
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Selecting the Best Reliability Model to Predict Residual Defects in Open Source Software / Ullah, Najeeb; Morisio,
Maurizio; Vetro', Antonio. - In: COMPUTER. - ISSN 0018-9162. - 48:6(2015), pp. 50-58. [10.1109/MC.2013.446]

Original

Selecting the Best Reliability Model to Predict Residual Defects in Open Source Software

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MC.2013.446

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2531687 since: 2016-04-13T16:48:15Z

IEEE

 1

A METHOD FOR SELECTING SOFTWARE RELIABILITY GROWTH MODEL TO PREDICT OPEN SOURCE SOFTWARE RESIDUAL

DEFECTS

Abstract: - Predicting residual defects (i.e. remaining defects or failures) in Open Source Software (OSS) may help in decision

making about their adoption. Several methods exist for predicting residual defects in software. A widely used method is Software

reliability growth models (SRGMs). SRGMs have underlying assumptions, which are often violated in practice, but empirical

evidence has shown that many models are quite robust despite these assumption violations. However, within the SRGM family,

many models are available, and it is often difficult to know which models are better to apply in a given context.

 We present an empirical method that applies various SRGMs iteratively on OSS defect data and selects the model which best

predicts the residual defects of the OSS. The inputs of the SRGMs are the cumulative defect data grouped by weeks and the

output is the number of estimated residual defects in the software. This value is a key factor for decision making about adoption

of the OSS.

We validate empirically the method applying it to defect data collected from twenty-one different releases of seven OSS projects.

The method selects the best model 17 times out of 21. In the remaining four it selects the second best model.

Index Terms— Open Source Software, Software Reliability, Software Reliability Models, Software Reliability Growth Models

I. INTRODUCTION

 Reliability is one of the more important characteristics of

software quality. It is defined as the probability of failure

free operation of software for a specified period of time in a

specified environment [1]. Software reliability growth

models (SRGM) are frequently used in the literature for

reliability characterization of industrial software. These

models assume that reliability grows after a defect has been

detected and fixed. SRGM is a prominent class of software

reliability models (SRM). SRM is a mathematical

expression that specifies the general form of the software

failure process as a function of factors such as fault

introduction, fault removal, and the operational environment

[1]. Due to defect identification and removal the failure rate

(failures per unit of time) of a software system generally

decreases over time. Software reliability modeling is done

to estimate the form of the curve of the failure rate by

statistically estimating the parameters associated with the

selected model. The purpose of this measure is twofold: 1)

to estimate the extra test time required to meet a specified

reliability objective and 2) to identify the expected

reliability of the software after release [1]. However, there

is no universally applicable reliability growth model due to

the fact that reliability growth is not independent of the

application.

From the literature review (see section II) it is clear that

there is no agreement on how to select the best model

among several alternative models, and no specific empirical

methodologies have been proposed. This paper proposes a

method that is able to select the best SRGM model among

several ones for predicting the residual defects of an OSS.

This is helpful in decision making about adoption of the

OSS. We test the method empirically by applying it to

twenty one different releases of seven OSS projects in order

to generalize the results.

The remainder of this paper is structured as follows: Section

II describes a brief description about SRGMs that are used

in this study and literature review. Section III gives the

goals of this study. Section IV describes the proposed

method. Section V shows the application of the method.

Section VI describes the validation. Section VII discusses

threats to validity. Section VIII gives a brief discussion of

the results and section IX concludes the paper.

II. BACKGROUND

A. Software Reliability Growth Models

 SRGM is one of the prominent classes of SRM. They

assume that reliability grows after a defect has been

detected and fixed. These models are grouped into concave

and S-Shaped. The S-Shaped models assume that the

occurrence pattern of cumulative number of failures is S-

Shaped: initially the testers are not familiar with the

product, then they become more familiar and hence there is

a slow increase in fault removing. As the testers’ skills

improve the rate of uncovering defects increases quickly

and then levels off as the residual defects become more

difficult to find. In the concave shaped models the increase

in failure intensity reaches a peak, then decreases.

 Software Reliability Growth Models use a non-

homogeneous Poisson process (NHPP) to model the failure

process. The NHPP is characterized by its mean value

function (MVF), m (t). This is the cumulative number of

failures expected to occur after the software has executed

for time t. Let {N (t), t> 0} denote a counting process

representing the cumulative number of defects detected by

the time t. A SRGM based on an NHPP can be formulated

as [12].

P {N (t) = n} = , n = 1, 2……..

The MVF, is non-decreasing in time t under the

bounded condition = a, where ‘a’ is the expected

Najeeb Ullah1, Maurizio Morisio1, Member, IEEE, Antonio Vetrò2,
1 Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

2Technische Universität München, Germany

total number of defects to be eventually detected. Knowing

its value is key to determine whether the software is ready

to be released to the customers or how much more testing

resources are required. Different NHPP models can be

defined by using different MVFs.

In this study we used eight SRGMs, selected due to their

wide spread use in literature. Table 1 reports their name and

reference and, for each of them the form of the MVF, with

 a = the expected total number of defects to be

eventually detected

 b = the defect detection rate

Due to space limitation a quick refresher on software

reliability modeling is given online
1
.

B. Literature review

Over the past 40 years many SRGM have been proposed

for software reliability characterization, and the most

common have been listed and described in the previous sub-

section A. The recurring question is therefore which model

to choose in a given context. Different models must be

evaluated, compared and then the best one should be chosen

[2]. Many researchers like Musa et al. [3] have shown that

some families of models behave better on certain

characteristics; for example, the geometric family of models

(i.e. models based on the hyper-geometric distribution) have

a better prediction quality than the other models. By

comparison with different models, Schick and Wolverton

[4], and Sukert [5], proposed a new method, which

suggested techniques for finding the best model for each

individual application among the existing models.

Brocklehurst et al. [6] proposed that the nature of software

failures makes the model selection process in general a

difficult task. They observed that hidden design flaws are

the main causes of software failures. Goel [7] stated that

different models predict well only on certain data sets; and

the best model for a given application can be selected by

comparing the predictive quality of different models.

Abdel-Ghaly et al. [8] analyzed the predictive quality of 10

models using 5 metrics of evaluation. They observed that

different metrics of model evaluation select different model

as best predictor. Stringfellow et al [16] developed a

1 http://softeng.polito.it/najeeb/IEEE/QuickRefresher.pdf

method that selects the appropriate SRGM and may help in

decision making on when to stop testing and release the

software. In [21, 22] two different approaches have been

developed, which only rank different models in term of best

fitting, but cannot select best predictor model.

Overall there is agreement that models should be selected

case by case. There is no universally accepted selection

criterion or metric, and all the criteria reported have been

evaluated on very few projects. All the cited papers apply a

set of reliability models and discuss different metrics for

just comparing the models, but only Stringfellow et al., [16]

proposes a method to select a model. We believe this is the

only pragmatic approach, especially if the goal is to support

practitioners, who may not have the statistical know how to

decide which the best model is. However the method

proposed by Stringfellow was validated on CSS projects

only, and needs to be adapted to usage in OSS context,

because the method can only be applied if 60% planned

tests have already been completed. Apart from that, this

method does not provide guidelines for applying the method

in OSS context.

The next key point is prediction. The reliability models are

used in two different perspectives. The first one is

predicting the total number of cumulative defects at a

specific point in time. This shows especially when the

reliability starts to stabilize. The second one is predicting

the total number of defects that will eventually occur and

hence residual (remaining) defects, which characterize the

reliability of a software product in a more concrete way.

Most studies are about fitting, and do not consider

prediction, only one study [8] has evaluated the models in

terms of prediction, but their evaluation was only based on

fitting the models on one portion of the defect dataset and

predicting the second portion. In all studies except [16] the

models prediction has been analyzed by predicting the

overall behavior of the software product rather than

predicting residual defects. This just gives an overview on

which model outperforms others, which is in practice not

useful for practitioners. Apart from that these studies have

been validated on less than five data sets.

 Our contribution to the state of the art is twofold. Firstly,

since from the studies presented above it is clear that no

general good model exist, we address the need to have an

empirical methodology for the selection of SRGMs, specific

for OSS components. The focus of our predictions is not on

 Table 1: Summary of SRGM used in this study

Model Name Type Mean Value Function, m (t)

Musa-Okumoto [13] Concave
Inflection S-Shaped [14] S-Shaped ,

Goel-Okumoto [3, 12, 14] Concave
Delayed S-Shaped [12, 14] S-Shaped
Generalized Goel [14] Concave
Gompertz [14] S-Shaped

Logistic [14] S-Shaped

Yamada Exponential [15] Concave

http://softeng.polito.it/najeeb/IEEE/QuickRefresher.pdf

 3

the cumulative number of defects in the project, but on the

residual defects (and the stability of such prediction): we

believe that, from a practical perspective, this is more

valuable. Secondly, we enlarged by a factor of four the

number of datasets used for the evaluation: this allowed us

to observe the output of the methodology in different types

of projects and different releases of the same project, each

one with different amounts of defect data.

III. GOALS

The goal of this study is, to support practitioners in

characterizing the reliability (in terms of residual defects) of

an OSS component or product. The characterized reliability

of the OSS component/product is one of the factors for the

decision of a project manager about using the component or

not.

This study proposes a distinctive empirical method that

selects the best SRGM in terms of best fitting and prediction

stability and which among several alternative models

predicts precisely the total number of the residual defects of

an OSS.

We detail here the goal of this study using the GQM [11]

template.

Object of the

study

A method for selecting best SRGM

model

Purpose to support practitioners in decision

about the adoption of an OSS

Focus characterizing OSS reliability in terms

of remaining defects

Stakeholder from the point of view of project

managers

Context factors in the context of OSS components

We derive a research question (RQ) on the object of the

study that completes the GQM.

RQ: Does the proposed method select the best (i.e. that

predicts more precisely the number of residual defects)

SRGM?

Here in the next section we describe our proposed method.

Section V shows the application of the method to twenty-

one different releases of seven OSS projects using eight

SRGMs. Section VI presents the validation of the method.

IV. THE PROPOSED METHOD

The idea to develop the method has been inspired by the

work of Stringfellow et al [16]. The main problems in

applying SRGMs for predicting the residual defects of an

OSS are:

 All model assumptions may not apply exactly to the

open source software development. This will

result in models fitting capabilities that may not fit

or may have low goodness of fit (GOF).

 There is a limited amount of defects data from

OSSs. The smaller the amount of data the longer

the time may take the models to stabilize, or even

not to fit the data.

To handle these problems, our method uses several SRGMs

and selects the models which best fit the data.

The method is defined by the following steps (see also

Figure 1 and Figure 2)

1. The first step is to select the release of the OSS

project of interest and collect the issues from the

online repositories. There are many online

repositories, such as sourceforge, apache, bugzilla

etc, which contain issues and defects data of OSS

projects.

2. The second step is to extract defects from the issues

collected in step 1. Issues can be bugs, feature

requests, improvements, or tasks. The issues need

to be filtered in order to include only those issues

that have been declared as a “bug” or a “defect”

and exclude “enhancements,” “feature-requests,”

“tasks” or “patches”. Further, only defects that

were reported as closed or resolved are considered,

open or reopen defects are excluded. Finally,

duplicate defects must be excluded too. The

defects data of the whole release interval [0, T] are

grouped into cumulative defects by weeks.

3. The third step is to apply the SRGMs listed in Table

1 to the defects data obtained from step 2. The

models are fitted to the defect data of 3/4T; that is

represented as ‘model fitting window’ in figure 2.

Fitting can be done using Non Linear Regression

(NLR) techniques. NLR is a general technique to

fit a curve through the data. The parameters are

estimated by minimizing the sum of the squares of

the distances between the data points and the

regression curve. NLR is an iterative process that

starts with an initial estimated value for each

parameter. The iterative algorithm then gradually

adjusts these parameters until they converge on the

best fit so that the adjustments make virtually no

difference in the sum-of-squares. A model’s

parameters do not converge to the best fit if the

model cannot describe the data. As a consequence

the model cannot fit the data. If a curve can be

fitted to the data for a model, the goodness of fit

(GOF) value is evaluated based on the R
2
-value,

Collect Defects Data of
the OSS project from
online repositories

Apply SRGMs

1.Model fit
2. R square
>0.95
3. Predicted
defects > Actual

Check model
rejection criteria

Check model
stability

1. check model
stability for 3/4 T to
T week by week
2. Model prediction
for week j must be
in the range of 10%
of the week j-1Compare models’

prediction: Select
Model gives max.

Prediction

(Predicted defect-
actual)=threshold

Make adoption
decision

No

The project has
not be achieved

the required
reliability level

yet.

Extract defects from
the collected issues

and group the
defects into

cumulative defects
by weeks

1. include only fixed
issues of type “defect”
2. Remove duplicate

and invalid issues

The data is
insufficient

for reliability
modelling If no model pass

Yes

If model pass

If no model pass

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

If model pass

Fit the models to 3/4 T

Figure 1: The proposed method: steps

0

Models Fitting time
window

Model stability check
window

3/4T Step5

Step3,4
Step6

T
t

Figure 2: The proposed method: time frames

which determines how well the curve fits the data.

It is defined as [17].

In the expression k represents the size of the data

set, m(ti) represents predicted cumulative failures

and mi represents actual cumulative failures at time

ti. R
2
 takes a value between 0 and 1, inclusive. The

closer the R
2
 value is to one, the better the fit. The

R
2
-value is used for its simplicity and is motivated

by the work of Gaudoin, O. et al [18], who

evaluated the power of several statistical tests for

GOF for a variety of reliability models. Their

evaluation showed that this measure was as least as

powerful as the other GOF tests analyzed. The

larger the R
2
 value, the better the fitted model

explains the variation in the data. Fitting the curves

of the models estimates the value for all parameters

of the fitted model and notably the expected

number of total defects (‘a’ parameter).

For model fitting we use a commercial curve fitting

program that uses NLR techniques for the model

curve fitting. Model equations along with

constraints on the model parameters are supplied to

the program. The program then fits the model to

the data, returns an estimate of the best fitted

values for all the parameters of the models along

with the GOF value, i.e. R
2
. We use NLR for

model fitting due to the nature of collected defect

data.

4. In this step models are passed through model

rejection criteria. Fitted models GOF values are

compared with the selected threshold value of R
2
.

Setting a threshold for the GOF value is based on

subjective judgment. One may require higher or

lower values for this threshold. Our choice for

setting the GOF value threshold at 0.95 is

motivated by the work of Stringfellow, et al [16].

Similarly fitted models predictions are checked

against the actual number of defects found. Only

those fitted models whose prediction is greater

than the actual number of defects are retained,

because the model prediction is meaningless when

it predicts a lower number of defects than the

actual defects found. If one model does not pass

this step, this means that the collected defects data

is insufficient for reliability modeling and

additional data is required.

5. In this step models are evaluated in term of

prediction stability. A prediction is stable if the

prediction for week j is within ±10% of the

prediction for week j-1. Setting a threshold for

stability is based on subjective judgment. One may

require higher or lower values for this threshold.

Our rationale for setting this threshold at 10% is

motivated by Wood’s suggestion of using 10% as a

stability threshold [19]. If no model has a stable

prediction that is within the stability threshold

defined, this means that the collected defects data

is insufficient for reliability modeling and

additional data is required.
For the purpose to check model stability the time

window from 3/4T to T is used; that is represented

as ‘model stability check window’ in figure 2. For

instance, the model stability is checked as follows:

in cumulative defects of the 3/4T, add one week

defect, i.e. 3/4T+1week, then fit all the models that

have passed the rejection step, to cumulative

defects of 3/4T+1week, after this another week is

 5

added, i.e. 3/4T+2weeks, and so on till T. A model

is stable if its prediction for week j is within ±10%

of the prediction for week j-1.

6. The sixth step is to select the best SRGM model.

The model which gives the highest number of

predicted defects among all stable models is

selected. It is a conservative choice. The rationale

is to select the safer model. In practice we consider

suitable the models which overestimate the actual

number of defects because defect fixing cost in

earlier stages (i.e. before adoption of an OSS)

would be less than the defects fixing cost in later

stages (i.e. after the adoption of the OSS). If there

is a large difference in values for the prediction

between different models, one may want to either

augment this analysis with other quality assessment

methods, as shown in [20], or choose a subset of

models based on the GOF indicator.

7. In this step, using the selected SRGM, the residual

defects of the OSS are computed. In function of

the number of residual defects the project manager

may decide to adopt the OSS, wait some more time

(i.e. wait for more defects to be found and fixed),

adopt another OSS or closed source component.

V. APPLICATION OF THE METHOD

Here we apply our method to the selected seven OSS

projects to show in practice how it works. The next section

A describes the OSS projects selected, and section B gives

the results.

A. OSS Projects Selected

Many open source projects are undergoing development and

each project produces a lot of data sets. Therefore, it is

important to select representative open source projects for

the validation of a method. We selected seven projects of

different nature having large and well-organized

communities; Apache, GNOME, C++ Standard Library,

JUDDI, HTTP Server, XML Beans, and Enterprise Social

Messaging Environment (ESME). For Apache and GNOME

the s defects data were available in literature. We took

defect data about three different releases of Apache and

three different releases of GNOME published by Xiang Li

et al [9]. The first two steps of our method do not apply to

these datasets because these datasets were already grouped

into cumulative defects by week from the corresponding

release dates.

Besides GNOME and Apache, we identified five notable

and active open source projects from apache.org

(https://issues.apache.org/). These projects are C++

Standard Library, JUDDI, HTTP Server, XML Beans, and

Enterprise Social Messaging Environment (ESME). All

these projects are considered stable in production. The 66%,

95%, 68%, 64% and 82% of the reported issues in these

projects respectively, have been fixed and closed. We

collected defect data of the selected projects from

apache.org using JIRA. JIRA is a commercial issue tracker.

Issues can be bugs, feature requests, improvements, or

tasks. JIRA track bugs and tasks, link issues to related

source code, plan agile development, monitor activity,

report on project status.

We downloaded all the issues about three (3) releases of

C++ Standard Library, three (3) releases of JUDDI, two (2)

releases of HTTP Server, four (4) releases of XML Beans

and three (3) releases of ESME. The tracking software

records all the information regarding each issue, among

which following are the more useful attributes that we used

for filtration of the downloaded issues:

 Project: It contains the project name;

 Key: The unique identity of each issue.

 Summary: It gives a comprehensive description of

the issue.

 Issue Type: Describes type of the issue, which may

be bug, task, improvement, or new feature request.

 Status: Describes current status of the issue. It may

be resolved, closed, open or reopened.

 Resolution: It shows resolution of the issue, which

may be fixed, duplicate, or invalid.

 Created: Shows the created date and time of the

issue.

 Updated: Shows the updated/fixing date and time of

the issue.

 Affected Versions: It gives the affected

releases/versions of the project which contain the

issue.

According to the step 2 of our method we filtered all the

collected issues. We included only those issues whose

status was “closed” or “resolved”. We filtered all the issues

in order to collect only issues that have been declared

“defect” or “bug” as in [10]. The refined data is grouped

into cumulative defects by weeks on the basis of created

data. Due to space limitation full defect data set of each

release is available online
2
.

B. Results

 Due to space limitations we show here (Table 2) the results

of the application of the method to one release of one

project. The results for all releases of all projects are also

available online
3
.

The method has been applied using, for each version of

each project, 2/3rds of the time window available, and of

the corresponding defects. The remaining 1/3 is used for

validation, as explained in section VI.

Let’s start by discussing the application of the method to

GNOME release 2.0 (Table 2). The time interval available

2 http://softeng.polito.it/najeeb/IEEE/Datasets.pdf
3 http://softeng.polito.it/najeeb/IEEE/Remaining_results.pdf

https://issues.apache.org/
http://softeng.polito.it/najeeb/IEEE/Datasets.pdf
http://softeng.polito.it/najeeb/IEEE/Remaining_results.pdf

Weeks

after

release

Actual

Defects Musa Inflection Goel Delayed Logistic Yamada Gompertz Generalized

Pred. R
2

Pred. R
2
 Pred. R

2
 Pred. R

2
 Pred. R

2
 Pred. R

2
 Pred. R

2
 Pred. R

2

12 58 945 0.9806 66 0.9859 926 0.9806 68 0.974 59 0.9937 1743 0.9806 73 0.9889 105 0.9819

13 58 446D 0.9836 791D 0.9836 455D 0.9836 71S 0.9781 62S 0.9937 883D 0.9836 74 0.9909 100 0.9852

14 66 78 0.9764 69 0.9879 84D 0.9891 202D 0.9866

15 72 86 0.9747 78 0.9844

16 74 90 0.9772 83 0.986

Project Release PRE of the model

 Musa Inf. Goel Delay. Log. Yama. Gomp. Gener.

Best model on PRE Best model selected by

proposed method
GNOME V2.0 0.19 0.08 0.18 0.01 -0.02 0.18 0.05 -0.85 Delayed Delayed

V2.2 0.09 -0.07 0.00 -0.11 -0.10 0.00 -0.10 -0.47 Goel, Yamada Goel

V2.4 0.14 0.01 0.04 -0.03 -0.02 0.03 -0.01 -0.28 Inflection, Gompertz Inflection

Apache 2.0.35 0.17 0.07 0.12 -0.01 -0.01 0.12 0.03 -0.53 Delayed, Logistic Gompertz

2.0.36 0.18 0.03 0.09 0.01 0.01 0.09 0.01 0.01 Delay, Log, Gompertz, General. Generalized

2.0.39 0.15 0.00 0.00 -0.02 -0.02 0.02 -0.01 0.00 Inflection, Goel, General. Goel

C++

Stand.

Lib

4.1.3 -0.22 -0.25 -0.39 -0.52 -0.45 -0.34 -0.41 -0.31 Musa Inflection

4.2.3 -0.01 -0.05 -0.12 -0.20 -0.07 -0.09 -0.03 0.06 Musa Gompertz

5.0.0 -0.28 -0.16 -0.66 -0.98 -0.92 -0.16 -0.83 -0.16 Inflection, Yamada, General. Yamada

JUDDI 3.0 0.00 0.24 0.00 0.00 0.26 0.00 0.00 0.13 Musa, Goel, Delay, Yama, Gomp Delayed

3.0.1 -0.02 -0.32 -0.10 -0.02 -0.05 -0.10 -0.27 -0.29 Musa, Delayed Delayed

3.0.4 -0.30 -0.33 -0.27 -0.72 -0.67 -0.34 -0.59 -0.33 Goel Goel

HTTP

Server

3.2.7 0.04 -0.10 0.02 -0.18 -0.16 -0.05 -0.11 -0.05 Goel Goel

3.2.10 0.23 0.22 0.23 0.01 0.01 0.23 0.13 0.23 Delayed, Logistic Logistic

XML

Beans

2.0 0.17 0.02 0.17 -0.02 -0.14 0.17 0.01 0.07 Gompertz Delayed & Gompertz

2.2 -0.04 0.04 -0.04 -0.29 0.01 -0.03 0.11 -0.02 Logistic Logistic

2.3 0.00 0.05 0.00 -0.25 0.00 0.00 0.01 0.00 Musa, Goel, Log, Yama, General. Logistic

2.4 0.24 -0.12 0.24 0.06 -0.16 0.24 0.06 -0.11 Delayed, Gompertz Gompertz

ESME 1.1 -0.03 -0.23 -0.03 -0.32 -0.34 -0.14 -0.29 -0.23 Musa, Goel Goel

1.2 -0.26 -0.33 -0.41 -0.57 -0. 09 -0.37 -0.09 -0.16 Logistic, Gompertz Gompertz

1.3 0.18 0.07 0.07 -0.02 -0.02 0.08 -0.02 0.07 Delayed, Logistic, Gompertz Inflection, Goel, Generalized

is 24 weeks. As said we use 2/3 of this time frame for model

selection, or 16 weeks. Of these, we use the last 1 /4 for

model stability check, or weeks 12 to 16. Table 2 contains a

row for each week, from 12 to 16. For each week the table

shows, in the columns, from left to right: the number of

actual cumulative defects found in that week, and, for each

of the eight SRGMs, the number of total defects predicted,

and the R
2
 value.

Each of the eight models is fitted each week. When a model

fails the stability check it is rejected (this is indicated by

letter ‘R’). The week a model stabilizes is indicated by an

‘S’. If a model becomes unstable after being stable, this is

indicated by a ‘D’. The model selected by the method is

underlined.

In Table 2 GOF values of all the models show that all the

models perform very well in terms of fitting and pass the

rejection criteria but their predictions are different. Musa,

Inflection, Goel, and Yamada destabilize at week 13

whereas Gompertz and Generalized destabilize at week 14.

All these models overestimate by a very large amount.

From Table 2 it is also clear that the Delayed S-shaped and

Logistic models stabilize first at week 13 and remain stable

up to week 16 (i.e. throughout the whole stability check

window). The Delayed S-Shaped and Logistic models

predict the number of defects at week 16 as 90 and 83

respectively. Since the Delayed S-shaped model predicts

more residual defects than Logistic, it is selected.

VI. VALIDATION

We apply our method to 2/3 of each release interval defect

data to select the best model. The remaining defect data of

each release are used for validation. The choice of 2/3

release interval for the estimation of model parameters was

motivated by Wood’s suggestion that the model parameters

do not become stable until about 60% of the way through

the test [19].

As a measure to validate the prediction capability of a

model we use the PRE (Prediction Relative Error) indicator.

Where Predicted is the total number of defects predicted by

a model, as fitted at 2/3 of the time interval available, and

Actual number of defects is the number of defects at the end

of the time interval.

For each release and each project we compute PRE for each

model, and rank the models accordingly. The model with

Table 2: Model fitting for stability check, release 2.0 of GNOME project

Table 3: Best predictor model selected by our method Vs best predictor selected on prediction PRE

 7

minimum PRE is considered the best predictor model for

that release.

Table 3 shows the validation results: for each project and

each release the best model on PRE and the best model

according to the method. We observe that 17 out of 21

times, the model selected by the method corresponds to the

best model. In the remaining four cases the best model has a

negative PRE, and for this reason was rejected by the

method. However, in these four cases the model selected by

the method is the one with the lowest positive PRE (the

lowest negative for C++ 4.2.3). This means that in these

four cases the method selects the second best model.

VII. THREATS TO VALIDITY

The first construct threat comes from the issues data sets

used. We use data sets produced by others, so we have no

control on the quality of the issues collected and reported.

Issues could be missing; others could have been mis-

reported, either on time or on content. Overall we have tried

to reduce this threat by selecting established Open Source

projects and communities. Most of the datasets we used

have also been used in other similar works.

 Still on construct validity, we have considered each release

of a project as a separate project, independent of others.

This choice is in line with [2, 10, 19, 20]. As a cross

validation of this independence it should be noted that

different versions of the same project are best fitted by

different SRGMs.

 The time span covered by the datasets of projects, and

project versions, is quite different. We assume this is not

critical, especially because we do not compare project

versions, but we consider each project version

independently.

 We recognize one external threat to validity. We have

evaluated our method on 21 projects. This is one of the

largest datasets in literature but we cannot generalize the

results to all projects. In particular the method could just be

not applicable to a project because curve fitting, satisfaction

of GOF or stability thresholds could fail. In these cases the

thresholds can be changed.

VIII. DISCUSSION

The results of the empirical validation show that the

proposed method selects the best or second best model, in

terms of better precision in the estimation of the residuals,,

in all datasets. Beyond these promising results, some

observations, derived both from the results and the

application itself of the method, are worthy to be discussed.

We begin our discussion from the observations derived

from the results.

Firstly, no model is clearly superior to others. In fact, in the

21 data sets no model ranks as the best one in more than a

few cases, and each of the eight models is the best one at

least once. This is in line with the fact that also related work

did not converge on the goodness of one reliability model,

and further supports the need for a methodology which

enables to select the best SRGM model for a given project.

Our results show also that different releases of the same

project are each fitted by different models. This is in line

with the assumption –common in the related literature - that

releases should be considered as independent projects. A

possible explanation is that only the history of defects and

not any other project characteristic counts for the model

selection. The factors that determine the history of defects,

although investigated since decades, are not yet fully

understood. The cause for high number of defects can reside

in the product characteristics (measured with structural

metrics like code complexity, coupling, etc.), or in the

intrinsic difficulties of the domain, or in people’s skill. Also

processes and organization might indirectly have an effect

on the external quality of a software product.

A few other considerations derive from the application of

the method.

One of them is that most of the time models are rejected due

to prediction instability instead of GOF value. This could be

explained by the fact that not enough defect data is

available. The method overcomes this obstacle with the

wide number of models available, however in a real

scenario this could be a problem: further work could

investigate what is the minimum amount of defect data

needed for the selection of a SRGM. The second

observation regards S-Shaped models: they outperform

concave ones in 14 out of 21 cases, which also confirm the

results of our previous studies [10]. S-Shaped models are

better probably because initially the community of end-

users and reviewers of the open source projects do not react

promptly to a new release. This is modeled by the learning

phase included in the S-Shaped models.

There is more than one model that fits the defect data after 5

weeks (in terms of the method, at least a model passes step

4 after 5 weeks). So 5 weeks could be the suggested as an

initial rule of thumb for the delay from release before doing

any analysis about reliability.

Finally, the method we propose sets some parameters: the

GOF minimal threshold for fitting (0.95), the stability

threshold (10%), the time frames (last 1/4 of defect data for

fitting and stability check). These parameters were set

using suggestions from the literature and seem to perform

well. Sensitivity analysis on the threshold was out of the

scope of our evaluation; however it could be source of

inspiration for further work.

IX. CONCLUSIONS

The goal of this work was to support practitioners in

characterizing the reliability (in terms of residual defects) of

an OSS component or application, to help a project manager

in deciding whether using the OSS or not in a project. To

achieve the goal we proposed a pragmatic approach, which

selects best model both on its fitting capability, and on the

stability of its prediction over time. The model selected with

our proposed method, among several alternative models

predicts very precisely the residual defects of an OSS.

We believe that the key contribution of this work lies in the

systematic approach (eight SRGM models have been

considered) and in the extent of validation (21 releases of

seven projects).

The next milestone of the research is the development of a

tool to automate the method.

References

[1] IEEE Std 1633-2008 IEEE Recommended Practice in Software

Reliability.

[2] Kapil Sharma, et al, “Selection of Optimal Software Reliability

Growth Models Using a Distance Based Method”, IEEE

Transactions on Reliability, Vol. 59, No. 2, June 2010.

[3] J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability,

Measurement, Prediction and Application. McGraw-Hill, 1987.

[4] G. H. Schick and R. W. Wolverton, “An analysis of competing

software reliability models,” IEEE Trans. Software Engineering, pp.

104–120, March 1978.

[5] A. N. Sukert, “Empirical validation of three software errors

predictions models,” IEEE Transaction on Reliability, pp. 199–205,

August 1979.

[6] S. Brocklehurst, P. Y. Chan, B. Littlewood, and J. Snell,

“Recalibrating software reliability models,” IEEE Trans. Softw.

Engineering, vol. SE-16, no. 4, pp. 458–470, April 1990.

[7] A. L Goel, “Software reliability models: assumption, limitations, and

applicability,” IEEE Transaction on Software Engineering, pp.

1411–1423, December 1985.

[8] Abdel-Ghaly, P.Y. Chan, and B. Littlewood, “Evaluation of

competing software reliability predictions,” IEEE Trans. Softw.

Engineering, vol. SE-12, no. 12, pp. 950–967, September 1986.

[9] Xiang Li et al. 2011. Reliability analysis and optimal release-

updating for open source software. Information and Software

Technology 53 (2011) 929–936.

[10] Najeeb ullah, Maurizio Morisio. An Empirical Study of Reliability

Growth of Open versus Closed Source Software through Software

Reliability Growth Models. Proceeding of APSEC 2012.

[11] Basili, et al, "The Goal Question Metric Method", in Encyclopedia

of Software Engineering, Wiley, 1994.

[12] M.R. Lyu, Handbook of Software Reliability Engineering. McGraw

Hill, 1996.

[13] J. D. Musa and K. Okumoto, “A logarithmic Poisson execution time

model for software reliability measurement,” in Conf. Proc. 7th

International Conf. on Softw. Engineering, 1983, pp. 230–237.

[14] M. Xie, Software Reliability Modeling. World Scientific Publishing,

1991.

[15] H. Pham, “Software reliability and cost models: perspectives,

comparison and practice,” European J. of Operational Research, vol.

149, pp. 475–489, 2003.

[16] Stringfellow, et al. An empirical method for selecting software

reliability growth models. Empirical Software Engineering, Journal.

Page 319-343, 2002.

[17] K. C. Chiu, Y. S. Huang, and T. Z. Lee, “A study of software

reliability growth from the perspective of learning effects,”

Reliability Engineering and System Safety, pp. 1410–1421, 2008.

[18] Gaudoin, O., Xie, M., and Yang, B. A simple goodness-of-fit test for

the power-law process, based on the Duane plot. IEEE Transactions

on Reliability. 2002.

[19] Wood, Alan, “Software-reliability growth model: primary-failures

generate secondary-faults under imperfect debugging and. IEEE

Transactions on Reliability, 43, 3, 408 (September 1994).”
[20] Stringfellow, C. 2000. An integrated method for improving testing

effectiveness and efficiency. PhD Dissertation, Colorado State

University.

[21] Neha Miglani and Poonam Rana, Ranking of Software Reliability

Growth Models using Greedy Approach, Global Journal of Business

Management and Information Technology, Vol 1. No 11, 2011

[22] Mohd. Anjum, Md. Asraful Haque, Nesar Ahmad, Analysis and

Ranking of Software Reliability Models Based on Weighted Criteria

Value, I.J. Information Technology and Computer Science, 2013, 02

Authors Biography
Najeeb ullah is Ph.D candidate at

Politecnico di Torino. The main goal of

his doctoral activities is to study

reliability of open source software, the

factors affecting the reliability trend of

OSS. His recent interests are focused

on software reliability models. The

methodology he uses is that one of the

empirical software engineering. He received a B.Sc. degree

in computer science for university of Peshawar, Pakistan

and a specializing master degree in Computer Engineering

from Politecnico di Torino. He has research interests in

software reliability, software process improvement and

empirical software engineering.

Maurizio Morisio is Full Professor at

Dept. of Control and Computer

Engineering of the Politecnico di Torino,

where he leads the software engineering

group. In 1998-2000 he spent two years

at the University of Maryland at College

Park, working with the Experimental

Software Engineering Group led by Vic

Basili. From September 1998 to June

2000 he was on the board of directors of the SEL (Software

Engineering Laboratory), a consortium among NASA

Goddard Space Flight Center, the University of Maryland

and Computer Science Corporation, with the aim of

improving software practices at NASA and CSC. He got a

Ph.D. in Software Engineering and a M.Sc. in Electronic

Engineering from Politecnico di Torino. He has published

more than 70 papers in international journals and

conferences and three books. He is associate editor in chief

of IEEE Software and Empirical Software Engineering

Journal since 2008.

Antonio Vetrò is a postdoctoral

research fellow at Technische

Universität München, Germany. He

has completed his Ph.D degree at

Politecnico di Torino, Italy. The main

goal of his doctoral activities were to

evaluate how automatic static analysis

can be used to improve specific

attributes of software quality. He is specialized on empirical

methodologies and analyses of process and product data. He

has been Junior scientist at Fraunhofer Center for

Experimental Software Engineering at College Park, MD,

USA, in 2011. He received a B.Sc. in Business

Organization Engineering and a M.Sc. in Computer

Engineering from Politecnico di Torino.

