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Abstract

In the present paper, we review the consistent definition of macroscopic total

energy in classical fluid mechanics, as a function of the microscopic canoni-

cal Hamiltonian field, based on a Lennard-Jones model with some spatially

varying external field. The macroscopic total energy (sum of mechanical and

internal energy) is proved to be equal to the equilibrium ensemble-averaged

Hamiltonian. In particular, the conditions for including the effects of the

external field both in the macroscopic potential energy and in the internal

energy are discussed. We present the notion of energy as defined in different

scientific communities, starting from the standard macroscopic systems all

the way down to small ones, which are gaining an increasing popularity.
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1. Introduction and motivation

Energy is a fundamental concept in both physics and engineering. In

spite of its tremendous importance and its omnipresence in our modern un-

derstanding of Nature, we know very little about it. Energy is usually defined

as a conserved extensive property of a physical system, which cannot be ob-

served directly but can be calculated from its thermodynamic state. Hence,

the main feature of energy is its conservation, which somehow hides a huge

variety of different energies, namely kinetic, potential, mechanical, internal,

chemical, electric, magnetic, nuclear, etc.. In order to ensure the energy

conservation, one could say that, every time that experimental evidences

lead to some contradictions, a new form of energy is proposed to re-establish

this principle, which is nothing more that the first law of thermodynamics.

Moreover, the energy concept pervades many different scientific communities

(physics, chemistry, biology and engineering, to mention just few), dealing

with extremely different experimental evidences, mathematical approaches

and final applications. The interplay between all these varieties inevitably

lead to some ambiguities, which represent an essential bottleneck in develop-

ing truly multi-scale and multi-physics models, as requested by recent devel-

opments in material science and nanotechnology [1], as well as computational

biology and biotechnology [2]. Sometimes it is difficult to compute consis-

tently the same energy by different approaches, simply because of different

nomenclatures, conventions, practices, etc.. This lack of a common language

through multiple scales (and communities) will be elucidated in this paper by

an emblematic example through multiple scales, namely energy in molecular

dynamics, statistical mechanics, computational fluid dynamics and, finally,
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engineering design.

Our modern understanding of matter is based on the idea that all macro-

scopic materials are made of atoms. However this idea have become pre-

dominant only very recently. The reason is that, even though nowadays the

reality of atoms is considered compatible with religious belief, for long time

in the past, atoms presented a challenge for religious belief (see the inter-

esting analysis in Ref. [3]). After Leucippus and his student Democritus

proposed the concept of atoms in the fifth century BCE, Epicurus (fourth

century BCE) and Lucretius (first century BCE) proposed that the soul is

made of atoms as well and dis-aggregates at a later time, meaning that the

soul must fall apart after death and hence is not immortal [3]. Of course,

the latter point was strongly opposed by Christianity and it might explain

the reason why atomism received a negative perception for such a long time.

Only from about the middle of nineteenth century, a gradually increasing

number of physicists started accepting the reality of atoms, because such a

notion enabled (non-obvious) derivation of macroscopic properties of sub-

stances [4]. The huge number of atoms constituting macroscopic materials

requires statistical procedures to fill the gap between atomistic scale and

macroscopic scale. Such procedures were beginning to be worked out by a

number of physicists in the second half of the nineteenth century, but the

outstanding figure among these was Ludwig Boltzmann (see Ref. [4], per-

tinently entitled ’Ludwig Boltzmann: The Man Who Trusted Atoms’). In

1872, Boltzmann proposed his famous equation which describes the statistical

behavior of rarefied particles in non-equilibrium conditions, setting the basis

of the non-equilibrium statistical mechanics. The Boltzmann equation is still
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nowadays the fundamental paradigm to describe rarefied gas dynamics, in-

cluding both high-speed [5] and low-speed flows (in micro-electro-mechanical

systems) [6], vehicular traffic flows [7, 8], statistical economics [9] and compu-

tational sociology [10]. Moreover, this equation is the theoretical foundation

of the lattice Boltzmann method [11, 12, 13, 14, 15], which is a powerful

numerical method applied much beyond rarefied flows, including thermal ra-

diation [16], thermal conduction [17], combustion [18, 19, 20, 21], porous

media [22, 23], multi-component flows [24, 25] and turbulence [26], to men-

tion a few. Remarkably for the present paper, one essential features of the

Boltzmann equation is that its collisional kernel, i.e. the mathematical op-

erator describing the collisions between particles, conserves some meaningful

quantities (invariants), including particle kinetic energy (elastic collisions).

Even though kinetic equations represent the typical example of meso-

scopic description between molecular dynamics and fluid dynamics, clearly

kinetic energy is not enough when the interaction potentials among parti-

cles become complex, leading to a classical N -body problem. In these cases,

the potential energy due to all pairwise interactions among particles is cru-

cial and it allows one to describe much more fluids with realistic rheology

[27]. The classical tools, e.g. the system mechanical energy (Hamiltonian),

of equilibrium statistical mechanics have been very successful for relating

the microscopic properties of individual atoms and molecules to the macro-

scopic bulk properties of materials. However, modern frontiers of small sys-

tems [28] (in material science, nanotechnology, drug discovery, etc.) raise

an increasing attention towards non-equilibrium phenomena, where theory

has (usually) much less to say. Mesoscopic non-equilibrium thermodynam-

4



ics, or extended irreversible thermodynamics, [29, 30] is an active field of

research, trying to formulate and rationalize general properties which are

common to all non-equilibrium systems, where even the concept of temper-

ature becomes ambiguous [31]. Some of the most significant results of the

modern trends in thermodynamics are the so-called fluctuation-dissipation

theorems [32]. Very briefly, in 1993 Evans, Cohen and Morriss [33] con-

sidered the fluctuations of the entropy production rate in a shearing fluid,

and proposed the so called Fluctuation Relation. This represents a general

result concerning systems arbitrarily far from equilibrium. Moreover it is

consistent with the Green-Kubo and Onsager relations, when equilibrium is

approached. This pioneering work has experienced an extensive development

by different authors (see Ref. [32] and references therein). The original re-

sult has been extended to many different cases and it is now a whole new

theoretical framework which encompasses the previous linear response the-

ory and goes beyond that, to include far from equilibrium phenomena, such

as turbulence and the dynamics of granular materials [32]. In spite of these

exciting achievements, the formulation of a mesoscopic non-equilibrium ther-

modynamics theory able to analyze irreversible processes at very small scales

is still problematic [34, 35]. The theory of small-system thermodynamics was

developed by Hill [36], mainly dealing with isolated nanoparticles, and, even

though it has been successfully applied since then [37], a universal framework

is still out of sight. Hence from the practical point of view, molecular dy-

namics simulations still represent the most viable alternative [38], boosted by

very sophisticated softwares (e.g. [39] among many others), which nowadays

allows to handle huge molecular systems (up to ∼ 1010 atoms).
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Even though (conceptually) the theoretical foundations of classical molec-

ular dynamics simulations are clear and mechanical energies of the system

(and its sub-parts) are immediately available, the link with macroscopic

quantities, which is essential for scaling-up the results, is sometimes un-

derestimated and poorly discussed. For example, many textbooks (in chem-

ical physics) identify the equilibrium ensemble-averaged Hamiltonian as the

macroscopic internal energy of the system (for example, see Eq. (2.2.12) in

Ref. [27]), which is not correct in general. Moreover, where the effects of the

external field end up at the macroscopic scale (if in the macroscopic potential

energy or in the macroscopic internal energy) can not be universally stated,

because it depends on some properties of the external field (discussed later

on, in this paper). The latter point is crucial because, if external effects go

into the macroscopic potential energy, they would not contribute to entropy

production, otherwise they would. Hence, the assumption that external field

never contribute to entropy production may produce large errors, particu-

larly in small systems. The need to clarify such elementary issues in the fluid

dynamics community should not surprise. The mathematical theory of fluids

is in a very primitive state and the fluid dynamic equations do not have a

fundamental nature [40]. In spite of those difficulties, the engineering com-

munity largely relay upon fluid dynamic equations and uses them extensively

for design and optimization [41]. Moreover, the analysis of the entropy gen-

eration is becoming a popular paradigm for design and optimization [42, 43],

covering a wide variety of applications [44, 45, 46, 47].

Taking into account the previous discussion, the present paper can be

placed at the intersection between molecular physics and fluid dynamics,
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which are two disciplines with an increasing overlap (e.g. in microfluidics,

lab-on-chips, functionalized interfaces, etc.). Hence, it is of fundamental

importance for the future of nanotechnology and biotechnology to clearly

define the basic notions underlying their foundations. Of course, the energy

concept is first in the list.

The paper is organized as follows. In Section 2, the materials and meth-

ods which represent the starting point of our analysis are briefly summarized.

In Section 3 the main results are reported, including the fundamental link

between the microscopic canonical Hamiltonian and the macroscopic total

energy in classical fluid mechanics. In Section 4 some consequences are de-

rived from the fundamental result. Finally, in Section 5, the conclusions are

reported.

2. Materials and methods

The main goal of this work is to elucidate and rationalize the link be-

tween molecular dynamics simulations and macroscopic computational fluid

dynamics. The key idea is to use the concept of total energy of the system

both at microscopic and macroscopic level. In particular, classical Hamil-

tonian mechanics looks particularly promising for this goal because it is a

theory both physics and engineering communities are familiar with. Hamil-

tonian mechanics was first formulated by William Rowan Hamilton in 1833

[48], starting from Lagrangian mechanics, a previous reformulation of clas-

sical mechanics introduced by Joseph Louis Lagrange in 1788. By means of

more general concepts, Hamiltonian mechanics allows more easily to gener-

alize Newtonian mechanics to N -body systems.
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Consider an isolated, macroscopic system consisting of N identical, spher-

ical particles of mass m enclosed in a volume V . The assumption of spherical

particles enables to focus only on translational kinetic energy, neglecting ro-

tational and vibrational energy. An example would be a one-component,

monatomic gas or liquid: Even though water molecules are not spherical,

simplified water models are consistent with such an assumption [27]. In

classical mechanics the dynamical state of the system at any time-instant is

completely specified by the 3N coordinates x1, x2, . . ., xN and 3N velocities

v1, v2, . . ., vN of the particles. The Hamiltonian of this system H is de-

fined by the sum of the kinetic energy T and the potential energy V , namely

H = T + V , where

T =
m

2

N∑
n=1

v2
n, (1)

V =
N∑

n1=1

N∑
n2>n1

P(‖xn1 − xn2‖) +
N∑
n=1

E(xn), (2)

P(·) is the pair potential between particles, ‖ · ‖ is the Euclidean norm and

E(·) is the potential energy of a single particle, arising from the interaction

with some spatially varying, external field (e.g. the gravitational field).

An essential (and usually critical) step in any molecular dynamics sim-

ulation consists in specifying the proper pair potentials between particles,

sometimes called (in technical literature) force fields [38]. Force fields con-

sist of two kind of terms: (a) Bonded terms (e.g. covalent bonds) and (b)

non-bonded terms (e.g. van der Waals). In the present work, we are mainly

interested in fluids and hence we will focus on non-bonded terms only. One of

the most important pair interaction is generated by the electrostatic poten-

tial among partial charges. For example, this potential is responsible of the
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polar nature of water (by hydrogen bonding). If positive and negative partial

charges are present in the same molecule (even globally neutral), they real-

ize an electrical dipole. Due to the underlaying quantum dynamics of outer

electron shells, even neutral molecules can be subject to temporary induced

dipoles. Both permanent and induced dipoles can interact with surrounding

dipoles and with further induced dipoles. In particular, the force between

two permanent dipoles is called Keesom force, the one between a perma-

nent dipole and a corresponding induced dipole Debye force, and, finally, the

one between two instantaneously induced dipoles London dispersion force.

All these three forces are attractive (negative potential). In addition, there

is a harsh repulsion that appears at short range and has its origin in the

overlap of the outer electron shells (positive potential). The van der Waals

force (or van der Waals interaction) is the sum of the attractive or repulsive

forces between molecules other than those due to covalent bonds or to the

electrostatic interaction of ions with one another or with neutral molecules

[38]. A popular mathematical description for the van der Waals force is the

Lennard-Jones potential (also referred to as 12-6 potential), namely

P(r) = 4 ε

[(σ
r

)12

−
(σ
r

)6
]
, (3)

where ε is the depth of the potential well, σ is the finite distance at which

the pair potential is zero and r is the distance between the particles (i.e.

r = ‖xn1 − xn2‖). Eqs (1,2,3) define the Hamiltonian of the Lennard-Jones

fluid model [38].

Once the Hamiltonian of system is defined, the time evolution of the sys-

tem is uniquely defined by the Hamilton’s equations [48]. Molecular dynam-

ics software (e.g. [39]) solves the Hamilton’s equations by robust (explicit)
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numerical schemes (e.g. Verlet integration, among others). The outcome of

molecular dynamics simulations is given by 3N coordinates and 3N velocities

of particles for every time step, also referred to as trajectory. Clearly, the

amount of data in a molecular dynamics trajectory is enormous and defini-

tively impractical for getting some insights on the most of phenomena of

practical interest.

Most of the times, we are not interested in all the details of a trajectory.

Statistical mechanics is generally used to calculate statistical properties of the

trajectory, which can be compared with experimental data, i.e. observable

properties. Observable properties can be computed either as time-averages

over a solution trajectory (the method of Boltzmann), or as averages over an

ensemble of systems, each of which is a replica of the system of interest (the

method of Gibbs) [27]. Time averages over trajectory are complex because of

the large fluctuations of instantaneous macroscopic quantities. Even though

it would seem that enormous times are needed before the fluctuations of the

time averages over finite times stabilize around the equilibrium limit value

[49], time averages are still popular in many molecular dynamics computa-

tions [38]. On the other hand, ensemble averages are extremely powerful from

the theoretical point, because they allow one to derive analytical formulas

(and sometimes to compute statistical properties in molecular dynamics sim-

ulations with less noise). A statistical-mechanical ensemble is an arbitrarily

large collection of imaginary systems, each of which is a replica of the physi-

cal system of interest and characterized by the same macroscopic parameters

[27]. For this reason, it has been said very effectively that ensemble average

allows to have thermodynamics without dynamics [49]. Unfortunately, the
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ensemble average coincides with time average, only under ergodic hypothesis

[49]. More details about the ergodic hypothesis can be found in Ref. [49] and

references therein. In this work, we will focus on ensemble averages and we

will assume that our systems are ergodic (which is a reasonable assumption

for Lennard-Jones fluid models).

First of all, in order to use the ensemble average, we represent the so-

lution trajectory as a time sequence of phase points (defined by 6N vari-

ables each) in a 6N -dimensional phase space. The distribution of those

points can be described by a phase-space probability density f[N ] [27]. The

quantity f[N ] ΠN
n=1dxnΠN

n=1dvn is the probability that, at the given time,

the physical system is in a microscopic state lying in a specific infinites-

imal space element of size ΠN
n=1dxnΠN

n=1dvn. This definition also implies

that
∫ ∫

f[N ] ΠN
n=1dxnΠN

n=1dvn = 1 at any time. The phase-space probabil-

ity density f[N ] satisfies the Liouville equation [50], although its use is not

very practical due to the curse of dimensionality (6N , where N can be of

the other of Avogadro number). For computing thermodynamic quantities,

it proves useful to consider some asymptotic equilibrium limit (determined

by attracting low-dimensional manifolds for trajectories in the phase-space

[51, 52, 53, 54, 55, 56]), namely f
(e)
[N ], which becomes a function of the time-

varying coordinates and macroscopic momenta/quantities. From the prac-

tical point of view, in most of the fluid dynamic problems (excluding rar-

efaction effects), the characteristic time to reach the equilibrium limit is

extremely short (in comparison with fluid dynamic ones). This time corre-

sponds to the kinetic stage of the Boltzmann equation [50], even though the

latter is formulated for the reduced (single-particle) phase-space distribution
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function f[1], which is obtained by integrating f[N ] over the coordinates and

momenta of the other particles. The equilibrium ensemble average can be

defined for any microscopic quantity by means of equilibrium phase-space

probability density f
(e)
[N ]. For example, the equilibrium ensemble-averaged

Hamiltonian is defined as

〈H〉(e) =

∫ ∫
H f (e)

[N ] ΠN
n=1dxnΠN

n=1dvn. (4)

The ensemble average depends on the chosen ensemble, hence on the

(fixed) macroscopic parameters defining it. Let us consider a canonical en-

semble (the name was introduced for the first time by Gibbs), which is a

collection of systems characterized by the same number of particles N , vol-

ume V and temperature T . For the first time in this work, we refer to the

temperature of a system and we can select the elements of the above ensem-

ble by imposing thermal equilibrium between the system and a thermostat

at a fixed temperature T . The equilibrium probability density for a system

of identical, spherical particles [27] is now

f
(e)
[N ] =

exp(−βH)∫ ∫
exp(−βH) ΠN

n=1dxnΠN
n=1dvn

, (5)

where β = 1/(kB T ) and kB is the Boltzmann constant (kB = 1.38064×10−23

m2 kg s−2 K−1).

3. Results

One of the problems in establishing a rigorous link between molecular

dynamics and macroscopic computational fluid dynamics is due to the fact

that the former (most of the times) deals with systems (on average) at rest,

12



which is never the case for the latter. This may cause some ambiguities

in identifying the quantity 〈H〉(e) from a macroscopic point of view. For

example, many textbooks (in chemical physics) identify this quantity as the

macroscopic internal energy of the system (for example, see Eq. (2.2.12) in

Ref. [27]), which is not correct in general.

Here, we present a simple derivation for overcoming this issue.

First of all, let us introduce the mean velocity vector u, namely

u =
1

N

N∑
n=1

vn. (6)

In case of particles with different masses, the previous definition would be

substituted by a mass-based average. Even though u is computed by means

of all vn, due to the large number of particles, the dependence of the former

on each particle velocity is negligible. This is consistent with kinetic theory,

where macroscopic moments (in fluid dynamic regime) do not depend any-

more on underlying particle velocity. Moreover, velocity u does not apply

to any particle in general. We can conveniently imagine that this velocity is

applied in the center of mass x of the system, namely u ≡ u(x), where

x =
1

N

N∑
n=1

xn. (7)

Also in this case, x can be interpreted as a macroscopic coordinate, with

negligible dependence on the individual particle position. Combining Eq.

(6) with Eq. (1) and taking into account that
∑N

n=1(vn − u) = 0 yield

T =
m

2

N∑
n=1

(vn − u)2 +Mek, (8)

where M = mN is the total mass of the system and ek = u2/2 is the

macroscopic kinetic energy per unit of mass (of course ek ≡ ek(x)).
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The introduction of the concepts of mean velocity and peculiar velocity

vn−u (as in kinetic theory) leads to a shift of the microscopic kinetic energy

T by a constant (with regards to microscopic coordinates).

The situation is not so simple in case of the microscopic potential energy

and this may be one of the reasons of confusion. In general, in the case of

an inhomogeneous fluid, thermodynamic potentials (in particular the excess

parts, see below) depend explicitly on the external potential [27]. This is sim-

ply due to the fact that external potential of a single particle E(xn) depends,

in general, on the particle position xn. This determines a correction on the

system potential and consequently on the ensemble average. For example,

this is unavoidable in case of external electrical fields active on charged par-

ticles. However, in most of macroscopic fluid dynamics, the external field is

due to gravity and some simplifications apply. Here, the potential of a single

particle can be expressed as

E(xn) = −G mMG

‖xn − xG‖
, (9)

where G is the gravitational constant (G = 6.67384×10−11 m3 kg−1 s−2), MG

is the mass of the external body acting on the system and xG is the location

of the external body. If the distance of the external body from the system

is much bigger than characteristic size of the system, namely ‖x − xG‖ �

‖xn−x‖, then the following approximation holds ‖xn−xG‖ ≈ ‖x−xG‖ and

consequently E(xn) ≈ E . This is definitively acceptable for computational

fluid dynamics in the proximity of Earth. Thus, Eq. (2) becomes

V =
N∑

n1=1

N∑
n2>n1

P(‖xn1 − xn2‖) +Mep, (10)
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where ep = E/m is the macroscopic potential energy due to gravity per unit

of mass (of course ep ≡ ep(x)).

Let us now introduce the relative microscopic kinetic energy T ′ = T −

Mek, the relative microscopic potential energy V ′ = V − Mep and conse-

quently the relative Hamiltonian, namely H′ = T ′ + V ′. The following cor-

relation holds

H = H′ +Mem, (11)

where em = ek + ep is the macroscopic mechanical energy per unit of mass.

It is easy to prove that, because of the properties of the exponential func-

tion, the equilibrium probability density is not affected by the shift in the

Hamiltonian due to the macroscopic mechanical energy, namely

f
(e)
[N ] =

exp(−βH′)∫ ∫
exp(−βH′) ΠN

n=1dxnΠN
n=1dvn

. (12)

Hence, the previous expression can be used instead of Eq. (5). Taking into

account again the properties of the exponential function, the denominator of

Eq. (12) can be rewritten as

f
(e)
[N ] =

1

KN ZN
exp(−βH′), (13)

where

KN =

∫
exp(−β T ′) ΠN

n=1dvn, (14)

while ZN is the configuration integral [27] given by

ZN =

∫
exp(−β V ′) ΠN

n=1dxn. (15)

We are now ready to find out the macroscopic meaning of 〈H〉(e) by

substituting Eq. (13) into Eq. (4) and following the standard procedure for
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canonical ensemble [27], namely

〈H〉(e) = Eid
i + Eex

i + Em, (16)

where Em = Mem is the macroscopic mechanical energy of the system and

Eid
i =

1

KN

∫
T ′ exp(−β T ′) ΠN

n=1dvn, (17)

Eex
i =

1

ZN

∫
V ′ exp(−β V ′) ΠN

n=1dxn. (18)

The physical meaning of the previous quantities will be clarified soon, by

elaborating on Eid
i in particular. Equation (17) can be rewritten in a more

convenient way, namely

Eid
i = − 1

KN

∫
∂

∂β
[exp(−β T ′)] ΠN

n=1dvn = − 1

KN

∂KN

∂β
= −∂ lnKN

∂β
. (19)

Moreover KN can be expressed as

KN = ΠN
n=1

∫
exp

(
−β m

2
(vn − u)2

)
dvn =

[∫
exp

(
−β m

2
(v − u)2

)
dv

]N
,

(20)

where, in the latter expression, the subscript n has been omitted because v

can be the velocity of any particle in the system at equilibrium (because of

the arbitrariness of the labeling). It is easy to recognize that the last term

inside the square bracket is proportional to the equilibrium single-particle

distribution function f
(e)
[1] [50], meaning that the system dynamics is ruled by

the single-particle dynamics only. Substituting Eq. (20) into Eq. (19) yields

Eid
i =

M

ρ

∫
m

2
(v − u)2 f

(e)
[1] dv, (21)

where ρ =
∫
mf

(e)
[1] dv is the macroscopic local density. The integral at the

right-hand side of (21) corresponds to the internal energy definition in kinetic
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theory of ideal monatomic gases [50], divided by the system volume V . Hence,

Eid
i is the ideal part of the macroscopic internal energy of the system. It is

possible to prove that, for monatomic gases, Eid
i = 3N (kBT/2) [50], where

clearly each translational degree of freedom contributes for kBT/2 (similarly

happens for rotational and vibrational degrees of freedom). By analogy, Eex
i

given by Eq. (18) is the excess part of the macroscopic internal energy of the

system, due to the pair interactions between particles [27]. Let us introduce

the macroscopic internal energy of the system Ei = Eid
i + Eex

i . Substituting

the latter definition in Eq. (16) yields

〈H〉(e) = Ei + Em ≡ Et, (22)

where Et is the macroscopic total energy of the system, which is the most

important form of energy in computational fluid dynamics. The previous ex-

pression is the main result of the proposed derivation which highlights that

the equilibrium canonical-ensemble-averaged Hamiltonian 〈H〉(e) in molecu-

lar dynamics corresponds to the macroscopic total energy Et in computa-

tional fluid dynamics.

4. Discussion

1. Equation (22), which is rigorously derived in the previous section, repre-

sents the key to consistently link disparate scales, as required nowadays

in the study of micro- and nano-devices. A schematic view is reported

in Figure 1. The equilibrium ensemble-averaged Hamiltonian (in molec-

ular dynamics) and the total energy (in fluid dynamics) are two ways

to look at the same quantity. This is the starting point for formulating
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micro 

Figure 1: (Color online) Schematic view of the connections among different forms of

energy both at macroscopic and microscopic scales: Equation (22) represents the key to

link consistently multiple scales, as required nowadays in the theory of small systems.
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the first law of thermodynamics in the latter two approaches (see next).

Moreover, this allows one to clarify the physical meaning of total energy

in the context of macroscopic fluid dynamics. The total energy is the

sum of the macroscopic (Em) and microscopic (Ei) mechanical energy,

with thermodynamics being the mechanics of microscopic mechanical

energy. The schematic reported in Fig. 1 reminds us that Eid
i and

Ek have similar microscopic origin (i.e. microscopic kinetic energy),

similarly Eex
i and Ep (i.e. microscopic potential energy), even though

in fluid dynamics there is a clear distinction between Ei = Eid
i + Eex

i

(ruling heat transfer) and Em = Ek + Ep (ruling fluid flow).

2. It is worth the effort to highlight the (often) ambiguous role of the

external field E . In the present paper, for the sake of simplicity but

without loss of generality, an external field due to a single external

source with center xG has been considered, namely E(‖xn − xG‖). If

the distance of the external body from the system is much bigger than

a characteristic length of the system, namely ‖x−xG‖ � ‖xn−x‖, as

discussed in the previous section, then the external field will contribute

to the macroscopic potential energy Ep. Moreover, in this case, it will

not modify the definition of the local equilibrium, as one can realize

by comparing Eq. (5) and Eq. (12). As discussed, this is acceptable

for gravity. However, in the small systems of interest nowadays in the

context of nanotechnology and biotechnology, one can find a huge num-

ber of applications where the external field source is very close to the

system or even inside it, for example, in presence of functionalized sur-

faces, surface radicals, surface charges, electro-hydro-dynamics (EHD),

19



etc.. In all these cases, the external field would contribute to the in-

ternal energy of the fluid Ei by Eex
i . In particular, in these cases, the

internal energy is no more a simple function of the temperature, but it

depends also on the microscopic details of the interaction between the

fluid and the external field. For example, this feature is very important

for studying the nanoconfinement of water [57].

3. As recognized by Gibbs in 1902, canonical ensemble is appropriate for

describing a closed system (i.e. unable to exchange particles with its

environment), which is into weak thermal contact with other systems

that are described by ensembles with the same temperature [49]. If the

system is also isolated (i.e. unable to exchange particles and energy

with its environment), then the equilibrium ensemble-averaged Hamil-

tonian, i.e. the total energy of the system because of Eq. (22), is

constant. Let us consider a mass M enclosed into a fixed volume Ω

and let Et be its total energy. If this system is closed and isolated,

then ∂Et/∂t = 0, meaning that the total energy is not created nor de-

stroyed within Ω. In fluid dynamics, the previous property is expressed

by saying that total energy is a conserved quantity of the system.

On the other hand, if the system is not isolated, then the total energy

can vary inside the volume because of the fluxes at the border, namely

∂Et
∂t

=
∂

∂t

∫
Ω

ρet dV = −
∮
∂Ω

f · n̂ dS, (23)

where f is the flux of total energy, ∂Ω is the closed border surface of Ω, n̂

is the (outgoing) versor of the surface ∂Ω and S is the parameterization

of the surface ∂Ω. Recalling that the volume Ω is arbitrary and it does
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not change in time, the Gauss theorem yields

∂(ρet)

∂t
+∇ · f = 0. (24)

Next, let us remove the last constraint and let us consider also the

possibility to exchange particles at the border, at least as far as the

particles remain the same (neither chemical nor nuclear reactions are

considered here). This is a typical procedure used in engineering ther-

modynamics in order to extend to open system the applicability of the

results derived by canonical ensemble for non-reactive systems [41]. Let

us allow Ω to be permeable. The particles that at time t = 0 were in Ω

can now move and they will occupy the volume Ω′ at time t = δt� 1

with a total energy E ′t. The quantity E ′t−Et allows one to quantify the

total energy flux at the border of the original volume Ω, i.e. f in (24).

Three terms can contribute to f : (a) advection flux ρetu; (b) thermal

flux qα and (c) mechanical flux Π ·u, where Π is the total stress tensor

(sum of the hydrostatic and hydrodynamic parts). Putting together

these results yields

∂(ρet)

∂t
+∇ · (ρet u + qα + Π · u) = 0, (25)

which accounts for the energy balance in the Navier-Stokes-Fourier sys-

tem of equations. This section aims at stressing that the total energy

equation in the Navier-Stokes-Fourier system of equations immediately

follows from Eq. (22).

4. A general expression of the first law in engineering thermodynamics for

open systems [58] can be derived from Eq. (25). Splitting the stress

21



tensor into hydrostatic and hydrodynamic parts, namely Π = p I−Πν

where p is the pressure and I is the identity matrix, yields

∇ · (−qα + Πν · u) =
∂(ρet)

∂t
+∇ · (ρet u + ρ pv u), (26)

where v = 1/ρ is the specific volume per unit of mass. Integrating the

previous equation over the control volume Ω yields∑
j

Φj −W ∗
t =

∂Et
∂t

∣∣∣∣
Ω

+
∑
i

Gi (et + pv)i (27)

where Φj is the thermal flux through the j-th portion of the border ∂Ω

called ∂ΩΦ
j , namely

Φj = −
∮
∂ΩΦ

j

qα · n̂ dS, (28)

W ∗
t is the gross mechanical power done by the system on its surround-

ings, namely

W ∗
t = −

∮
∂Ω

(Πν · u) · n̂ dS, (29)

Gi is the mass flow rate through the i-th portion of the border called

∂ΩG
i , namely

(et + pv)i =
1

Gi

∮
∂ΩG

i

ρ(et + pv)u · n̂ dS, (30)

and (et + pv)i is the average quantity on the surface ∂ΩG
i , namely

Gi =

∮
∂ΩG

i

ρu · n̂ dS. (31)

Sometimes it is common [58] to remove the contribution of the environ-

ment on the mechanical power. Introducing the net mechanical power

Wt = W ∗
t −p0 dV/dt, where p0 is the environmental pressure the system

works in, yields∑
j

Φj −Wt =
∂(Et + p0V )

∂t

∣∣∣∣
Ω

+
∑
i

Gi (et + pv)i . (32)
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5. Conclusions

In the present paper, we clarify the consistent definition of macroscopic

total energy in classical fluid mechanics, as a function of the microscopic

canonical Hamiltonian field, based on a Lennard-Jones model in the pres-

ence of spatially varying external field. The macroscopic total energy Et

(sum of mechanical and internal energy) is proved to be equal to the equilib-

rium ensemble-averaged Hamiltonian 〈H〉(e), as expressed by Eq. (22). This

result clarifies some ambiguities (for example, see Eq. (2.2.12) in Ref. [27]),

which is an essential step in developing a consistent theoretical framework

for the study of engineering systems characterized by a wide range of scales.

A schematic view of the connections among different forms of energy both

at macroscopic and microscopic levels is reported in Fig. 1. Four main com-

ments follow from the derived result. First of all, even though macroscopic

fluid dynamics makes a distinction between internal energy Ei and mechan-

ical energy Em as the quantities for describing heat transfer and fluid flow

respectively, they have a common microscopic origin rooted in the underly-

ing (canonical) system Hamiltonian. Moreover, the effects of the external

field can be included either in the macroscopic potential energy or in the

internal energy, depending on the location of the external field source with

regards to the considered domain. The latter point is crucial in the analysis

of nanoconfinement. Finally, once the fundamental link is established, it is

easy to derive the corresponding equations prescribing the conservation of

energy in fluid dynamics (given by Eq. (25)) and thermal systems engineer-

ing (given by Eq. (32)). We hope this work can contribute in clarifying the

link among the several notions of energy as used in the different scientific
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communities.
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[6] Y. Cercignani, Slow Rarefied Flows: Theory and Application to Micro-

Electro-Mechanical Systems, Series: Progress in Mathematical Physics
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