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The experimental study of damping in a time-varying inertia pendulum is presented.The system consists of a disk travelling along an
oscillating pendulum: large swinging angles are reached, so that its equation of motion is not only time-varying but also nonlinear.
Signals are acquired from a rotary sensor, but some remarks are also proposed as regards signals measured by piezoelectric or
capacitive accelerometers. Time-varying inertia due to the relative motion of the mass is associated with the Coriolis-type effects
appearing in the system,which can reduce and also amplify the oscillations.The analyticalmodel of the pendulum is introduced and
an equivalent damping ratio is estimated by applying energy considerations. An accurate model is obtained by updating the viscous
damping coefficient in accordance with the experimental data.The system is analysed through the application of a subspace-based
technique devoted to the identification of linear time-varying systems: the so-called short-time stochastic subspace identification
(ST-SSI).This is a very simple method recently adopted for estimating the instantaneous frequencies of a system. In this paper, the
ST-SSI method is demonstrated to be capable of accurately estimating damping ratios, even in the challenging cases when damping
may turn to negative due to the Coriolis-type effects, thus causing amplifications of the system response.

1. Introduction

The analysis and simulation [1] of mechanical systems with
imposed relative motion of components are challenging:
time-varying inertia, created by a mass sliding along a
rotating member, is associated with Coriolis-type effects.
The relative movement can excite or reduce the structure
vibration, providing new means or techniques for active
amplification or attenuation of vibrations. A variable length
mathematical pendulum was used in [2] to examine the
concept of controlling the motion of a system through mass
reconfiguration, that is, by sliding a mass towards and away
from the pivot. A variable length pendulum has also been
considered in [3], where a rigorous qualitative investigation
of its equation is carried out without any assumption on
small swinging amplitudes. In [4] a physical pendulum was
considered to present a technique in which a radially moving
mass is treated as a controller to attenuate the pendulum
swings. A moving mass is a proper characteristic of a time-
varying system, which is in general one of the sources of
nonstationary signals. Another source can be, in case of a
pendulum, nonlinearity due to its large swinging amplitudes.
The oscillations are also associatedwith the effective damping

ratio, which is explicitly determined in [4] from energy
considerations in terms of the mass motion pattern and
the pendulum parameters. This is only one of the several
techniques that can be adopted to estimate the damping ratios
of a system and in fact it can be seen as part of the larger
problem of dynamic identification, as it is actually proposed
in this paper.

During the last years, many efforts have been spent in
studying nonstationary signals. Among the first works on
the identification of time-varying systems, [5, 6] introduced
the concept of pseudonatural frequencies that are obtained
by the time-varying state transition matrix. The work in [7]
proposed a recursive algorithm, based on subspace methods,
to identify the state matrices and consequently to determine
themodal parameters. Other important approaches are those
based on the Kalman Filter [8], or the parametricmethods as,
for example, the FS-TARMA [9], which is an extension of the
classical ARMA techniques. In [10], a Short-Time Stochastic
Subspace Identification (ST-SSI) approach has been defined,
based on the “frozen” technique, where the classical subspace
identification [11] is applied to a sequence of windowed parts
of the signal.
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The ST-SSI method can be applied to different kinds of
nonstationary systems in order to estimate the instantaneous
frequencies and, for example, it has been used to estimate
the frequency in practical systems showing nonlinear effects
[12]. However, instead of extracting a series of time-varying
linear models, the identification of a whole parametric non-
linear model is an important instrument for many purposes.
Among the past and recent developments [13], the nonlinear
subspace identification (NSI) method has been developed
in [14] and improved in [15] for identifying large systems
with lumped nonlinearities. Both the ST-SSI and the NSI
methods have been applied in [16] for estimating the swinging
frequency of an experimental time-varying inertia pendu-
lum, whose dynamics is governed by a nonlinear equation of
motion due to large swinging amplitudes.

The same pendulum is considered in this paper for
investigating a suitable model of damping. The paper starts
with the description of the experimental set-up. Signals are
acquired from a rotary sensor, but some remarks are also
proposed for signals measured by piezoelectric or capacitive
accelerometers. After the introduction of the analytical equa-
tion of motion, the energy approach of [4] and the ST-SSI
method are briefly described and applied for estimating the
equivalent damping ratio. When the mass is fixed, the energy
approach is employed for updating the preliminary model
in order to fit the experimental data. Three moving-mass
cases are finally analysed to demonstrate that the estimates
of the damping factors obtained by means of ST-SSI are
very accurate, when compared with those obtained by an
analytical model and by the energy approach.

2. Experimental Set-Up

The structure under test is a pendulum with time-varying
inertia: a disk on a cart can slide along a runner, while the
pendulum is swinging. This structure cannot be considered
simply as a linear time-variant system, the equation of
motion of the pendulum being nonlinear for large swinging
amplitudes.

2.1. Description. An overview of the design of the structure
is presented in this section, together with a description
of the instrumentation used for data acquisition. Further
details about the experimental set up and the measured
characteristics of the considered elements can be found in
[16]. The pendulum is formed by a thin aluminium runner
allowing the sliding of a cart which can host an added
mass: the motion of the mass varies the pendulum inertia.
Moreover, in order to avoid a nonoptimal clamp between
the runner and the shaft due to the large deformability of
aluminium, a small metallic plate has also been added at
the root of the aluminium beam, near the hinge, to limit its
transverse vibrations.

The travelling mass is a steel disk of mass !! =0.5025 kg, whose motion is regulated by a hand-driven
counterbalancingmass.The latter is connected to themoving
mass through a system of pulleys and a cable that can
be considered as nonextendible. The complete structure is

shown in Figure 1(a): the main supports, plates, pulleys,
bearings, and precision shaft are visible.

The sensors can also be seen in Figure 1(a). A triaxial and
four monoaxial accelerometers have been mounted along the
beam.The triaxial accelerometer, a PCB 356B18 piezoelectric
sensor (ICP), is used to express some practical considera-
tions in Section 2.2. To show typical measurement errors,
some data sets have been acquired by adding a capacitive
accelerometer to the system (not shown in the figure),
in the same position of the ICP sensor. Each monoaxial
accelerometer is a Brüel & Kjær 4507 B 004 piezoelectric
sensor, used to measure the transversal vibrations (along the" axis in Figure 1(b)) of the pendulum [16].Their signals have
not been analysed in this paper.

A direct measure of the angular position of the pendulum
is given by a Penny+Giles SRS280 sealed rotary sensor, with
an accuracy of ±1% over 100∘, connected to the precision
shaft. A Celesco PT1A linear potentiometer, with amaximum
extension of 1.2m, has been connected to the counterweight
(see Figure 1(a)).The position of the travellingmass along the
runner can be simply obtained from this measure.

All signals have been acquired and recorded with a
sampling frequency of 256Hz by using an OROS acquisition
system, with 32 channels and antialiasing filter.

2.2. Remarks about the Accelerometers. In this section some
remarks about the signals measured by the accelerometers
are proposed, together with a comparison with the rotary
sensor recordings. In the following, #($) is the output of
the rotary potentiometer, which is very accurate at these
low frequencies; thus the use of supplementary sensors is
not needed to describe the dynamics of the SDOF system.
However, accelerometers are mounted to give some useful
guidelines in case a potentiometer is not available. A piezo-
electric sensor (ICP) is not suited to measure the radial
acceleration of the pendulumunder exam, because it removes
the DC component of the output, which is nonnull. This is
why a capacitive accelerometer was chosen for comparison.

To show the difference, the two accelerometers have been
mounted on the beam in the same position %# = 0.93m, with
radial direction (the & axis in Figure 1(b)). The signal #($)
of the rotary sensor has been numerically differentiated in
order to obtain ̇#($), which is used for computing the “actual”
value of the radial acceleration ($($) = %# ̇#($)2, shown in
Figure 2(a). The signals acquired by the accelerometers are
represented in Figure 2(b): the ICPmeasurement (̃$,ICP($) has
zero mean and its value is zero for # = 0 and ̇# = 0 (at the end
of time history), while the capacitive sensor output (̃$,cap($)
is asymmetric and its value tends to * for # = 0 and ̇# = 0.
Clearly, none of the two behaviours can be associatedwith the
actual value of radial acceleration.

Another remark arises from Figure 2(b): the effect of the
gravitational acceleration * on the measured signals must
be taken into account and removed in order to get the
correct value of the radial acceleration. This is due to the
fact that the measurement axes of the accelerometer on the
pendulum have an orientation that largely changes over time,
while most of dynamics applications do not show such a
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Figure 1: (a) Complete structure. At the top, the reinforcement plate is highlighted.The travelling mass and the counterweight are visible on
the left and on the right, respectively. (b) Pendulum with the travelling mass.
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Figure 2: (a) Actual value of the radial acceleration. (b) Measured radial accelerations, by the capacitive and the ICP sensor.

behaviour. A “cleaning” operation can be thought of as being
trivial, but it cannot be performed on signals from classical
ICP accelerometers, because of the continuous component
removal described above. When the capacitive sensor signal
is considered as “corrupted” by the presence of *, an estimate
(indicated by ∧) of the actual radial acceleration is obtained
after cleaning: (̃$,cap ($) = ($ ($) + * cos # ($) (1a)

CLEANING,,,,,,,,→ (̂$,cap ($) = (̃$,cap ($) − * cos # ($) . (1b)

Figure 3(a) shows a comparison between the actual radial
acceleration ($($) and the estimate (1b): an almost perfect
correspondence is now obtained. A similar approach can be
adopted if the tangential direction (the 0 axis in Figure 1(b))
is considered. By differentiating again the signal ̇#($) in order
to obtain ̈#($), the “actual” value of the tangential acceleration
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Figure 3: Comparisons between actual accelerations and corrected capacitive estimates.

(%($) = %# ̈#($) has been computed. The capacitive estimate(̂%,cap($) can be obtained from the measured signal (̃%,cap($)
as (̂%,cap($) = (̃%,cap($) − * sin #($). The comparison between
the actual tangential acceleration and the capacitive estimate
is shown in Figure 3(b): again, a perfect agreement can be
observed. In conclusion, an angle measurement is necessary
in this kind of problems.

2.3. Equation of Motion. The system shown in Figure 1(b)
consists of a rigid bar with no flexural effects; the pendulum
is simply a nonlinear SDOF system.

From the rotational equilibrium of the system, the equa-
tion of the swinging motion is(3up +!!%($)2) ̈# ($)+ (6V + 2!!% ($) ̇% ($)) ̇# ($) + (8up + *!!% ($)) sin # ($)= 3tot ($) ̈# ($) + 9tot ($) ̇# ($) + 8tot ($) sin # ($) = 0,

(2)

in which the subscript “up” refers to the quantities not
depending on the mass position %($). These have been
estimated by means of the Nonlinear Subspace Identification
(NSI) method in [16], in which an updating procedure was
performed to build an accuratemodel tuned on themeasured
results.The angle swept by the pendulum is indicated by #($)
whilst %($) is the distance of the disk from the hinge. Other
terms appearing in (2) are the gravitational acceleration * =9.81m/s2 and a viscous damping coefficient 6V. Given the
value!! = 0.5025 kg of the travellingmass, model (2) can be
completely defined by exploiting the results obtained in [16]:3up = 0.1292 kgm2; 8up = 1.8380 kgm2 s−2; moreover, an
overall estimate of 6V = 0.035 kgm2 s−1 is used for preliminary
comparisons.

The analytical form of the time-variant viscous damping
ratio is then defined as: ($) = 9tot ($)2√3tot ($)8tot ($) . (3)

3. Methodologies

Two methodologies are adopted in this paper for obtaining
estimates of the equivalent viscous damping ratio. The first,
based on energy considerations, is evaluated as a baseline for
updating the model and is used for comparisons with the
second technique, based on subspace identification.

3.1. Energy Considerations. A method for deriving an esti-
mate of the damping ratio, which is briefly described in this
section and used for successive comparisons, can be found
in [4]. The normalised total energy of the pendulum with
moving mass can be written as< ($) = 12 ̇#($)2 + ='($)2 (1 − cos # ($)) , (4)

where='($)2 = (8up+*!!%($))/(3up+!!%($)2) is related to the
“instantaneous” frequency (whenmass!! is at location %($)).
The two terms of <($) can be interpreted as the normalised
kinetic and potential energies of the pendulum, respectively.
In [4] a mathematically equivalent form of (2) is rewritten,
involving <($) and its rate of change; then, an integral form
is considered over one swinging period > and the following
approximation of the damping ratio for the pendulum with
moving mass is defined:: ≅ 14@ < (0) − < (>)< (0) . (5)
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Thus, the damping ratio is defined in (5) by the nor-
malised energies that can always be calculated for a given set
of conditions at the beginning (represented by <(0)) and at
the end (<(>)) of each cycle. In this way, a single value for :
can be obtained at each cycle, in order to get an approxima-
tion of the “instantaneous” damping ratio expressed by (3).
This method has two main limitations: (i) every estimate of :
from (5) can be obtained only if exactly a cycle is considered;
(ii) equation (5) involves the application of (4), which implies
full knowledge of the pendulum parameters and the mass
motion pattern, contained in the definition of ='($).
3.2. Subspace Identification. The procedure for the identifi-
cation of linear time-varying systems is called Short-Time
Stochastic Subspace Identification (ST-SSI) [10, 17].The basic
idea of the method consists of windowing the signal into
many parts and considering the system as time-invariant in
each time window: the process is called frozen technique.

If the output data are measured at discrete times with
a sampling interval Δ$ and the input is a discrete signal
characterised by a zero-order hold between consecutive
sample points, the discrete-time state-space model of a
general linear time-varying system at a time instant $ = BΔ$
can be obtained. The frozen technique considers constant
state matrices during each time step, so that the following
representation can be adopted:

{& (B + 1) = D (B)& (B) + E (B) F (B) + G (B)0 (B) = 9 (B)& (B) +H (B) F (B) + V (B) (6a)

FROZEN TECHNIQUE,,,,,,,,,,,,,,,,,→ {& (B + 1) = D& (B) + EF (B) + G (B)0 (B) = 9& (B) +HF (B) + V (B) ,
(6b)

where D(B) and E(B) are not constant and in general their
closed forms are unknown [6]; &(B) is the state vector, F(B)
the input vector, and 0(B) the output vector;G(B) and V(B) are
process and measurement error, respectively. The complete
time record is split into time windows (frozen system), whose
length corresponds to a period > (about 400 samples) for
comparing the ST-SSI results with those obtained through
the energy approach of previous Section 3.1: such a restriction
to a cycle, however, is not a limitation of the present ST-SSI
method. Usually, the windows are almost completely over-
lapped except for a sampling period Δ$ (or a multiple) and
their length can be arbitrarily chosen. If window lengths are
short, the data-driven subspace method [11] is preferred with
respect to the covariance-driven version [18], which needs
more samples to obtain accurate results. Subspace methods
do not need any a priori knowledge of the system parameters,
as they identify the state-space matrices of (6b) starting
from the measured system responses. Natural frequencies
and damping ratios are then extracted by computing the
eigenvalues of the identified matrix D in every window. An
extensive study about the time-varying swinging frequency
of the pendulum has been performed in [16], in which the
contribution of nonlinearity was analysed by means of the
Nonlinear Subspace Identification (NSI) method [14]. This
paper is focused on the more challenging topic of damping.

4. Results

In this section the results are presented. At first, the mass
is fixed and preliminary considerations about the model are
drawn: the overall estimate of the viscous damping coefficient
is updated to fit the experimental results and an accurate
model is thus obtained. Then, three moving-mass cases are
considered and the results obtained by the ST-SSI method
are validated by comparisons with the method in [4] and the
updated analytical model.

4.1. Fixed Mass. By considering the mass fixed in %($) =% = 49 cm (and obviously ̇%($) ≡ 0), (5) can be applied
and the obtained damping factors can be used to compute
estimates for the viscous damping coefficient, at each cycle.
These values can be then compared with the overall estimate6V = 0.035 kgm2 s−1, defined by a preliminary nonlinear
identification [16].The comparison is shown in Figure 4(a): it
is clear that a constant 6V value is not proper for representing
the experimental evidence. An updating procedure is then
carried out for obtaining a new model in which the viscous
damping coefficient is no more constant: indeed it is a
function of the rootmean square (RMS) of angular velocity in
each cycle, named ̃̇#.The updating simply consists of a poly-
nomial fitting of the viscous coefficients obtained through
the energy considerations of Section 3.1. In particular, the
variable 9tot is updated to 9̃tot = 6V(̃̇#) + 2!!%($) ̇%($) and,
consequently, the analytical form (3) of the viscous damping
ratio changes into the following “updated” version::up ($) = 9̃tot ($)2√3tot ($)8tot ($) . (7)

Figure 4(a) shows the behaviour of 6̃V during a swinging
decay: as expected, it accurately fits the energy approach
estimates. In Section 4.2, the new damping model (7) will be
the baseline for comparisons in more complicated situations
involving the mass moving along the beam.

In order to have a better visualisation of the experimental
damping characteristic, the damping force KV = 6V(̃̇#)̃̇# is
represented in Figure 4(b) as a function of ̃̇#. Two zones
can be distinguished: for small angular velocities (̃̇# <0.05 rad s−1) a Coulomb friction is prevalent, while for larger
angular velocities the contribution of the viscous damping is
more evident.

4.2. Moving Mass. In this section three moving-mass cases
are considered, in order to show the results obtained by
means of the ST-SSI method. In Figure 5 the measured mass
positions along the beam and the swinging amplitudes over
time are shown, for each case.

4.2.1. Case 1. The mass is moving downwards, from the
top to the middle of the beam (Figure 5(a)). No evidence
of increasing swinging amplitudes due to the Coriolis-type
effect can be observed in Figure 5(b), since the velocity ̇% is
positive.
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Figure 4: Fixed-mass case. (a) Viscous coefficient as a function of time, during a swinging decay. (b) Damping force as a function of ̃̇# at each
cycle.

Case 1 is useful for demonstrating once again the need
for the updating procedure performed in Section 4.1. Esti-
mates of the damping factors, obtained through the energy
approach of Section 3.1 and the ST-SSImethod of Section 3.2,
are compared with the overall estimate of (3) in Figure 6(a):
the energy-approach and the ST-SSI estimates are similar,
but there is no correspondence with the overall estimate.The
same estimates can be compared with the updated value of
(7) in Figure 6(b): a good level of agreement can be observed,
confirming the reliability of the damping model obtained in
Section 4.1 for a fixed mass. As a general remark emerging
fromFigure 6, the ST-SSImethod gives slightly overestimated
values of damping, with respect to those obtained by the
energy approach.The reason is themodel order L selected for
representing the state-space model (6b): in this paper it has
been fixed to 2 for simplicity, but more accurate estimates of
damping can be obtained by increasing L and by investigating
the results by means of stabilisation diagrams.

4.2.2. Case 2. The mass is moving downwards and upwards,
in an almost regular way (Figure 5(c)). An excitation of the
swinging amplitudes due to the Coriolis-type effect can be
observed in Figure 5(d) at about 10 seconds, since the velocitẏ% is negative and large enough to change the sign of :up
in (7). A less clear excitation can also be observed after 20
seconds. These qualitative considerations are confirmed by
the damping factors represented in Figure 7(a). The energy-
approach and the ST-SSI estimates are compared with the
updated value of (7): an excellent agreement can be observed
for the ST-SSI estimates.

4.2.3. Case 3. This is the more challenging case: the mass is
moving along the beam, in a more irregular way especially
from 5 to 12 seconds (Figure 5(e)). From a detailed inspection

of Figure 5(f), four zones are recognised, in which an ampli-
fication of the swinging amplitudes due to the Coriolis-type
effect can be observed: they are marked by letters A, B, C,
and D. In particular, zones A and B are short and could be
difficult to distinguish, but the representation of the damping
factors in Figure 7(b) can be useful in this sense. In fact,
Figure 7(b) reveals the four zones in which the equivalent
damping factor is negative and these are found to correspond
to those of Figure 5(f). Moreover, in Figure 7(b) the energy-
approach and the ST-SSI estimates are compared with the
updated value of (7): the ST-SSI estimates are very accurate.

As a final consideration, observe that Figures 7(a) and
7(b) are represented on the same scale: Case 3 appears to
be more challenging also because larger and fast-varying
values of damping factors are involved. However, results
are satisfactory even in such a complicated case, in which
high mass velocities cause substantial changes in the system
dynamics.

5. Conclusions

The experimental study of damping in a time-varying iner-
tia pendulum is presented. The system consists of a disk
travelling along a pendulum: this relative motion, which is
associated with Coriolis-type effects, can be exploited for
attenuation or amplification of the pendulum oscillations.
At first, signals measured by piezoelectric or capacitive
accelerometers are compared with the output of a rotary
sensor: for swinging systems like the pendulum under exam,
the piezoelectric sensor is not suited because it removes the
DC component of the output. The effect of gravitational
acceleration can be taken into account and correctly removed
from the measured signal of a capacitive acceleration, but
angle measurement is needed.
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Figure 5: Moving mass. (a, b) Case 1. (c, d) Case 2. (e, f) Case 3. (a, c, e) Mass position along the beam. (b, d, f) Swinging amplitude over
time.
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Figure 6: Moving-mass Case 1. Estimates of the damping factors, compared with the overall estimate of (3) (a) and with the updated value
of (7) (b).
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The analytical equation of motion is then introduced
and the theoretical viscous damping coefficient is updated in
order to obtain an accurate damping model. The updating
procedure investigates the approach of a published work
in which the damping ratios are derived from energy con-
siderations, provided that the system parameters and the
mass motion pattern are known. The system is analysed

through the application of the Short-Time Stochastic Sub-
space Identification (ST-SSI), which is very simple and does
not require any a priori knowledge about the system.The ST-
SSI estimates of the damping factors are compared with those
obtained by an analytical model and by the energy approach.
Three moving-mass cases are presented, to demonstrate that
the ST-SSI estimates are very accurate even in the challenging
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cases in which damping may turn to negative due to the
Coriolis-type effects.
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