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Abstract — Superscalar processors have the ability to execute instructions out-of-order to better 

exploit the internal hardware and to maximize the performance. To maintain the in-order 

instruction commitment and to guarantee the correctness of the final results (as well as precise 

exception management), the Reorder Buffer (ROB) may be used. From the architectural point of 

view, the ROB is a memory array of several thousands of bits that must be tested against hardware 

faults to ensure a correct behavior of the processor. Since it is deeply embedded within the 

microprocessor circuitry, the most straightforward approach to test the ROB is through Built-In 

Self-Test solutions, which are typically adopted by manufacturers for end-of-production test. 

However, these solutions may not always be used for the test during the operational phase (in-field 

test) which aims at detecting possible hardware faults arising when the electronic systems works in 

its target environment. In fact, these solutions require the usage of test infrastructures that may not 

be accessible and/or documented, or simply not usable during the operational phase. This paper 

proposes an alternative solution, based on a functional approach, in which the test is performed by 

forcing the processor to execute a specially written test program, and checking the resulting 

behavior of the processor. This approach can be adopted for in-field test, e.g., at the power-on, 

power-off, or during the time slots unused by the system application.  The method has been 

validated resorting to both an architectural and a memory fault simulator. 

Keywords – microprocessor testing, software-based self-test, embedded memory test, in-field test 

 

1. Introduction 

Final users of embedded processors cores, during the last years, are increasingly requiring new 

strategies that better suit with in-field testing requirements for these devices, especially if they are 

used in safety- or mission-critical applications, e.g., in the automotive, railways and aerospace 

domains [1, 2]. In these scenarios, new standards such as the ISO 26262 for automotive, and DO-

254 for avionics, are providing the guidelines to create testing procedures for in-field testing of 

processor cores, specify the fault coverage figures that must be attained with respect to permanent 

faults. In this way, any hardware fault that possibly occurred in the system is detected as early as 

possible, and its negative consequences in terms of system misbehaviors can be prevented or 

mitigated.  
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Contemporary, embedded processors for such applications have been required to increase 

functionalities and performance; then, in nowadays embedded systems, most of the embedded 

system devises are including out-of-order superscalar microarchitectures able to follow the 

increasing request for increasing performance and functionalities. 

Design for Testability (DfT) or Built-In Self-Test (BIST) techniques may not be suitable for testing 

embedded processor cores during the normal operation life, since these techniques usually require 

to modify the original design, and in order to be used, these techniques require for the testing 

process the support of an external equipment, e.g., an ATE; moreover, using DfT facilities also 

require to have internal details about the device that manufactures may not share, due to IP 

protection, with final users. Finally, DfT solutions are also difficult to exploit during the normal 

processor life, because these techniques seriously affect the actual processor status. 

On the other hand, functional test approaches may represent an interesting solution when tackling 

in-field testing. A functional test applies stimuli to the system under test only resorting to its 

functional inputs, and observes the system’s behavior only resorting to its functional outputs. More 

specifically, the functional test may be implemented resorting to a suitable test program run by the 

processor under test and expected to produce correct results, e.g., in terms of final content of an 

output memory area (Software-Based Self-Test  or SBST [3]). 

Functional test methods may be conveniently used instead of DfT or BIST techniques in some 

scenarios. First, they do not require any modification of the processor design. This is an important 

characteristic when third-party processor cores are integrated into a SoC. Secondly, since functional 

tests exercise the unit under test exactly in the same conditions used during normal behavior, they 

easily enable at-speed testing while avoiding over-testing. Finally, testing a processor-based system 

during its operational phase (in-field test) using DfT techniques may be complex. As a conclusion, 

the functional approach may be particularly attracting for system designers when they want to 

develop in-field test solutions for their systems. 

To the best of our knowledge, it is possible to state that the main drawback of functional test 

approaches is the difficulty in devising test programs matching existing constraints in terms of 

duration, size, and fault coverage against a clearly defined fault model. Starting from the first 

approach to develop functional tests for microprocessors proposed by Thatte et al. in 1980 [4], a 

rich literature has been produced. Publications propose methods for effectively writing programs for 

the test of whole microprocessors [5], special modules (e.g., branch prediction units [6], or cache 

memories [7]), and peripherals components [8]. 

In this paper, we focus on the test program generation for in-field testing of the memory elements 

inside the Reorder Buffer (ROB) that may exist within superscalar processors. The ROB is a deeply 

embedded module that plays an important role within processors supporting out-of-order 

speculative execution. In particular, the ROB guarantees the in-order instruction commitment (i.e., 

the phase in which the result produced by the instruction is written to its destination), and is devoted 

to manage exceptions in a precise manner [18]. Since the ROB function is implemented in rather 

different ways in different processor architectures, for the purpose of this paper we selected the 

solution implemented by the widely adopted architectural simulator called SimpleScalar [15]. The 

ROB is based on a memory block organized in entries. Each entry corresponds to an instruction 
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waiting for being committed. Since each entry is composed of different fields, storing several 

information about the instruction, and the size of the ROB is usually in the order of some tens of 

entries, the total ROB memory size is usually in the order of some thousands of bits. 

In this paper, we propose a test algorithm which is particularly suited for the in-field test of the 

ROB internal memory. Following the algorithm one can easily write a test program to be run during 

the operational phase, either periodically (e.g., during the time slots left idle by the system 

application) or during specific situations (e.g., at power-on or power-off). By observing the 

processor behavior during the test program execution and by looking at the produced results it is 

possible to detect possible hardware faults affecting the ROB memory. 

A preliminary work targeting only one field of the ROB was presented in [9], which only addressed 

one of the several fields composing each ROB entry (i.e., the value field). In this paper we extend 

that preliminary work to test the other fields in the ROB memory, specifically focusing on the test 

of the address field, which presents some not trivial access problems. Moreover, this paper presents 

some more comprehensive results in terms of size and duration of the resulting test program. 

Remarkably, we also present here how to extend the proposed algorithm to the identifier field in the 

ROB, that (to the best of our knowledge) is always available in these hardware structures. Other 

ROB fields are not considered here, since these are highly dependent on the actual implementation 

of the superscalar processor, and are not always present in the ROB.  

Depending on the specific implementation, the ROB may include several different fields; for the 

purpose of this paper we mainly focus on the most important ones of them, which are always 

present: value, address, and identifier. The overall idea is to map the set of fault primitives required 

to sensitize and detect typical memory faulty behaviors [10] to a proper sequence of processor 

instructions. In this way., we can transform a generic March algorithm into the corresponding test 

program, which will perform on the ROB memory the same sequence of read/write operations of 

the original March algorithm, thus achieving its same fault coverage. We will show that the 

complexity of the resulting test algorithm grows quadratically with the number of ROB entries. 

Nevertheless, since the ROB size is usually limited, the test program is still limited in terms of size 

and duration. A major characteristic of the resulting test program lies in the fact that it does not need 

to be executed as a whole. In fact, it can be split in fragments that can be executed independently at 

different times (i.e., with reduced cost in terms of stopping and resuming the test, as well as 

checking its results), thus better matching the strict time constraints imposed when testing a system 

in its operational environment.  

Considering end-of-production testing, the approach proposed in this paper is clearly not so 

attracting to be performed by semiconductor companies, which can resort to more effective 

solutions based on DfT. However, the approach may be useful for embedded systems designers, 

which use processors or SoC devices from third companies. In this case the engineer in charge of 

developing the in-field test often does not have detailed information on the internal architecture of 

the processor, but only knows its Instruction Set Architecture. The approach could also be of 

interest for the in-field test of SoC devices, since this scenario shares several characteristics with the 

previous one: SoC designers often use processor cores from third parties that can hardly be 

modified, and whose in-field test may be performed resorting to the functional approach.  
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The proposed algorithm has been validated resorting to both an architectural and a memory fault 

simulator. Results show that the proposed algorithm allows to detect the most relevant faults (with 

the exception of a few faults that are functionally untestable). We also report results allowing to 

evaluate the cost of the approach in terms of test program size and duration. 

The paper is organized as follows: the next Section reports some background about the ROB 

architecture and behavior. Section III describes the functional approach we propose for generating 

suitable programs for its test; Section IV describes the experiments we performed and report some 

data we gathered. The last Section draws some conclusions. 

2. Background 
In order to better exploit the Instruction Level Parallelism existing in almost every program, 

superscalar processors support out-of-order execution. This approach, in combination with dynamic 

scheduling, enables the execution of each instruction as soon as the required functional unit is free 

and the values of the input operands are available. However, this mechanism can affect the 

correctness of the computation (e.g., due to Write After Write hazards and imprecise exception 

handling). 

The ROB, or other structures playing a similar role, is mainly intended to guarantee that, despite the 

out-of-order execution, the completion of each instruction (in particular the phase in which results 

are written in the target destination) is performed in-order. In this way, Write After Write hazards 

cannot arise and precise exception handling can be easily implemented. The ROB also plays a key 

role in speculative execution [11]. 

A ROB is a memory organized in entries, each composed of several fields including: (i) an 

identifier of the instruction, (ii) the value produced by the instruction, and (iii) the memory address 

or register target, where the actual instruction value must be written when the instruction is 

committed. The ROB is accessed during different phases of the execution of an instruction: 

• During the issue phase, the processor assigns the instruction to the next free ROB entry. If no 

entry is available a stall arises. ROB entries are assigned to instructions following the 

instruction issue order. The ROB is therefore organized as a First-In First-Out (FIFO) buffer, 

whose key is the order of each entry (i.e., instruction) in the code. Concurrently, during the 

issue phase, the identifier field is written using the type of instruction allocated in the ROB 

entry. This information is usually related to the instruction type, e.g., branch instructions, ALU 

instructions, etc.  

• When an instruction completes its execution, the produced result is written in the value field of 

the associated ROB entry together with all information items required to identify the target 

location, that are written in the address field of the same entry. In the case of load / store 

instructions the address field is updated with the calculated effective address.  

• At each clock cycle, the circuitry associated to the ROB checks whether the oldest instructions 

in the ROB (according to the issue order) have completed their execution. If yes, the 

instructions are committed, executing some specific actions according to the instruction type, 

that is recognized by reading the instruction identifier. Summarizing, the produced values are 

written to the assigned target locations, registers or memory locations. To do this, the value 
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contained within the address field is read and then used to identify the target location for the 

result (corresponding to a memory location). 

• When a conditional branch instruction is executed, the result is compared with the branch 

prediction. If a mis-prediction occurs, all instructions following the branch and already 

allocated in the ROB are aborted and removed from the ROB. 

• When the input operand of an instruction is produced by another instruction that has been 

executed but not yet committed, the corresponding value is stored in the ROB, only. To avoid a 

stall the processor reads this value from the ROB, and not from the Register File. It then 

forwards it to the functional unit, which can thus start its execution. 

Summarizing, the processor accesses the different fields that belong the ROB during the following 

steps:  

• The value field: 

o In the issue phase, by allocating entries to instructions according to the FIFO mechanism. 

Moreover, issued instructions may read input data from the ROB if the data were produced 

by not yet committed instructions; 

o At the end of the execution phase of a generic instruction X, to write output data into the 

value field (and others) of the ROB entry associated to X; 

o In the commit phase, to read the value field and write its value in the instruction target 
location. 

• The address field: 

o At the end of the execution phase of a Load or Store instruction X, to write the effective 

address calculated by X into the address field of the ROB entry associated to X; 

o In the commit phase, to read the address field and send this data to the Load/Store unit. 

• The identifier field: 

o During the issue phase: the identifier field of the ROB entry is written with the information 

regarding the instruction type; 

o During the commit phase: the identifier field is read in order to complete the instruction 

according to its type. 

The other fields, which are highly dependent on the actual ROB implementation, are not detailed 

here. 

 

It is worth mentioning here that the ROB is typically used in processors supporting the issue, 

execution and completion of multiple instructions at the same clock cycle. For this reason a ROB is 

typically organized as a multiple-port memory, to which multiple instructions can access 

concurrently from different stages. 

3. Proposed Approach 
According to the assumptions in the previous Section, the ROB can be treated as a memory 

composed by several entries, each including different fields. In particular, in this work we will 

mainly focus on two specific fields, namely the value and address fields, and we will propose a 

method allowing to write a test program that, when run by the processor, can detect any hardware 
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faults affecting the ROB memory bits storing them. Moreover, a brief dissertation is also performed 

in order to detail how to extend the proposed approach to the identifier field in the Reorder Buffer. 

Normally, within the ROB are present other fields (in particular, some flag fields), whose number 

and role often change depending on the target processor, and that can be tested by extending the 

approach in a rather straightforward manner. 

 

More in details, our approach is mainly based on providing rules that allow to transform whichever 

March algorithm into a test program executing the same sequence of read/write operations on the 

targeted bits of the ROB memory. In this way the fault coverage achieved by the test program is 

basically the same that would have been provided by the March algorithm, if we could apply it by 

directly acting on the ROB memory inputs and observe its outputs. 

 

Let us denote by n the number of entries of the ROB and by m the number of bits composing the 

target (corresponding either to value, or address, or whichever else) field. Let us assume that the 

memory arrays storing different fields are physically independent, and that the whole ROB can be 

modeled as an n × m memory array. 

The proposed test algorithm implements a deterministic sequence of read/write operations on the 

ROB entries, in order to implement the March test depicted within the next section. Firstly, we take 

into account the case of the value field: a writing operation within this field happens when the 

instruction associated to the entry completes its execution: in this stage, the produced value is 

written in the corresponding ROB entry. The execution order of the write operations closely follows 

the one in which instructions complete their execution. The value written in each ROB entry is read 

when the corresponding instruction is committed. The instruction result is written to the target 

destination (either a register or a memory location) and the instruction is removed from the ROB, 

thus freeing the corresponding entry. Since the ROB implements a FIFO strategy, the order of read 

operations strictly follows the order instructions are issued and assigned to the ROB. 

The value field of the ROB entry associated to an instruction Y whose execution has been 

completed but still not committed is also read when an instruction X requires an operand produced 

by Y. 

In the case of the address field, instead, a write operation arises when the Load or Store instruction 

associated to the ROB entry computes the effective address of the memory location from/to which 

data are read/written. This computation is performed when the instruction is written in the ROB if 

the address is already known at this time; otherwise, its computation is delayed in order to wait for 

the execution of the instruction(s) responsible for the generation of the address. 

The address field of the ROB entry is read when the instruction is executed and it performs the 

corresponding read or write operation through the Load/Store Unit. 

Finally, to test the identifier field of each ROB’s entry, a write operation arises when the issue phase 

of an instruction is performed; during this operation, a value able to univocally identify each 

instruction presents in the ISA of the processor is written within the field. The identifier field is read 

when the instruction execution is ended and, with respect to the execution order, it stands for 

committing in memory the calculated value. 
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In the following we will introduce the algorithms related to the detection of detect single-cell and 

double-cell (i.e., coupling) faults in a memory, and then we will describe how to write test 

programs, for the previously introduced fields, able to reproduce these test conditions on the ROB. 

For sake of simplicity, in this section we will assume that the ROB memory is only accessed by one 

instruction per stage per clock cycle. However, this assumption can be removed without impacting 

the effectiveness of the proposed algorithm. 

3.1. Single- and double-cell fault test requirements 

Let us start by considering faults affecting a single m-bit word W of the memory array under test, 

and denote by A  a m-bit test pattern for W, and with A  the corresponding complemented pattern. 

From the literature we can easily derive the operations (denoted as Fault Primitives, or FPs1) 

required to test the different faults affecting single cells in the memory [8]. They are summarized in 

Table 1. 

 

Table 1 – Single-cell Fault Primitives 

Fault FP Fault Model 

SF (1) < A / A /− >   (2) < A / A /− >  State fault 

TF (1) < AwA / A /− >  (2) < AwA / A /− >  Transition fault 

WDF (1) < AwA / A /− >  (2) < AwA / A /− >  Write destructive fault 

RDF (1) < ArA / A / A >   (2) < ArA / A / A >  Read destructive Fault 

IRF (1) < ArA / A / A >  (2) < ArA / A / A >  Incorrect read-fault 

DRDF (1) < ArA / A / A >  (2) < ArA / A / A >  Deceptive RDF 

 

Secondly, we can address faults affecting pairs of memory cells (denoted as aggressor and victim, 

respectively) and report the corresponding FPs (see Table 2). In this case we denote by A  and V  

the two m-bit test patterns for the aggressor entry and the victim entries of the ROB, respectively, 

and with A  and V  the corresponding complemented patterns. Looking at Table 2, double-cell 

faults (usually denoted as coupling faults) can be grouped in two categories based on the type of 

sensitizing operation: 

1. Group 1: faults that are sensitized by an operation/state on the aggressor cell and a state on the 

victim cell (CFds, CFst) 

2. Group 2: faults that are sensitized by a state of the aggressor cell and an operation on the 

victim cell (CFtr, CFwd, CFrd, CFir, CFdrd). 

 

Table 2 – Double-cell Fault Primitives 

Fault FP Fault Model 

CFst 
(1) < A;V /V /− >  (2) < A;V /V /− >  State 

coupling fault (3) < A;V /V /− >  (4) < A;V /V /− >  

CFds (1) < xwy;V /V /− >  (2) < xwy;V /V /− >  Disturb 

                                                             
1 FP=<S/F/R> where S is the sequence of operations required to sensitize the fault, F is the observed faulty 
behavior that deviates from the correct memory behavior and R, in case of a read operation, is the read result. 



8 

Fault FP Fault Model 

(3) < xrx;V /V /− >  (4) < xwx;V /V /− >  
coupling fault 

CFtr 
(1) < A;VwV /V /− >  (2) < A;VwV /V /− >  Transition 

coupling fault 
(3) < A;VwV /V /− >  (4) < A;VwV /V /− >  

CFwd 

(1) < A;VwV /V /− >  (2) < A;VwV /V /− >  Write 
destructive 

coupling fault (3) < A;VwV /V /− >  (4) < A;VwV /V /− >  

CFrd 

(1) < A;VrV /V /V >  (2) < A;VrV /V /V >  
Read destructive 

coupling fault 
(3) < A;VrV /V /V >  (4) < A;VrV /V /V >  

CFir 

(1) < A;VrV /V /V >  (2) < A;VrV /V /V >  
Incorrect read 
coupling fault 

(3) < A;VrV /V /V >  (4) < A;VrV /V /V >  

CFdrd 

(1) < A;VrV /V /V >  (2) < A;VrV /V /V >  
Deceptive read 

destructive CF 
(3) < A;VrV /V /V >  (4) < A;VrV /V /V >  

 

The conditions to test faults of group 1 are: (1) initialize the victim cells to a given value, (2) 

sensitize the fault by performing the three possible sensitizing operations (a non-transition write, a 

transition write and a read) on the aggressor cell, (3) read out the content of the victim cells to check 

if some of them changed their status.  

The conditions to test faults of group 2 are: (1) initialize the victim cells to a given value, (2) 

initialize the aggressor cell to a given value; (3) for each victim cell sensitize the fault by 

performing the three possible sensitizing operations (a non-transition write, a transition write and a 

read) followed by (4) a read operation to detect the fault. 

3.2. Test algorithm 

This sub-section introduces the proposed ROB test algorithm. The algorithm consists of three 

passes: the former is for testing the value field, then the address field, and finally the identifier field. 

Let us focus on the value field first. 

Considering an n entries ROB, the test conditions defined by the considered FPs can be matched by 

a test program implementing the following sequence of operations, denoted as basic building block 

(BBB). 

1. Write V /V  in all victim entries and then A / A  in the aggressor entry 

2. Write V /V  in all victim entries and then A / A  in the aggressor entry 

3. Read the content of all entries starting from the aggressor to detect faults of group 1 

4. Write V /V  in all victim entries and then A / A  in the aggressor entry 
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5. Read all victim entries two times to detect all faults of group 2. 

 

To prove that the above BBB is able to detect the FPs introduced in the previous sub-section we 

focus on the double-cell faults reported in Table 2. Detection conditions for single-cell faults are in 

general simpler and included in those required for double-cell faults [10]. Let us consider faults of 

group 1 (i.e., CFds, CFst). To sensitize these faults we need first to initialize the ROB entries. This 

is performed in step 1 of the BBB by writing V / V  in all victim entries and then A / A  in the 

aggressor entry. Step 2 of the BBB is the first step in which faults are sensitized. First, all victim 

entries are again initialized with V /V . These redundant write operations are required since the 

ROB applies a FIFO strategy. Therefore, to write a new value in the aggressor entry that was the 

last written during step 1 we need first to write all victim entries. Secondly, the aggressor cell is 

written with A / A  to sensitize the faults. The sensitized FPs depends on the actual patterns written 

in the entries during steps 1 and 2.  If for instance in both steps the victim and aggressor entries are 

respectively written with patterns A  andV , FP3 of CFst and FP2 with non-transition write of CFst 

are sensitized. Step 3 of the BBB starts reading the aggressor entry. This represents the last 

sensitizing operation for group 1 faults and is required to sensitize FP3 of CFds. At this point all 

possible sensitizing operations have been executed. By reading out all victim entries it is possible to 

detect if any fault occurred. 

The remaining two steps of the BBB are required to address faults of group 2 (i.e., CFtr, CFwd, 

CFrd, CFir, CFdrd). All these faults are sensitized by a state of the aggressor entry and an operation 

on the victim entry. When reaching step 4 the memory is already initialized. By performing a write 

operation on all victim entries FPs belonging to CFtr and CFwd models can be sensitized. Again, 

the sensitized FP depends on the applied test patterns. If the aggressor entry was initialized with A , 

the victim entries were initialized with V  and a wV  operation is performed on each victim, FP4 of 

CFtr ( < A;VwV /V /− > ) is sensitized. Step 4 terminates with a write operation on the aggressor entry. 

Once more, this operation is required to cope with the FIFO policy of the ROB. 

In the last step of the BBB (step 5) all victim cells are read 2 times. With the first read operation 

faults sensitized during step 4 can be detected. Moreover, this operation sensitizes CFrd, CFir and 

CFdrd FPs and detects CFrd, CFir FPs. The second read operation is able to detect CFdrd FPs. In 

fact, in this case the fault is sensitized by the first read but observed only when the entry is read 

again. Actually, this last step cannot be performed on the address field; this is due to the fact that it 

is not possible to read two times the address field from the same ROB entry. 

 

The BBB must be executed 6 times changing the combination of the test patterns in the victim and 

aggressor cells during steps 1, 2 and 4 in order to address all selected FPs. Finally, everything must 

be executed n times considering every element of the ROB as the aggressor cell.  

The main characteristic of this test algorithm is that write instructions always follow the same order: 

first all victim cells are written, followed by the aggressor cell. This behavior can be reproduced on 

the ROB by forcing the processor to execute a code fragment composed of:  

• an instruction named I1 characterized by a long execution time (e.g., DIV) and a result equal to 

A / A ; 
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• n-1 instructions (named I2 to In) characterized by a short execution time (e.g., ADD), a result 

equal to V /V , and one of the input operands corresponding to the output operand of the 

previous instruction (except for the first). 

For the purpose of analyzing the behavior of the ROB during the execution of this fragment, we can 

identify the following phases:  

• Issue phase: all instructions of the fragment are issued. At the end of this phase the ROB 

includes one entry devoted to I1 (corresponding to the aggressor entry), and all other entries 

devoted to instructions I2 to In (corresponding to the victim entries). 

• Execute phase: the short instructions I2 to In finish their execution before I1 finishes. This 

means that during this phase I2 to In rapidly finish their execution one after the other. As soon 

as one of them finishes its execution, it writes the produced result in the ROB. Immediately 

after, the following instruction reads this value, enters execution, and repeats the same 

operation. However, instructions I2 to In cannot immediately commit, since they wait for the 

commit of I1. During this phase each ROB cell (apart from the one associated to I1) undergoes 

a write, followed by a read operation due to the data dependency between consecutive 

instructions; with the exception of the ROB cell corresponding to In, where the read is not 

performed. When at last the execution of I1 finishes, I1 writes its result to the associated ROB 

slot.  

• Commit phase: when finally I1 completes its execution, it commits. The value written in the 

corresponding ROB entry is read and written in the target destination, thus executing a new 

read operation. All other instructions (I2 to In) can now also commit. The values written in the 

corresponding ROB slots are thus read and written in the target destinations (i.e., n-1 registers).  

The above code fragment can be exploited to force the processor to perform on the ROB the 

operations mandated by the Basic Building Block.   

The resulting test program can be summarized as follows: 

1. execute I1 to In to initialize the ROB (step 1 of the Basic Building Block); 

2. execute I1 to In to sensitize CFst and CFds that are sensitized by operations on the aggressor 

cell (step 2 and 3 of the Basic Building Block); 

3. execute n store instructions writing the n target registers into memory and thus making the 

results of the previous steps observable. According to the SimpleScalar model, in the execution 

phase a store instruction writes into its ROB entry the value to be moved to memory; thus, the 

ROB entry value is not changed during the commit phase; 

4. execute I1 to In to sensitize CFtr, CFwd, CFrd, CFir, CFdrd that are sensitized by operations on 

the victim cells (step 4 and 5 of the Basic Building Block); 

5. execute n store instructions, moving the values of the n target registers into memory;  

6. repeat steps 0 to 4 six times with different values A , A ,V /V  for instructions I1 to In 

7. repeat steps 1 to 6 n times by allocating a different slot to the “long” instruction I1 (which can 

be achieved by just executing a “dummy” instruction before executing again step 0). In this 

way we can test faults activated by each possible aggressor cell. 
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The algorithm is completed by checking whether all values written into memory during the 

algorithm execution comply with the expected ones. 

A generic step of this algorithm oriented to test a 6-entries ROB, is depicted in Table 3. The ROB 

field targeted here is the value field. It performs two write cycles to excite faults (in this example, 

victims write zeros and aggressor writes a one), and one read cycle after which values are checked 

to identify faults: 

 
Table 3 – Read / Write operations order for testing the value field 

# instr      

1 AGGR    w(1) r()      w(1) r()   

2 VICT w(0)    r()   w(0)    r()   

3 VICT  w(0)    r()   w(0)    r()  

4 VICT  w(0)    r()   w(0)    r()  

5 VICT   w(0)    r()   w(0)    r() 

6 VICT   w(0)    r()   w(0)    r() 

step 1 2 3 4 5 6 7 8 9 10 11 12 12 14 

 

The aggressor (shortened for convenience with the acronym AGGR) instruction is a multiplication 

instruction, which is the first to be allocated in the ROB. While this first instruction is executed, the 

victim (shortened with the acronym VICT) instructions (e.g., ADD instructions) are allocated to the 

other entries of the ROB. These preliminary steps are not depicted in Table 3, since the main goal of 

this table is to show how the algorithm performs the different steps defined by the corresponding 

March test. It is important to notice that Table 3 does not show an additional phase devoted to read 

the results of the first set of instructions in the middle of steps 3 and 4. This reading phase is not 

depicted here, since in any case these reading operations do not affect the March test development.  

 

The execution time, in terms of clock cycles, of the ADD instructions is usually much shorter of 

that of the multiplication instructions, and since these instructions use different functional units, 

victims can write the final result of the ADD instructions inside the value field of their entry in the 

ROB (step 1, 2 and 3 in Table 3), while the multiplication is being waiting to be committed. As 

soon as the aggressor instruction (i.e., the multiplication one) finishes the execution phase (step 4), 

the write cycle is repeated. At the end of the second cycle, finally, all the prevised errors that can be 

detected whit this particular configuration entry/values should be excited and then the algorithm 

passes to the read phase. At step 11, the result of second aggressor is written in the value field of its 

ROB entry and then it is immediately read to enter the commit phase. After reading the value from 

the value field of the aggressor entry, all the other values from each value field of the victim entries 

are read, in order to commit themselves. 

The presented algorithm, used to test the value field, corresponds to the execution of 6 × 6 × n2 

instructions. Hence, the total complexity of the proposed algorithm (in terms of number of 

instructions) is O(n2). Given the fact that the size n of the ROB is limited (typically in the order of 

some tens of entries) this complexity still leads to relatively short and fast test programs. 

The proposed algorithm still does not detect coupling faults between bits in the same ROB entry. 

Following [12], to cover also these faults we can simply add to the algorithm a few more steps: 
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• in the first step n instructions are executed, writing a result value corresponding to a given 

pattern X  to the ROB, and then reading and moving it to a register; 

• in the second step the target register values are transferred to observable memory locations 

resorting to n store instructions;  

• the two steps are repeated substituting X  with its complement pattern X ; 

• these three steps are repeated 1+ log2m  times, being m the size of the value field, each time 

using a different data background pattern. At the first iteration 00=X ⇌ 00 and 11=X ⇌11 ; 

at the second iteration 00=X ⇌11  (i.e., a word composed of m/2 0 bits and m/2 1 bits) and 

11=X ⇌ 00  (i.e., the opposite of X ); at the last iteration 10=X ⇌10  (i.e., a word composed 

of m alternated 0 and 1 bits) and 01=X ⇌ 01  (i.e., the opposite of X). 

It is worth mentioning here that the ROB is typically used in processors supporting the issue, 

execution and completion of multiple instructions at the same clock cycle. For this reason a ROB is 

typically organized as a multiple port memory, to which multiple instructions can access 

concurrently from different stages. Multiple port memories introduce a set of additional faulty 

behaviors related to the presence of more than one port to those listed in Table 1 and Table 2. 

Nevertheless, several publications [13, 14] proved that March-like test sequences like the one 

proposed in this paper, designed to test single port memories, can be easily adapted to cover multi-

port specific fault models by properly selecting the port on which operations are performed. 

Therefore, extending the proposed test method also to the multi-port scenario does not represent a 

significant issue. 

Considering again an n entries ROB, the test procedure for the address field is slightly different 

than the previous one. In fact, in this case the test program must implement the following sequence 

of operations: 

1. Write V /V  in all victim entries and then A / A  in the aggressor entry; 

2. Write V /V  in all victim entries and then A / A  in the aggressor entry; 

3. Read the content of all entries starting from the aggressor to detect faults of group 1; 

4. Write V /V  in all victim entries and then A / A  in the aggressor entry; 

5. Read all victim entries to detect some faults of group 2. 

 

To test the address field, it is important to initialize all victim cells with a defined value and then 

write the aggressor value in the right entry of the ROB. The proposed algorithm follows the 

structure of the one used for testing the value field, but with some important differences. The 

address field is only accessed during the execution of memory read and write operations, 

corresponding to load and store instructions, respectively. 

In the second step of this algorithm, the reading phase is executed only once. This can be seen as an 

intrinsic limitation of the architecture/instruction set, because it is impossible to access and read 

twice the same value from an address field within the ROB.  

In this work, we assume that the processor is able to access the whole addressable space of memory, 

thus allowing to read and write any combination of bits into the address field of the each ROB 

entry. In order to access them in the wished order, we need a particular instruction able to block the 
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commit phase of the aggressor instruction until all victim values are written within the address field 

of all the ROB entries. This goal is achieved using an instruction that requires a long execution time 

and that needs a sufficiently high number of processor’s clock cycles to compute the result. In this 

implementation of the algorithm a multiplication instruction is used for this purpose. The 

multiplication instruction requires a long computational time; the algorithm uses the result of the 

multiplication instruction to compute the address of the memory location in which the store 

instruction (acting as aggressor) writes. In this way the algorithm stops the store instruction (and the 

following ones) inside the ROB, due to the need to respect the commit order of all instructions 

available within the ROB. 

The method used here is similar to the one used in the previous section for testing the value field of 

the reorder buffer. As mentioned in the initial part of this section, the difference is the usage of load 

or store instructions to excite the right memory cell, related to the address field of each entry of the 

ROB. 

The algorithm to test the address field can be divided in two phases: 

1. In the first phase the algorithm performs the functional test of the address fields of n-2 ROB’s 

entries: in particular, this phase initializes and tests n-2 victim cells using a cell as aggressor to 

excite faults and another cell to block the procedure and wait that all victim cells are initialized. 

This algorithm’s phase is described in Table 4: while the multiplication instruction is 

computing the address in memory in which the aggressor store instruction writes the proper 

value, the aggressor and all the victims are fetched inside the ROB. The aggressor waits the 

result from multiplication, while the victim store instructions calculate and write addresses 

within the address field (step 1 and 2 in Table 4) and wait for the commit phase until the 

multiplication and the aggressor instruction do their own commit. 

Once the aggressor’s address is calculated (step 3), the corresponding entry receives the value 

inside the address field (step 4) and then uses this value to perform the commit in memory (step 

5). Finally, read operations are executed on victim entries (step 6 and 7).  

 

Table 4 - Read / Write operations order for testing the address field (phase I) 

# instr Read/Write operations order 

1 MULT   w(1) r(1)    

2 AGGR    w(1) r()   

3 VICT w(0)     r()  

4 VICT w(0)     r()  

5 VICT  w(0)     r() 

6 VICT  w(0)     r() 

Step 1 2 3 4 5 6 7 

 

2. The second phase is due to an intrinsic issue within the algorithm targeting the address field. 

Since with the algorithm described above for testing the address field an entry of the ROB is 

always present that cannot be designated as victim (the one with the multiplication instruction), 

it is mandatory to perform another cycle in order to test it. Table 5 shows the proposed 
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sequence of read and write operations, using an example ROB with 6 entries. The sequence 

includes 

o a multiplication instruction  

o a series of dummy instructions (chosen among those faster to perform, to prevent 

further delays) to avoid entries already tested  

o a store instruction affecting the victim entry  

o a store instruction affecting the aggressor entry, which waits for the result of the 

multiplication as address value.  

During this phase, the victim entry must correspond to the entry on which the multiplication 

instruction in the previous cycle acts, and the aggressor instruction has to be within the same entry 

used in the previous cycle. Actually, reversing the order between the aggressor and the victim (with 

respect to the previous step) introduces a modification inside the algorithm. The main difference is 

that in this step the value of the victim address field is read before or simultaneously to the 

aggressor one. 

 
Table 5 - Read / Write operations order for testing the address field (phase II) 

# instr Read/Write operations order 

5 VICT   w(0)     r() 

6 AGGR     w(1)   r() 

1 MULT    w(1)  r()   

2 NOP *     *   

3 NOP  *     *  

4 NOP  *     *  

step 1 2 3 4 5 6 7 8 

 

In order to test the identifier field in the Reorder Buffer, it is necessary to recall that this field is 

only written during the instruction issue phase, and read during the instruction commit. Thus, no 

other reading or writing accesses are made to this field during other stages of the instruction cycle. 

Moreover, these ROB fields are always read and written in order.  

With the aim of creating the basic building block (BBB) for this ROB field, it is again important to 

use different latency instructions. However, even using different execution latencies, the access 

times are not interchangeable; thus, we need to modify our BBB as follows: 

1. Write V /V  in all victim entries and then A / A  in the aggressor entry 

2. Write V /V  in all victim entries and then A / A  in the aggressor entry 

3. Read the content of all entries, letting the aggressor at the end (detecting faults of group 1) 

4. Write V /V  in all victim entries and then A / A  in the aggressor entry 

5. Read all victim entries (detecting most of the faults of group 2).  

 

As a consequence,write accesses always follow the same order: first all victim cells are written, 

followed by the aggressor cell. However, the aggressor instruction is not the one having a long 

execution time but the last issued instruction. This behavior can be reproduced on the ROB by 

forcing the processor to execute a code fragment composed of:  
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• instruction I0, characterized by a long execution time (e.g., DIV). This instruction is devoted to 

freeze the ROB until the aggressor instruction acts; 

• n-2 instructions (named I1 to In-2) that are in this case the victim instructions, characterized by 

a short execution time (e.g., ADD), and an opcode able to generate in the ROB identifier a 

value equal to A / A ; 

• instruction In-1, which is the aggressor instruction characterized by a short execution time (e.g., 

SUB), and an opcode able to generate in the ROB identifier a value equal to  V /V . 

It is important to highlight here that one of the main issues when implementing this test programs is 

the identification of proper instruction opcodes that enable to implement a pattern and a 

complemented pattern. Nevertheless, as also discussed in [7], modern microprocessors tend to 

provide enough alternatives within their instruction set that usually enable to fulfill this 

requirement. 

Our considerations here are the following: the first long delay instruction aims at guaranteeing that 

only at the end of the execution of this instruction all the reading accesses are made. Thus, the 

actual aggressor instruction is the last one (In-1), since all the other instructions are written before it. 

Thus, once all identifier fields (I1 – In-2) are written in the ROB, the first instruction (the long delay 

one) is read, and then, all the others, ending this step with the aggressor one. 

It is necessary to carefully select appropriate instructions able to produce the values A / A , and V /

V in the ROB identifiers as described in [7].  

Considering the final test coverage obtained by this BBB, since it is not possible to perform two 

sequential reads without a writing access in between, the final coverage is similar to the one 

obtained by the BBB tackling the address field. In particular, this means that the proposed algorithm 

is not suitable for testing the faults belonging to the fault model called CFdrd, since double read 

operations are not allowed for this field.  

 

Finally, it is worth to note that the above algorithms must not necessarily be executed as a whole, 

but may be split in parts to be executed separately. In particular, the proposed algorithms are all 

composed of small independent parts (corresponding to steps 1 to 3 and 4 to 5) that can possibly be 

executed at different times. Basically, it is possible to execute two separated tests procedures, able 

to independently address faults of group 1 from those of group 2 (Table 1 and Table 2). Clearly, 

while the execution of each part is shorter than the execution of the whole algorithm, we must also 

take care of the cost of the initialization phase, which strongly changes depending on the scenarios. 

This is an important characteristic when the functional test is executed in-field. In this situation, the 

test may be executed during the idle times of the application: small time slots are periodically 

allocated to execute the test. When a test slot begins, the current state of the system is saved and 

then the test procedure is executed. At the end of the slot the original state of the system is finally 

restored. Being suitable to be split into smaller chunks is a valuable property for a test procedure in 

order to execute the test even when small time slots are required [2]. However, the test engineer 

must carefully evaluate whether the cost for saving/restoring the system status before/after the test 

execution makes it convenient to split the whole test in chunks or not. 
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4. Experimental Results 
In order to validate the proposed approach we resorted to SimpleScalar [18], an open-source 

processor architectural simulator widely used for computer architecture research and teaching. 

SimpleScalar can implement a ROB of arbitrary size (called Register Update Unit, or RUU), it can 

emulate several instruction sets (Alpha, PISA, ARM, x86), and (since its source code is available) it 

can be modified to monitor and store the internal state of the processor, and its ISA is easily 

expandable to include new instructions.  

The PISA architecture has been selected for our experiments, and SimpleScalar has been set to use 

a variable length ROB. In order to check the correctness of the method, the SimpleScalar C code 

has been modified to store some additional data during the simulation, allowing to record each time 

an access is performed to the ROB. We then wrote the code of the proposed algorithm, and checked 

that it performs the expected sequence of accesses to the ROB. 

Since the Simplescalar is a simulator, it is important to describe the hardware configuration and the 

values we assigned to all its parameters for the experiments described in this work. Parameter 

values are listed in Table 6. 

 

Table 6 – Simplescalar configuration parameters 
Simplescalar configuration parameter Values	  

# instructions fetch queue size (in insts) 2 

Branch predictor type BTB 

Predictor BTB size 1,024 

Instructions decode B/W (insts/cycle) 2 

Instructions issue B/W (insts/cycle) 2 

Run pipeline with in-order issue FALSE 

Register update unit (RUU) size 8 / 16 / 32 

Load/Store queue (LSQ) size 8 

Total number of integer ALU’s available 4 

Total number of integer multiplier/dividers available 1 

Total number of memory system ports available (to CPU) 2 

Total number of floating point ALU’s available 4 

Total number of floating point multiplier/dividers available 1 

Extra branch mis-prediction latency (in clock cycles) 1 

L1 and L2 instruction/data cache hit and miss latencies (in clock cycles) 1 

Instruction/data TLB miss latency (in clock cycles) 1 

 

 

In Table 7 and Table 8 we report the characteristics of the test programs developed for ROBs of 

different sizes, for testing the value and address field, respectively. The two tables report in the first 

column the number of ROB entries, while the second column contains the memory size in bytes of 

the test program; the third column shows its number of instructions, and finally the last column 

indicates the number of clock cycles required by its execution.  

All the executed programs were manually written. Since the algorithm performs the same 

operations for each entry of the ROB, it is sufficient to write the block for testing a single entry and 
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then repeat it n times (n is the number of entries composing the ROB); to skip an entry, and use the 

next one as the aggressor cells, we inserted a useless operation (NOP) between two instructions 

block. 

When evaluating the cost of the algorithm in terms of execution time when it is supposed to be used 

for in-field applications we must consider not only the time required by the algorithm for its 

execution, but also the extra cost due to the penalties generated by the cache miss it is expected to 

generated. However, the latter figure is hard to quantitatively evaluate, since it strongly depends on 

the characteristic parameters of the cache and memory systems. For this reason in our experiments 

we suitably set the SimpleScalar parameters in order to minimize the impact of cache and TLB 

misses in terms of clock cycles as depicted the last rows in Table 6. 

 

Table 7 – Test program characteristics for the version addressing the value field, for different ROB sizes 

ROB size    
[# entries] 

Memory occupation 
[# bytes] 

Executed 
instructions 

Time         
[clock cycles] 

8 6,32 K 1,575 2,137 

16 24,9 K 6,623 5,682 

 

Table 8 – Test program characteristics for the version addressing the address field, for different ROB sizes 

ROB size    
[# entries] 

Memory occupation 
[# bytes] 

Executed 
instructions 

Time         
[clock cycles] 

8 9,17 K 2,347 6,338 

16 36,23 K 9,275 12,673 

 

As the reader can notice, the experimental results validate what has been reported in the paper in 

terms of program complexity for 8 and 16 entries ROBs. As expected, the number of instructions 

and the memory occupation grow following a quadratic trend with respect to the number of entries 

in the ROB. However, the program execution time does not follow the same pace, since it mainly 

depends on the long execution time instructions (called in these experiments I1 and requiring 20 

clock cycles); the total execution time actually only doubles in the cases reported in Table 7 and 

Table 8. 

For ROBs composed of 32 entries or more, the number of available general purpose registers in the 

SimpleScalar simulator (32) represents a limitation that currently prevents us from applying the 

proposed approach in the form proposed here. However, this obstacle may be circumvented by also 

exploiting the floating-point registers available in the processor at the expense of slightly more 

complex test programs. 

The fault coverage of the proposed test programs has been evaluated by modeling all operations 

performed on the ROB by the proposed test algorithms into the RASTA memory fault simulator 

[16]. Table 9 and Table 10 show the outcome of the fault analysis considering the test program for 

the value field and for the address field, with different dimensions of the ROB. 
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Table 9 – Fault Coverage of the test program for the value field 

ROB size 
[# entries] 

Single-Cell 
FPs 

CFst, CFds, CFtr, CFwd, 
CFrd, CFir 

CFdrd 

8 100% 100% 92.85% 

16 100% 100% 96.66% 

32 100% 100% 98.38% 

 
Table 10 – Fault Coverage of the test program for the address field 

ROB size 
[# entries] 

Single-Cell FPs 
(except DRDF)  

DRDF CFst, CFds, CFtr, CFwd, 
CFrd, CFir 

CFdrd 

8 100% 0% 100% 0% 

16 100% 0% 100% 0% 

32 100% 0% 100% 0% 

 

As expected, regardless of the ROB dimension, we obtained 100% fault coverage on all instances of 

single-cell faults and double-cell faults both for value and address field, with the exception of the 

CFdrd faults in the case of the value field and CFdrd and DRDF faults in the case of the address 

field, that were not fully covered. This confirms that all requested coverage conditions have been 

respected during the implementation of the algorithm. In the case of the value field, the incomplete 

coverage of CFdrd faults is due to the impossibility of performing two consecutive read operations 

on all victim cells of the buffer. As reported in Section III, our test program first reads each entry of 

the ROB with the exception of the last entry since each short instruction uses as operand the 

outcome of the previous instruction that is stored in the ROB. All entries (including the last one) are 

then read again during the commit phase when the content of the ROB is written in the target 

location. Therefore, the CFdrd sensitizing condition (i.e., two consecutive reads), in the case of 

value field, is not matched for the last entry of the ROB, preventing a 100% coverage of this type of 

faults. In the case of the address field, instead, this kind of faults and also the corresponding single 

cell faults (DRDF) are never detected because it is impossible for a program to execute two 

consecutive read instructions on the address field of the same entry of the ROB. Therefore, this kind 

of faults belongs to the largest class of Functionally Untestable Faults [17]. 

5. Conclusions 
The Reorder Buffer is a key component in modern superscalar processors; therefore, testing the 

memory within this component with respect to possible hardware faults affecting it is crucial for 

guaranteeing the correct behavior of the processor. When resorting to DfT solutions (e.g., based on 

BIST) is not possible (e.g., because the DfT structures are not accessible and/or documented, as it 

sometimes happens when the test has to be performed in the field, and its development is up to the 

system company), the functional approach can be the only viable alternative. This paper proposes 

an approach based on developing and running a functional program for the test of the ROB 

memory, to be used for the in-field test of a processor or a SoC including a processor core. The 

approach has been described referring to the value, address, and identifier fields of the ROB. 
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Given the fact that this module is deeply embedded in the processor, and due to the constraints in its 

access (a ROB is a FIFO buffer) it is not possible to straightforwardly apply a March algorithm for 

the test of the ROB memory. Therefore, the proposed approach is based on identifying a sequence 

of instructions, that execute the wished sequence of read and write operations on the target memory 

array, thus allowing to test both single- and double-cell faults. The method is particularly suitable 

for a test performed during the operational phase, since it can be executed both as a whole, or split 

in small independent pieces.  

The method correctness has been validated resorting to the SimpleScalar simulator, while its fault 

coverage capabilities with respect to the major fault types have been first evaluated theoretically 

(working on the required fault primitives), and then experimentally (resorting to a memory fault 

simulator). 

Through this paper, we have shown a method for generating programs to test those parts of the 

ROB memory storing the abovementioned fields. Some faults cannot be detected in this way, due to 

the difficulty of accessing the ROB, so that in certain cases it is not possible to apply the stimuli 

required to excite them.  

The authors are now working towards removing some of the current limitations of the proposed 

algorithm (e.g., in terms of the required number of registers) and extending it to the test of the 

circuitry surrounding the ROB memory. 
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