilage

of the meat, an analytical study was carried out on red and white meat for determining

quantitatively some biogenic amines. The amines considered were: tryptamine, putrescine,

cadaverine, serotonin, tyramine, spermidine, spermine.

These biogenic amines were determined in red and white meats and their levels were

controlled during storage time. The main aspect studied was the variation, as a function of

time, of amine levels. The study was carried out on fresh meat samples, stored at T = 4◦ ±

1◦C for 36 days. The quantitative determination of biogenic amines was performed by

HPLC (High-performance liquid chromatography).

In particular Fig. 2.6.2 shows histograms of the relative levels of each amine considered at

the 5th, 15th and 30th day of storage, in the same samples. The experimental evidence

showed that the great increase of cadaverine, in both kinds of meat, and of tyramine, for

red meat, were an indicator of meat spoilage.

Figure 2.6.2. Histogram relative to the biogenic amine levels in red and white meats monitored at different

days of storage at +4◦C.
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The results showed that the biogenic amine levels were indicators of spoilage both in red

and white meat. In particular the determination of cadaverine concentration could be used

to monitor spoilage in both kinds of meats and also tyramine concentration appeared to be

useful to control red meat storage.

2.7 State-of-art of the techniques used to detect biogenic amines

Spoilage is manifested by a variety of sensory cues such as off-colors, off-odors, softening

of vegetables and fruits, and slime. However, even before it becomes obvious, microbes

have begun the process of breaking down food molecules for their own metabolic needs.

Sugars and easily digested carbohydrates are used first, plant pectins are degraded. Then

proteins are attacked, producing volatile compounds with characteristic smells such as

ammonia, amines, and sulfides. These odors start to develop in meat when there are about

107 cfu of bacteria/cm2 (number of bacterial colonies on cm2) of meat surface and are

usually recognizable at populations of 108 cfu/cm2 [54]. Early detection of spoilage would

be advantageous in reducing food loss because there may be interventions that could halt

or delay deterioration, and on the other hand food that had reached the end of its

designated shelf life but was not spoiled could still be used. Numerous methods for

detection of spoilage have been devised with the goals of determining concentrations of

spoilage microbes or volatile compounds produced by these microbes.

2.7.1 Determination of biogenic amines

For determination of BA numbers of analytical methods were developed [55].

The analytical methods used for separation and quantification of BA are mainly based on

chromatographic methods: gas chromatography (GC), thin layer chromatography (TLC),

and high-performance liquid chromatography (HPLC) with precolumn or postcolumn

derivatization techniques [56]. Aliphatic BA do not show pronounced absorption bands in

the UV VIS region, so that usual spectrometric detectors cannot be used [57]. The direct

analysis of BA without derivatization by means of ion-pair chromatography has been

suggested using octylamine or heptanesulfonate as ion-pair reagents [58]. For the

separation of ion pairs of the BA the usual reversed phase columns with C12—C18

aliphatic chains phenyl residues bound to a silica core are suitable [59].



80

The HPLC procedures involve pre- or postcolumn derivatization step [60]. Different

chemical reagents have been used for the BA analysis, for example ninhydrine and o-

phthalaldehyde, as a postcolumn derivatisation reagent, dansyl and dabsyl chloride,

benzoyl chloride, fluoresceine, 9-fluorenylmethyl chloroformate with precolumn

derivatization [61, 62, 63]. Dansyl chloride has been the most widely used reagent for

derivatization of BA prior to HPLC. Light sensitivity and limited stability of dansyl

chloride lead some authors to the use of different derivatisation agents. Benzoyl chloride is

an inexpensive, stable, easily accessible chemical and its purity is less critical than that of

dansyl chloride. Benzamides are not sensitive to light, reaction proceeds at room

temperature in alkaline media and no buffers are required. For the detection fluorescence,

UV, and electrochemical detectors are used. Electrochemical detector are based on the

oxidation of amino groups.

TLC method is especially popular in plant biochemistry. The TLC procedure is of value

for semiquantitative screening of food [64]. TLC with preclean-up of sample and

derivatization of BA can be used to detect chlorides, 3,5-dinitrobenzamides dansyl and

fluorescein derivatives of BA [65]. Dansyl chloride reacts with primary and secondary

amino groups and fluorescein reacts only with primary amino groups.

Dansylated BA emit the energy of absorbed long-wave UV light as fluorescent light,

enabling the analyst to detect these compounds at low levels on the chromatogram. The

natural fluorescence (under UV light) of the separated spots of dansylated BA from sample

extract can be compared with that of standard spot by eye. The fluorescent dansyl

derivative zones are visualized and marked with the aid of a suitable UV-light source (360

nm) [66]. TLC one dimensional developing techniques enable to give sufficient separation

of BA, it is because other interfering compounds, such as amino acids also moved along

with the analyzed BA. The multidimensional developing technique improved resolution of

BA from each other and from interfering materials, and compact and intense spots were

obtained. For visual detection of eluated BA, various systems of detecting agents such as

ninhydrin, o-phthalaldehyde (for chloride of BA) solution of ethanol, and naphthylamine

can be used.

GC is not so often applied for the determination of BA. Because of inherent tailing

problems, derivatisation is also frequently used. The BA are determined in derived forms

as trifluoroacetyl, trimethylsilyl or 2,4-dinitrophenyl derivatives. The columns used in the

GC are capillary or filling. The capillary columns allowed better separation of BA. The
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detectors for the determination of BA by GC are healthy conductivity, flame ionization,

and electron capture detector.

Reports dealing with separation of BA by capillary electrophoresis (CE) are not numerous

to data. There are three possible approaches to solve this task:

1. Aromatic or heterocyclic BA can be separated in selected buffer systems without

derivatization.

2. Polyamines are determined either derivatized (usually in electrokinetic capillary

chromatography

3. Their detection must be indirect

CE has several advantages: it is simple, rapid, cost effective, and reliable, making it a very

useful tool for screening a large number of samples in a short period of time. Capillary

isotachophoresis is used for quantification of histamine in fish [67] and different BA in the

lactic acid-fermented vegetable juices [68].

Fluorometric methods are used owing to fluorescence of BA at some pH and reaction of

BA with suitable agents to the fluorescence derivatives. The histamine can be determined

by o-phthalaldehyde and tyramine by β-naphthol.

Recently due to the commercial availability of enzymes like MAO and putrescine oxidase

several groups tried to couple the enzymatic reactions with electrochemical sensors in

order to obtain simple and reproducible biosensors. In some cases the BA have been

coupled with oxygen sensors or hydrogen peroxide sensors. The biosensor procedure has

advantages, such as low cost, short analysis time, simplicity of use and it can be used

outside an organized laboratory. The biosensors show a low detection limit with life-time

estimated at one month with a 10—30% loss of sensitivity.

The principle of immunologic methods is an interaction between antigen and antibody,

which leads to formation of a complex [69].

2.7.2 Colorimetric methods

With increasing consumer demand for minimally processed and mildly preserved ready-to-

eat foods, safety is becoming more critical due to reduced product stability. Thus, there is a

sustained interest from producers, retailers, consumers, and food safety agencies to

accurately determine food product quality. To this end, intelligent packaging systems that



82

are capable of providing information on product quality, in real time, have been developed.

One approach is to apply indicators to food packaging that changes color upon reacting

with compounds which are associated with the deteriorative reactions in food to provide

visual cue on product freshness.

2.7.2.1 Indicator to monitor microbial activities

Many food-spoilage reactions result in changes in pH. Based on this phenomenon, a

number of studies have leveraged the application of pH-sensitive dyes as quality indicators

in intelligent packaging. For instance, Nopwinyuwong et al. [70] developed a colorimetric

indicator to detect the spoilage of an intermediate-moisture dessert product, by using pH

reagents which react with CO2 produced by spoilage microorganisms. The indicator

coating solution was comprised of methylcellulose binder, poly(ethylene glycol) 400

plasticizer, bromothylmol blue, and methyl red as pH indicators. The solution was cast

onto nylon/LLDPE support film, allowed to dry and then followed by applying another

cellulose-based topcoat. Placed within a glass jar that contained an intermediate moisture

content dessert product, the indicator strip changed from light green to orange-red color, as

the product underwent spoilage with concomitant release of CO2 into the headspace

(Figure 2.7.2.1.1). The reaction is based on the formation of carbonic acid that dissociated

in water to give hydroxonium ions, which in turn reacted with the pH reagent.

Accordingly, the indicator is suitable only for intermediate to high-moisture content

products. Since the solubility of CO2 in water decreases with increasing temperature, the

color response of the detector is also expected to be temperature dependent. In

uncontrolled environments, the reliability of such indicators may be problematic.
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Figure 2.7.2.1.1 Changes in microbial counts of a dessert product (500 g), golden drop, packaged in 1000 ml

glass jar. The right vertical axis is the corresponding CO2 concentration in the headspace within the package

during storage. Plots are recreated based on the original data from [71] .

2.7.2.2 Indicator for detecting meat spoilage

A similar quality indicator concept was adopted by Pacquit et al. [72, 73] for intelligent

packaging of raw fish. Using pH indicating disposable labels, they monitored the release of

alkaline volatile amines (e.g., trimethylamine, dimethylamine, and ammonia) as fish

samples spoil. The label was prepared by entrapping within cellulose acetate matrix a

bromocresol green pH-sensitive dye that changes color when it reacts with the volatile

amines. A quarternary ammonium salt was added to prevent leaching of the dye.

Indicator solutions were prepared in water and cast onto an optically clear poly(ethylene

terephthalate) sheet and allowed to dry. The indicator labels were sandwiched between

polytetrafluoroethylene gas permeable membranes to protect the indicator from water

vapor condensates. The color response was correlated with changing microbial load (total

viable count and Pseudomonas spp.). The sensor thus can be used to track the increase in

volatile amines in the package headspace (Figure 2.7.2.2.1). The response time of color

change was found to be relative humidity dependent as the protonation–deprotonation of

dye requires a proton transport medium between the acidic dye (proton donor) and basic

ammonia (proton acceptor). Nevertheless, in sealed package for raw fish, this may not

present a limitation since the humidity will remain relatively constant. Raw fish quality
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indicators which are based on similar concept are already commercially available, such as

FreshTag® from COX Technologies.

Smolander et al. [64] developed an innovative approach for monitoring the freshness of

poultry meat. During spoilage of meat, H2S is produced by microorganisms such as

pseudomonas, psychrotrophic anaerobic clostridia, Enterobacter, and Alteromonas.By

using myoglobin as a detector for H2S, these investigators correlated the color change of

the indicator with degree of spoilage in raw poultry samples packaged in modified

atmosphere packages flushed with 40% CO2/60% N2. In vitro testing, when exposed to

H2S, indicators with 0.5 mg/indicator resulted in most prominent color change from brown

to green. When 2 mg/indicator concentration was used, the indicator first turned bright red

and thereafter green. However, the total change of color, as measured by ΔE =(ΔL
2
+ Δa

2
+

Δb
2
)
1/2

(where L, a, and b are HunterLab lightness, green-red, and blue-yellow tristimulus

values, respectively), was highest when 4.0 mg/indicator concentration was used,

indicating that higher myoglobin concentration may be more suitable if a indicator color

change were measured using an instrument. During in vivo testing of MAP-packaged meat,

the color response was reportedly dependent on oxygen concentration. In packages where

O2 concentration was low at around 1%, the myoglobin turned brown to bright red as H2S

concentration increased. When the packages were punctured at the end of the experiment,

the color of the indicator turned green due to the reaction with atmospheric oxygen to form

sulphymyoglobin. The indicator may be useful to detect the onset of spoilage in raw

poultry meat.
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Figure 2.7.2.2.1 Correlation of bacterial growth and fish quality indicator in whiting filet samples at 21

°C. Adapted from [73].

2.7.2.3 Ripeness indicator technologies for fruits

Although quality of food products usually deteriorates with the passage of time, others

improve during storage and eventually become unacceptable. Many fruits belong to the

latter category. For instance, pears are harvested before ripe and allowed to undergo

postharvest ripening, during which the product can exhibit various organoleptic properties,

from crisp/sour to soft/juicy. Because this ripening process reveals little visual cue, the

consumer tends to rely on pressing the fruit and/or sniffing for aroma to evaluate the state

of ripeness. Such actions inevitably will result in product damage at the retail level.

To overcome this problem, various ripeness indicators have been developed. One patent

application discloses a general process to employ a visual indicator that reflects the

maturity of maturing products, such as incorporating the indicator in a label and adhering

to the maturing product. The indicator chemistries may be based on diffusion technology,

oxidative reactions, silver salt redox reactions, enzymatic reactions, and/or electronic

exposure indicator [75]. One such commercial sensor is known as ripeSense®, developed

in New Zealand by Jenkins Group (self-adhesive lebels supplier) and HortResearch (New

Zealand Crop Research Institute). The indicator label is attached inside the lid of a

transparent thermoformed clamshell packaging which holds four pears. A product label is

printed with an indicator scale ranging from red (crisp), orange (firm), and yellow (juicy).
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The proprietary reagent in the indicator reacts with the aroma compounds released by pear

as it ripens. The sensor is initially red in color, but changes to orange and finally yellow as

it reacts with the aroma compounds given off by the fruit. By visually evaluating the color

of the indicator label, consumers can select fruits of various ripeness degrees that match

their preference and be able to estimate the remaining product shelf-life. For instance, if

the sensor is red, the fruit is at the beginning of its ripening process and has a longer shelf-

life compared to those with yellow indicator. By knowing the degree the ripeness, the

indicator also allows producer and consumer to decide when to slow down the ripening

process by refrigeration once it has reached the desired degree of ripeness [76]. Similar

indicators have been developed for kiwifruit, melon, mango, and avocado. In one patent

application, a method was disclosed to apply ripeness indicator printed on small label that

can be adhered to the skin of a fruit to better present the condition of the produce and avoid

possible adverse effects from local air convention currents [75]. Another patent application

disclosed a similar approach based on ethylene detection involving color change of

KMnO4 and molybdenum chemistries. Here, ethylene is readily oxidized by KMnO4

(purple) to form manganese oxide (brown) and ethylene glycol (i.e., Baeyer test to detect

unsaturated hydrocarbons). Ethylene can also reduce ammonium molybdate

((NH4)6MO7O24) (yellow) catalyzed by palladium sulfate to MO3O8 (blue) [77]. These

color changes form the basis of ethylene detection, which is one of the vapors given off

during the ripening of fruits [78].

2.8 Conclusion

In this chapter we focused on food chemistry, in order to know the products generated

chemically during food spoilage.

The studied sensors are meant to be applied for food whom spoilage causes the formation

of biogenic diamines. Recently, many works and patents can be found that deal with

detection devices for biogenic amines; among these , only a small part has been presented

and described in this chapter , selecting the most interesting ones . Currently, the most

widely used techniques for the detection of biogenic amines are chromatography,

electrophoresis, mass spectroscopy and colorimetric techniques. However, in literature,

few studies about ammonia ceramic sensors made with screen printing technique are

present. They will be discussed in the experimental part.
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This is the reason why the next chapter deals with simple, fast and cheap ceramic sensors

for the detection of ammonia at room temperature, since ammonia is the most simple

amine compound taken as a reference.
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Chapter 3

Electrical characterizations of ceramic sensors

through screen-printing technique

3.1 Introduction

Screen printing technique was introduced in the later part of the 1950’s to produce

compact, robust and relatively inexpensive hybrid circuit for many purposes. Later on thick

film technique has been attracted by the sensor field [1].

Only from the 1970’s screen-printing reached the full maturity and from this period it has

been employing for the realization of miniaturized devices, such as circuits, conductors,

insulators, resistors, capacitors and humidity and gas sensors. Screen printing is a viable

and economical method to produce thick films of various materials [2-3].

In this chapter a more detailed presentation of screen-printing is made, then the ceramic

sensors entirely prepared by means of this technique during my Ph.D. work are described.

The synthesis of the sensing materials, as well as their microstructural characterization, by

means of laser granulometry, XRD and SEM observations and their electrical

characteristics in presence of water and of ammonia are also described.

3.2 Screen printing technique

3.2.1 Generalities of the process

Screen-printing process is a simple method that allows the production of low cost and

robust oxide thick films sensors with good reproducibility provided that the starting

materials are well controlled.

Screen-printing is a technique of controlling fluid flow. In this process, the ink is submitted

to different forces, squeegee pressure, force of surface tension at the screen-mesh/substrate
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interface and gravity (Fig. 3.2.1.1). The mesh is coated with a ultra-violet (UV) sensitive

emulsion onto which the circuit pattern can be formed photographically. The most

common type of screen comprises a frame, normally cast aluminium or stainless steel, onto

which a finely woven mesh is stretched. The mesh itself is usually based on a plain weave

pattern, as depicted in Fig. 3.2.1.2.   During printing process, the squeegee pushes the ink

ahead on the screen and wherever there is opening in the screen mesh, the downward force

of the squeegee causes the ink to flow through the mesh onto the substrate.

It is possible to quantify the percentage of mesh open area through which the ink is able to

pass:

Percentage = 100A2/ (A + D)2 (3.2.1.1)

where A is the mesh aperture and D is the filament diameter.

A cross-section of a mesh and many definitions and terms used are shown in Fig. 3.2.1.3.

After the passage of the squeegee and snap off of the screen, the printed ink pattern is in

the free standing state. At this stage, the final shape of the pattern is decided by the balance

between forces of gravity and surface tension and the viscosity of the ink. Thus, for best

printing, the viscosity of the ink should be low during printing to allow free flow within the

pattern and fill voids created while printing. But at the same time after printing, the

viscosity should increase so as to prevent spreading of the ink. This implies that the paste

should exhibit thixotropic property i.e. on application of pressure, the viscosity should be

low for easy flow and after removal of pressure it should regain its original viscosity.

Semi-automatic screen-printing machine used in the laboratory to realize sensors is shown

in Fig. 3.2.1.4, while the masks used to deposit the components of the sensors are

presented in Fig. 3.2.1.5: in particular the screen’s patterns can be different depending on

what it is deposited, for example in laboratory two screens were used, the former to print

the electrodes (Fig. 3.2.1.5a), the latter to deposit the sensing layer (Fig. 3.2.1.5b).
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Figure 3.2.1.1. The basic screen-printing process.

Figure 3.2.1.2. A plain weave pattern for a typical thick film screen.

The screens used were all made of stainless steel and their apertures were 270 mesh,

corresponding to 53 μm [4].
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Figure 3.2.1.3. Cross-section of a screen mesh.

Figure 3.2.1.4. Screen printer used for sensors assembly.
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Figure 3.2.1.5. Patterns of the screens used to deposit a) the electrodes and b) the rectangular sensing films.

3.2.2 The squeegee

The squeegee is a flexible blade whose function is to transfer the ink or the paste through

the screen onto the substrate. During printing, the squeegee forces the ink to pass through

the open areas of the mesh and, by virtue of the substrate tension between the film and the

substrate, the required pattern is then transferred to the substrate as the screen and substrate

separate. The squeegee must be resistant to the solvents and ink. Common materials used

are polyurethane and neoprene.

3.2.3 Screen printing inks

The range of materials available for thick film technology is determined by their capacity

to be both printed and fired. Each paste for producing thick films contains three

components: the basic component, the flux and the binding phase [5].

(i) Sensing material: metals or metal oxides which determine electrical resistivity,

solderability etc. The basic components taken into consideration for humidity and

ammonia detection at room temperature were ZnO, WO3, Fe2O3 and Bi2O3 powders.
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(ii) Temporary binder:  poly-(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB,

Aldrich, USA), which created the paste plasticity and ensured the necessary adhesion of

the film to the substrate before the paste was fired.

(iii) Organic vehicle: used for making the paste and for controlling the viscosity and

rheological properties of the paste. The vehicle is a temporary, sacrificial ingredient, which

should be removed completely in the following steps of the process, during which the

microstructure of the deposits is formed. In our case, a blend of terpineol type solvent,

namely ethyleneglycolmonobutyalether (Emflow, Emca Remex, USA), was used.

It is possible to remove the sacrificial ingredients by considering two steps: the drying and

the firing processes. In general these two steps are necessary for sensors realization: after

screen printing, the film or electrodes should stand in air for few minutes, in order for the

ink to level off and settle. The aim of the drying stage is to remove the organic solvents

and make the printed film adherent to the substrate and relatively immune to smudging.

The firing process is a phase in which the printed films or electrodes are heat treated at

higher temperatures: the thermal treament is specifically studied for every sample. At this

step, the ink’s components are thermally decomposed, leading to an evident shrinkage of

the deposit (Fig. 3.2.3.1).

Figure 3.2.3.1. Shrinkage of the thick film from the wet to the dried phase, followed by the firing stage.
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In particular, for all the pastes realized in this Ph.D. work, 0.053 g of PVB and 1.2 cc of

Emflow were used: these components were mixed 30 minutes in an ultrasonic bath, in

order to obtain a homogeneous viscous liquid, then 2 g of the basic components were

added and mixed to the liquid, thus obtaining a dense paste, ready to be printed onto the

substrate.

Two different kinds of screen-printed devices were prepared:

1. the interdigitated electrodes were either deposited onto α-Al2O3 planar substrates

(Coors Tek, USA, ADS-96 R, 96% alumina, 0.85 cm × 5 cm2),

2. an then on top of them, the sensing materials were screen printed (Figure 3.2.3.2),

or were screen printed onto the sensing layer directly deposited onto the alumina

substrates.

Figure 3.2.3.2. Steps for the classical sensors assembly: the alumina substrate (a), onto which the gold

interdigitated electrodes are screen printed (b). Subsequently, after firing, the sensing layer is screen printed

(c). The final step concerns sintering of the sensing layer.

For interdigitated gold electrodes screen printing, a commercial ink was used (ESL

EUROPE 8835 (520C)). After drying overnight, the electrodes were fired at 520°C for 18

minutes with a 2°C/min heating ramp to optimize their electrical conductivity, according to

the ink’s manufacturer recommendations.
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3.3 Synthesis of the sensing materials

3.3.1 Hydrothermal synthesis

ZnO, WO3, Fe2O3 and Bi2WO6 powders were prepared in different containers:

1. a teflon bottle with autoclavable screw cap;

2. a glass bottle with autoclavable cap;

3. a beaker

Containers were heated in the range 90-160°C and kept for the desired times (2-24 hours)

in an ordinary laboratory oven. Subsequently the bottle was cooled down to room

temperature naturally (2-5 hours).

Below, the ZnO hydrothermal synthesis is reported, according to refs. [6-7].

The formation of tubular ZnO occurs in two steps, as can be seen in Figure 9: through

hydrothermal synthesis, starting from ZnCl2 dissolved in water and ammonia solution:

 Formation of ZnO nanorods at a temperature of 95° C,

 Dissolution of ZnO at temperatures <75° C.

Dissolution leads to the formation of ZnO  nanorods.
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Figure 9 Growth mechanisms of ZnO nanotubes

The chemical reactions involved are the following ones:

ZnCl2 Zn2+ + 2Cl- (3.3.1.1)

NH3
.H2O NH4

+ + OH- (3.3.1.2)

Zn2+ + NH3
.H2O Zn(NH3)4

2+ + OH- ZnO + NH3 + H2O (3.3.1.2)

During the first step, at the temperature of 95°C, Zn(NH3)4
2 + reacts with OH- to form ZnO.

Until the concentration of Zn (NH3)4
2+ is high, this reaction is dominant. When the

concentration of Zn (NH3)4
2+ decreases, dissolution becomes the main phenomenon that

leads to the formation of nanorods. When the temperature reaches a temperature below

75°C, the equilibrium shifts to the left and the dissolution leads to the formation of

nanotubes

We report hereafter the experimental synthesis process used in this work.
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ZnO synthesis was performed in different containers. A ZnCl2 solution 0.1M was brought

at pH 10 with NH4OH. Before putting the solution in the oven, a piece of metallic copper

was introduced into it, to act as a catalyst.

The solution was put in the oven at different times and temperatures and then was cooled at

room temperature [8]. Table 3.3.1.1 reports the different investigated parameters of ZnO

hydrothermal synthesis.
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Name Containers Temperature

[°C]

Time

[h]

Cooling

time [h]

Beaker 1.5-5 Beaker 90 1.5 5

Beaker 1,5-5 Beaker 90 1.5 5

Becker 7-0 Beaker 90 7 0

Glass 1.5-5 Glass autoclave 90 1.5 5

Glass 1,5-5 Cu before Glass autoclave 90 1.5 5

Vetro 3-3 Glass autoclave 90 3 3

Teflon 4-2 Teflon autoclave 120 4 2

Teflon 4-3 Teflon autoclave 120 4 3

Teflon 4-4 Teflon autoclave 120 4 4

Teflon 4-3 0,2M Teflon autoclave 120 4 3

Teflon 4-4 0,2M Teflon autoclave 120 4 4

Teflon 4-2 40°C Teflon autoclave 120 4 2

Teflon 4-2 50°C Teflon autoclave 120 4 2

Teflon 4-2 60°C Teflon autoclave 120 4 2

Teflon 4-2 rt Teflon autoclave 120 4 2

Teflon 4-2 open Teflon autoclave 120 4 0

Teflon 4-2 <75°C Teflon autoclave 120 4 2

Teflon 4-2 <75°C + ZnO Teflon autoclave 120

Teflon 5-2 Teflon autoclave 120 5 2

Teflon 5-2 Li Teflon autoclave 120 5 2

Teflon 5-2 Al Teflon autoclave 120 5 2

Teflon 5-2 Nb Teflon autoclave 120 5 2

Teflon 5-2 Pb Teflon autoclave 120 5 2

Teflon 5-2 Y Teflon autoclave 120 5 2

Teflon 5-2 W Teflon autoclave 120 5 2

Teflon 5-2 Pd Teflon autoclave 120 5 2

Teflon 6-2 Teflon autoclave 120 6 2

Table 3.3.1.1. Hydrothermal synthesis performed with ZnO
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In Table 3.3.1.1 are also presented some hydrothermal synthesis, in which we tried to

verify if the introduction of some metal ions could affect the sensor response towards

ammonia. The sensors responses are reported in section 3.6.5.

In the hydrothermal synthesis of ferric oxide nanopowders we started from a solution of

ferric chloride 1.5 M; the solution was brought to pH 3.5 with ammonium hydroxide and

put in the oven at 100°C for 14 hours. Afterwards it was put in the furnace at 600°C for 2

hours. [9]

In the hydrothermal synthesis of WO3 nanopowders, we started from a solution of 0.4M

WCl6, to which was added a solution of CTAB 0.08 M and subsequently 10 mL of

ammonium hydroxide at 25%. We was left stirring the solution for 4 hours. When the

solubilization was completed, the solution was put in the oven for 4 days at 200°C. After

washing with water and ethanol, we put the powder in furnace at 500° C for 2 hours [10].

Table 3.3.1.2 reports hydrothermal synthesis performed with substances different from

zinc oxide

Name Containers Temperature [°C] Time

[h]

Cooling

time [h]

Fe2O3 teflon Teflon autoclave 100 14 2

Fe2O3

glass

Glass autoclave 100 14 2

Fe2O3

Glass + Cu

Glass autoclave 100 14 2

WO3 Teflon autoclave 160 16 2

Bi2WO6 Teflon autoclave 160 24

Table 3.3.1.2. Hydrothermal synthesis performed with Fe2O3, WO3 and Bi2WO6.

In paragraph 3.6.5 the electrical responses to some of the sensors reported in the previous

two tables, are shown.

In paragraph 3.5.2 SEM images of most of the hydrothermal synthesis reported in the two

tables above, are reported.



109

3.3.2 Glass Ceramic

The first step to obtain glass ceramic was to prepare the glass from B2O3, Bi2O3, WO3 and

ZnO powders. We used a defined nominal composition (Figure 3.3.2.1) by melt quenching

technique at 1300°C for 10 min in a Pt crucible.

The second step was a thermal treatment at 500°C for 15 hours to make the powder

crystallize.

Figure 3.3.2.1. Triangle of glass ceramic

3.3.3 Zinc Oleate

The zinc oleate was synthesized after the aging tests of ZnO samples functionalized with

carboxylic acids, which have shown a deterioration of the sensors’ performances with time

(Figure 3.6.2.2.15-3.6.2.2.16).

To resolve this problem, we thought to use the zinc oleate, a compound deriving from oleic

acid, that gave good responses to ammonia (Figures 4 and 5). The zinc oleate was tested to

evaluate if it was more resistant to ageing.

The zinc oleate is synthesized starting from the alcoholic solution of oleic acid, which is

neutralized with NaOH. Afterward the solution is put in the oven to allow the evaporation

of ethanol. Amber yellow crystals are obtained which are then dissolved in water. To this

solution zinc chloride is added under strong stirring. Finally the product is washed with

water and ethanol and left drying in the oven for one night at 60°C.
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The reaction performed to obtain Zinc oleate was the following one:

Oleic acid + Zinc  hydroxide zinc oleate (3.3.3.1)

Figure 3.3.3.1 Chemical formula of zinc oleate

We used 2.6 g of oleic acid in 30 mL of ethanol, that were neutralized with Zn(OH)2 until

pH 7 and afterwards were put in an oven at 70°C for 1 day. [11]

3.4 Functionalization

3.4.1 Fluorides

We functionalized ZnO sensors fired at 900°C with fluorides group in fluorhydric acid

solution at 5x10-5 M for different functionalization times (Figure 3.6.2.1) according to ref.

[12]. It was not possible to use higher concentrations of acids because it would damage

sensors, due to the dissolution of ZnO.

3.4.2 Carboxylic acids

Since the aim of the work is to find a material able to detect low concentrations of NH3 and

to produce a sensor having a high SR, over 10%, and on the basis of ref. [13], we

functionalized ZnO sensors fired at 900°C with carboxylic group in different carboxylic

acid solution by pretreatment with NH4Cl.

The use of functionalized zinc oxide with suitable chemical groups in sensor assembly can

enhance the electrical response of the devices under NH3 atmosphere. For example it is

known that the carboxylic (COOH) groups let NH3 to chemisorb onto them by transferring

a hydrogen ion to the lone pair on the nitrogen of NH3, forming an ammonium (NH4
+) ion

[14]:
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RCOOH + NH3 → RCOONH4 (3.4.2.1)

The functionalization of the sample was done in two different ways. In the first way we

functionalized the ZnO sensor heat treated at 900°C while in the second way we first

functionalized the ZnO powder that was then used for the ink preparation before screen

printing the sensors.

In the first case, the ZnO powder was heat treated at 900°C, in the second case the ZnO

powder was used without any heat treatment.

The functionalization of the heat treated sensor was performed according two different

techniques. In the first technique, the sample was immersed in the acid solution for two

days, in the second case it was treated with plasma. The plasma functionalization allows to

reduce the pretreatment time with NH4OH and with carboxylic acid; pretreatment with

NH4OH lasts only 30 seconds, while pretreatment with carboxylic acid takes only 2

minutes.

3.5 Characterization

3.5.1 SEM observations on ZnO powders from hydrothermal synthesis

In Figure 3.5.1.1 and 3.5.1.2 we can observe the samples obtained in a beaker at 95°C for

90 minutes. In the second experiment (Figure 3.5.1.2) we put metallic copper  in the

solution after NH4OH addition, while in the first experiment (Figure 3.5.1.1) we put it

before. It can be observed how the introduction of copper at acid or basic pH, influences

the size of the powders obtained.
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Figure 3.5.1.1. SEM analysis of ZnO nanopowder from hydrothermal synthesis in becker at 95°C for 90

minutes.

Figure 3.5.1.2. SEM analysis of ZnO nanopowder from hydrothermal synthesis in becker at 95°C for 90

minutes.
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Figure 3.5.1.3. SEM analysis of ZnO nanopowder from hydrothermal synthesis in a beaker at 95°C for 7

hours.

Figure 3.5.1.4. SEM analysis of ZnO nanopowder from hydrothermal synthesis in beaker at 95°C for 90

minutes.
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Figure 3.5.1.5. SEM analysis of ZnO nanopowder from hydrothermal synthesis in Teflon autoclave at 120°C

for 4 hours and 2 hours of cooling.

Figure 3.5.1.6. SEM analysis of ZnO nanopowder from hydrothermal synthesis with ZnCl2 at 0.2M in Teflon

autoclave at 120°C for 4 hours and 2 hours of cooling.

We observe in Figure 3.5.1.6 that the increase of the ZnCl2 concentration , did not lead to

ZnO nanopowders.
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Figure 3.5.1.7. SEM analysis of ZnO nanopowder from hydrothermal synthesis in Teflon autoclave at 120°C

for 4 hours and 4 hours of cooling.

In Figure 3.5.1.7 we can observe that longer cooling times lead to the formation of flowers.

Figure 3.5.1.8. SEM analysis of ZnO nanopowder from hydrothermal synthesis with ZnCl2 at 0.2M in Teflon

autoclave at 120°C for 4 hours and 4 hours of cooling.

Even in this case, in figure 3.5.1.8, a greater concentration does not favor the formation of

nanopowders.
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Figure 3.5.1.9. SEM analysis of ZnO nanopowder from hydrothermal synthesis in Teflon autoclave at 120°C

for 5 hours and 2 hours of cooling.

We can see in figure 3.5.1.9 that longer times in the oven lead to the formation of flowers.

Comparing the 5-2 (Figure 3.5.19) and 4-4 (Figure 3.5.1.10) synthesis the size of the

powders results lower in the 4-4 synthesis.
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Figure 3.5.1.10. SEM analysis of ZnO nanopowder from hydrothermal synthesis in Teflon autoclave at

120°C for 4 hours and 4 hours of cooling.

An hour more in 5-2 synthesis (Figure 3.5.1.9) in the oven doesn’t lead to great differences

if compared to 4-4 synthesis (Figure 3.5.1.10).

Figure 3.5.1.11. SEM analysis of ZnO nanopowder from hydrothermal synthesis in glass autoclave at 90°C

for 1.5 hours and 5 hours of cooling.
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Using the glass autoclave (Figure 3.5.1.11) it is not possible to obtain nanorods even if the

dimensions are smaller.

Figure 3.5.1.12. SEM analysis of ZnO nanopowder from hydrothermal synthesis in glass autoclave at 90°C

for 3 hours and 3 hours of cooling.

Figure 3.5.1.13. SEM analysis of ZnO nanopowder from hydrothermal synthesis in Teflon autoclave at

120°C for 4 hours and 2 hours of isotherm at 40°C.
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Figure 3.5.1.14. SEM analysis of ZnO nanopowder from hydrothermal synthesis in Teflon autoclave at

120°C for 4 hours and 2 hours of isotherm at 50°C.

Figure 3.5.1.15. SEM analysis of ZnO nanopowder from hydrothermal synthesis in Teflon autoclave at

120°C for 4 hours and 2 hours of isotherm at 60°C.

By decreasing the isotherm temperature (Figure 3.5.1.13-3.5.1.15), there is a gradual

reduction of dust and an appearance of flowers.
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3.5.2. XRD pattern of powder from hydrothermal synthesis

We characterized the powders prepared from hydrothermal synthesis by XRD analysis.

The diffractogram in Figure 3.5.2.1 indicates that the powder is ZnO
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Figure 3.5.2.1. XRD pattern of ZnO nanopowder from hydrothermal synthesis in Teflon autoclave at 120°C

for 4 hours and 2 hours of isotherm at 40°C.

ZnO JCPDS file 36-1451

hkl 2 theta Intensity

100 31.76 57

002 34.42 44

101 36.25 100

102 47.53 23

110 56.60 32

103 62.86 29

200 66.37 4

112 67.96 23

201 69.09 11

Table 3.5.2.1. ZnO JCPDS file 36-1451
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Figure 3.5.2.2. XRD pattern of Bi2WO6 nanopowder from hydrothermal synthesis in Teflon autoclave.

In the Figure 3.5.2.2 all the diffraction peaks can be indexed to orthorhombic Bi2WO6

according to the JCPDS card n. 39-0256.

Figure 3.5.2.3. XRD pattern of Fe2O3 nanopowder from hydrothermal synthesis in Teflon autoclave.

In the Figure 3.5.2.3 all peaks marked with indices are matched with hematite reference

JCPDS 86-0550.
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3.5.3 FTIR of glass ceramic

Figure 3.5.2.1. FTIR analysis of glass ceramic functionalized via plasma with camphorquinone and

benzophenone (red line), only with camphorquinone (purple line) and only with benzophenone (blue line).

When we functionalized the sample with CQ and BP simultaneously, it was possible to

observe two new peaks at 1699 and 1404 cm-1 in the IR spectrum.

The same phenomenon was not observed in the case of functionalization with BP and CQ

taken individually.

It can be assumed that the peak at 1699 cm-1 is due to a C = O group while the peak at

1404 cm-1 is attributable to the formation of new aliphatic chains.

3.6 Electrical characterization of the sensors

All the humidity and ammonia (NH3) tests (in all the characterizations, the ammonia was

used in solution as NH4OH diluted into water) of the sensors were carried out by using a

laboratory apparatus in which relative humidity (RH) could be varied by steps between 0

and 96% and NH3 concentration between 0 and about 1500 ppm.
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3.6.1 Electrical responses of pure ZnO sensor

We started by evaluating the electrical response of the sensors made from commercial ZnO

(ZnO Advanced Nanomaterials VP AdNano 20, Degussa, Germany). The mean diameter

of the Degussa ZnO powder (d50) was about 9.70 μm and the diameters corresponding to

10% (d10) and 90% (d90) of the particle size distributions were, respectively, 1.80 and

21.00 μm. The particle size of ZnO was estimated, that can be observed in figure 3.6.1.1.

Figure 3.6.1.1 Particle size distributions of Degussa commercial ZnO powders.

ZnO sensors were tested under ammonia atmosphere and their sensor response (SR) was

evaluated with respect to NH3 concentration (Fig. 3.6.1.1). We observed that electrical

response of zinc oxide wasn’t good to ammonia gas.
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Figure 3.6.1.1. Electrical responses of the sensor based on commercial pure ZnO in function of NH3

concentration. ZnO screen-printed on electrode and fired at 900°C (black line), ZnO screen-printed on

electrode and not fired (red line) and ZnO screen-printed below electrode and fired at 900°C ( green  line).

We tried to improve the sensor’s response in two ways: through the functionalization of

ZnO with fluorides or carboxylic groups and by hydrothermal synthesis of zinc oxide

nanopowders.

3.6.2 Electrical characterization of functionalized ZnO

3.6.2.1 Fluoride groups

We functionalized ZnO sensors fired at 900°C with fluorides group in hydrofluoric acid

solution at 5x10-5M (Figure 3.6.2.1.1).

From these first tests it is possible to note that the sintered device had a limited variation of

SR. We observe that the electrical response increases until six days of functionalization in

acid solution; it is also possible to observe that the sensor immersed in solution for 15 days

gives a response for lower concentration of ammonia. However, there is only a slight

improvement of the sensor response with respect to the ZnO screen printed film as such.



125

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

SR
 %

NH3 [ppm]

 ZnO
 ZnO:F 1
 ZnO:F 3
 ZnO:F 6
 ZnO:F 10
 ZnO:F 15

Figure 3.6.2.1.1. Electrical responses of the ZnO sensor functionalized for different days with fluorides

groups in function of NH3 concentration.

3.6.2.2 Carboxylic acid group

To improve the electrical response of the sensors we functionalized sensors with carboxyl

groups.

In this section we can observe the electrical response of several sensors functionalized with

carboxylic group after a pretreatment with NH4Cl at different concentration (reported in

the list below).

The following carboxylic acids were used:

 Acetic acid

 Propionic acid

 3-phosphopropionic acid

 Formic acid

 Maleic acid

 Oleic acid

 Salicylic acid
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 Oxalic acid

In the first three figures (Figures 7.5.2.1-7.5.2.3) it is possible to observe the sensor

response under ammonia of ZnO films functionalized with different carboxylic acids for

different times. In these cases the sensors were immersed in a NH4Cl solution at 15% for

90 minutes and afterwards there were immersed in a carboxylic acid solution for 24 hours.
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Figure 3.6.2.2.1. Electrical responses of the ZnO sensor functionalized dipping samples in a propionic acid

solution for different times (1, 3 and 6 days) in function of NH3 concentration.

In Figure 3.6.2.2.1 SR% was comprised between 0% and 5%: it is possible to conclude that

this kind of device was not so sensitive to NH3.
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Figure 3.6.2.2.2. Electrical responses of the ZnO sensor functionalized for one day with 3-phosphopropionic

acid in function of NH3 concentration.

In Figure 3.6.2.2.2 it is possible to note that the sintered device gave the same response

under NH3 atmosphere while in Figure 3.6.2.2.3 the electrical response was better under

NH3 without functionalization.
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Figure 3.6.2.2.3. Electrical responses of the ZnO sensor functionalized for one day with maleic acid in

function of NH3 concentration.
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Electrical response under ammonia gas of the ZnO sensor functionalized with propionic

acid, 3-phosphopropionic acid and maleic acid were not good, so the concentration of

carboxylic acids was increased.

In Figure 3.6.2.2.4-3.6.2.2.5 it is possible to observe the electrical response under ammonia

for the ZnO sensor functionalized with carboxylic acids at 5x10-4 M.
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Figure 3.6.2.2.4. Electrical responses of the ZnO sensor functionalized for one day with 3-phosphopropionic

acid in function of NH3 concentration.

The carboxylic acid increased concentration doesn’t give a better response, therefore it was

decided to functionalize directly the ZnO powder.
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Figure 3.6.2.2.5. Electrical responses of the ZnO sensor functionalized for different days with maleic acid in

function of NH3 concentration.

We then functionalized ZnO with the oxalic acids in two different ways:

first we functionalized directly the ZnO sensors screen-printed on electrodes (Figure

3.6.2.2.6-3.6.2.2.11), afterwards, we functionalized ZnO powder and then screen-printed

the electrodes (Figure 3.6.2.2.12-3.6.2.2.15).

For the first time it is possible to observe a variation reaching 16% under NH3 atmosphere,

and a sensor starting to respond over 1100 ppm, which was at the same time quite

insensitive to humidity.
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Figure 3.6.2.2.6. Electrical responses of the ZnO sensor functionalized with oxalic acid (0.5 M) and NH4Cl

0.25% in function of NH3 (red curve) and of humidity (black curve).

Our aim is now to obtain an electrical response for lower ammonia concentrations so we

changed the concentrations of carboxylic acids and of ammonia chloride solutions.
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Figure 3.6.2.2.7. Electrical responses of the ZnO sensor functionalized with oxalic acid at 0.5 M and NH4Cl

0.5% in function of NH3 (red curve) and of humidity (black curve).
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The sensor in Figure 3.6.2.2.7 didn’t respond under ammonia and humidity while the

sensor in Figure 3.6.2.2.8 respond under both gases. In this latter functionalization we

decreased the acid concentrations but we increased the concentration of the pretreatment

solution.
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Figure 3.6.2.2.8. Electrical responses of the ZnO sensor functionalized with oxalic acid (0.25 M) and NH4Cl

1% in function of NH3 and of humidity.

In Figure 3.6.2.2.9 it is possible to observe a good electrical response under NH3: SR%

reached 65% and only 15% under water. However, the sensor starts to respond only from

900 ppm of ammonia.
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Figure 3.6.2.2.9. Electrical responses of the ZnO sensor functionalized with oxalic acid (0.5 M) and NH4Cl

1% in function of NH3 and of humidity.

Afterwards the same sensor was tested after two weeks and we observed that it didn’t

respond anymore (Figure 3.6.2.2.10). This has allowed us to understand that this kind of

functionalization does not last over time.
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Figure 3.6.2.2.10. Electrical responses of the ZnO sensor functionalized with oxalic acid (0.5 M) and NH4Cl

1% in function of NH3 and of humidity.



133

In Figure 3.6.2.2.11, the carboxylic acid concentration was varied from 0.5 to 0.1 M but

the electrical response didn’t change significantly.
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Figure 3.6.2.2.11. Electrical responses of the ZnO sensor functionalized with oxalic acid (0.1 M) and NH4Cl

1% in function of NH3 and of humidity.

The sensor in Figure 3.6.2.2.12 wasn’t good too because it responded very well under

humidity, while the sensor in Figure 3.6.2.2.13 responded at high concentrations of

humidity and at low concentration of ammonia.
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Figure 3.6.2.2.12. Electrical responses of the ZnO sensor functionalized with oxalic acid (0.5 M) and NH4Cl

5% in function of NH3 and of humidity.
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Figure 3.6.2.2.13. Electrical responses of the ZnO sensor functionalized with oxalic acid (0.5 M) and NH4Cl

10% in function of NH3 and of humidity.

In Figure 3.6.2.2.13 we observe a good electrical response starting from near 100 ppm of

NH3 but we have also a response under water vapor above 50%, so we can’t use this sensor
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at high water vapor concentrations. In Figure 3.6.2.2.14 we observe how the response to

humidity is greater than the one to ammonia.
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Figure 3.6.2.2.14. Electrical responses of the ZnO sensor functionalized with oxalic acid (0.5M) and NH4Cl

15% in function of NH3 and of humidity.

We obtained the best response with the treatment in 0.1 M oxalic acid and 15% of NH4Cl

(Figure 3.6.2.2.15).
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Figure 3.6.2.2.15. Electrical responses of the ZnO sensor functionalized with oxalic acid (0.1 M) and NH4Cl

15% in function of NH3 and of humidity.
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Figure 18, electrical response to ammonia of ZnO functionalized with oxalic acid 0.1 M at time 0 and after

two weeks.

We functionalized ZnO powder with other carboxylic acids (Figure 3.6.2.2.16-3.6.2.2.26).

When we used salicylic acid, we observed that the sensor responded to ammonia and to
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humidity (Figure 3.6.2.2.16). The device was the same of that presented in Figure

3.6.2.2.13 because it answers at low concentration of ammonia and air humidity.
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Figure 3.6.2.2.16. Electrical responses of the ZnO sensor functionalized with salicylic acid (0.1 M) and

NH4Cl 15% in function of NH3 and of humidity.

We observed that the functionalization of ZnO sensors with short chain carboxylic acid

wasn’t good as with formic, acetic and maleic acids (Figure 3.6.2.2.17-3.6.2.2.25).
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Figure 3.6.2.2.17. Electrical responses of the ZnO sensor functionalized with formic acid (0.05 M) and

NH4Cl 15% in function of NH3.
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Figure 3.6.2.2.18. Electrical responses of the ZnO sensor functionalized with formic acid (0.25 M) and

NH4Cl 15% in function of NH3.
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Figure 3.6.2.2.19. Electrical responses of the ZnO sensor functionalized with acetic acid (0.025 M) and

NH4Cl 15% in function of NH3 (red line) and of humidity (black line).
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Figure 3.6.2.2.20. Electrical responses of the ZnO sensor functionalized with acetic acid (0.25 M) and NH4Cl

15% in function of NH3 (red line) and of humidity (black line).
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Figure 3.6.2.2.21. Electrical responses of the ZnO sensor functionalized with acetic acid (0.05 M) and NH4Cl

15% in function of NH3 (red line) and of humidity (black line).
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Figure 3.6.2.2.22. Electrical responses of the ZnO sensor functionalized with 3-phorphopropionic acid (0.025

M) and NH4Cl 15% in function of NH3 (red line) and of humidity (black line).
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Figure 3.6.2.2.23. Electrical responses of the ZnO sensor functionalized with maleic acid (0.025M) and

NH4Cl 15% in function of NH3 (red line) and of humidity (black line).
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Figure 3.6.2.2.24. Electrical responses of the ZnO sensor functionalized with maleic acid (0.05 M) and

NH4Cl 15% in function of NH3 (red line) and of humidity (black line).
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Figure 3.6.2.2.25. Electrical responses of the ZnO sensor functionalized with 3-phosphopropionic acid (0.05

M) and NH4Cl 15% in function of NH3 (red line) and of humidity (black line).

The ZnO sensor functionalized with oleic acid gave a response reaching 40% under NH3

atmosphere (Figure 3.6.2.2.26), starting from 400 ppm, while it was less sensitive to

humidity.
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Figure 3.6.2.2.26. Electrical responses of the ZnO sensor functionalized with oleic acid (0.05 M) and NH4Cl

15% in function of NH3 (red line) and of humidity (black line).
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We tested the ZnO sensor functionalized with zinc oleate under ammonia and humidity

and we obtained a good electrical response (Figure 3.6.2.2.27) from 700 ppm of NH3 while

it was insensitive to air humidity.
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Figure 3.6.2.2.27. Electrical responses of the zinc oleate sensor in function of NH3 (red line) and of humidity

(black line).

We tried to functionalize ZnO with amino acids such as lysine, glutamic acid and glycine;

it is possible to observe in Figure 3.6.2.2.29 and 3.6.2.2.30 that the sensors responded only

at high concentrations of ammonia.
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Figure 3.6.2.2.28. Electrical responses of the ZnO sensor functionalized with lysine (0.1 M) and NH4Cl 15%

in function of NH3 (red line) and of humidity (black line).
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Figure 3.6.2.2.29. Electrical responses of the ZnO sensor functionalized with glutamic acid (0.1 M) and

NH4Cl 15% in function of NH3 (red line) and of humidity (black line).
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Figure 3.6.2.2.30. Electrical responses of the ZnO sensor functionalized with glycine (0.1 M) and NH4Cl

15% in function of NH3 (red line) and of humidity (black line).

3.6.3 Electrical characterization of sensors functionalized via plasma

We functionalized ZnO sensors with oleic acid via plasma at different concentrations of

acid and after pretreatment with NH4Cl at different concentrations. Usually, we put some

drops of NH4Cl on sensors and then we put them in the plasma chamber for 30 seconds.

Afterwards we put some drops of acid on sensors and we placed them in the plasma

chamber for 2 minutes [15-16]. The corresponding electrical responses are described in

Figure 2.6.3.1-2.6.3.3.
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Figure 3.6.3.1. Electrical responses of the ZnO sensor functionalized with oleic acid (0.1 M) and NH4Cl 15%

via plasma with 50 W power in function of NH3 (red line) and of humidity (black line).

It is possible to observe a response reaching 80% under NH3 atmosphere, starting from 100

ppm. However, this device was also sensitive to humidity.

If we increase the carboxylic acid concentration during functionalization, the sensor

becomes insensitive to humidity but starts to respond from 800 ppm of NH3.
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Figure 3.6.3.2. Electrical responses of the ZnO sensor functionalized with oleic acid (0.05 M) and NH4Cl

15% via plasma with 50 W power in function of NH3 (red line) and of humidity (black line).
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Figure 3.6.3.3. Electrical responses of the ZnO sensor functionalized with oleic acid (0.1 M) and NH4Cl 15%

via plasma with 50 W and 100 W power in function of NH3.

In Figure 3.6.3.3 we changed the conditions of functionalization but we didn’t were able to

increase the electrical response of the sensors to lower ammonia concentrations.
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3.6.4 Electrical characterization of glass ceramic

To obtain an electrical response to low concentrations of ammonia we thought to

functionalize our sensors with two different photoinitiators. This idea came from the work

of M. Atilla Tasdelen et Al. [17] where this author explains how CQ is able to extract H+

ions in the presence of UV radiation [18].

For this functionalization the glass ceramic has been used as the sensing material (Section

3.3.2).

We prepared glass ceramic with ZnO, WO3 and Bi2O3. We used B2O3 for decreasing the

melting temperature. The material is composed by 58% of ZnO, 4% of WO3, 4% of Bi2O3

and 33,3% of B2O3.

In the first step we melt the mixture of oxide powders for 10 minutes at 1300°C and

afterwards the glass was subjected to a 500°C treatment for 15 hours.

It is known in the literature that UV radiations are able to excite  semiconductors and to

make them more sensitive to ammonia [19-21].

Figure 3.6.4.1. Electrical responses of glass ceramic sensors: pristine (red line), functionalized with

camphorquinone and benzophenone via plasma (blue line), washed with methanol (green line) and

functionalized with one drop of 0.1 M solution of camphorquinone and benzophenone (black line).
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In Figure 3.6.4.1 it is possible to observe that the GC sensor functionalized with CQ and

BP gives response under low concentrations of ammonia gas while in the absence of

functionalization the sensors doesn’t give any response to ammonia.

We observed that the washing with methanol worsens the sensor response.

3.6.5 Electrical characterization of nanopowder

In Figure 3.6.5.1 and 3.6.5.2 we worked in a beaker at 95°C for 90 minutes. In the first

experiment we put a copper ribbon in the solution after NH4OH addition, while in the

second experiment it was put before ammonium hydroxide addition.
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Figure 3.6.5.1. Electrical responses of the sensor based on ZnO prepared by hydrothermal synthesis in

function of RH (black line) and of NH3 concentration (red line).

In Figure 3.6.5.1 and 3.6.5.2 it is possible to observe that sensors responded only to high

ammonia concentrations.
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Figure 3.6.5.2. Electrical responses of the sensor based on ZnO prepared by hydrothermal synthesis in

function of RH (black line) and of NH3 concentration (red line).

In Figure 3.6.5.3 we worked in a beaker at 95°C for 7 hours. This sensor responded to

ammonia but to humidity too.
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Figure 3.6.5.3. Electrical responses of the sensor based on ZnO prepared by hydrothermal synthesis in

function of RH (black line) and of NH3 concentration (red line).
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Figure 3.6.5.4. Electrical responses of the sensor based on ZnO prepared by hydrothermal synthesis in

function of RH (black line) and of NH3 concentration (red line).
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Figure 3.6.5.5. Electrical responses of the sensor based on ZnO by hydrothermal synthesis in function of RH

(black line) and of NH3 concentration (red line).

In Figure 3.6.5.4 and 3.6.5.5 we worked in a teflon autoclave at 120°C for 4 hours. In the

case of figure 3.6.5.4, during cooling to room temperature we did an isotherm at 60°C for 2

hours while at 40°C in figure 3.6.5.5.
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We observed two different electrical response in Figure 3.6.5.4 and 3.6.5.5. The first

sensor responded under ammonia gas and humidity while, in the second case, the sensor

didn’t responded to ammonia but only to water vapor.

A WO3 nanopowder was also prepared by hydrothermal synthesis. In this case, an

autoclave in teflon was used and warmed at 160°C for 16 hours; in Figure 3.6.5.6 it is

possible to observe that the sensor produced with this material didn’t give any electrical

response.
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Figure 3.6.5.6. Electrical responses of the sensor based on WO3 prepared by hydrothermal synthesis in

function of RH (black line) and of NH3 concentration (red line).
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Figure 3.6.5.7. Electrical responses of the sensor based on Bi2WO6 prepared by hydrothermal synthesis in

function of NH3 concentration.

It can be observed how the sensor does not give response to ammonia.

3.7 Conclusion

During this Ph.D. thesis research work many ceramic materials have been used for sensors

screen printing. These devices are meant to be applied to food chemistry in order to detect

biogenic amines; however, as explained in the first chapter, in preliminary

characterizations presented in this chapter, ammonia was chosen as a reference, since this

compound is the most simple amino group.

ZnO and other semiconducting oxides were chosen as sensitive layers because it is known

from literature that these materials are able to detect ammonia, although usually they are

chosen for detections at high temperatures. Several studies have been performed:  among

them the most promising are those in which sensors are functionalized with carboxyl

groups. These devices, however, do not guarantee the measurements repeatability at a

distance of few days, probably because of ageing and interactions with the atmosphere’s

components with time. Another interesting study consists in obtaining sensors starting

from nanopowders obtained by hydrothermal synthesis. These sensors, thanks to the

greater surface area, are able to detect smaller quantities of ammonia; however, response is

still not optimal.
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Last study was about the use of a glass ceramic functionalized via plasma with

canforquinone and benzophenone. Taking into account the capacity of canforquinone and

benzophenone to rip a hydrogen in the presence of UV radiation, it was thought to use

them in the presence of UV radiation to make the material sensitive to ammonia.
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During this PhD work many tests were performed with screen-printed sensors to detect ammonia at

room temperature, because these devices  are meant to be applied to food chemistry, in order to

detect biogenic amines . ZnO together with other ceramic oxides were chosen as sensitive layer

because it is known in literature that these materials are able to detect ammonia, although they are

usually used for NH3 detection at high temperatures.

Several studies have been performed, among them the most promising are those in which the

sensor is functionalized with carboxyl groups. These devices, however, do not guarantee the

measurements repeatability at a distance of few days, probably because ammonia tends to react

with the carboxyl groups by removing the sensitive group.

Another interesting study was to obtain sensors starting from nanopowders obtained by

hydrothermal synthesis. These sensors, thanks to the greater surface area, are able to detect smaller

quantities of ammonia; however, the response is still not optimal. The last study performed, was the

use of a glassceramic functionalized via plasma with canforquinone and benzophenone. Taking

into account the capacity of canforquinone and benzophenone to rip a hydrogen in the presence of

UV radiation it was thought to use them in the presence of UV radiation to make the material

sensitive to ammonia.

The electrical characterizations have given excellent results, even if they are not actually

as good as those reported in the literature: the detection limit was not

equal to those reported in the literature. However, it can be concluded that the results obtained are

very satisfactory, considering that the processes are simpler and less expensive to implement NH3

sensor for applications at room temperature and compared with other works in literature.

Future prospects will concern with the research about hydrothermal synthesis of other

semiconductor oxides, to verify if it is possible to lower the detection limit of these devices. It is

also possible to hypothesized the functionalization of these nanoparticles with carboxyl groups or

other materials sensitive to ammonia. Further investigations on glassceramic will also be taken into

account, since it is necessary to assess the degree of repeatability of the sensor after several cycles.
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Appendix A

A.1 XRD (X-Ray diffraction)

The X-ray diffraction technique allows to detect the phase composition of the sample: in

fact, each phase presents specific diffractions peaks, on the basis of the lattice structure and

atom position. Moreover, this experimental method is employed to evaluate the structure of

the crystalline materials and to measure the crystallite size.

X-ray diffraction analyses were carried out by using the conventional diffractometer

Philips PW 1710, with a Cu-Kα radiation (λ = 1.540-5.600˚A) and a Bruker diffractometer

equipped with a furnace allowing the samples to be heated up to 1200◦C. A schematic

representation of the instrument is shown in Fig. A.1.1.

Figure A.1.1. Scheme of the XRD diffractometer.

The X-ray source consists of a filament that heats the cathode, inducing electrons emission.

The presence of two metallic electrodes, with a different potential, implies the acceleration

of the electrons towards the anode (in this case, made of copper), which emits the X-ray
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beam having a specific wavelength range, on the basis of the metallic component and the

applied tension.

The power employed in X-rays production is only 0.1%, whereas the leftover one is

converted into heat, which could induce anode melting. To avoid it, a water cooling system

is present.

X-rays pass through a monochrometer (in this case, made of nickel), which selects the K

radiation of copper. This radiation is then collimated upon the sample.

The instrument presents a goniometer having a Bragg-Brentano geometry, that operates in

the θ - 2θ scanning regime, in which the detector (D) and the sample (S) move with respect

to the X-rays source (X) in a synchronized way, as schematically presented in Fig. A.1.2.

Figure A.1.2. Mechanism of the goniometer in the diffractometer Philips PW 1710.

In this way, the incident and the diffracted beams form the same angle θ with the flat

surface of the sample, whereas the diffracted beam forms a 2θ angle with the incident one

(Fig. A.1.3).
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Figure A.1.3. The Bragg - Brentano geometry.

This particular geometry is related to the Bragg equation, employed to evaluate the inter-

planar distance in the crystalline lattice. In fact, when the X-rays hit the sample surface,

they can interact with the lattice atoms, being their wavelength and the inter-atomic

distance similar. The lattice atoms are then able to diffract the X-rays beam and a signal is

recorded when a positive interference occurs, according to the Bragg equation:

nλ = 2dsinθ (A.1.1)

where θ is the incident angle, d is the inter-atomic distance, λ is the wavelength of the X-

rays beam and n is a number.

On the basis of the inter-atomic distances it is possible to evaluate the geometry and the

dimensions of the elementary cell; the whole diffraction pattern allows the identification of

the phases through the comparison with the ICDD (International Centre for Diffraction

Data) files. In addition, the peak intensity depends on the atom position in the elementary

cell: more intense are the signals, more crystalline is the sample.

In this study, XRD was used to investigate the phases present in the produced powders.

The average crystallite size was calculated by the line-broadening method, using the

Scherrer’s equation.

D =kλ/βcosθ (A.1.2)
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where D is the crystalline size, λ is the wavelength of the Cu-Kα line, k is the Scherrer’s

constant equal to 0.9, and β is the full width at half maximum of the main powder peak,

assuming a Gaussian profile.

A.2 Laser granulometry

When a laser beam strikes the particles suspended in a inert medium, the produced

diffracted rays present intensity and diffraction angle that depend on the size of the

impacted particle.

As illustrated in Fig. A.2.1, a laser granulometer consists of a laser beam source, at a fixed

wavelength, and a series of detectors (multidiode detector) to measure the diffracted light

as a function of the diffraction angle.

The granulometer Malvern Mastersier 2000 was used to evaluate the particle size

distribution of the powders dispersed in ethanol. The Mie theory was used to calculate the

particle size distribution. This theory takes into account both the diffraction index and the

refractive index of both the sample and the medium.

Figure A.2.1. Schematic representation of a laser granulometer.
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A.3 SEM

The SEM (Scanning Electron Microscopy) is a technique that allows a morphological

characterization of powdered and massive samples. It uses the electrons for imaging,

reaching higher magnifications and greater depth field than the light microscopy.

A schematic representation of an instrument is reported in Fig. A.3.1: from the electron

emission source, a heated tungsten filament, the beam is focused on the sample surfaces by

a series of electromagnetic lenses. The incident electrons imply electrons emission from

the sample surface; they are collected by a suitable detector, during the scanning of a raster

pattern, producing a topographical image of the analyzed surface.

Some observations were performed in SE (Secondary Electrons)modality, while, when a

phase contrast was needed BSE (Back Scattered Electrons) were also detected.

Figure A.3.1. Schematic representation of a SEM instrument.
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The powders and the microstructure of the composite materials were observed by using

SEM Hitachi S2300, and ESEM (FEI, XL3O, Eindhoven, Netherlands) exploiting a gold

sputtering pre-treatment of all samples in order to increase the sample conductivity.

The grains size was measured on polished samples, which were thermally etched at a lower

temperature than the sintering one, depending on the specific SEM instrument used for the

observation. This thermal etching allows to reveal grain boundary for SEM observation.

A.4 BET analysis

In 1938, Stephen Brunauer, Paul Hugh Emmett, and Edward Teller published an article

about the BET theory in a journal [1] for the first time; ”BET” consists of the first initials

of their family names.

BET theory aims to explain the physical adsorption of gas molecules on a solid surface and

serves as the basis for an important analysis technique for the measurement of the specific

surface area of a material.

The concept of the theory is an extension of the Langmuir theory, which is a theory for

monolayer molecular adsorption, to multilayer adsorption with the following hypotheses:

1. gas molecules physically adsorb on a solid in layers infinitely;

2. there is no interaction between each adsorption layer;

3. the Langmuir theory can be applied to each layer. The resulting BET equation is

expressed by:

1/ [(P0/P) – 1] = (c – 1)/ vmc ( P/P0 ) + 1/ vmc (A.4.1)

where P and P0 are the equilibrium and the saturation pressure of adsorbates at the

temperature of adsorption, v is the adsorbed gas quantity (for example, in volume units),

vm is the monolayer adsorbed gas quantity and c is the BET constant, which is expressed

by:

c = exp ( (E1 – EL)/ RT ) (A.4.2)

E1 is the heat of adsorption for the first layer, and EL is that for the second and higher

layers and is equal to the heat of liquefaction.
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Equation (A.4.1) is an adsorption isotherm and can be plotted as a straight line with

1/v[(P0/P)−1] on the y-axis and ϕ = P/P0 on the x-axis according to experimental results

(Fig. A.4.1).

Figure A.4.1. Schematic representation of a BET plot.

This plot is called a BET plot. The linear relationship of this equation is maintained only in

the range of 0.05 < P / P0 < 0.35. The value of the slope A and the y-intercept I of the line

are used to calculate the monolayer adsorbed gas quantity vm and the BET constant c. The

following equations can be used:

vm =1/(A + I) (A.4.3)

c = 1 + (A/I) (A.4.4)

The BET method is widely used in surface science for the calculation of surface areas of

solids by physical adsorption of gas molecules. A total surface area Stotal and a specific

surface area S are evaluated by the following equation:
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SBET,total = (vmNS)/V (A.4.5)

where vm is in units of volume which are also the units of the molar volume of the

adsorbate gas:

SBET = Stotal /a (A.4.6)

where N is Avogadro’s number, s is the adsorption cross section of the adsorbing species,

V the molar volume of adsorbate gas and a the mass of adsorbent (in g). The BET analyses

were carried out by using the ASAP 2010 Micromeritics instrument [2].

A.5 Gas System

In this system, referring to Fig. A.5.1, compressed air was separated into two fluxes: one

was dehydrated over a chromatography alumina bed, while the second one was directed

through two water bubblers (three if measurements were performed under NH3

atmosphere), generating, respectively, a dry and a humid flow [3]. Two precision

microvalves allowed to recombine the two fluxes into one by means of a mixer and to

adjust the RH content while keeping constant the testing conditions: a flow rate of 0.05

L/s. The ammonia flux was obtained by diluting an ammonium hydroxide solution (Fluka,

USA) in deionized water (ratio 1:20) into a drechsel through which a known air flow was

allowed to bubble. The laboratory apparatus for sensors testing was calibrated such that to

ensure a constant air flow during electrical measurements and RH (relative humidity) was

varied by steps, each one of 3 minutes.
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Figure A.5.1. Schematic representation of the laboratory apparatus for sensors testing.

An external alternating voltage (V = 3.6 V at 1 kHz) was applied to each tested sensor,

placed into a PVC tube, acting as a variable resistance of the electrical circuit described

above. The sensor resistance was determined by a calibration curve (Fig. A.5.2), drawn by

substituting the sensors, in the circuit, by known resistances.
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Figure A.5.2. Calibration curve for sensors testing: the red fit indicates the range of voltage in which the

sensors operated. In the equation, y indicates the resistance, x the voltage.

In particular, the sensors operated from about 1.3 V to 2.4 V, corresponding to about 700

kΩ to 7 kΩ: by increasing the electrical resistance, the continuous voltage measured by the

multimeter decreased. In order to obtain the fit of the calibration curve, only the points in

which the resistance was linear with respect to the voltage (VDC) were considered, so

those ranging from 1.3 to 2.4 V.

RH values were measured by means of a commercial humidity and temperature probe

(Delta Ohm DO9406, Italy, accuracy: ± 2.5% in the 5-90% RH range), while the

corresponding NH3 concentration was determined by means of a commercial ammonia

probe (GasAlertMicro5, accuracy: ± 0.1ppm in the 0-100 ppm range) or after 100 ppm of

NH3 was estimated by chemical computation from vapor pressure of ammonia at 25°C

diluted into water in a ratio 1:20 [4].

The sensor response, expressed in %, (SR(%)) was defined as the relative variation of the

starting resistance comparing it with the resistance measured in gas atmosphere:

SR(%) = 100(|R0 − Rg|/R0) (A.5.1)

where R0 is the original resistance in the presence of air flow and Rg is the resistance after

NH3 exposure until equilibrium, i.e. at saturation of the active surfaces.
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A.6 Plasma

For plasma polymerization experiments, a small laboratory batch reactor (Plasmod by

March Instruments Inc.) was utilized. A low pressure (1.3 mbar) nitrogen plasma was

applied at 50 W for 30 s to samples.

A plasma is defined as a partially or wholly ionised gas with approximately equal amount

of positively and negatively charged particles. Near equilibrium plasmas are formed under

high temperature conditions and are characterised by thermal equilibrium of its entire

range of species. The temperatures required to generate near-equilibrium plasmas generally

range between 4000 and 20,000 K, depending on the ionisation potential of the element.

These extreme conditions are not likely to be appropriate for the surface modification of

biomaterials constructed from polymers, although they can be used for the evaporation and

deposition of bioactive metals and ceramics, such as natural hydroxyapatitebased bioglass–

ceramic composites and zirconia coatings for artificial bones and hard tissues. Non-

equilibrium  plasmas, on the other hand, can be initiated at substantially lower

temperatures, enabling their application for surface cleaning and functionalisation of

polymer surfaces. The ion mobility in a low temperature plasma is significantly lower than

that of the electrons that transport the energy through the electric field.

The plasma can also be classified according to the pressure at which it is initiated or

according to the energy source used to energise the gas.

During plasma surface treatment the substrate is exposed to a reactive environment of a

partially ionised gas comprising large concentrations of excited atomic, molecular, ionic,

and free radical species Fig. A.6.1. The nature of the interactions between the excited

species and the solid surface will determine the type and degree of the chemical and

physical modifications that will take place.

The processing conditions, such as power, pressure, gas, etc., and the nature of the

substrate will determine whether the surface modification is one of film deposition,

substitution, or ablation.

Plasma polymerisation can take place when a monomer, either in vapor phase or at the

surface, is fragmented into reactive species that can then recombine and be deposited onto

the surface of the substrate.  Monomers that do not necessarily contain functionalities

associated with conventional thermo-chemical polymerisation, such as unsaturation or ring

structures, can be deposited in this way.
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In plasma treatment gases that do not fragment into polymerizable intermediates upon

excitation are used. These include air, nitrogen, argon, oxygen, nitrous oxide, helium,

tetrafluoromethane, water vapor, carbon dioxide, methane, and ammonia. Exposure to such

plasmas can lead to the introduction of chemical functionalities, with the nature of the

functionalities being highly dependent on the chemical composition of the biomaterial and

the process gas. For instance, plasma oxidation, nitration, hydrolyzation, or amination will

increase the surface energy and hydrophilicity of the biomaterial, therefore changing the

way in which the biomaterial interacts with its immediate physiological environment.

Free radicals are also created on the surface, since the surface is being bombarded by

energetic particles and high energy UV radiation. This can lead to surface ablation, cross-

linking or surface activation. Ablation is a process by which lower molecular weight

species, such as volatile oligomers and monomers, are desorbed. Cross-linking occurs

when radicals from one chain on the

surface of the polymer combine with radicals from another polymer chain to form a bond.

Surface activation, however, involves the recombination of surface radicals with atoms or

chemical groups that are different from those that were originally present at the surface of

the biomaterial.

The surface functionalities that arise as a result of plasma treatment can serve as a platform

for further surface modification processes, such as the grafting of biomolecules and other

functional structures. Further surface modification can be performed in order to tailor the

properties of the biomaterial to a specific application.

A number of papers have been published that detail the use of a pulsed plasma technique.

This technique allows the precise control of chemical functionality and surface

morphology and results in a coating with good stability. The plasma  duty cycle was found

to be an important determinant in controlling the degree of retained surface functionality

and, hence, a greater degree of compatibility with biomolecules, bacterial and host cells,

and liquid media. Moreover, the surface properties of the coating could be varied using this

technique by changing the duty cycle between the ‘‘pulse on’’ (ion implantation) and

‘‘pulse off’’ (plasma exposure) periods during treatment, with a high ion

implantation/plasma exposure time ratio being achieved by increasing the pulsing

frequency and elongating the duration of the pulse [5-6].
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Fig. A.6.1. Surface modification processes that can be achieved using the plasma technique
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