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Interleaving in Systolic-Arrays:
a Throughput Breakthrough

Giovanni Causapruno, Marco Vacca, Mariagrazia Graziano, Member, and Maurizio Zamboni

Abstract—In past years the most common way to improve computers performance was to increase the clock frequency. In recent years

this approach suffered the limits of technology scaling, therefore computers architectures are shifting toward the direction of parallel

computing to further improve circuits performance. Not only GPU based architectures are spreading in consideration, but also Systolic

Arrays are particularly suited for certain classes of algorithms. An important point in favor of Systolic Arrays is that, due to the regularity

of their circuit layout, they are appealing when applied to many emerging and very promising technologies, like Quantum-dot Cellular

Automata and nanoarrays based on Silicon NanoWire or on Carbon nanotube Field Effect Transistors.

In this work we present a systematic method to improve Systolic Arrays performance exploiting Pipelining and Input Data Interleaving.

We tackle the problem from a theoretical point of view first, and then we apply it to both CMOS technology and emerging technologies.

On CMOS we demonstrate that it is possible to vastly improve the overall throughput of the circuit. By applying this technique to

emerging technologies we show that it is possible to overcome some of their limitations greatly improving the throughput, making a

considerable step forward toward the post-CMOS era.

Index Terms—Systolic arrays, CMOS, QCA, Molecular QCA, NanoMagnet Logic, NanoWire Field Effect Transistor, Interleaving

✦

1 INTRODUCTION

S YSTOLIC Arrays (SAs) represented a solution
frequently adopted to improve performance of

computation-bound algorithms, heavily exploiting
parallelism [1]. However, throughout the years, CMOS
technological scaling has been sufficient to produce
the required performance improvement, thus reducing
the need of parallel architectures. In recent years SAs
are back in the limelight for different reasons. First,
there are applications, called “embarrassingly parallel
applications” [2][3] in which parallelism is required
to achieve the expected performance, and GPU-like
processors are not always the best choice, compared
to SAs [4][5]. Second, CMOS technological scaling is
predicted to be near to its end [6][7] and parallelism
can be exploited to improve throughput. Third, SAs
are a great solution for new technologies (beyond-
CMOS) [8][9][4][10][11]; in these technologies benefits
in terms of speed and required area can be achieved
only avoiding global interconnections [12][13], and SAs
intrinsically fulfill this requirement.

It is then clear that SAs can be a great architec-
tural solution, providing outstanding results, at least
for certain kind of applications. A major limitation in
the use of SAs is that the pipeline level, required to
reduce the critical path and to increase frequency, could
limit the throughput in presence of feedback loops. By
increasing the level of pipelining higher clock frequen-
cies are allowed [14], but problems arise due to signal
synchronization, in particular in presence of feedback
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signals. As a consequence, to synchronize signals the
circuits operations must be slowed down, leading to a
throughput that might be lower than the throughput
obtained with a lower pipeline level and a lower clock
frequency. This is true both with CMOS [14] and with
emerging technologies [4][9][11]. Furthermore, with the
latter, the pipeline level is intrinsic in the technology and
related to the circuit layout, so it can not be chosen by
the designer, and it is usually extremely high [15][4][16].

One solution to this problem is to heavily exploit
interleaving in order to increase throughput. With a prin-
ciple similar to interleaving in processors out-of-order
execution and, especially, to interleaved multithreading
in modern CPUs, by accurately organizing input data de-
livery, SAs performance can be dramatically improved.
Even though this approach has been adopted in some
cases [17][18][19][10][9], a thorough and complete anal-
ysis based on a precise taxonomy of SAs has never been
assessed in a rigorous way in previous works. In this
paper we analyze this opportunity in details, showing
to what extent interleaving can be applied, and how the
possibility to use interleaving depends on the type of
array and on the pipeline depth.

We introduce metrics and equations that can be used
to understand benefits deriving when applying inter-
leaving to a given circuit, and we provide rules to feed
inputs in the right manner. The analysis is extremely
general, and one could apply this method even without
knowing the algorithm mapped in the array, but only the
SA layout. The methodology then addresses the problem
of long wire delays and analytically proposes interleav-
ing, with a clear application-independent approach.

After an introduction on Systolic Arrays and Emerging
Technologies (Section 2) and a detailed description of
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interleaving itself (Section 3), the taxonomy of SAs is
introduced (Section 4). Then in Section 5, for each class
of Systolic Arrays, a description of the optimization
methodology is given: some parameters are explained
and, depending on them, the number of data that can be
interleaved and the delay between inputs is accurately
defined. Finally in Sections 6 and 7 results on perfor-
mance improvements are shown with some examples,
using different levels of interleaving, both for CMOS
arrays and for SAs designed in emerging technologies,
such as QCA [13] and nanoarrays [20].

The solution here proposed represents a considerable
step forward in the improvement of circuits perfor-
mance, both for CMOS and for emerging technologies.
This solution should always be adopted when possible,
since it does not require extra hardware resources at the
array level, but just a careful scheduling of inputs.

2 BACKGROUND

In the following a brief summary on existing approaches
to SAs is given both for CMOS and for emerging tech-
nologies. The aim is to let the reader better perceive the
need for a systematic and ultimate definition of SAs and
interleaving in SAs in the forthcoming scenario.

Systolic Arrays. To increase the performance of a com-
puting system a common solution is to employ par-
allelism, using a large array of small processors. Sys-
tolic Arrays (SAs) were first introduced by Kung and
Leiserson in 1978, who stated: “a systolic system is a
network of processors which rhythmically compute and
pass data through the system” [21]. Systolic Arrays are
composed of Processing Elements (PEs) locally intercon-
nected. Each PE receives data from neighbor cells or
from outside and outputs result to the outside or to
near PEs. Two are the main concepts at the basis of
SAs: parallel computation (i.e. all PE work in the same
way and in the same time on different data) and local
transmission of data (i.e. there are not global signals).
SAs are widely used in signal processing [22][23][24];
they are used also for algorithms in video processing
(such as those for MPEG compression): for example, in
[25] and [26] a SA for logarithmic search motion estima-
tion is presented; by exploiting a bi-dimensional systolic
architecture and pipeline interleaving the algorithm can
be run 256 times faster than with a conventional linear
array. SAs have been exploited also for image processing
[27][28] and biological sequence comparison [29][5][30]:
in [4] an overview of the different hardware solutions
for biosequence analysis is carried out, showing that
the best performance can be achieved adopting SAs,
with a focus on nanotechnologies. Recently, automatic
tools to translate algorithms to SAs for FPGAs have
been explored [31]; reconfigurable arrays, that are not
application-specific, have been introduced [32] as well.

SAs are not the only hardware method to improve per-
formance of computation-bound algorithms. Through-
out the years, technological scaling has allowed to in-
crease operating frequencies and this has been enough to

produce the required performance improvement; there-
fore, pure transliterations of the algorithm to hardware
have been sufficient to achieve desired results thanks to
the technology improvement. In recent years, with the
development of 22nm technology for CMOS and the lim-
ited possibilities to further scale CMOS transistors [7][6]
other ways to improve performance should be found.
Highly parallel architectures such as Systolic Arrays are
back in the limelight for this reason. Our study provides
general techniques to improve throughput of SAs by
using interleaving: in this way it is possible to increase
the operating frequency and speed-up operations.

Emerging technologies. The approaching limits of CMOS
technology, due to limitations such as leakage current
and minimum fabrication sizes, paved the way for
new technologies [33]. Quantum-dot Cellular Automata
(QCA) is an emerging technology that is of particular
interest for its low energy and small area requirements,
as well as high frequencies achievable [34]. The basic
component of a QCA design is a cell: it consists of six
quantum dots in a square array coupled by tunnel bar-
riers. Electrons are able to tunnel between the dots, but
cannot leave the cell. If two excess electrons (or bunches
of electrons) are placed in the cell, Coulomb repulsion
will force the electrons to dots on opposite corners. There
are thus two energetically equivalent ground state polar-
izations, as shown in Fig. 1.A, which can be labeled logic
“0” and “1”. An intermediate “NULL” state (Fig. 1.A) is
necessary to switch dots from one state to the other. An
external electric field is applied to the circuit to force
the cell in the “NULL” state. When the field is removed
cells reach a new stable state depending on neighbor
elements [13]. There are two main implementation of
the QCA principle: Molecular QCA, where molecules are
used as base cell, that are studied for the high theoretical
clock frequency that can reach (1 THz) [35][36][37] and
magnetic QCA, also referred as Nano Magnet Logic
(NML), where single domain nanomagnets are used as
base cell [38][39][40], that are interesting for the low
power consumption [41].

To propagate the information through the circuit a
multiphase clock system is necessary [13]: many clock
signals (for example 4 or 3) with different phases
(Fig. 1.E) are applied to small areas of the circuit called
clock zones (Fig. 1.D). The use of a multiphase clock
system leads to an intrinsic pipelined behavior: Every
group of 4 (or 3 [39]) consecutive clock zones has a delay
of 1 clock cycle. The most important difference with
CMOS case is that here the pipeline level is intrinsically
related to the technology and it depends on the circuit
layout [40]. The pipeline level is normally very high
(hundreds of clock cycles) and it cannot be completely
avoided but at least reduced [16]. While in pure combi-
national circuit this is not a problem because a pipelined
structure allows to reach a very high throughput [42],
in a sequential circuit this is not true. In these kind
of circuits the results of a logic operation depend on
the previous operations, but due to the intrinsic heavy
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Fig. 1. (A) Elementary Quantum-dot Cellular Automata

structures. (B) NanoWire Field Effect Transistor. (C) N-

FET PLA-like structure. (D) QCA clock zones. (E) QCA

clock phases.

pipelining, feedback signals need many clock signals to
come back. As a consequence, in sequential circuits it is
not possible to execute a logic operation at each clock
cycle, because inputs must wait many clock cycles to
synchronize with incoming feedback signals. Through-
put is therefore reduced of N times, where N is the
length in clock cycles of the longest loop in the circuit
[43][16].

This is a well known problem in CMOS (i.e. the
throughput reduction in RISC microprocessors due to
conditional jumps), but it gains further importance with
many emerging technologies that necessary have an high
pipelining level. For example also Nanoarrays, based on
Nanowires as interconnects and Nanowire Field Effect
Transistors (N-FET) as active devices, potentially suffer
from the same problem. N-FETs can be based on several
type of materials. For example they can be based on
two silicon nanowires separated by a small oxide layer
(Fig. 1.B). Circuits are built in most of the cases in a
PLA-like fashion (Fig. 1.C) organized in arrays of PLA-
tiles and are driven by a dynamic 4-phase clock system
[20][44]. No further details are given on this clock system
because it is beyond the scope of this work and for
space reasons as well, however its consequences are that
every PLA-tile has a delay of one clock cycle. Since the
size of the PLA-tile is limited, to build complex circuits
many PLA-tiles must be connected together, leading to
an intrinsic pipelining similar to the QCA case [4][12].

In recent years Systolic Arrays have been studied as a
suitable target for nanotechnologies due to their regular
layout and the lack of global interconnections. In QCA,
for example, feasibility of a matrix multiplier Systolic Ar-
ray has been demonstrated [8]; systolic and non-systolic

(A)

(B)

Fig. 2. Interleave example: two operations have to be exe-

cuted, each requiring 3 steps; each step can be pipelined,

and needs that the previous step is completed before

executing. (A) If we don’t interleave then steps cannot

be pipelined. (B) With interleaving we can execute step

1 of operation 2 when the same step of operation 1 is still

executing. This finally results in better performance.

design clock cycle count ratio for this architecture show
the advantage of the adoption of SAs with QCA. In [11],
an example of SA to execute Galois Field multiplication
is reported. In [45] a reconfigurable PLA architecture for
NML is presented and a reduction in area of about 10
times compared to a CMOS PLA is demonstrated. In
[46] a NML SA for simplified convolution function is
implemented.

In this paper the analysis and the suggested tech-
niques are applied both to conventional and emerging
technologies, and results are presented in section 6 and
7, respectively.

3 A SYSTEMATIC METHOD TO EXPLOIT SA:
INTERLEAVING

To face the problem of deep pipelining and throughput
reduction due to feedback signals, algorithmic solutions
based on temporal correlation between data can be
exploited. The solution here proposed is based on data
interleaving, as a possible method to increase the circuit
throughput. Usually, retiming technique is used to de-
sign Systolic Arrays and solve the constraints presented
by feedback signals. In [47] authors present a systematic
procedure to apply retiming to QCA SAs and thus
optimize their throughput. This technique requires to
take into account the topology of the circuit at an early
stage of the design procedure. An important point of this
approach is also that the optimization given by retiming
could be bounded by clock layout constraints.

The interleaving approach is orthogonal to the retim-
ing one. In the case of QCA, interleaving can be applied
analyzing the circuit after the topology has been defined.
In this way the designer does not need to take into
account too carefully the circuit pipelining level during
design phase, but he only has to understand how many
operations can be interleaved. Moreover, the method
we introduce can be applied also to CMOS SAs: each
PE can be highly pipelined to reduce the critical path
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and increase operating frequency; the high pipeline level
does not affect the throughput if we adopt interleaving
of data.

Interleaving is in general a way to arrange data in a
non-contiguous way. Imagine that N operations must be
executed; each of them requires a number of steps s. For
example consider a matrix multiplication in which each
element of the resulting matrix is evaluated through a
number of multiplications and additions. One approach
is to execute these operations one after the other, re-
quiring sN steps, as shown in Fig. 2.A; in this case
input data are passed in-order to the computational
structure. However, a different approach is possible:
instead of executing operations one after the other, they
are interleaved so that steps are executed one after the
other. This means that the order is: step 1 of op 1, step
1 of op 2, . . . , step 1 of op N, step 2 of op 1 and so
on. Hence, input data are passed to the structure in
a interleaved manner (Fig. 2.B). The advantage of this
approach is given by the fact that there is no data-
dependency between successive interleaved steps. For
example it is possible that for one operation step i

requires step i − 1 to be completed. In case steps are
executed in order, they cannot be pipelined, because the
execution must be stopped to wait for previous step to
be completed before starting the new one. Using instead
interleaving, while the circuit is waiting for the i−1 step,
another step of a different operation can be executed
because there is no data-dependency. In this way the
pipe is always full and the throughput is maximized.

The benefits of interleaving (often referred as pipeline
interleaving) have been analyzed in literature, especially
in the case of digital filters [17][48]: internal feedbacks in
digital filters negate the most obvious ways of improving
performance, that is pipelining. In fact, recursive systems
cannot be pipelined at an arbitrary level by simply
inserting latches; the problem is solved by changing the
internal structure of the algorithm to create additional
logic delay operators inside the recursive loop, which
can then be used for pipelining. The potential given by
interleaving is exploited also in Digital Signal Processors
(DSP); in [18] and [49] a system level solution starting
from the algorithm and taking into account programma-
bility of DSP is analyzed. Some works have been pre-
sented to transform algorithms to exploit interleaving:
in [19] a method that selects and transforms a systolic
algorithm into a parallel algorithm with high granularity
is presented; this method returns the exact code to run on
each processing element of the multicomputer system.

The approach used in this paper is different from
those described above: we present here the method of
interleaving for Systolic Arrays, exploiting it at two
different levels:

1) PE level: the processing element must be adapted
to exploit interleaving, changing its architecture;

2) SA level: input data must be transmitted in a
precise order given by the interleaving level that
can be achieved inside each PE and by the com-

munication between PEs.

In the following we discuss the deployment of the
two above mentioned approaches on general SAs, for-
malizing their possible properties and parameters, and
explaining the possible solution space.

4 TAXONOMY OF SYSTOLIC ARRAYS

Herein we give a rigorous taxonomy of SAs in order to
distinguish the possible topologies and characteristics.
This taxonomy will be used throughout the whole paper.

Systolic Arrays can be divided into three main classes:
those With cells that have an Internal Loop (herein WIL),
those WithOut Internal Loop (herein WOIL) and those
With External Loop (herein WEL). The former can be
further split in systolic arrays that Store results in the
cells (WIL-S) and systolic arrays where the partial result
is Passed Through the cells to obtain the final value
(WIL-PT). In the following four examples are reported
to clarify the meaning of these definitions.

WOIL Example. Consider a problem of matrix multi-
plication: let A = (aik) and B = (bkj) be two rectangular
matrices of order N1×N3 and N3×N2 respectively. Their
product, matrix C = A × B, C = (cij) can be obtained
according to the following formula:

cij =

N3∑

k=1

aik · bkj , i = 1, 2, . . . , N1 j = 1, 2, . . . , N2 (1)

This algorithm can be mapped to a SA with the structure
shown in Fig. 3.A, which comprises a matrix of PEs.
Each PE stores one element of matrix B; elements of the
resulting matrix C are evaluated through the cells of one
column, as shown in Fig. 3.A. Each cell will compute a
multiplication between the incoming operand and the
stored one, and will add the result to the partial cij
coming from the upper cell; this is an example on WOIL
Systolic Array, since no loop is required inside each PE.

WIL-S example Kung [1] has shown a systolic array
for matrix multiplication that has cells with internal loop
and each element of the resulting matrix is stored in
a cell of the array, which is a WIL-S array, shown in
Fig. 3.B. Each PE will receive a couple of input data,
multiply them and add the result to the partial sum
internally stored in the loop. The final value of each
element cij of the resulting matrix will be generated from
each PE.

WIL-PT example. One example of WIL-PT systolic
array, made of cells with internal loop and results passed
through the cells, can be derived for the evaluation of
finite difference derivatives. Given one function f(x) and
the length of the step h, the derivative of the function can
be approximated with the incremental ratio in equation
(2):

f ′(x) ≈
f(x+ h)− f(x)

h
(2)

Signal Flow Graph (SFG) [1] for the problem is shown
in Fig. 3.C. The resulting hardware implementation is
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Fig. 3. (A) WOIL Systolic Array example: 2 × 2 matrix

multiplier. Each PE executes a multiplication between

inputs and adds the result to the partial result coming

from previous PE. (B) WIL-S Systolic array example:

2 × 2 matrix multiplier with cells with internal loop and

results stored in each cell. (C) Signal Flow Graph for

finite difference derivative; each element must execute the

difference between the two inputs and divide the result by

h, to implement equation (2).

obtained shrinking the SFG along the vertical axis. In
the derived SA, the local derivative evaluated by a cell
is re-used by the same cell for the next-order derivative,
and passed to the cell on its left.

WEL example. Lastly, we consider WEL systolic ar-
rays: in this array the last cell of a line is connected
backward to the first cell of the same line, producing
an “external loop”. An example of this class is the array
that can be derived for Galois Field Multiplication, like
the one presented in [11]. This external loop must be
taken into account to synchronize incoming inputs from
outside with values coming back from the loop.

In next sections each of these structures is analyzed
with the aim of optimizing the usage of the cell, exploit-
ing the pipelined structure of the elements of the cell
to interleave different operations; the examples seen so
far are used to clarify the explanation in the following
sections.

5 OPTIMIZATION OF SYSTOLIC ARRAYS

5.1 WOIL Systolic Arrays

5.1.1 Definition

In this class of systolic arrays the results to be evaluated
are passed through the cells of the array, which have no
loop inside; the systolic array for matrix multiplication
shown in Fig. 3.A, with each cell storing one element of
matrix B, is part of this class.

In general the cell can be described, as shown in
Fig. 4.A, as made of N different blocks, each requiring
di clock cycles to be completed, i = 1, 2, . . . , N . Some of
them (for example from block J + 1 to N) are along the
path that connects the cells each other (called P ), and
their total delay is D in equation (3):

D =
N∑

i=J+1

di (3)

while the others (from 1 to J) work on input data and
on stored ones, and are not interested by partial results.

5.1.2 Optimization with interleaving

Let us consider the case in which the N blocks cannot
be pipelined; each of them requires di cycles to complete
the operation and during these cycles no new inputs
can be given; hence, each of them can receive valid
inputs every di cycles (notice that if a block can be
pipelined in s stages, it can be thought as s different
blocks, each with its own delay). The output rate of each
block is the same of the input one, so, to match the delay
condition for all the blocks of the processing element,
input data should be given at least every K cycles:
K = max{di} with i = 0, 1, . . . , N . The throughput that
can be achieved is 1/K; however, without exploiting the
intrinsic pipelined nature of the cell (where each block
is a new stage of pipe), data would be given at the end
of the whole computation, hence the throughput would
be 1/

∑
i di; it is then clear that a speed-up of

∑
i di/K

can be in principle achieved. As shown in Fig. 4.A, one
cell receives data from previous cell at time T0 and will
produce the output at time T0 + D; external inputs are
given every K cycles; the delay between one cell and
the successive is D, hence the external inputs to the
following cell shall also have a delay of D with respect
to the corresponding inputs in the previous cell. In other
words, first processing element can be fed with input
data at time 0, K, 2K, . . . ; second processing element
instead is fed with data at time D, D +K, D + 2K, . . . .

5.1.3 Optimization with exact synchronization of inputs

Consider a two-dimension WOIL systolic array, for ex-
ample for matrix multiplication, as shown in Fig. 3.A.
Each cell will receive one input value aik from left (given
to the boundary cell and locally transmitted through
processing elements), will multiply it with the stored
value in the cell bkj , and will add the result with the
partial result coming from the upper cell cij(k − 1) to
obtain cij(k); the structure of the PE is shown in Fig. 4.B.
This process requires that all the cells are preloaded
with the values of one of the two matrices to multiply,
and this could require a large overhead, highly affecting
performance.

What is presented hereinafter is a solution to this
problem, that requires to give also the second input from
outside during computation. This value must be valid
every time a new computation is executed in the cell in
order to be ready exactly as it would be if the data were
internally stored as in the original solution. This means
that the value must be transmitted from outside as many
times as the cell requiring that input will be used. For
example, in the case of 3×3 matrix multiplication, shown
in Fig. 3.A, each value of bkj must be transmitted 3 times.

Exact synchronization can be achieved inserting in
every processing element a shift register to pass the input
to the next cell (Fig. 5); call L the length of this shift
register, M the number of cells in each line of the systolic
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Fig. 4. (A) WOIL cell: di, i = 0, 1, . . . N is the delay of each block in clock cycles; blocks from 1 to J work on input data

and on stored ones, while blocks from J + 1 to N are along the path P that connects the cells each other and their

total delay is D. (B) WOIL cell for matrix multiplication: input value aik and stored one bkj are multiplied and summed

to the partial result, obtained after k − 1 steps, cij(k − 1); the result is cij(k). The delay of the path between cells is D.

(C) WIL cell: this PE is made of 4 parts: an entry section, the forward and feedback parts of the loop, and the output

section. Data coming from previous PE can enter at any stage of the cell.

cell 0

1 2 L

cell 1 cell M-1

bj

Fig. 5. SA row adapted for exact synchronization: input

data are pumped in from left and passed through cells

through shift registers, of length L.

array, N the number of successive inputs given to each
cell. Values of bj , j = 0, . . .M−1 are fed through the input
in the leftmost cell, and travel through the chain of shift
registers. The condition to guarantee feasibility of exact
synchronization is that there are not two different values
that must be given at the input of the chain of shift
registers at the same time (that would be impossible).
Inputs to the first cell are given at time 0, K, 2K, . . . ;
inputs to the second cell must be given at time D, D+K,
D+2K, . . . , and, considering that they must pass through
the shift register of the first processing element, that
requires L cycles, they must be fed at the beginning of
the chain at time D − L, D +K − L, D + 2K − L, . . . . The
whole set of expressions extracted must be analyzed to
ensure that there are not two expressions representing
the same cycle; this can be expressed by formula (4):

mD + nK 6= mL (4)

∀ m ∈ [0,M − 1], n ∈ [−N + 1, N − 1]

where L and D are design parameters, and cannot be
changed once the systolic array has been implemented.
K instead, represents the frequency at which inputs are
fed, and can be varied. In order to verify equation (4) it is
hence possible to increase K; this would be often needed
when K < M : in fact, K represents the distance between
two occurrences of the same value (that goes in the same
cell); in this period of time all values for the other cells
must be fed in, and this is possible only if K ≥ M . This
condition gives also indication on how to design systolic
arrays for exact synchronization: if the number of cells

must be high, it is convenient to have big operations
inside each processing element that require many cycles.
There are other cases when formula (4) is not verified
(meaning that there are two inputs that should be given
at same time); in these cases increasing K of 1 could solve
the problem. However, there are cases, such as D = L, in
which the exact synchronization approach can never be
adopted. We have analyzed the feasibility of this method
for values of D from 1 to 20 and L from 1 to 10; it resulted
that nearly 93% of cases are feasible, even though in
1/3 of them it is required to increase the value of K

of 1 (starting condition is K = max{di,M}, i = 1, 2, . . .) ,
leading to a decrease in performance of K/(K+1), that is
in general smaller than the overhead due to the preload
of values in the cells. In fact, to preload values in the
array it is necessary to input them from boundaries in
reverse order (first the one that goes in last cell of the
row), with a distance L each from the other. At the same
time an “enable” signal for the register that stores the
value is sent. This is repeated every time a new operation
is started, and having N operations the total overhead

due to preload is approximately T
(stored)
ov = N(M − 1)L.

On the other hand, if we use exact synchronization, K

could be increased from the original value up to M + 1,
and considering that this increase reflects on each input,

the overhead would be T
(exact)
ov = (M + 1)N . Comparing

T
(stored)
ov with T

(exact)
ov , it comes out that every time

M > (L + 1)/(L − 1) it is convenient to use the exact
synchronization method. Having integer values for L

it is clear that when L = 1 preload must be used; for
L = 2 preload is convenient only if M < 3, and for higher
values of L exact synchronization should be always used.

5.2 WIL-S Systolic Arrays

5.2.1 Definition

A cell with internal loop is shown in Fig. 4.C. It is made
of 4 parts: an entry section, made of blocks numbered
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from 1 to J ; the forward part of the loop, made of blocks
from J + 1 to K, the feedback part of the loop, made
of blocks from K + 1 to N − 1; the output block, called
N . Each of these blocks is associated to a delay di, i =

1, 2, . . . , N . Let us call Te the total delay of the entry block,
Tff the delay of the forward side of the loop, Tfb the
delay of the feedback in the loop and To the output delay
as in the following relations:

Te =
J∑

i=1

di Tff =
K∑

i=J+1

di Tfb =

N−1∑

i=K+1

di To = dN

(5)
Input data coming from outside enter in the first block,
while data coming from the neighbor processing element
can enter at any stage of the cell. This cell can be part of
a systolic array where each result is finally stored in the
cells of the array (WIL-S), like in the example of matrix
multiplication shown in Fig. 3.B; or it can be part of an
array where local result are re-used in the cell and also
passed to neighbor cells (WIL-PT), like in the example
of finite difference derivative. These cells usually have
also a shift register used to pass inputs to neighbor cells,
whose delay is L, and that is not shown in Fig. 4.C for
sake of simplicity.

The example of array for matrix multiplication re-
ported in Fig. 3.B is part of WIL-S class; the cell for
this operation is composed of a multiplier between the
two incoming operands, a and b, passed to other cells
through the internal shift registers; a×b is summed with
the result stored inside the loop; a control signal ctrl
is used to de-activate the input from the feedback at
first iteration. Fig. 6 shows also the line to output the
result once it has been evaluated; this line however is
never used during computation of the resulting matrix.
According to the nomenclature previously described, the
delay of the multiplier will be Te and the delay of the
adder Tff , while the feedback loop itself will require Tfb
cycles.

PE

‘0'

A

B C

Out

ctrl

2

4

4

5

2

Fig. 6. Cell with internal loop used for matrix multiplication

as shown in [11]. A and B are multiplied and added to the

value stored in the loop. “ctrl” signal is used to select input

’0’ from the multiplexer for the first addition.

5.2.2 Optimization with interleaving

In order to match timing of inputs with delay of the
feedback, inputs must be given every Tloop = Tff + Tfb

TABLE 1

Interleaved inputs to a WIL-S PE.

Time Inputs Result
0 a00, b00 a00 × b00
3 a00, b01 a00 × b01
6 a10, b00 a10 × b00
9 a10, b01 a10 × b01

12 stall stall
13 a01, b10 a00 × b00 + a01 × b10 = c00
16 a01, b11 a00 × b01 + a01 × b11 = c01
19 a11, b10 a10 × b00 + a21 × b10 = c10
21 a11, b11 a10 × b01 + a11 × b11 = c11

cycles, that is the total time of the feedback loop. How-
ever, given the intrinsic pipelined nature of the structure,
we can improve performance and usage of the cell giving
inputs every K = max{di}, as done for the cells without
loop. Every K cycles a new operation can be started, and
in this way N different operations can be interleaved,
being N = Tloop/K (integer division). After Tloop cycles,
the second set of inputs is fed; it will be multiplied and
added to the value previously evaluated and stored in
the feedback loop. When Tloop is not a perfect multiple
of K, the remainder of the division, called R, must be
taken into account: after N operations have been started,
the following one must start with a delay of K +R with
respect to the previous, so to have synchronization with
the result coming from the loop. R represents a number
of “stalls” that must be inserted between one set of N

inputs and the following set. Consider the following
example: Te = 3, Tff = 3, Tfb = 10; it is possible to
interleave Tloop/K = 13/3 = 4 operations, inserting a stall
(R = 1) after each set of 4 inputs. This cell can be used for
example to evaluate the elements of a 2× 2 matrix, and
the time of evaluation is reported in Table 1, showing
also the stall cycle required to match data at input of the
adder.

With respect to the normal usage of this kind of cell,
it is possible to evaluate in the same time N different
operations, having an increase in performance of N .
The number of stalls represents a factor of performance
decrease, that must be carefully analyzed at design time;
consider the following example: Tff = 20, Tfb = 6,K = 9;
it will result in N = 2 and R = 8. In this case it would be
favorable to increase of 1 cycle the delay of the feedback,
so to have 3 possible interleaved operations, and no
stalls. As far as the global array is concerned, processing
elements work independently each from the others, and
the only connections are the shift registers to pass inputs
from one cell to another. Being L the length of the shift
register in each cell, inputs must be given with the same
rule for all cells (number of interleaved operations and
stall cycles), but starting at cycle Si = mi × L; mi is the
Manhattan distance between cell i and the top-left one
(if we consider data moving from top to bottom and left
to right like in Fig. 3.B).
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5.3 WIL-PT Systolic Arrays

5.3.1 Definition

Fig. 7 shows the systolic array that is directly obtained
by shrinking the signal flow graph of Fig. 3.C along the
vertical axis. The structure of the processing element is
shown in Fig. 8.A. Each cell receives two values of the
function, say f(x1) and f(x1+h), and evaluates the finite
difference that approximates the derivative as expressed
in formula (2):

f ′(x1) ≈
f(x1 + h)− f(x1)

h

Notice that the value of h is stored in the cell and it
is the same for all cells. At next step, storing f ′(x1) in
the loop, and receiving f ′(x1+h) from the neighbor cell,
it will evaluate f ′′(x1), and so on. It is required that the
rightmost cell receives at every step the derivative of any
order of the boundary point (xn + h).

5.3.2 Optimization with interleaving

Usage of this processing element can be optimized fol-
lowing the same rules given for the previous case: N =

Tloop/K (integer division) and R = Tloop%K (remainder)
indicate how many operations can be interleaved and
how many stall cycles must be given between sets of
inputs, respectively. For the example of the cell for finite
difference derivative, we have Te = 0 and Tff equal to
the sum of the delay of the subtracter and the multiplier.
At first cycle all cells can be fed in with values of the
function; however, to respect exact timing of operations,
cells have to be fed according to the unbalance that
there is between the feedback loop (Tfb) and the path
for the local result to be passed to neighbor cell (Tp).
Consider two cells only: one will receive inputs from the
external (independent cell), the other must receive the
value calculated by the neighbor cell (dependent cell).
If the delay of the feedback is longer than the one for
forwarding data between cells, the dependent cell will
start computation before, and the independent one will
be fed with input values only when the delay mismatch
has been covered, that is, Tfb − Tp. In the other case,
if the forward path is longer, then the independent cell
will begin computation earlier and the dependent cell
will be fed with values only Tp − Tfb cycles later. This
analysis can be enlarged to a bigger array, where there
is only one independent cell (the rightmost one in our

hhh

f(h)

f'(0)

f''(0)

...

f'(h)

f''(h)

...

f'(2h)

f''(2h)

...

f(3h)

f'(3h)

f''(3h)

...

f(0) f(2h)

Fig. 7. Systolic array for finite difference derivatives: ex-

ample of WIL-PT SA. Each cell evaluates the n derivative

order of function f(x) in the correspondent point.

example), and all the others are dependent cells (each
cell is dependent from the one at its right); calculations
must start from the rightmost or leftmost cell according
to the unbalance between the two paths.

5.3.3 Simulation

A simulation of this systolic array has been carried out
to demonstrate its correct behavior. Consider the cell
structure shown in Fig. 8.A; assume the subtraction and
the multiplication require 3 cycles each, the feedback
requires 7 cycles and the propagation path to next cell
requires 10 cycles. Under these conditions, the time
required by the whole feedback loop, given by the
feedback itself and the two operations is Tloop = 13,
and the frequency at which inputs can be fed is K = 3.
Hence, it will be possible to interleave N = Tloop/K = 4

operations, ensuring a stall after each set of 4 inputs
equal to R = Tloop%K = 1 cycle. The systolic array
simulated has 5 cells, named from 0 to 4 from right to
left; therefore, the array is able to evaluate the derivatives
of the function given in 5 points. For sake of simplicity,
and without leading the generality of the discussion, it is
assumed that the distance between values of the sampled
function is h = 1. It is also worth noticing that the
result of multiplication, since it must be fed back in the
cell, is truncated, considering only LSBs. The rightmost
cell evaluates derivatives in x = 4, while the leftmost
evaluates derivative in x = 0 (of course the interval is
arbitrary, the architecture can work for any value of x).
Tp − Tfb = 3, hence the calculation must start from the
rightmost cell.

Results shown in Fig. 8.B highlight one of the 4 func-
tions used to test the systolic array for finite difference
derivative; values of derivatives in x = 5 are known
and given from the outside; in Fig. 8.C a simulation is
shown. Fig. 8.A shows names of signals for the rightmost
cell; one should notice that in0 is the external input
that provides values of derivative of any order in the
boundary point; other cells receive from that input the
result of neighbor PE. inup and inright provide values of
the function to derive for the evaluation of first order
derivative and are used at first step only: indeed in the
simulation they assume 4 values only, corresponding
to the 4 functions that are evaluated in an interleaved
manner. result0 is the result obtained by the rightmost
cell, the one that evaluates derivatives in x = 4; its
output will be f ′(4) when becoming valid, and after
other 3 values (that are the value of derivative of the
other 3 functions) it is f ′′(4). The same can be noticed
for the other outputs. The delay between results of cells
is exactly Tp − Tfb = 3 cycles, and each new result
in one cell can be carried out after K = 3 cycles; the
delay between the last first-order derivative and the first
second-order derivative is instead of 4 cycles because
1 stall must be inserted. Ctrl signal, used to select the
input of the multiplexers, has the same 3 cycles delay
between blocks, which means that it could be treated as
a local signal traveling from cell to cell if one is able
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Fig. 8. (A) Cell for finite difference derivative: at first step multiplexers are set to output f(x) and f(x + h) to evaluate

f ′(x); from next step on, it gets the value coming from feedback and the value from previous cell. (B) One function and

its derivatives used to test the systolic array for finite difference derivative. (C) Simulation of the systolic array for finite

difference derivative. 4 operations are interleaved to maximize the throughput: input data and results waveforms are

shown, and data belonging to f(x) are highlighted.

to design it having propagation time exactly equal to
Tp − Tfb, or, it can be taken from the external and given
with an intrinsic delay. It must be set to ’1’ when the
first derivative has been evaluated and the cell is used
for evaluating next order derivatives, using the values
stored in the cell itself. Since the result is truncated on
5 least significant bits, the values of f ′′′(1) and f ′′′(2) are
incorrect, but yet valid if truncation is accepted.

PE

1

PE

2

PE

3

in0 in1 in2

PE

N

inN

feedback (F) 

Fig. 9. WEL SA: the output of last PE is fed into the first

one. Each PE has a delay of di cycles, i = 1 . . . N , while

feedback has a delay of F cycles.

5.4 WEL Systolic Arrays

The analysis carried out for WIL Systolic Arrays can be
used to optimize WEL SAs as well. Referring to Fig. 9,
forward loop is made of PEs in the line, each with a
delay di i = 1 . . . N .

Tff =

N∑

i=1

di

Feedback loop has a delay of Tfb = F cycles. Inputs
can be provided to each PE with the same rule derived
for WIL Systolic Arrays: Tloop/K operations can be in-

terleaved where Tloop = Tff + Tfb =
∑N

i=1 di + F and
K = max{di}.

6 RESULTS ON CMOS TECHNOLOGY

In order to evaluate the improvements achieved by inter-
leaving, the Cell Updates Per Second (CUPS) parameter
can be computed. This is a common parameter [3] to
evaluate performance of SAs. Often this value is approx-
imated to the maximum achievable CUPS, given by the
number of PEs in the array times the clock frequency. In
this article we derive instead rigorous equations that can
be used to evaluate actual CUPS and predict the effects
of pipeline interleaving with more accuracy. In a first
step we evaluate the results that can be achieved using
as a target a standard CMOS technology.

In a systolic array, PEs rhythmically compute and
pass data through the system [50]. Timing of operations
follow a “wavefront” order; considering Fig. 3.B, the top-
left PE is the one that starts operating first, while the
bottom-right one is the last. Given a finite number of
inputs, the bottom-right PE is also the one that finishes
computation later; hence, total time will be given by the
time at which this PE will finish to compute the last
result. Total time, Tend, is then given by the time for
last inputs to reach last PE, plus the time to execute
the operation inside the PE itself, called Tcell. In the
following we will analyze the case of WOIL SA and
WIL SA, considering in particular the case of matrix
multiplication. For both of them we evaluate the total
time of computation and then the CUPS. The concept of
“frequency increase” is used throughout the two cases.
WEL SA is not detailed since equations are the same of
the WIL SA case.

Consider each PE made with two arithmetic blocks,
for example a multiplier and an adder, in case of matrix
multiplication. They usually have different delay, say TA
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and TB , TA > TB , and the frequency fclk is set according
to the slowest of the two blocks: fclk = 1/TA. In this way
each of the blocks require 1 clock cycle to complete its
operation. However, it is possible to set the frequency on
the fastest of the two blocks: fclk = 1/TB ; the fastest block
will need 1 cycle to complete its operation, while the
other needs ⌈TA/TB⌉ (upper integer). Of course, input
data cannot be given at every clock cycle, but after
⌈TA/TB⌉ one from the other.

6.1 WOIL Systolic Arrays results

In a WOIL Systolic Array, such as the one in Fig. 3.A, ver-
tical and horizontal propagation must be differentiated.
Horizontal propagation of inputs is achieved through
shift registers of length L; vertical propagation of partial
results depends on the computational time of the cell,
hence it is given by the delay of the path P , that

is called D according to Fig. 4.A. Call T
(i)
end

the time
at which computation of i-th result is available. Then:

T
(1)
end

= (N −1)L+(N −1)D+Tcell, and if we consider last
input p:

Tend = T
(p)
end

= (N − 1)L+ (N − 1)D + (p− 1)K + Tcell (6)

Formula (6) expresses the total time needed to execute
operations on a N ×N SA that receives p successive data
from each input path. During this period of time each
cell will execute p operations (one every time a new
input is received). Then, the total cell updates are pN2,
and, given the clock frequency in ns, GCUPS (Giga Cell
Updates Per Second) can be evaluated as:

GCUPS=
fclk × pN2

(N − 1)L+ (N − 1)D + (p− 1)K + Tcell
(7)

This formula must be adapted in two cases: when the
array is used without interleaving operations, and when
interleaving is exploited to achieve an improvement in
performance. Consider the case of matrix multiplication:
C = A × B where A, B, and C are N × N matrices. The
PE is the one shown in Fig. 4.B. The array is made
of N × N PEs; in case of no-interleaving it is used to
evaluate elements of one resulting matrix; in case of n-
interleaving instead, it is used to evaluate elements of
n different resulting matrices. In case of no-interleaving
formula (7) can be adapted considering p = N . In case
of n-interleaving instead, each cell will update n times
more than the previous case, hence p = nN ; this increase
reflects also at the denominator of formula (7) as an
increase in total time.

Hereinafter the following notation is used: Dblock rep-
resents the delay of the block expressed in ns; Tblock rep-
resents the delay of the block expressed in clock cycles.
K is the number of clock cycles that occur between one
input and the successive one, both in the no-interleave
version and in the interleaved one.

Results were evaluated for different level of interleave
for the example of matrix multiplication, considering
inputs at 16-bit and results in 32-bit. In CMOS, we have

considered a 45-nm technology, using a 16-bit Wallace
multiplier [51] with delay Dmul = 12.65ns and a 32-bit
ripple carry adder with delay Dadd = 6.14ns. In case
of no-interleave (no-i), without exploiting frequency in-
crease, the clock period must be set to tclk = 12.65ns and
the number of clock cycles required by each of the blocks
is 1. One register is inserted in the propagating path,
hence D = 2 (number of cycles to pass through the adder
and the registers). When inputs are not interleaved,
data are passed to the structure when it has finished
previous computation, hence K = Tmul+Tadd+Treg = 3.
Tcell = Tmul+Tadd = 2. L does not impact the discussion,
and can be set to 1. Formula (7) with all parameters set as
described reduces to GCUPS = fclkN

3/(6N − 4). In case
of (n−i) interleave, we can set the frequency according to
the fastest block: tclk = 6.4ns can be considered in such a
way that the multiplier requires 2 cycles to complete its
operation, while the adder requires only one: so, K = 2.
The delay of the register chain to pass result to following
cell depends on the number of interleaved operations
we want to achieve. If 5 operations must be interleaved
for example, D must be equal to 10 (D = n × K), and
since adder requires 1 cycle, 9 registers must be inserted:
Treg = nK−Tadd = 2n−1. Tcell = Tmul+Tadd = 3 and again
L = 1. Formula (7) with all parameters set as described
reduces to GCUPS = fclknN

3/[2n(2N − 1) +N ].
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Fig. 10. The effect of interleaving in terms of GCUPS: for

the same N ×N WOIL-S SA, interleaving and increasing

frequency allow achieving better results.

Fig. 10 shows the GCUPS depending on number of
cells N . It is clear that better results can be achieved
increasing frequency and using deep interleaves; just in-
creasing frequency and exploit pipelining, still with n = 1

we have an improvement with respect to the original
case. The improvement saturates with the increase of n;
this is due to the fact that an increase in n has an impact
in every cell as an increased delay between blocks, that
could eventually match the benefits of the gain in the
number of evaluated results.
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6.2 WIL Systolic Arrays results

Consider a WIL-S Systolic Array; in this case inputs for
last PE are inputs to the whole array that have been
shifted through registers. L was previously defined as
the number of cycles needed for an input to pass through
a cell, that is the number of registers of the shift chain.
In this case it is possible to assume that this value is
equal for left to right or top to bottom transmission. First
inputs will be available at last cell after 2(N −1)L, where
2(N −1) is the Manhattan distance between first cell and
last one in an array of N × N PEs. Following formula

results: T
(1)
end

= 2(N − 1)L+ Tcell. K is the delay between
one input and the following one; if we have p inputs,
then we can write:

Tend = T
(p)
end

= 2(N − 1)L+ (p− 1)K + Tcell (8)

Equations (8) and (6) correspond in case D = L.
Following formula expresses GCUPS in the case of

WIL-S SA:

GCUPS = fclk
pN2

2(N − 1)L+ (p− 1)K + Tcell
(9)

This equation must be adapted in two cases: when the
array is used without interleaving operations, and when
interleaving is exploited to achieve an improvement in
performance. In case of no-interleaving equation (9) can
be adapted considering p = N . In case of n-interleaving
instead, each cell will update n times more than the
previous case, hence p = nN ; this increase reflects also at
the denominator of equation (9) as an increase in total
time.

Results were evaluated for different levels of inter-
leave for the example of matrix multiplication, consid-
ering 16-bit inputs and 32-bit results. As stated before,
in CMOS, 45-nm technology was used, having Dmul =

12.65ns (Wallace multiplier [51]); Dadd = 6.14ns. In case
of no-interleave (no-i), without exploiting frequency in-
crease, the clock period must be set to tclk = 12.65ns and
the delay for each of the block is 1, meaning Te = Tff = 1.
One register is inserted in the feedback path, Tfb = 1.
K = Tloop = Tff + Tfb = 2 and Tcell = Te + Tff = 2 cycles.
L does not impact on the discussion, and can be set to
1.

Formula (9) with all parameters set as described re-
duces to GCUPS = fclkN

3/(4N − 2). If instead (n − i)
interleaved is used, the frequency can be set according
to the fastest block:tclk = 6.4ns can be considered in such
a way that the multiplier requires 2 cycles to complete
its operation (Te = 2), while the adder requires only
one(Tff = 1): so, K = 2. The delay of the feedback
path depends on the number of interleaved operations
that is necessary to achieve: since n = Tloop/K, being
Tloop = Tff + Tfb, it is clear that relation (10) holds:

Tfb = nK − Tff (10)

that in this case is: Tfb = 2n−1. Also, Tcell = Te+Tff = 3,
and again L = 1. Formula (9) with all parameters set as

described reduces to GCUPS = fclknN
3/[2N(n + 1) − 1].

The advantage of interleaving is shown in Fig. 11. The
higher the number of PEs in the array, the higher is also
the increase, in terms of GCUPS, that is achieved using
interleaving. However, the increase in performance satu-
rates, and after a certain point, higher values of p do not
translate in further significant increase in performance.
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Fig. 11. The effect of interleaving in terms of GCUPS: for

the same N × N WIL-S SA, interleaving and increasing

frequency allow achieving better results.

One particular case is interleave with n = 1; in this
case there is not an interleave inside the loop (i.e. there
are not 2 values traveling along the loop together) but
still the pipelined nature of the PE and the increase fre-
quency concept are exploited to improve performances.
Frequency not always can be increased; however, inter-
leaving can still be exploited to improve performance. In
this case tclk is set according to the slowest of the two
blocks; all the blocks will then need 1 cycle to complete,
hence K = 1 and Tcell = 2. Fig. 12 shows that there is
still an increase in performance, however much smaller
than in the case of interleaving with frequency increase
(notice for example the difference between interleave 8
and interleave fast (that is done with n = 8) where the
second is with frequency increased).

6.3 Case Study: Protein Alignment Systolic Array

The purpose of this article is to provide a rigorous de-
scription of the technique to apply pipeline interleaving
to systolic arrays and to introduce metrics to evaluate the
effects that can be obtained. In order to suggest a context
to the reader, but without the aim of being exhaustive,
we provide here a short introduction to a case study
we developed to show the benefits of this technique
[30]. Protein comparison is gaining importance year after
year because it helps biologists in finding correlation
between different species, or genetic mutations that can
lead to cancer and genetic diseases. Protein sequence
alignment is the most computational intensive task when
performing protein comparison. For this reason SAs are
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often used to speed-up the execution of these algorithm.
In [5] a SA for the Smith-Waterman algorithm has been
proposed. According to our classification, this is a WIL-S
SA. The optimization with interleaving in CMOS relies
on the reduction of critical paths introducing additional
registers, and on data interleaving to avoid throughput
reduction. We focus on further details about this specific
optimization in another paper [30], based on the present
one for what concerns the analytic discussion. Focusing
on details here would change the nature of this paper.
Nevertheless, we can summarize that in CMOS it is
possible to achieve a speed-up of 2.5X without affecting
area or power requirements significantly. Moreover a
NML implementation has been proposed in [52]. The
article shows how it is possible to interleave data also
in the case of NML to increase throughput without
changing the hardware structure. As described before,
this allows to avoid retiming (that must take into account
also the physical layout of the circuit) and yet obtain
improvements using interleaving only. In [52] results
show that CMOS circuit can operate at 370MHz con-
suming 0.72mW , while for NML the operating frequency
is given by the technology and is 100MHz and power
consumption in the case of Magnetoelastic implementa-
tion is of 10µW only. It is important to highlight that
in NML without applying interleaving there must be
a delay of 209 clock cycles between one input and the
successive one, while with interleaving it is possible to
provide one input at every clock cycle as it is in CMOS:
this therefore proves the benefits that derive from the
adoption of pipeline interleaving in this technology.

7 RESULTS ON EMERGING NANOTECHNOLO-
GIES

We will now give an overview of the advantages that can
be achieved by exploiting interleaving and optimization

TABLE 2

NML WIL-S SA for matrix multiplication

K Tcell CUPS

no-interleave 38 32+19=51 13447.8 fclk
interleave 19 38 + 19 = 57 26887 fclk

mechanisms to SAs implemented with new technologies.
As stated before, this analysis particularly fits the case

of Quantum-dot Cellular Automata or N-FET PLA-like
circuits, where the delay of wires can be quite long.
Designers have put a big effort in trying to reduce it [11];
our analysis allow designers to relax on the layout of the
cell and the delay of the wires, exploiting their intrinsic
pipelined nature; an analysis of the layout then allows
to choose the best interleaving to optimize the usage of
each PE. We focus on the WIL-S Systolic Array for matrix
multiplication; the structure of the PE is shown in Fig. 6.
Assume 16-bit inputs and 32-bit output. Considering for
example NML, a suitable adder can be a Carry Looka-
head Adder (CLA) whose delay is Tff = 19 clock cycles
[53], while multiplier [53] has a delay of Te = 32 clock
cycles, but can be pipelined. The delay of the feedback
loop can be considered equal to the delay of the adder,
so Tfb = 19 can be assumed. In order to match delays,
the multiplier can be delayed to reach 38 cycles. Inputs
can be given every K = 19 cycles, and 2 operations can
be interleaved. The delay to transmit data through a PE
is at least equal to the forward path (usually bigger),
and L = 20 can be assumed. The analysis is carried out
for a 1024× 1024 SA and results are shown in Table 2: a
speed-up of nearly 2 is achieved. Notice that in this case
the frequency is the same for both solutions, because
frequency in QCA depends on technological limitations
and cannot be set freely.

In NanoWire Field Effect Transistor (NWFET) technol-
ogy, the delay of the ripple carry adder is given by the
delay of the full adder, and in case of a 32-bit addition it
is 33 × tFA, while the delay of the Wallace multiplier is
68×tFA but it can be pipelined. The delay of the feedback
loop can be assumed to be equal to that of the adder;
hence K = 34 (in order to have Tmul = 2), and again
L = 20 can be assumed. A comparison of the interleaving
method here proposed in different technologies and at
different frequencies is reported in Table 3.

Results in Table 3 show that, considering the same fre-
quency (156MHz, a frequency obtained from the FPGA
implementation of the SA), the throughput with CMOS
is much better. This is caused by the presence of feedback
signals inside the circuit as explained in Section 2. Using
interleaving the throughput is greatly increased but still
lower than CMOS circuits. However considering the
theoretical frequency that these new technologies can
reach, the results are outstanding compared to CMOS
circuits as shown in Table 3. For Molecular QCA (M-
QCA) this estimation was done adopting the best knowl-
edge on this technology available at the moment. Since
M-QCA is still under development, these numbers might
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change when a realistic layout will be implemented.
Nevertheless, the example is useful to highlight potential
benefits that can be achieved using pipeline interleaving
also with these new perspective technologies, in case
they will reach in the future a sufficient level of tech-
nological maturity. This means that, in each line of Table
3, moving towards higher levels of interleave, GCUPS
always increase.

It must be also clear that even if the systolic processor
can run at that frequency, memories and I/O structures
should be capable of reaching these speeds as well. A full
analysis of the design and speed of memory and I/O
structures is beyond the scope of this article, so these
results can be considered a “best case analysis”.

TABLE 3

Comparison of performance of WIL-S SA for matrix

multiplication with different technologies.

GCUPS

Tech. fclk Interleave level
No 1 2 3

CMOS
156MHz

20732 40970 54622 61447
NML 2101 2777 4201 5067

NWFET 1545 2213 3033 3460

M-QCA
10GHz 134478 177730 268872 324308
100GHz 1347782 1777306 2688723 3243083
1THz 13477827 17773062 26887237 32430838

NWFET 312GHz 3086516 4419390 6056905 6910409

Nevertheless, there is one key aspect that can be
highlighted. Considering for example NanoWire Field
Effect Transistor (NWFET) technology, the evaluation of
K gives K = 34: this means that a new input must be
available every 34 clock cycles, and then the memory
can be K times slower than the processor itself, being
more easily implementable, or cheaper. If the whole SA
reads from one memory only, then a memory with N×N

parallel outputs will be needed; moreover, it will be quite
common to have a mismatch between K and the delay
of input between successive PEs, that means that reads
in memory would be more than one every K cycles; they
could reach the maximum of one read every clock cycle,
eventually being one read correspondent to N×N values
to fed in the SA.

8 CONCLUSIONS

In this article we presented and discussed a systematic
method to increase performance of Systolic Arrays. Ac-
cording to the presence of loops in Processing Elements
or in lines of the SA, and to the way the results are
evaluated (locally inside one PE or through a line) we de-
fined a rigorous taxonomy of types of SAs. Consequently
we envisaged specific methods to optimize through in-
terleaving the SA usage for each class using practical
examples to clarify the explanation. We evaluated in
terms of Giga Cell Updates Per Second (GCUPS) the
performance improvement both in the case of standard
CMOS technology and of emerging technologies (like,

for example, QCA and Nanoarrays based on on silicon
nanowire FET).

Results encourage the adoption of this method: perfor-
mance are more than doubled using interleaving n = 2,
and even better results can be achieved with deeper
levels of interleave. In the case of nanotechnologies,
whose wires have long delays and are intrinsically
pipelined, it is extremely important to adopt this method
to compensate the throughput reduction due to feedback
signals. Using this resource as optimization technique,
designers can trade off between layout constraints and
interleaving level.

Our future efforts will concentrate on finding other
techniques at algorithm level based on data arrangement
to improve the circuit performance and to deal with the
massive pipelining that is a feature of many emerging
technologies.
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