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Abstract

Composite laminates are prone to delamination. Implementation of de-

lamination in the Carrera Unified Formulation frame work using nine noded

quadrilateral MITC9 element is discussed in this article. MITC9 element

is devoid of shear locking and membrane locking. Delaminated as well as

healthy structure is analysed for free mode vibration. The results from the

present work are compared with the available experimental or/and research

article or/and the three dimensional finite element simulations. The effect

of different kinds and different percentages of area of delamination on the

first three natural frequency of the structure is discussed. The presence of

open-mode delamination mode shape for large delaminations within the first

three natural frequency is discussed. Also, the switching of places between

the second bending mode, with that of the first torsional mode frequency is

discussed. Results obtained from different ordered theories are compared in

the presence of delamination. Advantage of layerwise theory as compared to

equivalent single layer theories for very large delaminations is stated. The

effect of different kinds of delamination and its effect on the second bending

and first torsional mode shape is discussed.

1. Introduction

Composite laminate structures are widely used in aircraft, helicopters,

wind turbine blades and in other industries. There are many ways of analysing

laminated structures; a detailed review articles on available methods for the

analysis of laminated plates and shells, and its historical development are

documented in articles [1, 2]. Laminated composite structures are prone to

defects such as matrix cracking, strength and stiffness degradation due to ag-

ing or corrosion, and delamination between plies [3, 4]. Delamination in the
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composite structure may occur either during the manufacturing process or

during service period of the structure [5]. However, delamination in a struc-

ture may lead to catastrophic failure of the structure [3, 6, 7]. Delamination

models are required, to facilitate the understanding of effect of delamina-

tion on the structures, and analyze possible algorithms for structural health

monitoring of delaminated structures.

Analysis of laminated structures can be carried out using many theories.

Available theories of composite laminated plates can be classified into [8, 9]:

• Equivalent single layer (ESL) theories,

• Layerwise (LW) theories, and

• Continuum-based three dimensional (3D) elasticity theories.

ESL theories can be grouped into axiomatic or asymptotic based theories,

based on the method of derivation [8]. In axiomatic framework, displace-

ment or/and stress in the thickness direction is assumed and the 3D physical

problem is collapsed into a two dimensional mathematical problem [8]. Based

on the order of displacement approximation in the thickness direction, ESL

theories are further classified into Classical Laminated plated Theory (CLT),

First order Shear Deformation Theory (FSDT), Higher order Shear Defor-

mation Theories (HSDT), and Zig-Zag (ZZ) theory. In asymptotic based

theory, 3D energy terms are expanded in terms small parameters. These

small parameters may be geometrical parameters, like ratio of thickness to

the wavelength of deformation, maximum allowable strains, or/and material

small parameters like shear modulus to Young’s modulus ratio. Three dimen-

sional energy terms are expanded as a series in these small parameters and,

based on requirements, higher order terms are truncated, in the variational

statement [10]. Layerwise theories are kind of quasi 3D theories, though each
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layer is analyzed using an ESL theory. Again, based on the independent vari-

ables choosen, theories can regrouped into displacement-based, stress-based

or mixed formulations.

Different refined and advanced shell/plate models are contained in the

Carrera’s Unified Formulation (CUF). The CUF permits to obtain, in a gen-

eral and unified manner, several models that can differ by the chosen order

of expansion in the thickness direction, by the equivalent single layer or layer

wise approach and by the variational statement used [11, 12]. By imple-

menting delamination model in the CUF frame-work, analysis of delaminated

structures can be carried out using several models.

Finite element implementation of above theories is carried out by many

researchers. Finite element implementation of ESL theories can be broadly

classified based on:

• Shape of element (Triangular or Quadrilateral) [13];

• Number of nodes in the element [14];

• Degrees of freedom per node [15, 9];

• Type of interpolation function [16, 9]; and

• Integration technique [17].

A comprehensive review on the finite element implementation of plate theo-

ries is given in the article by Zhang and Yang [9]. A comparative view on ESL

and LW plate theories is give by Reddy [18]. Layerwise plate theory is used

by many authors and for different application, few of the references for LW

plate theories are [19, 20, 21]. Trigonometric LW shear deformation theory is

implemented by Mantari et al. [22]. Murakami [23] introduced Zig-Zag (ZZ)

plate theory for laminated plates. ZZ plate theory is extended to include
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higerorder thickness function by Cho and Parmerter [24]. ZZ plate theories

are used in many applications, following are the few of the references using

ZZ theory [25, 26, 27]. The present article uses Carrera unified formulation

theory with a nine noded, quadrilateral element, and MITC technique for

eliminating the shear locking phenomenon [11].

Delamination in the plates is modeled by many researchers, and delam-

ination modeling can be broadly categorized into (a) the region approach,

and (b) the layerwise approach [28]. In region-wise approach, delaminated

segment is divided into sub-laminates and the continuity conditions are im-

posed at the junctions of delaminated segments and the healthy segment. In

layerwise theories, delamination can be modeled by introducing discontinu-

ity functions in the displacement fields or by adding an additional embedded

layer at the place of delamination [28, 29, 5]. Delamination models can also be

regrouped into free-mode delamination models and constrained-mode delam-

ination models [28]. In free-mode delamination models, the sub-laminates of

the delaminated segments are allowed to move independently without touch-

ing each other. Free-mode delamination model leads to non-physical displace-

ment modes. Constrained-mode delamination models will not allow such

non-physical displacement modes. Constrained-mode delamination models

impose penalty conditions on the delaminated sub-laminates, by restricting

the sub-laminates to move together. However, this option would not simulate

the open-mode deformation conditions. This led to further enhancement of

the constrained-mode delamination model by incorporating nonlinear springs

in between the delaminated sub-laminates. A detailed review and historical

development of delamination models is given by authors Della and Shu [28].

Delamination models are implemented in ZZ theories by Cho and Kim [25],

and by Oh et al. [30].
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The present article uses Mixed Interpolation Tensorial Component, nine

node quadrilateral (MITC9) element for the laminated plate analysis. MITC9

element is devoid of shear and membrane locking phenomenon [31]. Delam-

ination model has been implemented in CUF frame-work. Results for the

first few natural frequency and modeshapes of the structures are obtained

using CUF plate code for healthy as well as delaminated plate. Results are

compared with existing literature or with 3D finite element simulation. The

major contribution of the present article is the implementation of the delami-

nation model in the CUF frame work. The results for the delaminated plates

for higher order theories, other than which are present in the literature are

tabulated.

2. Variable Kinematic model via Carrera Unified Formulation

Carrera Unified Formulation (CUF) is a technique which handles a large

variety of bi-dimensional models in an unified manner. According to CUF,

the governing equations are written in terms of a few fundamental nuclei

which do not formally depend on the order of expansion N used in the z

direction and on the description of variables: ESL or LW. The application of a

two-dimensional method for plates permits to express the unknown variables

as a set of thickness functions depending only on the thickness coordinate

z and the corresponding variables depending on the in plane coordinates x

and y. So that, a generic variable, for instance the displacement u(x, y, z),

and its variation δu(x, y, z) are written according to the following general

expansion:

u(x, y, z) = Fs(z)us(x, y), δu(x, y, z) = Fτ (z)δuτ (x, y),

with τ, s = 0, ..., N
(1)
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Bold letters denote arrays and the summing convention with repeated indexes

τ and s is assumed. The order of expansion N goes from first to higher-order

values and, depending on the used thickness functions, a model can be ESL

or LW. If the variable is assumed for the whole multilayer, the approach is

ESL and a Taylor expansion is employed as thickness function F (z):

u = F0 u0 + F1 u1 + . . . + FN uN = Fτ uτ with τ = 0, 1, . . . , N (2)

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN (3)

When the description is LW the variable is considered independent in each

layer:

uk = Ft u
k
t + Fb u

k
b + Fl u

k
l with l = 2, . . . , N (4)

where t and b indicate the top and bottom of the plate and the thickness

functions F (z) are combinations of Legendre polynomials:

P0 = 1, P1 = ζk, P2 =
(3ζk

2 − 1)

2
, P3 =

5ζk
3

2
−

3ζk
2

,

P4 =
35ζk

4

8
−

15ζk
2

4
+

3

8

(5)

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fl = Pl − Pl−2 with l = 2, . . . , N (6)

The chosen functions have the following interesting properties:

ζk = 1 : Ft = 1; Fb = 0; Fl = 0 at top

ζk = −1 : Ft = 0; Fb = 1; Fl = 0 at bottom
(7)

that is the interface values of the variables are considered as unknowns.

It is possible to obtain the FSDT model [32, 33] from an ESL theory with

first order of expansion, by considering a constant transverse displacement
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Figure 1: Reference system of plate

through the thickness. An appropriate application of penalty techniques to

shear correction factor leads to CLT [34].

3. MITC9 plate element

In this section, the derivation of a plate finite element for the analysis

of multilayered structures is presented. The element is based on both the

ESL, ZZ and LW theories contained in the Unified Formulation. A nine-

nodes element is considered. After an overview in scientific literature about

the methods that permit to withstand the membrane and shear locking, the

MITC technique has been adopted for this element.

3.1. Geometrical relations

Plates are bi-dimensional structures in which one dimension (in general

the thickness in z direction) is negligible with respect to the other two in-

plane dimensions. Geometry and the reference system are indicated in Fig. 1.

Geometrical relations permit the in-plane ǫkp and out-plane ǫkn strains to

be expressed in terms of the displacement u. The following relations hold:

ǫkp = [ǫkxx, ǫ
k
yy, ǫ

k
xy]

T = Dp uk , ǫkn = [ǫkxz, ǫ
k
yz, ǫ

k
zz]

T = Dn uk . (8)
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The explicit form of the introduced arrays is:

Dp =











∂x 0 0

0 ∂y 0

∂y ∂x 0











, Dn =











∂z 0 ∂x

0 ∂z ∂y

0 0 ∂z











, (9)

3.2. MITC method

Considering a 9-nodes finite element, the displacement components are

interpolated on the nodes of the element by means of the Lagrangian shape

functions Ni:

δuτ = Niδuτi us = Njusj with i, j = 1, ..., 9 (10)

where usj and δuτi are the nodal displacements and their virtual variations.

Substituting in the geometrical relations (8) one has:

ǫp =FτDp(NiI)uτi

ǫn =FτDn(NiI)uτi

(11)

where I is the identity matrix.

Considering the local coordinate system (ξ, η), the MITC plate elements

[35, 36] are formulated by using, instead of the strain components directly

computed from the displacements, an interpolation of these within each el-

ement using a specific interpolation strategy for each component. The cor-

responding interpolation points, called tying points, are shown in Fig. 2 for a

nine-nodes element. Note that the transverse normal strain ǫzz is excluded

from this procedure and it is directly calculated from the displacements.
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Figure 2: Tying points for the MITC9 plate element.

The interpolating functions are Lagrangian functions and are arranged in

the following arrays:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS]

(12)

From this point on, the subscripts m1, m2 and m3 indicate quantities

calculated in the points

(A1, B1, C1, D1, E1, F1), (A2, B2, C2, D2, E2, F2) and (P,Q,R, S), respec-

tively. Therefore, the strain components are interpolated as follows:

ǫp =











ǫxx

ǫyy

ǫyy











=











Nm1 0 0

0 Nm2 0

0 0 Nm3





















ǫxxm1

ǫyym2

ǫxym3











ǫn =











ǫxz

ǫyz

ǫzz











=











Nm1 0 0

0 Nm2 0

0 0 1





















ǫxzm1

ǫyzm2

ǫzz











(13)

11



where the strains ǫxxm1
, ǫyym2

, ǫxym3
, ǫxzm1

, ǫyzm2
are expressed by means of

eq.s (11) in which the shape functions Ni and their derivatives are evaluated

in the tying points. For example, one can considers the strain component ǫxx

that is calculated as follows:

ǫxx = NA1ǫxxA1
+NB1ǫxxB1

+NC1ǫxxC1
+ND1ǫxxD1

+NE1ǫxxE1
+NF1ǫxxF1

(14)

with:

ǫxxA1
= N

(A1)
i,x

Fτuτi (15)

The superscript (A1) indicates that the shape function and its derivative

are evaluated in the point of coordinates (−
√

1
3
,−

√

3
5
). Similar expressions

can be written for ǫxxB1
,ǫxxC1

,ǫxxD1
,ǫxxE1

,ǫxxF1
.

4. Constitutive equations

The second step towards the governing equations is the definition of the

3D constitutive equations that permit to express the stresses by means of

the strains. The generalized Hooke’s law is considered, by employing a linear

constitutive model for an infinitesimal deformations. In a composite mate-

rial, these equations are obtained in material coordinates (1, 2, 3) for each

orthotropic layer k.

The stress-strain relations are:

σk
p = Ck

pp ǫ
k
p +Ck

pn ǫkn

σk
n = Ck

np ǫ
k
p +Ck

nn ǫkn

(16)
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where

Ck
pp =











Ck
11 Ck

12 Ck
16

Ck
12 Ck

22 Ck
26

Ck
16 Ck

26 Ck
66











Ck
pn =











0 0 Ck
13

0 0 Ck
23

0 0 Ck
36











Ck
np =











0 0 0

0 0 0

Ck
13 Ck

23 Ck
36











Ck
nn =











Ck
55 Ck

45 0

Ck
45 Ck

44 0

0 0 Ck
33











(17)

The material coefficients Cij depend on the Young’s moduli E1, E2, E3,

the shear moduli G12, G13, G23 and Poisson moduli ν12, ν13, ν23, ν21, ν31, ν32

that characterize the layer material.

5. Governing equations

This section presents the derivation of the governing finite element stiff-

ness matrix and mass matrix based on the Principle of Virtual Displacement

(PVD) in the case of multi-layered laminated plate.

The PVD for a multilayered laminated plates is:

ˆ

Ωk

ˆ

Ak

{

δǫkp
T
σk

p + δǫkn
T
σk

n

}

dΩkdz =

ˆ

Ωk

ˆ

Ak

ρk δu ü dΩkdz+

ˆ

Ωk

ˆ

Ak

δukpk dΩkdz

(18)

where Ωk and Ak are the integration domains in the plane and in the thickness

direction, respectively. The member on the left hand side of the equation

represents the variation of the internal work, while the first member on the

right hand side of the equation represents the kinetic energy due to inertia

and the second member is the external work done due to applied loads.

pk = pk(x, y, z) is the mechanical load applied to the structure at layer level.
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Substituting the constitutive equations (16), the geometrical relations

written via the MITC method (13) and applying the Unified Formulation

(1) and the FEM approximation (10), one obtains the following governing

equations:

δqk
τi
: Kkτsijqk

sj
= M kτsijq̈k

sj
+ P k

τi
(19)

whereKkτsij is a 3×3 matrix, called fundamental nucleus, and its explicit

expression is given in Appendix. This is the basic element from which the

stiffness matrix of the whole structure is computed. The fundamental nucleus

is expanded on the indexes τ and s in order to obtain the stiffness matrix of

each layer. Then, the matrices of each layer are assembled at multi-layer level

depending on the approach considered, ESL or LW. P k
τi is the fundamental

nucleus for the external mechanical load. For more details, the reader can

refer to [2].

6. Acronyms

Several refined and advanced two-dimensional models are contained in

the unified formulation. Depending on the variables description (LW, ESL

or ZZ) and the order of expansion N of the displacements in ξ3, a large variety

of kinematics shell theories can be obtained. A system of acronyms is given

in order to denote these models. The first letter indicates the multi-layer

approach which can be Equivalent Single Layer (E) or Layer Wise (L). The

number N indicates the order of expansion used in the thickness direction

(from 1 to 4). In the case of LW approach, the same order of expansion is

used for each layer. In the case of ESL approach, a letter Z can be added

if the zig-zag effects of displacements is considered by means of Murakami’s

zig-zag function. Summarizing, E1-E4 are ESL models. If Murakami zig-zag

14



function is used, these equivalent single layer models are indicated as EZ1-

EZ3. In the case of layerwise approaches, the letter L is considered in place of

E, so the acronyms are L1-L4. Classical theories such as Classical Lamination

Theory (CLT) and First order Shear Deformation Theory (FSDT), can be

obtained as particular cases of E1 theory simply imposing constant value of

w through the thickness direction. An appropriate application of penalty

technique to shear moduli of the material leads to CLT.

7. Incorporating Delamination

Delamination in laminate is modeled either using region based approach

or layerwise approach [28]. Region based delamination model is generally

employed while using ESL models for the structure analysis, and layerwise

delamination model, when LW theory is adopted for the structural analysis.

There are many research articles based on implementation of these delami-

nation models either by analytical means or by numerical means. A detailed

review article on the type of implementation using analytical or numerical

using region wise delamination or layerwise delamination model is given by

Della and shu [28]. CUF model is capable of simulating ESL as well as LW

theories. Implementation of delamination model numerically requires modi-

fication at the preprocessor stage or during the assembly stage in the CUF

framework based on the theories used to analyses the delaminated structure.

To implement delamination in ESL theories numerically, major changes to

be carried out is at the preprocessing stage. Where as for delamination im-

plementation using LW theories numerically, major changes to be carried out

is during the assembly stage.
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7.1. Delamination in ESL and ZZ models

Region wise delamination modeling is used for ESL and ZZ theories. Re-

gion wise delamination modeling is incorporated by spliting the delaminated

structure in span wise direction into delaminated segment and integral seg-

ments. In delaminated region, the segments above and below the delamina-

tion in the thickness wise direction are modeled as two separate plates; as

shown by the top illustration of the fig. 3. There is a shift in the neutral

surfaces of these plates in the delaminated region with that of the neutral

surface of the integral plate. The shift in the neutral surfaces gives rise to the

coupling of in-plane and bending modes of vibration. At the interface of de-

laminated region and the integral plate, apart from the continuity condition

of the transverse displacement, shear force and bending moments, additional

condition of in-plane displacements and forces has to be satisfied. This is ac-

complished by having a common node at the interface for the integral segment

as well as the delaminated segments; as shown by the bottom illustration of

the fig. 3. This can be enforced in the finite element context by pacifying

the nodal displacements to be same at the interface of integral as well as

delaminated segments. To drive this point further; consider the elements f ,

g, and m, shown in fig. 3. The nodal displacements for the node p should be

same as that of node w and node s, it can be stated mathematically as

qp = qw = qs

where, qp is the nodal displacement vector of the node p, qw is the nodal dis-

placement vector for the node w and qs is the nodal displacement vector for

the node s. Similarly the displacement components for the nodes situated at

the interface; for elements f , g, m, i, h and n would have the same displace-
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ment components. The other way implementing the above condition is by

penalty constraint, but having a common node at the interface for integral as

well as delaminated segments reduces the number of equations to be solved,

and also the implementation can be carried out at the preprocessing stage;

which is easier to implement. Differential stretching in the plates above and

below delamination plane induces substantial flexural stiffness.

The free mode delamination model is implemented in the present anal-

ysis, as in this article emphasis is on free vibration analysis. Constrained

mode delamination model can be implemented by adding spring elements,

which constrain the transverse displacement of delaminated segments into

one another. A nonlinear compressive-only spring connecting the nodes rep-

resented by circle and disk as shown in fig. 3, has to be used to implement

the constrained mode delamination model. This spring hardly influences the

stiffness properties of the structure for mode shapes and natural frequency

calculations. The spring connecting the disk and circle fig. 3 is used to rep-

resent the contact forces generated between the delaminated segments. Con-

strained mode model is appropriate while simulating delaminated structures

for static and dynamic response analysis, and stability studies. Continuity

condition of the displacements is established by having common nodes for

the delaminated segments and the integral segment. The eccentricity of the

neutral plane of delaminated segments with that of the healthy segments is

accounted while calculating ABD matrices of the laminate.

7.2. Delamination in LW model

Delamination is modeled in layerwise theory either using thin elastic layer

concept or by introducing the discontinuity in the displacement functions

[28]. Analytically discontinuity in the displacement fields is introduced using

Heaviside unit step functions [20]. Finite element wise delamination imple-
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Figure 3: Delaminated structure mesh representation

mentation in LW theory is by introducing an additional nodes at the location

of delaminated region. Schematic of the LW finite element mesh for a de-

laminated structure is shown in fig. 4. This is implemented numerically

while assembling the element matrix of the delaminated element. This can

be stated mathematically as

qdisc 6= qcircle.

Where, qdisc is the nodal displacement vector of the node situated at the

delamination interface, and qcircle is the nodal displacement vector of the

node situated at the delamination interface; discs and circles are the nodes

as shown in fig. 4. Schematic of an assembled of block matrix for a node,

for a healthy as well as delaminated layerwise element is shown in fig. 5.

Delamination is in between layer two and layer three, for the schematic shown

in fig. 5

Block matrices for healthy laminated element are all square in nature,

but for the delaminated element block matrices may not be square in nature.
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Figure 4: Schematic of delaminated plate mesh for LW theory

Layer 1

Layer 2

Layer 3

Layer Nl -1

Layer Nl

Layer Nl -1

Layer Nl

Layer 1

Layer 2

Layer 3

Figure 5: Schematic of assembly for a node

Schematic of element matrices of intact as well as delaminated elements is

shown in fig. 6. In the schematic of matrices shown, the nodes 2, 6 and 9 fall

in the delaminated region, hence the size of the nodal matrices for these nodes

are bigger than that of the nodes falling in the undelaminated location. As

a result of this the off-diagonal block matrices will be rectangular in shape.

This method of implementing the delamination is handled at the assembly

stage.
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Figure 6: Schematic of element matrices in LW theory

8. Numerical results

A laminated composite beam made of graphite/epoxy composite with

stacking sequence [0/90]2s, 0.127m length, 0.0127m breadth, and 10.16mm

thickness, is considered for the numerical simulation for the healthy as well

as delaminated states. Each ply has a thickness of 1.27mm. One of the

smaller edge of the plate is restrained, and the remaining three edges are

free to deform. This beam is modeled using plate elements. This particular

configuration is used in simulation, as experimental, analytical and numerical

results are available in the literature [28, 30, 37] for comparison. Results are

also validated with 3D finite element simulation using COMSOL 4.2a. The

3D finite element beam model is meshed with 40000 hexahedral elements.

Delamination in the structure is simulated using thin elastic layer .

8.1. Delaminated plate results

First three natural frequencies of healthy, as well as delaminated plate are

tabulated in Tables 1 - 3 . Delamination is located at the middle part in the

length wise direction of the plate, the length of delamination is 25.4mm and
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full width of plate is considered to be delaminated. In the thickness direction

delamination is considered at different interfaces, refer fig. 7.

X
Y

w

Figure 8: First mode shape

The 25.4mm delamination at any interface has very small effect on the

first natural frequency of the structure. This is evident from the results

obtained using all theories and also with the experimental results. Form the

results, it is also evident that the location of delamination in the thickness

direction has an impact on the natural frequencies, refer Table 1. The first

mode shape of the beam, delaminated at interface 1, obtained using LW

model is shown in fig. 8. The effect of delamination on the natural frequencies

is seen to decrease as the delamination location shifts from interface 1 to
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Frequency
(Hz)

Healthy
beam

Interface 1 Interface 2 Interface 3 Interface 4

Exp [37] 79.88,
79.75,
79.88

78.376,
79.126,
77.001

78.375,
78.375,
76.626

79.625,
80.125,
80.625

75.315,
75.250,
77.250

FSDT[28] 82.04 80.133 81.385 81.461 81.598
3D FEM

[3]
81.46 81.43 81.39 81.76 81.37

ED1 81.99 81.21 81.27 81.78 82.23
ED2 82.02 81.28 81.34 81.82 81.84
ED3 82.01 81.22 81.29 81.81 81.83
ED4 82.01 81.22 81.29 81.80 81.82
LD1 82.01 80.98 81.08 81.75 81.78
LD2 81.99 80.96 81.06 81.74 81.77
LD3 81.99 80.96 81.06 81.74 81.77
LD4 81.99 80.96 81.06 81.74 81.77
EDZ1 82.44 81.66 81.73 82.23 NA
EDZ2 82.02 81.27 81.33 81.81 NA
EDZ3 82.01 81.22 81.28 81.80 NA
FSDT 81.99 81.24 81.30 81.80 81.82
CLT 82.02 81.27 81.33 81.83 81.85

Table 1: Comparison of healthy beam results with different theories.

interface 4. FSDT results for healthy as well as for delamination location at

all the interfaces from the CUF formulation are almost same as that of the

FSDT results from [28]. Results of all the theories are almost all similar in

trend for change in delamination location.

Result for the ZZ theory, for the delamination location at interface 4 is

stated as NA (Not applicable). ZZ theory is implemented in the framework

of ESL theory. In the case of delamination location at interface 4 in the

structure, top layer is delaminated from the rest of the laminate. Delamina-

tion model in the ESL framework is modeled as individual elements for the

top and bottom delaminated segments. The top layer will form a single layer

in the delamianted region for the case of delamination at interface 4. For
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applying ZZ theory in the ESL framework at least two layers are required.

Hence, the results for the delamination at interface 4 in the tables are stated

as NA.

X
Y

w

Figure 9: Second modeshapes.

Frequency (Hz) Healthy beam Interface 1 Interface 2 Interface 3 Interface 4

3D FEM 510.97 510.55 509.06 508.89 508.72
ED1 512.86 510.71 510.84 510.72 513.53
ED2 513.09 511.68 511.77 511.44 511.99
ED3 512.79 511.30 511.41 511.12 511.68
ED4 513.11 511.29 511.40 511.10 511.67
LD1 512.82 511.21 511.34 510.52 511.33
LD2 512.76 511.15 511.27 510.45 511.26
LD3 512.76 511.15 511.27 510.45 511.26
LD4 512.76 511.15 511.27 510.45 511.26
EDZ1 515.67 513.54 513.75 513.53 NA
EDZ2 513.06 511.64 511.73 511.41 NA
EDZ3 512.76 511.27 511.38 511.09 NA
FSDT 512.85 511.48 511.57 511.25 511.82
CLT 514.08 512.68 512.78 512.46 513.03

Table 2: Comparison of second natural frequency of a healthy beam with different theories.

The second mode natural frequency result obtained from different theories

and for delamination location at different interfaces is tabulated in Table. 2.

The second mode natural frequency result for 25.4mm length, full width and

for delamination location at different interfaces has small change with respect
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to the healthy beam second mode natural frequency result. The second mode

shape of the beam obtained using LW theory is shown in fig 9.

It is interesting to note that the natural frequency result for the third

mode shape changes with the presence of delamination. The natural fre-

quency results for third mode shape, for delamination length of 25.4mm, full

width delamination and for delamination location at different interfaces is

shown in Table. 3. Third mode shape of the beam is ploted in fig. 10.

Third mode shape corresponds to the torsional mode shape of the beam as

seen from the plot. Presence of delamination in the beam, has produced

a considerable change in the torsional stiffness of the beam and hence the

natural frequency of the delaminated beam is much lower than that of the

healthy beam, in comparison with the first two natural frequencies. From

the table it is also evident, as the delamination location shifts from interface

1 to interface 4 the change in natural frequency reduces. Torsional stiffness

of the beam has reduced drastically for delamination location at interface 1,

but the cross section at the delaminated region gets torsionally stiffer as the

delamination location shifts from interface 1 to interface 4.

X
Y

w

Figure 10: Third mode shape of the beam

8.2. Partial delamination in widthwise results

Effect of partial delamination in the width of the structure on the natural

frequencies is evaluated. Two cases of partial delaminations are considered in
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Frequency (Hz) Healthy beam Interface 1 Interface 2 Interface 3 Interface 4

3D FEM [3] 602.42 548.32 565.92 581.55 589.63
ED1 615.52 561.41 569.77 590.34 590.76
ED2 615.62 561.88 570.77 589.50 603.07
ED3 614.28 558.08 566.93 587.16 600.72
ED4 614.30 557.98 566.83 586.85 600.64
LD1 613.20 555.76 566.35 588.93 604.27
LD2 613.12 555.46 566.06 588.76 604.16
LD3 613.12 555.44 566.04 588.75 604.15
LD4 613.12 555.43 566.035 588.74 604.15
EDZ1 615.77 562.04 570.22 590.76 NA
EDZ2 615.62 561.73 569.83 589.27 NA
EDZ3 614.28 557.88 566.74 586.87 NA
FSDT 611.57 561.59 569.95 590.42 603.38
CLT 619.79 567.42 576.18 597.72 611.27

Table 3: Comparison of third natural frequency of a healthy beam with different theories

the simulation, C-type or the Channel type delamination in the cross-section

as shown in the fig. 11(b), and I-type delamination in the cross-section as

shown in the fig. 11(c).

(a) (b) (c)

Figure 11: Width wise delamination cases

8.3. C-type, 76.2mm length delamination

First three natural frequencies for a C-type delaminated structure are

tabulated in Tables 4 -6. The delamination length of 76.2mm, different per-

centage of width delamination and in thickness direction delamination is

considered at interface 1. From the Table 4, the first bending frequency re-

sults obtained using different order theories are quite similar, for different
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Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

Exp [37] 79.88, 79.75,
79.88

NULL NULL 68.25, 66.25,
66.38

3D FEM [3] 81.46 80.92 79.83 67.37
ED1 81.99 81.22 78.12 65.99
ED2 82.01 81.30 78.23 66.08
ED3 82.01 81.28 78.13 65.73
ED4 82.01 81.28 78.11 65.64
LD1 82.01 81.25 79.87 67.44
LD2 81.99 81.24 79.86 67.41
LD3 81.99 81.24 79.84 68.02
LD4 81.99 81.24 79.84 68.02
EDZ1 82.44 81.66 78.53 66.35
EDZ2 82.02 81.30 78.22 66.06
EDZ3 82.01 81.30 78.12 65.71
FSDT 81.99 81.27 79.96 66.08
CLT 82.02 81.33 80.06 66.26

Table 4: First bending frequency for 76.2mm of length and different percentage of width

delaminations.

percentages of delamination area. There is a drastic decrease in the natural

frequency for the case of full width delamination compared to healthy and

other percentages of width delamination.

The second bending frequency of the structure is given in Table 5. The

second natural frequency for the partial delamination in the width does

not correspond to pure bending mode. The second and third modes for

76.2mm long delamination and with partial-width delamination corresponds

to bending-twist coupled mode. The full width delamination second mode

corresponds to the first torsional mode and the third mode corresponds to the

second bending mode. Resluts for the second bending mode of the present

table are comparable with the results presented in the article by Oh et.al

[30], but the article only presents full width and healthy plate results. Again

from the results of the full width delamination, it is quite evident that the
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stiffness degradation is maximum for the full width delamination compared

to partial delamination.

Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

3D FEM 510.97 495.92 464.59 434.99
ED1 512.86 496.44 455.33 457.68
ED2 513.09 497.17 455.06 456.15
ED3 512.79 496.28 447.44 448.01
ED4 513.11 496.24 443.92 444.59
LD1 512.82 495.32 468.35 415.40
LD2 512.76 495.20 465.33 415.17
LD3 512.76 495.20 465.33 415.17
LD4 512.76 495.20 465.76 415.17
EDZ1 515.67 498.73 471.80 458.42
EDZ2 513.06 497.16 470.85 455.58
EDZ3 512.76 496.20 468.80 447.35
FSDT 512.85 496.98 469.95 457.95
CLT 514.08 499.19 474.67 463.22

Table 5: Second bending frequency for 76.2mm of length and different percentage of width

delaminations.

First torsional mode frequency of the delamianted structure is tabulated

in Table 6. First torsional mode corresponds to third natural mode of the

healthy structure. In the presence of partial delamination torsional mode is

not purely torsional mode but bending-twist coupled mode. Presence of full

width delamination and 76.2mm length of delamination results in torsionally

weak structure and hence the second mode frequency in the full width delam-

inated structure corresponds to torsional mode shape. The results of the all

the theories in comparison with the 3D FEM simulation are similar for the

partial width delamination. Where as, the frequency result from ESL and

ZZ theories for the full width delamination case are slightly higher than the

LW and 3D FEM results, for the second mode and third mode frequencies.
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Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

3D FEM [3] 602.42 528.77 519.96 381.62
ED1 615.52 534.15 486.99 413.47
ED2 614.62 534.40 487.56 411.58
ED3 614.28 532.10 486.06 408.94
ED4 614.30 532.07 485.40 406.66
LD1 613.20 530.16 506.81 391.28
LD2 613.12 517.52 506.66 391.09
LD3 613.12 517.52 506.28 391.08
LD4 613.12 517.52 506.66 391.08
EDZ1 615.77 534.76 489.39 415.58
EDZ2 615.62 534.30 487.40 410.93
EDZ3 614.28 531.97 485.87 408.22
FSDT 611.57 534.28 510.47 414.07
CLT 619.79 540.88 517.01 420.88

Table 6: First torsional frequency for 76.2mm of length and different percentage of width

delaminations.

8.4. C-type, 101.6mm length delamination

First three natural frequencies for C-type delamination, for the length

of delamination equal to 101.6 mm, and different percentages of the width

delamination are tabulated in Tables. 7 -9. Delamination is considered at

the interface 1 in the thickness direction. The first bending mode frequency

across the theories is almost all same, refer Table 7. The results are quite

comparable with the experimental and also the 3D FEM simulation.

The results for second bending mode is tabulated in Table 8. Results

from different theories are quite comparable with the 3D FEM simulations

and also with the results presented in article by Oh et al. [30] for healthy

as well as for partial delamination results. Due to long delamination in the

beam, there is an additional mode shape very close to the second bending

mode shape of the structure. The natural frequency of the traditional second

bending mode is 318.81Hz. This frequency is very close to the opening mode
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shape (refer fig. 12) frequency, and hence the ESL theories fail to capture

either the second bending mode shape or the opening mode shape of the

structure. 3D FEM simulation and the LW theories alone capture this mode

shapes.

Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

Exp [37] 79.88, 79.75,
79.88

57.62, 57.5,
57.5

3D FEM [3] 81.46 80.32 78.98 55.78
ED1 81.99 79.73 78.24 57.53
ED2 82.01 79.84 78.36 57.45
ED3 82.01 79.78 78.25 57.03
ED4 82.01 80.99 78.22 56.95
LD1 82.01 80.94 78.95 56.67
LD2 81.99 80.96 78.94 57.43
LD3 81.99 80.96 78.94 57.43
LD4 81.99 80.96 78.91 57.43
EDZ1 82.44 80.16 78.52 57.83
EDZ2 82.02 79.84 78.22 57.41
EDZ3 82.01 79.78 78.12 56.98
FSDT 81.99 81.00 79.05 59.64
CLT 82.02 81.06 79.19 59.90

Table 7: First natural frequency for 101.6mm of length and different percentage of width

delaminations.
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Figure 12: Open mode delamination

Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

3D FEM 510.97 462.30 407.29 323.93
ED1 512.86 473.57 425.45 356.29
ED2 513.09 474.08 425.99 355.09
ED3 512.79 472.69 423.88 352.27
ED4 513.11 472.64 423.81 348.78
LD1 512.82 468.15 421.75 322.98
LD2 512.76 471.12 421.55 322.75
LD3 512.76 471.11 421.54 322.74
LD4 512.76 471.11 421.03 322.74
EDZ1 515.67 475.10 455.82 358.20
EDZ2 513.06 474.00 454.76 354.52
EDZ3 512.76 472.58 447.00 351.60
FSDT 512.85 473.92 425.81 356.80
CLT 514.08 477.39 431.29 361.88

Table 8: Second bending mode frequency for 101.6mm of length and different percentage

of width delaminations.

First torsional mode corresponds to the third mode or the fourth mode

depending on the type of theory we are using, as ESL theories could not

capture either the opening mode shape or the second bending mode shape
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Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

3D FEM [3] 602.42 515.25 487.14 346.76
ED1 615.52 520.37 493.13 422.78
ED2 614.62 520.72 493.65 420.71
ED3 614.28 519.06 491.63 411.24
ED4 614.30 519.04 491.60 404.88
LD1 613.20 514.26 489.94 345.09
LD2 613.12 517.52 489.80 344.95
LD3 613.12 517.52 489.39 344.95
LD4 613.12 517.52 489.39 344.95
EDZ1 615.77 521.45 489.39 423.47
EDZ2 615.62 520.64 487.40 420.07
EDZ3 614.28 518.96 485.87 410.40
FSDT 611.57 520.60 493.49 423.03
CLT 619.79 525.68 499.68 428.64

Table 9: First torsional mode frequency for 101.6mm of length and different percentage

of width delaminations.

of the structure. The torsional frequency results obtained using CUF LW

formulation is almost same as at of the 3D FEM, the ESL theories results

are quite higher than the LW and 3D simulations; a trend also seen in the

previous results.

From the result tables it is quite evident that the results from the LW

theory are quite comparable with the 3D FEM, experimental and also with

results from other theories presented by Oh et al. [30]. The results obtained

using ESL theories for higher mode shapes, are on the higher side than the

3D FEM simulations and the LW theory, but the same trend is also seen in

the results published by Oh et al. [30].

8.5. I type, 76.2mm long delamination

Symmetric I type delamination (refer fig. 11) is considered for the simu-

lation. First three natural frequencies for a I-type delaminated structure are

tabulated in Tables 10 -12. The delamination length of 76.2mm, different

31



percentage of width delamination and in thickness direction delamination is

considered at interface 1. From the Table 10, the first bending frequency

results obtained using different order theories are quite similar, for different

percentages of delamination area. There is a drastic decrease in the natural

frequency for the case of full width delamination compared to healthy and

other percentages of delamination.

Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

Exp [37] 79.88, 79.75,
79.88

68.25, 66.25,
66.38

3D FEM [3] 81.46 81.12 80.31 67.37
ED1 81.99 81.68 81.31 65.99
ED2 82.01 81.81 81.47 66.08
ED3 82.01 81.79 81.46 65.73
ED4 82.01 81.79 81.60 65.73
LD1 82.01 81.83 81.43 67.44
LD2 81.99 81.82 81.43 67.41
LD3 81.99 81.82 81.43 68.02
LD4 81.99 81.82 81.43 68.02
EDZ1 82.44 82.12 81.45 66.35
EDZ2 82.02 81.80 81.48 66.06
EDZ3 82.01 81.78 81.45 65.71
FSDT 81.99 81.83 81.59 66.08
CLT 82.02 81.87 81.65 66.26

Table 10: First natural frequency for 76.2mm of length and different percentage of width

delaminations.

The second natural frequency result for the I-type delamination is tabu-

lated in Table 11. The trend as seen for the C-type delamination is seen, but

the result for partial delamination is not bending-twist coupled mode shape,

it is pure second bending mode shape. Pure second bending mode shape is

observed as a result of having symmetric I type delamination, if the I-type

delamination was unsymmetrical then the second mode shape for the par-

tial delamination may not be pure bending mode shape. The second bending
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mode shape frequency for the different partial I-type delamination case Table

11 are higher in comparison for the same area C-type partial delamination

Table 5.

Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

3D FEM 510.97 494.53 483.97 434.99
ED1 512.86 508.79 504.12 457.68
ED2 513.09 509.66 505.23 456.15
ED3 512.79 509.17 504.62 448.01
ED4 513.11 509.16 504.60 444.59
LD1 512.82 508.72 504.05 415.40
LD2 512.76 508.64 503.97 415.17
LD3 512.76 508.64 503.97 415.17
LD4 512.76 508.64 503.96 415.17
EDZ1 515.67 511.53 506.80 458.42
EDZ2 513.06 509.62 505.18 455.58
EDZ3 512.76 509.13 504.57 447.35
FSDT 512.85 509.47 505.04 457.95
CLT 514.08 511.05 506.84 463.22

Table 11: Second bending frequency for 76.2mm of length and different percentage of

width delaminations.

The third natural frequency or the first torsional frequency of the struc-

ture is tabulated in Table 12. Pure torsional mode shape is observed for

the partial delamination cases rather than the bending-twist mode shape as

observed for C-type delamination, the comparative plots for 76.2mm delam-

ination and 70 percentage width delamination is shown in figs. 13 and 14.

The torsional frequency of the I-type delamination, for the same percentage

of delamination is lower than that of the C-type delamination.

8.6. I type, 101.6mm long delamination

First three natural frequencies for symmetric I-type delamination, for

the length of delamination equal to 101.6 mm, and different percentages

of the width delamination are tabulated in Tables 13 -15. Delamination is
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Figure 13: 76.2mm long, 70 percent wide, C type delamination

Figure 14: 76.2mm long, 70 percent wide, I type delamination

considered at the interface 1 in the thickness direction. The first bending

mode frequency across the theories is almost all same, refer Table 13. The

results are quite comparable with the experimental and also the 3D FEM

simulation.
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Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

3D FEM [3] 602.42 523.51 468.23 381.62
ED1 615.52 518.69 473.81 413.47
ED2 614.62 518.78 473.97 411.58
ED3 614.28 515.60 470.87 408.94
ED4 614.30 515.55 470.80 406.66
LD1 613.20 512.86 468.05 391.28
LD2 613.12 512.60 467.78 391.09
LD3 613.12 512.60 467.78 391.08
LD4 613.12 512.60 467.78 391.08
EDZ1 615.77 518.67 473.82 415.58
EDZ2 615.62 518.52 473.68 410.93
EDZ3 614.28 515.28 470.51 408.22
FSDT 611.57 518.72 473.88 414.07
CLT 619.79 528.44 481.88 420.88

Table 12: First torsional frequency for 76.2mm of length and different percentage of width

delaminations.

Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

Exp [37] 79.88, 79.75,
79.88

NULL NULL 57.62, 57.5,
57.5

3D FEM [3] 81.46 80.09 78.04 55.78
ED1 81.99 81.68 81.31 57.53
ED2 82.01 81.81 81.49 57.45
ED3 82.01 81.79 81.46 57.03
ED4 82.01 81.79 81.46 56.95
LD1 82.01 81.77 81.43 56.67
LD2 81.99 81.76 81.43 57.43
LD3 81.99 81.76 81.42 57.43
LD4 81.99 81.76 81.42 57.43
EDZ1 82.44 82.12 81.76 57.83
EDZ2 82.02 81.80 81.48 57.41
EDZ3 82.01 81.78 81.45 56.98
FSDT 81.99 81.78 81.46 59.64
CLT 82.02 81.83 81.52 59.90

Table 13: First natural frequency for 101.6mm of length and different percentage of width

delaminations.
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Second bending natural frequency result for the 101.6mm length delam-

ination and different percentage of delamination in the width wise case is

tabulated in Table 14. The results across the theories are quite similar. The

second bending modes are pure bending modes rather than the bending-

twist mode as seen for the C-type delamination. The second bending mode

frequency for I type delamination is higher than the second bending mode

frequency for the C-type delamination, as seen from the Tables 8 and 14. In

the case of C-type delamination the second mode is bending-twist coupled

mode and hence the second mode frequency for the C-type delamination is

lower than that of the I-type delamination, though both the cases have same

percentage of delamination.

Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

3D FEM 510.97 473.63 400.37 323.93
ED1 512.86 495.48 438.30 356.29
ED2 513.09 495.54 441.24 355.09
ED3 512.79 492.54 438.47 352.27
ED4 513.11 492.48 438.39 348.78
LD1 512.82 489.89 435.90 322.98
LD2 512.76 489.61 435.61 322.74
LD3 512.76 489.61 435.61 322.74
LD4 512.76 489.61 435.61 322.74
EDZ1 515.67 495.38 441.05 358.20
EDZ2 513.06 495.26 440.94 354.52
EDZ3 512.76 492.18 438.09 351.60
FSDT 512.85 495.50 441.19 356.80
CLT 514.08 504.35 448.53 361.88

Table 14: Second natural frequency for 101.6mm of length and different percentage of

width delaminations.
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Frequency (Hz) Healthy
beam

50 percent 70 percent Full width

3D FEM [3] 602.42 493.95 460.80 346.76
ED1 615.52 505.56 496.04 422.78
ED2 614.62 506.43 497.32 420.71
ED3 614.28 505.80 496.48 411.24
ED4 614.30 505.78 496.46 404.88
LD1 613.20 505.23 495.47 345.09
LD2 613.12 505.14 495.62 344.95
LD3 613.12 505.14 495.62 344.95
LD4 613.12 505.14 495.62 344.95
EDZ1 615.77 508.21 498.75 423.47
EDZ2 615.62 506.39 497.26 420.07
EDZ3 614.28 505.75 496.42 410.40
FSDT 611.57 506.24 497.13 423.03
CLT 619.79 508.17 499.48 428.64

Table 15: First torsional frequency for 101.6mm of length and different percentage of width

delaminations.

First torsional mode shape frequency for the 101.6mm long delamination

at interface 1, and for different percentages of delamination is tabulated in

Table 15. The trend of frequency decrease as the increase in delamination

as expected is also seen in this table along the expected lines. The torsional

mode shape are pure torsional mode shapes for the partial delamination

cases. The torsional mode frequency for the I-type partial delaminations is

lower than the torsional mode frequency of the C-type delamination, though

both types of delamination have the same percentage of delamination. It is

clear that I-type delamination is torsionally weak compared to the C-type

delamination, for the same area of delamination in the structure.

9. Conclusion

Implementation of delamination model in the CUF framework for MITC9

quadrilateral element is discussed. The implementation process for ESL
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and LW theories is explained along the with schematics. The changes in

the matrix dimension and shape for the delaminated element in the case

of LW theory is discussed with schematics for an example case. The re-

sults obtained from the simulation is compared with the existing experimen-

tal/literature/3D FEM simulations. The results obtained are quite satisfac-

tory and they match very well with the available results in the research vault.

The first three natural frequencies obtained using LW theories matches very

well with the 3D finite element simulations, in comparison with the ESL

theories. Layerwise theory is better at handling open mode shapes, which

exists for the structures with large delamination; than the ESL theories.

The presence of large delamination shifts second and third mode shapes, or

rather a new mode shape arises between the first and second mode shapes.

The presence delamination at higher interfaces (refer fig. 7) has slightly less

impact when compared to the presence of delamination closer to the mid-

surface of the structure. The presence of C-type partial delamination in the

structure will result in bending-twist coupled mode shapes, where as same is

not seen for the symmetric I-type delaminated structures. Symmetric I-type

delaminations are stiffer in bending, in comparison with the C-type delami-

nated structure, if both the structures have same delaminated area. C-type

delaminated structures are stiffer in torsion, in comparison with the I-type

delaminated structure, though if both the structures have delaminated area.

The advantage of the present formulation technique is that the MITC ele-

ment is devoid of shear locking and membrane locking. Implementation of

delamination in the CUF framework has the advantage of obtaining results

for the delaminated structure with wide variety of theories and also different

ordered theories.
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Appendix A

The explicit expression of the fundamental nucleo Kkτsij is proposed

below.

Introducing the following notation:

✁ . . .✄Ω =

ˆ

Ω

. . . dΩ

the fundamental nucleo Kkτsij can be written as:
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Kkτsij
xx =Ck

55NiNNjN ✁NaNa ✄Ω Fs,zFτ,z + Ck
55NiQNjN ✁NbNa ✄Ω Fs,zFτ,z+

Ck
55NiNNjQ ✁NaNb ✄Ω Fs,zFτ,z + Ck

55NiQNjQ ✁NbNb ✄Ω Fs,zFτ,z+

Ck
11 ✁Ni,xNj,x ✄Ω FsFτ + Ck

16 ✁Ni,yNj,x ✄Ω FsFτ+

Ck
16 ✁Ni,xNj,y ✄Ω FsFτ + Ck

66 ✁Ni,yNj,y ✄Ω FsFτ

Kkτsij
yx =Ck

45NiMNjN ✁NdNa ✄Ω Fs,zFτ,z + Ck
45NiPNjN ✁NcNa ✄Ω Fs,zFτ,z+

Ck
45NiMNjQ ✁NdNb ✄Ω Fs,zFτ,z + Ck

45NiPNjQ ✁NcNb ✄Ω Fs,zFτ,z+

Ck
16 ✁Ni,xNj,x ✄Ω FsFτ + Ck

12 ✁Ni,yNj,x ✄Ω FsFτ+

Ck
66 ✁Ni,xNj,y ✄Ω FsFτ + Ck

26 ✁Ni,yNj,y ✄Ω FsFτ

Kkτsij
zx =Ck

45Ni,yMNjN ✁NdNa ✄Ω Fs,zFτ + Ck
45Ni,yMNjQ ✁NdNb ✄Ω Fs,zFτ+

Ck
55Ni,xNNjN ✁NaNa ✄Ω Fs,zFτ + Ck

55Ni,xNNjQ ✁NaNb ✄Ω Fs,zFτ+

Ck
45Ni,yPNjN ✁NcNa ✄Ω Fs,zFτ + Ck

45Ni,yPNjQ ✁NcNb ✄Ω Fs,zFτ+

Ck
55Ni,xQNjN ✁NbNa ✄Ω Fs,zFτ + Ck

55Ni,xQNjQ ✁NbNb ✄Ω Fs,zFτ+

Ck
13 ✁NiNj,x ✄Ω FsFτ,z + Ck

36 ✁NiNj,y ✄Ω FsFτ,z

Kkτsij
xy =Ck

45NiNNjM ✁NaNd ✄Ω Fs,zFτ,z + Ck
45NiQNjM ✁NbNd ✄Ω Fs,zFτ,z+

Ck
45NiNNjP ✁NaNc ✄Ω Fs,zFτ,z + Ck

45NiQNjP ✁NbNc ✄Ω Fs,zFτ,z+

Ck
16 ✁Ni,xNj,x ✄Ω FsFτ + Ck

66 ✁Ni,yNj,x ✄Ω FsFτ+

Ck
12 ✁Ni,xNj,y ✄Ω FsFτ + Ck

26 ✁Ni,yNj,y ✄Ω FsFτ

Kkτsij
yy =Ck

44NiMNjM ✁NdNd ✄Ω Fs,zFτ,z + Ck
44NiPNjM ✁NcNd ✄Ω Fs,zFτ,z+

Ck
44NiMNjP ✁NdNc ✄Ω Fs,zFτ,z + Ck

44NiPNjP ✁NcNc ✄Ω Fs,zFτ,z+

Ck
66 ✁Ni,xNj,x ✄Ω FsFτ + Ck

26 ✁Ni,yNj,x ✄Ω FsFτ+

Ck
26 ✁Ni,xNj,y ✄Ω FsFτ + Ck

22 ✁Ni,yNj,y ✄Ω FsFτ

Kkτsij
zy =Ck

44Ni,yMNjM ✁NdNd ✄Ω Fs,zFτ + Ck
44Ni,yMNjP ✁NdNc ✄Ω Fs,zFτ+

Ck
45Ni,xNNjM ✁NaNd ✄Ω Fs,zFτ + Ck

45Ni,xNNjP ✁NaNc ✄Ω Fs,zFτ+
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Kkτsij
xz =Ck

45NiNNj,yM ✁NaNd ✄Ω FsFτ,z + Ck
45NiQNj,yM ✁NbNd ✄Ω FsFτ,z+

Ck
55NiNNj,xN ✁NaNa ✄Ω FsFτ,z + Ck

55NiQNj,xN ✁NbNa ✄Ω FsFτ,z+

Ck
45NiNNj,yP ✁NaNc ✄Ω FsFτ,z + Ck

45NiQNj,yP ✁NbNc ✄Ω FsFτ,z+

Ck
55NiNNj,xQ ✁NaNb ✄Ω FsFτ,z + Ck

55NiQNj,xQ ✁NbNb ✄Ω FsFτ,z+

Ck
13 ✁Ni,xNj ✄Ω Fs,zFτ + Ck

36 ✁Ni,yNj ✄Ω Fs,zFτ

Kkτsij
yz =Ck

44NiMNj,yM ✁NdNd ✄Ω FsFτ,z + Ck
44NiPNj,yM ✁NcNd ✄Ω FsFτ,z+

Ck
45NiMNj,xN ✁NdNa ✄Ω FsFτ,z + Ck

45NiPNj,xN ✁NcNa ✄Ω FsFτ,z+

Ck
44NiMNj,yP ✁NdNc ✄Ω FsFτ,z + Ck

44NiPNj,yP ✁NcNc ✄Ω FsFτ,z+

Ck
45NiMNj,xQ ✁NdNb ✄Ω FsFτ,z + Ck

45NiPNj,xQ ✁NcNb ✄Ω FsFτ,z+

Ck
36 ✁Ni,xNj ✄Ω Fs,zFτ + Ck

23 ✁Ni,yNj ✄Ω Fs,zFτ

Kkτsij
zz =Ck

44Ni,yMNj,yM ✁NdNd ✄Ω FsFτ + Ck
45Ni,xNNj,yM ✁NaNd ✄Ω FsFτ+

Ck
44Ni,yPNj,yM ✁NcNd ✄Ω FsFτ + Ck

45Ni,xQNj,yM ✁NbNd ✄Ω FsFτ+

Ck
45Ni,yMNj,xN ✁NdNa ✄Ω FsFτ + Ck

55Ni,xNNj,xN ✁NaNa ✄Ω FsFτ+

Ck
45Ni,yPNj,xN ✁NcNa ✄Ω FsFτ + Ck

55Ni,xQNj,xN ✁NbNa ✄Ω FsFτ+

Ck
44Ni,yMNj,yP ✁NdNc ✄Ω FsFτ + Ck

45Ni,xNNj,yP ✁NaNc ✄Ω FsFτ+

Ck
44Ni,yPNj,yP ✁NcNc ✄Ω FsFτ + Ck

45Ni,xQNj,yP ✁NbNc ✄Ω FsFτ+

Ck
45Ni,yMNj,xQ ✁NdNb ✄Ω FsFτ + Ck

55Ni,xNNj,xQ ✁NaNb ✄Ω FsFτ+

Ck
45Ni,yPNj,xQ ✁NcNb ✄Ω FsFτ + Ck

55Ni,xQNj,xQ ✁NbNb ✄Ω FsFτ+

Ck
33 ✁NiNj ✄Ω Fs,zFτ,z

45


