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Almost sure convergence of a randomized algorithm for relative localization

in sensor networks

Chiara Ravazzi Paolo Frasca Roberto Tempo Hideaki Ishii

Abstract— This paper regards the relative localization prob-
lem in sensor networks. We study a randomized algorithm,
which is based on input-driven consensus dynamics and involves
pairwise “gossip” communications and updates. Due to the ran-
domness of the updates, the state of this algorithm ergodically
oscillates around a limit value. Exploiting the ergodicity of the
dynamics, we show that the time-average of the state almost
surely converges to the least-squares solution of the localization
problem. Remarkably, the computation of the time-average does
not require the sensors to share any common clock. Hence, the
proposed algorithm is fully distributed and asynchronous.

I. INTRODUCTION

We consider the problem of relative localization for sensor

networks that can be described as follows. We assume to

have a group of agents representing the nodes of a graph,

and a vector, indexed over the agents and unknown to them.

The agents are allowed to take noisy measurements of the

differences between their vector entries and those of their

neighbors in the graph. The estimation problem consists

in reconstructing the original vector, up to an additive

constant. While an optimal solution can be easily found

by a centralized least-squares approach, we are interested

in finding effective distributed solutions. More precisely, a

solution is said to be distributed if it requires each node to

use information which is available only at the node itself or

from its immediate neighbors. Following this approach, we

have recently proposed [1] a randomized “gossip” algorithm

for distributed relative localization. This algorithm, which

is inspired by a gradient descent approach, involves the

activation of a randomly chosen pair of neighboring nodes

at each time step. In our previous work, we have already

given a convergence result for the algorithm: the mean-square

error between the time-average of the states and the optimal

solution asymptotically goes to zero.

In this paper, we study the algorithm using tools from

ergodic theory and we obtain a related convergence result:

the time-average of the states converges almost surely to
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the optimal solution. Significantly, our definition of time-

average does not require the agents to be aware of any global

clock or of any global variable which counts the number of

interactions occurring on the network.

A. State of the art

The abstract problem of relative localization is deemed

to have important applications in sensor and robotic net-

works [2]. The proposed applications cover synchronization

of uncertain clocks [3], as well as spacial localization [4]

in mobile robotic networks when no absolute position in-

formation is available. In the control literature, the problem

has been popularized by [2], [5], [6]. Distributed algorithms

involving synchronized updates by the nodes have been

proposed in the last few years [2], [3]. The last paper

uses a gradient-descent technique to solve the problem: this

approach has been later followed in [7], [8], as well as in

our previous work [1]. Recently, papers have started to con-

sider randomized asynchronous and randomized algorithms

to solve the localization problem [9], [10], [11]. We refer

the reader to [12] for randomised asynchronous algorithms

for convex optimisation and to [13] for other randomized

algorithms in systems and control.

B. Contribution

In this work, we prove an ergodic theorem for the algo-

rithm in [1, Eq. (10)] and we show that a suitable time-

averaging operation removes the persistent random oscilla-

tions which affect the “raw” estimates obtained through gos-

sip communication and updates. The resulting time-averaged

state converges almost surely to the optimal solution of the

relative localization problem.

The ergodicity analysis of seemingly non-convergent dy-

namics started to attract attention in the theory of multi-agent

systems and distributed control only recently. For example,

we remark that the algorithm under study presents strong

similarities with randomized algorithms for the PageRank

computation, which have been recently proposed in several

papers [14], [15], [16]. Indeed, randomized PageRank dy-

namics have been shown to converge modulo time-averaging:

available results cover both convergence in mean square [14]

and almost sure [17]. We stress, however, that our proof of

almost sure convergence is based on completely different

tools from [17], which uses techniques from stochastic

approximation. Related applications of ergodic theory can

be found in the context of social networks [18], [19], where

the authors show the ergodicity of specific opinion dynam-

ics, which extend the well-known consensus dynamics to



incorporate external influences and heterogeneous (stubborn)

agents. Our analysis owes much to these techniques.

Furthermore, we stress that ergodicity is a key property

in enabling our framework to easily accommodate time-

averages. Hence, we study an algorithm which is fully

asynchronous and distributed. On the contrary, prior work

on randomized algorithms assumed time-averages to be

computed using a global iteration counter, see [14], [17].

C. Organization of the paper

We formally present the problem of relative localization

in Section II. Then, in Section III we define the randomized

algorithm and state the main convergence results. These

results are proved by the analysis presented in Section IV.

We conclude the paper with some remarks on future research

in the final section.

II. THE PROBLEM OF RELATIVE LOCALIZATION

We consider a set of nodes V = {1, 2, . . . , N}, endowed

with an unknown scalar quantity x̄v for v ∈ V . The relative

localization problem consists, for each node u ∈ V , in

estimating the scalar value x̄u, based on noisy measurements

of differences x̄u − x̄v with certain neighbors v. An ori-

ented graph G = (V , E) is used to represent the available

measurements. The orientation of the pairs is conventionally

assumed to be such that (v, u) ∈ E only if u < v. We let

A ∈ {0,±1}E×V be the incidence matrix of the graph G,

which is defined as

Aew =





+1 if e = (v, w)

−1 if e = (w, v)

0 otherwise

for every e ∈ E . We let b ∈ R
E be the vector collecting the

measurements

b = Ax̄+ η,

where x̄ is the stacked vector of x̄i with i ∈ V , η ∈ R
E is

additive noise. We define the set of the optimal estimates in

a least squares sense as

X = argmin
z∈RN

‖Az − b‖22 (1)

where ‖ · ‖2 is the Euclidean norm. The set X is described

in the following well-known lemma [2].

Lemma 1 (Centralized solution): Let the graph G be con-

nected and let L := A⊤A denote the Laplacian of the graph.

The following facts hold:

1) x ∈ X if and only if A⊤Ax = A⊤b;
2) there exists a unique x⋆ ∈ X such that ||x⋆||2 =

minz∈X ||z||2;

3) x⋆ = L†A⊤b, where L† denotes the Moore-Penrose

pseudo-inverse of the Laplacian L.

Note that x⋆ is the minimum-norm element of the affine

space of solutions of (1). Indeed, Ax⋆ = A(x⋆ + c1) for all

scalar c, where 1 denotes the vector of ones.

In this work, we are interested in designing randomized

asynchronous algorithms to solve this problem: in view of

the result above, we shall assume from now on that G is

connected.

III. ALGORITHM DESCRIPTION AND MAIN RESULTS

This section is devoted to describe the algorithm which

was proposed in [1, Section V] and to state our main results.

The algorithm involves for each node v ∈ V a triple of

states (xv, κv, x̃v), depending on a discrete time index k ∈
Z≥0: these three variables play the following roles: xv(k) is

the “raw” estimate of x̄v obtained by v at time k through

communications with its neighbors, κv(k) counts the number

of updates performed by v up to time k, and x̃v(k) is the

“smoothed” estimate obtained through time-averaging. The

algorithm is defined by choosing a scalar parameter γ ∈
(0, 1) and a sequence of random variables θ(k)k∈Z≥0

taking

values in E . At each time k, provided that θ(k) = (u, v),
the state updates are performed according to the following

rules: the estimates evolve as

xu(k + 1) = (1− γ)xu(k) + γxv(k) + γb(u,v)

xv(k + 1) = (1− γ)xv(k) + γxu(k)− γb(u,v)

xw(k + 1) = xw(k) if w /∈ {u, v};

(2a)

the local times as

κu(k + 1) = κu(k) + 1

κv(k + 1) = κv(k) + 1

κw(k + 1) = κw(k) if w /∈ {u, v};

(2b)

and the time-averages as

x̃u(k + 1) =
1

κu(k + 1)

(
κu(k)x̃u(k) + xu(k + 1)

)

x̃v(k + 1) =
1

κv(k + 1)

(
κv(k)x̃v(k) + xv(k + 1)

)

x̃w(k + 1) = x̃w(k) if w /∈ {u, v}.

(2c)

We assume the sequence {θ(k)}k∈Z≥0
to be i.i.d., and its

probability distribution to be uniform, i.e.,

P[θ(k) = (u, v)] =
1

|E|
, ∀k ∈ Z≥0, (3)

where |E| denotes the cardinality of E . Note that this choice

is made without loss of generality and convenience: the same

approach may accommodate other distributions, as required

by the application.

It should be noted that the time index k in fact counts

the number of updates which have occurred in the network,

whereas for each u ∈ V the variable κu(k) is the number

of updates involving u up to the current time. Hence, κu is

a local variable which is inherently known to agent u, even

in case the common clock k is unavailable. This algorithm

is totally asynchronous and fully distributed, in the sense

that the time averaging process does not need the nodes

to be aware of a common clock. This point provides a

major improvement with respect to our previous work [1,

Theorem 3].

The dynamics in (2a) oscillates persistently and fails to

converge in a deterministic sense, as shown in Figure 1.

However, the oscillations concentrate around the solution

of the least squares problem, as it is formally stated in the
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Fig. 1. Complete graph, N = 10, γ = 0.5, zero initial conditions.

following two results. The first result regards the behavior

of the average dynamics.

Proposition 2 (Convergence in expectation): Consider

the dynamics (2a) with uniform edge selection (3). Then,

lim
k→+∞

E[x(k)] = x⋆.

The second result, instead, states that the sample dynamics

is well-represented by the average one, i.e., the process is

ergodic.

Theorem 3 (Almost sure convergence of ergodic means):

The dynamics in (2a), with uniform edge selection (3) and

x(0) = 0, is ergodic. If {nℓ}ℓ∈N is a sequence of

nonnegative integers, then with probability one

lim
k→∞

1

k

k∑

ℓ=1

x(nℓ)=x⋆.

From these two facts, which are proved in the next section,

we immediately deduce the following statement, which mo-

tivates the definition of the algorithm previously introduced

indicates that x̃u(k) is the right variable” to approximate the

optimal estimate x⋆
u.

Corollary 4: The dynamics in (2c) is such that

lim
k→+∞

x̃(k) = x⋆

with probability one.

IV. ERGODICITY ANALYSIS

In this section we study the convergence properties of

the vector x(k) for the update model described in (2a).

As shown in Fig. 1, the estimate of each agent oscillates

persistently; on the other hand the time averages approach the

optimal solution x⋆ in Lemma 1. Although the process x(k)
almost surely fails to converge, we prove that it converges

in distribution to a random variable x∞ and is ergodic.

To begin, we rewrite the dynamics of (2a) as

x(k + 1) = Q(k)x(k) + y(k) (4)

where

Q(k) = I − γ(eu − ev)(eu − ev)
⊤,

vector eu denotes the vector of the canonical basis corre-

sponding to u, and

y(k) = bθ(k)(eu − ev)

provided θ(k) = (u, v) with k ∈ Z≥0. Consequently, we

prove the following result either by direct computation or by

using Lemma 5 in [1].

Lemma 5: For the distribution (3), it holds

E[Q(k)] = I − γ
L

|E|
, E [y(k)] = γ

A⊤b

|E|
.

We note that for all k the matrix Q(k) is doubly stochastic

and the sum of the elements in y(k) is zero, that is,

1
⊤Q(k) = 1, Q(k)1 = 1, 1

⊤y(k) = 0. (5)

In particular, if the vector x(0) is initialized to zero, then

1
⊤x(k) = 0 for each k ∈ Z≥0.

These observations imply that the dynamics of x(k) is

equivalently described by the iterate

x(k + 1) = P (k)x(k) + y(k), (6)

where P (k) = Q(k)(I− 1
n
11

⊤) = (I− 1
n
11

⊤)Q(k) is a pro-

jection of Q(k) outside the “consensus sub-space” spanned

by 1. This rewriting is instrumental to study the conver-

gence behavior of the process {x(k)}k∈Z≥0
, by asymptotic

techniques of iterated random functions, which we recall

from [20]. These techniques require, in order to study the

random process (6), to consider the associated backward

process ←−x (k), which we define below.

For any time instant k, consider the random matrices P (k)
and y(k) and define the matrix product

−→
P (ℓ,m) := P (m)P (m− 1) · · ·P (ℓ + 1)P (ℓ) (7)

with ℓ ∈ {0, . . . ,m}. Then, the iterated affine system in (6)

can be rewritten as

x(k + 1) =
−→
P (0, k)x(0) +

∑

0≤ℓ≤k

−→
P (ℓ+ 1, k)y(ℓ). (8)



The corresponding backward process is defined by

←−x (k + 1) =
←−
P (0, k)x(0) +

∑

0≤ℓ≤k

←−
P (0, ℓ− 1)y(ℓ), (9)

where
←−
P (ℓ,m) := P (ℓ)P (ℓ+ 1) · · ·P (m− 1)P (m) (10)

with ℓ ∈ {0, . . . ,m}. Crucially, the backward process ←−x (k)
has at every time k ∈ Z≥0 the same probability distribution

of x(k). The main tool to study the backward process is the

following well-known result.

Lemma 6 (Theorem 2.1 in [20]): Let us consider the

Markov process {X(k)}k∈N defined by

X(k + 1) = A(k)X(k) +B(k) k ∈ Z≥0

where A(k) ∈ R
V×V and B(k) ∈ R

V are i.i.d. random

variables. Let us assume that

E[log ‖A(k)‖] <∞ E[log ‖B(k)‖] <∞. (11)

The corresponding backward random process
←−
X (k) con-

verges a.s. to a finite limit X∞ if and only if

inf
k>0

1

k
E [log ‖A(1) . . . A(k)‖] < 0. (12)

If (12) holds, the distribution of X∞ is the unique invariant

distribution for the Markov process X(k).
This result provides conditions for the backward process

to converge to a limit. Although the forward process has

a different behavior compared to the backward process, the

forward and backward processes have the same distribution.

This fact allows us to determine, by studying the backward

process ←−x (k), whether the sequence of random variables

{x(k)}k∈Z≥0
converges in distribution to the invariant dis-

tribution of the Markov process in (6).

This analysis is done in the following result.

Lemma 7: Consider the random process x(k) defined

in (6), where P (k) and y(k) are i.i.d.. Then←−x (k) converges

a.s. to a finite limit x∞, and the distribution of x∞ is the

unique invariant distribution for x(k).
Proof: In order to apply Lemma 6, let us compute

inf
k∈N

1

k
E

[
log ‖
←−
P (0, k − 1)‖1

]

≤ inf
k∈N

1

k
logE

[
‖
←−
P (0, k − 1)‖1

]

= inf
k∈N

1

k
logE

[
max
w∈V

∑

i∈V

(
←−
P (0, k − 1))vw

]

≤ inf
k∈N

1

k
logE

[
∑

w∈V

∑

v∈V

(
←−
P (0, k − 1))vw

]

≤ inf
k∈N

1

k
log

∑

w∈V

∑

v∈V

E

[←−
P (0, k − 1)vw

]

≤ inf
k∈N

1

k
log
(
n
∥∥∥E
[←−
P (0, k − 1)

]∥∥∥
∞

)

= inf
k∈N

1

k
log

(
n

∥∥∥∥∥

k−1∏

ℓ=0

E [P (ℓ)]

∥∥∥∥∥
∞

)
.

Let q be the number of distinct eigenvalues of E[P (k)], de-

noted as {λℓ}
q
ℓ=1, and consider the Jordan canonical decom-

position E [P (k)] = UJU−1. Then

∥∥∥
∏k−1

s=0 E [P (s)]
∥∥∥
∞
≤

‖U‖∞‖J
k‖∞‖U

−1‖∞. Since the k-th power of the Jordan

block of size s is




λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
...

0 · · · 0 λ 1
0 0 · · · λ




k

=




λk
(
k
1

)
λk−1

(
k
2

)
λk−2 · · ·

(
k

s−1

)
λk−s+1

0 λk
(
k

1

)
λk−1 · · ·

(
k

s−2

)
λk−s+2

...
. . .

...

0 · · · 0 λk
(
k
1

)
λk−1

0 0 · · · λk



,

we deduce that

‖Jk‖∞ = max
v∈V

∑

w∈V

(Jk)vw = max
ℓ=1,...,q

sℓ−1∑

m=0

λk−m
ℓ

(
k

m

)
,

where sℓ is the size of the largest Jordan block corresponding

to λℓ. Then

‖Jk‖∞ ≤ max
ℓ=1,...,q

|λℓ|
k

sℓ−1∑

m=0

|λℓ|
−m

(
k

m

)

≤ max
ℓ=1,...,q

|λℓ|
kkn

sℓ−1∑

m=0

|λℓ|
−m

≤ χρkkn,

where χ is a constant independent of k and

ρ = ‖E[P (k)]‖2 .

From Lemma 5, it follows that ρ < 1. We conclude that

there exists a constant C = ‖U‖∞‖U
−1‖∞χ, independent

of k, such that

E

[
log ‖
←−
P (0, k − 1)‖1

]
≤ log

(
nCρkkn

)
.

and, consequently,

inf
k∈N

1

k
E

[
log ‖
←−
P (0, k − 1)‖1

]

≤ lim
k→∞

log(Cnknρk)

k
(13)

= log ρ < 0.

The claim then follows from Lemma 6.

As a consequence, we deduce that also the (forward)

random process x(k), defined in (6), converges in distribution

to a limit x∞, and the distribution of x∞ is the unique

invariant distribution for x(k). The oscillations of (2a) are

ergodic, as stated in the following result.



Lemma 8: The random process x(k) defined in (6) is

ergodic: if {nℓ}ℓ∈N is a sequence of nonnegative integers,

then with probability one

lim
k→∞

1

k

k∑

ℓ=1

x(nℓ)=E [x∞] .

Furthermore, E[x∞] = L†A⊤b.
Proof: We begin by showing the ergodicity. Let z(0)

be a random vector independent from x(0) with the same

distribution as x∞. Let {z(k)}k∈Z≥0
be the sequence such

that

z(k) =
−→
P (0, k − 1)z(0) +

∑

0≤ℓ≤k−1

−→
P (ℓ + 1, k − 1)y(ℓ)

where
−→
P (ℓ+1, k−1) is defined as in (7). It should be noted

that, since the process z(k) is stationary, we can apply the

law of large numbers and immediately conclude that, with

probability one,

lim
k→∞

1

k

k−1∑

s=0

z(s) = E[x∞].

On the other hand, we compute

P
(
‖x(k)− z(k)‖1 ≥ εk

)

≤
E

[
‖
−→
P (0, k − 1)(z(0)− x(0))‖1

]

εk

≤
E

[
‖
−→
P (0, k − 1)‖1‖z(0)− x(0))‖1

]

εk

≤
E

[
‖
−→
P (0, k − 1)‖1

]
E [‖z(0)− x(0)‖1]

εk

≤
Cnknρk

εk
E [‖z(0)− x(0)‖1] ,

where we have used (13). If we choose ε ∈ (ρ, 1), then the

Borel-Cantelli Lemma [21, Theorem 1.4.2] implies that with

probability one ‖x(k)−z(k)‖1 < εk for all but finitely many

values of k ≥ 0. Therefore, almost surely 1
k

∑k−1
s=0 ‖x(s) −

z(s)‖1 converges to zero as k goes to infinity,

lim
k→∞

1

k

k−1∑

s=0

x(s) = E[x∞].

The statement follows when we observe that the same argu-

ments hold if we replace all summations over the nonnegative

integers with summations over a subsequence of nonnegative

integers.

To complete the proof, we only need to compute the

expectation of x∞. Using the independence among P (k)s
and y(k)s, we obtain

E[x(k)] = E[P ]kx(0) +
∑

0≤ℓ≤k−1

E[P (k)]k−ℓ−1
E[y(k)]

and we conclude from Proposition 2 (see also [1, Proposi-

tion 6]) that

E[x∞] = lim
k→+∞

E[x(k)] = L†A⊤b.

V. CONCLUDING REMARKS

In this paper, we have studied a randomized gossip algo-

rithm for the relative localization problem. The states of this

algorithm exhibit oscillations, which can be smoothed out

by a suitable time-averaging. These time-averages converge

almost surely to the optimal solution. We stress that our

definition of time-average (2) does not require the nodes

to be aware of any global clock or any other global vari-

able. This feature should be contrasted against our previ-

ous contribution in [1], where we defined time-averages

as x(k) := 1
k

∑k

ℓ=1 x(ℓ). Figure 2 compares the evolution
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Fig. 2. Comparing local and global clocks, under the same conditions as
in Figure 1. Dashed lines represent global time-averages x(k), solid lines
represent local time-averages x̃(k).

of x(k) (dashed lines) and x̃(k) (solid lines). Remarkably,

solid lines are smoother than dashed lines and approach

the optimal solution faster. This observation is common to

our simulations, and suggests that the use of local time-

averaging is not only an advantage from the point of view

of the implementation, but actually allows for an improved

performance of the algorithm. A formal proof of this fact

asks for further investigation.

In view of the effectiveness of the proposed time-averaging

approach, future research will seek broader applications

of these techniques to ergodic dynamics in multi-agents

systems. It is also worth mentioning that different solutions

have been proposed in the literature to smooth the oscil-

lations of a dynamical system and guarantee the almost

sure convergence of the system. This goal can be achieved

using diminishing step-sizes, which damp the input in the

long run, but maintaining the input itself ’active’ for a

sufficiently long time: their analysis is generally based on

tools from stochastic approximation [22] or semi-martingale

theory [23]. A thorough comparison of the latter approach

with ours is also an interesting topic for future research.
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