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Abstract

The thermal lattice Boltzmann equation (TLBE) with multiple-relaxation-

times (MRT) collision model is used to simulate the steady thermal con-

vective flows in the two-dimensional square cavity with differentially heated

vertical walls at high Rayleigh numbers. The MRT-TLBE consists of two

sets of distribution functions, i.e., a D2Q9 model for the mass-momentum

equations and a D2Q5 model for the temperature equation. The dimension-

less flow parameters are the following: the Prandtl number Pr = 0.71 and

the Rayleigh number Ra = 106, 107, and 108. The D2Q9+D2Q5 MRT-TLBE

is shown to be second-order accurate and to be capable of yielding results

of benchmark quality, including various Nusselt numbers and local hydrody-

namic intensities. The results obtained by using the MRT-TLBE agree well

with existing benchmark data obtained by other methods.

Key words: Steady Rayleigh-Bénard convective flow, 2D square cavity

with differentially heated vertical walls, lattice Boltzmann equation

1. Introduction

There has been a systematic effort to construct the lattice Boltzmann

equation (LBE) for thermal hydrodynamics since the inception of the lat-
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tice Boltzmann method (LBM). From early on, it was realized that, while

the LBE with energy conservation can lead to the correct macroscopic equa-

tions (cf., e.g., [1]), the energy-conserving lattice Boltzmann (LB) models are

plagued with severe numerical instability [2], hence they are of little practical

use.

It was found that in addition to being prone to numerical instabilities,

energy-conserving LBE is also plagued with spurious couplings between en-

ergy and shear modes of the linearized evolution operator [2]. To remove this

spurious coupling between energy and shear modes, the energy-conservation

law must be separated from the mass and momentum conservation laws and

there exist at least two approaches to accomplish this goal. The first approach

is to use two sets of distribution functions, one for the mass-momentum con-

servations and the other for the energy conservation (cf., e.g., [3, 4]); and

the second is a hybrid approach with the LBE for the mass-momentum con-

servations and a finite-difference (FD) scheme for the temperature equation

[2, 5]. Both these approaches effectively remove the spurious energy-shear

mode coupling. However, the hybrid thermal LBE encounters a new prob-

lem — it is difficult to realize the temperature boundary conditions which are

consistent with the LB boundary conditions for mass-momentum equations.

Consequently, the approach of dual distributions becomes the prevailing one.

In this work we will use the thermal lattice Boltzmann equation (TLBE)

with dual distributions and the multiple-relaxation-time collision model to

simulate internal thermal flows in two-dimensions (2D). The TLBE consists

of a D2Q9 MRT-LBE [6, 7] for the mass-momentum conservations and a

D2Q5 MRT-LBE [8, 9, 10, 11, 12] for the advection-diffusion equation for the

temperature. The TLBE with D2Q9 and D2Q5 LB models has been validated

for its accuracy and stability [4]. In particular, we will use the D2Q9+D2Q5

TLBE to simulate the thermally driven convective flow in the 2D square cav-

ity with differentially heated vertical walls [13, 14]. This flow has been used

to validate various numerical methods including pseudo-spectral (PS) [15],

finite difference (FD) [14, 16], finite element (FE) [17, 18], finite volume (FV)
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[19, 20], and control volume (CV) [21] methods. In fact, the 2D square cavity

with differentially heated vertical walls has become a standard benchmark

problem for incompressible thermal flows. One of the primary purpose of

the present work is to reproduce benchmark quality results for the thermally

driven steady 2D cavity flow at high Rayleigh numbers (Ra = 106, 107, and

108) by using the MRT-TLBE model we have developed [4].

The remainder of the paper is organized as follows. Section 2 provides a

detailed description of the D2Q9+D2Q5 MRT-TLBE for thermal flows [4],

including specifically the details of the MRT-TLBE and the corresponding

macroscopic hydrodynamic equations, and the implementation of the TLBE

algorithm. Section 3 discusses the flow configuration of the 2D square cavity

with differentially heated vertical walls. We pay a special attention to the

boundary conditions in the flow and their LB implementations. Section 4

describes the numerical procedures for post-processing, which are used to

measure various quantities in the simulations. Section 5 presents our nu-

merical results. We first present a study on the effect of a parameter in

the MRT-TLBE which determines the heat diffusivity κ; we also conduct a

convergence study of the flow fields, Nusselt numbers, and some local hydro-

dynamic intensities; we then compare our results with existing benchmark

data. Finally, Section 6 concludes the paper with a summary.

2. The lattice Boltzmann model for incompressible thermal flows

The lattice Boltzmann model for incompressible thermal flows consisting

of two sets of distributions and their corresponding evolution equations —

one for conservations of mass and momentum and the other for the temper-

ature — was first proposed by Eggels and Summers [3]. This model assumes

Boussinesq approximation, i.e., the temperature T is a passive scalar and its

influence to the velocity field u is through the buoyancy term. We will use

the LBE with MRT-LBE [6, 7, 22, 23] throughout this work. The MRT-LBE

for thermal hydrodynamics has been developed in our previous work [4]. To

make the present work self-contained, we will provide the details of the LBE
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model and its implementation in what follows.

2.1. D2Q9 model for mass and momentum conservations

The D2Q9 model will be used for the mass and momentum conservations.

The discrete velocity set, {ci|i = 0, 1, . . . , 8}, for the D2Q9 model is

ci =


(0, 0) i = 0,

(±1, 0)c, (0, ±1)c, i = 1 – 4,

(±1, ±1)c, i = 5 – 8,

(1)

where c := δx/δt, and δx and δt are the grid spacing and the time-step size,

respectively. The evolution equation is written in general as the following:

f(xj +cδt, tn+δt) = f(xj, tn)−M−1 ·S ·
[
m−m(0)

]
(xj, tn)+F(xj, tn), (2)

where the bold-face font denotes 9-dimensional vectors:

f(xj + cδt, ·) := (f0(xj, ·), f1(xj + c1δt, ·), . . . , f8(xj + c8δt, ·))† ,
f(xj, ·) := (f0(xj, ·), f1(xj, ·), . . . , f8(xj, ·))† ,
m(xj, ·) := (m0(xj, ·), m1(xj, ·), . . . , m8(xj, ·))† ,

f and m are vectors of the discrete-velocity distributions and corresponding

moments, respectively, m(0) is the vector of the equilibrium moments, and

F is the vector of external forcing, which is implemented according to the

procedure to be discussed later in Sec. 2.4.

The transformation matrix M maps the distributions {fi|i = 0, 1, . . . , 8}
to the corresponding moments {mi|i = 0, 1, . . . , 8}, i.e.,

m = M · f , f = M−1 ·m. (3)
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Specifically, we use the following M:

M =



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

−4 −1 −1 −1 −1 2 2 2 2

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1

4 −2 −2 −2 −2 1 1 1 1


(4)

With M given above, the ordering of the moments is, as in [4]:

m = (ρ, jx, jy, e, pxx, pxy, qx, qy, ε)
† (5)

where ρ is the mass density, j = ρu is the flow momentum and u is the

flow velocity; e is the second-order moment corresponding to energy; pxx and

pxy are two off-diagonal components of the stress tensor; qx and qy are the

third-order moments corresponding to the x and y components of the energy

flux, respectively; and ε is the fourth-order moment [6, 7]. The diagonal

relaxation matrix is given by:

S = diag (1, 1, 1, se, sν , sν , sq, sq, sε) , si ∈ (0, 2) ∀i. (6)

In what follows we will use the two-relaxation-time (TRT) model due to

Ginzburg [8, 24, 25], in which

se = sε = sν =
2

6ν + 1
, (7a)

sq = 8
(2− sν)
(8− sν)

, (7b)

where ν is the shear viscosity. The TRT model ensures accurate flow bound-

ary conditions as well as adequate numerical stability [26, 27, 28, 4].
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The equilibrium moments {m(0)
i |i = 0, 1, . . . , 8} are given by

m
(0)
0 = δρ, , m

(0)
1 = ρ0u, m

(0)
2 = ρ0v, (8a)

m
(0)
3 = −2δρ+ 3ρ0(u2 + v2), m

(0)
4 = ρ0(u2 − v2), m

(0)
5 = ρ0uv, (8b)

m
(0)
6 = −ρ0u, m

(0)
7 = −ρ0v, (8c)

m
(0)
8 = δρ− 3ρ0(u2 + v2). (8d)

Note that the so-called incompressible approximation [29] has been used in

the equilibria above, that is, it is assumed that ρ = ρ0 + δρ with ρ0 = 1, and

the nonlinear term δρu and higher order nonlinear terms have been neglected

[29]. With the above equilibria, the speed of sound in the system is

cs =
1√
3
c. (9)

The kinematic viscosity coefficients ν and ζ of the system are:

ν = ζ =
1

3

(
1

sν
− 1

2

)
. (10)

2.2. D2Q5 model for the temperature

We use the D2Q5 LB model to simulate the advection-diffusion equation

for the temperature:

g(xj + cδt, tn + δt) = g(xj, tn)− N−1 · Q ·
[
n− n(0)

]
(xj, tn), (11)

where the notations similar to that in Eq. (2) are used, i.e., bold-face font

denotes 5-dimensional vectors. The discrete velocities in the D2Q5 model

are the first five in the D2Q9 model, specified in Eq. (1). The temperature

T is the sole conserved quantity in the D2Q5 model and it is given by

T =
∑4

i=0 gi. (12)

The equilibrium moments {n(0)
i |i = 0, 1, . . . , 4} are given by

n
(0)
0 = T, n

(0)
1 = uT, n

(0)
2 = vT, n

(0)
3 = aT, n

(0)
4 = 0, (13)
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where u and v are the velocity components obtained from the D2Q9 model

for the flow fields, and a ∈ (−4, 1) is a parameter the effect of which is to be

studied later in Sec. 5.1.

The transformation matrix N maps the distribution functions {gi|i =

0, 1, . . . , 4} to the corresponding moments {ni|i = 0, 1, . . . , 4} and is given

by

N =


1 1 1 1 1

0 1 0 −1 0

0 0 1 0 −1

−4 1 1 1 1

0 1 −1 1 −1

 . (14)

The diagonal relaxation matrix Q is given by

Q = diag (1, σκ, σκ, σe, σν) . (15)

The heat diffusivity κ is given by

κ =
(4 + a)

10

(
1

σκ
− 1

2

)
. (16)

To achieve the isotropy of the fourth-order error term in the D2Q5 model,

it is required that(
1

σν
− 1

2

)(
1

σκ
− 1

2

)
=

1

6
or σν = 6

(2− σκ)
(6− σκ)

. (17)

When the above relationship between σκ and σν is satisfied, one can eliminate

the fourth order term in the equivalent equations for the D2Q5 model with

the following relationship between σe and σκ [30]:

σe =
6(1− a)(2− σκ) σκ

(7 + 3a)(σκ − 6)σκ + 12(4 + a)
. (18)

If and only if σκ takes the following special value

1

σκ
=

1

2
+

√
3

6
, (19)
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the relationship between σe and σκ is much simplified, consequently σe and

σν become equal to the following value:(
1

σe
− 1

2

)
=

(
1

σν
− 1

2

)
=

√
3

3
. (20)

With σκ fixed at the value specified by Eq. (19), κ depends only on the

parameter a:

κ =

√
3(4 + a)

60
. (21)

Thus, with the special value of σκ given by Eq. (19) and σe = σν given by

Eq. (20), we have the D2Q5 TRT model [8, 9, 10, 11, 12], which eliminates

the fourth order term in its equivalent equation for the temperature. Unless

otherwise specified, we use the special value of σκ given by Eq. (19) in our

simulations.

2.3. Macroscopic equations

In incompressible thermal flows, thermal convection is due to the buoy-

ancy effect induced by the density variation caused by the temperature vari-

ation. The density variation due to temperature change is approximated by

the Boussinesq approximation:

ρ = ρ0 [1 + α (T − T0)] , (22)

where ρ0 is the reference density at the temperature T0, T0 is a reference tem-

perature, and α is the thermal expansion coefficient under constant pressure:

α :=
1

ρ0

∂ρ

∂T

∣∣∣∣
p

. (23)

With the Boussinesq approximation, the viscous heat dissipation and com-

pression work due to pressure are neglected, and all the transport coefficients

(ν and κ) and α are constants. The buoyancy force is therefore given by

F = ρ0α(T − T0)gĝ, (24)
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where g is the gravity and ĝ is the unit vector along the direction of the

gravitational force.

The macroscopic equations derived from the D2Q9+D2Q5 LBE system

are the following:

∂tu + u·∇u = − 1

ρ0

∇p+ ν∇2u + α(T − T0)gĝ, (25a)

∇ · u = 0, (25b)

∂tT + u·∇T = κ∇2T. (25c)

Equations (25b) and (25c) can be non-dimensionalized by choosing a char-

acteristic length L and temperature T0, while the velocity is normalized by

κ/L and the pressure by ρ0c
2 (c := δx/δt):

∂tu + u·∇u = −∇p+ Pr∇2u + Ra Pr θĝ, (26)

∇·u = 0, (27)

∂tθ + u·∇θ = ∇2θ, (28)

where θ := (T − T0)/T0, Pr := ν/κ is the Prandtl number which is fixed

at the value of 0.71 (for air) unless otherwise specified, Ra = Pr ·Gr is the

Rayleigh number, and Gr is the Grashof number:

Gr :=
αg∆TL3

ν2
, (29)

where ∆T is the reference temperature difference. The thermal diffusivity κ

and the shear viscosity ν can also be given by

κ =

√
αg∆TL3

Pr ·Ra
, ν = Pr ·κ. (30)

The characteristic velocity due to thermal convection is

U =
√
αg∆TL =

√
Ra

Pr

ν

L
. (31)

The Mach number Ma based on the thermal convective velocity U has to be

kept small enough in order to maintain the stability criterion for the LBE,
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which can be expressed as an upper bound for the viscosity ν:

ν <
Ma∗√

3

√
Pr

Ra
L, (32)

where Ma∗ is the critical Mach number. If we choose Ma∗ ≈ 0.3 and the

minimum length L ≈ 13δx, then the upper bound for ν is given by

ν < min

[
Ma√

3

√
Pr

Ra
L,

√
3.6

Ra

]
. (33)

The upper bound of ν is particularly important when L is small. Note that

for small Prandtl number, the thermal diffusivity κ may become so large that

a > 1 in Eq. (21), thus violating the stability condition of the D2Q5 model.

In the LBE, the Mach number Ma plays the role of Courant-Friedrichs-

Lewy (CFL) number. It has been shown [4] that for the D2Q9+D2Q5 TLBE

for incompressible thermal flows, the Mach number Ma determines dimen-

sionless time-step size, hence the computational efficiency, but it has little

effect on the accuracy of results.

In what follows, we will use Ma = 0.1 in our simulations unless otherwise

specified. The upper bound for viscosity ν given by Eq. (32) is used to ensure

the numerical stability of the simulations especially when small grid sizes are

used. Note that the transport coefficients in the LBE are Mach-number Ma

dependent and the Ma2 terms are non-isotropic, i.e., they depend on the

directly with respect to the lattice line [7]. These defects can be eliminated

using LB models with more discrete velocities [31, 32]. However, tests show

that the LB models with more discrete velocities make little difference on

integrated quantities such as Nusselt numbers. We therefore use the D2Q5

model for the sake of computational efficiency.

2.4. Implementation of the LB algorithm

We provide a step-by-step implementation of the MRT-LB algorithm as

the following:
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1. Compute the conserved quantities δρ and u from {fi}, and T from

{gi};
2. Compute the force of Eq. (24) with the local temperature T (xj, tn);

3. Update the velocity: u∗ = u + F δt/2ρ0;

4. Compute the equilibrium moments {m(0)
i } with δρ and u∗, and {n(0)

i }
with T ;

5. Compute the changes of the nonequilibrium moments {mi|i = 3, . . . , 8}
for the D2Q9 model and that for the D2Q5 model, i.e., δm = −S · [m−
m(0)] and δn = −Q · [n− n(0)];

6. Update the velocity again: u∗∗ = u∗ + F δt/2ρ0 = u + F δt/ρ0;

7. Compute the changes of the distribution functions due to collisions

and forcing, i.e., δf = M−1 · δm and δg = N−1 · δn, then compute the

post-collision distributions: f∗ = f + δf and g∗ = g + δg in the fluid

nodes;

8. Advect {fi} and {gi}, with special rules at boundaries.

A few remarks are in order here. First, the forcing term F is split into

two halves according to Strang splitting so a second-order accuracy can be

achieved (see the proof in [33]). Secondly, the MRT collision model is based

on the projection method. The forcing term F is correctly projected on

whatever modes (or moments) which the force is supposed to affect directly.

This implementation is thus free of the numerical artifacts generated by the

force term implemented in the discrete velocity space, i.e., {fi}, in the LBGK

schemes [34]. And thirdly, the collision and the advection steps, i.e., steps

7 and 8 in the procedure described above, should be combined together in

one step in order to improve computational efficiency. If the collision and

advection are executed separately in two steps, then the same data will have

to be read and written into memory twice, which can severely degrade the

computational efficiency due to unnecessary memory I/O. This problem can

be rather severe when the data array size is so large that it cannot fit in

cache.
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3. Two-dimensional square cavity with differentially heated verti-

cal walls

3.1. Flow configuration

The flow configuration for the 2D square cavity with differentially heated

vertical walls is shown in Fig. 1(left). The dimension of the cavity is L×H.

In this work, we set L = H. The left and right vertical walls of the cavity are

kept at constant temperatures θh = +0.5 and θc = −0.5, respectively, while

the top and bottom walls are adiabatic. All walls are impenetrable, rigid

and no-slip. The system is subject to gravity ĝ with the downward direction

−ŷ, as shown in Fig. 1(left). In the normalized coordinates (x, y) ∈ Ω :=

[0, 1]× [0, 1], the boundary conditions are given by:

u|x∈∂Ω = 0, (34a)

θ|x=0 = +0.5, θ|x=1 = −0.5, (34b)

∂n̂θ|y=0 = ∂n̂θ|y=1 = 0, (34c)

where n̂ is the unit out-normal vector to the boundary ∂Ω.

The initial state of the flow is quiescent and isothermal, i.e., u(xj, t0) =

0, δρ(xj, t0) = 0, and θ(xj, t0) = 0 for all xj. The Prandtl number is fixed

at Pr = 0.71 (for air), and the values of the Rayleigh number are Ra = 106,

107, and 108. The flow remains time-independent under these conditions (cf.,

e.g., [15]).

We use meshes of uniform Cartesian grid of size (Nx + 2) × (Ny + 2)

for our simulations, as illustrated in Fig. 1(right). The flow domain L × H
is covered by the fluid nodes (i, j) ∈ [1, Nx] × [1, Ny]. The flow domain

is wrapped with a buffer layer, i.e., i = 0 and i = (Nx + 1), j = 0, and

j = (Ny + 1), as shown in Fig. 1(right), for the convenience of storing the

outgoing distribution functions during the advection step.

3.2. Boundary Conditions

For the velocity field u, only the no-slip boundary conditions are used for

all four walls of the cavity. The no-slip boundary conditions can be realized
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θ
 =

 +
0
.5

θ
 =

 −
0
.5

H

L

gy

x

rigid adiabatic wall

rigid adiabatic wall

Figure 1: (Left) A schematic of the 2D square cavity of dimension L×H with differentially

heated vertical walls and other boundary conditions. (Right) A schematic of a mesh: the

boundary nodes are marked with solid discs •, the boundary conditions are satisfied on

the dashed line, nodes outside the dashed line are used as buffer layer.

by the bounce-back (BB) boundary conditions, that is, when a particle hits

the wall, it reverses its momentum as the following:

fı̄(xB, tn + δt) = f ∗i (xB, tn), (35)

where xB is a fluid node adjacent to a boundary, i.e., a boundary node

(indicated by • in Fig. 1(right)), fı̄ corresponds to cı̄ := −ci, f ∗i (xB, tn)

denotes the post collision value of the distribution function. The bounce-

back boundary conditions are applied to the distributions in the directions

not parallel to a wall.

As for the temperature field θ (or T ), there are two types of boundary

conditions, i.e., that of constant temperature and of adiabatic. The adi-

abatic boundary conditions are Neumann boundary conditions for θ (zero

heat fluxes) which can be realized by the bounce-back boundary conditions

for the distributions gi, as prescribed by Eq. (35). The temperature boundary

conditions are the Dirichlet boundary conditions for θ which can be realized
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by the anti-bounce-back boundary conditions:

gı̄(xB, tn + δt) = −g∗i (xB, tn) +
4 + a

10
θw, (36)

where θw is the wall temperature. It should be noted that as far as θ is

concerned, the four corners of the square belong to the vertical walls. This,

of course, is an arbitrary choice, for they also belong to the top and bottom

boundaries.

We would like to emphasize that the MRT-LBE (or TRT-LBE) is im-

perative to achieve accurate and consistent boundary conditions for both u

and θ imposed exactly at the same location, i.e., one-half grid spacing, δx/2,

beyond the last fluid nodes (or the boundary nodes) for straight boundaries

parallel to lattice lines, such is the case for the cavity flow [9, 4]. For the lat-

tice Bhatnagar-Gross-Krook (LBGK) models, the exact boundary location

depends on both relaxation parameters for fi and gi, so its results depend

on the grid size and cannot converge [26, 28].

4. Post processing and measurements

Various averaged and local quantities are measured in order to gauge the

quality of simulations and different numerical methods can be compared. We

are only concerned with the steady state solutions of the problem. To achieve

a steady state, the following criteria are used in our simulations [4]:∑
j ‖u(xj, tn+1000)− u(xj, tn)‖2∑

j ‖u(xj, tn+1000)‖2

< 10−12, (37)

‖θ(xj, tn+1000)− θ(xj, tn)‖∞ < 10−6, (38)

where ‖ · ‖2 and ‖ · ‖∞ denote the Euclidean L2 norm and L∞ norm, respec-

tively.

For the steady convective flow in the 2D square with differentially heated

vertical walls, the averaged quantities of interest are various Nusselt numbers.

Of the interest there are also some local hydrodynamic quantities and their

precise locations. We will provide a succinct description of measuring these

quantities in what follows.
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4.1. Nusselt numbers

The local heat flux in the horizontal direction x̂ between two differentially

heated vertical walls is given by

qx = uθ − ∂xθ, (39)

which will be used to compute various Nusselt numbers. We will compute

three Nusselt numbers: one averaged over the entire flow domain, one aver-

aged over left wall at x = 0, and one averaged over the vertical symmetric

line of the cavity, denoted by 〈Nu〉, 〈Nu〉0, and 〈Nu〉1/2, respectively. The

volume average Nusselt number 〈Nu〉 is given by

〈Nu〉 =
1

LH∆θ

∫ L

0

∫ H

0

qx dxdy ≈ 1

NxNy∆θ

Nx, Ny∑
i, j=1

qx(i, j), (40)

where ∆θ := θ(x = 0) − θ(x = 1) = 1. Similarly, 〈Nu〉0 and 〈Nu〉1/2 are

computed as the following:

〈Nu〉0 ≈
1

Ny∆θ

Ny∑
j=1

qx(x = 0, j), (41a)

〈Nu〉1/2 ≈
1

Ny∆θ

Ny∑
j=1

qx(x = 1/2, j). (41b)

In theory, all three Nusselt numbers should be equal. Thus, differences among

them measure the numerical inconsistency in the energy conservation.

Except for the boundary nodes, the heat flux is computed by the following

central-differencing formula

qx(i, j) =
θ(i+ 1, j)− θ(i− 1, j)

2δx
, 1 < i < Nx, 1 ≤ j ≤ Ny. (42)

For the boundary nodes at i = 1, the heat flux is approximated by:

qx(i, j) =
θ(i+ 1, j) + θ(i, j)− 2θh

2δx
, i = 1, 1 ≤ j ≤ Ny, (43)
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where θh := θ|x=0 = 0.5 is the temperature at the left wall. The heat flux at

i = Nx can evaluated similarly.

To obtain 〈Nu〉0, we need to compute qx at x = 0 as the following:

qx(x = 0, j) =
2[θ(1, j)− θh]

δx
, 1 ≤ j ≤ Ny. (44)

To compute qx at two corners on the left, i.e., (x, y) = (0, 0) and (x, y) =

(0, 1), the temperature at the horizontal walls y = 0 and y = 1 are evaluated

by using four points along each vertical lattice line and nearest to the hori-

zontal walls to fit the following temperature profile [4] with the least-square

method:

θ(y) = c0 + c2(y − y0)2, (45)

where y0 = 0 (or 1) is the position of the bottom (or top) horizontal wall.

Then qx along two horizontal walls can be evaluated according to Eq. (44).

We also compute the maximum and minimum Nusselt numbers Numax

and Numin at the hot wall on the left (x = 0). To find Numax, we first

identify the maximum value of Nu on a grid, then fit the values of Nu on five

points about the grid with a parabola by using least-square method. The

fitted parabola is then used to interpolate Numax and its position on the left

wall.

As for Numin, since its location is always very close to the top left corner

(in fact results converge towards the top left corner), only grid points located

before the minimum value are used to find the interpolating polynomial.

4.2. Hydrodynamic intensities

The hydrodynamic quantities of interest include the value of the stream-

function at the cavity center ψmid, the maximum magnitude of the stream-

function |ψ|max and its location, the maximum x-component of the velocity

on the vertical center-line umax, and the maximum y-component of the ve-

locity on the horizontal center-line vmax. The maximum velocities and their

positions are calculated in the same way as the maximum Nusselt number

Numax is done.
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We also compute the maximum of the stream function ψ and its value at

the center of the cavity. The stream-function is defined as

ψ(x, y) =

∫ y

0

u(x, µ) dµ = −
∫ x

0

v(η, y) dη , (46)

The integral is approximated by the third-order Simpson’s rule of cumulative

summation using second-order polynomial interpolation coefficients. The

maximum magnitude of the stream-function, |ψ|max, is obtained on a fine

mesh of 10001× 10001 equidistant points, as in [15]. The values of ψ on this

fine mesh are obtained by using a cubic spline interpolation of the LB data

on coarser meshes.

5. The results

The LB algorithm has been implemented on both CPU and GPU. With

a mesh of size N2 = 20432, the LB code running on an Intel Core-I7 CPU

and on a Quadro-6000 GPU can achieve about, respectively, 12 and 1080

millions site updates per second in single precision and 9 and 560 millions

per second in double precision. For a smaller mesh size of 2562, the speed

on the Quadro-6000 GPU is 396 and 617 millions site updates per second

in single and double precision, respective. The GPU allows us to obtain the

results of steady-state with a mesh size as large as 20432 within 15 hours.

The simulations are conducted with the following formula to determine

the parameter a, which is obtained by using κ = ν/Pr, the special value of

σκ given by Eq. (19), and the upper bound of ν given by Eq. (32):

a ≤ 20 ·Ma ·N√
Pr ·Ra

− 4, (47)

with the condition −4 < a < 1 for thermal stability — The lower bound

−4 corresponds to a positivity of κ in Eq (21) and the upper bound +1

corresponds to stability limit of the checkers-board mode. In our simulations,

the Mach number Ma is fixed at 0.1 unless otherwise specified, and Pr =

0.71, the equality usually holds. Thus, with the Rayleigh number Ra and
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the resolution N given, the parameter a is determined, and so are the heat

diffusivity κ and the viscosity (ν = Pr κ), the value of ν is also checked

against the stability criterion of Eq. (33).

5.1. Effect of the parameter a

The parameter a, which determines the heat diffusivity κ [cf. Eqs. (16)

and (21)], may affect the numerical stability, among other things. It is clear

from Eq. (47) that the parameter a has to be a variable: the Prandtl number

Pr is fixed, the Mach number Ma is chosen in consideration of computational

efficiency [4], and with a given Rayleigh number Ra, the parameter a varies

with the grid resolution N . It has been observed that the main effect of

the parameter a is on the magnitude of the spatial oscillations of the heat

flux qx near boundaries [4]. The quantify the effect due to a, we compute

the Nusselt number 〈Nu〉y(x) averaged over y along each grid line, similar to

the way 〈Nu〉0 and 〈Nu〉1/2 are computed, and as a function of x. We then

compute the maximum oscillation magnitude, max |δ〈Nu〉y|, of 〈Nu〉y(x) as

a function of a, with given Ra and resolution N2.

To conduct a parametric study on the effect of a, we cannot use the

equality of Eq. (47) for a, that is, we cannot fix σκ with the value of Eq. (19).

Instead, with Eqs. (16) and (30), we have

a =
10 ·N√
Pr ·Ra

(
1

σκ
− 1

2

)−1

− 4 =
20 ·N√
Pr ·Ra

σκ
(2− σκ)

− 4. (48)

Thus, with Pr = 0.71 fixed, and N and Ra given, we can adjust a by varying

σκ ∈ (0, 2). In Fig. 2 we show max(δ〈Nu〉y) as a function of a with Ra =

107 and two different resolutions N2 = 2512 and 3792. It is clearly seen

from Fig. 2 that, independent of the resolution N2, the maximum oscillation

magnitude max |δ〈Nu〉y| monotonically decreases as a decreases from 1 to

reach a minimum at about a ≈ 3.90, then rapidly increases as a approaches

to −4 — the stability limit at κ = 0. It should be noted that the accuracy

of the LBE is not affected by the value of a, so long as the LBE is stable.
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Figure 2: The maximum oscillation magnitude of 〈Nu〉y, max |δ〈Nu〉y|, as a function of

the parameter a. Ma = 0.1, Ra = 107, N2 = 2512 and 3792.

5.2. Global convergence of flow fields

We conduct a convergence study by using a number of mesh sizes Nx ×
Ny = N2 (Nx = Ny = N) between 2512 and 20432. We compute the L2

errors in the velocity u and the temperature θ as the following:

‖δu‖2 :=

∑
j ‖u(xj)− u∗(xj)‖2∑

j ‖u∗(xj)‖2

, (49a)

‖δθ‖2 :=

∑
j ‖θ(xj)− θ∗(xj)‖2∑

j ‖θ∗(xj)‖2

, (49b)

where the reference solutions u∗(xj) and θ∗(xj) are obtained with the largest

mesh of the size N2 = 20432.

For simulations with mesh sizes N2 ≥ 7632 which are carried out on

a GPU, we use the following values for the relaxation rates: se = 1.20,

sε = 1.30, sq given by Eq. (7b), and the values of sν are given in Table 1.

The values given in Table 1 satisfy the stability condition of Eq. (32).

Because the boundary conditions for both u and θ are satisfied at the

locations δx/2 beyond the last fluid nodes, the meshes of different sizes have

no overlapping grid points except the boundaries. To compute the differences

of the flow fields on difference meshes, we interpolate the data on the finest
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N2

Ra
106 107 108

10192 0.050 0.050 0.025

15312 0.050 0.050 0.025

20432 0.070 0.070 0.035

Table 1: The viscosity ν depending on the mesh size N2 and the Rayleigh number Ra.

mesh to coarser meshes by using a cubic spline interpolation. The errors and

the corresponding the order of accuracy n are summarized in Tab. 2. If no

interpolation is performed, i.e., the closest points in the meshes are used to

compute the errors, the order of accuracy would appear to be significantly

lower [4].

Ra 106 107 108

N2 ‖δu‖2

3792 1.6249·10−2 2.7804·10−2 7.1627·10−2

5072 1.1210·10−2 1.9019·10−2 4.5857·10−2

7632 6.2005·10−3 1.0560·10−2 2.3677·10−2

10192 3.7144·10−3 6.2934·10−3 1.3401·10−2

15312 1.2367·10−3 2.0827·10−3 4.1838·10−3

n 1.7977 1.8339 1.9843

‖δθ‖2

3792 1.2298·10−2 1.6245·10−2 2.1559·10−2

5072 8.4736·10−3 1.1182·10−2 1.4804·10−2

7632 4.6861·10−3 6.1771·10−3 8.1582·10−3

10192 2.8052·10−3 3.6958·10−3 4.8752·10−3

15312 9.3279·10−4 1.2284·10−3 1.6186·10−3

n 1.8000 1.8022 1.8073

Table 2: Global convergence of the velocity u and the temperature θ with the L2-norm.

Ma = 0.1.
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The order of accuracy, n, is about 1.8 or better for all cases in Tab. 2,

indicating that the method is indeed second-order accurate. We also observe

that the L2 errors of u and θ increase with the Rayleigh number Ra. In fact,

the data in Tab. 2 show that

ln ‖δu‖2 ∝ Ra1+ε, ‖δθ‖2 ∝ Ra, (50)

where ε > 0 depends on N . The above scalings corroborate previous results

[4].

The contours of the stream function ψ, the temperature θ, the pressure p,

and the vorticity ω obtained with the finest mesh of N2 = 20432 are shown

in Fig. 3. The vorticity ω := (∂xv − ∂yu) is computed with a second-order

central finite-difference scheme. The figures show the changes of flow features

as the Rayleigh number Ra increases. Clearly the contours are antisymmetric

about either the vertical or the horizontal center lines.

5.3. Convergence of Nusselt numbers

Table 3 shows the convergence behavior of the Nusselt numbers. The

asymptotic values of the Nusselt numbers are obtained by using the least-

square fitting with the cubic polynomial

f(h) = f∞ + a2h
2 + a3h

3, (51)

where h = 1/N is the grid spacing, and f∞ is the asymptotic value for

h→ 0, i.e., N →∞. The asymptotic values of Nu’s are the reference values

to compute the errors of Nu’s, which are then used to compute the order

of accuracy n. Both the asymptotic values and the order of accuracy n are

given in Tab. 3.

All the averaged Nusselt numbers, including 〈Nu〉, 〈Nu〉0, and 〈Nu〉1/2,

clearly achieve a second-order accuracy. It is also noticed that 〈Nu〉 and

〈Nu〉1/2 agree with each other better than their agreement with 〈Nu〉0. This

is understandable because 〈Nu〉0 is evaluated with a less accurate differencing

formula [cf. Eq. (42) vs. Eq. (43)]. As for the local Nusselt numbers Numax
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Figure 3: Contours of flow fields. From left to right: streamlines (ψ), isotherms (θ),

isobars (p), and the vorticity contours (ω). from top to bottom: Ra = 106, 107, and 108.

N = 20432, Ma = 0.1.

and Numin and their locations on the left wall, the accuracy is nominally

second-order with L∞-norm, which is a much more stringent measure than

L2-norm. The worst case is the location of Numax, which becomes closer and

closer to the lower-left corner of the cavity as Ra increases. It is clearly the

case that the meshes are not fine enough to sufficiently resolve the region of

high gradient near the vertical walls, especially at the lower-left and upper-

right corners (cf. Fig. 3).

To further investigate possible sources of error in computing the local

Nusselt numbers, in Fig. 4 we show the y variation of the heat flux on the

left (hot) wall, qx(x = 0, y), and the x variation of the Nusselt number

averaged over y along each grid line, i.e., 〈Nu〉y(x). We only show 〈Nu〉y(x)
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Ra N2 〈Nu〉 〈Nu〉0 〈Nu〉1/2 Numax y Numin y

106

2512 8.8231 8.8288 8.8253 17.6252 0.0386 0.9774 0.9986

3792 8.8243 8.8265 8.8252 17.5802 0.0388 0.9795 0.9972

5072 8.8246 8.8258 8.8252 17.5622 0.0390 0.9794 0.9978

7632 8.8250 8.8255 8.8252 17.5482 0.0391 0.9794 0.9984

10192 8.8251 8.8253 8.8252 17.5430 0.0391 0.9794 0.9987

15312 8.8251 8.8253 8.8252 17.5392 0.0392 0.9794 0.9991

20432 8.8252 8.8252 8.8252 17.5378 0.0392 0.9794 0.9993

∞ 8.8252 8.8252 8.8252 17.5360 0.0392 0.9795 0.9994

n 1.9526 2.2612 2.9656 1.8743 1.7717 1.7464 1.8427

107

2512 16.5229 16.5579 16.5286 39.9459 0.0176 1.4185 0.9965

3792 16.5229 16.5357 16.5255 39.7402 0.0175 1.3903 0.9952

5072 16.5229 16.5292 16.5244 39.6199 0.0176 1.3783 0.9964

7632 16.5230 16.5254 16.5237 39.5085 0.0178 1.3696 0.9979

10192 16.5230 16.5242 16.5234 39.4628 0.0178 1.3679 0.9984

15312 16.5231 16.5235 16.5232 39.4628 0.0179 1.3669 0.9989

20432 16.5231 16.5233 16.5232 38.4132 0.0179 1.3666 0.9992

∞ 16.5231 16.5230 16.5231 39.3950 0.0180 1.3659 0.9994

n 1.9291 2.2244 2.0256 1.8066 1.6538 2.1473 1.8590

108

3792 30.2412 30.3314 30.2573 88.5991 0.0084 2.2745 0.9925

5072 30.2337 30.2779 30.2428 88.5233 0.0082 2.1062 0.9946

7632 30.2287 30.2444 30.2328 88.0838 0.0081 1.9882 0.9964

10192 30.2271 30.2345 30.2294 87.8022 0.0082 1.9551 0.9973

15312 30.2259 30.2286 30.2269 87.5323 0.0083 1.9336 0.9981

20432 30.2255 30.2268 30.2261 87.4178 0.0083 1.9265 0.9986

∞ 30.2251 30.2241 30.2251 87.2454 1.9063 1.9195 0.9990

n 2.0832 2.2076 2.0326 1.6819 1.4232 2.3431 1.6294

Table 3: Convergence behavior of the averaged Nusselt numbers 〈Nu〉, 〈Nu〉0, and 〈Nu〉1/2,

and the local Nusselt numbers Numax and Numin with their vertical positions on the left

(hot) wall. Note: the data that do not fit well with the interpolating polynomial have

been excluded from the computation of the asymptotic values.

for 0 ≤ x ≤ 1/2 because 〈Nu〉y(x) is anti-symmetric about x = 1/2. Clearly,

as Ra increases, not only the maximum of qx increases, but also the thermal

boundary layer, which varies as Ra−1/4, becomes thinner as the gradient ∂xθ

becomes steeper near the lower-left corner, as shown in the figures of qx in

Fig. 4. The oscillation in 〈Nu〉y(x) is clearly due to lack of mesh resolution

— the magnitude of the oscillation indeed diminishes as the grid resolution

N2 increases.
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Figure 4: From left to right: the heat flux qx along the hot wall at x = 0 and an enlarged

figure about its maximum near the lower-left corner, and the Nusselt number 〈Nu〉y(x)

averaged over y as a function of x. From top to bottom: Ra = 106, 107, and 108.

5.4. Convergence of local hydrodynamic quantities

Table 4 summarizes the convergence behavior of various local hydrody-

namic intensities including the magnitude the stream-function ψ at the cavity

center, |ψmid|, the maximum magnitude of ψ, |ψ|max as well as its position,

the maximum x and y velocity components, umax and vmax, on the vertical

and horizontal symmetric centerline, respectively, as well as their positions.

The asymptotic values of these local hydrodynamic intensities are obtained

by using the least-square fit with the cubic polynomial of Eq. (51), and will
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be used as the reference solutions to compute the errors. With few excep-

tions, most measured quantities exhibit a second-order accuracy with the

L∞-norm.

Ra N2 |ψmid| |ψ|max x y umax y vmax x

106

2512 16.4010 16.8308 0.1490 0.5471 64.8223 0.8497 220.5259 0.0378

3792 16.3965 16.8283 0.1494 0.5472 64.8295 0.8498 220.5370 0.0378

5072 16.3920 16.8207 0.1497 0.5470 64.8341 0.8499 220.5429 0.0378

7632 16.3902 16.8184 0.1499 0.5469 64.8332 0.8499 220.5539 0.0378

10192 16.3885 16.8152 0.1500 0.5469 64.8337 0.8499 220.5589 0.0378

15312 16.3874 16.8130 0.1501 0.5468 64.8342 0.8499 220.5624 0.0378

20432 16.3871 16.8125 0.1502 0.5468 64.8342 0.8499 220.5631 0.0378

∞ 16.3869 16.8121 0.1502 0.5468 64.8344 0.8499 220.5638 0.0378

n 2.2038 2.2245 1.9492 1.8542 2.1090 2.0112 2.1261 2.0008

107

2512 29.4723∗ 30.3375∗ 0.0843 0.5571∗ 148.3414 0.8795 699.0722 0.0214

3792 29.4574∗ 30.3489∗ 0.0848 0.5578∗ 148.4833 0.8794 699.1096 0.0214

5072 29.4153 30.2674 0.0851 0.5569 148.5291 0.8794 699.2071 0.0213

7632 29.4012 30.2469 0.0854 0.5567 148.5610 0.8793 699.2341 0.0213

10192 29.3838 30.2104 0.0856 0.5562 148.5718 0.8793 699.2763 0.0213

15312 29.3715 30.1846 0.0857 0.5559 148.5795 0.8793 699.3063 0.0213

20432 29.3689 30.1798 0.0858 0.5558 148.5821 0.8793 699.3121 0.0213

∞ 29.3667 30.1760 0.0858 0.5558 148.5852 0.8793 699.3166 0.0213

n 2.1845 2.2415 2.1515 2.1638 2.0724 2.0389 2.2358 2.1612

108

3792 52.8567 54.8698 0.0469 0.5594 315.0766 0.9239 2221.4020 0.0121

5072 52.6243 54.4205 0.0473 0.5564 317.7138 0.9256 2221.8299 0.0120

7632 52.5458 54.3077∗ 0.0476 0.5560∗ 319.8787 0.9268 2221.9532∗ 0.0120

10192 52.4478 54.1060 0.0478 0.5545 320.7388 0.9273 2222.1450 0.0120

15312 52.3780 53.9625 0.0480 0.5533 321.3676 0.9276 2222.2806 0.0120

20432 52.3634 53.9352 0.0480 0.5532 321.5900 0.9277 2222.3043 0.0120

∞ 52.3508 53.9149 0.0481 0.5530 321.9075 0.9278 2222.3279 0.0119

n 2.1639 2.2447 1.7227 2.2573 1.8611 1.9051 2.1692 1.8226

Table 4: Convergence behaviors of |ψmid|, |ψ|max and its position, umax and vmax as well

as their positions. Note: the data that do not fit well with the interpolating polynomial

have been excluded from the computation of the asymptotic values and they are marked

with asterisk *.

5.5. Benchmark results

We now compare our results of the Nusselt numbers and the hydrody-

namic quantities with existing benchmark data. The second-order finite dif-

ference (FD) solutions of de Vahl Davis [14] for the lower Rayleigh numbers

Ra = 103, 104, 105, and 106 remain a comprehensive benchmark. To our

25



knowledge, the Chebyshev pseudo-spectral (PS) solutions of Le Quéré [15]

are the most accurate ones for higher Rayleigh numbers Ra = 107 and 108.

There exist more recent results by using the finite element (FE) method [18],

finite difference method [14, 16], and the lattice Boltzmann method with

coarser meshes [4]. Table 5 compiles the data for the Nusselt numbers and

their positions obtained with various methods. The LB results of the present

work are the asymptotic values in Tab. 5, obtained by using the Richardson

extrapolation. With the exception of two cases (Numin at Ra = 107 and 〈Nu〉
at Ra = 108) which miss the last significant digit, our LB results and the

pseudo-spectral benchmark data [15] agree with each other in all significant

digits.

Ra Method 〈Nu〉 Nu0 Nu1/2 Numax y Numin

106

Present 8.8252 8.8252 8.8252 17.5360 0.0392 0.9795

PS [15] — 8.825 8.825 17.536 0.039 0.9795

FD [14] 8.800 8.817 8.799 17.925 0.0378 0.989

FD [16] — 8.8216 — 17.5087 0.0396 0.9787

LB [4] 8.8253 8.8192 8.8254 17.5274 0.0392 0.9769

FE [18] — 8.8811 — 17.5308 0.0377 0.9845

107

Present 16.5231 16.5230 16.5231 39.3950 0.0180 1.3659

PS [15] — 16.523 16.523 39.39 0.018 1.366

FD [16] — 16.5106 — 39.2540 0.0179 1.3655

FE [18] — 16.3869 — 41.0247 0.0390 1.3799

108
Present 30.2251 30.2241 30.2251 87.2454 0.0083 1.9195

PS [15] — 30.225 30.225 87.24 0.008 1.919

FE [18] — 29.6256 — 91.2095 0.0067 2.0440

Table 5: Comparison of the Nusselt numbers and their locations with existing benchmark

data.

Table 6 compiles the data for the measured hydrodynamic intensities and

their positions obtained with various methods. It should also be noted that

in Le Quéré’s work [15], the velocity is normalized by
√

Raκ/L, as opposed

to κ/L. Thus the values of the stream-function ψ and the velocity u in

Le Quéré’s work [15] given in Tab. 6 have been multiplied by
√

Ra. For the

case of Ra = 106, the present LB results and the PS data [15] are essentially

identical. And for the cases of Ra = 107 and 108, the present LB results and

the PS data [15] agree with each other with at least three significant digits
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except for the case of |ψmax| at Ra = 108, for which the LB result differs from

the PS data for about 0.12%.

Ra Method |ψmid| |ψ|max x y umax y vmax x

106

Present 16.3868 16.8118 0.1502 0.5468 64.8344 0.8499 220.5644 0.0378

PS [15] 16.386 16.811 0.150 0.547 64.83 0.850 220.6 0.038

FD [14] 16.32 16.750 0.151 0.547 64.63 0.850 219.36 0.0379

FE [17] 16.3860 16.8110 0.1504 0.5470 64.8340 0.8499 220.5650 0.0378

LB [4] 16.3868 16.8149 0.1503 0.5468 64.8336 0.8499 220.5658 0.0378

FD [16] 16.3863 16.8107 — — 64.8308 0.8501 220.5675 0.0377

FE [18] — — — — 64.6912 0.8460 220.8331 0.0380

107

Present 29.3653 30.1760 0.0858 0.5558 148.5852 0.8793 699.3224 0.0213

PS [15] 29.3617 30.1649 0.086 0.556 148.5954 0.879 699.1795 0.021

FD [16] 29.3562 30.1553 — — 148.5695 0.8794 699.2991 0.0213

FE [18] — — — — 145.2666 0.8845 703.2526 0.0215

108
Present 52.3508 53.9149 0.0481 0.5530 321.9063 0.9279 2222.3279 0.0120

PS [15] 52.32 53.85 0.048 0.553 321.9 0.928 2222. 0.012

FE [18] — — — — 283.0689 0.9455 2223.4424 0.0130

Table 6: Comparison of the measured hydrodynamic intensities with existing benchmark

data.

6. Conclusions

In this work we use the multiple-relaxation-time lattice Boltzmann model

with dual distributions [4] to simulate thermal flows in the two-dimensional

square cavity with differentially heated vertical walls. The MRT-TLBE uses

the D2Q9 model and D2Q5 model for mass-momentum and temperature

conservations, respectively. The D2Q9+D2Q5 MRT-LB model essentially

solves the thermal fluid system with the Boussinesq approximation. The

flow parameters are the Prandtl number Pr = 0.71 (for air) and the Rayleigh

number Ra = 106, 107, and 108. The Mach number is fixed to be Ma = 0.1

in our simulations. With the given Rayleigh numbers, the flow is steady.

We now summarize our observations in this work as the following. First,

we emphasize that the MRT collision model is imperative to achieve accu-

rate boundary conditions and numerical stability. We would also like to

point out that the LBGK model fails in both these aspects. Second, with

the given flow conditions, we have shown that the MRT-TLBE model is
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second-order accurate for flow fields with L2-norm, global quantities, such

as Nusselt numbers, and local hydrodynamic intensities as well as their po-

sitions, with L∞-norm. Third, our results demonstrate that the MRT-LB

model can reproduce numerical results of benchmark quality for internal in-

compressible thermal flows. Our results agree well with existing benchmark

data obtained by using traditional methods. Finally, the LB algorithm has

been implemented on GPU, and can achieve a speed of 560 million millions

site-updates per second with double precision (1080 millions site-updates per

second with single precision), which allows us to complete the simulations on

a mesh as large as 20432 within 15 hours.
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