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DISTRIBUTED SUPPORT DETECTION OF JOINTLY SPARSE SIGNALS

Sophie M. Fosson⋆ Javier Matamoros† Carles Antón-Haro† Enrico Magli⋆

⋆ Department of Electronics and Telecommunications, Politecnico di Torino (Italy)
†Centre Tecnològic de Telecomunicacions de Catalunya, Barcelona (Spain)

ABSTRACT

In this paper, we address the problem of distributed support

detection of multiple sparse signals with common support.

Specifically, signals are acquired by the individual nodes of

a network according to the so-called Joint Sparsity Model 2

(JSM-2). By leveraging on this model, we propose a dis-

tributed scheme for in-network signal recovery, i.e. not re-

quiring data gathering and processing at a fusion center, based

on distributed iterative thresholding and consensus strategies.

For the proposed scheme, whose convergence properties we

rigorously prove, no a priori knowledge on the non-zero num-

ber of entries in the signal vector is required.

Index Terms— Compressed sensing, joint sparsity, dis-

tributed algorithms, iterative thresholding, consensus.

1. INTRODUCTION

From Compressed Sensing (CS) theory [1], it is well known

that an individual sensor in a network is able to recover the

acquired signal from a reduced number of (its own) mea-

surements vectors as long as its sensing matrix satisfy the

Restricted Isometry Property [2]. This can be accomplished

by resorting to (i) optimization-based approaches (see [3] for

an overview); or (ii) greedy algorithms such as Orthogonal

Matching Pursuit (OMP) [4], Subspace Pursuit (SP) [5] or It-

erative Hard Thresholding (IHT) [6], to name a few. Greedy

schemes are iterative in nature, exhibit lower complexity but,

in general, are suboptimal.

However, we can do better by exploiting the inherent cor-

relation of measurements over sensors. This results into the

the so-called Multiple Measurement Vector (MMV) problem

formulation, by virtue of which the measurements collected

by all sensors are arranged as columns of a matrix. The Joint

Sparsity Model 2 (JSM2) assumes that the acquired signals

have a common support and, thus, only very few rows in

that matrix have non-zero entries. For centralized settings,

where all sensor measurements are collected by a Fusion Cen-

ter (FC), the problem can be efficiently solved by resorting
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to e.g. row-based Lasso formulations [7] which introduce a

penalty term on row energies in the minimization of the resid-

ual. Centralized settings, however, have a number of draw-

backs: they imply the availability of such FC, sensors must

convey their measurements and measurement matrices to it

(which can be barely recommended for energy efficiency or

privacy reasons) and, more importantly, a FC failure would

prevents signal recovery. All this can be avoided by means

of in-network approaches which allow for distributed sup-

port detection (and signal recovery) without the intervention

of a FC. They leverage on local processing of sensor mea-

surements and, possibly, (short-range) signaling with neigh-

boring nodes. A number of distributed versions of the afore-

mentioned optimization-based or greedy schemes have been

proposed to date. For instance, [8] proposed a decentralized

row-based Lasso algorithm. This iterative procedure, though,

is suboptimal since it only approximates the exact minimum

of the functional. In [9], instead, Sundman et al developed

distributed versions of a number of greedy schemes such as

OMP, SP or FROGS (Forward-Reverse Orthogonal Greedy

Search). In these schemes (which in general require knowl-

edge on the sparsity order), each node runs a greedy proce-

dure, locally shares its support with its neighbors, and then a

decision on which element to introduce in the support is made

according to a voting process.

In this paper, we propose a decentralized scheme, referred

to as Distributed iterative Thresholding (DiT), for in-network

support detection. The approach is reminiscent of the iterative

soft and hard thresholding methods of [10] in that it combines

a gradient minimization procedure with an adaptive threshold

update step. Unlike other approaches [8, 9], here we rigor-

ously prove the convergence of the proposed scheme. More-

over and differently from [9], DiT does not require a priori

knowledge on the sparsity order.

1.1. Notation

Before proceeding let us introduce some notation. Given x ∈
R

n, we define the component-wise indicator function 1(x)
as (1(x))i = 1 if xi 6= 0 and (1(x))i = 0 otherwise. The

Lp-norm of x is denoted by ‖x‖p for p > 0, whereas ‖x‖0
gives the number of non-zero elements of x. A graph G is

defined as G := (V, E) where V and E stand for the set of



vertices and edges respectively. Now assume that for each

v ∈ V there is associated a value av , then, we will indicate

by av the average over its neighborhood Nv , that is av :=
1

|Nv|

∑
w∈Nv

aw, with Nv := {v′ ∈ V|(v, v′) ∈ E} and |Nv|

standing for the cardinality of Nv . Likewise, we define the

double average as av := 1

|Nv||Nw|

∑
w∈Nv

∑
u∈Nw

au.

2. SIGNAL MODEL

Consider a network composed of V nodes whose connectivity

is described through the graph G = (V, E) with V = |V|.
Accordingly, the sensor v can communicate with the sensor

v′ if and only if {v, v′} ∈ E or, in other words, v′ belongs to

its neighborhood set Nv .

Each sensor observes a compressed version of a k-sparse

signal {xv}v∈V ∈ R
n through a set of linear and local mea-

surements, namely

yv = Avxv + ηv ; v ∈ V (1)

where Av ∈ R
m×n (with m ≪ n) and ηv ∈ R

n stands for

additive noise which may be due, for instance, to the acqui-

sition process. We further assume that the observed signals

{xv}v∈V share the same signal support Ω, that is Ω = Ωk :=
{i|xv,i 6= 0}. For convenience, we define the support vector

s ∈ {0, 1}n as sv,i = 1 if i ∈ Ω, and sv,i = 0 otherwise.

The ultimate goal at each sensor is to locally reconstruct

{xv}v∈V . In this regard, it is well known that the challenge

in CS problems is to identify the signal support, once this is

accomplished, the estimate can be readily obtained by means

of a LS operator. In view of this fact, this paper proposes

a distributed iterative thresholding (DiT) algorithm that at-

tempts to achieve consensus on the signal support to recon-

struct each sensor observation while keeping privacy on the

local measurements.

3. DISTRIBUTED ITERATIVE THRESHOLDING

For mathematical simplicity, we assume hereafter that the

connectivity graph G is d-regular, that is, each node v ∈
V = {1, 2, . . . , |V|} has a neighborhood Nv of dimension

|Nv| = d (included itself). Bearing this in mind, we attempt

to minimize the following cost functional:

F (X) =
∑

v∈V

{

τv‖yv −Avxv‖
2

2
+

µ

d

∑

w∈Nv

∥

∥

∥
1(xv)− 1(xw)

∥

∥

∥

2

2

+

+ µ ‖xv‖0 + 2λ ‖xv‖1

}

,

(2)

where X = (x1, . . . , x|V|), variables τv , µ and λ stand for

positive weighting parameters, and 1(xv) =
1

d

∑
w∈Nv

1(xw) ∈
[0, 1].

The rationale behind each term that composes the cost

functional is the following:

1. The terms ‖yv −Avxv‖
2

2
account for the least square

residuals. These terms need to be minimized in order

to obtain consistent estimates with the local measure-

ments.

2. The terms
∑

w∈Nv

∥∥∥1(xv)− 1(xw)
∥∥∥
2

2

promote con-

sensus in the signal support.

3. Finally, the terms ‖xv‖0 and ‖xv‖1 promote sparsity on

the local estimates.

It is well known that classical iterative thresholding algo-

rithms consider either the L0-norm zero (in the “hard” ver-

sion) or the L1-norm (in the “soft” version) as penalization

terms [11]. Here, instead, the functional in (2) includes both

norms as penalization terms. This follows from the fact that

soft thresholding is known to perform better than hard thresh-

olding in terms of MSE, but it does not guarantee an exact

recovery of the signal support. This makes the L1-norm not

suitable for consensus and motivates the use of the L0-norm.

Likewise, the choice of the weighting parameters, i.e. τv , µ
and λ, follows analogous reasons.

3.1. Algorithm

In this section, we introduce the DiT algorithm which guar-

antees the minimization of the functional (2) at each iteration

(see Section 3.2 for details).

The procedure, summarized in Algorithm 1, reads as fol-

lows. At time t, node v ∈ V stores two variables: the estimate

of xv , denoted by x̂v(t), and the support estimate ŝv ∈ [0, 1]n.

In particular, ŝv,i = α means that a fraction of α nodes in

Nv agree that i ∈ Ω. First, each node performs a gradient

step with respect to its own residual (step 6) followed by a

component-wise threshold operation (steps 7-10). It is worth

noting that the local threshold, i.e. hv,i(t), changes from it-

eration to iteration and depends on the support variable ŝv(t).
Next, node v exchanges the support of the updated estimate

(step 11), i.e., 1 (x̂v(t+ 1)), with its neighbors. Then, the lo-

cal average 1 (x̂v(t+ 1)) is computed (step 12) and sent over

again to the neighbors. Finally, sensor v is ready to update the

estimate of the support (step 14) as ŝv(t+1) = 1(x̂v(t+ 1)).
This procedure is repeated until a maximum number of iter-

ations Tmax is reached. The steps of the algorithm (and in

particular the double exchange-average of steps 11-14, which

is not intuitive) are theoretically motivated by Lemma 3 in

next section.

It is worth noting that if ŝv,i(t) = 1, which means that

all the neighbors of v agree that i ∈ Ω, the algorithm turns

out to be equivalent to classical soft-thresholding [11] with

parameter λ. On the contrary, if ŝv,i(t) < 1, the threshold,

as a consequence of the L0-norm and the consensus terms

in (2), becomes more selective, i.e., hv,i > λ. Concluding,

a component of the signal that has associated a large ŝv,i(t)
will have more chances to be selected than the rest.



Algorithm 1 Distributed iterative Thresholding (DiT)

1: for all v ∈ V do

2: Initialize variables:

x̂v(0) = [0, 0, . . . , 0]T ; ŝv(0) = [1, 1, . . . , 1]T

3: end for

4: for t = 0, 1, . . . , Tmax do

5: for all v ∈ V do

6: zv(t) = x̂v(t) + τvA
T
(
yv −Ax̂v(t)

)

7: for all i = 1, . . . , n do

8: Update the threshold:

hv,i(t) = λ+
√
2µ (1− ŝv,i(t))

9: Update the value estimate:

x̂v,i(t+ 1) =



zv,i(t)− λ if zv,i(t) > hv,i(t)
zv,i(t) + λ if zv,i(t) < −hv,i(t)
0 otherwise

10: end for

11: Exchange 1 (x̂v(t+ 1)) with neighbors Nv

12: Compute 1 (x̂v(t+ 1))
13: Exchange 1 (x̂v(t+ 1)) with neighbors Nv

14: Update the support estimate:

ŝv(t+ 1) = 1(x̂v(t+ 1))
15: end for

16: end for

Regarding the communication aspects, the algorithm

needs two communication rounds per iteration: firstly, to

exchange the support of its current signal estimate and, sec-

ondly, to exchange the average support of the signal estimate

of its neighborhood. Clearly, this helps to disseminate the

information in the network while guaranteeing privacy on the

local measurements.

3.2. Convergence

Let X̂(t) = (x̂1(t), . . . , x̂|V|(t)) ∈ R
n×|V| and Ŝ(t) =

(ŝ1(t), . . . , ŝ|V|(t)) ∈ [0, 1]n×|V| be the sequences generated

by Algorithm 1.

Theorem 1. Let G = (V, E) be a d-regular graph. If

‖Av‖
2

2
< 1

τv
for any v ∈ V , then, for any t ∈ N, F (X̂(t +

1)) ≤ F (X̂(t)). Moreover, Ŝ(t) = (ŝ1(t), . . . , ŝV (t)) con-

verges for t → ∞.

Proof. Due to space limitation, we only provide a sketch of

the proof . We first prove that the functional F is decreas-

ing. Let X = (x1, . . . , x|V|), C = (c1, . . . , c|V|), B =

(b1, . . . , b|V|) be variables in R
n×|V| and define the surrogate

functional

F
S(X,C,B) =

∑

v∈V

{

τv‖yv −Avxv‖
2

2
+ µ

∑

w∈Nv

‖1(xv)− cw‖
2

2

+ µ ‖xv‖0 + 2λ ‖xv‖1 + ‖xv − bv‖
2

2
− τv ‖Av(xv − bv)‖

2

2

}

.

In the following lemmas, we find the minimizers of FS with

respect to coordinates B, C and X .

First, for any v ∈ V , if ‖Av‖
2
< 1

τv
, then ‖xv − bv‖

2

2
−

τv ‖Av(xv − bv)‖
2

2
≥ 0. Bearing this in mind, we obtain the

following lemma.

Lemma 1. X = argminB∈Rn×|V| FS(X,C,B).

We now remark that for any αv, βv ∈ R related to

v ∈ V of a graph G = (V, E), if G is d-regular, then∑
v∈V

∑
w∈Nv

(αv − βw)
2 =

∑
v∈V

∑
w∈Nv

(αw − βv)
2,

and its minimizer with respect to αv (respectively βv) is

βv (respectively αv). This can be easily generalized to the

multidimensional case, using ‖·‖
2
. Leveraging such remark,

Lemma 2 follows.

Lemma 2. 1(X) = argminC∈Rn×|V| FS(X,C,B), where

1(X) = (1(x1), . . . ,1(x|V|)).

Next, Lemma 3 obtains the minimum with respect to X .

Lemma 3. Let zv = bv + τvA
T
v (yv − Avbv). Then, X̃ =

argminX∈Rn×|V| FS(X,B,C) where the entries of X̃ are

x̃v,i = zv,i − λ if zv,i > λ+
√

2µ(1− cv,i), x̃v,i = zv,i + λ

if zv,i < −λ −
√
2µ(1− cv,i), and null otherwise, v ∈ V ,

i ∈ {1, . . . , n}.

This lemma can be proved noting that, for a suitable γ
independent from xv , FS(X,C,B) =

∑
v∈V ‖xv − zv‖

2

2
+

µ
∑

w∈Nv

‖1(xv)− cw‖
2

2
+µ ‖xv‖0+λ ‖xv‖1+γ and min-

imizing it with respect to the xv’s. Finally, from Lemmas 1, 2

and 3 we obtain

F (X̂(t)) = F
s(X̂(t),1(X̂(t)), X̂(t))

≥ F
s(X̂(t+ 1),1(X̂(t)), X̂(t)) (from Lemma 3)

≥ F
s(X̂(t+ 1),1(X̂(t+ 1)), X̂(t)) (from Lemma 2)

≥ F
s(X̂(t+ 1),1(X̂(t)), X̂(t+ 1)) (from Lemma 1)

= F (X̂(t+ 1)).

Moreover, algebraic steps lead to F (X̂(t)) − F (X̂(t + 1)) ≥
∑

v∈V
(1−τv ‖Av‖

2) ‖xv(t+ 1)− xv(t)‖
2

2
≥ 0. Since F (X̂(t))

is decreasing and lower bounded, F (X̂(t))−F (X̂(t+1)) → 0,

from the last inequality, ‖x̂v(t+ 1)− x̂v(t)‖
2

2
→ 0 for any

v ∈ V . This fact prevents jumps after a certain time. Suppose

that x̂v,i(t) = 0 for some v ∈ V , i ∈ {1, . . . , n} (which im-

plies ŝv,i(t) < 1, and
√
2µ(1− sv,i(t)) ≥

√
2µ(1− 1

d
) =

ξ > 0). Now, x̂v,i(t+ 1) 6= 0 would imply |x̂v,i(t+ 1)| > ξ,

otherwise it would be cut to zero; but for t sufficiently large

a jump of amplitude ξ is not possible. In conclusion, for a

sufficiently large t0 ∈ N, sv,i(t0) = 0 implies sv,i(t) = 0 for

any t > t0, which concludes the proof.



4. NUMERICAL RESULTS

In the simulations, we consider signals {xv}
|V|
v=1

of length

n = 100 with sparsity level k = 10. The support is generated

uniformly at random, with non-zero elements drawn from a

standard Gaussian distribution. As performance metric, we

use the average support error ε = 1

|V|

∑
v∈V

‖ŝv−s‖
0

n
. where

s = 1(xv). Therefore, if k is known, the maximum error is

2k/n = 0.2.

DiT is compared with the distributed greedy algorithms

DiOMP and DiSP of [9] over a regular topology with degree

d = 5, as well as with their corresponding complete-topology

versions that we name DiT-c, DiOMP-c and DiSP-c respec-

tively. We recall that the greedy algorithms benefit the knowl-

edge of the sparsity level, which is not required by DiT. Re-

sults are obtained after averaging out 1000 different trials.

In Figure 1, we show the average support error as a func-

tion of the number of measurements per sensor, having fixed

|V| = 10. As it can be observed, for small number of mea-

surements per sensor, DiT exhibits better performance than

the greedy algorithms, whereas for large m the results are

similar. The main difference between DiT and the greedy pro-

cedures resides in how the support is detected. While in the

greedy algorithms, at each iteration a new element is added to

the support, DiT starts from a situation of full support (note

that typically λ ≪ 1) and step by step eliminates elements

from it. This is more cautious when a small number of mea-

surements is taken and explains the superior performance of

DiT in this regime. We finally remark that, in this experi-

ment, both DiT and greedy methods always achieve support

consensus for m ≥ 24; no performance loss from the consen-

sus viewpoint is then entailed by DiT.

Furthermore, Figure 2 shows the average support error as

a function of the network size |V| having fixed m = 20. For

small networks, that is when V < 7, the greedy approaches

outperform the DiT algorithm. In this regime, the knowledge

of the sparsity level k pays off. On the contrary, for larger net-

works (i.e. V > 10) DiT outperforms most of the greedy algo-

rithms. This stems from the fact that in the greedy approaches

the number of iterations is upper bounded by k, which limits

the dissemination of information in the network. Although

the price to be paid is the number of iterations, which in this

case is 1 × 104, it is worth noting that the per-iteration com-

plexity associated to DiT is low, this being in stark contrast

with the greedy approaches that need to solve a L2-norm min-

imization problem at each iteration.

We finally remark that for our simulations a good choice

for τv is ‖Av‖
−2

2
(which is the upper bound fixed by Theorem

1), except when m is small: in such cases, ‖Av‖
−2

2
may result

too large and it is better to fix τv = 8 × 10−3. Also µ is

adapted to m, while λ is always the same.
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5. CONCLUSIONS

In this paper, we have addressed the problem of distributed

support detection of multiple sparse signals with common

support. In particular, we have proposed and analyzed a

distributed scheme, named DiT, for in-network signal recov-

ery. DiT only requires message exchanges between adjacent

nodes and, contrarily to the state-of-the-art methods, based

on greedy procedures, it does not need a prior knowledge on

the sparsity level. Besides, DiT has been proved to converge

and numerical results have revealed that DiT achieves con-

sensus in most cases. Finally, in those situations where the

dissemination of the information matters, DiT outperforms

the distributed greedy approaches.
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